
Assessing AI-Based Code Assistants in Method Generation Tasks
Vincenzo Corso, Leonardo Mariani, Daniela Micucci and Oliviero Riganelli

University of Milano-Bicocca
Milan, Italy

ABSTRACT
AI-based code assistants are increasingly popular as a means to en-
hance productivity and improve code quality. This study compares
four AI-based code assistants, GitHub Copilot, Tabnine, ChatGPT,
and Google Bard, in method generation tasks, assessing their abil-
ity to produce accurate, correct, and efficient code. Results show
that code assistants are useful, with complementary capabilities,
although they rarely generate ready-to-use correct code.

CCS CONCEPTS
• Software and its engineering → Integrated and visual de-
velopment environments.

KEYWORDS
AI-based code assistants, code completion, empirical study.
ACM Reference Format:
Vincenzo Corso, Leonardo Mariani, Daniela Micucci and Oliviero Riganelli.
2024. Assessing AI-Based Code Assistants in Method Generation Tasks.
In 2024 IEEE/ACM 46th International Conference on Software Engineering:
Companion Proceedings (ICSE-Companion ’24), April 14–20, 2024, Lisbon,
Portugal.ACM, NewYork, NY, USA, 2 pages. https://doi.org/10.1145/3639478.
3643122

1 INTRODUCTION
Context: AI-based code assistants are becoming increasingly popu-
lar. For instance, recent studies demonstrated that they can provide
useful code snippets [2, 9, 10]. However, they are still limited in the
generation of code ready-to-be integrated into real-world programs.
Problem: To address these limitations, this study compares four
AI-based code assistants - Copilot [3], Tabnine [8], ChatGPT [6],
and Bard [4] - on their ability to generate code for 100 Java methods
extracted from real-world open source projects.
Methodology: The study executes the four assistants using the
comment and the signature associated with the selected methods as
prompts. The quality of the generated code is evaluated according
to five criteria: functional correctness, complexity, efficiency, size,
and similarity to the original code produced by developers.
Main results: Copilot emerged as the most effective assistant in
this task, although all assistants demonstrated their strengths. The
study revealed the need for improvement in handling inter-class
dependencies. Surprisingly, the generated code sometimes outper-
forms developer-written code.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0502-1/24/04.
https://doi.org/10.1145/3639478.3643122

Extended Abstract: This extended abstract summarizes results
extensively presented at the International Conference on Program
Comprehension [1]. The full paper describes the methodology, the
results, and the findings more in detail.

2 METHODOLOGY
In this study, we assess AI-base code assistants by investigating
five research questions:
RQ1 - Is the code generated by AI-based code assistants cor-
rect? This RQ investigates the syntactic and semantic correctness
of the generated code.
RQ2 - What is the McCabe complexity of the generated code?
This RQ investigates if AI-based code assistants cannot only gener-
ate correct code but also produce code with a level of complexity
similar to the code implemented by developers.
RQ3 - How efficient is the generated code? This RQ investigates
if the generated correct code is as efficient as the one implemented
by developers.
RQ4 - What is the size of the generated code? This RQ in-
vestigates if the size of the generated code is similar to the code
implemented by the developers.
RQ5 - How far is the generated code from the one imple-
mented by developers? This RQ studies the similarity of the
code implemented by the developers to the code generated by the
experimented tools, according to change-oriented static metrics.

The methodology for this study involves a multi-step process
designed to address each research question systematically:

(1) Dataset Construction: Selection of 100 Java methods from
well-ranked GitHub projects, ensuring diversity in complex-
ity and relevance.

(2) Code Generation: Employing four prominent AI-based
code assistants - Copilot, Tabnine, ChatGPT, and Bard -
to generate code for the selected methods, using both the
method-level comment and the signature as prompt.

(3) Code Evaluation: Assessing the generated code against
the developer-implemented code in terms of correctness,
complexity, efficiency, size, and similarity.

(4) Statistical Analysis: Using statistical methods to compare
the performance of AI-based code assistants and identify
significant differences.

To ensure a realistic and comprehensive evaluation of AI-based
code assistants, the study constructs a dataset of real-world Java
programming tasks. The dataset is designed to include methods
of different levels of complexity and with different types of depen-
dencies, including stand-alone methods, methods with intra-class
dependencies, and methods with inter-class dependencies. By re-
stricting the selection to methods that appeared in recent GitHub
commits, we mitigated the risk of using code that had been consid-
ered during the training of the assistants that we assessed.

377

2024 IEEE/ACM 46th International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)



ICSE-Companion ’24, April 14–20, 2024, Lisbon, Portugal Vincenzo Corso, Leonardo Mariani, Daniela Micucci and Oliviero Riganelli

3 RESULTS
RQ1 - Code Correctness. Copilot generated the highest percent-
age of correct methods, achieving a 32% success rate. ChatGPT
followed with 23% correct methods generated. Finally, Bard and
Tabnine achieved 15% and 13% success rates, respectively.

Even if each assistant demonstrated some unique capabilities,
all assistants can still be largely improved. In fact, a non-negligible
portion of the generated code was incorrect, especially when the
method requires dealing with inter-class dependencies, where the
best-performing assistant, Copilot, achieved only 15% correctness.

