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1 Introduction

N = 4 super-Yang-Mills (SYM) theory is conjectured to describe strings and gravity on

AdS5 × S5 in its strongly coupled limit. Accessing this regime is a challenging task and

necessitates looking for limits of N = 4 SYM in which its dynamics simplify. For instance,

in its planar limit one achieves a powerful integrability symmetry that enables to solve

for the spectrum in the strong coupling limit [1]. This can for instance be used to obtain

the Hagedorn temperature at any ’t Hooft coupling [2, 3]. However, the planar limit
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corresponds to non-interacting strings and gravitons. Thus, even by including corrections

to the planar limit, one would not be able to study phenomena like black holes that involve

strong gravity.

Recently a different approach was advocated [4]. The proposal is to consider certain

non-relativistic corners that arise as near-BPS limits of N = 4 SYM [5]. In such limits,

one can maintain a finite number of colors of N = 4 SYM, and hence strong gravity, but

instead the stringy and gravitational dynamics become non-relativistic [6–9].

One can motivate the interest in the resulting non-relativistic theories from two points

of view. One is that they reveal new insights into the dynamics of N = 4 SYM and hence

into the AdS/CFT correspondence. Another is that these new theories might provide new

non-relativistic realizations of the holographic principle that are important to study on

their own.

In this paper, we continue the investigations of the non-relativistic corners of N = 4

SYM set out in [4]. Starting with N = 4 SYM on a three-sphere, we consider limits that

zoom in close to BPS bounds of the type

E ≥ S1 +

3∑
i=1

ωiQi , (1.1)

where E is the energy, S1 one of the angular momenta and Qi, i = 1, 2, 3, are the three

R-charges of N = 4 SYM on a three-sphere. Moreover, ωi, i = 1, 2, 3, are three constants

that characterize the BPS bounds. One can equally well translate these inequalities to

bounds on the scaling dimensions for N = 4 SYM on flat space via the state-operator

correspondence.

The near-BPS limits we consider send the ’t Hooft coupling λ to zero while keeping [5]

1

λ

(
E − S1 −

3∑
i=1

ωiQi

)
fixed . (1.2)

Starting with the classical action for N = 4 SYM on a three-sphere, we show using sphere

reduction that most of the massive modes on the three-sphere decouple, leaving a subset

of dynamical modes that survive the limit. However, some of the non-dynamical modes,

which we show includes spherical modes of the gauge field of N = 4 SYM, can still con-

tribute to the effective interaction of the surviving dynamical modes. Using this procedure,

with reduction on S3 and integrating out non-dynamical modes, one obtains a classical de-

scription of the surviving modes, which is the classical description of the near-BPS theory

corresponding to the given BPS bound (1.1).

These classical near-BPS theories provide the effective description of N = 4 SYM

near the BPS bounds (1.1). We find that all such theories are non-relativistic, in that

antiparticles decouple in the limit. Accordingly, one observes the emergence of a U(1)

symmetry corresponding to a conserved number operator.

Upon quantization of the near-BPS theories, they result in quantum mechanical theo-

ries. As part of the quantization one finds self-energy corrections that are easily computable

from a normal-ordering prescription. We show that the quantized near-BPS theories corre-

spond to the Spin Matrix theories [5] that were found previously by considering the same
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near-BPS limits (1.2) taken on the quantized theory of N = 4 SYM on a three-sphere, as

described by the dilatation operator [10–12]. Indeed, one obtains in this way theories with

only a subset of the states of N = 4 SYM on a three-sphere, as the rest have decoupled.

Moreover, the interaction is directly related to the one-loop dilatation operator of N = 4

SYM. This shows that one can consistently quantize the near-BPS theories that we obtain

in this paper.

Due to the particular form of the BPS bound (1.1), the near-BPS/Spin Matrix theories

that we consider here have SU(1, 1) symmetry, possibly as subgroup of a larger global

symmetry. In the free limit the spectrum gives a free energy that goes like temperature

squared, indicating that the theories are effectively (1 + 1)-dimensional. Therefore, one

would expect to find formulations as non-relativistic (1 + 1)-dimensional quantum field

theories. Indeed, such formulations exist, albeit not as fully local quantum field theories

and with non-standard features similar to positive energy ghost fields.

In detail we consider four different BPS bounds (1.1) depending on the choice of

(ω1, ω2, ω3). When (ω1, ω2, ω3) = (1, 0, 0) one obtains a scalar theory with SU(1, 1)×U(1)

global symmetry that resemble the positive momentum modes of a scalar field on a circle.

Interestingly, the interactions in this case can be viewed as arising from the coupling to

a non-dynamical scalar field, resembling a gauge field. With (ω1, ω2, ω3) =
(

2
3 ,

2
3 ,

2
3

)
one

finds instead a theory with fermionic modes with the same global symmetry that can be

formulated in terms of the positive momentum modes of a chiral fermion on a circle.

For (ω1, ω2, ω3) =
(
1, 1

2 ,
1
2

)
one obtains a non-relativistic theory with SU(1, 1|1)×U(1)

symmetry that can be regarded as a combination of the two latter theories, with a bosonic

and a fermionic field on a circle. This theory is supersymmetric and one can find a superfield

formulation in which the interactions arise from integrating out the super-multiplet of a

non-dynamical gauge field. This is the case that we are considering in most detail in

this paper, since it is simple to describe but at the same time it contains the bosonic

and fermionic cases with SU(1, 1) × U(1) global symmetry as subsectors. Finally, we also

consider the maximal case with (ω1, ω2, ω3) = (1, 1, 1) in which one has a theory with two

scalars and two chiral fermions on a circle with PSU(1, 1|2)×U(1) global symmetry .

These four near-BPS/Spin Matrix theories are interesting in their own right since they

are consistent limits of N = 4 SYM on a three-sphere that describes the behavior of N = 4

SYM near a BPS bound, or, equivalently, near a zero-temperature critical point if one takes

the planar limit [5]. Indeed, it is intriguing that one obtains non-relativistic behavior in

such limits.

Another important reason to study them is that they have holographic duals. One sees

this as consequence of the AdS/CFT correspondence, since one can take the same near-

BPS limit on the string theory side of the correspondence [5–9, 13, 14]. The philosophy

here is that one can hope to solve this corner of the AdS/CFT correspondence, and then

exploit this to learn about the full correspondence. This goal was realized in case of the

Hagedorn temperature [2, 3, 13] and it is also the spirit of the papers [15, 16].

Alternatively, and even more interestingly, one can view the near-BPS/Spin Matrix

theories as fully consistent and self-contained theories that realize the holographic principle.

Indeed, this is supported by the fact that Spin Matrix theories in the planar limit reduces
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to nearest-neighbor spin chains that in a continuum limit are described by sigma-models.

Recently, such sigma-models where interpreted as part of a class of non-relativistic sigma-

model with a structure that resembles ordinary relativistic string theory, and with a new

type of non-relativistic target space geometry called U(1)-Galilean geometry [7–9]. In

this sense one can claim to have shown the emergence of geometry from the Spin Matrix

theories.

The missing piece for having a full-fledged realization of the holographic principle is to

see the emergence of gravity. In this regard, interesting progress has been made on beta-

function calculations [17–20] in the related non-relativistic SNC [21, 22] and TNC [7–9]

string theories, providing the hope that a similar calculation is possible for the string-dual

of Spin Matrix theory that indeed possess a Galilean Conformal Algebra as local symmetry.

This paper is organized as follows. In section 2 we consider the four near-BPS limits

of classical N = 4 SYM on a three-sphere. This uses the sphere reduction of N = 4 SYM

of [23] explained in appendix A and performed in detail in appendix B. In appendix C we

exhibit relevant Clebsch-Gordan coefficients and further properties of spherical harmonics.

In section 3 we quantize the near-BPS theory with SU(1, 1|1) symmetry and show

explicitly that the resulting quantum mechanical theory is the same as the SU(1, 1|1) Spin

Matrix theory limit of N = 4 SYM. This means that whether one first quantizes, and then

takes the near-BPS limit, yields the same quantum mechanical theory as if one does it in

the opposite order. Also, it means that we found a highly efficient way to compute the

one-loop dilatation operator of N = 4 SYM.

In section 4 we find a momentum-space superfield formalism for the SU(1, 1|1) near-

BPS theory, showing manifestly the supersymmetry of this theory. In addition it reveals a

very simple formulation of the interactions via a non-dynamical gauge-field multiplet.

In section 5 we discuss in detail how to find a local formulation of our four near-

BPS/Spin Matrix theories. This reveals intriguing results that shows rather simple formu-

lations of the interactions, at least in the SU(1, 1|1) case and its two SU(1, 1) subsectors.

At the same time, the theories are not fully local and exhibit a ghost-like behavior of the

dynamical fields. As part of this we exhibit the algebraic structure of the global symmetry

groups in appendix D.

Finally, we present our conclusions and outlook in section 6.

2 Classical S3 reduction and near-BPS limits

In this section we consider the classical Hamiltonian of N = 4 SYM on a three-sphere in the

near-BPS limits of the type (1.2) and show how to derive the classical effective Hamiltonian

of the surviving degrees of freedom. We consider four different limits. In each limit one has

fields that decouple and do not contribute to the dynamics. However the gauge field, and

in some cases also fermionic fields, can contribute to the resulting dynamics even if they

decouple as degrees of freedom and thus they need to be properly integrated out. This

happens because the corresponding fields are sourced and can be understood in the same

manner as the nondynamical modes of the photon mediating the Coulomb interaction.
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Figure 1. Pictorial description of the procedure performed in sections 2 and 3 to find an effective

quantum Hamiltonian starting from N = 4 supersymmetric Yang-Mills on a three-sphere.

We summarize with the scheme in figure 1 the main steps of the procedure that we

will perform in sections 2 and 3.

After setting the stage of the computations in section 2.1 we first review in detail in

section 2.2 the limit given only by bosonic modes with a global SU(1, 1) symmetry. This

case was considered previously in [4]. Then we proceed in section 2.3 with the limit that

adds fermionic modes to this, providing a theory with SU(1, 1|1) symmetry which we show

explicitly in section 4 to be supersymmetric. We proceed with a subcase of this with only

fermionic degrees of freedom in section 2.4. Finally, in section 2.5 we consider the limit

giving the maximally possible amount of bosonic and fermionic modes, which has a global

PSU(1, 1|2) symmetry and hence has extended supersymmetry.

In section 3 we show that when one quantizes the four classical near-BPS theories that

we obtain in sections 2.2–2.5, one obtains bosonic SU(1, 1) Spin Matrix theory (SMT),

SU(1, 1|1) SMT, fermionic SU(1, 1) SMT and PSU(1, 1|2) SMT.

2.1 N = 4 SYM on S3

Our starting point is the classical action of N = 4 super-Yang-Mills theory compactified

on a three-sphere

S =

∫
R×S3

√
−det gµν tr

{
− 1

4
F 2
µν − |DµΦa|2−|Φa|2 − iψ†aσ̄µDµψ

A + g
∑
A,B,a

CaABψ
A[Φa, ψ

B]

+ g
∑
A,B,a

C̄aABψ†A[Φ†a, ψ
†
B]− g2

2

∑
a,b

(
|[Φa,Φb]|2 + |[Φa,Φ

†
b]|

2
)}

. (2.1)
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From this one can straightforwardly obtain the classical Hamiltonian H of N = 4 SYM

on S3 by a Legendre transform. In the action (2.1) g is the Yang-Mills coupling constant,

and we introduced complex combinations of the real scalar fields transforming in the 6

representation of the R-symmetry group SO(6) ' SU(4), defined as Φa = 1√
2
(φ2a−1 +

iφ2a) with a ∈ {1, 2, 3}. The Weyl fermions ψA with A ∈ {1, 2, 3, 4} transform in the

representation 4 of SU(4). The action is canonically normalized on the R×S3 background

with the radius of the three-sphere set to unity. The field strength is defined as

Fµν = ∂µAν − ∂νAµ + ig[Aµ, Aν ] , (2.2)

and the covariant derivatives Dµ as

DµΦa = ∂µΦa + ig[Aµ,Φa] , (2.3)

Dµψ
A = ∇µψA + ig[Aµ, ψ

A] , (2.4)

where ∇µ is the covariant derivative on the three-sphere, i.e. it contains the spin connection

contribution for the fermions. The CaAB are Clebsch-Gordan coefficients coupling two 4

representations and one 6 representation of the R-symmetry group SU(4). All the fields in

the action transform in the adjoint representation of the gauge group SU(N).

One can now decompose all the fields into spherical harmonics on S3. For this, we

follow the procedure and conventions of [23]. We have given the relevant details of this in

appendix A and B.

Before we turn to the individual limits we first discuss the gauge field. In all four

limits, the gauge field degrees of freedom will decouple on-shell. However, it contributes to

the dynamics exactly like an off-shell longitudinal photon does in QED and integrating it

out gives rise to an effective interaction of the surviving mode at order g2. Since this is a

feature that all four sectors share, we make a few remarks about it here.

We will work in Coulomb gauge, corresponding to imposing

∇iAi = 0 . (2.5)

In our analysis below, it proves useful to first integrate out, i.e. solve for, all auxiliary

degrees of freedom, here the temporal and longitudinal components of the gauge field.

This procedure is standard, but since it is central to our arguments we display it here in

some detail.

To this end, we focus on the quadratic action for the gauge field, but we also include

a generic source to keep track of the correct constraint structure. We have

SA =

∫
R×S3

√
−det gµν tr

(
−1

4
F 2
µν −Aµjµ

)
. (2.6)

The canonical momenta are

Π0 =
1√

−det gµν

δSA

δȦ0

= 0 , Πi =
1√

−det gµν

δSA

δȦi
= F0i , (2.7)
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yielding the Hamiltonian

HA =

∫
R×S3

√
−det gµν tr

(
1

2
Π2
i +

1

4
F 2
ij −A0(∇iΠi + j0) +Aiji + η∇iAi

)
, (2.8)

where we have introduced a Lagrange multiplier η to enforce Coulomb gauge. We obtain

the constraints

∇iΠi + j0 = 0 , ∇iAi = 0 . (2.9)

We have chosen to treat A0 as a Lagrange multiplier that enforces the Gauss’ law, and

no longer as one of the dynamical variables.1 Thus, we have two second class constraints,

enough to eliminate the remaining unphysical degrees of freedom.

In order to solve the constraints (2.9), it proves useful to decompose all the fields

into spherical harmonics on S3 (see appendix A). Inserting all the decompositions into the

Hamiltonian (2.8), we find

HA = tr
∑
J,m,m̃

{ 1∑
ρ=−1

1

2
|ΠJmm̃

(ρ) |
2+

∑
ρ=±1

1

2
ω2
A,J |AJmm̃(ρ) |

2−χJmm̃
(

2i
√
J(J+1)ΠJmm̃

(0) + j† Jmm̃0

)

+

1∑
ρ=−1

AJmm̃(ρ) j† Jmm̃(ρ) − 2i
√
J(J + 1)η† Jmm̃AJmm̃(0)

}
,

(2.10)

while the constraints (2.9) become

2i
√
J(J + 1)ΠJmm̃

(0) + j†Jmm̃0 = 0 , AJmm̃(0) = 0 . (2.11)

Since we can directly solve the constraints for AJmm̃(0) and its symplectic partner ΠJmm̃
(0) , we

can insert the solution into the Hamiltonian without changing the Poisson bracket. We

thus obtain the unconstrained Hamiltonian

HA = tr
∑
J,m,m̃

∑
ρ=±1

(
1

2
|ΠJmm̃

(ρ) |
2 +

1

2
ω2
A,J |AJmm̃(ρ) |

2 +AJmm̃(ρ) j† Jmm̃(ρ)

)
+

1

8J(J + 1)
|jJmm̃0 |2

 .
(2.12)

The form of the currents can now straightforwardly be reconstructed from the full N = 4

Hamiltonian, and all further interactions can be restored. Instead of doing so in full

generality, we will consider the near-BPS limit individually and reconstruct the interactions

case by case, where they simplify considerably.

We proceed now by considering the four near-BPS limits individually in the following

subsections 2.2–2.5. In each case we will employ the following procedure

1. Isolate the propagating modes in a given near-BPS limit from the quadratic classical

Hamiltonian.

2. Derive the form of the currents that couple to the gauge fields.

1This is possible because this field has no dynamics (the canonical momentum is vanishing), and the

non-trivial spatial dependence is encoded into the momentum Πi.
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Sectors SU(1, 1) bosonic SU(1, 1) fermionic SU(1, 1|1) PSU(1, 1|2)∑3
i=1 ωiQi Q1

2
3(Q1 +Q2 +Q3) Q1 + 1

2(Q2 +Q3) Q1 +Q2

Table 1. List of the combinations of the R-charges defining the limits of N = 4 SYM theory

towards BPS bounds H ≥ S1 +
∑3

i=1 ωiQi.

3. Integrate out additional non-dynamical modes that give rise to effective interactions

in a given near-BPS limit.

4. Derive the interacting Hamiltonian by taking the limit.

In all of the four near-BPS limits the single angular momentum S1 is turned on, corre-

sponding to BPS bounds of the form H ≥ S1 +
∑3

i=1 ωiQi where H is the Hamiltonian, S1

is one of the angular momenta and Qi, i = 1, 2, 3, are the three R-charges of N = 4 SYM

on S3. The coefficients ωi in front of the R-charges are given in the table 1. A derivation

of these coefficients can be found in [24]. For each case, the near-BPS limit is

g → 0 with
H − S1 −

∑3
i=1 ωiQi

g2
fixed . (2.13)

Note that N is held fixed in this limit while g → 0. We find that the surviving degrees of

freedom are described by a Hamiltonian Hlimit of the form

Hlimit = L0 + g̃2Hint , Hint = lim
g→0

H − S1 −
∑3

i=1 ωiQi
g2N

, (2.14)

where L0 is the Cartan charge of SU(1, 1), Hint is the part of the Hamiltonian that describes

the interactions and g̃ is the coupling constant of the resulting non-relativistic theory.

2.2 Bosonic SU(1, 1) limit — the simplest case

The first BPS bound we consider is H ≥ S1 + Q1. As we shall see, the dynamical theory

that one obtains from the near-BPS limit (2.13) has a global SU(1, 1)×U(1) symmetry of

the interactions.

Free Hamiltonian and reduction of degrees of freedom. We start from the

quadratic Hamiltonian H0, in which interaction terms are omitted, and also the R-charge

Q1 and the angular momentum S1 of N = 4 SYM on S3. These are all given in appendix B.

The propagating degrees of freedom can be extracted by considering the near-BPS limit to

lowest order in the coupling, which means we should set H0 −Q1 − S1 = 0. The left hand

– 8 –
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side reads

H0−S1−Q1 =
∑
J,m,m̃

tr

{
|ΠJmm̃

a + i(δ1
a + m̃−m)Φ†Jmm̃a |2 + (ω2

J − (δ1
a + m̃−m)2)|ΦJmm̃

a |2

+
∑
κ=±1

( ∑
A=1,4

(
ωψJ +m− m̃− κ

2

)
ψ†JM,κ,Aψ

A
JM,κ

+
∑
A=2,3

(
ωψJ +m− m̃+

κ

2

)
ψ†JM,κ,Aψ

A
JM,κ

)
(2.15)

+
∑

ρ=−1,1

1

2

(
|ΠJmm̃

(ρ) − i(m− m̃)A† Jmm̃(ρ) |2 + (ω2
A,J − (m− m̃)2)|AJmm̃(ρ) |

2
)}

,

with ωJ = 2J + 1, ωψJ = 2J + 3
2 and ωA,J ≡ 2J + 2. Equating this expression to zero now

yields a set of conditions on the fields. First of all, since for the gauge field |m−m̃| ≤ 2J+1,

one finds

AJmm̃(ρ) = O(g) , ΠJmm̃
(ρ) − i(m− m̃)A† Jmm̃(ρ) = O(g) . (2.16)

Second, for the scalar field Φ1 we find for J = −m = m̃

ΠJ,−J,J
1 + iωJΦ† J,−J,J1 = O(g) , (2.17)

and for all other eigenvalues of momentum (m, m̃)

ΦJmm̃
1 = O(g) , ΠJmm̃

1 = O(g) . (2.18)

The other two scalar fields satisfy for all possible values of (m, m̃) the conditions

ΦJmm̃
2 = ΠJmm̃

2 = ΦJmm̃
3 = ΠJmm̃

3 = O(g) . (2.19)

For the fermions, non-trivial degrees of freedom would arise when we are able to make the

prefactor of the quadratic terms in the fields to vanish. However, when κ = 1

ωψJ = 2J +
3

2
, |m| ≤ J +

1

2
, |m̃| ≤ J , (2.20)

there is no way to make the J-independent constant to vanish. The same phenomenon

happens with κ = −1, with the roles of (m, m̃) exchanged. This tells us that in the bosonic

SU(1, 1) sector we have for all choices of the indices (A, κ) the condition

ψAJM,κ = O(g) . (2.21)

It is clear that each of the above constraints eliminates a dynamical degree of freedom

from the theory, as one forfeits the choice of freely choosing initial conditions. Instead,

the corresponding fields are entirely determined by the remaining degrees of the freedom,

as encoded by the right hand sides of the above relations. We can make these explicit by

demanding compatibility with Hamiltonian evolution. It is simple to see that eq. (2.18)

weakly commutes, i.e. commutes on the constraint surface, with H, since no linear term
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in Φ and Π are present. The same holds for the first constraint in eq. (2.16), for the

scalars in (2.19) and for the fermionic field in (2.21). On the other hand, the gauge field

does appear linearly, namely through its coupling to the sources, as outlined in eq. (2.12).

Therefore,

{H,ΠJmm̃
(ρ) − i(m− m̃)A† Jmm̃(ρ) } ≈ (ω2

A,J − (m− m̃)2)A† Jmm̃(ρ) + j† Jmm̃(ρ) . (2.22)

Hence we impose the r.h.s. side as a constraint to have a consistent Hamiltonian evolution.

