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Role of ryanodine receptor 2 and FK506-binding
protein 12.6 dissociation in pulmonary hypertension
Yong-Xiao Wang1, Jorge Reyes-Garćıa1,2, Annarita Di Mise1,3, and Yun-Min Zheng1

Pulmonary hypertension (PH) is a devastating disease characterized by a progressive increase in pulmonary arterial pressure
leading to right ventricular failure and death. A major cellular response in this disease is the contraction of smooth muscle cells
(SMCs) of the pulmonary vasculature. Cell contraction is determined by the increase in intracellular Ca2+ concentration
([Ca2+]i), which is generated and regulated by various ion channels. Several studies by us and others have shown that
ryanodine receptor 2 (RyR2), a Ca2+-releasing channel in the sarcoplasmic reticulum (SR), is an essential ion channel for the
control of [Ca2+]i in pulmonary artery SMCs (PASMCs), thereby mediating the sustained vasoconstriction seen in PH. FK506-
binding protein 12.6 (FKBP12.6) strongly associates with RyR2 to stabilize its functional activity. FKBP12.6 can be dissociated
from RyR2 by a hypoxic stimulus to increase channel function and Ca2+ release, leading to pulmonary vasoconstriction and PH.
More specifically, dissociation of the RyR2–FKBP12.6 complex is a consequence of increased mitochondrial ROS generation
mediated by the Rieske iron-sulfur protein (RISP) at the mitochondrial complex III after hypoxia. Overall, RyR2/FKBP12.6
dissociation and the corresponding signaling pathway may be an important factor in the development of PH. Novel drugs and
biologics targeting RyR2, FKBP12.6, and related molecules may become unique effective therapeutics for PH.

Introduction
Pulmonary hypertension (PH) is a group of life-threatening lung
diseases characterized by an increase in pulmonary arterial
pressure ≥25 mmHg at rest or ≥30 mmHg during or after ex-
ercise (Prasad, 2019). According to clinical presentation, path-
ological findings, hemodynamic features, and treatment
outcomes, the WHO divides PH into five groups: pulmonary
arterial hypertension (PAH, group 1); PH due to left heart dis-
ease (group 2); PH due to chronic lung disease and/or hypoxia
(group 3); PH due to pulmonary artery obstruction (group 4);
and PH due to unclear multifactorial mechanisms (group 5;
Mandras et al., 2020).

Regardless of differences in underlying pathogenic mech-
anisms, the pathophysiological features of the most common
forms of PH include damage, i.e., plexiform lesions and vessel
obliteration, and hyperproliferation of endothelial cells and
smooth muscle cells (SMCs), vascular remodeling, and in-
flammation (Maarman et al., 2013). Inflammation consists of
the deposition of macrophages, T cells, dendritic cells, mast
cells, and B cells around the remodeled vessels. These cells
contribute to the elevated serum levels of cytokines such as

IL-1β, IL-6, IL-8, and CCL2 in PH patients (Price et al., 2012).
Vascular remodeling promotes increased pulmonary vascular
resistance, which increases right ventricular afterload and
leads to hypertrophy and right ventricular failure (Singh
et al., 2019; Maietta et al., 2021). Pulmonary vascular remod-
eling is extensively studied using animal models; the most
commonly used models are hypoxia- and monocrotaline
(MCT)-induced PH. These models exhibit important patho-
physiological features of groups 1 and 3 of the WHO classifi-
cation of PH (Maarman et al., 2013). Vascular cells from animals
with chronic hypoxia-induced PH and from human patients
with PAH, retain their dysregulated cell phenotypes such as
pro-inflammation characterized by the synthesis and release of
IL-6, CCL2, and VCAM-1, among others, and resistance to ap-
optosis in vitro (Hu et al., 2019). MCT-induced PH animals
exhibit the same inflammatory markers, hemodynamics, and
changes in the right ventricule and pulmonary vascular his-
tology observed in patients with PAH (Maarman et al., 2013;
Novelli et al., 2019). Therefore, in this review, the term pul-
monary hypertension is used to refer to the subtypes PAH and
hypoxia-related PH.
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The increase in pulmonary arterial pressure is mediated by
sustained contraction of pulmonary artery SMCs (PASMCs).
This cellular response is triggered by an increase in intracellular
Ca2+ concentration ([Ca2+]i). In SMCs, [Ca2+]i is precisely regu-
lated by several ion channels in the cell membrane, including
voltage-dependent Ca2+ channels (VDCCs), transient receptor
potential canonical channels (TRPCs), and store-operated Ca2+

channels (SOCCs). In addition, Ca2+-permeable channels in the
sarcoplasmic reticulum (SR), including ryanodine receptors
(RyRs), and inositol triphosphate receptors (IP3Rs) contribute to
the regulation of [Ca2+]i (Li et al., 2009; Song et al., 2015, 2017;
Song et al., 2015; Song et al., 2017; Reyes-Garćıa et al., 2018; Li
et al., 2021; Maietta et al., 2021; Reyes-Garćıa et al., 2021a; Reyes-
Garćıa et al., 2021b). Furthermore, plasma membrane and sar-
coplasmic Ca2+-ATPases maintain [Ca2+]i at basal levels by
extruding Ca2+ into the extracellular space or depositing it in
the SR, thereby reducing free Ca2+ in the cytosol (Maŕın et al.,
1999). The increase in [Ca2+]i mediated by the channels described
above leads to the activation of calmodulin (CaM), which in turn
stimulates myosin light-chain kinase. This enzyme phosphor-
ylates the myosin light chain, favoring actin to move across my-
osin and triggering contraction of SMCs (Fig. 1). In addition, Ca2+

increases, mainly through TRPCs (Wang et al., 2016; Qin et al.,
2021), activate signal transduction pathways such as Ca2+-CAM,
calcineurin/NFAT and mitogen-activated protein kinase (MAPK)-
dependent pathways that lead to vascular smooth muscle (VSM)
proliferation and remodeling (Fernandez et al., 2012). Increased
synthesis of growth factors such as epidermal growth factor,
endothelin-1, and angiotensin II is related to vascular injury in
response to hypoxia and reactive oxygen species (ROS) production
(Liu et al., 1995; Jernigan et al., 2004; Kim et al., 2015). The sig-
naling pathway induced by these growth factors involves the in-
crease of [Ca2+]i and the activity of ERK1/2 and CAM. ERK1/2 may
induce cyclins D1 and E leading to GS phase and proliferation
(Zhang et al., 2003b; Karki et al., 2013). The Ca2+-CAM complex
binds to cyclin E to initiate the transition from G1 to GS in VSM
(Choi et al., 2006; Fig. 1).

The primary drug treatment for PH consists of the use of
various types of vasodilators, including endothelin receptor
antagonists, phosphodiesterase type 5 (PDE-5) inhibitors, in-
haled nitric oxide, guanylate cyclase stimulators, prostacyclin
(prostaglandin I2, PGI2) PGI2 analogs, non-prostanoid agonists of
the PGI2 receptor, and Ca2+ channel blockers. These drugs target
three major signaling pathways involved in abnormal pulmo-
nary artery proliferation and contraction (Fig. 1). However,
patients do not always respond well to these drugs (Yaghi et al.,
2020; Tettey et al., 2021), opening the search for new thera-
peutic targets.

Hypoxia is an important factor in the development of PH.
Chronic hypoxia promotes the remodeling of the pulmonary
artery (PA) through the proliferation of SMCs and endothelial
cells (Cahill et al., 2012). Moreover, hypoxia can increase the
activity of RyR2 and induce the release of Ca2+ in PASMCs,
leading to PA vasoconstriction, remodeling, and PH (Liao et al.,
2011; Mei et al., 2020). Hypoxia-induced activation of RyR2 is
attributable to the dissociation of FK506-binding protein 12.6
(FKBP12.6) from RyR2. In this context, hypoxia causes the

production of ROS, primarily generated in the mitochondrial
complex III and mediated by the Rieske iron-sulfur protein
(RISP) in PASMCs (Rathore et al., 2008; Korde et al., 2011). RISP-
mediated mitochondrial ROS may be responsible for hypoxia-
triggered RyR2/FKBP12.6 dissociation and contribute to the
development of PH (Liao et al., 2011). In this review article,
we discuss the current information on the role of RyR2/
FKBP12.6 dissociation and its regulation by hypoxia-induced
ROS generation in the pathogenesis of PH.

