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ABSTRACT. Given a principal bundle P→ M over a Riemannian manifold with compact structure group G, let
us consider a stationary Yang-Mills connection A with energy

∫
M
|FA|

2 ≤ Λ. If we consider a sequence of such
connections Ai, then it is understood by [Tia00] that up to subsequence we can converge Ai → A to a singular
limit connection such that the energy measures converge |FAi |

2dvg → |FA|
2dvg + ν, where ν = e(x)dλn−4 is the

n − 4 rectifiable defect measure. Our main result is to show, without additional assumptions, that for n − 4 a.e.
point the energy density e(x) may be computed explicitly as the sum of the bubble energies arising from blow
ups at x. Each of these bubbles may be realized as a Yang Mills connection over S 4 itself.

This energy quantization was proved in [Riv02] assuming a uniform L1 hessian bound on the curvatures in
the sequence. In fact, our second main theorem is to show this hessian bound holds automatically. Precisely,
given a connection A as above we have the apriori estimate

∫
M
|∇2FA| < C(Λ, dim G,M) for the curvature. It is

important to note this result is proved in tandem with the energy quantization, and not before it. Indeed, we will
in fact prove an effective version of the energy identity, and it is this effective version which will lead to both
the L1 hessian bound and the classical energy quantization results. In the course of the proof we will provide
a quantitative version of the bubble tree decomposition which hold in all dimensions with effective estimates
for a fixed stationary connections. To produce to strongest estimates in the paper we introduce an ε-gauge
condition, which generalizes the usual Coulomb gauge and which will exist, with effective control, even over
singular regions. On these ε-gauges we will provide a new superconvexity estimate which will be a key tool in
analyzing higher dimensional annular regions.
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1. INTRODUCTION

This paper is focused on studying principle bundles P
G
→ M over Riemannian manifolds (Mn, g) with

compact structure groups G ⊆ SO(k). A Yang-Mills connection A on P is a critical point of the Yang-Mills
L2 curvature functional

F[A] ≡
∫
|FA|

2 . (1.1)

Most of the results of this paper are local in nature, and therefore it will be sufficient to consider connections
over some ball B2 ⊆ M. For technical simplicity we will restrict ourselves to smooth critical points of (1.1),
however all of our techniques generalize to stationary points in more general singular contexts (e.g. admis-
sible connections in the sense of [TT04] or stationary connections in the sense of [RPb],[RPc]), and we will
make comments on the necessary ingredients to make such generalizations, which are fairly straight forward.
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It is often times the case one is interested in not just a fixed connection, but in sequences and limits of
such connections. For instance, when studying moduli spaces [Don89],[DT98] of connections, or when
considering contradiction arguments. This is the appropriate context to study the energy identity. Indeed, if
Ai are a sequence of Yang-Mills connections satisfying the uniform energy bound

∫
|FA|

2 ≤ Λ, then after
passing to a subsequence it is known by [Uhl82],[TT04],[RPa] that we can converge the Ai modulo gauge

Ai → A , (1.2)

to a connection A which is smooth away from a set of n − 4 measure zero. More than that, by [Tia00] we
can limit the energy measures

|FAi |
2dvg → |FA|

2dvg + ν = |FA|
2dvg + e(x) dλn−4

∣∣∣
S , (1.3)

where ν = e(x) dλn−4 is the n − 4 rectifiable defect measure supported on S = supp[ν].

The goal of this paper is then two fold. We wish to study better the regularity properties of stationary
Yang-Mills connections, and we wish to understand better the defect measure e(x)dλn−4 which arises as the
singular part of the limit of energy measures from a sequence of Yang-Mills connections.

To state accurately our results on the structure of e(x) let us first define with some accuracy the notion
of a bubble. Notationally, let us remark that if A is a connection on the pointed manifold (M, g, x), then
we write r−1A to denote the induced connection on (M, r−2g, x). This has the effect of rescaling the ball
Br(x) → B1(x) to unit size, and therefore blows up A at x at scale r. Given this we define the notion of
bubbling:

Definition 1.1. We define the following:

(1) A bubble B is a smooth Yang Mills connection on Rn ×G which is invariant under translation with
respect to some n − 4 subspace LB ⊆ Rn. We define the energy of B to be E[B] ≡

∫
L⊥B
|FB|

2.
(2) We say that B is a bubble at x ∈ supp{ν} if there exists a sequence xi → x and ri → 0 such that the

blow ups converge r−1
i Ai → B. We denote by B[x] the collection of all bubbles at x.