Finally, one can check that eq. (2.17) does not generate additional requirements. We thus

obtain the set of constraints

AJmm̃(ρ) = − 1

ω2
A,J − (m− m̃)2

jJmm̃(ρ) , ΠJmm̃
(ρ) = 0 , (2.23)

ΦJmm̃
a=2,3 = 0 , ΠJmm̃

a=2,3 = 0 , (2.24)

ΦJmm̃
1 = 0 , ΠJmm̃

1 = 0 (except when J = −m = m̃) , (2.25)

ΠJ,−J,J
1 + iωJΦ† J,−J,J1 = 0 . (2.26)

Thus, the only dynamical degrees of freedom left are the modes ΦJ,−J,J
1 that obey the

constraint (2.26). Essentially, (2.26) is responsible for making the limiting theory non-

relativistic as it decouples the anti-particles. Indeed, this condition relates the momentum

with the complex conjugate of the field, implying that at the quantum level the field Φn

will annihilate a particle and the hermitian conjugate Φ†n will create it. As we explain

below, this goes in hand with a U(1) global symmetry responsible for the conservation of

particle number. This behavior is standard in the non-relativistic low-momentum limit of

QFTs [25]. Here we see that the same phenomenon happens when focusing on a near-BPS

limit of N = 4 SYM.

Before we turn to the interactions, we consider the free part of the resulting Hamil-

tonian. The quadratic piece is simply obtained by inserting the constraint (2.26) into

the quadratic Hamiltonian (B.4). Before doing so, however, we note that (2.26) implies

a change of brackets, since ΦJ,−J,J
1 and (ΦJ,−J,J

1 )† no longer commute on the constraint

surface. The Dirac brackets can be straightforwardly worked out, yielding (with matrix

indices suppressed)

{ΦJ,−J,J
1 , (ΦJ ′,−J ′,J ′

1 )†}D =
i

2ωJ
δJJ ′ (2.27)

We make the redefinition

Φ2J =
√

2ωJΦJ,−J,J
1 , (2.28)

in order to have a canonical normalization and to take into account that J both takes

integer and half-integer values. The Dirac bracket (2.27) then becomes canonical{
(Φn)ij , (Φ

†
n′)

k
l

}
D

= iδn,n′δilδ
k
j (2.29)

With this, we obtain for the quadratic Hamiltonian

H0 = S1 +Q1 =
∞∑
n=0

(n+ 1) tr |Φn|2 . (2.30)
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It is important to see how the SU(1, 1) symmetry emerges. Consider

L0 =

∞∑
n=0

(
n+

1

2

)
tr |Φn|2 , L+ = (L−)† =

∞∑
n=0

(n+ 1) tr (Φ†n+1Φn) . (2.31)

Using the bracket (2.29) one finds that these charges obey the SU(1, 1) brackets {L0, L±}D
= ±iL±, {L+, L−}D = −2iL0. The interactions that we find below have vanishing brackets

with L0 and L± which means that the interactions have a global SU(1, 1) symmetry.

The difference between H0 and L0 is

H0 = L0 +
1

2
N̂ , N̂ ≡

∞∑
n=0

tr |Φn|2 (2.32)

We notice that N̂ commutes with H0, L0 and L± as well as the interaction terms with

respect to the bracket (2.29). This means in particular that N̂ is a conserved charge.

Indeed, N̂ is the number operator when quantizing this theory, and we recognize the fact

that the conservation of the number operator is a hallmark of a non-relativistic theory.

This in turn means we are allowed to switch the free part of the Hamiltonian to be L0

instead of H0 since they differ by a conserved quantity (one can view this switch as a

time-dependent redefinition of the fields). This will turn out to be a natural choice for all

of the four limits.

Interactions. We now exhibit the interacting part of the Hamiltonian Hint that arise in

the near-BPS limit. Since H0−S1−Q1 = 0 by construction, we can define the interacting

Hamiltonian as

Hint = lim
g→0

H − S1 −Q1

g2N
. (2.33)

Non-trivial contributions to Hint arise from integrating out the gauge field. On the surface

defined by the constraints (2.23) we find that the contributions to H −S1−Q1 amount to

∑
J,m,m̃

tr

 1

8J(J + 1)
|jJmm̃0 |2 −

∑
ρ=±1

1

2(ω2
A,J − (m− m̃)2)

|jJmm̃(ρ) |
2

 . (2.34)

To these terms we should add contributions from the scalar sector that we will derive

now. To this end, we add the entire scalar sector and work out the form of the currents.

The relevant interaction terms involving scalars in the Hamiltonian H of N = 4 SYM,

eq. (B.40), are

∑
J,m,m̃

tr

{
g2

2
CJ2J1,JMC

J3
J4,JM [ΦJ11 ,ΦJ21

†][ΦJ31 ,ΦJ41
†]+igCJ2J1,JMχ

JM
(

[ΦJ21
†,ΠJ11

†]+[ΦJ11 ,ΠJ21 ]
)

−4g
√
J1(J1 + 1)DJ2J1,JMρA

JM
(ρ) [ΦJ11 ,ΦJ21

†]
}
. (2.35)

where we used the short-hand notation

J = (J,−J, J) , (2.36)

– 11 –



J
H
E
P
0
2
(
2
0
2
1
)
1
8
8

i.e. ΦJ1 = ΦJ,−J,J
1 , since we can restrict ourselves to the surviving scalar modes. In this

expression the quantities C,D are Clebsch-Gordan coefficients that couple respectively three

scalars or two scalars and one vector harmonics. We define them and show some of their

properties in appendix C. From (2.35), we can directly read off the currents. We have

j† Jmm̃0 = igCJ2J1,JM
(

[ΦJ21
†,ΠJ11

†] + [ΦJ11 ,ΠJ21 ]
)

= 2g(1+J1+J2)CJ2J1,JM [ΦJ11 ,ΦJ21
†] , (2.37)

where the latter equality holds on the constraint surface. Furthermore

j† Jmm̃(ρ) = −4g
√
J1(J1 + 1)DJ2J1,JMρ[Φ

J1
1 ,ΦJ21

†] . (2.38)

We can now proceed to find the interaction Hamiltonian (2.33). Employing (2.33) we

obtain

Hint =
1

4N

∑
J,m,m̃

∑
J1,J2,J3,J4

(
4∏
i=1

1
√
ωJi

)
tr

(
1

2J(J+1)
(1+ J1+J2)(1+J3+J4)CJ2J1,JMC

J3
J4,JM

−
∑
ρ=±1

8

ω2
A,J − (m− m̃)2

√
J1(J1 + 1)

√
J4(J4 + 1)DJ2J1,JMρD̄

J3
J4,JMρ

+
1

2
CJ2J1,JMC

J3
J4,JM

)
[Φ2J1 ,Φ

†
2J2

][Φ2J3 ,Φ
†
2J4

] . (2.39)

where we used the redefinition (2.28). It is clear that the only nontrivial contributions arise

from m̃ = −m. For notational convenience, we consider M = (−m,m). Inserting this and

making ωA,J explicit yields

Hint =
1

8N

∑
J,m

∑
J1,J2,J3,J4

(
4∏
i=1

1
√
ωJi

)
tr

((
(1+J1+J2)(1+J3+J4)

J(J + 1)
+ 1

)
CJ2J1,JMC

J3
J4,JM

−
∑
ρ=±1

4

(J + 1)2 −m2

√
J1(J1 + 1)

√
J4(J4 + 1)DJ2J1,JMρD̄

J3
J4,JMρ

)
× [Φ2J1 ,Φ

†
2J2

][Φ2J3 ,Φ
†
2J4

] . (2.40)

We can now directly use the crossing relations (C.20) to see that upon a shift J → J − 1

in the contribution with ρ = 1, all terms in the above sum cancel except for a nontrivial

remainder from the lower boundary of summation. We distinguish between ∆J ≡ J2−J1 6=
0 and ∆J = 0 and moreover choose J2 > J1 without loss of generality, accounting for the

converse with a factor of 2. In this way we obtain

H
(J1 6=J2)
int =

1

4N
tr
∑

J1,J4≥0

∑
∆J>0

1

∆J
[Φ2J1 ,Φ

†
2J1+2∆J ][Φ2J4+2∆J ,Φ

†
2J4

] =
1

2N

∞∑
l=1

1

l
tr
(
q†l ql

)
,

(2.41)

where we defined the SU(N) charge density

ql =
∞∑
n=0

[Φ†n,Φn+l] . (2.42)
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Next, let us consider the case J1 = J2. Here, the abovementioned trick to shift part of the

expression by J → J − 1 in order to receive contributions only from the lowest boundary

of summation still works. However, the additional subtlety is that the first term in (2.40)

is singular in J = 0, and then it is summed over J > 0. Collecting everything, we get

H
(J1=J2)
int =

1

8N
tr
∑

J1,J3≥0

[
1− 4J1J3

(1+2J1)(1+2J3)
+
∑
J>0

(
1

J
− (2J1 − J)(2J3 − J)

(J+1)(2J1+J+1)(2J3+J+1)

)

× (2J1)!(2J1)!

(2J1 − J)!(2J1 + J)!

(2J3)!(2J3)!

(2J3 − J)!(2J3 + J)!

]
[Φ2J1 ,Φ

†
2J1

][Φ2J3 ,Φ
†
2J3

] , (2.43)

which resums into

H
(J1=J2)
int =

1

8N

∞∑
n=0

1− n
1 + n

tr (q0[Φ†n,Φn]) , (2.44)

where q0 =
∑∞

n=0[Φ†n,Φn] is the SU(N) charge. The Gauss law on the three-sphere implies

that q0 = 0 and hence H
(J1=J2)
int is zero when taking this into account.

The full Hamiltonian (2.14) then becomes

Hlimit = L0 +
g̃2

2N

∞∑
l=1

1

l
tr
(
q†l ql

)
(2.45)

taking into account that all physical configurations have zero SU(N) charge q0 = 0 due

to the Gauss law on the three-sphere and with L0 given in eq. (2.31). This is the inter-

acting Hamiltonian describing the effective dynamics of N = 4 SYM near the SU(1, 1)

bosonic BPS bound. It is a non-relativistic theory because of eq. (2.26), which relates the

canonical momentum to the complex conjugate field, as it happens for this class of quan-

tum field theories. In addition, the non-relativistic nature of the system is also clear from

the conservation of the number operator N̂ defined in (2.32) corresponding to a further

U(1) symmetry in addition to the global SU(1, 1). Finally, it is straightforward to show

that (2.41) commutes with the SU(1, 1) charges L0 and L± (2.31) under the brackets (2.29).

This shows that the interaction term of (2.45) is invariant under a global SU(1, 1) symme-

try. Upon quantization, we show in section 3 that the Hamiltonian (2.45) is equivalent to

SU(1, 1) Spin Matrix theory.

2.3 SU(1, 1|1) limit — a first glance at SUSY

We turn now to the BPS bound H ≥ S1 +Q1 + 1
2(Q2 +Q3). In this case, the theory that

emerges from the limit (2.13) has a SU(1, 1|1)×U(1) symmetry of its interactions. As we

shall see, the additional symmetry compared to the SU(1, 1) case of section 2.2 is related

to the fact that one has fermionic modes in addition to the bosonic modes of the SU(1, 1)

case. In sections 3, 4 and 5 we study this theory further, and show among other things

that it is supersymmetric.
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Free Hamiltonian and reduction of degrees of freedom. We follow the same proce-

dure as in section 2.2. Using appendix B we find that the quadratic terms in the left-hand

side of the BPS bound H − S1 −Q1 − 1
2(Q2 +Q3) ≥ 0 are given by

H0 − S1 −Q1 −
1

2
(Q2 +Q3) =

∑
JM

tr

{ ∑
κ=±1

[
(ωψJ +m− m̃− κ)ψ†JM,κ,1ψ

1
JM,κ

+
∑
A=2,3

(
ωψJ +m− m̃+

κ

2

)
ψ†JM,κ,Aψ

A
JM,κ + (ωψJ +m− m̃)ψ†JM,κ,4ψ

4
JM,κ

]

+
∣∣∣ΠJM

1 + i(1 + m̃−m)Φ† JM1

∣∣∣2 + (ω2
J − (1 + m̃−m)2)|ΦJM

1 |2

+
∑
a=2,3

(∣∣∣∣ΠJM
a + i

(
1

2
+ m̃−m

)
(Φ†a)

JM

∣∣∣∣2 +

(
ω2
J −

(
1

2
+ m̃−m

)2
)
|ΦJM
a |2

)

+
∑

ρ=−1,1

1

2

(
|ΠJmm̃

(ρ) − i(m− m̃)A† Jmm̃(ρ) |2 + (ω2
A,J − (m− m̃)2)|AJmm̃(ρ) |

2
)}

.

(2.46)

Imposing that this expression is zero gives a set of constraints. While the combination of

R-charges is different from the bosonic SU(1, 1) case of section 2.2, the constraints for the

scalars are given by the same set (2.17), (2.18) and (2.19) because of the inequalities |m| ≤ J
and |m̃| ≤ J. On the other hand, we have now surviving fermionic modes, corresponding

to the conditions

A = 1 , κ = 1 , m = −J − 1

2
, m̃ = J . (2.47)

All the other fermionic modes, i.e. modes with different SU(4) index A, different value of κ,

or with a different choice of momenta m, m̃, decouple in the g → 0 limit. When requiring the

compatibility of the constraints with Hamiltonian evolution, we do not obtain additional

constraints from the fermionic terms. In fact the Hamiltonian is always at least quadratic

in both the scalars and the fermions, and then weakly commutes with their constraints.

Finally, one sees that the gauge field appears the same way as in section 2.2, namely that it

decouples and only mediates an effective interaction, since it satisfies the constraint (2.23).

We summarize here all the constraints:

AJmm̃(ρ) = − 1

ω2
A,J − (m− m̃)2

jJmm̃(ρ) , ΠJmm̃
(ρ) = 0 , (2.48)

ΦJmm̃
a=2,3 = 0 , ΠJmm̃

a=2,3 = 0 , (2.49)

Φ
(J,m 6=−J,m̃ 6=J)
1 = 0 , Π

(J,m 6=−J,m̃ 6=J)
1 = 0 , (2.50)

ΠJ,−J,J
1 + iωJΦ† J,−J,J1 = 0 , (2.51)

ψA=1
(J,m 6=−J− 1

2
,m̃ 6=J);κ=1

= 0 ψA=1
J,m,m̃,κ=−1 = 0 , ψA=2,3,4

Jmm̃,κ = 0 . (2.52)

We notice again that (2.51) induces a change of the Dirac brackets for the bosonic modes

as in eq. (2.27), while this does not happen for the fermionic modes. For this reason we

again use the redefinition of the scalar modes (2.28). According to this, we define

Φ2J ≡
√

2ωJΦJ,−J,J
1 , ψ2J ≡ ψA=1

J,−J− 1
2
,J ;κ=1

, (2.53)
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which correspond to the surviving degrees of freedom in the g → 0 limit. The Dirac

anti-brackets for the fermionic modes are{
(ψn)ij , (ψ

†
n′)

k
l

}
D

= iδn,n′δilδ
k
j (2.54)

Evaluating now the free Hamiltonian H0 of eq. (2.46) on the constraints (2.48)–(2.52)

we find

H0 = tr

∞∑
n=0

[
(n+ 1) |Φn|2 +

(
n+

3

2

)
|ψn|2

]
, (2.55)

We record also the SU(1, 1) charges

L0 = tr

∞∑
n=0

[(
n+

1

2

)
|Φn|2 + (n+ 1) |ψn|2

]
, (2.56)

L+ = (L−)† = tr

∞∑
n=0

[
(n+ 1) Φ†n+1Φn +

√
(n+ 1)(n+ 2)ψ†n+1ψn

]
. (2.57)

We notice that H0 is related to L0 as

H0 = L0 +
1

2
N̂ , N̂ ≡ tr

∞∑
n=0

(|Φn|2 + |ψn|2) (2.58)

N̂ commutes with H0, L0 and L± as well as the interaction terms in terms of the brack-

ets (2.29) and (2.54) thus N̂ is a conserved charge. As for the bosonic SU(1, 1) case this

corresponds to the conservation of particle number and it gives an extra U(1) symmetry

which is a signature of non-relativistic theories. Moreover, we can again switch the free

part of the Hamiltonian to be L0 instead of H0 since they differ by a conserved quantity.

Interactions. Following the general steps given in section 2.1 we need to derive the

currents which couple to the matter fields and to integrate out non-dynamical modes which

give non-vanishing quartic effective interactions. The interacting Hamiltonian in this limit

is defined by

Hint = lim
g→0

H − S1 −Q1 − 1
2(Q2 +Q3)

g2N
. (2.59)

The contribution to H−S1−Q1− 1
2(Q2 +Q3) of the currents that couple to the gauge field

is again given by eq. (2.34). In addition to this, one has the interaction terms recorded in

eq. (2.35), and from eq. (B.40), one sees that one has interactions between the surviving

fermionic modes and the modes of the gauge field as well

∑
JM

∑
J1,J2

tr
(
gF J̄1J̄2,JMχ

JM{ψ†2J2 , ψ2J1}+ gGJ̄1J̄2,JMρ
AJM(ρ) {ψ

†
2J2
, ψ2J1}

)
, (2.60)
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where we introduced the short-hand notation2

J̄ =

(
J, J +

1

2
,−J, κ = 1

)
(2.61)

See appendix C for the definitions of the Clebsch-Gordan coefficients F and G. Finally,

there are Yukawa-type terms that couple fermions and the scalar fields

− i g√
2

tr
∑
J,J1,J2

{
(−1)m−m̃+m2−m̃2+

κ2
2 FJ1,M1,κ1

J2,−M2,κ2;J,−M

(
ψ†J1,M1,κ1,4

[Φ† JM1 , ψJ2,−M2,κ2,1]
)

−(−1)−m1+m̃1+
κ1
2 FJ1,−M1,κ1

J2,M2,κ2;J,M

(
ψ4
J1,M1,κ1 [ΦJM

1 , ψ†J2,−M2,κ2,1
]
)
− (J1 ↔ J2)

}
, (2.62)

where the antisymmetrization J1 ↔ J2 in the last line is referred to all the terms in the

interaction. Using the properties of F written in (C.24) and (C.25) one finds

− i g√
2

tr
∑
J1,J2

∑
J,M,κ

2(−1)2J1FJ1JMκ;J2

{
−ψ†J,M,κ,4[ΦJ2†1 , ψJ1 ] + ψ4

J,M,κ[ΦJ21 , ψ†J1 ]
}
. (2.63)

With this, we recorded all the interaction terms in the Hamiltonian of N = 4 SYM on S3

which are relevant for this particular limit.3

From the terms (2.60) which couple to the gauge field we extract the currents

j† Jmm̃0 = 2g(1 + J1 + J2)CJ2J1,JM [ΦJ11 ,ΦJ2†1 ] + gF J̄1J̄2,JM{ψ2J1 , ψ
†
2J2
} , (2.64)

j† Jmm̃(ρ) = −4g
√
J1(J1 + 1)DJ2J1,JMρ[Φ

J1
1 ,ΦJ2†1 ] + gGJ̄1J̄2,JMρ

{ψ2J1 , ψ
†
2J2
} . (2.65)

We can now use this in eq. (2.34) to find the explicit contributions from integrating out

the gauge field. The purely bosonic part, which combines with the quartic scalar self-

interaction in eq. (2.35), gives as a result the eq. (2.40), and after solving the sum over J

one finds eqs. (2.41) and (2.43).

The purely fermionic part of eq. (2.34) combined with (2.64)–(2.65) gives instead

1

2N

∑
JM

∑
J1,J2,J3,J4

tr

(
−
∑
ρ=±1

1

ω2
A,J − (m− m̃)2

GJ̄1J̄2,JMρ
ḠJ̄4J̄3,JMρ

+
1

4J(J + 1)
F J̄1J̄2,JMF

J̄4
J̄3,JM

)
{ψ†2J2 , ψ2J1}{ψ

†
2J4
, ψ2J3} ,

(2.66)

where Ḡ denotes the complex conjugate of G and we divided with g2N as in (2.59). To

evaluate this we use the results of appendix C where we expressed all the above terms with

2The F and G Clebsch-Gordan coefficients are evaluated on the momenta corresponding to the surviving

dynamical degrees of freedom of the sector. However, due to the redefinition (B.8) of the fermionic modes

with κ = 1, which exchanges a field with its hermitian conjugate, the momenta on which the Clebsch-Gordan

coefficients (2.61) are evaluated have opposite signs than the momenta of the modes (2.53). Thanks to this

modification, we observe that the conditions on momenta coming from triangle inequalities of the Clebsch-

Gordan coefficients F ,G are consistent with momentum conservation as evaluated directly from the creation

or annihilation of particles dictated by the field content of the interactions.
3The full interacting Hamiltonian of N = 4 SYM action after reduction on the three-sphere is given in

eq. (B.40).
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Clebsch-Gordan coefficients using only the C Clebsch-Gordan coefficient. It is important

in this to keep properly track of the constraints on the momenta. All terms in the sum

should have

m = −m̃ = J2 − J1 = J3 − J4 ≡ ∆J . (2.67)

On the other hand, the triangle inequalities fix the range of summation of the momentum J

and slightly differ for the various terms. The quadratic combinations in F impose |J1−J2| ≤
J ≤ min(J1 +J2, J3 +J4) while the quadratic expressions in G impose the same conditions

when ρ = 1, and the different constraints |J1 − J2| ≤ J ≤ min(J1 + J2 − 1, J3 + J4 − 1)

when ρ = −1. A remarkable simplification comes now from applying eq. (C.47), which

upon a shift J → J − 1 in the contribution GḠ with ρ = −1, allows to cancel all the terms

in the sum except for a single contribution coming from the lower boundary of summation.

This allows to explicitly compute the sum over J, the only remaining term coming exactly

from GḠ with ρ = −1 evaluated at the boundary value ∆J . In conclusion, (2.66) gives the

following four-fermion contributions to Hint

1

2N

∞∑
l=1

1

l
tr(q̃†l q̃l)−

1

8N

∞∑
n=0

tr
(
{ψ†n, ψn}q̃0

)
, (2.68)

where we defined the SU(N) charge density

q̃l =

∞∑
n=0

√
n+ 1√

n+ l + 1
{ψ†n, ψn+l} . (2.69)

Note that the first term in (2.68) arise from ∆J 6= 0. Instead the second term arise from

∆J = 0 and one sees that it is zero on singlet states and therefore does not contribute.

Note also that an important difference from the case ∆J 6= 0 is that the FF term in (2.66)

has a singular prefactor when J = 0, which means that the only remaining contribution

from the entire interaction comes from the GḠ term with ρ = 1 evaluated at J = 0.