Physiology of RyRs in vascular smooth muscle
RyRs are tetrameric proteins found in the peripheral membrane
of the sarcolemmal SR junction of numerous cell types. In ver-
tebrates, three RyR isoforms are molecularly characterized
(RyR1, RyR2, and RyR3), all of which are found in VSM. These
channels are responsible for the release of Ca2+ into the cytosol
and trigger cellular functions such as contraction and prolifer-
ation (Kim et al., 2011; Pritchard et al., 2019). RyRs are mainly
regulated by the binding of Ca2+ to the cytosolic side of the
channel. The opening of RyRs is sensitive to [Ca2+]i from 1 to
10 μM while millimolar [Ca2+]i promotes their closed state
(Dabertrand et al., 2013). RyRs are also endogenously regulated
by cyclic ADP-ribose (cADPR), a derivative of nicotinamide ad-
enine dinucleotide (NAD; Fig. 2). cADPR, as well as IP3 and
nicotinic acid adenine dinucleotide phosphate (NAADP), are
important messengers involved in intracellular Ca2+ release in
VSMCs (Li et al., 2013; Wei et al., 2014). Synthesis of cADPR from
NAD+ occurs by ADP-ribosyl cyclase activity and the major ADP-
ribosyl cyclase in mammals is CD38, a transmembrane glyco-
protein found in several tissues, including VSM (Evans and
Dipp, 2002; Wei et al., 2014). CD38 can be activated by endog-
enous vasoconstrictors such as angiotensin II (Gul et al., 2008;
Lee et al., 2015) and endothelin-1 (Giulumian et al., 2000; Thai
and Arendshorst, 2008). The mechanism by which cADPR reg-
ulates the opening of RyRs is by the binding to FKBP12.6, leading
to its dissociation from RyRs and the release of Ca2+ from the SR.
In this context, Tang and colleagues demonstrated that the use of
the anti-FKBP12 antibody blocks cADPR-induced activation of
these channels (Tang et al., 2002). In addition, phosphorylation
of RyRs by PKC modulates the release of Ca2+ through these
channels (Peng et al., 2010). Several drugs modulate the Ca2+

sensitivity of RyRs or directly regulate the open/closed state of
these channels (Zheng et al., 2005; Zheng et al., 2008). For in-
stance, low concentrations (i.e., 0.1 μM) of the alkaloid ryano-
dine exert agonistic effects and promote local/spontaneous
events of Ca2+ release named Ca2+ sparks, whereas higher con-
centrations have antagonistic effects on RyRs. Furthermore, the
methylxanthine caffeine activates all RyR isoforms at concen-
trations >5 mM (Essin and Gollasch, 2009).

RyRs are involved in global and localized Ca2+ increases (Li
et al., 2009; Li et al., 2021). In VSM cells (VSMCs) and other
SMCs, these receptors can be activated by Ca2+ influx through
plasma membrane Ca2+ channels or by Ca2+ release from
neighboring IP3Rs or other RyRs. This mechanism is known as
Ca2+-induced Ca2+ release (CICR), which plays an essential role
controlling vascular tone and excitation–contraction coupling
(Kotlikoff, 2003; Ureña et al., 2007; Liu et al., 2009; Kaßmann
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et al., 2019). Ca2+ sparks are associated with vasodilation. Ca2+

sparks trigger K+ efflux through Ca2+-activated K+ channels
with high conductance (BK). K+ efflux leads to spontaneous
transient outward currents (STOCs) that result in cell mem-
brane hyperpolarization and disrupt Ca2+ entry through L-type
VDCC (L-VDCC; Zhao et al., 2017; Kaßmann et al., 2019). The
importance and involvement of RyRs in global and localized
Ca2+ increments depend on the RyR isoform. We have shown in
PASMCs that RyR1 plays a critical role in the CIRC process
following high K+-triggered membrane depolarization (which
induces the opening of VDCCs; Li et al., 2009; Li et al., 2021).
RyR2 appears to be the major contributor to global and spon-
taneous Ca2+ release in systemic and pulmonary arteries. In this
context, Kaßmann and colleagues showed that caffeine-induced
contraction of the aorta, cerebral, and mesenteric arteries was
abolished when smooth muscle RyR2 conditional knockout
(KO) were used (Kaßmann et al., 2019). The same authors also
demonstrated that caffeine was unable to trigger contraction of

the SM-RyR2 KO lung. Furthermore, RyR2 seems the major SR
Ca2+ release channel involved in the generation of Ca2+ sparks
in VSMCs. Genetic deletion of RyR2 abrogates Ca2+ sparks and
STOCS in freshly isolated tibial and mesenteric artery VSMCs
(Kaßmann et al., 2019). These results contrast with the findings
of Coussin and colleagues that both RyR1 and RyR2 contribute
to the generation of Ca2+ sparks in cultured VSMCs from the
portal vein (Coussin et al., 2000). These results could be due to
specific tissue differences or to the fact that cultured VSMCs
may not represent the physiology of native VSMCs because
protein expression changes during cell dedifferentiation. With
respect to RyR3, Löhn and colleagues found that Ca2+ sparks
and STOCs are enhanced in cerebral VSMCs from RyR3−/− mice
compared with those from wild-type mice and suggested that
this isoform is responsible for regulating Ca2+ sparks generated
by RyR1 and RyR2. Moreover, they showed that RyR3 did not
appear to be involved in global Ca2+ responses as caffeine in
RyR3 KO VSMCs elicited normal global Ca2+ increases, while

Figure 1. Molecular mechanisms and drug targets for pulmonary hypertension. The signaling pathways of endothelin-1 (ET-1), prostacyclin (PGI2), and
nitric oxide (NO) are the three major targets for the treatment of PH. In PH, ET-1-mediated vasoconstriction occurs. ET-1 stimulates ETA or ETB receptors in the
plasma membranes of PASMCs. These receptors are coupled to the phospholipase C (PLC) signaling cascade, which produces IP3 and triggers Ca2+ release from
SR and voltage-dependent Ca2+ entry. The increase mediated by the mechanisms described above leads to activation of calmodulin (CaM), which in turn
stimulates myosin light chain kinase (MLCK). This enzyme phosphorylates MLC, allowing actinomyosin movement and triggering contraction. There is also
decreased production of PGI2 and NO. ET-1 signaling can be blocked with nonselective ET-1 receptor (ETA or ETB) antagonists, including bosentan and ma-
citentan. The PGI2 cascade can be activated by administration of PGI2 analogs or nonprostanoid PGI2 receptor (IP) agonists. This pathway stimulates the activity
of adenylyl cyclase (AC), which triggers the formation of cyclic adenosine monophosphate (cAMP). The NO pathway can be enhanced by the use of PDE-5
inhibitors or by stimulation of soluble guanylate cyclase (sGC). In addition, endothelin-1 signaling may lead to activation of ERK1/2. This enzyme induces G1-GS
transition and causes vascular smooth muscle proliferation Moreover, the Ca2+-CAM complex increases cyclin E activity and stimulates the G1-S transition,
promoting vascular smooth muscle proliferation. Figure created with BioRender.com.
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the Ca2+ spark cycle can be determined only by the other two
isoforms, RyR1 and/or RyR2 (Löhn et al., 2001). The different
Ca2+ functions of RyRs may be due to their localization. For
example, in PASMCs, RyR1 is localized in the periphery and
perinuclear SR regions, whereas RyR2 is localized in the SR
periphery near the sarcolemmal membrane and RyR3 is ex-
pressed in perinuclear regions (Yang et al., 2020).

Hypoxia and pulmonary vasoconstriction
Hypoxia-induced pulmonary vasoconstriction (HPV) has been
known for years (Voelkel, 1986). HPV aids to redirect blood flow
from hypoxic to better ventilated regions of the lung as a pro-
tective response. Nevertheless, a serious decrease in alveolar
oxygen can lead to vascular damage and remodeling, persistent
vasoconstriction, and PH (Post et al., 1995). The hypoxic re-
sponse of isolated pulmonary vessels is biphasic (Evans and
Dipp, 2002). Phase I represents the early transient vasocon-
striction that peaks at 5 min, whereas phase II involves the
slowly progressive and tonic vasoconstriction that reaches

plateau at 30–60 min (Bennie et al., 1991; Aaronson et al., 2002;
Weissmann et al., 2004; Weissmann et al., 2006b). The sus-
tained vasoconstriction can last over a period of 2–8 h (Balanos
et al., 2003; Cheng et al., 2017). Multiple membranal ion chan-
nels leading to increased [Ca2+]i, and phosphorylation processes
are involved in both phases of HPV (Waypa and Schumacker,
2006; Weir and Olschewski, 2006; Wang et al., 2007; Waypa
et al., 2013). Phase I is triggered by the closure of voltage-
gated K+ channels in the plasma membrane of hypoxia-
sensitive PASMCs, leading to depolarization and opening of
VDCCs, and contraction of VSM (Post et al., 1992; Archer et al.,
1993; Post et al., 1995; Evans et al., 1998; Osipenko et al., 1998).
Acute hypoxia and subsequent HPV increase mean pulmonary
artery pressure, leading to overperfused areas of the lung, stress
failure of pulmonary capillaries, and edema formation (Young
et al., 2019). It is also proposed that vasoconstriction favors shear
stress that in turn triggers the proliferation of VSMCs (Voelkel
and Tuder, 2000). All of these factors contribute to the devel-
opment of PH.

