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Abstract

We study the static and dynamical properties of a model that describes the interaction between the

economic and epidemiological domains. The epidemiological sphere is represented by a susceptible-

infected-susceptible model, while the economic domain consists of an overlapping generations model

in which the workers correspond to the non-infected population of adults. The productivity of the

firms and the propensity to save for retirement of the households are negatively affected by the disease

spread.

A capital tax is levied and the collected resources are used to curb the spread of the outbreak. We

show that multiple endemic steady states can arise from the interaction between the two domains, and

different stable endemic attractors can coexist with the stable disease free steady state. We study ana-

lytically and numerically the complex dynamics and the evolution of the basins of attraction in the case

of multistability. We show that the effect of taxation can be beneficial from both the epidemiological

and the economic points of view, as it can give rise to new steady states characterized by reduced shares

of infected people and increased capital level, it can simplify the dynamical behaviors and reduce the

size of the basins of attraction of those outcomes in which large shares of infected people and low

capital levels are observed.

Keywords: Economic and epidemiological modelling, Dynamical systems, Stability analysis,

Complex Dynamics, Multistability, Flip bifurcation

1. Introduction

Over the last few years, various events are having a significant impact on the trend in economic

growth. The outbreak of the recent COVID-19 pandemic has required the management of a global
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health emergency and the consequent costs to the global economy. The challenges posed by envi-

ronmental issues, climate change and pollution require tackling the problems of sustainable economic

growth and effective ecological transition.

There is growing evidence that the economic, epidemiological and environmental spheres cannot

be regarded as independent. The trend of a disease spread and the capability to recover from it essen-

tially depend on the planned investments in healthcare, on their timeliness and effectiveness. Likewise,

lockdowns and restrictions imposed by an out-of-control health situation have a highly negative im-

pact on economic performance. Similar considerations may also be made concerning the interaction

between the economic and environmental spheres. In addition to this, it should not be overlooked

that the epidemiological and environmental aspects also influence each other (just think of how the

environmental factors can favor the spread of viral agents).

Moreover, it must be emphasized how these interplays are characterized by an inherently dynam-

ical nature. We can observe cyclical trends, consecutive waves, peaks and falls, and very irregular

dynamics. In addition, seemingly similar contexts may evolve in very different ways, making the

initial conditions relevant to the study and prediction of phenomena. As a consequence, taking into

account dynamical aspects is essential for developing appropriate policy planning.

The literature has been studying the phenomena of interaction between different spheres for some

time. Without claiming to be exhaustive, concerning the interaction between the economic and envi-

ronmental domains, we can mention the seminal work [1], in which the conflict between the economic

growth and the quality of the environment is studied through an overlapping generations model (OLG).

This gave rise to an outgrowing research strand, see for example [2, 3, 4, 5]. Research about health and

economic growth is mainly founded on two approaches for the economic sphere modelling, namely

OLG and Solow growth models. Concerning the OLG modelling, we recall the contributions [6], which

studied the effect of considering an endogenous probability to survive, and [7], which considered a Di-

amond OLG model coupled with a dynamical equation of infection prevalence. Concerning Solow

modelling, we can refer to the contribution [8], which studied the effect of a disease on the economic

growth by encompassing in a continuous time Solow model either a Susceptible-Infected-Susceptible

(SIS) or a Susceptible-Infected-Recovered (SIR) model for the epidemiological side. [9] considered

the time discrete growth model and described the health domain through an SIS model. Finally, [10]

considered the framework in [11] in which they included the dynamics of disease transmission. For

contributions strictly related to the COVID-19 pandemic we also mention [12, 13], while for surveys,

we refer the interested reader to [14, 15, 16]. Finally, a model in which the interaction among the

economic, epidemiological and environmental sphere has been considered is studied in [17], in which

the role of the public debt was taken into account as well.

However, in the aforementioned literature, except in a few cases, the dynamical aspects have been

2



completely neglected or the investigations have gone as far as stability issues, without studying what

can characterize out-of-equilibrium dynamics. The purpose of this contribution is to start placing

the attention on the dynamical complexity that characterizes the phenomena of interaction between

the different spheres. To this end, we focus on a seemingly simple framework, in which the economic

domain, described by an OLG model, interacts with the epidemiological one, outlined by an SIS model.

The baseline resulting model is essentially that in [17], in which, in this first step of our research path,

we neglect the interaction with the environmental domain and we assume no new public debt is created.

To the best of our knowledge, this is the first time that the dynamics of coupled OLG-SIS model are

investigated. Even in this simplified framework, the model presents a wide range of interesting results,

both statically and dynamically, which deserve to be studied autonomously and differ from those in

[17]. We stress that, as in [17], we do not have in mind a particular epidemic spread, but we just

aim to address the problem from a theoretical point of view, without the goal to provide empirical

comparison of the dynamical outcomes we obtain. Along the lines of [17], the epidemiological domain

affects the economic one both with regard to the firms (by reducing the size of the labour force and

the effectiveness of the production process) and to the households (by affecting the agent preferences

through the probability to survive at the old age). The converse interaction is driven by the taxation of

the production, which is used to support health policies.

We investigate the resulting model at different levels. Firstly, we study it from a general perspec-

tive, to understand what are the possible static and dynamical outcomes. The main results concern the

possibility to have multiple coexisting steady states1 characterized by a positive fraction of infected

people (endemic steady states), together with a potentially stable steady state in which no agent is

infected (disease free steady state). Moreover, steady states can become unstable by means of a flip

bifurcation. We also provide conditions that regulate the behavior of economic and epidemiological

observables (capital and share of susceptible agents) on increasing the taxation level. Subsequently, we

focus on two cases of study to better illustrate the interpretation of the results. In the former one, we

consider exogenous total productivity factor and household preferences. This allows focusing on the

effects of the reduction of the disease spread thanks to taxation, and we show that a suitable level of

taxation is beneficial from the economic and epidemiological perspectives. Furthermore, rising taxes

has a stabilizing effect on potentially chaotic dynamics. Even if it can increase the complexity of the

static scenario by introducing multiple endemic steady states, the new steady states introduced by tax-

ation are preferable, in the sense that they are characterized by reduced levels of infection and possibly

increased capital. Moreover, those favored steady states have increasingly large basins of attractions

1We note that this is quite different from what happens in [17], as when the environmental domain is considered, just

one endemic steady state is possible.
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as the taxation increases, so they more likely realize. In the latter case of study, we consider endoge-

nous productivity factor and preferences, showing that, even if this can introduce further elements of

complexity, the main outcomes are confirmed.

The remainder of the contribution is organized as follows. In Section 2 we introduce the baseline

model, which is studied in Section 3. In Section 4 we discuss two cases of study. Finally, in Section

5 we report conclusions and some possible research lines. In Appendix we collect the proofs of the

propositions.

2. The model

The model we study encompasses two domains, the epidemiological one, described by a Susceptible-

Infected-Susceptible (SIS) model, and the economic one, consisting of an Overlapping Generations

(OLG) model. The model we consider is basically a reduced version of the one proposed in [17],

in which the environmental domain is included as well. For the reader’s sake, we detail the baseline

model.

For both domains, we consider a constant in time population formed by 2N individuals, which are

divided into two fixed groups consisting of adults and elderly people. In what follows, we discuss the

dynamical equation modelling each domain.

Epidemiological domain

The epidemiological domain is described by an SIS model. At each discrete time t, adults and

elderly are divided into susceptible and infected people, whose numbers are identified by St and It ,

respectively. We have that 0 ≤ St , It ≤ N and St + It = N. We assume that susceptibility to infection is

independent of age, so that St and It are the same for both adults and elderly individuals. The classic

SIS model can be written in the following way:










St+1 = St

(

1−θ It
N

)

+ γIt ,

It+1 = (1− γ)It +θ It
N

St ,

S0, I0 > 0, S0 + I0 = N,

(1)

where θ > 0 is the contact rate, and 0 < γ ≤ 1 is the recovery rate. We recall that condition θ <

(1+
√

γ)2 (see [18]) is required to have 0 ≤ St, It ≤ N for any t.

Since the population is constant, we can rephrase model (1) by setting st =
St

N
and it =

It
N

, so that

we obtain:










st+1 = st(1−θ it)+ γit ,

it+1 = (1− γ)it +θ itst ,

s0, i0 > 0, s0 + i0 = 1.

(2)

In the classic SIS model the contact rate is exogenous, while in the present model we take into account

public health policies to control the epidemics. To this end, we assume that the contact rate θ :
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[0,+∞)→ (0,γ),gt 7→ θ(gt) is a positive2, strictly decreasing C1 function of the public expenditures

per adult gt =
Gt

N
, where Gt denotes the health expenditures.

More precisely, we assume that the contact rate decreases with respect to the government expendi-

ture, so that for given fraction of susceptible and infectious people, the rate of new infections θ(gt)stit

is increasingly smaller thanks to the government interventions. Model (2) can be described by consid-

ering variable st alone, so the dynamics of the epidemiological domain are

st+1 = st(1−θ(gt)it)+ γit . (3)

Since θ is decreasing, its maximum value is attained at gt = 0, and value θ(0) will be used as the

benchmark situation without government intervention.

Economic domain

The economy is described by an OLG model with production à la Diamond (see e.g. [19]). Every

adult is endowed with a logarithmic utility function u(ct ,dt+1) = lnct +β (st+1) lndt+1, where ct and

dt+1 are, respectively, the consumption in the present period and the consumption in the next period, as

a retired person, while, according to [17], β : [0,1]→ (0,1] represents the probability of staying healthy

and correspondingly the willingness to save money for the old age (see also [6]). Function β is C1,

increasing (β ′(x)≥ 0 for any x ∈ [0,1]) and concave, so that the smaller the share of infectious people

during period t +1 is, the larger the discount factor is, with decreasing marginal returns. Consumption

choices depend on usual budget constraints.