Finally, the mixed bosonic-fermionic part of eq. (2.34) combined with (2.64)–(2.65)

gives the following contribution to Hint

1

2N

∑
JM

∑
J1,J2,J3,J4

∑
ρ=±1

2
(√

J1(J1+1)DJ2J1,JMρḠ
J̄4
J̄3,JMρ

+
√
J2(J2+1)D̄J1J2,JMρG

J̄3
J̄4,JMρ

)
ω2
A,J − (m− m̃)2

+
J1+J2+1

4J(J+1)

(
CJ2J1,JMF

J̄4
J̄3,JM

+ CJ1J2,JMF
J̄3
J̄4,JM

)} 1
√
ωJ1ωJ2

tr
(

[Φ2J1 ,Φ
†
2J2

]{ψ2J3 , ψ
†
2J4
}
)
.

(2.70)

Notice that the two pieces mediated by the gauge field come in pairs, with the constraints

m = −m̃ = ∆J ≡ J1 − J2 = J4 − J3 ∨ m = −m̃ = −∆J ≡ J2 − J1 = J3 − J4 . (2.71)

For this reason, it is possible to split the result in two parts. For both of them, the sum over

J can be analytically computed with a similar trick as in the previous cases: we shift the

terms with ρ = −1 in the sums over DG to find that the sum vanishes due to (C.57), and

then we conclude that there is only a contribution from the lower extremum of summation.
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Collecting these results and adding the quartic bosonic terms eqs. (2.41) and (2.43) and

quartic fermionic terms (2.68) one finds the simple result

1

2N

∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
− 1

8N
tr (q̂2

0) +
1

4N

∞∑
n=0

1

n+ 1
tr
(

[Φ†n,Φn]q̂0

)
, (2.72)

where we defined the total SU(N) current density q̂l = ql+q̃l. This expression is the quartic

scalar self-interaction of eq. (2.35) plus eq. (2.34) with the current given by (2.64)–(2.65).

We see that only the first term in (2.72) contributes to the interactions since the Gauss

law on the three-sphere means that q̂0 is zero.

Finally, we should consider the Yukawa-type terms (2.63). The presence of these

interactions imply that the field ψ4 is sourced, and should thus be integrated out. After

doing that, we find the following further contribution to Hint

1

2N

∑
J,M,κ

∑
J1,J2,J3,J4

2(−1)2J4−2J1F J̄1JMκ;J2F
J̄4
JMκ;J3

√
ωJ2ωJ3(κωψJ − (m− m̃))

tr
(

[Φ2J3 , ψ
†
2J4

][ψ2J1 ,Φ
†
2J2

]
)
. (2.73)

We consider the sum over J by splitting between the cases J1 < J2, J1 ≥ J2. It turns out

that the argument of the sum vanishes once we shift J → J − 1
2 in the term with κ = −1.

Then the result reduces to a boundary term when J1 ≥ J2, while it vanishes when J1 < J2,

since in the two cases the extremes of summation change. The result is4

1

2N

∑
J2,J3,∆J≥0

tr
(

[Φ2J3 , ψ
†
2J3+2∆J ][ψ2J2+2∆J ,Φ

†
2J2

]
)

√
(2(J2 + ∆J) + 1)(2(J3 + ∆J) + 1)

, (2.74)

where we defined ∆J ≡ J1 − J2 = J4 − J3.

In summary, the effective Hamiltonian in the g → 0 near-BPS limit towards the BPS

bound H ≥ S1 +Q1 + 1
2(Q2 +Q3) is

Hlimit = L0 + g̃2Hint (2.75)

with the interaction Hamiltonian (2.59) given by

Hint =
1

2N

∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
+

1

2N

∞∑
l=0

tr (F †l Fl) . (2.76)

where we defined

Fl =

∞∑
m=0

[ψm+l,Φ
†
m]√

m+ l + 1
. (2.77)

In eq. (2.76) we took into account that all physical configurations have zero SU(N) charge

q̂0 = 0 due to the Gauss law on the three-sphere. Note that Hint is manifestly positive.

4We observe that the physical consequence of having different extremes of summation is that the inter-

action only contains a particular assignment of momenta: in the quantized theory we annihilate a boson

and create a fermion with higher momentum, and at the same time we annihilate a fermion to create a

boson with lower momentum. The reverse possibility is forbidden.
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One can check that the interacting Hamiltonian Hint commutes with the number oper-

ator N̂ of eq. (2.58) as well as the SU(1, 1) charges L0 and L± in (2.56)–(2.57) with respect

to the Dirac brackets (2.29) and (2.54). This means the theory has a global SU(1, 1)×U(1)

invariance. However, this can be enhanced to SU(1, 1|1)×U(1) by considering the conserved

supercharges. We define

Q =
∞∑
n=0

√
n+ 1

2
tr
(
ψ†nΦn+1 + Φ†nψn

)
. (2.78)

One can now show

L0 = {Q,Q†}D , {Hint,Q}D = 0 , (2.79)

using the Dirac brackets (2.29) and (2.54). This reveals that the near-BPS theory is

supersymmetric.

The non-relativistic nature of the near-BPS theory is apparent from the conservation

of the number operator N̂ , which is related to the decoupling of anti-particles in the limit

as one can see from the constraint eq. (2.51). In addition, it is seen by the fact that

the surviving dynamical fermion appears with only a fixed choice for the chirality κ = 1,

thus giving a description in terms of a single Grassmann-valued field. This phenomenon

also happens when considering the non-relativistic limit of the Dirac equation in 3 + 1

dimensions, since after sending c→∞ one of the Weyl spinors composing the Dirac fermion

becomes heavy and decouples from the theory, leaving only a single Weyl spinor entering the

Schroedinger-Pauli equation. Such a result can be found by requiring Galilean invariance

from first principles and can be generalized to other dimensions [26]. It also applies in

the context of null reduction, a procedure that allows to find Bargmann-invariant theories

starting from relativistic systems in one higher dimension [27]. This mechanism works

naturally also for non-relativistic supersymmetric theories built from null reduction [28].

In section 3 we quantize this theory and find that it is equivalent to SU(1, 1|1) Spin

Matrix theory. In section 4 we show that the natural presence of the supercharge Q is

related to the fact that one can formulate it in terms of a momentum-space superfield

formalism. Finally, in section 5 we consider a local formulation of this near-BPS theory

and comment on this.

2.4 Fermionic SU(1, 1) limit — a subcase of SU(1, 1|1)

For completeness we consider here briefly the BPS bound H ≥ S1 + 2
3(Q1 +Q2 +Q3). The

near-BPS limit gives in this case a subsector of the SU(1, 1|1) near-BPS limit in which only

the fermionic modes survive. The global symmetry of this theory is SU(1, 1)×U(1).
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Considering the quadratic terms on the left-hand side of the BPS bound H − S1 −
2
3(Q1 +Q2 +Q3) ≥ 0 we find

H0 − S1 −
2

3
(Q1 +Q2 +Q3) =

=
∑
J,m,m̃

tr

{∣∣∣∣ΠJmm̃
a + i

(
2

3
+ m̃−m

)
Φ†Jmm̃a

∣∣∣∣2 +

(
ω2
J −

(
2

3
+ m̃−m

)2
)
|ΦJmm̃
a |2

+
∑
κ=±1

((
ωψJ +m− m̃− κ

)
ψ†JM,κ,1ψ

1
JM,κ +

∑
A=2,3,4

(
ωψJ +m− m̃+

κ

3

)
ψ†JM,κ,Aψ

A
JM,κ

)

+
∑

ρ=−1,1

1

2

(
|ΠJmm̃

(ρ) − i(m− m̃)A† Jmm̃(ρ) |2 + (ω2
A,J − (m− m̃)2)|AJmm̃(ρ) |

2
)}

. (2.80)

As in sections 2.2 and 2.3 this provides a set of constraints. Comparing to section 2.3 we

find that the constraints are (2.48), (2.49) and (2.52) with the additional constraints

ΦJmm̃
1 = ΠJmm̃

1 = 0 , (2.81)

which means that all scalar fields decouple. The only surviving modes are thus ψ2J ≡
ψA=1
J,−J− 1

2
,J ;κ=1

with the Dirac anti-bracket given by (2.54). Since the gauge field enters in the

same way as in the SU(1, 1|1) case of section 2.3 the terms that one obtains from integrating

out the gauge field are the same. Thus, one can obtain the interacting Hamiltonian Hint

of this near-BPS limit simply by be setting the modes Φn = 0 in the SU(1, 1|1) case. We

find therefore Hlimit = L0 + g̃2Hint with

Hint =
1

2N

∞∑
l=1

1

l
tr
(
q̃†l q̃l

)
. (2.82)

where the SU(N) charge density is defined by (2.69) and we took into account that all

physical configurations have zero SU(N) charge q̃0 = 0 due to the Gauss law on the

three-sphere. The properties of this theory are now inherited from the SU(1, 1|1) case. In

particular, Hint has the global symmetry with respect to SU(1, 1). Moreover, the number

operator N̂ is conserved which again is in accordance with this being a non-relativistic

theory.

2.5 PSU(1, 1|2) limit — the maximal case

The last BPS bound that we consider is H ≥ S1 +Q1 +Q2. The theory emerging from the

limit (2.13) contains interactions with global invariance PSU(1, 1|2)× U(1). In particular,

it is supersymmetric and includes a SU(2) residue of the original R-symmetry: this means

that we will find again both bosonic and fermionic modes, but now both of them will

transform as a doublet under this group. In section 3 we quantize this theory, while in

section 5 we show that it can be described in terms of local fields.
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Free Hamiltonian and reduction of the degrees of freedom. Given the free Hamil-

tonian H0 and the Cartan charges derived in appendix B, we consider the near-BPS bound

at lowest order in the coupling, i.e. we impose H0 − S1 − Q1 − Q2 = 0. The left hand

side reads

H0 − S1 −Q1 −Q2 =

tr
∑
JM

{ ∑
κ=±1

[
4∑

A=1

(ωψJ +m− m̃)(ψAJM,κ)†ψAJM,κ − κ(ψA=1
JM,κ)†ψA=1

JM,κ + κ(ψA=2
JM,κ)†ψA=2

JM,κ

]
+
∑
a=1,2

|ΠJM
a + i(1 + m̃−m)(Φ†a)

JM |2 + (ω2
J − (1 + m̃−m)2)|ΦJM

a |2

+ |ΠJM
3 + i(m̃−m)Φ† JM3 |2 + (ω2

J − (m̃−m)2)|ΦJM
3 |2

+
∑

ρ=−1,1

1

2

(
|ΠJmm̃

(ρ) − i(m− m̃)A† Jmm̃(ρ) |2 + (ω2
A,J − (m− m̃)2)|AJmm̃(ρ) |

2
)}

. (2.83)

The vanishing of this expression gives a set of constraints. The common feature with

the other cases is that the gauge field is non-dynamical, since it appears again with the

same combination as in section 2.2, and then gives rise to the same constraints (2.23).

On the other hand, now there is more space for scalars and fermions, indeed we find the

generalization of eq. (2.26)

ΠJ,−J,J
a + iωJΦ† J,−J,Ja = 0 (a = 1, 2) , (2.84)

and there are no constraints on the fermionic modes with

A = 1 , κ = 1 , m = −J − 1

2
, m̃ = J , (2.85)

A = 2 , κ = −1 , m = −J , m̃ = J +
1

2
. (2.86)

All the other scalars and fermionic modes decouple in the g → 0 limit. In addition,

the compatibility with Hamiltonian evolution works in the same way as in the previous

cases, i.e. no additional constraints are generated, except for the non-trivial Dirac bracket

involving the new scalar surviving the limit, in complete analogy with eq. (2.27)

{ΦJ,−J,J
2 , (ΦJ ′,−J ′,J ′

2 )†}D =
i

2ωJ
δJJ ′ . (2.87)

The entire set of constraints is given by (2.48)–(2.52), the only difference being that we need

to apply all the previous identities involving the scalar Φ1 and the fermion ψ1 to the new

dynamical modes Φ2, ψ2, too.5 Indeed, the dynamical bosons and fermions form a doublet

under the residual SU(2) R-symmetry. We remark this explicitly, and we canonically

5Strictly speaking, the identities involving the two fermions are not the same, because the dynamical

modes differ. However, here we mean that all the fermionic modes vanish except for the cases selected

by (2.85) and (2.86).
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normalize the Dirac brackets of the scalar fields, by introducing the notation

Φ2J
a ≡

(√
2ωJΦJ,−J,J

1 ,
√

2ωJΦJ,−J,J
2

)
, (2.88)

ψa2J ≡
(
ψA=1

J,−J−1
2 ,J,κ=1

, ψA=2

J,−J,J+
1
2 ,κ=−1

)
. (2.89)

They will be the dynamical modes entering all the interactions of the sector, with brackets

given by eq. (2.29) and (2.54) for all the fields in each doublet.

The evaluation of the free Hamiltonian H0 in eq. (2.83) on the constraints gives

H0 = tr

∞∑
n=0

[
(n+ 1) |Φa

n|2 +

(
n+

3

2

)
|ψan|2

]
, (2.90)

which is the natural generalization of the quadratic Hamiltonian of the SU(1, 1|1) sector.

The SU(1, 1) generators similarly generalize with a SU(2) structure and read

L0 = tr

∞∑
n=0

[(
n+

1

2

)
|Φa
n|2 + (n+ 1) |ψan|2

]
, (2.91)

L+ = (L−)† = tr
∞∑
n=0

[
(n+ 1)(Φ†a)n+1Φa

n +
√

(n+ 1)(n+ 2)(ψ†a)n+1ψ
a
n

]
. (2.92)

This shows that the free Hamiltonian and L0 are related with a shift by a number operator

N̂ such that

H0 = L0 +
1

2
N̂ , N̂ ≡ tr

∞∑
n=0

(
|Φa
n|2 + |ψan|2

)
. (2.93)

The number operator N̂ is a conserved charge because it commutes with H0, L0, L± and the

interactions, due to the brackets (2.29) and (2.54). Hence we can define the free part of the

Hamiltonian to be L0; the charge N̂ and the corresponding invariance of the Hamiltonian

correspond to the particle number symmetry typical of non-relativistic theories.

Interactions. The interacting Hamiltonian in this sector is defined by

Hint = lim
g→0

H − S1 −Q1 −Q2

g2N
. (2.94)

Following the general strategy outlined in section 2.1, we identify the following interactions:

• Contribution of the currents for the coupling to the non-dynamical gauge field.

• Quartic scalar self-interaction.

• Yukawa term, which gives rise to effective quartic interactions after integrating out

one of the non-dynamical fields.

In principle these possibilities are the same allowed for the SU(1, 1|1) sector, the difference

being that from a technical point of view there are more possibilities among the non-

dynamical fields to integrate out, and the interactions have an additional SU(2) structure.
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We start from the generalization of the currents (2.64) and (2.65), which now read

j† Jmm̃0 = g
J1 + J2 + 1
√
ωJ1ωJ2

CJ2J1,JM [Φa
2J1 , (Φa)

†
2J2

]

+ gF J̄1J̄2,JM{ψ
1
2J1 , (ψ1)†2J2}+ gF J̄2J̄1,JM{ψ

2
2J1 , (ψ2)†2J2} ,

(2.95)

j† Jmm̃(ρ) =− 4g

√
J1(J1 + 1)

ωJ1ωJ2
DJ2J1,JMρ[Φ

a
2J1 , (Φa)

†
2J2

]

+ gGJ̄1J̄2,JMρ
{ψ1

2J1 , (ψ1)†2J2} − gG
J̄2
J̄1,JM,−ρ{ψ

2
2J1 , (ψ2)†2J2} .

(2.96)

Here we used eq. (C.29) and (C.39) to express the result only in terms of the short-

hand Clebsch-Gordan coefficients introduced in eq. (2.36) and (2.61), and we immediately

rescaled the scalar fields according to the definition (2.89).

These currents are singlets under SU(2) and contributes to the interactions via

eq. (2.34). Using techniques analog to the method explained in section 2.3 for the SU(1, 1|1)

sector by means of the identities given in appendix C, we reduce all the sums over inter-

mediate momenta J to a boundary term.

In order to perform this method for the purely scalar part, however, we also need to

include the quartic bosonic self-interaction, which partially contribute to this result. The

corresponding term in the general N = 4 SYM Hamiltonian is

g2

2
tr

(
1

2
([Φ1,Φ

†
1]2 + [Φ2,Φ

†
2]2) + |[Φ1,Φ2]|2 + |[Φ1,Φ

†
2]|2
)
, (2.97)

which we can equivalently write as

g2

2
tr

(
1

2
|[Φa, (Φ

†
a)]|2 + |[Φa,Φb]|2

)
(2.98)

The first term contributes to the effective interactions mediated by the gluons, having

the structure of a product of SU(2) singlets, i.e. it has a SU(2) double trace structure.

Combining such a term with the formula (2.34) with currents (2.95) and (2.96), we obtain

1

2N

∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
, (2.99)

where the charge densities are q̂l = ql + q̃l with

qs ≡
∞∑
n=0

∑
a=1,2

[(Φ†a)n, (Φa)
n+l] , q̃l ≡

∞∑
n=0

∑
a=1,2

√
n+ 1√

n+ l + 1
{(ψ†a)n, (ψa)n+l} , (2.100)

The other term included in the quartic scalar self-interaction (2.98) requires some additional

care. It is a SU(2) single trace operator, and as such it cannot can be mediated by a SU(2)

singlet. Consequently, it gives rise to a genuinely new interaction of the form

1

4N

∑
JM,Ji

CJMJ1;J2C
J,−M
J3,J3,−J3;J4,J4,−J4√

(2J1 + 1)(2J2 + 1)(2J3 + 1)(2J4 + 1)
tr ([Φ2J1

a ,Φ2J2
b ][(Φ†b)

2J3 , (Φ†a)
2J4 ])

=
1

2N

∞∑
l,m,n=0

1

m+ n+ l + 1
tr ([Φm+l

a ,Φn
b ][(Φ†b)

n+l, (Φ†a)
m]) .

(2.101)
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In this case the sum over J in the first line is trivial because the conditions on momenta

saturate the triangle inequalities, and this fixes J = J1 + J2 = J3 + J4. The second line is

then obtained with straightforward shifts and rescalings of the labels.

The remaining interactions of the sector all arise from the Yukawa cubic term in the

N = 4 action, and they generalize eq. (2.62). Due to the broader field content of the

sector with respect to the previous cases, it is now possible to obtain effective quartic

interactions which survive the limit by integrating out three different non-dynamical fields:

ψ3, ψ4 or Φ3.

We start by integrating out the fermion fields ψ3, ψ4, which works conceptually in

the same way as for the SU(1, 1|1) sector and brings to an effective interaction analog to

eq. (2.73). Since there is an additional SU(2) structure, we find more possible combinations

of the fields. The sum over intermediate momenta J can be performed with a shift J →
J − 1

2 in appropriate terms, leading again to a contribution coming from the boundary of

summation. We find

1

2N

∞∑
m,n,l=0

tr
(

[(Φ†a)m, (ψb)m+l][(ψb)
†
n+l, (Φa)n]

)
√

(m+ l + 1)(n+ l + 1)

− 1

2N

∞∑
m,n,l=0

√
m+ 1

n+ l + 1

εacεbd tr
(

[(ψ†a)m, (Φb)m+l+1][(ψ†c)n+l, (Φd)n]
)

m+ n+ l + 2

− 1

2N

∞∑
m,n,l=0

√
m+ 1

n+ l + 1

εacεbd tr
(

[(Φ†a)m+l+1, (ψb)m][(Φ†c)n, (ψd)n+l]
)

m+ n+ l + 2
.

(2.102)

The last interaction comes from integrating out the non-dynamical scalar Φ3 from the

Yukawa term. This gives rise to a new quartic combination of purely fermionic fields,

whose explicit expression can be worked out by similar manipulations as above, giving

1

2N

∞∑
m,n,l=0

√
(m+ 1)(n+ 1)

(m+ l + 1)(n+ l + 1)

tr
(
{(ψa)m+l, (ψb)n}{(ψ†b)n+l, (ψ

†
a)m}

)
m+ n+ l + 2

. (2.103)

This concludes the treatment of the interacting Hamiltonian of the PSU(1, 1|2) theory. The

full Hamiltonian of the system in the near-BPS limit g → 0 with bound H ≥ S1+Q1+Q2 is

Hlimit = L0 + g̃2Hint . (2.104)

The interacting Hamiltonian is obtained by using the definition (2.94) and collecting all

the previous terms. Remarkably, the final expression can be written in a convenient form

showing that it is manifestly positive definite by means of the property

tr
(
{ψ1, ψ2}[Φ†1,Φ

†
2]
)

= tr
(

[ψ1,Φ
†
1][ψ2,Φ

†
2]
)
− tr

(
[ψ1,Φ

†
2][ψ2,Φ

†
1]
)
. (2.105)

Thus we obtain

Hint =
1

2N

∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
+

1

2N

∞∑
l=0

tr ((Fab)
†
l (Fab)l) +

1

2N

∞∑
l=1

tr ((Gab)
†
l (Gab)l) ,

(2.106)
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where we defined

(Fab)l =
∞∑
m=0

[(ψa)m+l, (Φb)
†
m]√

m+ l + 1
, (Gab)l =

1√
l
(jab)l , (2.107)

(jab)l =
∞∑

m,n=0

(√
m+1

n+1
{(ψa)m, (ψb)n}δ(m+n+2−l) + [(Φa)m, (Φb)n]δ(m+n+1−l)

)
.

(2.108)

The expression (2.106) is invariant under the global group SU(1, 1)×U(1), as can be checked

explicitly by computing the commutators with the particle number operator N̂ and with

the charges L0, L±. In addition, it is also invariant under extended supersymmetry, with

supercharges

Q1 =
∑
a=1,2

∞∑
n=0

√
n+ 1

2
tr
(

(ψ†a)n(Φa)n+1 + (Φ†a)n(ψa)n

)
,

Q2 =
∑

a,b=1,2

∞∑
n=0

√
n+ 1

2
εab tr

(
(ψ†a)n(Φb)n+1 + (Φ†b)n(ψa)n

)
.

(2.109)

satisfying

L0 = {Q1,Q†1}D = {Q2,Q†2}D , {Hint,Q1}D = {Hint,Q2}D = 0 . (2.110)

This can be shown to be true by using the Dirac brackets (2.29) and (2.54) for all the copies

of the fields. The same comments given in section 2.3 about the non-relativistic nature of

the model are true. In addition, we observe that the broader field content of this near-BPS

limit allows for a set of new interactions in the last two lines of eq. (2.106), where the

distribution of momenta between the bosonic and fermionic degrees of freedom is shifted

by unity. This aspect is related to the fact that the scalars transform under the j = 1/2

representation of SU(1, 1), while the fermionic field under the j = 1 representation. We

will investigate in more details the consequences of this observation in section 5, where this

will play an important role to determine the local description of the sector.