Notice that if B is a bubble, then by restricting B to L⊥B and transforming conformally we may view B as
a smooth Yang Mills connection on S 4. The bubbles at a point x ∈ supp[ν] turn out to be related to energy
density e(x). It turns out that if B1, . . . , Bk ∈ B[x] are distinct bubbles at x then one can rather easily prove
the inequality

e(x) ≥
∑
B j

E[B j] =
∑
B j

∫
L⊥B j

|FB j |
2 . (1.4)

In words, the energy density e(x) is at least as large as the energy contribution of every bubble at x. It has
been an open problem about whether this inequality is an equality. This was first considered and proved
for four dimensional instantons. In higher dimensions, the first results were due to [Tia00], where for
generalized instantons it was shown that for n − 4 a.e. point that x ∈ supp[ν] we can indeed compute e(x)
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explicitly by the energy identity

e(x) =
∑

B j∈B[x]

∫
L⊥B j

|FB j |
2 , (1.5)

for a collection of distinct bubbles. There is a variety of work in the literature toward dropping the instanton
assumption. In dimension four the energy identity (1.5) was proved in full generality in [Riv02]. In higher
dimensions, the best result is by Riviere [Riv02], where it was shown that (1.5) holds if one additionally as-
sumes a uniform L1 bound on the hessian of the curvature. The idea of [Riv02] was in the spirit of [LR02],
where a similar result was proved for harmonic maps, and exploited certain Lorentz space estimates. The
first main result of this paper is to prove (1.5) in full generality, and in particular we drop the assumed L1

hessian bound.

In fact, the second main result of this paper is to show that if A is a stationary Yang-Mills connection,
then one does in fact automatically have the apriori L1 hessian estimate∫

M
|∇2FA| < C(Λ, k,M) , (1.6)

where the dependence of C above on M is only on the C2 geometry of M. It is worth noting that this result
is proved in tandem with the energy identity of (1.5), and not before it. In fact, as the paper is arranged
we shall prove the energy identity first. However, fundamentally both results will follow from an effective
version of the energy identity, which will describe the breakup of a fixed stationary connection. This will be
outlined in Section 1.3 and is described in rigor in Section 9.

1.1. Main Result for Stationary Yang Mills Connections. Our regularity results are all local in nature,
and therefore we will only ever consider connections on open balls in manifolds. Precisely, we consider in
this subsection a Yang-Mills connection A living on a principle G-bundle P→ B2(p) ⊆ M, with G ⊆ SO(k)
compact, which satisfies

| sec | < K2 ,

inj(p) > K−1 . (1.7)

Our main result on the regularity of stationary Yang Mills connections is the following:

Theorem 1.2 (L1 Hessian Estimate). Let A be a stationary Yang-Mills connection satisfying (1.7) and>
B2
|FA|

2 ≤ Λ. Then we have ?
B1

|∇2FA| < C(n, k,K,Λ) . (1.8)

Remark 1.1. In fact one can easily see that the estimate does not depend on the lower injectivity radius
bound by simply lifting to a local cover.



ENERGY IDENTITY FOR STATIONARY YANG MILLS 5

1.2. Main Results for Weak Limits of Yang Mills. Let us now discuss limits Ai → A of stationary Yang-
Mills connections with uniformly bounded energy. In this case we consider the defect measure

|FAi |
2dvg → |FA|

2dvg + ν , (1.9)

where by [Tia00] we have that the defect measure ν = e(x)λn−4 is n − 4 rectifiable. Recall from Definition
1.1 the precise meaning of a bubble at a point x. Our main result is the following energy quantization, which
tells us that we may compute the energy density e(x) through the bubbles at x:

Theorem 1.3 (Energy Identity). Let Ai → A be a limit of stationary Yang-Mills connections satisfying (1.7)
and
>