The sum of the savings σt and the consumption ct of each adult must be equal to the labour income

Ωt . The labour income is Ωt = wt , the wage paid by the firm, if the person is healthy, while Ωt = 0, if

the person is infected. A second budget constraint links the savings of one period to the consumption

in the next one, where rt+1 is the marginal productivity of capital. The budget constraints are given by

the following equations:

σt + ct = Ωt, dt+1 =
rt+1

β (st+1)
σt . (4)

Adults maximize the utility function u subject to the budget constraints (4), and this provides

ct =
Ωt

1+β (st+1)
, σt =

β (st+1)

1+β (st+1)
Ωt, dt+1 =

rt+1

1+β (st+1)
Ωt . (5)

Firms produce an output Yt according to Yt(Lt ,Kt) = A(st)L
1−a
t Ka

t , where Lt is the labour, Kt is the

capital and a ∈ (0,1). Function A : [0,1] → (0,1] represents the factor productivity and takes the

2We require that θ is always strictly positive for any government expenditure, i.e. that it is not possible to have a null

contact rate, which would mean that for suitably large interventions, the disease disappears. We stress that such a scenario

would be quite extreme, so we avoid discussing it, and, in any case, assuming θ (g)> 0 does not prevent the occurrence of

disease-free steady states.
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value A(1) = 1, i.e. we normalize the factor productivity when there are no infected people. It is an

increasing C1 function, and it encompasses the productivity fall due to a large share of infected people

(for a discussion on this, we refer to [17, 20]).

Since the government taxes production at a constant rate τ ∈ [0,1], firms maximize the profit

π(Lt ,Kt) = (1− τ)Yt(Lt ,Kt)− rtKt −wtLt , from which we obtain

rt = a(1− τ)A(st)

(

Lt

Kt

)1−a

, wt = (1−a)(1− τ)A(st)

(

Kt

Lt

)a

.

If we define the capital per adult kt = Kt/N and we assume that every adult and healthy agent works,

so that at equilibrium one has Lt = St , the previous equations can be written as

rt = r(st ,kt) = a(1− τ)A(st)

(

st

kt

)1−a

, wt = w(st ,kt) = (1−a)(1− τ)A(st)

(

kt

st

)a

,

with r,w : [0,1]×R
+ →R

+.

Finally, introducing the budget constraint for the government3 Gt = τYt , we can obtain the expres-

sion for the government expenditures

gt = g(st,kt) = τA(st)s
1−a
t ka

t . (6)

The savings of the adults are the capital for period t+1, so the average of the savings is σ̄t = kt+1 and,

using (5), we can write

kt+1 =
β (st+1)

1+β (st+1)
w(st ,χt)st. (7)

Collecting equations (3) and (7) we obtain the two-dimensional discrete dynamical system M : [0,1]×
[0,+∞)→ [0,1]× [0,+∞),(st,kt) 7→ M(st ,kt), with map M defined by

{

st+1 = st [1−θ(g(st,kt))(1− st)]+ γ(1− st),

kt+1 =
β (st+1)

1+β (st+1)
(1−a)(1− τ)A(st)k

a
t s1−a

t ,
(8)

in which g(st ,kt) is given in (6).

Before studying model (8) in a completely general setting, we recall some classic results on the

steady states of the SIS model (2) and of the OLG Diamond model with no taxation, exogenous factor

productivity A = 1, exogenous discount factor β and normalized labour l = 1.

Proposition 2.1. Model st+1 = st(1− θ(1− st))+ γ(1− st) has the disease free steady state s∗ = 1

coexisting, for θ > γ , with an endemic steady state s∗ = γ/θ . The disease free steady state is locally

asymptotically stable for θ > γ , while the endemic steady state is locally asymptotically stable provided

that θ − γ < 2.

3We recall that, differently from [17], in the present contribution we do not study the possibility for the government to

issue a debt.

6



Proposition 2.2. The steady states of model kt+1 =
β

1+β
(1−a)ka

t are k∗ = 0, which is repelling, and

k∗ =
[

β
1+β

(1−a)
]

1
1−a

, which is globally stable.

3. General static and dynamical analysis

In this section we consider model (8) from a general perspective, without making specific assump-

tions on functions θ , A and β . Our goal is to highlight the main differences with the results related

to the SIS and Diamond model, both concerning the possible sets of steady states and their dynamical

properties, mainly focusing on the role of the health policy. As we will see, such a general setting can

give rise to a very intricate evolution of scenarios, which however can be explained and discussed by

taking into account simple situations. In this section we then focus on the properties of System (8)

from a mathematical point of view, providing a first, stylized discussion of them. Also with the help of

numerical investigations, we will deepen the explanation of the results in Sections 4.1 and 4.2 focusing

on some economically relevant cases of study.

3.1. Steady states

Firstly, we provide the conditions that define the possible steady states of model (8) with positive

capital level. Note that for each of them, a steady state with null capital level is present as well, but we

do not study it, also because it is always unstable (for more details, we refer the interested reader to

[21]).

Proposition 3.1. Model (8) always has disease free steady state ξ∗d f = (s∗d f ,k
∗
d f ) with

s∗d f = 1, k∗d f =

(

β (1)

1+β (1)
(1−a)(1− τ)

)
1

1−a

(9)

while endemic steady states ξ∗ = (s∗,k∗) solve conditions

s∗θ(g(s∗,k∗)) = γ, k∗ =
(

β (s∗)
1+β (s∗)

A(s∗)(1−a)(1− τ)

)
1

1−a

s∗. (10)

where g is defined in (6).

The main difference between the results of Proposition 2.1 and Proposition 3.1 is the possible

emergence of multiple endemic steady states, which is fostered by the endogenization of the contact

rate θ (depending on the government expenditure), of the factor productivity and of the discount factor

β . Let k∗ : [0,1] → [0,+∞),s 7→ k∗(s) be the function defined by the second equation in (10), i.e.

k∗(s) =
(

β (s)
1+β (s)A(s)(1−a)(1− τ)

)
1

1−a
s.
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We note that the condition sθ(g(s,k∗(s))) = γ that must be fulfilled at an endemic steady state is a

generalization of condition sθ = γ with exogenous θ , and again represents a balance between the new

infections and recoveries. In particular, g(s,k∗) represents the government expenditure corresponding

to the steady state capital level k∗ if the number of susceptible agents is s. Let us introduce function

g∗ : [0,1]2 → R,(s,τ) 7→ g∗(s,τ) defined by

g∗(s,τ) = τ

(

β (s)

1+β (s)
(1−a)(1− τ)

)
a

1−a

A(s)
1

1−a s, (11)

in which the right hand side corresponds to g(s,k∗(s)). Since we want to study the role of the taxation

rate on the emergence/disappearance of endemic steady states and on their comparative statics, in

function g∗ we make explicit the dependency of g(s,k∗(s)) on τ .

Note that g∗(s,0)≡ 0 (as we have null taxation and hence null government expenditures), g∗(s,1)≡
0 (as in this case the amount of collected resources at each time t would correspond to the whole capital,

which quickly becomes null) and that, for any s ∈ [0,1], there holds 0 ≤ g∗(s)< 1.

For a given τ ∈ [0,1], from (10), we have that endemic steady states of model (8) are one-to-one

corresponding to the solutions s ∈ (0,1) to equation γ − sθ(g(s,k∗(s))) = 0. This suggests introducing

function ϕ : [0,1]2 → R,(s,τ) 7→ ϕ(s,τ) defined by

ϕ(s,τ) = γ − sθ(g∗(s,τ)),

where function g∗ is defined by the right hand side in (11). Moreover, for each τ ∈ [0,1], we denote by

ξ∗i (τ) = (s∗i (τ),k
∗
i (τ)), i = 1, . . .ν(τ) ∈ N the endemic steady states of model (8), indexed in ascend-

ing order with respect to the fraction of susceptible agents, and we count the endemic steady states

corresponding to the extremum points for function ϕ twice4. Accordingly, in what follows we write

ξ∗i (τ)< ξ∗j (τ) when s∗i (τ)< s∗j(τ). In this case we want to stress the dependence of k∗ on τ , instead of

the usual dependence on s: this is the motivation for the abuse of notation k∗(τ).

From the sign of function ϕ we can obtain information about the balance between the fraction

γ(1− st) of recovered people and that of new contagions stθ(g(st ,kt))(1− st), as the sign of function

ϕ is the same of γ(1− st)− stθ(g(st,kt))(1− st). This means that ϕ is positive (respectively, negative)

if and only if the fraction of susceptible people increases (respectively, decreases).

We start with showing a property of endemic steady states.

Proposition 3.2. Vector ξ∗(τ) = (s∗(τ),k∗(τ)) is an endemic steady state of (8) for τ ∈ [0,1− a) if

and only if there exists an endemic steady state ξ∗(τ̄) = (s∗(τ̄),k∗(τ̄)) of (8) for τ̄ ∈ (1− a,1] with

s∗(τ) = s∗(τ̄).

4Conversely, when a zero of ϕ is an inflection point with horizontal tangent line, we consider this solution as a unique

one. As it will become evident from the subsequent analysis, at those points no bifurcation can occur, while at maximum

or minimum points of ϕ a fold bifurcation can occur for the endemic steady states of (8).
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Moreover, let ξ∗(τ1) and ξ∗(τ2) be two endemic steady states, obtained for τ1,τ2 ∈ [0,1−a), and

let ξ∗(τ̄1) and ξ∗(τ̄2) be the corresponding endemic steady states (i.e. having the same fraction of

susceptible agents) for τ̄1, τ̄2 ∈ (1−a,1]. If τ1 < τ2, there holds τ̄1 > τ̄2.

The property described in the previous proposition follows from the fact that, fixed s ∈ (0,1), the

function g∗(s,τ) is strictly increasing for τ ∈ [0,1− a] and strictly decreasing for τ ∈ [1− a,1]. The

same holds for function ϕ(s,τ). As a consequence of Proposition 3.2, it is sufficient to study what

happens for τ ∈ [0,1−a], as the scenarios occurring for τ ∈ [1−a,1] are the same as those found for

τ ∈ [0,1−a], just occurring in reverse order5.

Let us introduce function Eθ : [0,+∞)→ R,g 7→ Eθ (g)

Eθ (g) =
gθ ′(g)
θ(g)

(12)

representing the elasticity of θ at g, and, given τ ∈ (0,1), function Eg∗ : (0,1]→ R,s 7→ Eg∗(s)

Eg∗(s) =
s

∂g∗

∂ s
(s,τ)

g∗(s,τ)
=

a

1−a

β ′(s)
β (s)(1+β (s))

s+
1

1−a

A′(s)
A(s)

s+1.

representing the elasticity of g∗ at s. We remark that Eg∗(s) actually does not depend on τ , since

Ek f (s) = E f (s) for any function f (s) and any constant k, recalling (11). Consequently, it is possible to

consider a continuous extension of function Eg∗ to τ = 0, which will still be identified by Eg∗ in what

follows.