3 Quantization of near-BPS theories

In section 2 we found non-relativistic theories that describe the effective dynamics of N = 4

SYM near BPS bound, when taking the near-BPS limit (2.13). These theories are classical,

as they arise from limits of the classical Hamiltonian of N = 4 SYM on a three-sphere. In

this section we consider the quantization of the near-BPS theories that we have obtained.

In section 3.1 we quantize the SU(1, 1|1) near-BPS theory and find its full quantum

mechanical Hamiltonian and the Hilbert space on which it acts. We show that the quantized

theory includes normal-ordering effects that can be viewed as self-energy corrections. With

these effects included, we review in section 3.1 that the quantized SU(1, 1|1) near-BPS

theory is equivalent to SU(1, 1|1) Spin Matrix theory [5]. As we explain in section 3.2, this

means that taking the near-BPS limit (2.13) on the level of the classical Hamiltonian of
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N = 4 SYM on a three-sphere, as we did in section 2, and then quantizing the resulting

near-BPS theory, is equivalent to first quantizing N = 4 SYM on a three-sphere, and

then taking the near-BPS limit (2.13) of the quantum Hamiltonian, which is equivalent to

the dilatation operator of N = 4 SYM. Thus, one gets the same result whether one first

quantizes, and then takes the near-BPS limit, or if one first takes the near-BPS limit, and

then quantizes.

We stress that since one can view the bosonic and fermionic SU(1, 1) near-BPS theories

as truncations of the SU(1, 1|1) near-BPS theory, the conclusions we draw for the SU(1, 1|1)

case will hold for these cases as well. We furthermore comment on the extension to the

PSU(1, 1|2) case.

3.1 Quantization of SU(1, 1|1) near-BPS theory

We perform now the complete quantization procedure for the SU(1, 1|1) near-BPS theory.

This theory is rich enough to show the appearance of non-trivial contributions from the

normal ordering of both the bosonic and fermionic terms in the Hamiltonian, and it is also

the simplest case where supersymmetry arises. The procedure can be straightforwardly

generalized to include the new interactions of the PSU(1, 1|2) sector as no additional sub-

tleties arise.

First of all, we replace all the Dirac brackets with (anti)commutators

{·, ·}D → i[·, ·} , (3.1)

where we denoted with {}D in the l.h.s. the classical brackets and in the r.h.s. the no-

tation stresses that the symmetry depends from the bosonic or fermionic nature of the

fields involved. Then we introduce raising and lowering operators obeying the canonical

commutation relations

[(ar)
i
j , (a

†
s)
k
l] = δilδ

k
jδrs , {(br)ij , (b†s)kl} = δilδ

k
jδrs , (3.2)

where as ≡ Φs, a
†
s ≡ Φ†s are bosonic, and bs ≡ ψs, b†s ≡ ψ†s are fermionic. These oscillators

carry indices i, j for the internal SU(N) symmetry and an index s corresponding to a

representation of the spin group SU(1, 1|1).

Using this dictionary, we directly promote the classical result (2.76) to a quantum-

mechanical Hamiltonian

Hqm = tr

( ∞∑
s=0

(
s+

1

2

)
a†sas +

∞∑
s=0

(s+ 1)b†sbs +
g̃2

2N

∞∑
s=1

1

s
(qtot
s )†qtot

s

)

+
g̃2

2N

∞∑
s,s1,s2=0

1√
(s1 + s+ 1)(s2 + s+ 1)

tr
(

[as2 , b
†
s2+s][bs1+s, a

†
s1 ]
)
,

(3.3)

where we defined the quantum version of the charge densities as

ql ≡
∞∑
s=0

: [a†s, as+l] : , q̃l =
∞∑
s=0

√
s+ 1√

s+ l + 1
: {b†s, bs+l} : , q̂l = ql + q̃l . (3.4)
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At the classical level, the zero mode of the total current q̂0 vanishes due to the Gauss law

on the three-sphere. At the quantum-mechanical level, q̂0 is zero when acting on physical

states

q̂0|phys〉 = 0 . (3.5)

Hence, the Hilbert space of the quantum theory corresponds to the states which are singlets

with respect to the SU(N) symmetry. Now we show that normal ordering is responsible

for the appearance of the self-energy corrections. The result for the SU(1, 1) bosonic sector

was derived in [4], but here we review and generalize the procedure including also the

fermionic partner.

For the bosonic part, the following result can be obtained by using the commutation

relations (3.2) in the explicit evaluation of the normal ordered interaction:

∞∑
s=1

1

s
tr
(
q†sqs

)
=
∞∑
l=1

1

s
tr
(

: q†sqs :
)

+ 2N
∞∑
s=0

h(s) tr
(
a†sas

)
− 2

∞∑
s=0

h(s) tr (a†s) tr (as) .

(3.6)

Here we defined the harmonic numbers as h(s) =
∑s

k=1
1
k . An analog computation applied

to the fermionic part of the Hamiltonian gives the similar relation
∞∑
s=1

1

s
tr
(
q̃†s q̃s

)
=

∞∑
l=1

1

s
tr
(

: q̃†s q̃s :
)

+ 2N

∞∑
s=0

h(s+ 1) tr
(
b†sbs

)
+ 2

∞∑
s=0

h(s+ 1) tr (b†s) tr (bs) .

(3.7)

In this case, the different argument of the harmonic numbers comes from the identity
∞∑
l=1

1

l

s+ 1

s+ l + 1
= h(s+ 1) , (3.8)

which in turn arises from the normalization of the fermionic ladder operators. In the

SU(1, 1|1) sector there are also mixed bosonic-fermionic interactions, but they do not con-

tribute to self-energy corrections, as can be checked explicitly:
∞∑
s=1

1

s
tr
(
q†s q̃s + q̃†sqs

)
=

∞∑
s=1

1

s
tr
(

: q†s q̃s + q̃†sqs :
)
. (3.9)

To proceed further, we need to work out the implication of the SU(N) singlet constraint,

which implicitly enters the Hamiltonian as the term with s = 0 in the quartic interactions

mediated by the non-dynamical gauge field. For the bosonic case, we need to use the

identity6

∞∑
m=0

h(m) tr
(

: [a†m, am] : q0

)
=

∞∑
m,n=0

h(m) tr
(

:
[
a†m, a

m
] [
a†n, a

n
]

:
)

+ 2N

∞∑
m=0

h(m) tr (a†ma
m)− 2

∞∑
m=0

h(m) tr (a†m) tr (am) ,

(3.10)

6Strictly speaking, the singlet constraint involves the total charge density q̂0 and not the single terms

q0, q̃0. However the mixed terms do not have normal ordering issues because the bosonic operators commute

with the fermionic ones, hence it is not restrictive to consider only the diagonal terms in the computation

of the self-energy corrections.
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while for the fermionic case the analog expression is

∞∑
m=0

h(m+ 1) tr
(

:
{
b†m, b

m
}

: q̃0

)
=

∞∑
m,n=0

h(m+ 1) tr
(

:
{
b†m, b

m
}{

b†n, b
n
}

:
)

+ 2N
∞∑
m=0

h(m+ 1) tr (b†mb
m)

+ 2

∞∑
m=0

h(m+ 1) tr (b†m) tr (bm) . (3.11)

No additional self-energy corrections arise instead from the mixed bosonic-fermionic inter-

action. The crucial observation is that all the self-energy terms cancel when summing the

right-hand side of eqs. (3.6), (3.7), (3.9) with eqs. (3.10) and (3.11).

The quartic interaction which was mediated by the non-dynamical fermionic field (as

explained in section 2.3) is already normal-ordered. In this way the quantum Hamiltonian

of the near-BPS SU(1, 1|1) theory becomes

Hqm =

∞∑
s=0

(
s+

1

2

)
tr
(
a†sas

)
+

∞∑
s=0

(s+ 1) tr
(
b†sbs

)
+

g̃2

2N

∞∑
s=1

1

s
tr
(

: q̂†s q̂s :
)

+
g̃2

2N

∞∑
s1,s2=0

h(s1) tr
(

:
[
a†s1 , a

s1
] [
a†s2 , a

s2
]

:
)

+
g̃2

2N

∞∑
s1,s2=0

h(s1 + 1) tr
(

:
{
b†s1 , b

s1
}{

b†s2 , b
s2
}

:
)

+
g̃2

4N

∞∑
s1,s2=0

h(s1 + 1) tr
(

: {b†s1 , b
s1}[a†s2 , a

s2 ] :
)

+
g̃2

4N

∞∑
s1,s2=0

h(s1) tr
(

: [a†s1 , a
s1 ]{b†s2 , b

s2} :
)

+
g̃2

2N

∞∑
s,s1,s2=0

1√
(s1 + s+ 1)(s2 + s+ 1)

tr
(

: [as2 , b
†
s2+s][bs1+s, a

†
s1 ] :

)
.

(3.12)

We will see in the following that this is equivalent to SU(1, 1|1) SMT [5].

3.2 Quantization vs near-BPS limit

Above in section 2 we have taken near-BPS limits (2.13) of classical N = 4 SYM on a

three-sphere, to obtain a classical description of the near-BPS dynamics close to certain

BPS bounds. Subsequently we quantized the resulting near-BPS theory, specifically in the

SU(1, 1|1) case, to obtain the quantum Hamiltonian (3.12) in section 3.1. This was done by

using a standard normalordering prescription. In this way we found a quantum Hamiltonian

that effectively describes a lower-dimensional theory with non-relativistic symmetries. The

route to obtain this result is illustrated in one of the paths in the diagram of figure 2.

As we shall see in this section, there is another route to the same result, also illustrated

in figure 2. In this case, we start by quantizingN = 4 SYM on a three-sphere. The quantum
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Figure 2. Commutative diagram representing two different ways to obtain the same quantum

theory. One path is to first take the near-BPS limit classically, and then to quantize the theory.

That is the path of this paper performed in sections 2 and 3.1. The other path is to first quantize

N = 4 SYM and then take the near-BPS limit. This corresponds to the Spin Matrix theory limit

of [5]. Both paths yield the same result.

Hamiltonian is then given by the full dilatation operator D of N = 4 SYM on R4 [10–12]

(by the state/operator correspondence). One can then subsequently take the same near-

BPS limit (2.13) as for the classical description. Amazingly, as we show in detail below,

this will reveal the exact same quantum theory. Thus, in short, quantizing and taking

near-BPS limit commute with each other.

The alternative route, with quantizing first and then taking the near-BPS limit, has

been previously explored in [5] and in references therein. In these works, the near-BPS

limit is known as the Spin Matrix theory (SMT) limit and the resulting quantum theory as

Spin Matrix theory (SMT). Thus, we show in this paper a different route to obtain SMT.

That quantization and near-BPS limit commutes, as illustrated in figure 2, is not a pri-

ori evident. The commutativity of the limits is particularly non-trivial for non-relativistic

theories: in fact it is known that procedures like the c→∞ limit or null reduction do not

commute a priori with the quantization of the theory, or with other generic limits that one

can perform in such systems. For our near-BPS limits, however, we show that the diagram

in figure 2 is commutative, i.e. the two prescriptions lead to the same result. A posteriori,

this matching justifies the prescription given for the quantization of the classical result

coming from the sphere reduction.

To exhibit the connection to the SMT/near-BPS limits of the full dilatation operator

D of N = 4 SYM we focus on the SU(1, 1|1) case for which we found the quantum Hamil-

tonian (3.12). The focus here is on the interacting part which should be compared to the

SU(1, 1|1) sector of the one-loop contribution to the full dilatation operator D. Writing

Hqm =
∞∑
s=0

(
s+

1

2

)
tr
(
a†sas

)
+
∞∑
s=0

(s+ 1) tr
(
b†sbs

)
+ g̃2Hqm,int (3.13)

we are interested in the quantum interacting Hamiltonian Hqm,int. It is convenient to write
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it in terms of renormalized four-point vertices,

Hqm,int =
1

4N

∞∑
s=0

s∑
s1,s2=0

tr
(

: [a†s1 , as2 ][a†s1−s, as2−s] :
)(

δs1,s2 (h(s1) + h(s2 − s))−
1−δs1,s2
|s1−s2|

)

+
g̃2

4N

∞∑
s=0

s∑
s1,s2=0

√
(s1 + 1)(s2 − s+ 1)

(s2 + 1)(s1 − s+ 1)
tr
(

: {b†s1 , bs2}{b
†
s1−s, bs2−s} :

)
×
(
δs1,s2 (h(s1 + 1) + h(s2 − s+ 1))− 1− δs1,s2

|s1 − s2|

)
+

g̃2

4N

∞∑
s=0

s∑
s1,s2=0

√
s1−s+1

s2−s+1
tr
(

: [a†s1 , as2 ]{b†s1−s, bs2−s} :
)(

δs1,s2h(s1)− 1−δs1,s2
|s1−s2|

)

+
g̃2

4N

∞∑
s=0

s∑
s1,s2=0

√
s2+1

s1+1
tr
(

: {b†s1 , bs2}[a
†
s1−s, as2−s] :

)(
δs1,s2h(s1+1)− 1−δs1,s2

|s1−s2|

)

+
g̃2

2N

∞∑
s,s1,s2=0

1√
(s1 + s+ 1)(s2 + s+ 1)

tr
(

: [as2 , b
†
s2+s][bs1+s, a

†
s1 ] :

)
.

(3.14)

The terms in the right parenthesis for each vertex correspond exactly to the one-loop

dilatation operator in the SU(1, 1|1) sector [11]. Thus, we have shown the commutativity

in the diagram of figure 2. This means that the quantum Hamiltonian (3.12) indeed is that

of SU(1, 1|1) SMT.

It is interesting to note that the computation of (3.14), from point of view of the one-

loop dilatation operator of N = 4 SYM, is quite involved. One has to compute divergent

Feynman diagrams for N = 4 SYM and perform dimensional regularization for two-point

functions. Instead, we have found the same result from a classical computation, i.e. the

near-BPS limit of the sphere reduction of the action on R×S3, along with a simple normal-

ordering prescription to obtain the Hamiltonian at the quantum level.

Generalization to the PSU(1, 1|2) sector. Here we comment on the generalization

of the result to the PSU(1, 1|2) sector. In this case, the bosonic and fermionic fields are

both supplemented by an additional SU(2) index due to the residual R-symmetry of the

system. We then define the ladder operators as

(aa)s ≡ (Φa)s , (a†a)s ≡ (Φ†a)s , (ba)s ≡ (ψa)s , (b†a)s ≡ (ψ†a)s . (3.15)

The prescription to quantize the Hamiltonian coming from the sphere reduction is still to

directly promote the result at quantum level, without further changes. This implies that

the interacting part is given by

Hqm,int =
1

2N

∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
+

1

2N

∞∑
l=0

tr ((Fab)
†
l (Fab)l) +

1

2N

∞∑
l=1

tr ((Gab)
†
l (Gab)l) ,

(3.16)
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where now we have

ql ≡
∑
a=1,2

∞∑
n=0

: [(a†a)n, (aa)
n+l] : , q̃l ≡

∑
a=1,2

∞∑
n=0

√
n+ 1√

n+ l + 1
: {(b†a)n, (ba)n+l} : , (3.17)

(Fab)l =
∞∑
m=0

[(ba)m+l, (ab)
†
m]√

m+ l + 1
, (Gab)l =

1√
l
(jab)l , (3.18)

(jab)l =

∞∑
m,n=0

(√
m+ 1

n+ 1
{(ba)m, (bb)n}δ(m+ n+ 2− l) + [(aa)m, (ab)n]δ(m+ n+1− l)

)
.

(3.19)

Working out the SU(N) singlet condition and writing all the expressions in terms of normal

ordered quantities allows to recast the result in a form where the vertices are renormalized

in the same way as computed from the one-loop corrections to the dilatation operator in

this sector. The procedure is completely analog to the SU(1, 1|1) case, and we simply need

to complement the result with the additional SU(2) structure.

4 Momentum-space superfield formalism

The spin group of the SMT Hamiltonian in the SU(1, 1|1) limit is supersymmetric, i.e. it

admits the existence of a complex supercharge relating the bosonic and fermionic dynam-

ical degrees of freedom surviving the near-BPS limit of N = 4 SYM. It is then reasonable

to expect that there exists a suitable superspace formulation which makes this invari-

ance manifest and allows to reproduce the field content and the Hamiltonian in terms of

superfields.

Indeed, we now show in detail that this is possible. We stress that while we will give a

semi-local description of this model in section 5, it should be considered as a complementary

way to describe the system, but not as a necessary step. In fact, all the expressions that we

are going to introduce in this section can be considered independently as a way to obtain

the classical Hamiltonian (2.75).

Following the discussion of section 2.3, it is convenient to use L0 as the free part of

the Hamiltonian; this reads

L0 =

∫
dt

∞∑
s=0

tr

((
s+

1

2

)
Φ†sΦs + (s+ 1)ψ†sψs

)
. (4.1)

The eigenvalues are explicitly given by s+ 1−R, with R = (1
2 , 0) being the U(1)R charge

of bosons and fermions,7 respectively.

Since the sector contains only a single complex supercharge, a corresponding super-

space formulation accordingly requires the introduction of a single complex Grassmannian

coordinate (θ, θ†). Moreover, the requirement that the anticommutator of supercharges

closes on L0 fixes their expressions to be

Q =
∂

∂θ
+

1

2
θ†(s+ 1−R) , Q† =

∂

∂θ†
+

1

2
θ(s+ 1−R) , (4.2)

7See appendix D for more details on the R-charge and the generators in the oscillator representation.
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which indeed satisfy

{Q,Q†} = s+ 1−R = L0 . (4.3)

The most general superfield that we can define in a superspace with one complex Grassmann

coordinate is given by

Xs(t, θ, θ
†) = As(t) + θBs(t) + θ†Cs(t) + θθ†Ds(t) . (4.4)

The component modes appearing in the definition of the superfield can have a priori both

bosonic or fermionic statistics. In particular, in two dimensions both choices are allowed.

We will distinguish the two possibilities by calling the superfields either bosonic or fermionic

depending from the behaviour of the lowest component. In fact, fixing the statistics of As(t)

is sufficient to fix the statistics of all the other component fields in the expansion.

Given the general expression of the superfield, it turns out that the number of com-

ponent fields in the multiplet is too big, and we need some constraints in order to find an

irreducible representation. This task can be achieved by defining the covariant derivatives

D = i
∂

∂θ
− i

2
θ†(s+ 1−R) , D† = −i ∂

∂θ†
+
i

2
θ(s+ 1−R) , (4.5)

which satisfy the following commutation relations:

{D,Q} = {D†,Q†} = {D,Q†} = {D†,Q} = 0 , {D,D†} = −L0 . (4.6)

In this way we define the notion of chiral Σs and anti-chiral Σ†s superfields by requiring the

conditions

D†Σs = 0 , DΣ†s = 0 . (4.7)

We will show that the only matter field needed to build the Hamiltonian in superfield

language is a chiral fermionic superfield Ψ plus its hermitian conjugate Ψ†. For this reason,

we directly consider the case where the bottom component of the supermultiplet is a

complex fermion and we impose the (anti)chirality constraints to get

Ψs(t, θ, θ
†) = ψs(t)√

s+1
+ θΦs(t)− 1

2θθ
†√s+ 1ψs(t) , (4.8)

Ψ†s(t, θ, θ†) = ψ†
s(t)√
s+1

+ θ†Φ†s(t)− 1
2θθ
†√s+ 1ψ†s(t) . (4.9)

Notice that the particular normalization of the fermionic components reflects the definition

of the charge densities, see eqs. (2.42) and (2.69). This will play an important role to deter-

mine the correct form of the interactions. The constrained superfield gives an irreducible

matter supermultiplet, since it only contains a single complex scalar and the fermionic

partner, which are the surviving degrees of freedom of the near-BPS limit. No auxiliary

fields are needed.

The supersymmetry transformations of all the modes can be found by computing

δΨs =
(
εQ+ ε†Q†

)
Ψs , (4.10)
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and then projecting the result on the various components. We find that the free Hamilto-

nian L0 can be written as

L0 = −
∫
dt

∫
dθdθ†

∞∑
s=0

tr
(

Ψ†s(s+ 1−R)Ψs

)
. (4.11)

Working out the rules of Berezin integration, this is easily shown to correspond in compo-

nent formalism to eq. (4.1).

Now we move to the interacting part of the Hamiltonian. Having at disposal the

fermionic superfield containing all the dynamical fields of the theory, in principle we can

build higher-order terms with appropriate combinations of the superfield. However, it turns

out that the choice of the fermion as the lowest component of the supermultiplet and the

Grassmannian nature of the superspace coordinates are responsible for the identities

Ψ2
s = 0 , (Ψ†s)

2 = 0 , (4.12)

which are a natural supersymmetric generalization of the concept of Grassmann variable.

In particular, this fact rules out the construction of a superpotential, i.e. an expression

holomorphic in the superfields, which is the natural candidate for renormalizable inter-

actions in standard relativistic theories. While this fact forbids to build the SU(1, 1|1)

Hamiltonian only in terms of the fermionic superfield, on the other hand it shows that

another kind of supermultiplet is required to specify the theory, and in fact we will need to

add a bosonic (anti)chiral superfield. The necessity to integrate in a new field also arises at

the level of components, as we will show. This is justified by the fact that the theory still

contains remnants of the original gauge symmetry of the N = 4 SYM action, which in the

near-BPS limit are non-dynamical and mediate the interactions via the currents associated

to the matter fields.