Figure 2. Pharmacological and endogenous modulators of ryanodine receptor physiology. The ryanodine receptor (RyR) is endogenously regulated by
cADPR. cADPR is synthesized by CD38 from NAD+ and acts as a second messenger. CD38 is a key protein with ADP-ribosyl cyclase and cADPR hydrolase
activity. Once cADPR is formed, it is rapidly hydrolyzed to inactive ADP-ribose under physiological conditions. FK506-binding protein 12.6 (FKBP 12.6) stabilizes
RyR in its closed state. cADPR binds to FKBP12.6 and causes its dissociation from RyR, leading to channel activation. In cardiomyocytes, phosphorylation of RyR
by protein kinase A (PKA) dissociates FKBP12.6 as well (dashed line). Phosphorylation by PKC can also modulate (promote or inhibit) the release of Ca2+

through the RyRs. ROS can oxidize (S-S) thiol groups present in RyR allowing its gating. Thiol groups can also be reduced (SH) by oxidative reactions. Ryanodine
is a plant alkaloid used as an important pharmacological tool for characterizing the RyRs. Low concentrations of ryanodine cause long-lasting channel opening
in the subconductance state, whereas high concentrations block the channel. Caffeine is a widely used pharmacological agonist of RyR. This methylxanthine
increases the sensitivity of the RyR to cytosolic Ca2+ concentration and luminal Ca2+, allowing gating of the channel. Dantrolene is one of the best known RyR
antagonists that keeps the channel in a closed state. JTV519 and S017 are benzothiazepine derivatives that stabilize RyR2 in its closed state by increasing the
affinity of FKBP12.6 for this channel. The up and down arrows indicate whether the endogenous and pharmacological agents cause activation or inhibition of
RyR. Figure created with BioRender.com.
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Several ROS and redox balance-related mechanisms are
proposed to explain O2 sensing and contraction in PASMCs.
Nonetheless, controversy exists about the source of ROS, their
target mechanisms, and whether they increase or decrease in
response to hypoxia (Michelakis et al., 1995; Waypa and
Schumacker, 2006). One of the first hypotheses (the Redox
hypothesis) states that oxidative phosphorylation in mitochon-
dria and ROS production decrease after hypoxia, promoting the
cytosol of PASMCs enter to a more reduced state and triggering
the inhibition of redox-sensitive K+ channels, including KV1.5
and KV2.1 (Michelakis et al., 1995; Archer et al., 1998;Mehta et al.,
2008). This theory is supported by the fact that the reducing
agent DTT decreases K+ currents and causes membrane depo-
larization, while the oxidizing agent DTNB increases K+ currents
and promotes hyperpolarization in PASMCs (Fig. 3; Olschewski
et al., 2004). Moreover, O2 is the main substrate for the gener-
ation of ROS, so it is conceivable that the production of ROS de-
creases under hypoxic conditions. However, an increase in
mitochondrial ROS formation is also reported in hypoxic envi-
ronment in PASMCs, as postulated by the ROS hypothesis (Leach
et al., 2001; Liu et al., 2003; Waypa et al., 2013). This hypothesis
states that even in the presence of O2 depletion, mitochondrial ROS
production (mainly H2O2) is increased, triggering RyRs-mediated
Ca2+ release and the inhibition of KV channels (Post et al., 1995;
Cogolludo et al., 2006; Mei et al., 2020). A third hypothesis, the
Energy hypothesis, describes the shift in energy production from
oxidative phosphorylation to glycolysis caused by hypoxia-induced
mitochondrial dysfunction and reduced production of ROS. This
alteration leads to improved production of AMP, which activates
AMPK and increases [Ca2+]i through the Ca2+ release from SR
(Freund-Michel et al., 2014; Evans et al., 2015).

Phase II of HPV depends on Ca2+ sensitization of smooth
muscle myofilaments mediated by PKC and RhoA/Rho kinase
(ROCK). ROCK phosphorylates the myosin-binding subunit of
MLC phosphatase (MLCP), MYPT-1, and the MLCP inhibitor
protein CP-17. Both phosphorylations inhibit the activity of
MLCP and enhance contraction of SMCs (Robertson et al., 1995;
Jernigan et al., 2008). Chronic hypoxia improves the activity and
expression of Rho and ROCK (Broughton et al., 2008; Wang
et al., 2019). This signaling pathway stimulates the expression
of hypoxia-inducible factor (HIF)-1α, which in turn upregulates
the expression and function of TRPC1 and TRPC6 channels in
PASMCs. Thus, increased [Ca2+]i and pulmonary artery con-
traction via these channels are improved after hypoxia (Wang
et al., 2019). TRPC6 is also involved in acute hypoxic pulmonary
vasoconstriction through hypoxia-induced accumulation of di-
acylglycerol (DAG) and consequent activation of this TRPC iso-
form (Weissmann et al., 2006a). Membrane-localized Ca2+

increases can lead to the opening of BK channels; however, these
K+ channels do not appear to be involved in HPV because their
blockade does not cause depolarization of PASMCs or increase
normoxic pulmonary vascular resistance (Archer and
Michelakis, 2002). Chronic hypoxia and the attendant
phase II of the HPV, and the activity of HIF-1α promote the
switch of PASMCs from the contractile to the synthetic phe-
notype that underlies the proliferation and remodeling of the
pulmonary vasculature (Michelakis et al., 2002; Mam

et al., 2010; Fernandez et al., 2012; Dunham-Snary et al.,
2017). For example, persistent vasoconstriction elicits the
expression of TGF-β, PDGF, and ICAM-1 molecules that con-
tain shear stress response elements, thus mediating vascular
proliferation and remodeling during chronic hypoxia, and
HIF-1α induces the transcription of VEGF (Voelkel and Tuder,
2000; Deudero et al., 2008).

Moreover, other membrane channels are linked to HPV and
PH. For example, KV3.1b possesses oxygen-sensing properties
and is blocked by hypoxia (Osipenko et al., 2000). In addition,
the expression of the α-subunit of the KV7.4 channel is down-
regulated in hypoxic pulmonary vasculature. Additionally, oral
administration of the nonspecific KV7 channels activator (flu-
pirtine, 30 mg/kg/d) for 5 d prevented hypoxia-evoked in-
creased vascular resistance (Sedivy et al., 2015). Another type of
K+ channel recently described in PASMCs, TWIK-related acid-
sensitive K+ channel 1 (TASK-1), is associated with regulation of
resting membrane potential and vascular tone because of its
voltage independence (Gurney et al., 2003). TASK-1 is sensitive
to hypoxia (Olschewski et al., 2006), and the expression of this
channel is reduced in PH patients (Antigny et al., 2016). Cl−

channels activity is also associated with HPV and PH. The ac-
tivity and the expression of the Ca2+-activated Cl− channel,
ANO1/TMEM16A, are augmented by chronic hypoxia in
PASMCs from rats and PH patients (Sun et al., 2012; Papp et al.,
2019). Increased activity of these channels may enhance vaso-
constrictor agonist-induced membrane depolarization and sub-
sequent opening of VDCCs, further increasing vasoreactivity
after hypoxia. Nevertheless, using a model of isolated perfused/
ventilated mouse lung, Jain et al. (2020) demonstrated that
TMEM16A or other Ca2+-activated Cl− channels are not involved
in pulmonary vasoconstriction induced by alveolar hypoxia. Fi-
nally, RyR2 is susceptible to ROS-mediated oxidation (following
hypoxia) of thiol groups present in the channel (Maietta et al.,
2021). This modification enhances RyR2 activity and increases
[Ca2+]i, which promotes HPV (Truong et al., 2020).

RyR2 plays an important role in PH
Despite the presence of the three subtypes of RyRs (RyR1, RyR2,
and RyR3) in PASMCs, each appears to have distinct functional
roles with the RyR2 subtype being the major player in hypoxic
responses (Truong et al., 2020). We have shown using smooth
muscle-specific RyR2 KO, RISP knockdown, or FKBP12.6 KO
mice that RyR2 contributes substantially to hypoxia-induced
vasocontraction and pulmonary artery remodeling (Zheng
et al., 2008; Liao et al., 2011; Mei et al., 2020). Moreover, RyR2
is the subtype responsible for mediating CICR in cardiac and
airway smooth muscle (Liu et al., 2009; Benitah et al., 2021). In
light of this, we have proposed that hypoxia may cause RyR2
channel opening, leading to Ca2+ release from SR in PASMCs
and contributing to increased and sustained vasoconstriction,
which plays an important role in the development of PH (Mei
et al., 2020).

Considering the above hypothesis, we induced acute hypoxic
reactions in pulmonary artery tissues. These tissues were
stimulated with normoxic and hypoxic physiological saline for
5 min. After hypoxia exposure, maximal ryanodine binding to
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RyRs was significantly increased in PAs compared with controls
(normoxic stimulated). Moreover, 5 min of hypoxia exposure
caused a strong increase in [Ca2+]i in freshly isolated PASMCs,
which was blocked in cells from RyR2 knockout mice. These
in vitro assays demonstrate that acute hypoxia increases Ca2+

release through RyR2 in the pulmonary artery (Liao et al., 2011).
Furthermore, using a chronic hypoxia-induced PH murine
model and ryanodine-binding assays, we found that maximal
ryanodine binding was greatly augmented in PASMCs from
hypoxic mice compared with cells from normoxic mice and the

dissociation constant of ryanodine binding was decreased (Mei
et al., 2020). We also showed that caffeine administration trig-
gered an intracellular Ca2+ increase in PASMCs from hypoxic
mice that was markedly heightened compared with cells from
normoxic mice. In the same work, we showed that the caffeine-
induced intracellular Ca2+ increase, which was enhanced by
hypoxia, was completely inhibited in cells from RyR2 KO mice,
ruling out the contribution of RyR1 and RyR3 (Mei et al., 2020).
Both approaches suggest that RyR2-associated Ca2+ release is
significantly increased during acute or chronic hypoxia.