We note that Eθ (g) ≤ 0, with Eθ (0) = 0, so when we discuss the role of the elasticity of θ , we

refer to |Eθ (g)|, i.e. with “inelastic” and “elastic” contact rate we respectively mean |Eθ (g)|< 1 and

|Eθ (g)| > 1. Conversely, we note that Eg∗(s) ≥ 1, with Eg∗(s) = 1 if A and β are constant functions.

In the next proposition we focus on some characteristics of the endemic steady states6.

Proposition 3.3. (i) For each τ ∈ [0,1− a], a necessary condition for the existence of more than

one endemic steady state is that Eθ (g
∗(s))Eg∗(s) =−1 for some s ∈ (0,1).

(ii) There are no endemic steady states for any τ if and only if γ ≥ θ(0).

(iii) If Eθ (g
∗(s,τ))Eg∗(s,τ) = −1 exactly at N(τ) values of s, there exist endemic steady states

ξ∗1(τ)≤ ξ∗2(τ)≤ . . .≤ ξ∗ν(τ)(τ) with ν(τ)≤ N(τ)+1.

5We stress that each pair of corresponding steady states for τ < 1− a and τ > 1− a has in common the share of

susceptible agents, but in general, they have different capital levels. However, the comparative statics will provide additional

reasons for which considering taxation rates larger than 1− a is always detrimental.
6In what follows we focus on the case with a finite number of endemic steady states, since it is the most relevant from

the economic point of view.
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(iv) Let ξ∗1(τ) ≤ ξ∗2(τ) ≤ . . . ≤ ξ∗ν(τ)(τ) be the endemic steady states of (8) for some τ ∈ [0,1−
a]. With strict inequalities, we have that for 1 ≤ 2i ≤ ν(τ)− 1 s 7→ ϕ(s,τ) is decreasing at

s∗2i+1 and |Eθ (g
∗(s∗2i+1,τ))Eg∗(s

∗
2i+1)| ≤ 1 (respectively, for 1 ≤ 2i ≤ ν(τ) is increasing at s∗2i

and |Eθ (g
∗(s∗2i,τ))Eg∗(s

∗
2i)| ≥ 1). If ξ∗2i−1(τ) = ξ∗2i(τ) for 1 < 2i ≤ ν(τ), then s∗2i−1 = s∗2i is a

minimum point. If ξ∗2i(τ) = ξ∗2i+1(τ) for 1 ≤ 2i < ν(τ), then s∗2i = s∗2i+1 is a maximum point.

Proposition 3.3 highlights that a crucial element for the occurrence of multiple endemic steady

states is related to the joint effect of the elasticity of the contact rate with respect to the government

expenditure and of the elasticity of g∗ with respect to the number of susceptible agents. If we neglect

the effect of the epidemic on A and β , multiple endemic steady states can occur only if at some s∈ (0,1)

we have Eθ (g
∗(s)) = −1. The intuition of this is that if the responsiveness of the contact rate with

respect to the government expenditure is small (i.e. |Eθ (g
∗(s))|< 1), this slightly affects the scenario

with an exogenous θ , and hence there is a unique endemic steady state. Conversely, an increased

effectiveness of the government intervention opens the possibility to have additional endemic steady

states that, as we will see, are characterized by larger fraction of susceptible agents, and hence are

more desirable from the healthcare point of view. Moreover, since Eg∗(s) ≥ 1, the endogenization of

A and β can strengthen the possibility for the occurrence of multiple endemic steady states. We note

that in [17], when the interaction with the environmental side is also considered, such a multiplicity of

endemic steady states is not possible7.

We draw the attention on point (iii), when multiple, non-coincident endemic steady states exist, they

are characterized by alternating large and small values of |Eθ (g
∗(s))Eg∗(s)|, respectively corresponding

to decreasing and increasing parts of the graph of function s 7→ ϕ(s,τ). This characterization will be

crucial for discussing stability of endemic steady states8.

Finally, if γ ≥ θ(0), just the disease free steady state is possible, independently of the taxation rate,

which suggests that τ = 0 is the best policy in this case. In addition to this, as we will see in Proposition

3.7, if γ > θ(0), ξ∗d f is always stable, so, from now on, we will just focus on the case of γ < θ(0).

In the next propositions we investigate how endemic steady states can evolve on increasing τ .

We recall that, for each τ , there is a one-to-one correspondence between the solutions s ∈ (0,1) to

ϕ(s,τ) = 0 and the endemic steady states of (8). There is then a close link between the emergence of

7The level of complexity described by Proposition 3.3 is not observed in the existing literature. In [7] a unique endemic

steady state is observed, while at most two endemic steady states occur in [22]. At most three steady states characterized

by positive capital level are possible in [9], but just one of them can be stable.
8It will become evident that such an alternating behavior, with minor adjustments, also generalizes to the situations in

which some endemic steady states correspond to the extremum points for function ϕ .
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new endemic steady states and the bifurcations of the one dimensional recurrence equation

st+1 = st +(1− st)ϕ(st ,τ). (13)

To avoid situations in which more than a couple of endemic steady states emerge/vanish at a given

steady state ξ∗(τ), it is necessary to assume that if a steady state s∗(τ) for (13) is an extremum point

for s 7→ ϕ(s,τ), this function is either strictly convex or concave on a neighborhood of s∗ for taxation

rates suitably close to τ. This is guaranteed by imposing that
∂ 2ϕ(s,τ)

∂ s2 6= 0, so we assume

if θ(g∗(s∗,τ0))+ s∗θ ′(g∗(s∗,τ0))
∂g∗

∂ s
(s∗,τ0) = 0, there holds

θ ′′ (g∗(s∗,τ0))

(

∂g∗

∂ s
(s∗,τ0)

)2

s∗+θ ′ (g∗(s∗,τ0))

[

∂ 2g∗

∂ s2
(s∗,τ0)s

∗+2
∂g∗

∂ s
(s∗,τ0)

]

6= 0.

(14)

Firstly, we consider what can happen on a neighborhood of an endemic steady state.

Proposition 3.4. Let θ ,A and β be C2 functions, τ0 ∈ (0,1−a) and ξ∗(τ0) = (s∗,k∗) be an endemic

steady state at which (14) holds true. Then there exists a neighborhood Ω = (s∗−δ ,s∗+δ )× (τ0 −
ε,τ0 + ε) ⊂ (0,1)× [0,1− a) of (s∗,τ0), ε,δ > 0, such that exactly one of the following scenarios

occurs:

(a1) there is a unique endemic steady state ξ∗(τ) = (s(τ),k(τ)), for every τ ∈ (τ0 − ε,τ0 + ε), with

(s(τ),τ) in Ω;

(a2) there are no endemic steady states ξ∗(τ) = (s,k) for τ ∈ (τ0 − ε,τ0), with (s,τ) in Ω, and there

are two endemic steady states ξ∗i (τ) = (si(τ),ki(τ)), i = 1,2, for τ ∈ (τ0,τ0 + ε), with (si(τ),τ)

in Ω, i = 1,2 and s1(τ)≤ s∗ ≤ s2(τ);

(a3) there are two endemic steady states ξ∗i (τ) = (si(τ),ki(τ)), i = 1,2, for τ ∈ (τ0 − ε,τ0), with

(si(τ),τ) in Ω, i = 1,2, s1(τ)≤ s∗ ≤ s2(τ) and there are no endemic steady states ξ∗(τ) = (s,k)

for τ ∈ (τ0,τ0 + ε), with (s,τ) in Ω.

Proposition 3.4 establishes a first possible way through which endemic steady states create/vanish.

From its proof, we have that cases (a2) and (a3) are linked to the fold bifurcations of steady states

s∗ ∈ (0,1) for (13). We stress that it is possible to show that even if condition (14) is not fulfilled, no

pitchfork bifurcation of s∗ ∈ (0,1) for (13) can occur.

Proposition 3.5. Let θ ,A and β be C2 functions, τ0 ∈ (0,1− a) and ξ∗d f (τ0) = (1,k∗d f ) be a disease

free steady state at which (14) holds true for s∗ = 1. Then there exists Ω = (s̃,1)× (τ0 − ε,τ0 + ε) ⊂
(0,1)× [0,1−a), ε > 0, such that exactly one of the following scenarios occurs:
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(b1) there are no endemic steady states ξ∗(τ) = (s,k) for τ ∈ (τ0− ε,τ0 + ε), with (s,τ) in Ω;

(b2) there are no endemic steady states ξ∗(τ) = (s,k) for τ < τ̄ , with (s,τ) in Ω and there is a unique

endemic steady state ξ∗(τ) = (s(τ),k(τ)) for τ > τ̄ , with (s(τ),τ) in Ω;

(b3) there is a unique endemic steady state ξ∗(τ) = (s(τ),k(τ)) for τ < τ̄ , with (s(τ),τ) in Ω, and

there are no endemic steady states ξ∗(τ) = (s,k) for τ > τ̄ , with (s,τ) in Ω.

In cases (b2) and (b3) an endemic steady state exists for, respectively, τ > τ̄ and τ < τ̄ . These two

cases are related to transcritical bifurcations of s∗ = 1 for dynamical equation (13). Even if the fold

and the transcritical bifurcations we mentioned in cases (a2), (a3), (b2) and (b3) of both Propositions

3.4 and 3.5 are related to the recurrence equation (13), they actually provide an insight on possible

bifurcations through which the number of endemic steady states ξ∗ of model (8) changes9. This will

become more evident from the dynamical analysis and from the numerical investigations carried on in

Sections 4.1 and 4.2.

Concerning the comparative statics of endemic steady states, we have the following result.

As we will see in Proposition 3.8, we just focus on steady states at which |Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ))|<
1, since those at which |Eθ (g

∗(s∗(τ),τ))Eg∗(s
∗(τ))|> 1 are repelling and do not play an active role. We

avoid to explicitly discuss what happens when Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ)) = −1, since it corresponds

either to repelling steady states or to situations comparable to the case of |Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ))|<
1. We omit the proof, which can be found in [21].