Using the component formalism, we define the modes of the current to be

jl =

∞∑
s=0

(√
s+ 1

s+ l + 1

{
ψ†s, ψs+l

}
+
[
Φ†s,Φs+l

])
. (4.13)

Notice that this definition is exactly the total current8 q̂l = ql+q̃l written in terms of bosonic

and fermionic currents of eqs. (2.42) and (2.69). Now we introduce a gauge contribution to

the Hamiltonian given by a kinetic term for a complex scalar mode As(t) and the minimal

coupling between such field and the current:

H ⊃
∫
dt

(
−
∞∑
s=0

s tr
(
A†sAs

)
+ g̃

∞∑
s=0

tr
(
A†sjs +Asj

†
s

))
. (4.14)

The equation of motion for the constrained gauge field As in Fourier space is

sAs − g̃js = 0 , (4.15)

8We change here the notation of the current as jl instead of q̂l to avoid confusion with supersymmetry

charges and to stress that it plays the role of a current in a QFT coupling to a mediator gauge field.
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and after integrating it out, the term added to the Hamiltonian becomes∫
dt
∞∑
s=1

1

s
tr
(
j†sjs

)
. (4.16)

This shows that by integrating in an auxiliary gauge mediator we get precisely this term

entering the Hamiltonian. The quartic interaction between two scalars and two fermions

in eq. (2.76) can be obtained in component formalism by simply combining the fields as

H ⊃
∫
dt

∞∑
s1,s2,l=0

1√
(s1 + l + 1)(s2 + l + 1)

tr
(

[Φs2 , ψ
†
s2+l][ψs1+l,Φ

†
s1 ]
))

. (4.17)

How is possible to obtain this term from the superfield perspective if we cannot build

holomorphic combinations of fermionic superfields? It turns out that the supersymmetriza-

tion of the gauge mediator will solve the problem at once, accounting for both the term

containing the currents and the quartic mixed interaction.

In fact, we define the following bosonic (anti)chiral superfield

As(t, θ, θ†) = As(t) + θ
λs(t)√
s+ 1

− 1

2
θθ†sAs(t) , (4.18)

A†s(t, θ, θ†) = A†s(t)− θ†
λ†s(t)√
s+ 1

− 1

2
θθ†sA†s(t) . (4.19)

Since the theory is supersymmetric, we had to introduce in the definition a complex fermion

λs, which we will interpret as a residual gaugino mediating another interaction. In this

way, we can write the complete Hamiltonian of the sector as

H =

∫
dt

∫
dθdθ† tr

{ ∞∑
s=0

(
A†sAs −Ψ†s (s+ 1−R) Ψs

)
+ g̃

∞∑
s1,s2=0

Ψ†s1

[
A†
s2−s1+R− 1

2

,Ψs2

]
+ g̃

∞∑
s1,s2=0

Ψ†s1

[
As1−s2+R− 1

2
,Ψs2

]}
.

(4.20)

Although this is not manifest, the terms in the second line can be interpreted as a covariant

derivative iDx written in momentum space, as we will see with a local formulation in

section 5.3. The previous expression in component formalism is

H =

∫
dt

∞∑
s=0

tr

((
s+

1

2

)
Φ†sΦs + (s+ 1)ψ†sψs −

∞∑
s=0

sA†sAs

+g̃
∞∑
s=0

(
A†sjs +Asj

†
s

)
− g̃

∞∑
s,s1,s2=0

λs[ψs1 ,Φ
†
s2 ] + g̃

∞∑
s,s1,s2=0

λ†s[Φs1 , ψ
†
s2 ]

 .

(4.21)

The first line contains all the kinetic terms, while the second line all the couplings with

the currents. The remarkable fact is that the gaugino λs is not dynamical, and can be

easily integrated out giving a quartic interaction which corresponds exactly to eq. (4.17).

Then we see how the superfield formulation solves the problem: the fermionic partner of
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the remnant gauge field allows to build a term using minimal coupling without resorting

to any (anti)holomorphic superpotential. At this point we observe that the field As is also

non-dynamical, and following the step in eq. (4.15) we integrate out this field to get the

quartic interaction (4.16).

5 Local formulations

In section 2 we have presented non-relativistic near-BPS theories that arise from limits of

classical N = 4 SYM on a three-sphere. In section 3 we have quantized these theories

employing a normal-ordering prescription. The quantized theories are the Spin Matrix

theories (SMTs) considered in [5] and references therein, that also can be obtained directly

from limits of quantized N = 4 SYM.

In this section we find local formulations of the quantized near-BPS theories/SMTs.

Our main focus is on SU(1, 1|1) SMT, but we also comment on the other cases with SU(1, 1)

symmetry as well. In particular, we initially present the bosonic SU(1, 1) sector as a simple

setting to introduce the procedure, and we finally comment on the PSU(1, 1|2) case, being

the one with richest structure.

5.1 Local representations on fields

In all of the four cases that we consider in this paper we have a SU(1, 1) subalgebra of

the bosonic part of the algebra. This SU(1, 1) is the non-compact part of the algebra, and

the SU(1, 1) representations that we have are infinite dimensional. For this reason, one

can find a local representation of the states that we have with respect to their SU(1, 1)

representations. We shall do this below for the SU(1, 1|1) SMT by considering just the

free Hamiltonian. Subsequently we include the interactions: in section 5.2 we start from

the SU(1, 1) bosonic SMT, we then consider in section 5.3 the full SU(1, 1|1) SMT and we

finally comment on the PSU(1, 1|2) case in section 5.4.

In the SU(1, 1|1) SMT limit of N = 4 SYM the surviving states are |dn1Z〉 and |dn1χ1〉
with n ≥ 0 [24]. The goal here is to find a local representation of the SU(1, 1) representation

of these states. SU(1, 1) has three generators L0, L+ and L− with algebra

[L0, L±] = ±L± , [L−, L+] = 2L0 . (5.1)

Acting with the three generators on the surviving states one finds

L0|dn1Z〉 =

(
n+

1

2

)
|dn1Z〉 , L0|dn1χ1〉 = (n+ 1)|dn1χ1〉 ,

L+|dn1Z〉 = (n+ 1)|dn+1
1 Z〉 , L+|dn1χ1〉 =

√
(n+ 1)(n+ 2)|dn+1

1 χ1〉 ,

L−|dn1Z〉 = n|dn−1
1 Z〉 , L−|dn1χ1〉 =

√
n(n+ 1)|dn−1

1 χ1〉 ,

(5.2)

with n ≥ 0. One can compare this to a general spin j representation of SU(1, 1)

L0|j, j + n〉 = (j + n)|j, j + n〉 ,

L+|j, j + n〉 =
√

(n+ 1)(n+ 2j)|j, j + n+ 1〉 ,

L−|j, j + n〉 =
√
n(n+ 2j − 1)|j, j + n− 1〉 .

(5.3)
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This shows that the bosonic states |dn1Z〉 are in the j = 1/2 representation while the

fermionic states |dn1χ1〉 are in the j = 1 representation of SU(1, 1).

The idea is now to find a representation of L0 and L± in terms of differential operators

on a local field. Since we have only one quantum number m in the j = 1/2 and j =

1 representations it should be a one-dimensional spatial direction. Moreover, since it’s

quantized, one should put it on a circle. Hence we introduce the spatial coordinate x,

periodic with period 2π, to parametrize this circle.

Consider first the bosonic states |dn1Z〉. We introduce the bosonic complex field

Φ(t, x) =

∞∑
n=0

Φn(t)ei(n+ 1
2

)x . (5.4)

Note that we are in the Heisenberg picture. Identifying L0 = n+ 1
2 one sees that L0 = −i∂x.

This means that as a quantum operator Φ†n acting on the vacuum creates the state |dn1Z〉.
Note that Φ is antiperiodic on the circle due to the half-integer momentum on the circle. As

we shall see below, Φ shares some features with β-γ ghost fields, and thus has a mixture of

bosonic and fermionic characteristics. A consistent representation on Φ(t, x) of the SU(1, 1)

generators is

L0 = −i∂x , L± = e±i(x−t) (−i∂x ±R) , (5.5)

since this reproduces the algebra (5.1). Here R is the U(1) charge which is R = 1
2 for

bosons and R = 0 for fermions. The time-dependence in (5.5) will be addressed below. An

important question is the normalization of the mode Φn. The states |dn1Z〉 = |12 ,
1
2 +n〉 are

normalized. Hence one can read off this normalization from the action with L± in (5.2).

This shows that Φn is normalized and we have

[Φm,Φ
†
n] = iδmn . (5.6)

One can now evaluate the equal-time commutators of Φ(t, x) giving the result

[Φ(t, x),Φ(t, x′)] = 0 , [Φ(t, x),Φ(t, x′)†] = iS 1
2
(x− x′) , (5.7)

where

Sj(x) =

∞∑
n=0

ei(n+j)x (5.8)

This points to the fact that Φ(t, x) does not have the standard behavior of a local field.

In particular, even if one can find a quantum state that is an eigenstate of the momentum

along the circle, one cannot find a quantum state which is an eigenstate of the position

along x.

Turning to the fermionic states |dn1χ1〉 we introduce the Grassmann-valued complex

field

ψ(t, x) =

∞∑
n=0

1√
n+ 1

ψn(t)ei(n+1)x . (5.9)

Identifying L0 = n + 1 we have again the representation (5.5) of the SU(1, 1) algebra on

ψ(t, x). The field ψ(t, x) is periodic in the x direction. Upon quantization, the mode ψ†n
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acting on the vacuum gives the state |dn1χ1〉. Again, one should check the normalization

of ψn with the action of L± in (5.1) and (5.2). With the 1/
√
n+ 1 factor in (5.9) one gets

that ψn is normalized, hence in the quantized theory we have

{ψm, ψ†n} = iδmn . (5.10)

With this, the equal-time anti-commutators of ψ(t, x) are

{ψ(t, x), ψ(t, x′)} = 0 , {ψ(t, x), i∂x′ψ(t, x′)†} = iS1(x− x′) , (5.11)

Again, this is not a standard anti-commutator for a local fermionic quantum field.

5.2 Local formulation of bosonic SU(1, 1) SMT

We start discussing the basic procedure to build a QFT description for the simplest near-

BPS limit, i.e. the SU(1, 1) bosonic sector. The main task is to reproduce the interacting

Hamiltonian in eq. (2.45), which is given in momentum space, in terms of a local field

theory containing the complex scalar field (5.4) satisfying the equal time commutator (5.7).

The presence of the singlet constraint in the Hamiltonian implies that the SU(N) remains

gauged. Moreover, we need to integrate in an additional auxiliary field in order to reproduce

the interactions. We can interpret this step as the position space version of the mediation

given by the non-dynamical gauge field in the sphere reduction procedure described in

section 2.

Consider the following (1+1)-dimensional field theory on a circle of unit radius

parametrized by the spatial coordinate x with periodic indentification x ∼ x+ 2π

S =

∫
dtdx tr

(
iΦ†(∂0 + ∂x)Φ + iA†∂xA+ g̃

(
A†j +Aj†

))
, (5.12)

where j(t, x) is the charge density associated to the SU(N) symmetry defined by

j(t, x) ≡ [Φ†(t, x),Φ(t, x)] . (5.13)

The expression (5.12) can be justified from symmetry principles by observing that it is

invariant under the action of the generators of the SU(1, 1) group in position space given

in eq. (5.5).

In addition, we show that the previous local action gives rise to eq. (2.45) with an

appopriate decomposition of the auxiliary field in momentum space. We require

A(t, x) =

∞∑
n=0

An(t)einx . (5.14)

Combining this expansion with the scalar one in eq. (5.4) we obtain

S =
∞∑
n=0

∫
dt tr

(
iΦ†n∂tΦn +

(
n+

1

2

)
Φ†nΦn + nA†nAn + g̃

(
A†njn +Anj

†
n

))
, (5.15)
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where the modes of the charge density jn(t) are given by eq. (2.42). Since A(t, x) is non-

dynamical, its equations of motion give rise to the constraint

nAn(t) + g̃jn(t) = 0 . (5.16)

For n = 0, this coincides with the SU(N) singlet constraint j0 = 0. When n > 0, the

constraint can be solved and inserted into the action to get

S =

∫
dt tr

[ ∞∑
n=0

iΦ†n∂tΦn +
∞∑
n=0

(
n+

1

2

)
Φ†nΦn − g̃2

∞∑
n=1

1

n
j†njn + g̃(A0 +A†0)j0

]
. (5.17)

The corresponding Hamiltonian is easily derived via the Legendre transform and corre-

sponds exactly to eq. (2.45).

We conclude the analysis of the SU(1, 1) bosonic limit with some comments on the

action (5.12). The form of the kinetic term is unusual, being linear in both the time and

space derivatives. In the standard relativistic case the Klein-Gordon operator is quadratic,

while in the Schroedinger-invariant case the action is linear in the time derivative, but

quadratic along the spatial directions. Instead, this kinetic term corresponds to an ultra-

relativistic dispersion relation between energy and momentum E = P, typical of Carrollian

theories [29]. In this case, however, there is the non-trivial constraint P > 0, which

makes the theory non-relativistic. From this perspective, we see that the momentum

constraint and the non-standard Dirac brackets become necessary to get a non-relativistic

interpretation of the result.

Finally, we remark that the scalar must necessarily be complex, otherwise the kinetic

term would be a total derivative. In this connection, it is amusing to note that upon

introducing two real scalar fields (β, γ) as

Φ = β + iγ , (5.18)

the kinetic term L0 = iΦ†(∂0 + ∂x)Φ of the action (5.12) becomes

L0 = −2β(∂0 + ∂x)γ . (5.19)

This shows that the bosonic part of the action can be viewed as a β-γ CFT.9 Exploring

this intriguing connection further is a matter for future work.

5.3 Local formulation of SU(1, 1|1) SMT

We extend the QFT description of the section 5.2 to include to the SU(1, 1|1), which

contains a fermionic partner for the scalar field. In particular, we present the result in

a manifestly supersymmetric way by giving the position space version of the superspace

formulation introduced in section 4, and then we will comment on the result in terms of

component fields.

9We stress that here we are discussing the connection between the kinetic term of the action (5.12)

with a β-γ CFT before imposing the positivity constraints on the modes. There, both systems are still

relativistic.
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Having identified the free part of the Hamiltonian with L0 = −i∂x, we need to search

for a representation of the supercharge such that {Q,Q†} = −i∂x. The presence of a single

complex supercharge implies that superspace is composed by one complex Grassmann

variable θ, a common feature with the momentum space description. It is simple to check

that the following representation satisfies the correct anticommutator:

Q =
∂

∂θ
− i

2
θ†∂x , Q† =

∂

∂θ†
− i

2
θ∂x . (5.20)

Consistency between the left and right multiplication in defining superspace implies that

we can define the supersymmetric covariant derivatives as

D = i
∂

∂θ
− 1

2
θ†∂x , D† = −i ∂

∂θ†
+

1

2
θ∂x , (5.21)

satisfying the commutators

{D,Q} = {D†,Q†} = {D,Q†} = {D†,Q} = 0 , {D,D†} = i∂x = −L0 . (5.22)

These expressions correspond in momentum space to eq. (4.2) and (4.5).

The annihilation under the action of the covariant derivatives of a generic superfield

allows to define (anti)chiral superfields. We direcly introduce the quantities that are suf-

ficient to build an action in superspace formalism: the (anti)chiral fermionic superfields

containing the dynamical modes of the SU(1, 1|1) sector

Ψ(t, x, θ, θ†) = ψ(t, x) + θΦ(t, x) +
i

2
θθ†∂xψ(t, x) , (5.23)

Ψ†(t, x, θ, θ†) = ψ†(t, x) + θ†Φ†(t, x)− i

2
θθ†∂xψ

†(t, x) , (5.24)

and the bosonic (anti)chiral superfield containing the auxiliary fields

A(t, x, θ, θ†) = A(t, x) + θλ(t, x) +
i

2
θθ†∂xA(t, x) , (5.25)

A†(t, x, θ, θ†) = A†(t, x)− θ†λ†(t, x)− i

2
θθ†∂xA

†(t, x) . (5.26)

When expanding in modes the component fields, we obtain eq. (4.8), (4.9), (4.18) and (4.19).

The gauge superfield (5.25) is composed by fields that we will call a gauge field A(t, x)

and a gaugino λ(t, x) in the sense that they play the role of mediators of other interactions,

and they are remnants of the original gauge invariance of the N = 4 SYM action before

imposing Coulomb gauge and performing the sphere reduction. We can further push on

this interpretation by defining derivatives covariant with respect to the gauge superfield

D0 ≡ ∂0 , Dx ≡ ∂x − ig̃A− ig̃A† . (5.27)

When applied on the fermionic superfield, it acts as

DxΨ ≡ ∂xΨ− ig̃[A,Ψ]− ig̃[A†,Ψ] , (5.28)
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where in component formalism the brackets are commutators or anticommutators depend-

ing from the statistics of the specific field they are acting on.

In this way we obtain a compact expression for the action describing the effective field

theory of the SU(1, 1|1) sector

S =

∫
dtdx

∫
dθ†dθ tr

(
−iΨ†(D0 +Dx)Ψ +A†A

)
. (5.29)

This proposal is very natural: the matter part is a simple generalization of the two-

dimensional Dirac action, with the Dirac spinor replaced by a fermionic superfield. The

coupling with the auxiliary field is also straightforward: there is a minimal coupling via the

introduction of a covariant derivative containing the real part of the gauge superfield, while

the kinetic term is standard for a chiral bosonic superfield. Notice that while in standard

cases, e.g. for the relativistic N = 1 chiral superfield in (3+1)-dimensions, a kinetic term

of kind A†A is dynamical, here the specific expansion in superspace (5.25) shows that no

time derivative appears, i.e. the gauge field and the gaugino are non-dynamical. We notice

that the set of interactions built in this way are quite general, since the Grassmannian

nature of the fermionic superfield implies

Ψ2 = 0 , (Ψ†)2 = 0 , (5.30)

so that higher-order (anti)holomorphic terms are forbidden.

We further comment on the supersymmetry invariance of the action (5.29). The inter-

acting part of the action is manifestly invariant under supersymmetry because it is built

only using the superfield formulation, and it is the non-trivial content of the SU(1, 1|1)

sector. On the other hand, the kinetic term is not supersymmetric invariant: it is given

by L0 and is defined using a derivative which is covariant with respect to the gauge su-

perfield (5.25), but not under supersymmetry. Since the free Hamiltonian given by H0

in eq. (2.55) is instead supersymmetric invariant and it differs from L0 by the conserved

charge N̂ in (2.58), it is easy to obtain a manifestly supersymmetric kinetic term by simply

adding a mass shift of 1/2 in the differential operator −i(D0 +Dx).

It is instructive to decompose the action (5.29) in component fields. Since it turns out

that the gaugino λ(t, x) appears simply as a Lagrange multiplier, we immediately solve the

corresponding constraint to integrate it out. We find

S =

∫
dtdx tr

{
iΦ†(∂0 + ∂x)Φ− ∂xψ†(∂0 + ∂x)ψ + iA†∂xA

+ g̃Aj + g̃A†j† + g2
0[Φ, ψ†][ψ,Φ†]

}
, (5.31)

where the scalar field is defined in eq. (5.4), the fermionic field in (5.9), the gauge field

in (5.14) and the current is now given by

j(t, x) = i{∂xψ†, ψ}+ [Φ†,Φ] . (5.32)

When expanding it in momentum space, we obtain the charge density q̂n = qn+ q̃n defined

from eq. (2.42) and (2.69). Putting the decomposition of all the fields in momentum space
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inside the component field action (5.31), we get the Legendre transform of the Hamilto-

nian (2.75), with interactions (2.76).

Looking at the fermionic kinetic term in the action (5.31), we notice that the structure

of derivatives is peculiar, containing the product of one time and one spatial derivative in

addition to the standard contribution quadratic in spatial derivatives. Notice that had we

taken the fermionic field to be real, the kinetic term would have been a total derivative.

Note further that the structure of the fermionic kinetic term is in complete agreement with

that of a complex chiral boson (see e.g. [31]), only that the field is Grassmann valued.

Again, this unveils a curious correspondence with ghost fields with nonstandard statistics.

Despite these non-standard features, we stress that the structure of constraints, which only

keeps positive modes, ensures that the theory defined in eq. (5.31) is unitary.

It is also interesting to observe that we obtain a natural superfield description of

the model with action (5.29) by defining a gauge superfield, which requires the inclusion

of a fermionic partner for the gauge field. However λ(t, x) turns out to be completely

auxiliary, and in fact it is not necessary to introduce it when considering a component

field formulation. In this sense, it plays the same role of the auxiliary field F entering the

relativistic N = 1 bosonic chiral superfield in 3+1 dimensions.

5.4 Local formulation of PSU(1, 1|2) SMT

It is straightforward to extend the QFT description of section 5.3 in order to obtain the

full PSU(1, 1|2) sector. We work in component field formulation and require the following

decomposition of the fields:

Φa(t, x) =

∞∑
n=0

(Φa)n(t) ei(n+ 1
2)x , ψa(t, x) =

∞∑
n=0

1√
n+ 1

(ψa)n(t) ei(n+1)x , (5.33)

A(t, x) =

∞∑
n=0

An(t) einx , Bab(t, x) =

∞∑
n=0

(Bab)n(t) einx . (5.34)

In addition to the doublet structure of bosons and fermions under SU(2), we introduced

another bosonic field Bab(t, x) which will mediate the interactions; the difference with

A(t, x) is that it will give rise to single trace structures, while the latter will contribute to

double trace interactions.

We then consider the total action

S =

∫
dtdx tr

{
iΦ†a (∂0 + ∂x) Φa − ∂xψ†a (∂0 + ∂x)ψa − iA†∂xA

−iB†ab∂xBab − g̃A
†j − g̃Aj† − g̃Babj†ab − g̃jabB

†
ab − g̃

2|[Φa, ψ
†
a]|2
}
,

(5.35)

with currents

j(x) = i{∂xψ†a(x), ψa(x)}+ [Φ†a,Φa(x)] , jab(x) = −i{∂xψa(x), ψb(x)}+ [Φa(x),Φb(x)] .

(5.36)

The matching of the kinetic terms in (2.104) with the double trace interactions in (2.106)

is straightforward and works as in section 5.3. We briefly show how the matching of the
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single trace structure works: the current jab(t, x) in Fourier space reads

(jab)s=

∞∑
m,n=0

(√
m+ 1

n+ 1
{(ψa)m, (ψb)n}δ(m+ n+2−s) + [(Φa)m, (Φb)n]δ(m+ n+1−s)

)
.

(5.37)

This is exactly the expression (2.108). Notice that the mode expansion for the dynamical

bosonic and fermionic fields is shifted by R, which takes the values 1
2 , 0 respectively. This

behaviour is responsible for the different support of the delta functions and is a consequence

of the fields belonging to the representations j = 1
2 , 0 of the SU(1, 1) group. The equations

of motion for the non-dynamical field Bab in Fourier space are

s(Bab)s − g̃(jab)s = 0 , (5.38)

and integrating out this field we get the interaction

∞∑
s=1

1

s
tr
[
(j†ab)s(jab)s

]
, (5.39)

which is exactly eq. (2.106).