Figure 3. Cellular mechanisms of hypoxic pulmonary vasoconstriction. Three main mechanisms, dependent on ROS production and redox status, have
been proposed to explain the cellular basis of pulmonary vasoconstriction. The first theory postulates that hypoxia leads to decreased production of ROS by
NADPH oxidase (NOX) and mitochondria, resulting in a reduced environment. The decreased NADP+/NADPH ratio leads to a reduction of cysteine groups (Cys)
in K+ channels, probably KV1.5, KV2.1, and TASK-1. This change favors the closure of K+ channels and the increase in membrane potential (Em, depolarization),
as well as the opening of voltage-dependent Ca2+ channels (VDCC). Ca2+ influx promotes the release of Ca2+ from the SR, which triggers myosin and actin
activity and vasoconstriction. The second hypothesis states that hypoxia leads to increased formation of ROS. ROS stimulates the action of phospholipase C
(PLC) and the associated production of inositol triphosphate (IP3) and diacylglycerol (DAG). IP3 promotes Ca2+ release from IP3 receptors (IP3R) in SR, and DAG
activates transient receptor potential canonical channel 6 (TRPC6). This channel allows Ca2+ and Na+ influx and promotes depolarization and opening of
VDCCs. In addition, ROS trigger the opening of RyRs, allowing the release of more Ca2+ from SR. Furthermore, the increased production of ROS may inhibit KV
channels (dashed line), contributing to membrane depolarization. Finally, the third hypothesis states that hypoxia promotes a shift in the energy production
cycle, leading to increased production of adenosine monophosphate (AMP), which stimulates AMP-dependent kinase (AMPK), increasing intracellular Ca2+

through SR. Figure created with BioRender.com.
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As mentioned earlier, the persistent vasoconstriction and
remodeling of the pulmonary artery are the main pathophysi-
ological features of PH (Maietta et al., 2021). We reported that
the administration of norepinephrine elicited much greater
pulmonary vasoconstriction in hypoxic mice compared with
normoxic mice. Increased wall thickness was observed as well in
middle and large pulmonary arteries from mice exposed to
chronic hypoxia (Mei et al., 2020). We also found that enhanced
hypoxia-induced pulmonary vasoconstriction was abolished in
RyR2 knockout mice. The chronic hypoxia triggered increase in
wall thickness in middle and large pulmonary arteries is also
blocked in RyR2 knockout mice (Mei et al., 2020). Furthermore,
we did not observe any change in RyR2 expression under
hypoxia.

Hypoxia and RyR2-associated PA remodeling aremediated by
the nuclear factor κ B (NF-κB)/cyclinD1 pathway (Mei et al.,
2020). NF-κB is a transcription factor involved in triggering
inflammation and cell proliferation (Truong et al., 2021). NF-κB
is strongly activated in PA endothelial and SMCs from PAH
patients compared with healthy controls (Price et al., 2013). In
addition, pathogenic gene variants of two signaling molecules
that regulate NF-κB, namely TNF interacting protein 2, and TNF
receptor associated factor 2 are implicated in the development of
PAH (Pienkos et al., 2021), and the inhibition of the NF-κB sig-
naling cascade has a therapeutic effect on PH (Hosokawa et al.,
2013; Li et al., 2014). In the resting state, the NF-κB subunit p50/
p65 complex binds to NF-κB inhibitor alpha (IκBα), which se-
questers this dimer in the cytoplasm. Inflammatory stimuli can
cause the degradation of IκBα to allow the p50/p65 complex to
enter the nucleus and trigger a transcriptional process (Truong
et al., 2021). Chronic hypoxia increases NF-κB levels in the nu-
clear extract of lungs from exposed rats 13-fold compared with
control animals (Sarada et al., 2008). Moreover, Patel and col-
leagues observed that hypoxia increased NF-κB activity in
mouse lungs and cultured endothelial cells, leading to increased
expression of endothelin-1 and the ICAM1 (Patel et al., 2017), key
mediators involved in proliferation and remodeling of vascular
cells (Tian et al., 2020). Regarding the role of RyR2 in hypoxia-
induced PA remodeling, Mei and colleagues observed that
chronic hypoxia causes increased expression of the p65/p50
complex in the nuclei of PASMCs, and that this enhancement is
attenuated in RyR2 knockout mice. They also observed that the
expression of IκBα is decreased in PASMCs from CH mice,
consistent with the fact that degradation of IκBα is required for
NF-κB translocation. NF-κB can regulate the promoter of cyclin
D1 (an essential mediator in the cell cycle) to induce prolifera-
tion of SMCs and remodeling of PA (Zeng et al., 2010; Raghavan
et al., 2012). Consistent with this, Mei and colleagues also
demonstrated that cyclin D1 expression is upregulated in
PASMCs from mice treated with chronic hypoxia but not in
RyR2 knockouts. In vivo administration of the NF-κB inhibitor
pyrrolidine dithiocarbamate (PDTC) suppresses the upregula-
tion of cyclin D1 in PASMCs frommice with PH and prevents PA
remodeling and blocks the increased right ventricular systolic
pressure in mice exposed to chronic hypoxia (Mei et al., 2020).

Right ventricular systolic pressure and hypertrophy are two
of the most reliable indicators of functional status and prognosis

in PH (Ryan and Archer, 2014). In this context, we found that
knockout of RyR2 abrogated the hypoxia-induced increase in
right ventricular systolic pressure. Moreover, the increase in
right ventricular weight is also completely blocked by RyR2
knockout (Mei et al., 2020). These and the above findings in-
dicate that RyR2 knockout mice do not develop PH and open the
possibility to further investigate this channel as a therapeutic
target. We also demonstrated that in vivo treatment with the
well-known RyR antagonist, tetracaine, abolishes the hypoxia-
induced increase in right ventricular weight and systolic pres-
sure (Mei et al., 2020).

The role of RyR2 in PH is attributed to its dissociation
from FKBP12.6
FK506-binding proteins (FKBPs) are peptidyl-prolyl isomerases
that serve as intracellular targets for the immunosuppressant
FK506 (Tacrolimus) and rapamycin. FKBPs are endogenous
regulators of RyR2 function studied in detail in cardiac tissue.
Two members of the FKBP family are expressed in the mam-
malian heart: FKBP12 (also known as calstabin1) and FKBP12.6
(also known as calstabin2). In cardiac tissue, the complex
formed by FKBP12.6 and the RyR2 subtype is highly implicated
in the regulation of Ca2+ signaling and excitation–contraction
coupling. FKBP12.6 maintains the RyR2 channel in its closed
state, resulting in reduced activity (Xin et al., 2002; Gonano and
Jones, 2017). Furthermore, removal of FKBP12.6 from the RyR2
channel by FK506 or rapamycin increases the opening proba-
bility of the RyR2 channel and leads to a sub-conductance state
(Gonano and Jones, 2017; Maietta et al., 2021). Cardiac hyper-
trophy is an essential marker for PH (Frey et al., 2004; Lunde
et al., 2011; Shimizu and Minamino, 2016; von Siebenthal et al.,
2016). In this context, Xiao and colleagues found that the left
ventricular mass in FKBP12.6 deficient mice was significantly
augmented compared with wild-type hearts (41.0 vs. 34.1%, re-
spectively) after the infusion of angiotensin II. Moreover, they
demonstrated that adequate function of FKBP12.6 protects the
heart from angiotensin-induced cardiac hypertrophy by in-
hibiting Ca2+/CaM-mediated signaling cascades including calci-
neurin/NFAT and AKT/mTOR pathways (Xiao et al., 2018).