Proposition 3.6. Let I ⊂ [0,1− a] be a range of values for which an endemic steady state ξ∗(τ) =

(s∗(τ),k∗(τ)) characterized by Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ)) > −1 exists for any τ ∈ I. We have that

s∗(τ) increases, while k∗(τ) increases if

Eθ (g
∗(s∗(τ),τ))<− τ

1−a+EA(s∗(τ))+(1− τ)Eβ/(1+β )(s
∗(τ))

(15)

Conversely, if we consider ξ∗(τ) for τ > 1−a both s∗(τ) and k∗(τ) decrease.

We firstly note that Proposition 3.6 shows that any increase of the taxation rate above τ = 1−a is

detrimental, as it results in a deterioration of both the epidemiological sphere (as the number of infected

people increases) and the economic one (as the steady state capital level decreases). The explanation is

9We avoid to provide the precise proof of the occurrence of a fold and transcritical bifurcations, because this would

require to deal with high order non degeneracy and transversality conditions, which are not analytically possible for the

present model. In Propositions 3.7 and 3.8 we limit ourselves to showing the occurrence of an eigenvalue λ = 1 for the

Jacobian matrix of (8) evaluated at the endemic steady states corresponding to solutions to ϕ(s, τ̄) = 0. This, together with

the numerical investigations, provides plausible insights on the possible bifurcations.

12



that above a certain threshold, the marginal increase in collected resources due to the larger taxation rate

becomes smaller than the marginal decrease of the capital level, and hence the government expenditure

decreases. We stress that this is the unique relevant “asymmetry” in the behavior of ξ∗(τ) for τ ∈ [1−
a,1] with respect to τ ∈ [0,1−a] and, as remarked after Proposition 3.2, is related just to component

k∗. As long as a given endemic steady state exists, the related fraction of susceptible people increases.

This is predictable, as for τ ∈ [0,1−a] the government investment on healthcare increases, hence the

epidemiological situation improves.

The behavior of the capital level is conversely ambiguous, as it depends on condition (15), which

is fulfilled if the elasticity of θ is suitably large. For now, we do not add further details on this, we will

deepen the discussion in Sections 4.1 and 4.2.

3.2. Stability

In this section we provide analytical conditions for stability of both endemic and disease free steady

states. Concerning ξ∗d f , we have the next result.

Proposition 3.7. The disease free steady state ξ∗d f defined in (9) is locally asymptotically stable pro-

vided that

γ > θ

(

τ

[

β (1)

1+β (1)
(1−a)(1− τ)

]
a

1−a

)

(16)

Condition (16) is fulfilled only if there is an even number of endemic steady states.

Before discussing condition (16) we study stability for the endemic steady state.

Proposition 3.8. An endemic steady state ξ∗ = (s∗(τ),k∗(τ)) with positive capital is locally asymptot-

ically stable provided that

{

Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ))>−1

[θ(g∗(s∗(τ),τ))− γ]
[

1+ 1−a
1+a

Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ))
]

< 2
(17)

We start assuming that τ ∈ [0,1−a]. The former condition in (17) implies that
∂ϕ
∂ s
(s∗(τ),τ) < 0,

so any endemic steady state at which
∂ϕ
∂ s
(s∗(τ),τ)≥ 0 is unstable. Recalling Proposition 3.3 (iv), any

endemic steady state ξ∗2i, i > 0 is unstable, in particular repelling.

Noting that the first condition in (17) implies that
∂ϕ
∂ s
(s∗(τ),τ) < 0, it can be explained as fol-

lows. We discussed (just before Proposition 3.2) how the positive/negative sign of ϕ determines the

increase/decrease in the number of susceptible agents. This means that, if (17) holds true, on a left

neighborhood of s∗, we have that ϕ is positive, and hence the susceptible population increases. A

symmetric situation takes place for s > s∗, in which case the fraction of infected people grows. So, if

13



∂ϕ
∂ s
(s∗(τ),τ) is not too large, the trajectories converge toward s∗. Conversely, if

∂ϕ
∂ s
(s∗(τ),τ) < 0, the

two previous behaviors for s < s∗ and s > s∗ swap, and s∗ cannot be stable.

Similarly, close to s∗ = 1, under condition (16) we have that the fraction of susceptible population

increases, as the new recoveries are more than the new infections, and so the disease free steady state

is stable. Conversely, if condition (16) is fulfilled with the opposite inequality <, we have the converse

situation and the disease free steady state is repelling.

We remark that in the exogenous case just the case of
∂ϕ
∂ s
(s∗(τ),τ) < 0 occurs. Recalling Propo-

sitions 3.4 and 3.5 and as we will see in the numerical simulations in Sections 4.1 and 4.2, we have

that when the former condition in (17) becomes an equality, either a fold or a transcritical bifurcation

occurs, with the emergence or disappearance of, respectively, a new couple of endemic steady states or

a single one. We stress that fold bifurcations do not affect the stability of the disease free steady state,

while with the occurrence of a transcritical bifurcation a previously unstable disease free steady state

becomes stable.

The latter condition in (17) is related to the emergence of a flip bifurcation, and is a generalization

of the classic SIS model one, corresponding to θ − γ < 2. We stress that since whenever an endemic

steady state exists the third inequality in (24) holds true, no Neimark-Sacker bifurcation can occur and

stability can be recovered/lost just through a flip bifurcation.

Concerning the last condition in (17), we note that [θ(g∗(s∗(τ),τ))− γ] decreases as τ increases,

since the government expenditure increases and θ is strictly decreasing. Moreover, factor

1+ 1−a
1+a

Eθ (g
∗(s∗(τ),τ))Eg∗(s

∗(τ)) is equal to 1 if τ = 1 and is always less than 1 for τ > 0. This means

that the last condition in (17) is more restrictive for τ = 0 when compared to any τ > 0. This allows

concluding that taxation does not introduce instability with respect to the scenario of no taxation, and

hence the government intervention has a potentially stabilizing effect. This means that if ξ∗1(τ) is stable

for τ = 0, it will be stable for any τ > 0, as long it exists on some interval [0, τ̄). Note that this does not

mean that if an endemic steady state is stable for some τ̄ > 0 (i.e. for some given healthcare policy)

it will remain stable for any τ > τ̄ . However, we have been able to show through simulations that an

increase of τ is destabilizing only by adopting quite extreme choices of functions A and β , with lack

of economic relevance. This suggests that such a possibility is not interesting from an economic point

of view, so we avoid discussing it further.

As a consequence of Proposition 3.2, if we increase τ on [0,1− a], the sequence of bifurcations

occurring on a given endemic steady state ξ∗(τ) existing on some interval I ⊂ [0,1−a], takes place in

reverse order on the corresponding interval Ī ⊂ [1−a,1] where ξ∗(τ̄) is defined.
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4. Two cases of study

In what follows we consider two economically relevant cases of study, obtained by considering

more specific assumptions on the contact rate, preferences and factor productivity functions. We pro-

gressively introduce the elements of complexity in order to better understand the outcomes.

4.1. The role of endogenous contact rate

In this section we study the effect of the contact rate endogenization, with the aim of emphasizing

the direct effect of the economic domain on the epidemiological one. To illustrate the essential elements

characterizing this, we consider a simplified setting for (8), obtained by introducing the following two

assumptions:

Assumption 1. Function Eθ (g) : [0,+∞)→R defined by (12) is strictly decreasing.

Assumption 2. Factor productivity and probability to survive are constant functions, respectively

A(s)≡ 1 and β (s)≡ β̄ .

Under Assumption 1, we have a greater responsiveness |Eθ (g)| of the contact rate with respect to a

marginal increase of the government expenditure as the current expenditure grows10. This means that

a unitary increase of the current expenditure g2 has the effect to reduce θ proportionally more than a

unitary increase of any expenditure g1 < g2. This depicts a reasonable situation in which it is easier to

deal with an epidemic if prevention, containment and resilience measures are already in place than if

they are not.

Assumption 2 allows reducing impact of the epidemiological domain onto the economic one to the

fact that lt = st , i.e. labour corresponds to the fraction of susceptible agents. n the general case, we

provided only a local analysis of how the set of steady states can change as τ increases. Thanks to

Assumptions 1 and 2, it is possible to have a global description for τ ∈ [0,1−a].

In what follows, when we write “Scenario n1-n2-. . .” with ni ∈ N we mean that, on increasing τ ,

we initially have n1 endemic steady states, we then have n2 endemic steady states and so on. As an

example, Scenario “1-2-0” means that there exist τ1,τ2 ∈ (0,1− a) with τ1 < τ2 such that a unique

endemic steady state exists for τ ∈ [0,τ1], two endemic steady states exist for τ ∈ (τ1,τ2] and no

endemic steady state exists for τ ∈ (τ2,1−a].

Proposition 4.1. Let γ < θ(0). Under Assumptions 1 and 2, on increasing τ ∈ [0,1− a], only the

following scenarios are possible:

10We stress that Assumption 1 is equivalent to requiring that θ is not “too convex”. If θ is twice differentiable, we have

that E ′
θ (g)< 0 is equivalent to θ ′′(g)< g(θ ′(g))2−θ(g)θ ′(g)

gθ(g)
, where the right hand side is positive.
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Scenario 1 There exists a unique endemic steady state for any τ .

Scenario 1-0 There exists τ1 ∈ (0,1−a) such that a unique endemic steady state exists for τ ∈ [0,τ1)

and no endemic steady state exists for τ ∈ [τ1,1−a].

Scenario 1-2 There exists τ1 ∈ (0,1−a) such that a unique endemic steady state exists for τ ∈ [0,τ1]

and two endemic steady states exist for τ ∈ (τ1,1−a].

Scenario 1-2-0 There exist τ1,τ2 ∈ (0,1− a) with τ1 < τ2 such that a unique endemic steady state

exists for τ ∈ [0,τ1], two endemic steady states exist for τ ∈ (τ1,τ2] and no endemic steady state

exists for τ ∈ (τ2,1−a].