6 Conclusions and outlook

In this paper we have shown how to take the near-BPS limits (1.2) directly of the classical

formulation of N = 4 SYM on a three-sphere, following [4]. The BPS bounds we considered

were all of the form (1.1) giving a surviving SU(1, 1) global symmetry along with a U(1)-

symmetry corresponding to conservation of the number operator. In the SU(1, 1|1) and

PSU(1, 1|2) near-BPS theories the SU(1, 1) symmetry is a subgroup of a larger symmetry.

The techniques used for taking the limits include the spherical reduction of N = 4 SYM on

a three-sphere, following [4], as well as integrating out non-dynamical fields that in some

cases contribute to the interaction of the surviving modes.

We have shown explicitly how to quantize the near-BPS theories, and shown that the

result is equivalent to taking the near-BPS limit directly of the quantized N = 4 SYM.

This means the quantized near-BPS theories corresponds to the Spin Matrix theories [5].

Finally, we found a superfield formulation of SU(1, 1|1) in momentum space, and we

have explored a way to represent the near-BPS/Spin Matrix theories as local non-relativistic

quantum field theories. This has revealed interesting and surprisingly elegant structures

for the interactions, in particular in the SU(1, 1|1) case and its two SU(1, 1) subcases. The

quantum fields we found are not fully local and have ghost-like features in that the bosonic

fields have fermionic features, and the fermionic fields have bosonic features.

As explained in the introduction, near-BPS/Spin Matrix theories are interesting in

view of their possible realization of the holographic principle, and, related to this, also as

a possible way to access new regimes in the AdS/CFT correspondence that have yet to be

explored. For this reason, it is highly interesting to observe that the form of the interactions
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in the SU(1, 1|1) theory makes it possible to access the strong coupling. Indeed, we find a

classical Hamiltonian of the form (see section 2.3)

Hlimit = L0 +
g̃2

2N

( ∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
+
∞∑
l=0

tr (F †l Fl)

)
. (6.1)

We see that since the terms in the interaction are positive definite, we notice that in the

strong coupling limit g̃ → ∞ the leading contribution is given by q̂l+1 = Fl = 0 for l ≥ 0.

Thus, one can solve the strong coupling limit in this way, at least in the semi-classical limit.

Indeed, this was also noticed in [16] for the fermionic SU(1, 1) case.

A similar argument can be applied to the Hamiltonian of the PSU(1, 1|2) sector

Hlimit = L0 +
g̃2

2N

[ ∞∑
l=1

1

l
tr
(
q̂†l q̂l

)
+
∞∑
l=0

tr ((Fab)
†
l (Fab)l) +

∞∑
l=1

tr ((Gab)
†
l (Gab)l)

]
, (6.2)

suggesting that the strong coupling limit g̃ → ∞ corresponds to a leading contribution

where q̂l+1 = (Fab)l = (Gab)l+1 = 0 for l ≥ 0. It will be illuminating to understand better

the SU(1, 1|1)-algebraic structure of the interactions in (6.1), and the analog problem for

the maximal case in eq. (6.2).

Since we can access the strong coupling limit of these near-BPS theories it is interesting

to ask what holographic dual one should compare this to. In the planar limit, the answer is

presumably the string theory duals of [7–9]. For instance, in the bosonic SU(1, 1) case one

finds a dual U(1)-Galilean geometry which is basically R times a cigar-geometry, where R is

the time-direction. It will be vital to explore this further, also in view of the non-standard

features of the SU(1, 1) theory formulated as local quantum field theories. Moreover,

beyond the planar limit, the BPS bounds (1.1) examined in this paper are related to

limits of black holes in AdS5 × S5 with vanishing entropy. There is also the intriguing

possibility that one can observe the emergence of dual D-branes, in the form of Giant

Gravitons, similarly to what was found in [14].

We found an interesting connection to the β-γ ghost CFT for the kinetic term of the

scalar fields, see eq. (5.19). This would be interesting to explore further as it possibly could

provide another view point on the P > 0 constraint.

Other representations of SU(1, 1) may allow for a more natural field theoretic formu-

lation of our near-BPS theories. We note that SU(1, 1) representations are also realized on

AdS2 and on the hyperbolic plane.

Finally, we would like to advertise our companion paper [32] in which we explore a

class of near-BPS limits with a SU(1, 2) global symmetry present. Among these near-

BPS theories are the theory with PSU(1, 2|3) symmetry that captures the behavior of

N = 4 SYM near the BPS bound E ≥ S1 + S2 + J1 + J2 + J3, a bound saturated by the

supersymmetric black hole in AdS5 × S5 [33].
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A Spherical harmonics on S3

In this appendix we review the decomposition of fields on R× S3 into a basis of spherical

harmonics following [23].

Any field on this background can be factorized into a part depending only from the

time direction, and another term living on the three-sphere. We focus on the latter factor.

The three-sphere has isometry group G = SO(4) and local rotational invariance under

H = SO(3), hence it can be defined by the coset G/H = SO(4)/SO(3). For convenience, we

use the local isometry SO(4) ' SU(2)× SU(2) to split the irreducible representations of G

into products of the irreducible representations of SU(2), which are labelled by integer and

half-integer spins J, J̃ . A basis for such a representation will be denoted by |J,m〉|J̃ , m̃〉,
with |m| ≤ J and |m̃| ≤ J̃ . For the local invariance, we denote the spin of the irreducible

representation as L and the states as |Ln〉, with the constraint |n| ≤ L.
If we denote the generators of G with Ji, J̃i and the generators of H with Li (in both

cases i ∈ {1, 2, 3}), they are related by Li = Ji + J̃i. In this way, we can introduce SU(2)

Clebsch-Gordan coefficients to obtain the representations of H from the sum of the two

representations SU(2) composing G, yielding the expression

|Ln; JJ̃〉 =
∑
m,m̃

CLn
Jm;J̃m̃

|Jm〉|J̃m̃〉 , (A.1)

with the triangle inequalities

|J − J̃ | ≤ L ≤ J + J̃ . (A.2)

Spherical harmonics on S3 are defined starting from these basis and from the choice of a

representative element of G/H. While most of the results do not depend from the specific

choice of this representative, the rotation charges will. For this reason, we specify that we

parametrize the unit three-sphere with coordinates

dΩ2
3 = dψ2 + cos2 ψ dφ2

1 + sin2 ψ dφ2
2 . (A.3)

In this way we find the group element

Υ(Ω) = e−iφ1(J3−J̃3)eiφ2(J3+J̃3)e−iψ(J1−J̃1) , (A.4)

and the corresponding inverse

Υ−1(Ω) = eiψ(J1−J̃1)eiφ1(J3−J̃3)e−iφ2(J3+J̃3) . (A.5)

The spherical harmonics are defined as

YLn
Jm;J̃m̃

(Ω) =

√
(2J + 1)(2J̃ + 1)

2L+ 1
〈Ln; JJ̃ |Υ−1(Ω)|Jm; J̃m̃〉 , (A.6)

with m, m̃ being the eigenvalues of the generators J3, J̃3, respectively.
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At this point, we specify the previous decomposition for the fields of interest on the

three-sphere: scalars, fermions and gauge fields. Since a scalar field is a singlet under the

local rotations SO(3), its spin is L = 0 and this immediately implies that J = J̃ . The

decomposition is easily given by

Φa(t,Ω) =
∑
J,M

Φa
JM (t)YJM (Ω) , Φ†a(t,Ω) =

∑
JM

Φ†JM,a(t)Ȳ
JM (Ω) , (A.7)

where we denoted

YJM ≡ YL=0,n=0
J,m;J,m̃ . (A.8)

In the previous sums we collected the eigenvalues of the momenta as M = (m, m̃), both

running from −J to J, while J itself runs over positive integers and half-integers.

Spinor fields have L = 1
2 , which allows for the possibilities to take momenta (J + 1

2 , J)

or viceversa, i.e. (J, J + 1
2). In this case the mode expansion reads

ψAα (t,Ω) =
∑
κ=±1

∑
JM

ψAJM,κ(t)YκJM,α(Ω) , ψ†α̇,A(t,Ω) =
∑
κ=±1

∑
JM

ψ†JM,κ,A(t)ȲκJM,α̇(Ω) ,

(A.9)

where we defined

Yκ=1
JM,α ≡ Y

L= 1
2
,α

J+ 1
2
,m;J,m̃

, Yκ=−1
JM,α ≡ Y

L= 1
2
,α

J,m;J+ 1
2
,m̃
. (A.10)

While J runs again over positive integers and half-integers, now the momenta (m, m̃) are

summed from −U to U and −Ũ to Ũ , respectively, with U = J + 1+κ
4 and Ũ = J + 1−κ

4 .

The gauge fields are vectors, and then they have L = 1. This allows for even more

possibilities, i.e. we can take (J + 1, J), (J, J) or (J, J + 1). Then their decomposition is

Ai(t,Ω) =
∑

ρ=−1,0,1

∑
JM

AJM(ρ) (t)YρJM,i(Ω) , (A.11)

with

Yρ=1
JM,i ≡ iY

L=1,i
J+1,m;J,m̃ , Yρ=0

JM,i ≡ Y
L=1,i
J,m;J,m̃ , Yρ=−1

JM,i ≡ −iY
L=1,i
J,m;J+1,m̃ . (A.12)

In this case (m, m̃) run from −Q to Q and −Q̃ to Q̃, respectively, with Q = J + ρ(1+ρ)
2 and

Q̃ = J − ρ(1−ρ)
2 , and J is summed over positive integers and half-integers.

Notice that while the components along the three-sphere of the gauge field Ai are

vectors, instead the temporal component A0 behaves as a scalar. Consequently, its decom-

position only involves the harmonics with L = n = 0, and reads

A0(t,Ω) ≡ χ(t,Ω) =
∑
J,M

χJM (t)YJM (Ω) . (A.13)

In view of the manipulations with the Hamiltonian formalism, we also introduce the mode

expansion of the momenta, which we denote as Π(F ), being F ∈ {Φ, ψ,A} the field whose

the specific momentum is associated to. Since the orthonormality of the basis involves an

inner product between spherical harmonics and their complex conjugate, it is convenient to
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choose10 a decomposition of spherical harmonics for the corresponding canonical momenta

given by

Πa(Φ)(t,Ω) =
∑
J,M

Π
a(Φ)
JM (t)ȲJM (Ω) , Π†(Φ)

a (t,Ω) =
∑
JM

Π
†(Φ)
JM,a(t)Y

JM (Ω) , (A.14)

ΠA(ψ)
α (t,Ω) =

∑
κ=±1

∑
JM

Π
A(ψ)
JM,κ(t)ȲκJM,α(Ω) , Π

(A)
i (t,Ω) =

∑
ρ=−1,0,1

∑
JM

Π
JM(A)
(ρ) (t)ȲρJM,i(Ω) .

(A.15)

We also specify the mode expansion of the current and the Lagrange multiplier entering

eq. (2.8), where we apply the same convenient choice:

j0(t,Ω) =
∑
J,M

j†JM0 (t)ȲJM (Ω) , ji(t,Ω) =
∑
J,M,ρ

j†JM(ρ)) (t)ȲρJM,i(Ω) , (A.16)

η(t,Ω) =
∑
J,M

η†JM (t)ȲJM (Ω) . (A.17)

B Hamiltonian and conserved charges of N = 4 on S3

In view of the evaluation of BPS limits for the various sectors of N = 4 SYM, we collect

the conventions about the relevant rotational and internal charges on the three-sphere S3.

We mostly follow the same notation as [23].

The free part of the action on R× S3 is given by

S0 =

∫
R×S3

√
−det gµν tr

{
−(∇µΦa)

†∇µΦa − Φ†aΦ
a − iψ†Aσ̄

µ∇µψA −
1

2
FµνFµν

}
, (B.1)

where we remind that ∇ denotes the covariant derivative containing only the gravity con-

tributions, without the minimal coupling with the gauge fields. We stress that excluding

the gauge coupling from the free action is not restrictive to compute the conserved charges.

In fact the Noether currents are defined up to total derivatives and we can always consider

the canonical current associated to a particular symmetry, which is independent from the

gauge coupling.

The canonical momenta associated to scalars Φ, Weyl fermions ψ and gauge fields A

are respectively given by

Π(Φ)
a =

1√
−det gµν

δS

δΦ̇a
= Φ̇†a , Πa†

(Φ) =
1√

−det gµν

δS

δΦ̇†a
= Φ̇a ,

Π
(ψ)
A =

1√
−det gµν

δS

δψ̇A
= iψ†A ,

Π
(A)
0 =

1√
−det gµν

δS

δȦ0

= 0 , Π
(A)
i =

1√
−det gµν

δS

δȦi
= F0i .

(B.2)

10In principle we can expand the fields on the three-sphere in terms of the spherical harmonics Y or in

terms of their complex conjugate Ȳ. The difference between them amounts to a phase and some change of

the labels, as shown in (C.26). Therefore, the two choices correspond to a redefinition of the modes defining

the expansion of the field.
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From now on, we will avoid specifying the field F associated to the momentum Π(F ), since

this will be clear from the context. Notice that the first order nature of the fermionic action

is responsible for obtaining a proportionality between the Weyl fermion and the hermitian

conjugate of the corresponding momentum. This allows to choose if we want to express

the Hamiltonian and the charges of interest in terms of squares of the fields or of their

momenta, or if we want mixed products of them.

These momenta allow to compute the free Hamiltonian of the system by means of the

Legendre transform, giving

H0 =

∫
R×S3

√
−det gµν tr

{
|Πa|2 + |∇iΠa|2 − iψ†Aσ

i∇iψA + Π2
i +

1

2
F 2
ij

}
. (B.3)

The issues related to imposing the Coulomb gauge and the corresponding constraints,

which require to introduce the Dirac brackets, are discussed in section 2. Here we report

the result of such discussion: the ρ = 0 mode of the gauge field Ai is vanishing, and the

temporal component A0 can be integrated out.

In this way, after using the mode expansions (A.7), (A.9) and (A.12), we find the free

Hamiltonian

H0 =
∑
J,m,m̃

tr

{
|ΠJmm̃

a |2 + ω2
J |ΦJmm̃

a |2 −
∑
κ=±1

κωψJ ψ
†
JM,κ,Aψ

A
JM,κ

+
∑
ρ=±1

(
|ΠJmm̃

(ρ) |
2 + ω2

A,J |AJmm̃(ρ) |
2
)}

,

(B.4)

where

ωJ ≡ 2J + 1 , ωψJ ≡ 2J +
3

2
, ωA,J ≡ 2J + 2 . (B.5)

A peculiarity of this free Hamiltonian is that while the scalar and gauge terms are manifestly

positive-definite, instead the fermionic part is apparently negative-definite when κ = 1, i.e.

we have

H
(ψ)
0 =

∑
JM

tr
(
−ωψJψ

A†
JM,κ=1ψ

A
JM,κ=1 + ωψJψ

A†
JM,κ=−1ψ

A
JM,κ=−1

)
. (B.6)

The reason for this apparent negativity of the fermionic term arises from the conventions

in [23], because after quantization it is required that the two chiralities of the fermions are

decomposed as follows:

ψAJM,κ=1 = dA†J,−Me
iωψJ , ψAJM,κ=−1 = bAJMe

−iωψJ . (B.7)

Since one polarization acts as a creation operator and the other one as an annihilation

operator, in the end the Hamiltonian is positive definite.

We find a manifestly positive definite expression even at the level of the classical action

if we redefine

ψAJM,κ=1 → ψA†J,−M,κ=1 , ψA†JM,κ=1 → ψAJ,−M,κ=1 . (B.8)

It is important to notice that the redefinition also involves a change of sign for the orbital

momentum eigenvalue M = (m, m̃). This change can be easily understood if we think that
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the creation of a particle with momentum M is now interpreted as the annihilation of an

antiparticle of momentum −M, ad viceversa.

In this way, using the Grassmannian nature of the fermions, we find in terms of the

redefined quantities that

H
(ψ)
0 =

∑
JM

tr
(
−ωψJψ

A
J,−M,κ=1ψ

A†
J,−M,κ=1 + ωψJψ

A†
JM,κ=−1ψ

A
JM,κ=−1

)
=

=
∑
JM

tr
(
ωψJψ

A†
JM,κ=1ψ

A
JM,κ=1 + ωψJψ

A†
JM,κ=−1ψ

A
JM,κ=−1

)
=
∑
κ=±1

∑
JM

tr
(
ωψJψ

†
JM,κ,Aψ

A
JM,κ

)
.

(B.9)

In the first step we sent the index M → −M due to the symmetry of the range of summa-

tion. We observe that the sign given by the factor −κ in the free Hamiltonian disappears,

and the map from the previous notation to the new conventions implies

∑
JM

∑
κ=±1

ψ†JM,κ,Aψ
A
JM,κ →

∑
JM

∑
κ=±1

−κψ†JM,κ,Aψ
A
JM,κ . (B.10)

From now on, all the quantities involving fermionic fields will be computed after applying

the prescription (B.8). We will add some additional comments on these terms only when

computing the Cartan charges associated to rotation and R-symmetry.

Now we compute the relevant currents corresponding to the symmetries of the ac-

tion (B.1). We start with the canonical energy-momentum tensor

Tµν ≡ T (Φ)
µν + T (ψ)

µν + T (A)
µν +

gµν√
−g
L , (B.11)

where L is the Lagrangian density and

T (Φ)
µν = (∂µΦa)

†∂νΦa + (∂µΦa)
†∂νΦa , (B.12)

T (ψ)
µν = − i

2
ψ†Aσ̄µ(∇νψA) +

i

2
(∇νψA)†σ̄νψ

A , (B.13)

T (A)
µν = F σµFνσ . (B.14)

The conserved charges corresponding to the commuting rotation generators S1, S2 on the

three-sphere are defined as

Si =

∫
S3

dΩT 0
i , (B.15)

being dΩ the volume form on the three-sphere. Introducing the decomposition of the fields

into spherical harmonics from appendix A, we get

Si ≡ S(Φ)
i + S

(ψ)
i + S

(A)
i , (B.16)
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where

S
(Φ)
1 =

∑
J,M

i(m̃−m) tr
(

ΦJMΠJM − Φ† JMΠ† JMφ

)
, (B.17)

S
(ψ)
1 =

∑
JM

∑
κ=±1

(m̃−m) tr
(
ψ†JM,κ,Aψ

A
JM,κ

)
, (B.18)

S
(A)
1 =

∑
J,m,m̃

∑
ρ=−1,1

i

2
(m̃−m) tr

(
AJmm̃(ρ) ΠJmm̃

(ρ) −A† Jmm̃(ρ) Π† Jmm̃(ρ)

)
, (B.19)

and

S
(Φ)
2 =

∑
J,M

i(m+ m̃) tr
(

ΦJMΠJM − Φ† JMΠ† JMφ

)
, (B.20)

S
(ψ)
2 =

∑
JM

∑
κ=±1

(m+ m̃) tr
(
ψ†JM,κ,Aψ

A
JM,κ

)
, (B.21)

S
(A)
2 =

∑
J,m,m̃

∑
ρ=−1,1

i

2
(m+ m̃) tr

(
AJmm̃(ρ) ΠJmm̃

(ρ) −A† Jmm̃(ρ) Π† Jmm̃(ρ)

)
. (B.22)

In order to derive the previous action of the derivatives on the spherical harmonics, it

is crucial to use the specific group elemen on the three-sphere G/H = SO(4)/SO(3) in

eq. (A.4), since derivatives along the angular directions are required.

Notice that the expression for the fermionic charge is exactly the same before and after

the redefinition (B.8), as can be seen by direct evaluation. For this equivalence to hold it

is crucial to use the flipping of M.

The other relevant charges are associated to the Cartan subalgebra of the global R-

symmetry of the action. They can be written as

Qa = Q(Φ)
a +Q(ψ)

a , (B.23)

where

Q(Φ)
a = i

∑
J,M

tr (ΦJM
a ΠJM

a − Φ† JMa Π†,JMa ) , (B.24)

Q(ψ)
a =

∑
κ=±1

∑
JM

κ tr
(
ψ†JM,κ,A(Ta)

A
Bψ

B
JM,κ

)
. (B.25)

The matrices of the Cartan subalgebra in the fundamental representation of SU(4) are

T1 ≡
1

2
diag{1,−1,−1, 1} , T2 ≡

1

2
diag{1,−1, 1,−1} , T3 ≡

1

2
diag{1, 1,−1,−1} .

(B.26)

Notice that in the end all the explicit κ dependence in the Hamiltonian and the other

conserved quantities is only isolated to the R-charges.

Weights. In order to sistematically explore the near-BPS limits of N = 4 SYM on

R × S3, it is convenient to list the set of letters of the theory, which is composed by 6

complex scalars, 16 complex Grassmannian fields and 6 independent gauge field strength
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Z X W Z̄ X̄ W̄

(1, 0, 0) (0, 1, 0) (0, 0, 1) (−1, 0, 0) (0,−1, 0) (0, 0,−1)

Table 2. Scalar SU(4) weights in the notation of [24].

χ1, χ2 χ3, χ4 χ5, χ6 χ7, χ8(
1
2 ,

1
2 ,

1
2

) (
1
2 ,−

1
2 ,−

1
2

) (
−1

2 ,
1
2 ,−

1
2

) (
−1

2 ,−
1
2 ,

1
2

)
Table 3. Fermionic SU(4) weights for fermions χ in the notation of [24].

χ̄1, χ̄2 χ̄3, χ̄4 χ̄5, χ̄6 χ̄7, χ̄8(
−1

2 ,−
1
2 ,−

1
2

) (
−1

2 ,
1
2 ,

1
2

) (
1
2 ,−

1
2 ,

1
2

) (
1
2 ,

1
2 ,−

1
2

)
Table 4. Fermionic SU(4) weights for fermions χ̄ in the notation of [24].

components, plus the descendants obtained by acting with the 4 components of the co-

variant derivatives. We assign weights under the subgroups SO(4) (rotations) and SU(4)

(R-symmetry) of PSU(2, 2|4), following the conventions of reference [24]. We start with

the weights under SU(4), which are reported in table 2, 3 and 4. The field strength and

the covariant derivatives d1, d2, d̄1, d̄2 are uncharged under this symmetry.