B2
|FAi |

2 ≤ Λ, and let ν be the associated defect measure. Then for n − 4 a.e. x ∈ supp{ν}, there exists
a finite collection of distinct bubbles B1, . . . , Bk ∈ B[x] such that

e(x) =
∑
B j

E[B j] =
∑
B j

∫
L⊥B j

|FB j |
2 . (1.10)

1.3. Outline of Proofs and Techniques. Let us now outline the paper and the techniques involved in the
proofs of Theorem 1.2 and Theorem 1.3. Everything in this subsection is rough in nature, and is meant to
convey intuition without being dragged down by the large number of necessary technical details needed for
the rigorous statements.

To begin with some basics, by covering our ball B1(p) with balls of small radius we can always assume
our bound K << 1 from (1.7) is very small. In particular, by writing in harmonic coordinates we can assume
we are on a chart so that our ball is a Euclidean ball with metric gi j which satisfies for all α < 1

||gi j − δi j||C1,α ≤ C(n, α)K . (1.11)

The K in the above is not quite the same as the one in (1.7), however it is does tend to zero as the sectional
curvature does. In fact, there is really little lost in just assuming we are working on Euclidean space itself,
as the proof of the general case requires only some minor extra technical work of a non fundamental nature.
We will do just that for the remainder of this outline.

The proof of the main Theorems will center around the two main decomposition theorems given as
Theorem 9.1 and Theorem 11.1. The content of the quantitative annulus/bubble decomposition of Theorem
11.1 is to split a ball B1(p) into two primary types of pieces

B1(p) ⊆
⋃

a

Aa ∪
⋃

b

Bb , (1.12)

where Bb ⊆ Brb(xb) and Aa ⊆ Bra(xa) are quantitative versions of bubble and annular regions, such that we
have the quantitative content covering control∑

rn−4
a +

∑
rn−4

b ≤ C . (1.13)

This annulus/bubble decomposition will be the primary decomposition used toward the proof of the L1 hes-
sian estimate. For the energy identity we will rely on the quantitative bubble tree decomposition of Theorem
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9.1, which we will describe after we have discussed the quantitative bubble and annular regions in more
detail.

The quantitative bubble regions Bb ⊆ Brb(xb) are relatively easy to analyze, however the quantitative
annular regions Aa will require several new ideas and will take up the majority of our discussion. Let us
begin with a brief discussion of our goals with both, and then we will turn our attention to the methods.

Recall that a bubble, see Definition 1.1, is a smooth solution to the Yang-Mills equation on Rn which is
invariant under translation by some n− 4 dimensional subspace L ⊆ Rn. Likewise, a quantitative bubble Bb

should be a solution which is close to looking like a bubble in an appropriate sense. The actual definition,
given in Section 4, requires a little work because one has to account for the possibility for bubbles inside of
bubbles, however for our outline the main point to emphasize is that it follows directly from the definition
that the quantitative bubbles Bb are regions which are nearly invariant by L and have uniformly bounded
curvature:

r4−n
b

∫
Brb

|F[L]|2 < δ ,

r2
b |F| ≤ C on Bb . (1.14)

Using elliptic estimates one can then obtain pointwise scale invariant hessian estimates r4
b |∇

2FA| < C on the
curvature, which in particular lead to the integral estimates∫

Bb

|∇2FA| ≤ Crn−4
b . (1.15)

Since the above are straightforward we will take it all in a blackbox in this outline and refer to Section 4 for
a more detailed description of the quantitative bubble regions.

To discuss quantitative annular regions let us begin with a review of δ-flat and δ-weakly flat balls. Namely,
we say a ball Br(x) is δ-flat if one has the scale invariant curvature estimate r2|FA| < δ in Br(x). This is es-
sentially the strongest condition one might ask for on a ball, and in fact too strong for practical applications.
A weaker condition is that of a δ-weakly flat ball. As in Definition 3.1 we say that Br(x) is δ-weakly flat if
for some n− 4 subspace L ⊆ Br(x) we have the scale invariant estimate d(x,L)2|FA| < δ on Aδr,r(L)∩ Br(x).
That is, Br(x) is δ-weakly flat if the curvature is small away from L, however it is still quite possible to have
large curvature concentration near L itself. This situation happens frequently, and is in fact typical when
studying defect measures. One could attempt to cover B1(p) as in (1.12) by quantitative bubble regions and
weakly flat balls, unfortunately such a covering cannot necessarily be built to satisfy the content estimate
(1.13), which will be crucial.