As for the pulmonary artery, we have reported that hypoxia
causes dissociation of FKBP12.6 from RyR2, which increases the
activity of this channel and allows the release of Ca2+ from the
SR (Fig. 4; Zheng et al., 2004; Liao et al., 2011; Mei et al., 2020;
Truong et al., 2020; Yang et al., 2020). In this context, in 2004,
our research group demonstrated the presence of FKBP12 and
FKBP12.6 in equine and murine PASMCs. However, the same
work showed that FKBP12.6 interacts with only RyR2 and not
with any other subtype, i.e., RyR1 or RyR3 (Zheng et al., 2004).
In the same work, we observed that a hypoxic stimulus in-
creased Ca2+ release through RyR2 in PASMCs from FKBP12.6-
deficient mice compared with wild-type mice. Later, we found
that hypoxia promoted the dissociation of FKBP12.6 from RyR2
by causing its translocation to the cytoplasmic space (Liao et al.,
2011). Moreover, in PASM tissues from hypoxic mice and from
patients with PH, Mei et al. (2013) reported that the ratio of
RyR2/FKBP12.6 was significantly decreased. The same authors
also found that proliferation of PASMCswas greatly increased in
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Figure 4. Schematic representation of the effects of acute and chronic hypoxia on dissociation of FKBP 12.6 from RyR2 in PASMCs. Acute hypoxia
triggers the formation of NOX and mitochondrial ROS. The increased cytosolic ROS may activate protein kinase C-ε (PKCε). PKCε stimulates NOX to initiate
further ROS-generation. This ROS-induced ROS-generation (RIRG), together with hypoxia-induced direct mitochondrial ROS-generation, leads to synergistic
disassociation of FKBP12.6 from RyR2, increasing channel activity and inducing Ca2+ release from the SR. Mitochondrial ROS and vasoconstrictor agonists
through activation of a G protein-coupled receptor (GPCR) stimulate phospholipase C-γ (PLCγ) signaling. PLCγ induces the formation of inositol triphosphate
(IP3) and diacylglycerol (DAG), which causes the opening of IP3R1 and the release of Ca2+ from the SR. DAG can activate TRPC6, triggering the influx of Ca2+ and
Na+. In addition, depletion of SR elicits store-operated Ca2+ entry (SOCE) mediated by store-operated Ca2+ channels (SOCCs) such as TRPC6, TRPC1, and
Orai1/2. Ca2+ released through IP3R1 induces Ca2+ release through RyR2 (CIRC). Furthermore, depletion of SR induced by activation of RyR2 can trigger SOCE
(dashed line) independently of the IP3 pathway. Chronic hypoxia stimulates hypoxia-inducible factor-1α (HIF-1α) to enter the nucleus and activate hypoxia
response elements (HRE) to induce TRPC6 and Orai2 expression. Chronic hypoxia also increases the expression and activity of RhoA, which stimulates Rho-
associated protein kinase (ROCK). ROCK triggers translocation of HIF-1α to the nucleus and membrane localization of ASIC1. Similarly, chronic hypoxia en-
hances the expression of NF-κB, and the signaling pathway of this transcription factor induces the expression of TRPC1 and TRPC6. Sustained Ca2+ entry
through the upregulated channels activates the calmodulin/calcineurin/NFAT pathway, which also increases the expression of TRPC1. In addition, the
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FKBP12.6-deficient mice (Mei et al., 2020). These mice devel-
oped increased sensitivity to chronic hypoxia-induced PH, as
they exhibited higher right ventricular systolic pressure com-
pared with wild-type mice under normoxic conditions. These
FKBP12.6-associated effects require further investigation be-
cause the deletion of FKBP12.6 suggests a PH phenotype that
should not improve after hypoxia. However, we did not observe
a phenotype of FKBP12.6-deficient mice or any effect of
FK506 treatment under normoxic conditions (Mei et al.,
2020). Apparently, removal of FKBP12.6 alone cannot lead
to PH. Accordingly, both FKBP12.6 and RyR2 contribute to the
development of hypoxic PH.

The orally active benzothiazepine derivative S107 blocks in-
tracellular Ca2+ release by stabilizing the RyR1/FKBP12 complex
in skeletal muscle (Mei et al., 2013). Furthermore, S107 stabilizes
the RyR2/FKBP12.6 association in PASMCs, preventing chronic
hypoxia-induced PH (Mei et al., 2020). Specifically, the treat-
ment with S107 diminishes the augmented ratio of SR Ca2+ leak
from SR Ca2+ stores in PASMCs from mice exposed to chronic
hypoxia and completely inhibits hypoxia-induced pulmonary
vasoconstriction in vivo. Moreover, this benzothiazepine de-
rivative also abolishes hypoxia-induced pulmonary vascular
remodeling and prevents the hypoxia-induced increase in right
ventricular systolic pressure. Furthermore, oxidation of RyR2 in
cardiac myocytes triggers Ca2+ leak from the SR and contributes
to right ventricular dysfunction and heart failure PH (Huang
et al., 2021). Therefore, pharmacological stabilization of the
RyR2/FKBP12.6 complex in the pulmonary artery could serve to
prevent or treat PH. However, because other organs such as the
heart may also be affected, further research and development of
a pharmacological delivery system specifically for the pulmo-
nary artery are needed.

Implications of RyR2/FKBP12.6 on IP3Rs and store operated
Ca2+ entry
Because RyRs are Ca2+-sensitive proteins, it is conceivable that
Ca2+ efflux through IP3Rs may lead to the opening of RyRs that
trigger an even greater SR release of Ca2+ followed by vaso-
constrictor agonists (Li et al., 2009; Li et al., 2021). This crosstalk
between RyRs and IP3Rsmay be influenced by the dissociation of
FKBP12.6 from the RyRs (Zheng et al., 2004; Maietta et al., 2021).
IP3Rs are the functional units responsible for Ca2+ increase and
further vasoconstriction after stimulation of G protein coupled
receptors (GPCRs; Zhang et al., 2003a; Zheng et al., 2004; Zheng
et al., 2008; Li et al., 2009; Liao et al., 2011; Li et al., 2021). Ca2+

release by the phospholipase C (PLC)-IP3 signaling cascade re-
cruits and activates neighboring domains of RyRs, resulting in a
massive increase in cytosolic Ca2+ (Gordienko and Bolton, 2002;
Zhang et al., 2003a). FKBP12.6 regulates the increase in [Ca2+]i
triggered by norepinephrine and the associated contraction of
the pulmonary artery (Zheng et al., 2004). Stimulation of

FKBP12.6-deficient PASMCs with norepinephrine triggers a
much greater increase in [Ca2+]i than in control cells. Accord-
ingly, norepinephrine evokes a stronger vasocontraction re-
sponse in pulmonary arteries of FKBP12.6-deficient mice (Zheng
et al., 2004). Moreover, the crosstalk between RyRs and IP3Rs
through CICR and the concomitant depletion of IP3Rs-regulated
Ca2+ stores activate store operated Ca2+ entry (SOCE) in PASMCs
(Zhang et al., 2003a). However, Lin and colleagues observed in
PASMCs that SR-Ca2+ release through RyRs (using the RyR
agonist 4-CmC) induced a membranal Ca2+ influx that was in-
dependent of the IP3Rs-mediated SOCE signaling pathway,
suggesting a role for RyRs (particularly RyR2) in triggering the
activity of SOCCs in these cells (Lin et al., 2016). In this context, SR
Ca2+ depletion is detected by the Ca2+ sensor stromal interaction
molecule 1 (STIM1) and STIM2, which oligomerize and translocate
to the junction between SR membrane and plasmatic membrane
to associate with SOCCs, such as Orai1, 2, and 3, as well as TRPC1,
4, and 6, and ASIC1 channels (Jernigan et al., 2009; Fernandez
et al., 2012; Trebak, 2012; Fernandez et al., 2015; Lin et al., 2016;
Wang et al., 2017). RyRs-gated Ca2+ entry or SOCE mediated by
RyRs, requires depletion of Ca2+ stores and a specific conforma-
tional change (Lin et al., 2016). Lin and colleagues observed that
caffeine, unlike 4-CmC, was unable to activate SOCE, probably due
to different binding sites (Fessenden et al., 2003; Fessenden et al.,
2006) of the two RyR agonists. In addition, mutation of the
binding site of 4-CmC, I4827, in the C-terminus of RyRs abolishes
RyR-gated SOCE. In support, caffeine and 4-CmC are known to
induce different conformational changes in RyRs (Liu et al., 2010;
Lin et al., 2016). According to Lin and colleagues, these require-
ments suggest a physical or functional association of RyR with the
molecular components of SOCE in PASMCs (Lin et al., 2016). Ac-
cordingly, Sampieri and colleagues have demonstrated the func-
tional coupling between RyR1 and TRPC1 in CHO cells (Sampieri
et al., 2005). In addition, in HEK cells, RyR1 coimmunoprecipitates
with TRPC3 (Kiselyov et al., 2000), and in the same cells RyR2
colocalizes with STIM1 (Thakur et al., 2012).

It is well-known that hypoxia elicit the release of intracel-
lular Ca2+ stores and activate SOCE in PASMCs (Ng et al., 2005;
Ng et al., 2008; Peng et al., 2013). With this respect, chronic
hypoxia upregulates the expression of TRPC6 and Orai2 by
mediating the activity of HIF-1α, increasing SOCE and [Ca2+]i in
PASMCs at rest (Wang et al., 2006; Wang et al., 2017). Moreover,
chronic hypoxia can trigger the activity of NFAT, leading to
augmented expression of TRPC1 (Wang et al., 2009). Mei and
colleagues also found that chronic hypoxia increased the ex-
pression of TRPC1 and TRPC6 and diminished the expression of
KV channels, likely through an NF-κB dependent mechanism
(Mei et al., 2020). Regarding K+ channels, they found that re-
lease of Ca2+ by RyR2 resulted in decreased expression of KV1.5
after chronic hypoxia treatment and that knockdown of RyR2
restored its expression (Mei et al., 2020). Furthermore, using a

expression of KV1.2, KV2.1, KV7.4, and TASK-1 is downregulated, probably by the action of HIF-1α (dashed line). Na+ influx across SOCCs and decreased ex-
pression of K+ channels lead to membrane depolarization and opening of VDCCs. Finally, Ca2+ overload promotes sustained pulmonary arterial vasocon-
striction, remodeling, and hypertension. Additional abbreviations: P, phosphorylation; IκBα, NFκ-B inhibitor α; IKK α, inhibitor-κB kinase α; ASIC1, acid-sensitive
ion channel 1; NFAT, nuclear factor of activated T cells; VDCCs, voltage-dependent Ca2+ channels; CaM, calmodulin. Figure created with BioRender.com.
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proximity ligand assay, Herbert and colleagues showed that
RhoA and ASIC1 colocalized in PASMCs, and hypoxia stimulated
the activity of the former to promote ASIC1 plasma membrane
localization and Ca2+ entry (Herbert et al., 2018). Collectively,
acute and chronic hypoxia play important roles in triggering
SOCE, which is likely mediated by RyR2 in PASMCs, i.e., acute
hypoxia increases ROS that stimulates RyR2 opening and de-
pletion of SR. This process triggers the interaction of STIM1 and
Orai1 to further promote the interaction with Orai2, TRPC1, and
TRPC6, leading to SOCE (Reyes et al., 2018). Moreover, TRPCs
and Orai2 are upregulated by chronic hypoxia in PASMCs, such
that RyR2 serves as a primary molecule in the hypoxic Ca2+

signaling alternations in PASMCs.