We stress that each scenario describes the sequence of endemic steady states up to τ = 1−a, while

for τ > 1− a the sequence is repeated in reverse order. Proposition 4.1 shows that multiple endemic

steady states can occur just due to the endogenization of the contact rate, even in the simple case of a

monotonic θ . Recalling the comments in Section 3 relative to Proposition 3.4 and Proposition 3.5, we

note that Proposition 4.1 actually clarifies the sequence of transcritical/fold bifurcations occurring to

ξ∗1 and ξ∗d f . We remark that when ξ∗2 exists, from point (iv) of Proposition 3.3 and Proposition 3.8, it

is repelling while ξ∗d f becomes stable (see also Proposition 3.7). So, differently from the classic SIS

model, we have that a non repelling endemic steady state can coexist with a stable disease free steady

state.

We cast an insight on the occurrence of each scenario with the help of numerical simulations. As

an example of function θ that fulfills Assumption 1 we consider

θ(g) = θ0e−θ1(θ2+g)α
, (18)

with θi > 0, i = 0,1,2 and α > 0, for which we have Eθ (g) = −αθ1g(θ2 + g)α−1. A direct check

shows that Eθ (g) is strictly decreasing and |Eθ (g)| is strictly concave (respectively, convex) for α < 1

(respectively, α > 1).

For all the simulations, we set a = 0.3 (belonging to the empirically relevant range of output elas-

ticity of capital, see [23]) and γ = 1. In each scenario, parameters used for function θ are listed in

Table 1, while under Assumption 2 we set A = 1 and β̄ = 1. The corresponding graphs of functions θ

and Eθ are reported in Figures 1 (a) and (b).

In the first column of Figure 2 we report simulations related to each scenario provided by Propo-

sition 4.1. Figures 2 (a,d,g,j) report function ϕ for different values of τ using different colors. In par-

ticular, the blue and the red colors are respectively used for the extreme taxation rates, namely τ = 0

and τ = 1−a = 0.7, while the yellow and purple colors are used to represent ϕ for those taxation rates

for which the number of solutions to ϕ(s,τ) = 0 changes. Recalling the comments to Propositions 3.4
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Figure 1: Panels (a) and (b): graphs of functions θ and Eθ . Panel (c): graphs of functions A and β .

Function θ

Scenario α θ0 θ1 θ2

“1” 0.5 3.9 2.5 10−4

“1-0” 0.5 3.9 3 10−4

“1-2” 1.2 3.9 7 10−4

“1-2-0” 1.2 3.9 10 10−4

Function β n = 1 β0 = 1 β1 = 10−4

Function A A = 0.4 sA,1 = 0.4 sA,2 = 0.5

Table 1: Left table: parameters related to function θ defined in (18). Right table: parameters related to functions

A and β defined in (21) and (20).

and 3.5, in what follows, we describe these changes in the numerousness of steady states as a fold or

a transcritical bifurcation, since they occur for map (13) and the subsequent bifurcation diagrams will

confirm this for model (8).

In the simulation related to Scenario “1” reported Figure 2 (a), the graph of function ϕ is always

decreasing, and lies between the blue and the red graphs, as a consequence of which there is always a

unique endemic steady state and neither fold nor transcritical bifurcations occur.

In the simulation related to Scenario “1-0” reported in Figure 2 (d), we have that, as τ increases,

function s 7→ ϕ(s,τ) is decreasing for each τ . 0.4, so there is a unique endemic steady state. For

τ ≈ 0.4 a transcritical bifurcation occurs, after which no endemic steady state exists for 0.4 . τ ≤ 0.7,

as ϕ lies above the yellow curve and it can no more intersect the horizontal axis.

In Scenario “1-2” of Figure 2 (g) we see that ϕ becomes U -shaped for a value of τ smaller than that

for which ϕ passes through point (1,0) (in this case, τ ≈ 0.52). This means that for τ . 0.52 function

ϕ intersects the horizontal axis at a unique point and a unique endemic steady state exists, while for

τ & 0.52 the two intersections provide two endemic steady states as a consequence of the transcritical

bifurcation occurred at τ ≈ 0.52. Since the minimum of function ϕ(s,1−a) lies below the horizontal

axis for 0.52 . τ ≤ 0.7, we still have two endemic steady states. This is the main difference with

Scenario “1-2-0”. In Figure 2 (j), we see that for τ . 0.36 and 0.36 . τ . 0.42 the behavior of ϕ is the
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Figure 2: Simulations related to the Scenarios of Proposition 4.1. Left column: graphs of function ϕ for τ = 0

(blue color) and τ = 1−a (red color), and the intermediate values of τ for which we have a change in the number

of endemic steady states (possible colors yellow and purple). Middle and right columns: evolution of fraction of

susceptible agents (middle) and of capital level (right) for the endemic and the disease free steady states.
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same as what happens in Scenario “1-2”, with one zero when the graph of ϕ lies between the blue and

the yellow graphs and two zeros when it lies between the yellow and purple graphs, being the latter

tangent to the horizontal axis. For 0.42 . τ ≤ 0.7, we have ϕ(s,τ)> 0 for any s ∈ (0,1) and hence no

endemic steady state is possible. In this scenario, a transcritical bifurcation (τ ≈ 0.36) followed by a

fold one (τ ≈ 0.42) occurred.

Concerning comparative statics, with exogenous functions A and β condition (15) (under which

k∗(τ) increases) simplifies as

Eθ (g
∗(s∗(τ),τ))<− τ

1−a
. (19)

We report the evolution of s∗(τ) and k∗(τ) respectively in the middle and right columns of Figure 2,

related to the same settings (in particular, the same function θ) used for the simulations in the first

column. Components of ξ∗i are numerically computed on varying τ . On each row, the colors that

are used in the Figures in the middle and right columns refer to those of the first column. We stress

that colors are used to denote the number of steady states, and not a particular steady state, so a curve

related to a given steady state can be differently colored as τ increases. Moreover, in Figures 2 (b,e,h,k)

we also represent the horizontal line s∗d f = 1, corresponding to the disease free steady state, while in

Figures 2 (c,f,i,l) we report the decreasing line k∗d f =
(

β̄ (1−a)(1−τ)

β̄+1

)
1

1−a
(it is always the topmost line).

Recalling Propositions 3.7 and 3.8, we use a dashed line to represent steady states for those values of

τ for which they are repelling, and we do not discuss them.

In agreement with Proposition 3.6, we can see that each curve s∗1(τ) is always strictly increasing

for τ ∈ [0,a−1]. Conversely, we already noted that the behavior of the capital level is ambiguous, as

it depends on condition (19). As long as ξ∗ exists, condition (19) may be always fulfilled, it may never

hold true, or it can become valid or not as τ changes. We recall that both Eθ (g) and the right hand side

of (19) are negative, so condition (19) requires the elasticity of θ to be suitably elastic. To understand

this, we note that k∗ has a positive direct dependence on s∗ and a negative one on τ . However, as τ

increases, the number of healthy people (and hence the number of workers) increases, and this can

counterbalance the direct negative effect on capital of increasing taxation. This is possible only if the

increase of s∗ with respect to τ is quick enough, which, in turns, is possible if θ is sufficiently elastic

to an increase of the government expenditure. We note that the threshold given by the right hand side

in (19) is increasingly more restrictive as τ increases, so (19) requires that the responsiveness of θ

increases at least proportionally to the growth of the taxation rate.

Condition (15) cannot be made more explicit from the analytical point of view. However, it is

possible to show that an increase of the capital level when we pass from a situation without health

policy (τ = 0) to that in which taxation is used for healthcare is possible provided that θ ′(0) is suitably

bounded (see [21], equation (25)). In this case, we have that the steady state capital level is better
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off with a policy intervention. On the other hand, in the opposite case, we have that k∗1(τ) initially

decreases when taxation is introduced. This is due to a small initial effect on the epidemiological

sphere of the government intervention. However, this does not mean that k∗1(τ) will go on decreasing

for any τ , as well as the bound on θ ′(0) does not guarantee that k∗1(τ) is increasing for any τ . In

addition to this, new stable endemic steady states may emerge and the disease free steady state can

recover stability, giving rise to non repelling steady states characterized by higher capital levels.

Recalling (15), the global behavior of k∗i is strongly related to the convexity/concavity (for more

details see [21], note 11) of the elasticity of θ . Having in mind Proposition 3.6, we look again at Figure

2.

Concerning Scenario “1”, in Figure 2 (b) we have that, except for extreme values of τ , s∗1 increases

at an approximately constant rate. Conversely, the graph of k∗1 is hump-shaped. Even if k∗1 initially in-

creases, since in Scenario “1” function Eθ (g) is concave, we have decreasing marginal responsiveness

as taxation increases, and hence condition (15) is no more valid for suitably large values of τ and k∗1
decreases. For this simulation, the optimal capital level is actually attained for approximately τ = 0.2.

Let us move to Scenario “1-0”, in which we used a concave function θ as in Scenario “1” (α is the

same), but in Scenario “1-0” it has larger elasticity (see also blue and red graphs in Figure 1 (a,b)). This

leads s∗1 to increase more quickly than in the former case (Figure 2 (e) compared to Figure 2 (b)), and

hence in Scenario “1-0” ξ∗1 collides with ξ∗d f , and does not exist any more. The endemic steady state

then becomes the unique (non repelling) steady state (yellow curve). In this case, the quick increase

of disposable workforce thanks to the decrease of infected agents is able to compensate the growing

taxation rate, and hence k∗1 increases (blue solid curve, Figure 2 (f)) until there is only the disease free

steady state (yellow solid curve). In this simulation, the optimal taxation rate is at τ ≈ 0.4 and its

increase above this threshold is neither beneficial to the epidemiological sphere nor to the economic

one.

Concerning Scenario “1-2”, in Figure 2 (h), regarding the endemic steady state ξ∗1, we have that s∗1
(lower solid blue-yellow line) increases more slowly than in Scenario “1”. For the simulation related

to Scenario “1-2” we considered a function θ whose elasticity is convex (see Figure 1 (b)). As a

consequence of this, k∗1 initially decreases and continues to decrease (solid blue-yellow line Figure 2

(i)). However, at τ ≈ 0.52, the transcritical bifurcation leads to the emergence of the new, repelling

endemic steady state ξ∗2 (dashed yellow line). This allows ξ∗d f to recover stability and to become

dynamically relevant (topmost solid yellow lines in Figure 2 (h,i)). The outcome is that at τ ≈ 0.52

steady state ξ∗d f is characterized by the highest capital level, and, from the static point of view, τ ≈ 0.52

turns out to be the best taxation rate both from the epidemiological and the economic points of view.