A δ-annular region A ⊆ B2r is a region which looks δ-weakly flat on many scales. Slightly more precisely,
if C is a closed set of center points and rx : C→ R is a positive function then

A ≡ B2r \ Brx(C) ≡ B2r \
⋃
x∈C

Brx(x) . (1.16)

There are variety of useful technical conditions given in Definition 5.1 in the definition of a δ-annular region,
e.g. a Vitali condition on the balls, however the relevant assumptions to keep in mind is that for each center
point x ∈ C and all rx < s < 2r we have that Bs(x) is δ-weakly flat and that C∩Bs(x) looks approximately like
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the subspace Lx = x +L. Thus as claimed we have that annular regions are those which look weakly flat on
a potentially arbitrary number of scales. We also have that C looks approximately like an n − 4 dimensional
space, and it is convenient to define the packing measure µ =

∑
rn−4

x associated to it. In Theorem 5.3 we
prove a structure theorem for annular regions, which from the analysis point of view is the most important
in the paper. The main results of this structure theorem are the following:

csn−4 < µ(Bs(x)) < Csn−4 for rx < s < 2r ,

r4−n
∫
A

|F|2 < ε ,

r4−n
∫
A

|∇2F| < ε . (1.17)

The first result is an Ahlfor’s regularity type result on µ, which tells us that C approximates an n − 4 dimen-
sional space in a strong sense. For the energy identity of Theorem 1.3 it is the second estimate above which
plays the key role, while for the L1 hessian estimate of Theorem 1.2 is it the third estimate which plays the
important role. Let us first roughly see how to conclude the main theorems once (1.17) is known, and then
the rest of the outline will focus on the proof of (1.17) itself.

The proof of the L1 hessian estimate of Theorem 1.2 is now nothing more than a combination of the
covering (1.12) with the content estimate (1.13) and the scale invariant integral estimates (1.15), (1.17).
Indeed: ∫

B1

|∇2F| ≤
∑

a

∫
Aa

|∇2F| +
∑

b

∫
Bb

|∇2F| ≤ C
(∑

a

rn−4
a +

∑
b

rn−4
b

)
≤ C . (1.18)

To discuss the energy identity of Theorem 1.3 we describe a quantitative version, which is given in
Theorem 9.2. To accomplish this we need the quantitative bubble tree decomposition of Theorem 9.1,
which is a refinement of the decomposition of (1.12) (though in fact we prove the following decomposition
first). Under the assumption that B1(p) is weakly flat with respect to L = Ln−4 ⊆ B1 we will decompose the
ball

B1(p) ⊆
⋃

a

Aa ∪
⋃

b

Bb ∪
⋃

c

Brc(xc) , (1.19)

where in addition to the content estimate (1.13) for the δ-annular and δ-bubble regions we also have the
small content estimate

∑
c rn−4

c < ε. The key difference between the two decompositions is that by assuming
B1 is weakly flat and throwing out this set of small content we can assume every annular region Aa and
every bubble region Bb are with respect to the same n−4 plane L. This does not hold for the decomposition
in (1.12). More than that, the quantitative energy identity of Theorem 9.2 gives us that for each q ∈ L such
that the 4-plane L⊥q ≡ q + L⊥ satisfies L⊥q ∩

⋃
c Brc = ∅, then if Bq ≡ L⊥q ∩

⋃
b Bb are the bubble regions

which intersect the slice L⊥q we have the following:

#{Aa ∩ L⊥q , ∅} , #{Bb ∩ L⊥q , ∅} ≤ N = N(n, k,Λ) ,∣∣∣ ∫
B1(q)
|FA|

2 −

∫
Bq

|FA|
2
∣∣∣ < ε . (1.20)
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The second estimate above is primarily due to the first estimate in (1.17), so that most slices in an annular
region have small energy, and that the constant N above is independent of δ, so that a typical slice only
intersects a bounded number of small energy regions. The δ-independent bound on N takes a bit of work,
and morally follows because the covering is built to satisfy the correct nontriviality assumptions. More
specifically, each time an annular region is intersected by L⊥q there is a corresponding bubble region which
also gets intersected, and further each such bubble region contains some definite amount of energy, so that
this may happen only a uniformly bounded number of times. To conclude the classical energy identity we
study the n−4 rectifiable defect measure ν of a limiting sequence and observe that a.e. there exists a tangent
measure and it is a multiple of the Hausdorff measure on some L. In particular, by blowing up at such points
we get that neighborhoods are arbitrarily weakly flat, and so we may apply (1.20) with ε → 0. This will
conclude the classical energy identity. See Section 10 for more on this.

What is then left in our outline is to describe the proof of the structure theorem estimates of (1.17) for
annular regions. For n = 4 there are several known ways of doing such estimates, unfortunately all such
previous methods break down in higher dimensions. To describe our methods, which take place over Sec-
tions 5, 6, and 7 and are related to the arguments of [JN], we begin with a discussion of gauges. The choice
of a good gauge is often crucial in regularity issues, and in the context of Yang Mills the standard gauge
condition is a Coulomb gauge. Unfortunately, the existence of a Coulomb gauge is typically only over balls
which are geometrically very simple. For instance, if Br(x) is δ-flat as above, then it is easy to prove the
existence of a Coulomb gauge on Br(x). However, if Br(x) is only δ-weakly flat, then a Coulomb gauge
simply need not exist on the ball.

Instead, in Section 6 we describe the notion of a harmonic ε-gauge, which in Theorem 6.2 we show
does exist on weakly flat balls. To describe it recall that our structure group G ⊆ SO(k) so that we have
an induced vector bundle E → B1. In Definition 6.1 we say that sections V1, . . . ,Vk ∈ Γ(Br, E) form a
harmonic ε-gauge on Br(x) if the following hold:

∆Va = 0 ,

|Va| ≤ 1 + ε ,

?
Br

|〈Va,Vb〉 − δab| < ε , r2
?

Br

|∇V |2 < ε2 . (1.21)

We call the sections an ε-gauge because the condition
>

Br
|〈Va,Vb〉−δab| < ε only guarantees that away from

a set of small measure that the Va form an ε-orthonormal basis. On a δ-flat ball it is not so hard to see that
the Va form an actual ε-orthonormal basis at every point, however if the ball is only δ-weakly flat ball then
this need not hold.

Section 6 and in particular Section 7 are dedicated to proving much more powerful estimates on ε-gauges
than those in (1.21). Before describing these, let us outline how the Va may be used to control the curvature
on annular regions. Indeed, using the definition of curvature one may compute at any point the bounds

|F(V)| ≤ 2|∇2V | , |∇2F(V)| ≤ 2|∇4V | + 2|∇F| |∇V | + |F| |∇2V | . (1.22)
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Imagine now that we are at a point x such that |〈Va,Vb〉 − δab| < ε and r2|F|, r3|∇F| < 1, then we have

|F|2(x) ≤ 8
∑
|∇2Va|2 , |∇2F|(x) ≤ 8

∑
|∇4Va| + r−3 |∇V | + r−2|∇2V | . (1.23)

In particular, if A is an annular region and d(x,C) is the distance from a point in A to the ball centers which
were subtracted away, imagine we could prove∫

A

d(x,C)−3|∇V | < ε , (1.24)∫
A

d(x,C)−2|∇2V | ,
∫
A

|∇2V |2 < ε , (1.25)

and that |〈Va,Vb〉 − δab| < ε in A, then we will have finished the annular structure estimates of Theorem 5.3
given in (1.17) and hence the proof of our main Theorems.

We will indeed prove these integral gradient estimates on V , though the pointwise ε-orthogonality on A is
a little too much to hope for. However, we will show in Theorem 6.4 that the Va do at least form a legitimate
vector bundle gauge on all of A, and in Theorem 7.1 we will see they even form an ε-orthonormal basis
away from a set whose n−4 content is less than ε. If one is careful, this turns out to be good enough because
one can iterate on this bad set in order to eventually get the curvature bounds on all of A.