In order to make contact with the notation used in this work, we read off the SU(4)

R-symmetry weights of all fields using (B.24), (B.25) and (B.26). We list them in tables 5

and 6, respectively. By looking at the dynamical modes that we describe in the sectors

of section 2, we verify that the results are consistent with the list of surviving field in the

limits given in reference [24], see subsection below.

It is also convenient to compare this notation with the conventions of the paper [23],

where the antisymmetric representation 4 is instead used for the scalar fields. In eq. (2.19)

of reference [23] the transformation properties of the antisymmetric tensor and of the

fermions under R-symmetry are reported:

δRX
AB = iTACX

CB + TBCX
AC , δRψ

A = iTABψ
B . (B.27)

The weights of scalars can be immediately deduced from this rule and from the basis for

the generators (B.26). The transformation of the fermionic fields is the same used here

to derive the expression (B.25), and then they agree. The comparison is consistent if

we choose

Φ1 = X14 , Φ2 = X†24 , Φ3 = X†34 . (B.28)

This is the dictionary that we will use throughout all the computations in the present work.

In addition, the fields also carry charge under SO(4) rotations, except for the scalars.

We list their quantum number in the subsection below, referring to the specific sectors

where we take the limits.
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Φ1 Φ2 Φ3

(1, 0, 0) (0, 1, 0) (0, 0, 1)

Table 5. Scalar SU(4) weights.

ψ1 ψ2 ψ3 ψ4

κ = 1
(

1
2 ,

1
2 ,

1
2

) (
−1

2 ,−
1
2 ,

1
2

) (
−1

2 ,
1
2 ,−

1
2

) (
1
2 ,−

1
2 ,−

1
2

)
κ = −1

(
−1

2 ,−
1
2 ,−

1
2

) (
1
2 ,

1
2 ,−

1
2

) (
1
2 ,−

1
2 ,

1
2

) (
−1

2 ,
1
2 ,

1
2

)
Table 6. Fermionic SU(4) weights.

Charges for the specific near-BPS limits. From eq. (B.16) applied to the specific

cases, we identify

S1 = −m+ m̃ , S2 = m+ m̃ (B.29)

Here we list the rotation and the R-symmetry charges for all the limits considered in this

work.

• In the bosonic SU(1, 1) sector we have a surviving dynamical scalar with derivatives

dn1Z. The associated momenta and charges are

−m = m̃ = J , S1 = 2J , S2 = 0 , (B.30)

(Q1, Q2, Q3) = (1, 0, 0) , (B.31)

with 2J ∈ N and n = 2J .

• In the fermionic SU(1, 1) limit we have the fermion with derivatives dn1χ1 with quan-

tum numbers

κ = 1 , m = −J − 1

2
, m̃ = −J , S1 = 2J +

1

2
, S2 = −1

2
, (B.32)

(Q1, Q2, Q3) =

(
1

2
,

1

2
,

1

2

)
, (B.33)

with 2J ∈ N and n = 2J .

• The SU(1, 1|1) sector simply contains the union of the degrees of freedom in the

SU(1, 1) bosonic and fermionic sectors. Then, the field content and the quantum

numbers are the same reported above.

• In the PSU(1, 1|2) sector, in addition to the abovementioned fields dn1Z, d
n
1χ1, there

are one more scalar field with derivatives dn1X and one more fermion with deriva-

tives dn1 χ̄7.

The additional scalar has the same quantum numbers as dn1Z, i.e.

−m = m̃ = J , S1 = 2J , S2 = 0 , (B.34)

(Q1, Q2, Q3) = (1, 0, 0) , (B.35)

with 2J ∈ N and n = 2J .
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The fermion dn1 χ̄7 has instead different momenta and charges, given by

κ = −1 , m = −J , m̃ = J +
1

2
, S1 = 2J +

1

2
, S2 = −1

2
, (B.36)

(Q1, Q2, Q3) =

(
1

2
,

1

2
,−1

2

)
, (B.37)

with 2J ∈ N and n = 2J .

Interacting Hamiltonian. Using the decomposition into spherical harmonics on the

three-sphere, we derive the interacting Hamiltonian of N = 4 SYM on R× S3. The entire

expression can be found in [23], but we report here the result using our notation. Due to

the redefinition of fermions (B.8) and the dictionary (B.28), it is convenient to introduce

the notations

(Za)JM ≡

 (Φ1)JM
(−1)m−m̃(Φ†2)J,−M
(−1)m−m̃(Φ†3)J,−M

 , (B.38)

(ΨA)J,M,κ=1 ≡ (ψ†A)J,−M,κ=1 , (ΨA)J,M,κ=−1 ≡ (ψA)J,M,κ=−1 . (B.39)

Notice that these definitions account precisely for the different interpretation of scalars

and fermions with respect to reference [23], see i.e. the action of complex conjugation on

spherical harmonics described in eq. (C.26).

The result is:

Hint =
∑

Ji,Mi,κi,ρi

tr
{
igCJ2M2

J1M1;JM χJM

(
[(Z†a)J2M2 , (Π

(Φ)†
a )J1M1 ] + [ZaJ1M1

,Π
a(Φ)
J2M2

]
)

−4g
√
J1(J1 + 1)DJ2M2

J1M10;JMρA
JM
(ρ) [ZaJ1M1

, (Z†a)J2M2 ]

+gFJ1M1κ1
J2M2κ2;JM χJM{(Ψ†A)J1M1κ1 ,Ψ

A
J2M2κ2}

+gGJ1M1κ1
J2M2κ2;JMρA

JM
(ρ) {(Ψ

†
A)J1M1κ1 ,Ψ

A
J2M2κ2}

+
g2

2
CJ2M2
J1M1;JMC

J3M3
J4M4;JM [ZaJ1M1

, (Z†a)J2M2 ][ZbJ3M3
, (Z†b )J4M4 ]

−
√

2ig(−1)−m1+m̃1+
κ1
2 FJ1,−M1,κ1

J2M2κ2;JMψ
4
J2M2κ2 [(Za)

JM ,Ψa
J1M1κ1 ]

+
√

2ig(−1)−m1+m̃1+
κ1
2 FJ1,−M1,κ1

J2M2κ2;JM εabcΨ
a
J1M1κ1 [(Z†b )

JM ,Ψc
J2M2κ2 ]

+
√

2ig(−1)m2−m̃2+
κ2
2 FJ1M1κ1

J2,−M2,κ2;JM (Ψ†4)J2M2κ2 [(Z†a)
JM , (Ψ†a)J1M1κ1 ]

−
√

2ig(−1)m2−m̃2+
κ2
2 FJ1M1κ1

J2,−M2,κ2;JM εabc(Ψ
†
a)J1M1κ1 [(Zb)

JM , (Ψ†c)J2M2κ2 ]

+igDJMJ1M1ρ1;J2M2ρ2 χJM [ΠJ1M1

(ρ1) , AJ2M2

(ρ2) ]

+g2CJMJ2M2;J4,−M4
DJM ;J1M1ρ1;J3M3ρ3 [AJ1M1

(ρ1) , ZaJ2M2
][AJ3M3

(ρ3) , (Z†a)J4M4 ]

+2igρ1(J1 + 1)EJ1M1ρ1;J2M2ρ2;J3M3ρ3A
J1M1

(ρ1) [AJ2M2

(ρ2) , AJ3M3

(ρ3) ]
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−g
2

2
DJMJ1M1ρ1;J3M3ρ3DJM ;J2M2ρ2;J4M4ρ4 [AJ1M1

(ρ1) , AJ2M2

(ρ2) ][AJ3M3

(ρ3) , AJ4M4

(ρ4) ]

−2g
√
J1(J1 + 1)DJ2M2;J1M10;JMρ χJ1M1 [χJ2M2 , A

JM
(ρ) ]

+
g2

2
CJMJ1M1;J3M3

DJM ;J2M2ρ2;J4M4ρ4 [χJ1M1 , A
J2M2

(ρ2) ][χJ3M3 , A
J4M4

(ρ4) ]

+g2CJMJ1M1;J2M2
CJM ;J3M3;J4M4 [χJ1M1 , Z

a
J2M2

][χJ3M3 , (Z
†
a)J4M4 ]

}
.

(B.40)

The notation used is the following. The initial sum represents a summation over all con-

tracted indices: momenta (J,M), labels for the spherical harmonics involving fermions κ

and gauge fields ρ, and indices of the fields under SU(4) R-symmetry. The Yukawa term

contains sums of the spinors over only the subset a ∈ {1, 2, 3} and the Levi-Civita symbol

εabc is defined in such a way that ε123 = 1. In order to avoid confusion, we specified that ΠΦ
a

are the canonical momenta associated to the scalar fields Φa, while Π(ρ) is the symplectic

partner of the gauge field A(ρ).

The terms involving the gauge fields, except for the terms contributing to the bosonic

and fermionic currents, are not needed for the near-BPS limits included in this work, but

are put for completeness. In order to derive from this expression the relevant contributions

to the interacting Hamiltonians in section 2, few simplifications still need to be performed,

in order to obtain the fields Φa, ψA from the variables (B.38) and (B.39). The simplified

expressions are written explicitly in section 2 for each case considered.

C Properties of spherical harmonics and Clebsch-Gordan coefficients

Definition of the Clebsch-Gordan coefficients. We give the explicit definitions of

the Clebsch-Gordan coefficients which are used to compute the interacting Hamiltonians

in section 2. They were previously given e.g. in [23].

CJ1M1
J2M2;JM =

√
(2J + 1)(2J2 + 1)

2J1 + 1
CJ1m1
J2m2;JmC

J1m̃1
J2m̃2;Jm̃ , (C.1)

DJ1M1
J2M2ρ2;JMρ = (−1)

ρ2+ρ
2

+1
√

3(2J2 + 1)(2J2 + 2ρ2
2 + 1)(2J + 1)(2J + 2ρ2 + 1)

× CJ1,m1

Q2,m2;Q,mC
J1,m̃1

Q̃2,m̃2;Q̃,m̃


Q2 Q̃2 1

Q Q̃ 1

J1 J1 0

 , (C.2)

EJ1M1ρ1;J2M2ρ2;JMρ=
√

6(2J1+1)(2J1+2ρ2
1+1)(2J2+1)(2J2+2ρ2

2+1)(2J+1)(2J+2ρ2+1)

× (−1)−
ρ1+ρ2+ρ+1

2


Q1 Q̃1 1

Q2 Q̃2 1

Q Q̃ 1


(
Q1 Q2 Q

m1 m2 m

)(
Q̃1 Q̃2 Q̃

m̃1 m̃2 m̃

)
, (C.3)

FJ1M1κ1
J2M2κ2;JM =(−1)Ũ1+U2+J+ 1

2

√
(2J + 1)(2J2 + 1)(2J2 + 2)

× CU1,m1

U2,m2;J,mC
Ũ1,m̃1

Ũ2,m̃2;J,m̃

{
U1 Ũ1

1
2

Ũ2 U2 J

}
, (C.4)
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GJ1M1κ1
J2M2κ2;JMρ =(−1)

ρ
2

√
6(2J2 + 1)(2J2 + 2)(2J + 1)(2J + 2ρ2 + 1)

× CU1,m1

U2,m2;Q,mC
Ũ1,m̃1

Ũ2,m̃2;Q̃,m̃


U1 Ũ1

1
2

U2 Ũ2
1
2

Q Q̃ 1

 ,
(C.5)

where we defined the quantities

U ≡ J +
κ+ 1

4
, Ũ ≡ J +

1− κ
4

, Q ≡ J +
ρ(ρ+ 1)

2
, Q̃ ≡ J +

ρ(ρ− 1)

2
. (C.6)

Properties of 9-j and 6-j Wigner symbols were used to write the coefficient F in this form,

but the expression is still completely general.

In view of the crossing relations that we will derive, it is also useful to record the

integral representation of the previous Clebsch-Gordan coefficients as products of spherical

harmonics on the three-sphere. Precisely, they are given by

CJ1M1
J2M2;JM =

∫
S3

dΩ ȲJ1M1YJ2M2YJM , (C.7)

DJ1M1
J2M2ρ2;JMρ =

∫
S3

dΩ ȲJ1M1Y
ρ2
J2M2i

YρJMi , (C.8)

EJ1M1ρ1;J2M2ρ2;JMρ =

∫
S3

dΩ εijkYρ1J1M1i
Yρ2J2M2j

YρJMk , (C.9)

FJ1M1κ1
J2M2κ2;JM =

∫
S3

dΩ Ȳκ1J1M1α
Yκ2J2M2α

YJM , (C.10)

GJ1M1κ1
J2M2κ2;JMρ =

∫
S3

dΩσiαβȲ
κ1
J1M1α

Yκ2J2M2β
YρJMi , (C.11)

where Ȳ denotes the complex conjugate of the harmonics Y.We reported here the coefficient

E for completeness, but it will never enter in any interacting Hamiltonian for the near-BPS

limits considered in this work because it only couple terms containing dynamical gauge

fields, while in the SU(1, 1) sector and its generalizations the gauge field always decouples.

At this point we start specializing these definitions to the cases of interest for the near-

BPS limits. The crossing relations between them will allow to analitically solve the sums

over intermediate momenta J appearing in the computation of the interacting Hamiltonian.

We start from C, which enters all the computations of the various sectors only via the

prescription of momenta (2.36). Using the definition (C.1) and specializing to this case,

we easily obtain by direct computation

CJ1J2;JM ≡ C
J1,−J1,J1
J2,−J2,J2;Jmm̃

= (−1)J−J1+J2

√
(2J + 1)(2J2 + 1)

2J1 + 1

(2J1 + 1)!(2J2)!

(J1 + J2 − J)!(J + J1 + J2 + 1)!
. (C.12)

Crossing relations at saturated angular momenta — C and D. We consider the

definition (C.2) and we specialize the momenta to the assignments in eq. (2.36) with ρ = ±1.

In fact, these are the only two cases of interest for the computation of the interacting part of
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the Hamiltonian mediated by the non-dynamical gauge field. The explicit expressions are

DJ1J2;Jmm̃,ρ=1 =− i(−1)J−J1+J2

√
(2J1 + 1)(J + ∆J + 1)(J −∆J + 1)

J2(J + 1)(J2 + 1)(2J2 + 1)

× (2J1)!(2J2 + 1)!

2(J + 1 + J1 + J2)!(J1 + J2 − J − 1)!
,

(C.13)

where ∆J = J1 − J2, and

DJ1J2;Jmm̃,ρ=−1 = −DJ1J2;Jmm̃,ρ=1 . (C.14)

It is convenient for the following manipulations to factorize from this formula appropriate

factors of the Clebsch-Gordan coefficient C computed above. We find

DJ1J2;Jmm̃,ρ=1 =
i

2
(J − J1 − J2)

√
(J + ∆J + 1)(J −∆J + 1)

J2(J + 1)(2J + 1)(J2 + 1)
CJ1J2;Jmm̃ =

=
i

2
(J + J1 + J2 + 2)

√
(J + ∆J + 1)(J −∆J + 1)

J2(J + 1)(2J + 3)(J2 + 1)
CJ1J2;J+1,mm̃ .

(C.15)

At this point, we consider appropriate quadratic combinations of the Clebsch-Gordan coef-

ficients C,D in view of finding simplifications which allow to solve the sum over intermediate

momenta J. We define the quantities

AJ2,J3J1,J4;Jmm̃ =

(
1 +

(ωJ1 + ωJ2)(ωJ3 + ωJ4)

4J(J + 1)

)
CJ2J1;Jmm̃C

J3
J4;Jmm̃ (C.16)

and

BJ2,J3J1,J4;Jmm̃ρ =
16

ω2
A,J − (m− m̃)2

√
J1(J1 + 1)J4(J4 + 1)DJ2J1;Jmm̃ρD̄

J3
J4;Jmm̃ρ , (C.17)

which for ρ = ±1 reads

BJ2,J3J1,J4;Jmm̃,ρ=1 =
(2 + J + J1 + J2)(2 + J + J3 + J4)

(J + 1)(2J + 3)
CJ2J1,J+1mm̃C

J3
J4,J+1mm̃ , (C.18)

BJ2,J3J1,J4;Jmm̃,ρ=−1 =
(J1 + J2 − J)(J3 + J4 − J)

(J + 1)(2J + 1)
CJ2J1,Jmm̃C

J3
J4,Jmm̃ . (C.19)

Simple algebraic manipulations now give rise to the relation

BJ2,J3J1,J4;Jmm̃,ρ=−1 + BJ2,J3J1,J4;J−1mm̃,ρ=1 = AJ2,J3J1,J4;Jmm̃ , (C.20)

valid for J ≥ 1.

As a particular application, we find∑
Jmm̃

((
1 +

(ωJ1 + ωJ2)(ωJ3 + ωJ4)

4J(J + 1)

)
CJ2J1,Jmm̃C

J3
J4,Jmm̃

−
∑
ρ=±1

16

ω2
A,J − (m− m̃)2

√
J1(J1 + 1)J4(J4 + 1)DJ2J1;Jmm̃ρD̄

J3
J4;Jmm̃ρ

)
=

∑
J≥Jmin(ρ)

(
AJ2,J3J1,J4;J,−∆J,∆J − B

J2,J3
J1,J4;J,−∆J,∆J,ρ=−1 − B

J2,J3
J1,J4;J,−∆J,∆J,ρ=1

)
, (C.21)
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where here ∆J = J2−J1 = J3−J4. In general, if we also define ∆m = m2−m1 = m3−m4

(and similarly for the m̃), we should be careful in distinguishing the cases |∆J | < |∆m|
and |∆J | ≥ |∆m|, because the triangle inequalities and the constraints on the eigenvalues

of momenta imply that the lower bound of summation for J changes.

In this case, however, all the momenta are fixed and we notice that ∆m = −∆m̃ =

−∆J, so there is only one case to consider. The eqs. (C.16)–(C.18) imply that Jmin = |∆J |
for all the terms in (C.21). Shifting J → J −1 thus only cancels the terms in the sum with

J > |∆J |, leaving the final expression∑
J≥|∆J |

(
AJ2,J3J1,J4;J,−∆J,∆J − B

J2,J3
J1,J4;J,−∆J,∆J,ρ=−1 − B

J2,J3
J1,J4;J,−∆J,∆J,ρ=1

)
= BJ2,J3J1,J4;|∆J |−1 ,−∆J,∆J,ρ=1 , (C.22)

where we have used eq. (C.20) to simplify the result.

Explicit evaluation yields

BJ2,J3J1,J4;|∆J |−1,−∆J,∆J,ρ=1

=
(1 + |∆J |+ J1 + J2)(1 + |∆J |+ J3 + J4)

|∆J |(2|∆J |+ 1)
CJ2J1,|∆J | ,−∆J,∆JC

J3
J4,|∆J | ,−∆J,∆J . (C.23)

Crossing relations at saturated angular momenta — C and F . We start by

deriving a couple of properties which relate Clebsch-Gordan coefficients F with different

assignments of momenta, useful to obtain the simplification in eq. (2.63):

FJ1,M1,κ1
J2,−M2,κ2;JM = (−1)m−m̃FJ2,−M2,κ2

J1,M1,κ1;J,−M , (C.24)

FJ1,M1,κ1
J2,M2,κ2;JM = (−1)m1−m̃1+m2−m̃2+

κ1+κ2
2 FJ2,−M2,κ2

J1,−M1,κ1;JM . (C.25)

These identities can be easily derived by using the integral representation (C.10) combined

with the properties of spherical harmonics under complex conjugation, i.e.

ȲJM = (−1)m−m̃YJ,−M , ȲκJMα = (−1)m−m̃+κα+1YκJ,−M,−α . (C.26)

Now we focalize instead to the specific cases of interest for the computation of the Hamil-

tonian in the near-BPS bounds of interest. Contrarily to the bosonic case, the Clebsch-

Gordan coefficients involving spherical harmonics of fermions appear in the sectors with

two different possibilities, see the analysis of the PSU(1, 1|2) sector: with chirality κ = 1

and momenta (m, m̃) = (−J − 1
2 , J) or with κ = −1 and momenta (−J, J + 1

2). Due to the

redefinition of the former in eq. (B.8), we get the two quantities

FJ1,J1+ 1
2
,−J1,κ1=1

J2,J2+ 1
2
,−J2,κ=1;Jmm̃

, FJ1,−J1,J1+ 1
2
,κ1=−1

J2,−J2,J2+ 1
2
,κ=−1;Jmm̃

. (C.27)

Looking at the definition (C.4), we notice that the two expressions are related. In fact,

the two factors of SU(2) Clebsch-Gordan coefficients C entering the definition of F are

simply exchanged in the two cases, while the Wigner 6-j symbols are the same due to the

symmetry under the interchange of two elements of a line with the other one{
J1 + 1

2 J1
1
2

J2 J2 + 1
2 J

}
=

{
J1 J1 + 1

2
1
2

J2 + 1
2 J2 J

}
. (C.28)
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Finally, the triangle inequalities and the conditions on integer sums of momenta coincide

in the two cases, thus we conclude that

FJ1,J1+ 1
2
,−J1,κ1=1

J2,J2+ 1
2
,−J2,κ=1;Jmm̃

= FJ1,−J1,J1+ 1
2
,κ1=−1

J2,−J2,J2+ 1
2
,κ=−1;Jmm̃

. (C.29)

More generally, the interactions of the PSU(1, 1|2) sector also involve terms where the

chiralities κ1, κ2 entering the definition of F assume both values ±1. In such case, it is

convenient to find additional crossing relations between the coefficients with various as-

signments of momenta and chiralities.

We follow the same steps depicted above, but now we notice that when κ1, κ2 are not

fixed the triangle conditions on momenta imply J + J1 + J2 ∈ Z, while when κ1 = −κ2 we

have J + J1 + J2 + 1
2 ∈ Z. This gives only two possibilities for the overall sign, which are

FJ1m1m̃1κ1
J2m2m̃2κ2;Jmm̃ =

{
FJ1,m̃1,m1,−κ1
J2,m̃2,m2,−κ2;Jm̃m if κ1 = κ2

−FJ1,m̃1,m1,−κ1
J2,m̃2,m2,−κ2;Jm̃m if κ1 = −κ2 .

(C.30)

In fact, the relation (C.29) corresponds to the first case with κ1 = κ2 = 1.