Finally, regarding Scenario “1-2-0”, in Figure 2 (k), we have that s∗1 (lower solid blue-yellow line)

initially increases quite slowly, but its growth accelerates more significantly than in Scenario “1-2”.
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The reason for this is that in both simulations θ has convex elasticity (same parameter α), but in

that related to Scenario “1-2-0” elasticity is larger (larger parameter θ1, see Figure 1 (b)). So, even

if k∗1 initially decreases, the number of healthy agents that can work increases more and more and

counterbalance the effect of taxation. This results in a U -shaped graph for k∗1 (blue-yellow bottom solid

line in Figure 2 (l)), which starting from τ ≈ 0.35 increases and at τ ≈ 0.42 we have that k∗1 is greater

than in absence of health policy. In any case, also in this Scenario, at τ ≈ 0.36 the disease free steady

state becomes stable and this corresponds to the “best” taxation rate both from the epidemiological and

the economic points of view.

To conclude, the static numerical investigation shows that a suitable health policy has a beneficial

effect on the capital level as well. We stress that it is possible to obtain simulations in which the best

capital level is obtained for τ = 0, both with or without coexistence between different non repelling

steady states. This occurs when the elasticity of the contact rate is significantly small, and hence the

beneficial effect of health policy on the epidemiological domain is not significant.

Concerning the dynamical behaviors of (8) under Assumptions 1 and 2, we start noting that stability

condition (17) simplifies to

{

Eθ (g
∗(s∗(τ),τ))>−1

(θ(g∗(s∗(τ),τ)− γ)
[

1+ 1−a
1+a

Eθ (g
∗(s∗(τ),τ))

]

< 2

As long as the first condition holds, since Eθ is strictly decreasing, τ ∈ [0,1−a] has a potentially

stabilizing effect. The unique possible scenarios, in addition to those in which ξ∗ is stable or unstable

for any τ , are those in which ξ∗ is unstable for τ < τ̄ ∈ (0,1−a) and recovers stability through a period

halving bifurcation11.

Now we reconsider from the dynamical point of view the settings we used for the simulations

reported in Figure 2 to describe the Scenarios of Proposition 4.1. In Figure 3 we study the dynamical

behavior12 through bifurcations diagrams related to endemic steady states ξ∗1 (black color) and, when

it is stable ξ∗d f (red color). Each diagram is obtained on varying τ ∈ I ⊂ [0,1− a] (respectively, τ ∈
Id f ⊂ [0,1− a]), where I is the range of values of τ for which the endemic steady state ξ∗1 exists

(respectively, ξ∗d f is stable). The initial conditions are chosen suitably close to ξ∗1 and ξ∗d f , respectively.

When multiple attractors coexist, we report some diagrams for the basins of attractions of ξ∗1 (green

11We stress that, recalling Proposition 3.2, for τ ∈ [1− a,1] we have a symmetric behavior with respect to that on

[0,1− a]. This means that if ξ∗ is unstable for τ ∈ [0,τ1) and stable for τ ∈ (τ1,1− a], there will be a τ̄1 ∈ (1− a,1) such

that ξ∗ is stable for τ ∈ (1− a, τ̄1) and unstable for τ ∈ (τ̄1,1].
12As for the static case, the goal of the present Section is not to provide a systematic description of all the dynamical

situations that may occur for each endemic steady state configuration. The simulations we present aim to show the common

effects of τ on dynamics, which essentially hold true for any numerical test we performed.
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Exogenous A and β

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3: Panels (a,b): Scenario “1”, bifurcation diagrams (a) and time series (b). Panel (c): Scenario “1-0”, bi-

furcation diagrams. Panels (d,e,f): Scenario “1-2”, bifurcation diagrams (d) and basins of attraction (e,f). Panels

(g,h,i): Scenario “1-2-0”, bifurcation diagrams (g) and basins of attraction (h,i). In the bifurcation diagrams,

black color refers to attractors related to ξ∗1 , red color to ξ∗d f . In the basins of attraction, green color denotes the

basins for the attractors related to ξ∗1, yellow color to ξ∗d f .

color) and ξ∗d f (yellow color).

We remark that since all the simulations are obtained with γ = 1 and θ(0)∈ [3.9,4], without health-

care policy (τ = 0), steady state ξ∗1 inherits the instability of the corresponding endemic steady state in

the isolated SIS equation, and endogenous oscillations are transmitted to the economic domain.

This is what can be observed in all the black bifurcation diagrams reported in Figures 3 (a,c,d,g).

In these cases, for τ = 0 we observe chaotic trajectories, as evident from the time series in Figure 3

(b). In line with the theoretical insights, τ has a stabilizing effect, and complex dynamics simplify into
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periodic ones and finally converge to the endemic steady state. We remark that from Figure 3 (c) we

have a further confirmation of the transcritical bifurcation occurring at ξ∗d f , while from Figure 3 (g), we

can realize that ξ∗1 disappears at τ ≈ 0.42 as a consequence of a fold bifurcation, when it merges with

the repelling ξ∗2, which entered the set of feasible values through a transcritical bifurcation at τ ≈ 0.36.

When ξ∗1 coexists with stable ξ∗d f , if we look at the basins of attraction reported in Figures 3 (e,f,h,i),

we can see that, as τ increases, the basin of ξ∗1 shrinks and that of ξ∗d f grows. Even if not evident from

Figures (e,h), if s0 is close to 0, convergence is toward the disease free steady state ξ∗d f . This latter case

can be explained as follows: if the fraction of susceptible people is initially small, a few new infections

are possible, which means that the fraction of population that recovers is larger than the one that will

be infected, especially if the recovery rate is large, as in the proposed simulations. This leads to a

significant decrease of the infected people and this, together with a prompt health policy, can drive the

epidemiological trajectories toward the steady state characterized by a larger fraction of susceptibles.

We stress that we always observed numerically that the basins are connected sets (see [21], page 25)

and convergence toward ξ∗1 occurs if the initial epidemiological situation is close to that at ξ∗1.

This first set of simulations, even if characterized by a small complexity degree in terms of dynam-

ics and coexistence, points out some interesting features about the role of taxation rate.

a) τ exhibits a local stabilizing effect. As τ increases, complex dynamics arising around unstable

endemic steady states gradually simplifies and local stability is recovered.

b) τ can increase the global complexity of the scenario, but to the detriment of less desirable steady

states. We already observed in the static analysis that increasing τ gives rise to endemic steady states

characterized by more favorable capital levels and fractions of susceptibles. The dynamical analysis

shows that trajectories more likely converge toward them as τ increases, as their basins of attraction

grow.

c) If the epidemiological scenario is characterized by a significant spread of the disease and/or the

health policy is not suitably effective, trajectories could be locked in an “endemic trap”, i.e. the long

run evolution may not be the best possible, both from the epidemiological and economic point of view.

4.2. The role of endogenous factor productivity and probability to survive

In this section we lay emphasis on the effect of the endogenization of functions A and β , in order

to explain the influence of the epidemiological domain on the economic one. Concerning θ , we still

consider Assumption 1.

In [17], function A was chosen as a piecewise constant function, to describe the fact that above a

certain threshold of infected agents, there is an abrupt fall in the productivity. In line with this, but

to provide a more realistic gradual transition between high and low levels of productivity, we assume

that A has a sigmoidal shape, in which the inflection point represents the fraction of susceptible agents

corresponding to the maximum fall in the factor productivity. Having in mind this and recalling that β
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is increasing and concave, to focus on the simplest setting arising we make in addition the following

assumption.

Assumption 3. Functions A and β are such that Eg∗(s) has at most two monotonicity changes.

We stress that due to the possible change of concavity for A, it would be too restrictive to assume

that Eg∗(s) changes its monotonicity at most once. Moreover, the case of more than two monotonicity

changes simply consists of a replication of the phenomena we are going to show.

In what follows we consider

β (s) = β0 +
1−β0

(1+β1)n
(s+β1)

n, (20)

with n ∈ (0,1], β0 ∈ (0,1) and β1 > 0, so that β (s) is differentiable and β (1) = 1 and

A(s) =















A 0 < s < sA,1,
χ3s3+χ2s2+χ1s+χ0

(sA,2−sA,1)3 sA,1 ≤ s ≤ sA,2,

1 sA,2 < s < 1,

(21)

with χ3 =−2(1−A), χ2 = 3(sA,1+sA,2)(1−A)s3
A,1, χ1 =−6sA,1sA,2 (1−A) and χ0 =−s3

A,1+3s2
A,1sA,2−

3AsA,1s2
A,2+As3

A,2.

Note that the seemingly complicated expression for A(s) simply consists of a cubic polynomial

connecting with regularity two constant pieces. The parameters we use in all the simulations are

reported in Table 1, and the resulting graphs of A(s) and β (s) are depicted in Figure 1 (c).

In the simulations we report in this section we can have at most 3 coexisting endemic steady

states. In general, with endogenous A and β it would be intricate to arrange a Proposition like 4.1,

and remaining analytical results do not simplify with respect to those reported in Section 3. Moreover,

the role of endogenization of factor productivity and probability to survive can be better understood in

terms of a perturbation of the case with constant A and β , so we just discuss the effect on the numerical

outcomes reported in Section 4.1.

We compare each panel of Figure 4 with the corresponding one of Figure 2 as we take into account

functions (20) and (21). Firstly, we focus on the changes occurred at function ϕ by comparing Figures

2 (a,d,g,j) and Figures 4 (a,d,g,j). If we look at the rightmost parts of the red graphs in corresponding

Scenarios, we can see that they are very similar. This resemblance occurs also for graphs corresponding

to intermediate values of τ (e.g. for τ = 0.4 in Figures 2 (d) - 4 (d), for τ = 0.52 in Figures 2 (g) - 4

(g) and for τ = 0.36 in Figures 2 (j) - 4 (j)). The reason of this is that s∗i is large enough to avoid the

fall in the productivity (the factor is the same, A(s) = 1), and the probability to survive is close to 1. We

stress that choosing n = 1 in (20) we have that the effect of endogenizing β is the maximum possible

when we are close to s = 1. This suggests that the effect of an endogenous probability to survive
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is quite mild and does not significantly affect the endemic steady state configuration characterized by

sufficiently large values of s∗. This is also confirmed by comparing the regions with s∗ > 0.6 of Figures

2-4(b,e,h,k) and with k∗ > 0.08 Figures 2-4 (c,f,i,l), as they are essentially the same.