Dissociation of RyR2/FKBP12.6 is primarily mediated by
mitochondrial ROS
It is generally accepted that changes in intracellular ROS con-
centration ([ROS]i), due to mitochondrial dysfunction in pul-
monary artery endothelial cells and PASMCs, contribute to the
development of PH (Maietta et al., 2021). ROS are highly reactive
chemicals formed as a by-product of the normal metabolism of
O2 (Tejero et al., 2019; Veith et al., 2019). These noxious by-
products may serve as signaling molecules. For instance, ROS
can oxidize multiple Ca2+ channels, including the RyR2, to pro-
mote intracellular Ca2+ increases (Liao et al., 2011; Oda et al.,
2015; Kobayashi et al., 2021). This process is known as ROS-
induced Ca2+ release (RICR). In addition, intracellular Ca2+ can
modulate the production of ROS in a process called Ca2+-induced
ROS generation (CIRG; Feno et al., 2019; Truong et al., 2021).
Two main sources of ROS are known: the electron transport
chain (ETC) in mitochondria and NAPDH oxidase (NOX) in the
cell membrane and cytosol (Tejero et al., 2019; Veith et al., 2019).
Hypoxia can lead to an increase in the production of ROS (Korde
et al., 2011; Smith and Schumacker, 2019). In this context,
Marshall and colleagues described the presence of NOX in PASM
and showed that hypoxia leads to the production of superoxide
in this tissue. They were the first group to propose NOX as an
O2-sensing mechanism to trigger HPV (Marshall et al., 1996). In
addition, Waypa and colleagues demonstrated that mitochondria
in PASMCs also serve as O2 sensors during hypoxia and that
complex 3 in these organelles generates ROS in response (Waypa
et al., 2001).

The release of Ca2+ from the SR through RyR2 plays an im-
portant role in the hypoxic increase of [Ca2+]i in PASMCs,
leading to vasoconstriction and PH (Mei et al., 2020). In
PASMCs, hypoxia-induced production of ROS can stimulate
RyR2 (Korde et al., 2011; Liao et al., 2011; Truong et al., 2020).
Using the ROS detection probe dichlorodihydrofluorescein/
diacetate (H2DCF/DA), we demonstrated that acute hypoxic
stimulation significantly increased the production of ROS in
PASMCs (Wang et al., 2007; Korde et al., 2011; Liao et al., 2011).
Furthermore, using a specific biosensor (HyPer, for tracking
intracellular hydrogen peroxide) to determine ROS production,
we also detected hypoxia-induced increase in ROS generation
in isolated mitochondria of PASMCs (Korde et al., 2011). We as
well confirmed that the increase in ROS was generated in mi-
tochondria after exposure to hypoxia using MitoTracker to

stain mitochondria and DCF to determine ROS generation.
Following hypoxia, the generation of ROS is significantly in-
creased in both mitochondrial and non-mitochondrial regions.
However, the production of ROS is triggered earlier and more
strongly in mitochondrial regions than in non-mitochondrial
regions (Wang et al., 2007). Production of ROS through the
ETC involves the action of the enzymatic complexes I (NADH:
ubiquinone oxidoreductase), II (succinate dehydrogenase), and
III (cytochrome bc1 complex; Maietta et al., 2021). Using spe-
cific inhibitors of these complexes, including rotenone (com-
plex I), nitropropionic acid (complex II), and myxothiazol
(complex III), our research group found that the ETC complex
I and II and III actively produced ROS (particularly H2O2) in
response to hypoxia in PASMCs, even though complex III seems
to be more important. ROS produced in this complex are re-
sponsible for the dissociation of FKB12.6 from RyR2 (Rathore
et al., 2006; Korde et al., 2011; Yadav et al., 2013).

NOX is an important resource for hypoxic ROS generation in
PASMCS, but it is secondary to mitochondrial ROS
NOX corresponds to a family of enzyme complexes located in the
cell membrane or outer mitochondrial membrane (Veith et al.,
2019). NOXs catalyze the transfer of electrons to O2 to form O2

−

and H2O2, two types of ROS. NOX family includes seven mem-
bers, NOX 1–5 and DUOX 1–2. NOX1, NOX2, NOX4, andNOX5 are
expressed in the constitutive cells of the blood vessel wall
(VSMCs, endothelial cells, and fibroblasts; Rivera et al.,
2010). However, in PASMCs, NOX4 appears to contribute
mostly to the formation of ROS (Ward, 2008). The active
form of these enzyme complexes comprises six subunits,
including the membrane-bound subunits p22phox and
gp91phox and the cytosolic subunits p47phox and p67phox

(Rathore et al., 2008; Tejero et al., 2019; Maietta et al.,
2021). Several works have described that inhibition of
NOXs can abolish vasoconstriction induced by hypoxia
(Zhang et al., 1997; Weissmann et al., 2000; Liu et al., 2006;
Weissmann et al., 2006b).

We have reported the presence of NOX1 and NOX4, but not
NOX2 in mouse PASMCs (Rathore et al., 2008). In these cells,
acute hypoxia exposure leads to a sharp increase in the NOX
activity and an increase in the translocation of p47phox, a key
component in the formation of active NOX to the plasma
membrane, leading to the formation of ROS. In addition, we also
demonstrated that genetic deletion of the NOX p47phox subunit
in PASMCs reduced hypoxic ROS formation and hypoxic in-
crease in [Ca2+]i (Rathore et al., 2008).

Hypoxia can trigger protein kinase C-ε (PKCε) activity
(Rathore et al., 2006; Rathore et al., 2008). This PKC isoform is
associated with myocardial protection against hypoxic damage
(Gray et al., 2004) and is involved in initiating hypoxic vaso-
constriction (Littler et al., 2003). In this context, we have shown
that inhibition of PKC blocks hypoxia-induced activation of NOX
(Rathore et al., 2006; Rathore et al., 2008). Moreover, the
hypoxia-induced increase in PKCε activity is completely blocked
by the mitochondrial inhibitors rotenone and myxothiazol.
These findings suggest that the activation of NOX, which is
triggered by hypoxia in PASMCs, is mediated by the

Wang et al. Journal of General Physiology 10 of 19

FKBP12.6, RyR2, and smooth muscle https://doi.org/10.1085/jgp.202213100

D
ow

nloaded from
 http://rupress.org/jgp/article-pdf/155/3/e202213100/1446389/jgp_202213100.pdf by guest on 12 January 2023

https://doi.org/10.1085/jgp.202213100


mitochondrial ROS-PKCε signaling axis (Rathore et al., 2006).
This process in which the activity of PKCε (induced by ROS)
stimulates NOX to further increase ROS formation and [ROS]i,
is termed ROS-induced ROS generation (RIRG) in PASMCs
(Rathore et al., 2006; Wang et al., 2007; Rathore et al., 2008).
More importantly, regulation of NOX activity by mitochondrial
ROS and PKCε is implicated in the development of hypoxia-
induced pulmonary vasoconstriction (Wang et al., 2007) and
may contribute to the differential responsiveness to hypoxia in
the pulmonary artery and other vascular tissues. Furthermore,
in PASMCs from rats, the mechanism of Ca2+ release induced by
Ang II is mediated in part by activation of CD38 through NOX2-
dependent ROS production, resulting in synergistic Ca2+ release
from Ca2+-gated cADPR stores (Lee et al., 2015).

RISP is the primary molecule for mitochondrial ROS
generation in PASMCs
Among all ETC complexes, the complex III, also known as
ubiquinol-cytochrome c oxidoreductase, is singled out for its
great ability to generate ROS (Turrens et al., 1985; Rana et al.,
2000; Waypa and Schumacker, 2006; Powers et al., 2011;
Saldana-Caboverde et al., 2020). The complex III contains a
catalytic subunit called RISP, which is involved in electron
transfer and ATP synthesis (Saldana-Caboverde et al., 2020;
Truong et al., 2021). RISP is also implicated in the formation of
ROS after hypoxia (Guzy et al., 2005; Korde et al., 2011; Truong
et al., 2020).

In 2005, Guzy and colleagues demonstrated that the complex
III, and in particular RISP, is required for mitochondrial ROS
production in Hep3B, HEK293, and 143B cells (Guzy et al., 2005).
They showed that RISP triggers the stabilization of HIF-1α and
the formation of ROS after hypoxia. Subsequently, ROS diffuse
into the cytosol where they serve as oxygen sensors in con-
junction with mitochondria. Accordingly, Korde and colleagues
proved that RISP is a primary molecule for hypoxia-induced
mitochondrial ROS production in PASMCs (Korde et al., 2011).
They performed experiments in which they silenced or over-
expressed RISP in these cells. These experiments showed that
transfection of control small-interference RNAs (siRNAs) had no
effect on baseline ROS production in PASMCs. However, the
RISP siRNAs decreased the baseline production of ROS, and the
silencing of RISP in PASMCs almost completely blocked hypoxia-
induced ROS generation in the isolated complex III and the
hypoxia-induced ROS formation in isolated mitochondria (Korde
et al., 2011). In contrast, overexpression of RISP increased
hypoxia-ROS generation in isolated complex III and mitochondria
from PASMCs (Korde et al., 2011).