We also noticed a remarkable difference between correct code
(i.e., code equivalent to developers’ code based on human inspec-
tion) and plausible code (i.e., code that passes the available test
cases). In our experiment, assistants generated 31% plausible meth-
ods, but only 21% correct methods on average, confirming that tests
cannot accurately establish the correctness of the generated code.
RQ2 - Code Complexity. The four assistants generally generated
code with similar McCabe complexity to the code written by de-
velopers. In some cases, the generated code had slightly higher
complexity due to the use of explicit if conditions, or lower com-
plexity due to the use of lambda expressions and methods that
encapsulate checks. Overall, the generated code was of similar com-
plexity to the original. The four tools did not differ significantly in
terms of the complexity of the generated code.
RQ3 - Code Efficiency. The four assistants generated code that
is as efficient as, or more efficient than, the code written by de-
velopers. A significant portion of the generated methods, 87% for
ChatGTP and 100% for Tabnine, exhibited no significant difference
in execution time compared to the original methods. In some cases,
the generated code even outperformed the original code. The excep-
tions were Copilot and ChatGPT, which generated a small number
of methods that were slower than the original ones. These inefficien-
cies were attributed to suboptimal data type choices, unnecessary
operations, inefficient control flow, and redundant method calls.
RQ4 - Code Size.We compared the number of lines of code (LOCs)
in the generated code and the code written by the developers for
all the methods in our dataset. The results show that the size of
the generated and original code is similar and that the four code
generation tools tend to generate code of similar length. ChatGPT
and Bard produced code with the highest difference and variance
in length compared to the length of the code written by developers.
RQ5 - Code Similarity. The four assistants produced code that
is significantly different from the code written by the developers,
with similarity measured according to the normalized Levenshtein
similarity [7] and CodeBLEU scores [5]. For the incorrectly gener-
ated code, the distances from the developers’ code are larger than
the correct code. Tabnine generated the correct code that is most
similar to the developers’ code (median CodeBLEU of 0.528).

This result suggests that although the generated code could be
close to the intended code in complexity and size, it still has to be
significantly adjusted to fully match the expected implementation.

The results indicate that AI-based code assistants can be a valu-
able tool for developers, but they also need to be improved. While
the assistants can generate code that is generally correct and effi-
cient, they also produce a significant amount of invalid or incor-
rect code, particularly for methods with inter-class dependencies.

Furthermore, the generated code often differs significantly from
developer-written code, requiring substantial revisions. These find-
ings highlight the need for further development and refinement
of AI-based code assistants to enhance their accuracy, efficiency,
maintainability, and resemblance to developer-written code.

4 IMPLICATIONS AND CONCLUSIONS
The study’s findings have several implications for both research
and practice. First, the collaboration among multiple AI-based code
assistants is a promising research direction. Developers should
consider leveraging the strengths of different assistants to enhance
code generation and address the limitations of individual assistants.

Second, the study revealed that AI-based code assistants can
sometimes generate better code than the code implemented by
developers. This finding has implications for improving code quality
and efficiency in software development.

Third, the challenges with inter-class dependencies highlight
the need for further improvement in AI-based code assistants to
effectively handle dependencies that extend beyond the boundaries
of single classes. Future research and development efforts should
focus on enhancing the capabilities of AI-based tools to address
complex inter-class dependencies in code generation.

In conclusion, AI-based code assistants have the potential to
significantly improve code generation and quality, but further re-
search is needed to address existing challenges and limitations.
This study investigates the capabilities of four AI-based code assis-
tants: GitHub Copilot, Tabnine, ChatGPT, and Google Bard. Their
capabilities are compared according to the functional correctness,
complexity, efficiency, size, and similarity to the original code.

Assistants demonstrated to have complemental capabilities, with
Copilot generating the highest rate of correct methods. Results also
reveal that the generated code could be a good starting point to
derive the actual implementation, but it seldom consists of ready-
to-use code. The capability to deal with inter-class dependencies is
recognized as one of the main limitations.

ACKNOWLEDGMENTS
This work has been partially supported by the Engineered Ma-
chinE Learning-intensive IoT systems (EMELIOT) national research
project (PRIN 2020 program Contract 2020W3A5FY).

REFERENCES
[1] Vincenzo Corso, Leonardo Mariani, Daniela Micucci, and Oliviero Riganelli. 2024.

Generating Java Methods: An Empirical Assessment of Four AI-Based Code Assis-
tants. In Proceedings of the International Conference on Program Comprehension.

[2] Arghavan Moradi Dakhel, Vahid Majdinasab, Amin Nikanjam, Foutse Khomh,
Michel C Desmarais, and Zhen Ming Jack Jiang. 2023. GitHub Copilot AI pair
programmer: Asset or Liability? Journal of Systems and Software 203 (2023).

[3] GitHub. 2023. Copilot. https://github.com/features/copilot.
[4] Google. 2023. Bard. https://bard.google.com.
[5] Microsoft. 2020. CodeXGLUE. https://shorturl.at/gwxIL.
[6] OpenAI. 2023. ChatGPT. https://openai.com/chatgpt.
[7] PyPI. 2023. python-Levenshtein 0.21.1. https://shorturl.at/iKVW6.
[8] Tabnine. 2023. Tabnine. https://www.tabnine.com.
[9] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.

Experience: Evaluating the Usability of Code Generation Tools Powered by Large
Language Models. In Extended Abstracts of the Conference on Human Factors in
Computing Systems.

[10] Burak Yetistiren, Isik Ozsoy, and Eray Tuzun. 2022. Assessing the Quality of
GitHub Copilot’s Code Generation. In Proceedings of the International Conference
on Predictive Models and Data Analytics in Software Engineering.

378