Conversely, if we compare each panel in Figure 4 with the corresponding one in Figure 2 for

small values of s, we can see that the situation is quite different. The double change of monotonicity

occurring for ϕ in all the graphs reported in Figures 4 (a,d,g,j) for s < 0.5 is a consequence of the fall

in the factor productivity in the presence of a few susceptible agents. As a consequence of this, k is

small and the effect is that the government intervention is quite ineffective. This results in endemic

steady states characterized by small shares of susceptible agents, as we can note by comparing the

curves for s∗1 in Figures 2-4(b,e,h,k). In addition, now s∗1 increases much more slowly, and this results

in corresponding levels of k∗1 that are essentially flat or decreasing. In most Scenarios, ξ∗1 is still present

also for large values of τ , but coexists with ξ∗3. Note that if we compare the graphs related to ξ∗3 in

Figure 4 with those related to ξ∗1 in Figure 2 (when they both exist), we can conclude that they resemble

very much. This is because introducing an endogenous factor productivity actually gives rise for small

values of τ to a new endemic steady state (ξ∗1 in Figure 4), with strongly reduced share of susceptibles

and capital levels with respect to those of ξ∗1 in Figure 2. Such a new steady state coexists with ξ∗3 for

larger values of τ , and hence the complexity of the endemic steady state scenarios increases, mainly

through fold bifurcations. Differently from the exogenous SIS and from the framework studied in

Section 4.1, multiple non repelling endemic steady states can occur.

We remark that from Figures 4 (c,f,i,l) the taxation rates that provide the highest non repelling

steady state capital level are essentially the same we highlighted for the corresponding Figures 2

(c,f,i,l). What is different, is that too mild healthcare policies have much more harmful effects.

Now we study the effects of endogenizing A and β on dynamics.

Comparing the black bifurcation diagrams in Figures 5 (a,d,g,i) with those for the corresponding

scenarios in Figure 3 (a,c,d,g), we can conclude that endogenous factor productivity and survive prob-

ability have a destabilizing effect on endemic steady state ξ∗1, as the ranges of values for which it is

unstable is larger in Figures 5 (a,d,g,i) than in Figures 3 (a,c,d,g). In some cases, we still have a period

halving bifurcation, i.e. increasing the role of the health policy allows recovering the local stability of

ξ∗1, but this does no more hold true for all the scenarios.

From the theoretical point of view, under Assumptions 1 and 3, Eθ (g
∗(s,τ))(Eg∗(s)) can have

multiple monotonicity changes. This means that an endemic steady state may be stable for some

τ1 ∈ (0,1− a) and unstable for some τ2 ∈ (τ1,1− a), with a possible destabilizing role of τ that

could not occur with constant A and β . However, even if this is possible according to (17), numerical

simulations show that it just occurs for quite extreme function choices, otherwise, we typically find

that increasing τ stabilizes an unstable endemic steady state or it remains unstable.
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If we look at the basins of attraction reported in Figures 5 (b,c), we see that even with nonlinear

functions A and β , as τ increases the basins of “least desirable” endemic steady states (ξ∗1) shrink and

those of “more desirable” ones (ξ∗3) grow. We checked that the same occurs also for Scenarios “1-0”,

“1-2” and “1-2-1”. In addition to this, in the present cases we can have coexistence between complex

attractors and (possibly multiple) stable steady states (Figures 5 (h,j,k,l))

The three outcomes a, b, c highlighted at the end of Section 4.1 are then still valid.

5. Conclusions and future perspectives

By investigating a simple model for the interaction between the economic and epidemiological do-

mains, we highlighted several hints that should be kept in mind. First, when considered as isolated, the

OLG model has a unique, globally stable equilibrium, while in the SIS model a unique endemic steady

state coexists with a disease free one, but one of them is always repelling, so no path dependency in

convergence can be observed. Conversely, the coupling of the two domains can give rise to multiple

steady states, and to the possible coexistence of several non repelling endemic steady states with the

stable disease free one. The second evidence is that the static analysis alone can be misleading. On

varying the taxation level the number of possible steady states can change and τ can affect their sta-

bility, their basins of attraction and the possible complexity of the arising trajectories. This also means

that, if the initial situation varies, the final outcomes may change significantly. The very same starting

point may evolve toward a disease free desirable outcome as well as remain locked in an endemic trap.

In these cases, promptly triggering healthcare intervention may foster the evolution toward a disease

free desirable outcome.

Effective policy-making cannot ignore all the foregoing aspects. Indeed, this contribution is just

a first step and can be improved in many directions. For example, limiting to the epidemiological

and economic spheres, both baseline models describing each domain can be improved, to allow for

studying more empirically relevant results. Moreover, the interaction with additional domains, like the

environmental one, can be included. With regard to this, it is interesting to understand how the static

and dynamical outcomes of the present contribution are affected by the new element of complexity.

Finally, the effectiveness of endogenous policies that can properly react to different scenarios may be

taken into account, to see if they are able to select the most desirable scenarios.
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Appendix

Proof of Prop. 3.1. Setting st+1 = st = s and kt+1 = kt = k in (8) we find that the steady states are

solution of






(1− s)[sθ(g(s,k))− γ] = 0,

k = (1−a)(1− τ)
β (s)

1+β (s)
A(s)kas1−a

(22)

from which we have that the latter equation is solved by k = k∗ defined in (10). The former equation is

solved by s= 1 and sθ(g(s,k))= γ . Replacing k = k∗ in g(s,k) and combining the possible components

of the solutions allows concluding.

Proof of Prop. 3.2. Since

∂g∗(s,τ)
∂τ

= (1−a− τ)

(

β (s)

1+β (s)

)
a

1−a

[(1−a)(1− τ)]
2a−1
1−a (A(s))

1
1−a s

we have that, for s = 0 function g∗ is constant, while for any given s ∈ (0,1], function τ 7→ g∗(s,τ) is

strictly increasing for τ ∈ [0,1−a] and strictly decreasing for τ ∈ [1−a,1], with g∗(s,0)= g∗(s,1)= 0.

For any τ ∈ [0,1−a) there is a unique τ̄ ∈ (1−a,1] for which g∗(s,τ) = g∗(s, τ̄), and vice-versa. The

choice of τ̄ is independent of s, so that g∗(s,τ) = g∗(s, τ̄) for any s ∈ [0,1]. This shows that, for each τ ,

there is a one-to-one correspondence between the solutions s ∈ (0,1) to ϕ(s,τ) = 0 and to ϕ(s, τ̄) = 0,

which proves the first part of the proposition.

Let τ̄1, τ̄2 ∈ (1− a,1] be the unique values for which ϕ(s,τ1) = ϕ(s, τ̄1) and ϕ(s,τ2) = ϕ(s, τ̄2)

for any s. Indeed, ϕ(s,τ1) = 0 and ϕ(s, τ̄1) = 0 have the same solutions, as well as ϕ(s,τ2) = 0 and

ϕ(s, τ̄2) = 0. If ξ∗(τ1) = (s∗1,k
∗
1), we have ϕ(s∗1,τ1) = 0. From the first part of the proof, there exists

a unique endemic steady state ξ∗(τ̄1) = (s∗(τ̄1),k
∗(τ̄1)) occurring for τ̄1 ∈ [1− a,1]. The same for

ξ∗(τ2) and ξ∗(τ̄2). Since ϕ(s,τ) (for s 6= 0) is strictly increasing on [0,1− a] and strictly decreasing

on [1−a,1], we have that from τ1 < τ2 we have τ̄1 > τ̄2.

Proof of Prop. 3.3. Recalling the link between endemic steady states and solutions s∈ (0,1) to ϕ(s,τ)=

0, we focus on this latter problem.

∂ϕ

∂ s
=−θ(g∗(s,τ))− s

∂g∗(s,τ)
∂ s

θ ′(g∗(s,τ)) =−θ(g∗(s,τ))(1+Eθ(g
∗(s,τ))Eg∗(s)). (23)
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For a given τ , to have multiple solutions to ϕ(s,τ) = 0, function s 7→ ϕ(s,τ) must not be strictly

monotonic. From (23), ϕ can have a monotonicity change only if Eθ (g
∗(s,τ))Eg∗(s) =−1 for some s

and this proves (i).

Recalling Proposition 3.2 we have that ϕ(s,0)≤ ϕ(s,τ) for any τ ∈ [0,1−a]. Note that ϕ(s,0) =

γ − sθ(0) > 0 for any s ∈ (0,1) if and only if γ − θ(0) ≥ 0. This allows concluding that for any

τ ∈ [0,1−a] we have ϕ(s,τ)≥ ϕ(s,0)> 0 for any s ∈ (0,1), so ϕ(s,τ) = 0 has no solutions s ∈ (0,1)

for any τ and (ii) is proved.

Note that ϕ(0,τ) > 0 and
∂ϕ
∂ s
(0,τ) < 0 for any τ ∈ [0,1−a]. If all the N(τ) (isolated) stationary

points si(τ), i = 1, . . . ,N(τ) correspond to a change of monotonicity, so that the function is decreasing,

then increasing and so on, if moreover ϕ(s1(τ),τ)< 0, ϕ(s2(τ),τ)> 0 and so on, then ν(τ) = N(τ) or

ν(τ) =N(τ)+1, depending weather there is a last zero in (sN(τ),1) or not. If a change of monotonicity

or a change of sign of ϕ(si(τ),τ) do not happen, then the number of zeros ν(τ) will be less than

N(τ)+1. This provides (iii). Finally, recalling that we count twice the solutions to ϕ(s,τ) = 0 if and

only if they are extremum points, assuming ξ∗i < ξ∗j for i 6= j guarantees that no solution to ϕ(s,τ) = 0

is an extremum point. So (iv) immediately follows from (23) and the previous considerations.

Proof of Prop. 3.4 and 3.5. We recall that τ 7→ ϕ(s,τ) is strictly increasing with respect to τ on [0,1−
a] for any s ∈ (0,1].