RISP is essential for triggering Ca2+ rise and vasoconstriction
in response to hypoxia in PASMCs (Korde et al., 2011; Mei et al.,
2020; Truong et al., 2020). ROS generated in the mitochondrial
complex III can oxidize the RyR2 and trigger its hyperactivity,
i.e., increased sensitivity and Ca2+ release (Andersson et al., 2011;
Liao et al., 2011; Dridi et al., 2020). Using a DNP antibody-based
protein oxidation assay, Mei and colleagues found considerable
RyR2 oxidation in PASMCs from hypoxic mice compared with
cells from normoxic mice. However, knocking down RISP
in vivo blocked RyR2 oxidation (Mei et al., 2020). Moreover, the

increase in [Ca2+]i and hypoxia-induced vasoconstriction after
RyR2 oxidation were largely blocked by silencing RISP in
PASMCs and pulmonary artery, respectively (Korde et al., 2011;
Mei et al., 2020). Mei and colleagues also found that the ex-
pression of FKBP12.6 was reduced in SR from PASMCs of hy-
poxic mice, but not the expression of RyR2 (Mei et al., 2020). All
these results suggest that hypoxia acts through two main
mechanisms: on the one hand, oxidation of RyR2 is induced,
which facilitates dissociation of FKBP12.6, and on the other
hand, the amount of FKBP12.6 that could be bound to RyR2 is
reduced, which increases the activity of RyR2 and promotes
sustained vasoconstriction in PH (Mei et al., 2020). Moreover,
knockdown of RISP in vivo blocks the hypoxia-triggered in-
crease in right ventricular pressure and abolishes the hypoxia-
triggered increase in right ventricular weight (Mei et al., 2020).

In addition to the effects of hypoxia on RyR2, Yadav and
colleagues reported in 2013 that acute hypoxia can also regulate
IP3Rs by increasing PLCγ1 activity in PASMCs (Yadav et al.,
2013). Later, the same authors demonstrated that mitochon-
drial ROS formation after hypoxia or exogenous ROS (500 μM)
also increases PLCγ1 activity by promoting its phosphorylation
at tyrosine-783. Activated PLCγ1 leads to the formation of IP3
(Yadav et al., 2018), which stimulates the IP3R1 isoform and
releases Ca2+ in the cytosol, causing hypoxic vasoconstriction. It
is reported that mitochondrial ROS production after hypoxia
triggers IP3R1 phosphorylation by PKCε, which increases IP3
binding and triggers a large increase in [Ca2+]i (Rathore et al.,
2006; Rathore et al., 2008; Yadav et al., 2018). Accordingly, mice
exposed to chronic hypoxia show increased PLCγ1 activity and
enhanced pulmonary artery vasoconstriction (Yadav et al.,
2018).

RISP is also involved in the hypoxic PLCγ1-IP3 signaling
pathway in PASMCs. Specific suppression of RISP expression
with lentiviral short hairpin RNAs (shRNAs) prevents mito-
chondrial ROS formation and inhibits hypoxia-triggered
increased PLCγ1 activity (Yadav et al., 2018). Moreover,
pharmacological inhibition of the complex III with myxothiazol
also abrogates the hypoxia-induced increase in PLCγ1 activity in
PASMCs (Korde et al., 2011; Yadav et al., 2018). Conceivable, RISP
is a master regulator of the hypoxic increase in PLCγ1 action,
followed by mitochondrial ROS production in the complex III.
More importantly, RISP regulates the dissociation of FKBP12.6
from RyR2, which may amplify the Ca2+ increase produced by the
augmented activity of IP3R1, leading to improved and persistent
pulmonary artery vasoconstriction and likely increased vascular
resistance, which contributes to vascular remodeling and the de-
velopment of PH (Liang et al., 2022).

RyR2-mediated Ca2+ release causes RISP-dependent
mitochondrial ROS production to further enhance the hypoxia-
induced ROS generation and cellular responses
ROS generated in mitochondria can lead to further formation of
ROS through activation of NOX and eventually to an even
greater increase in [ROS]i (Rathore et al., 2008; Maietta et al.,
2021). The process described above appears to be a feed-forward
system that enhances ROS and Ca2+ responses and promotes
improved vasoconstriction seen in PH. The increased [Ca2+]i
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promoted in hypoxic or PH PASMCs appears to be poorly reg-
ulated by plasma membrane Ca2+-ATPase because its expression
is suppressed by PDGF, an essential mediator in vascular re-
modeling during PAH development (Deng et al., 2021). Addi-
tionally, the activity of SR Ca2+-ATPase and ATP binding are
disrupted by ROS (Sharov et al., 2006; Cook et al., 2012). A
balancing effect may be exerted by the BK channels. Although
these channels do not appear to be involved in HPV like KV

channels, long-term hypoxia increases the Ca2+ affinity of BK
channels and thus their activity. This positive regulation could
serve as an acclimation response to regulate vascular tone in
response to hypoxia (Tao et al., 2015). Despite this finding,
further research is needed to elucidate the mechanisms that
counteract the enhanced ROS and Ca2+ responses proposed in
this review.

However, Ca2+ released into the cytosol through SR channels
can also be taken up by mitochondria. Mitochondria-dependent
Ca2+ regulation is involved in several functions, including mi-
tochondrial fusion and fission, ROS generation, redox signaling,
autophagy, and cell death. As concerns for PASMCs, Drummond
and Tuft demonstrated that caffeine and ATP trigger an increase
in both [Ca2+]i and mitochondrial [Ca2+] ([Ca2+]m; Drummond
and Tuft, 1999). [Ca2+]m was detected with the fluorescent in-
dicator rhod-2, whereas [Ca2+]i was measured at the same time
with fura-2. The authors showed that [Ca2+]m continued to in-
crease when [Ca2+]i peaked and remained elevated even when
[Ca2+]i began to decrease. In addition, the uncoupler of mito-
chondrial oxidative phosphorylation, FCCP, prolonged the time
to recovery of basal [Ca2+]i after caffeine exposure (Drummond
and Tuft, 1999), indicating the involvement of mitochondria in
the buffering and removal of cytosolic Ca2+ in these cells. Gurney
and colleagues confirmed Ca2+ signaling between SR and mito-
chondria in arterial SMCs, with the latter organelle playing an
important role in returning [Ca2+]i to basal levels after SR acti-
vation by vasoconstrictor agonists (Gurney et al., 2000). Mito-
chondrial Ca2+ uptake needs that this organelle be located close
within a microdomain of high [Ca2+] as occurs near to receptors
in SR (McCarron et al., 2013). Moreover, mitochondrial Ca2+

uptake may improve or diminish the amplitude of Ca2+ signals
(McCarron et al., 2013). For instance, mitochondria in SMCs are
located near IP3Rs clusters to regulate IP3-mediated Ca2+ release
(Chalmers and McCarron, 2009). Additionally, mitochondria
modulate Ca2+ transients through RyRs, i.e., inhibition of mito-
chondrial function with FCCP or cyanide prolongs the cyto-
plasmic Ca2+ transient evoked by caffeine in aortic SMCs
(Gurney et al., 2000). Furthermore, mitochondrial function
regulates subplasmalemmal Ca2+ dynamics in VSMCs. With
respect to VDCCs, mitochondrial Ca2+ uptake produces an ac-
celerated decrease of the Ca2+ transient across these channels;
however, the rate of increase of the Ca2+ transient does not
appear to be altered by this organelle function (McGeown et al.,
1996; Drummond and Tuft, 1999). Mitochondrial uncoupling
also abolishes Ca2+ sparks (Cheranov and Jaggar, 2004) and
spontaneous transient inward currents (STICS, Ca2+ activated
Cl− currents; Greenwood et al., 1997), and reduces STOCS (Ca2+

activated K+ currents; Cheranov and Jaggar, 2004). Overall, it
mitochondria dynamically modulate Ca2+ signaling in the range

of 200 nM to 10 μM and have difficulty modulating high local
[Ca2+] levels near activated VDCCs (McCarron et al., 2012;
McCarron et al., 2013).

Ca2+ and ROS signaling and dynamics between mitochondria
and the SR in PASMCs were recently studied by Yang et al.
(2020). They demonstrated that caffeine and norepinephrine
(Li et al., 2021) increased Ca2+ (due to the release of Ca2+ by RyRs
and IP3Rs, respectively) and subsequently [ROS]i in PASMCs.
Moreover, increased mitochondrial [ROS] ([ROS]m) was ob-
served in isolated mitochondria after PASMCs were exposed to
caffeine or norepinephrine. Usingmit-2mutAEQ, themitochondria-
targeted double mutant aequorin Ca2+ sensor, Yang and col-
leagues also found that norepinephrine, caffeine, and hypoxia
can increase [Ca2+]m and this increase was blocked by the mi-
tochondrial Ca2+ uniporter (MCU) inhibitor Ru360 (10 μM) in
the pulmonary artery (Yang et al., 2020). MCU is one of the
major proteins involved in Ca2+ uptake. This transporter is
responsible for controlling Ca2+ movement through the mi-
crodomain of mitochondrial and SR membranes (Song et al.,
2017). Downregulation of MCU and the resulting imbalance of
[Ca2+]m and [Ca2+]i induces cell proliferation and migration and
promotes the development of PH (Hong et al., 2017).