We observe that under the exchange m↔ m̃, κ→ −κ, the following identity holds:

κωψJ − (m− m̃)→ −
(
κωψJ − (m− m̃)

)
. (C.31)

This expression appears at the denominator of a relevant interaction in the PSU(1, 1|2)

sector. We thus study in details the following expression when κ1 = κ4

∑
κ=±1

FJ1,−m1,−m̃1,κ1
Jmm̃κ;J2m2m̃2

FJ4,−m4,−m̃4,κ4
Jmm̃κ;J3m3m̃3

κωψJ − (m− m̃)
= −

∑
κ=±1

FJ1,−m̃1,−m1,−κ1
Jm̃mκ;J2m̃2m2

FJ4,−m̃4,−m4,−κ4
Jm̃mκ;J3m̃3m3

κωψJ − (m− m̃)
, (C.32)

and when κ1 = −κ4∑
κ=±1

FJ1,−m1,−m̃1,κ1
Jmm̃κ;J2m2m̃2

FJ4,−m4,−m̃4,κ4
Jmm̃κ;J3m3m̃3

κωψJ − (m− m̃)
=
∑
κ=±1

FJ1,−m̃1,−m1,−κ1
Jm̃mκ;J2m̃2m2

FJ4,−m̃4,−m4,−κ4
Jm̃mκ;J3m̃3m3

κωψJ − (m− m̃)
. (C.33)

Summarizing, we found that there is only one independent assignment of momenta which

is relevant to derive the interacting Hamiltonians of section 2, identified by the short-hand

notation (2.61). We use the definition (C.4) to find

F J̄1J̄2;Jmm̃
= CJ1J2;Jmm̃ . (C.34)

Surprisingly, when momenta are saturated in this way, we find an equivalence between the

Clebsch-Gordan coefficients involving only scalar harmonics, and this one involving mixed

products between scalar and spinorial harmonics.

Crossing relations at saturated angular momenta — C and G. The Clebsch-

Gordan coefficient G only appears in the computation of terms involving the fermionic

current. This restricts the assignments on momenta of interest to the two cases

GJ1,J1+ 1
2
,−J1,κ1=1

J2,J2+ 1
2
,−J2,κ=1;Jmm̃ρ

, GJ1,−J1,J1+ 1
2
,κ1=−1

J2,−J2,J2+ 1
2
,κ=−1;Jmm̃ρ

. (C.35)
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The strategy is to consider the general definition (C.5) and apply the symmetry properties

of SU(2) Clebsch-Gordan and Wigner 9-j symbols to find a relation between the two pos-

sibilities. Then, putting the assignments of momenta, we will relate the specific cases with

ρ = ±1 to the scalar coefficient C.
For convenience, we write here the two explicit expressions:

GJ1,J1+ 1
2
,−J1,κ1=1

J2,J2+ 1
2
,−J2,κ2=1;JMρ

= (−1)
ρ
2

√
6(2J2 + 1)(2J2 + 2)(2J + 1)(2J + 3)

× CJ1+ 1
2
,J1+ 1

2

J2+ 1
2
,J1+ 1

2
;Q,J1−J2

CJ1,−J1
J2,−J2;Q̃,J2−J1


J1 + 1

2 J1
1
2

J2 + 1
2 J2

1
2

Q Q̃ 1

 ,
(C.36)

and the other one

GJ1,−J1,J1+ 1
2
,κ1=−1

J2,−J2,J2+ 1
2
,κ=−1;Jmm̃ρ

= (−1)
ρ
2

√
6(2J2 + 1)(2J2 + 2)(2J + 1)(2J + 3)

× CJ1,−J1J2,−J2;Q,J2−J1C
J1+ 1

2
,J1+ 1

2

J2+ 1
2
,J1+ 1

2
;Q̃,J1−J2


J1 J1 + 1

2
1
2

J2 J2 + 1
2

1
2

Q Q̃ 1

 ,
(C.37)

where in both cases we used the labels (C.6).

Interestingly, the two expressions are almost the same: the prefactors coincide and the

9-j symbol satisfies the property
J1 + 1

2 J1
1
2

J2 + 1
2 J2

1
2

Q Q̃ 1

 = (−1)2(J+J1+J2)


J1 J1 + 1

2
1
2

J2 J2 + 1
2

1
2

Q Q̃ 1

 . (C.38)

Since for all the admitted choices of ρ we have J + J1 + J2 ∈ Z, the prefactor is 1 and

the two expressions coincide. Thus the only difference between the two cases is due to the

SU(2) Clebsch-Gordan coefficients, which however are simply exchanged if we also send

Q↔ Q̃.

Since the interacting Hamiltonian contains only these quantities with ρ = ±1, we have

that Q, Q̃ assume in the two cases the values J + 1, J. This implies the simple relation

GJ1,J1+ 1
2
,−J1,κ1=1

J2,J2+ 1
2
,−J2,κ2=1;Jmm̃ρ

= −GJ1,−J1,J1+ 1
2
,κ1=−1

J2,−J2,J2+ 1
2
,κ2=−1;Jmm̃−ρ . (C.39)

The different sign arises due to the factor (−1)
ρ
2 , which gives an opposite sign to the

imaginary unit when considering ρ = ±1.

Then we can simply focus on one specific choice of the momenta and compute explicitly

the coefficient G, e.g. in the case in eq. (2.61). We find

GJ̄1J̄2;Jmm̃,ρ=1
= i

√
(J + ∆J + 1)(J −∆J + 1)

(J + 1)(2J + 1)
CJ1J2;Jm , (C.40)

GJ̄1J̄2;Jmm̃,ρ=−1
= −i

√
(J + ∆J + 1)(J −∆J + 1)

(J + 1)(2J + 3)
CJ1J2;J+1,m . (C.41)
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Crossing relations at saturated angular momenta — F and G. In this section we

put together the identities between F ,G with C in order to obtain a simplification for the

terms involving fermions mediated by the non-dynamical gauge fields. The interaction of

interest is∑
Ji,J,m,m̃

 1

8J(J + 1)
F J̄1J̄2,Jmm̃F

J̄4
J̄3,Jmm̃

−
∑
ρ=±1

1

2(ω2
A,J − (m− m̃)2)

GJ̄1J̄2;Jmm̃ρ
ḠJ̄4J̄3;Jmm̃ρ

 .

(C.42)

Using the relations (C.34), (C.40), (C.41) and splitting the sum over ρ = ±1 we obtain∑
J,m,m̃

(
1

8J(J + 1)
CJ1J2;Jmm̃C

J4
J3;Jmm̃ −

1

8(J + 1)(2J + 3)
CJ1J2;J+1,m,m̃C

J4
J3;J+1,m,m̃

− 1

8(J + 1)(2J + 1)
CJ1J2;Jmm̃C

J4
J3;Jmm̃

)
.

(C.43)

Now we define the convenient quantities

PJ1;J4
J2;J3;Jmm̃ =

1

8J(J + 1)
CJ1J2;Jmm̃C

J4
J3;Jmm̃ , (C.44)

QJ1;J4
J2;J3;Jmm̃,ρ=−1 = − 1

8(J + 1)(2J + 3)
CJ1J2;J+1,m,m̃C

J4
J3;J+1,m,m̃ , (C.45)

QJ1;J4
J2;J3;Jmm̃,ρ=1 = − 1

8(J + 1)(2J + 1)
CJ1J2;Jmm̃C

J4
J3;Jmm̃ . (C.46)

It can be shown that

PJ1;J4
J2;J3;Jmm̃ +QJ1;J4

J2;J3;J−1,m,m̃,ρ=−1 +QJ1;J4
J2;J3;Jmm̃,ρ=1 = 0 . (C.47)

The sum (over an appropriate interval) of the previous quantities exactly gives the term

mediated by the non-dynamical gauge field for the SU(1, 1) fermionic sector, see eq. (2.66):∑
J≥Jmin(ρ)

(
PJ1;J4
J2;J3;J,−∆J,∆J +QJ1;J4

J2;J3;J,−∆J,∆J,ρ=−1 +QJ1;J4
J2;J3;J,−∆J,∆J,ρ=1

)
, (C.48)

where we defined

∆J = J1 − J2 = J4 − J3 , ∆m = m1 −m2 = m4 −m3 . (C.49)

The lower extremum of summation plays a crucial role for the simplifications below. As in

the previous cases considered in this appendix, the assignments of momenta completely fix

∆m = −∆m̃ = −∆J, which implies that we need to consider only one possibility for the

endpoints of summation.

Indeed, all the sums start from the same value Jmin = |∆J |, and the shift J → J − 1

in the term Qρ=1 changes the lower endpoint of its summation to Jmin = |∆J | − 1. In this

way, using eq. (C.47), we get a remarkable simplification which only leaves a non-vanishing

term coming from the boundary of summation∑
J≥|∆J |

(
PJ1;J4
J2;J3;J,−∆J,∆J +QJ1;J4

J2;J3;J,−∆J,∆J,ρ=−1 +QJ1;J4
J2;J3;J,−∆J,∆J,ρ=1

)
=

= −QJ1;J4
J2;J3;∆J−1,−∆J,∆J,ρ=−1 .

(C.50)

– 59 –



J
H
E
P
0
2
(
2
0
2
1
)
1
8
8

In particular, we can explicitly evaluate this last term to obtain an expression in terms of

the coefficient C, i.e. we obtain

−QJ1;J4
J2;J3;∆J−1,−∆J,∆J,ρ=−1 =

1

8|∆J |(2|∆J |+ 1)
CJ1J2;|∆J |,−∆J,∆JC

J4
J3;|∆J |,−∆J,∆J . (C.51)

Due to eq. (C.39), it is clear that the same procedure can be applied to the case with a

dynamical fermion having κ = −1. The difference in such case is that the shift J → J−1 and

the surviving terms come from the Clebsch-Gordan coefficients with ρ = 1. The symmetry

of the problem guarantees that the final result is the same, as it is explained for the sphere

reduction in the PSU(1, 1|2) sector.

Crossing relations at saturated angular momenta — products of C,D,F and G.

In this subsection we show another remarkable simplification for the sum over J of the

mixed bosonic-fermionic term mediated by the non-dynamical gauge field.

We refer to eq. (2.70), where however due to symmetry reasons it is sufficient to

consider only half of the terms. We thus define

SJ1,J4J2,J3;JM ≡
J1 + J2 + 1

4J(J + 1)
CJ1J2;JMF

J̄3
J̄4;JM

(C.52)

T J1,J4J2,J3;JMρ ≡
√
J2(J2 + 1)

ω2
A,J − (m− m̃)2

(D̄J1J2;JMρG
J̄3
J̄4,JMρ

+DJ1J2,JMρḠ
J̄3
J̄4;JMρ

) . (C.53)

We can write these combinations only in terms of the Clebsch-Gordan coefficient C by

means of the crossing relations proved in this appendix. The result is

SJ1,J4J2,J3;JM =
J1 + J2 + 1

4J(J + 1)
CJ1J2;JMC

J3
J4;JM , (C.54)

T J1,J4J2,J3;JMρ=−1 = − J + J1 + J2 + 2

4(J + 1)(2J + 3)
CJ1J2;J+1,MC

J3
J4;J+1,M , (C.55)

T J1,J4J2,J3;JMρ=1 = − J1 + J2 − J
4(J + 1)(2J + 1)

CJ1J2;JMC
J3
J4;JM . (C.56)

As we learnt from previous example, the strategy is to send J → J − 1 in the term with

ρ = −1 and observe that the following relation holds:

SJ1,J4J2,J3;JM + T J1,J4J2,J3;J−1,Mρ=−1 + T J1,J4J2,J3;JMρ=−1 = 0 . (C.57)

In this way, we find that the sum over J required in eq. (2.70) reduces to a boundary term.

Indeed, we obtain∑
J≥|∆J |

(
SJ1;J4
J2;J3;J,−∆J,∆J + T J1;J4

J2;J3;J,−∆J,ρ=−1 + T J1;J4
J2;J3m3;J,−∆J,ρ=1

)
=

= −T J1;J4
J2;J3;∆J−1,−∆J,ρ=−1 =

J1 + J2 + ∆J

4|∆J |(2|∆J |+ 1)
CJ1J2;|∆J |C

J4
J3;|∆J | .

(C.58)

The same result also applies to the analog term involving fermions with κ = −1 relevant

for the PSU(1, 1|2) sector, as can be seen by applying (C.14), (C.29) and (C.39). The only

difference for the fermions with opposite chirality is that we need instead to shift the terms

with ρ = 1, but the procedre is formally the same, as well as the final result that we obtain.
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D Algebra and oscillator representation

The oscillator representation [12] is a convenient way to represent the set of letters of

N = 4 SYM and its superconformal algebra u(2, 2|4). In this appendix we review such a

representation, following the conventions of [24].

We consider two sets of bosonic oscillators aα,bα̇ with four dimensional spinorial in-

dices α, α̇ ∈ {1, 2} and one fermionic oscillator ca with a ∈ {1, 2, 3, 4} satisfying the canon-

ical commutation relations[
aα,a†β

]
= δαβ ,

[
bα̇,b†

β̇

]
= δα̇

β̇
, {ca, c†b} = δab . (D.1)

We conveniently introduce the following notation to denote the number operators:

aα ≡ a†αaα , bα̇ ≡ b†α̇bα̇ , ca ≡ c†ac
a , (D.2)

with no sum over the indices.

These oscillators can be combined in order to define the generators of the algebra and

the physical states. We have the 6 generators of the so(4) subalgebra

Lαβ = a†βa
α − a1 + a2

2
δαβ , L̇α̇

β̇
= b†

β̇
bα̇ − b1 + b2

2
δα̇
β̇
, (D.3)

and 15 generators for the su(4) subalgebra

Ra
b = c†bc

a − 1

4
δab

4∑
d=1

cd . (D.4)

For the purposes of this work, we need to take BPS bounds given by combinations of

charges in the Cartan subalgebra of u(2, 2|4). Among the previous set, they are given by

the rotation ones

S1 =
1

2

(
a1 − a2 + b1 − b2

)
, S2 =

1

2

(
−a1 + a2 + b1 − b2

)
, (D.5)

and of the su(4) Cartan charges11

J1 =
1

2

(
−c1 − c2 + c3 + c4

)
, J2 =

1

2

(
−c1 + c2 − c3 + c4

)
, J3 =

1

2

(
c1 − c2 − c3 + c4

)
.

(D.6)

In addition, the u(2, 2|4) algebra contains three u(1) charges: the bare dilatation operator

D0, the central charge C and the hypercharge B, given by

D0 = 1 +
1

2

(
a1 + a2 + b1 + b2

)
, (D.7)

C = 1− 1

2

(
−a1 − a2 + b1 + b2 − c1 − c2 − c3 − c4

)
, (D.8)

B =
1

2
(a1 + a2 − b1 − b2) . (D.9)

11In this appendix, we call Ji the su(4) Cartan generators instead of the notation Qi used in the main

text to avoid confusion with the supercharges.
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All the letters of N = 4 SYM satisfy C = 0, then they correspond to a representation of

psu(2, 2|4).

The complete algebra also contains the generators for translations and boosts

Pαβ̇ = a†αb†
β̇
, Kαβ̇ = aαbβ̇ , (D.10)

and the fermionic generators for supersymmetry plus the superconformal partners:

Qa
α = a†αca , Q̇α̇a = b†α̇c†a , (D.11)

Sαa = c†aa
α , Ṡα̇a = bα̇ca . (D.12)

Among the entire set of generators, an important role is played by the su(1, 1) subalgebra

spanned by

L0 =
1

2
(1 + a1 + b1) , L+ = a†1b

†
1 , L− = a1b1 , (D.13)

which is common to all the near-BPS limits considered in section 2. They satisfy the

commutation relations

[L0, L±] = ±L± , [L−, L+] = 2L0 (D.14)

The letters of N = 4 SYM are composed by the bosonic and fermionic fields listed in

table 2, 3 and 4, plus the gauge fields strengths and the covariant derivatives. Schematically,

they are given by

Φ : (c†)2|0〉 , χ : a†c†|0〉 , χ̄ : b†(c†)3|0〉 , (D.15)

F : (a†)2|0〉 , F̄ : (b†)2(c†)2|0〉 , d : a†b†|0〉 . (D.16)

Normalization factors are omitted, while the precise labelling of the indices depends from

the specific letter; this can be easily found by considering the Cartan generators and the

fields surviving the various near-BPS limits. In this appendix we focus on the main cases

considered in this paper: the su(1, 1|1) and psu(1, 1|2) algebras.

su(1, 1|1) algebra. The BPS limit in the SU(1, 1|1) sector reads

D0 −
(
S1 + J1 +

1

2
J2 +

1

2
J3

)
= 0 , (D.17)

which implies

a2 = b2 = 0 , c1 = c2 = 0 , c4 = 1 . (D.18)

Moreover, the vanishing of the central charge gives the additional condition

c3 = 1− a1 + b1 . (D.19)

The letters in this sector are

|dn1Z〉 =
1

n!
(a†1b

†
1)nc†3c

†
4|0〉 , |d

n
1χ1〉 =

1√
n!(n+ 1)!

(a†1b
†
1)na†1c

†
4|0〉 , (D.20)

where the factors are chosen to achieve unity normalization:

〈dm1 Z|dn1Z〉 = δmn , 〈dm1 χ1|dn1χ1〉 = δmn . (D.21)
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The generators of the algebra are the following: there are four bosonic generators, gener-

ating the algebra su(1, 1)×u(1), given by the set (D.13) plus the additional u(1) generator

R =
1

2
c3 . (D.22)

Then we have four fermionic generators, that we collect using the notation

Q = a1c
†
3 , Q† = a†1c3 , S = b1c3 , S† = b†1c

†
3 . (D.23)

The generators of this sector satisfy the following commutation relations:

{Q,Q†} = L0 +R , {S, S†} = L0 −R , {S†, Q†} = L+ , {S,Q} = L− , (D.24)

[L0, Q] = −1

2
Q , [L0, Q

†] =
1

2
Q† , [L0, S] = −1

2
S , [L0, S

†] =
1

2
S† , (D.25)

[Q,L+] = S† , [Q,L−] = 0 , [Q†, L+] = 0 , [Q†, L−] = −S , (D.26)

[S,L+] = Q† , [S,L−] = 0 , [S†, L+] = 0 , [S†, L−] = −Q . (D.27)

A typical feature of supersymmetric-invariant theories is that the anticommutator of the

supercharges closes on the free Hamiltonian. Looking at eq. (D.24), this points towards

the identification

H0 = L0 +R = S1 + J1 . (D.28)

On the other hand, we remark in section 2 that a more natural choice for all the near-BPS

limits is to take L0 to be the free part of the Hamiltonian, see e.g. eq. (2.75). Indeed,

following the near-BPS limit (2.46), the free Hamiltonian of the system would naturally be

S1 + J1 +
1

2
J2 +

1

2
J3 = L0 +

1

2
, (D.29)

and then the choice of take instead L0 to represent the free part simply corresponds to a

convenent mass shift.

In order to follow this interpretation, we introduce a linear combination of the original

supercharges which closes on L0 instead of the combination S1 + J1. We define

Q =
1√
2

(Q+ S) , Q† =
1√
2

(Q† + S†) . (D.30)

Since

{Q,S†} = 0 , {Q†, S} = 0 , (D.31)

we obtain

{Q,Q†} = L0 =

(
S1 + J1 +

1

2
J2 +

1

2
J3

)
− 1

2
. (D.32)

This representation of the supercharges is used in section 2 and to build the superfield

formulation in section 4.
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psu(1, 1|2) algebra. The BPS limit in this sector reads

D0 − (S1 + J1 + J2) = 0 , (D.33)

which implies

a2 = b2 = 0 , c1 = 0 , c4 = 1 . (D.34)

The vanishing of the central charge in the representation gives

c2 + c3 = 1− a1 + b1 . (D.35)

The set of letters of the sector is12

|dn1Z〉 =
1

n!
(a†1b

†
1)nc†3c

†
4|0〉 |dn1χ1〉 =

1√
n!(n+ 1)!

(a†1b
†
1)na†1c

†
4|0〉 (D.36)

|dn1X〉 =
1

n!
(a†1b

†
1)nc†2c

†
4|0〉 |dn1 χ̄7〉 =

1√
n!(n+ 1)!

(a†1b
†
1)nb†1c

†
2c
†
3c
†
4|0〉 (D.37)

where the prefactors ensure a unit normaliztion

〈dm1 Z|dn1Z〉 = δmn , 〈dm1 χ1|dn1χ1〉 = δmn , (D.38)

〈dm1 X|dn1X〉 = δmn , 〈dm1 χ̄7|dn1 χ̄7〉 = δmn . (D.39)

The bosonic generators of the su(1, 1) subalgebra are the same as in the su(1, 1|1) sector.

The R-symmetry generators form now a su(2) subalgebra, given by

R2
3 = c†3c

2 , R3
2 = c†2c

3 , R =
1

2
(c3 − c2) . (D.40)

The fermionic generators can be collected in the convenient basis

Q = a1c
†
3 Q† = a†1c3 S = b1c3 S† = b†1c

†
3 (D.41)

Q̃ = a1c
†
2 Q̃† = a†1c2 S̃ = b1c2 S̃† = b†1c

†
2 . (D.42)

They satisfy the following commutation relations:

{Q,Q†} = L0 +R {S, S†} = L0 −R (D.43)

{Q̃, Q̃†} = L0 −R {S̃, S̃†} = L0 +R (D.44)

{Q, Q̃†} = R2
3 {S, S̃†} = −R3

2 {Q̃,Q†} = R3
2 , {S̃, S†} = −R2

3 . (D.45)

Similarly to the su(1, 1|1) sector, we would like to identify the free part of the Hamiltonian

to be L0, and define a linear combination of the supercharges such that they close on this

generator. This is also motivated by the fact that L0 differs by the combinations of Cartan

charges defining the PSU(1, 1|2) by a constant:

S1 + J1 + J2 = L0 +
1

2
. (D.46)

12Notice that we are choosing conventions such that the fermion field ψ2
n creates the state −|χ̄7〉.
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We then define

Q1 =
1√
2

(Q+ S) , Q2 =
1√
2

(
Q̃+ S̃

)
, (D.47)

Q†1 =
1√
2

(
Q† + S†

)
, Q†2 =

1√
2

(
Q̃† + S̃†

)
, (D.48)

which satisfy

{Q1,Q†1} = {Q2,Q†2} = L0 (D.49)

{Q1,Q†2} =
1

2

(
R2

3 −R3
2

)
, (D.50)

{Q1,Q2} = {Q†1,Q
†
2} = 0 . (D.51)

They correspond to the supercharges defined in (2.109).
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