Let s∗ be such that ϕ(s∗, τ̄) = 0 and
∂ϕ
∂ s
(s∗, τ̄) 6= 0. If s∗ < 1, the implicit function theorem applies

and gives (a1). If s̄ = 1, the implicit function theorem gives either (b2) or (b3), because for some values

of τ there holds s(τ)> s̄ = 1.

Let now
∂ϕ
∂ s
(s∗, τ̄) = 0 and the second partial derivative be

∂ 2ϕ

∂ s2
(s∗, τ̄) =−θ ′′ (g∗(s∗, τ̄))

(

∂g∗

∂ s
(s∗, τ̄)

)2

s∗−θ ′ (g∗(s∗, τ̄))

[

∂ 2g∗

∂ s2
(s∗, τ̄)s∗+2

∂g∗

∂ s
(s∗, τ̄)

]

< 0.

Then s∗ is a maximum point for ϕ(s, τ̄). It is immediate that, for any τ < τ̄, ϕ(s,τ) has no solutions in

a neighborhood of s∗. We choose ε > 0 and δ > 0 such that on (s∗−δ ,s∗+δ )× [τ̄, τ̄ + ε) the second

partial derivative
∂ 2ϕ
∂ s2 (s,τ) is negative. If necessary, we choose a smaller ε , so that ϕ(s∗−δ/2,τ) and

ϕ(s∗+δ/2,τ) are negative for τ ∈ (τ̄, τ̄+ε). Now, for any τ ∈ (τ̄, τ̄+ε),we have that ϕ(s∗±δ/2,τ)<

0 and ϕ(s∗,τ)> 0. By the continuity of ϕ there exist s∗−δ/2 < s1(τ)< s∗ < s2(τ)< s∗+δ/2 such

that ϕ(si(τ),τ) = 0, i = 1,2. The zeros must be unique because the second derivative is negative. This

gives either (a2) or (b2).

The case in which s∗ is minimum point is analogous and gives either (a3) or (b3). Finally, case (b1)

happens when the first equation in (22) is fulfilled since 1− s = 0, but ϕ(1,τ0) is not zero.

We denote the map defined by the right-hand side of equation (8) in the following way
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F1(s,k) = s[1−θ(g(s,k))(1− s)]+ γ(1− s), F2(s,k) =
β (F1(s,k))

1+β (F1(s,k))
(1−a)(1− τ)A(s)kas1−a.

In what follows we identify by J∗ and J∗i j, i, j = 1,2 the Jacobian matrix and its entries, respectively,

evaluated at a steady state, related to function (F1(s,k),F2(s,k)).

Proof of Prop. 3.7. We evaluate the Jacobian matrix at the disease free stationary state (sd f ,kd f ) and

we find J∗12 = 0,J∗22 = a and

J∗11 =1− γ +θ

(

τ

[

β (1)

1+β (1)
(1−a)(1− τ)

]
a

1−a

)

J∗21 =(1−a)(1− τ)
β (1)

1+β (1)
(A′(1)+1−a)

[

β (1)

1+β (1)
(1−a)(1− τ)

]
a

1−a

+(1−a)(1− τ)
β ′(1)

[1+β (1)]2

[

β (1)

1+β (1)
(1−a)(1− τ)

]
a

1−a

J11

Since γ ≤ 1 and θ is strictly decreasing, the two multipliers are real and positive. Condition (16)

corresponds to J11 < 1. In what follows, we assume that τ is set in [0,1−a]. From the expression of

ϕ(s,τ), condition (16) is equivalent to ϕ(1,τ)> 0, which means that (1− s)ϕ(s,τ) is strictly positive

on a left neighborhood of s= 1. We recall that we count twice the solutions corresponding to extremum

points of ϕ(s,τ). Simple straightforward geometrical considerations provide conclusions about the

connection between (16) and the number of endemic steady states.

Proof of Prop. 3.8. We evaluate the Jacobian matrix at the endemic steady state (s∗,k∗), J∗ = J(s∗,k∗),

where from now on we will write (s,k) instead of (s∗,k∗). Moreover, we avoid to write the explicit

dependence of s∗ on τ . We obtain

J∗11 =1+ γ −θ(g∗(s,τ))

− s(1− s)θ ′(g∗(s,τ))τ
[

β (s)

1+β (s)
A(s)(1−a)(1− τ)

]
a

1−a

[A′(s)s+(1−a)A(s)]

J∗12 =− aτ(1+β (s))

(1−a)(1− τ)β (s)
s(1− s)θ ′(g∗(s,τ))

J∗21 =(1−a)(1− τ)
β (s)

1+β (s)

[

β (s)

1+β (s)
A(s)(1−a)(1− τ)

]
a

1−a

[A′(s)s+(1−a)A(s)]

+(1−a)(1− τ)
β ′(s)

[1+β (s)]2
A(s)

[

β (s)

1+β (s)
A(s)(1−a)(1− τ)

]
a

1−a

sJ11

J∗22 =a+(1−a)(1− τ)
β ′(s)

[1+β (s)]2
A(s)

[

β (s)

1+β (s)
A(s)(1−a)(1− τ)

]
a

1−a

sJ12
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Since A is increasing, all the entries are positive and there holds

det(J∗) =a[1+ γ −θ(g∗(s,τ))]

tr(J∗) =1+ γ −θ(g∗(s,τ))+a− g∗(s,τ)(1− s)

A(s)
θ ′(g∗(s,τ))[A′(s)s+(1−a)A(s)]

− aβ ′(s)
β (s)(1+β (s))

g∗(s,τ)s(1− s)θ ′(g∗(s,τ))

which is well-defined as A is strictly positive, and in which we used the expression for g∗(s,τ).

The conditions for stability (see e.g. [24]) are











1− tr(J∗)+det(J∗)> 0

1+ tr(J∗)+det(J∗)> 0

det(J∗)< 1

(24)

The last inequality is always fulfilled, since at an endemic steady state we have s = γ
θ (g∗(s,τ)) < 1.

The first inequality gives

1−tr(J∗)+det(J∗) = (θ(g∗(s,τ))− γ)(1−a)

+
g∗(s,τ)(1− s)

A(s)
θ ′(g∗(s,τ))[A′(s)s+(1−a)A(s)]+

asβ ′(s)g∗(s,τ)
β (s)(1+β (s))

(1− s)θ ′(g∗(s,τ))

=(θ(g∗(s,τ))− γ)(1−a)[1+Eθ(g
∗(s,τ))(Eg∗(s))]> 0

and this gives the first inequality in (17).

The second inequality in (24) gives

1+tr(J∗)+det(J∗) = (1+a)(2+ γ −θ(g∗(s,τ)))

− g∗(s,τ)(1− s)

A(s)
θ ′(g∗(s,τ))[A′(s)s+(1−a)A(s)]− asβ ′(s)g∗(s,τ)

β (s)(1+β (s))
(1− s)θ ′(g∗(s,τ))

=(1+a)(2+ γ −θ(g∗(s,τ)))

− (θ(g∗(s,τ))− γ)Eθ(g
∗(s,τ))(1−a)(Eg∗(s))> 0

and this can be written as the second inequality in (17).

Proof of Prop. 4.1. Since Eθ (g) is strictly decreasing, by (23) and the fact that Eg∗(s) = 1 we have that

s 7→ ϕ(s,τ) can change its monotonicity at most once, being, for s ∈ [0,1], either strictly decreasing

or decreasing-increasing. Recalling that there is a one-to-one correspondence between the endemic

steady states and the solutions to ϕ(s,τ) = 0, this means that we can have at most 2 endemic steady

states. From geometrical considerations, as τ increases on [0,1− a], solutions to ϕ(s,τ) = 0 can

emerge/vanish at those τ̄ at which
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a) ϕ(s, τ̄) becomes tangent to the horizontal axis at some s ∈ [0,1), in which case a couple of

solutions disappears since ϕ(s, τ̄) the tangency point is a minimum point

or

b1) ϕ(1, τ̄) = 0 and ϕ(s, τ̄) is decreasing on a left neighborhood of s = 1, in which case a solution

vanishes

b2) ϕ(1, τ̄) = 0 and ϕ(s, τ̄) is increasing on a left neighborhood of s = 1, in which case a new

solution emerges.

Moreover, since τ 7→ ϕ(s,τ) is strictly increasing, each case can occur at most once.

If for some taxation rate we have a unique endemic steady state, as τ increases the number of

endemic steady states can just change due to cases b) (in fact case a) can happen only starting from

two endemic steady states). In this situation, after case b1) we would have no endemic steady states

(and their number can not change as τ increases, since case a) cannot occur), while after case b2) we

would have two endemic steady states. So the possibilities are: 1, 1-0 or 1-2. In the last situation we

may have the occurrence of case a), with consequently no endemic steady states (scenario 1-2-0).

We notice that for τ = 0 function ϕ(s,0) is linear and has exactly one zero. This proves that all the

scenarios start with one endemic steady state. No other evolution is possible and we obtain the four

possible scenarios.
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Endogenous A and β
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Figure 4: Simulations related to the Scenarios reported in Figure 2: each panel of the present figure is obtained by

introducing nonlinear functions A and β for the simulation related to the corresponding panel of Figure 2. Left

column: graphs of function ϕ for τ = 0 (blue color) and τ = 1−a (red color), and the intermediate values of τ

for which we have a change in the number of endemic steady states (possible colors yellow, purple, green and

light blue). Middle and right columns: evolution of the fraction of susceptible agents (middle) and of the capital

level (right) for the endemic and the disease free steady states.
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Endogenous A and β

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 5: Panels (a,b,c): Scenario “1-3”, bifurcation diagrams (a) and basins of attraction (b,c). Panels (d,e,f):

Scenario “1-3-2-0”, bifurcation diagrams (d) and basins of attraction (e,f). Panels (g,h): Scenario “1-2”, bifur-

cation diagrams (g) and basins of attraction (h). Panels (i,j,k,l): Scenario “1-2-4-2”, bifurcation diagrams (i) and

basins of attraction (j,k,l). In the bifurcation diagrams, black color refers to attractors related to ξ∗1, blue color

to ξ∗3, red color to ξ∗d f . In the basins of attraction, green color denotes the basins for the attractors related to ξ∗1 ,

white color to ξ∗3 , yellow color to ξ∗d f .
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