Yang and colleagues also found that exogenous Ca2+ (3–200
μM) enhanced the formation of ROS in mitochondria and the
complex III, which were isolated from PASMCs, showing that
CIRG occurs in these cells (Yang et al., 2020). Moreover, they
demonstrated that this process is caused only by the activity of
the complex III and not by others. In this context, the formation
of ROS triggered by caffeine is attenuated in RISP-deficient
isolated mitochondria and PASMCs. Moreover, Ru360 abro-
gates caffeine-triggered ROS formation in PASMCs, strongly
suggesting that Ca2+ released by RyR2 is responsible for mito-
chondrial ROS formation (Yang et al., 2020). Accordingly, Ru360
attenuates exogenous Ca2+-induced ROS formation in isolated
mitochondria (Yang et al., 2020). Since hypoxia is able to in-
crease the activity of RyR2 and the formation of ROS and pro-
mote the development of PH (Wang et al., 2007; Liao et al., 2011;
Mei et al., 2020), Yang and colleagues also investigated the role
of MCU in hypoxia-induced formation of ROS. The authors
discovered that pharmacological blockade of MCU abrogates
hypoxia-triggered ROS formation in PASMCs and in isolated
mitochondria from Ru360-exposed PASMCs (Yang et al., 2020).
Moreover, pharmacological inhibition and genetic down-
regulation of RyR2 attenuate hypoxic ROS formation and the
increase in [ROS]m. Altogether, RyR2-mediated Ca2+ release fol-
lowing the hypoxic mitochondrial ROS formation triggers the
activity of MCU and subsequently the increase of RISP-dependent
[ROS]m in PASMCs. It is conceivable that this versatile signaling
pathway plays an important role in hypoxic vasoconstriction and
in the development and progression of PH.

Therapeutic potential and clinical relevance of targeting
RyR2/FKBP12.6 pathway
The RyR2/FKBP12.6 complex is proposed to be a target for some
cardiac diseases. Moreover, RyR2 dysfunction is associated with
heart failure (HF) and atrial fibrillation (AF; Alvarado and
Valdivia, 2020; Zhang et al., 2021). Multiple missense mutations
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in RyR2 are related to arrhythmogenic right ventricular car-
diomyopathy type 2 (Tiso et al., 2001), and catecholaminergic
polymorphic ventricular tachycardia (CPVT; Priori et al.,
2001; Duan et al., 2018), two inherited forms of sudden car-
diac death. RyR2 mutations occur clustered in the N-terminal
domain, the central domain, and the channel-forming domain.
In this context, Oda and colleagues showed that a defective
interaction between the N-terminal and central domains oc-
curs in hearts with cardiac arrest (Oda et al., 2005). This
abnormality caused the interacting N-terminal and central
domains corresponding to the Gly2460-Pro2495 region of RyR2
to become detached from each other (unzipped), which fa-
cilitates the dissociation of FKBP12.6 from the channel and
leakage of Ca2+ (Yamamoto et al., 2008). Therefore, several
drugs have been evaluated for their ability to inhibit RyR2 or
its accessory proteins in the heart. A large number of chemical
compounds such as propafenone, tetracaine, hydantoin, and
their derivatives which normalize RyR2 activity have been
developed. However, only benzothiazepine derivatives (K201
and S107) can block the interaction between RyR2 and
FKBP12.6 (Connell et al., 2020).

K201, also called JTV519, was developed to provide a stronger
protective effect against Ca2+-induced myocardial damage
(Kaneko, 1994; Kaneko et al., 2009). This drug is a benzothia-
zepine derivative studied in phase II trials for the treatment of
myocardial infarction (James, 2007) and AF (Connell et al.,
2020). Although K201 has multiple functions, such as blocking
Na+, K+, and Ca2+ channels (Kimura et al., 1999; Kiriyama et al.,
2000; Nakaya et al., 2000; Hasumi et al., 2007; Kaneko et al.,
2009) and blocking the α1-adrenoreceptor (Kaneko, 1994;
Kaneko et al., 2009), this drug stabilizes RyR2 in its closed state
by increasing the affinity of FKBP12.6 for this channel (Wehrens
et al., 2004). In this way, Ca2+ leakage is prevented, conferring
protection against contractile dysfunction and ventricular ar-
rhythmias (Toischer et al., 2010; Otani et al., 2013). In addition,
the action of K201 attenuates the progression of HF due to Ca2+

overload and the resulting damage to the myocardium (Dincer,
2012). S107, the derivative of K201, has not yet been assessed in
clinical trials. However, in amousemodel of CPVT, K201 inhibits
RyR2 Ca2+ leak and prevents cardiac arrhythmias (Lehnart et al.,
2008). As well, Guo and colleagues demonstrated that S107
blocked increased basal Ca2+ release and improved cardiac per-
formance in a model of RNA-binding protein 20 (RBM20) car-
diomyopathy (Guo et al., 2021). Finally, administration of S107
(10 μM) in isoproterenol-stimulated cardiomyocytes from a
CPVT patient reduced pro-arrhythmic delayed after depolari-
zations (DADs) to 25% (Sasaki et al., 2016).

Regarding PH and pulmonary vessels as a target, no treat-
ments based on the interaction of RyR2/FKBP12.6 or other
proteins associated with this channel have been developed or
tested in humans. However, because right ventricular failure is a
major cause of death in patients with PH, stabilization of RyR2 in
the heart is postulated as a treatment option to increase survival.
A study conducted by Huang and colleagues showed that ad-
ministration of the RyR2 stabilizer dantrolene to decompensated
right ventricular cardiomyocytes reduced the frequency of Ca2+

sparks. Moreover, intraperitoneal administration of this drug

attenuated the progression of right ventricular failure and pro-
longed the survival of 23% of rats with PH induced by MCT
(Huang et al., 2021). Furthermore, dantrolene inhibited the
dissociation of calmodulin from RyR2, preventing Ca2+ sparks in
hypertrophied right ventricular cardiomyocytes (Tanaka et al.,
2022). In the same work, chronic dantrolene treatment pre-
vented right ventricular expansion and suppressed collagen
levels in an animal model of MTC-induced PH. In addition, this
RyR2 stabilizer prevented ventricular tachycardia induced by
the combination of caffeine and epinephrine. All these dantro-
lene effects increased animal survival by 80% (Tanaka et al.,
2022). We demonstrated that in vivo treatment of mice ex-
posed to chronic hypoxia with S107 attenuated the increased
RyR2 activity of PASMCs, i.e., S107 inhibited the chronic
hypoxia-induced dissociation of FKBP12.6 from RyR2 and at-
tenuated increased Ca2+ leak. S107 also abolished PA remodel-
ing by hampering chronic hypoxia-induced muscularization
and SMC proliferation and eliminated right ventricular hy-
pertrophy (Mei et al., 2020). In this review, we propose that
stabilization of RyR2 by inhibiting dissociation of FKBP12.6 may
be an effective therapeutic agent against PH. However, more
specific inhibitors and appropriate routes of administration
should be developed to avoid cardiac side effects. Further basic
and clinical research is needed on this topic.

Conclusion
Exacerbated PASMC contraction and remodeling are common
markers of PH. These processes appear to be mediated to a large
extent by an enhanced increase in [Ca2+]i. Several channels are
involved in Ca2+ processing in SMCs. This review article highlights
the importance of RyR2 in the control of Ca2+ homeostasis and
ROS generation mediated by hypoxia, as well as its role in the
development of PH. We and other investigators have well docu-
mented that hypoxia is highly specifically involved in the gener-
ation of ROS and increases in [Ca2+]i in PASMCs, serving as of the
main cause of PA vasoconstriction, remodeling and PH. Accord-
ingly, a complex signaling pathway involving the hypoxia-induced
mitochondrial ROS generation and then RyR2-dependent Ca2+

release, termed RICR process, is well described in this article.
Nevertheless, acute and chronic hypoxia both can increase

RISP-dependent mitochondrial ROS generation in PASMCs. The
increased mitochondrial ROS can enter the cytosol and activate
PKCε. The activated PKCε stimulates NOX to trigger further ROS
generation. This ROS-induced ROS, together with the hypoxia-
induced direct mitochondrial ROS production, synergistically
dissociate FKBP12.6 from RyR2, which increases channel activ-
ity, and then induces the release of Ca2+ from the SR. The re-
leased Ca2+ causes PA vasoconstriction, PA remodeling, and
eventually PH. Moreover, RyR2-mediated Ca2+ release also
causes RISP-dependent mitochondrial ROS production, which
further enhances hypoxia-induced ROS generation and cellular
responses. The signaling that links the SR to mitochondria
through a CIRG process represents an important pathway in
hypoxia-induced PH. It is conceivable that pharmacological and
genetic stabilization/inhibition of the RyR2/FKB12.6 complex
and RyR2 per se in SMCs could be the novel and effective
therapeutic options in the treatment of PH.
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