The integral estimates on V and the ε-orthogonality on A all follow from the first estimate of (1.24), and
therefore our main goal is to show this. Indeed, the various other integral estimates on the hessian of V
follow from (1.24) in combination with ε-regularity theorems in A, while the ε-orthonormality follows from
(1.24) combined with a telescoping argument. We refer the reader to Section 7 for more on this, and focus
now on the proof of (1.24).

In the proof of (1.24) we begin by defining a smoothing of d(x,C). Indeed, recall the packing measure
µ associated to the annular region, and let us define the Green’s function and associated Green’s distance
function:

− ∆Gµ = µ ,

b−2 = Gµ . (1.26)

Note that if µ were exactly the n − 4 Hausdorff measure on a n − 4 dimensional subspace then b would be
proportional to the distance to that subspace. Using the Ahlfor’s regularity on µ we prove in Lemma 7.4 that
in A we at least have the uniform estimates

cd(x,C) < b(x) < Cd(x,C) , and c < |∇b| < C , (1.27)

and thus b is a legitimate smoothing of the distance d(x,C).

Now let φ be a reasonable cutoff function with φ ≡ 1 on A, and let us define the scale invariant quantity

S (r) ≡ r · r−3
∫

b=r
|∇V |φ|∇b| . (1.28)
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Then the estimate (1.24) is equivalent to the Dini estimate∫ ∞

0

S (r)
r

< ε . (1.29)

In order to prove this we will show in Proposition 7.6 the following superconvexity:

r
d
dr

(
d

d
dr

S
)
≥ (1 − ε)2S (r) − e(r) , (1.30)

where e(r) ≤ εµ
(
{x ∈ C : crx < r < Crx}

)
. Note that if there was no error, then this superconvexity tells us

that S (r) decays and grows polynomially in r, which is more than enough for (1.29). In fact, this is exactly
what happens in the four dimensional case. In the general case, we can at do an ode estimate using (1.30) in
Proposition 7.7 in order to conclude∫ ∞

0

S (r)
r
≤

∫ ∞

0

e(r)
r
≤ ε

∫ ∞

0

µ
(
{x ∈ C : crx < r < Crx}

)
r

≤ εµ(C) < ε , (1.31)

which finishes the proof of the Dini estimate, and hence the Theorems themselves.

2. PRELIMINARIES

2.1. Stationary Yang Mills and Monotonicity. Given a principal bundle P → M over a Riemannian
manifold we can consider the Yang Mills functional, which associates to a connection A the L2 curvature

F[A] =

∫
M
|FA|

2 . (2.1)

A stationary Yang-Mills connection is one which is a critical point of the above functional. Such a
connection solves the Yang-Mills equations

dAFA = 0 ,

d∗AFA = 0 . (2.2)

The terminology stationary comes from the fact that such a connection also solves the stationary equation

div
(
|FA|

2gi j − 4〈Fi, F j〉
)

= 0 . (2.3)

By pairing the above with the radial vector field ∇d2
x from a point x ∈ M we see as in [Pri83] that the scale

invariant curvature functional

θr(x) ≡ r4−n
∫

Br(x)
|FA|

2 , (2.4)

is a monotone quantity with

d
dr
θr(x) = 4r4−n

∫
S r(x)

∣∣∣FA[∂r]
∣∣∣2 . (2.5)

It will often be useful in the constructions to focus on the following, which measures the energy a whole
ball:
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θr(x) ≡ sup
y∈Br(x)

θr(y) . (2.6)

2.2. Symmetry of Connections. We briefly review the notion of symmetry in this subsection. In this paper
we will only be interested in top dimensional symmetry (i.e., k = n − 4 in what follows). However we give
the general definition as it is instructive:

Definition 2.1 ((k, ε)-Symmetry of Connections). If A is a connection on B1(p) with K < ε from (1.11),
then we say A is (k, ε)-symmetric if the following hold:

(0) For the radial vector field ∂r = ∇dp we have
>

B1
r4|F[∂r]|2 < ε.

(k) There exists a k-dimensional subspace Lk such that
>

B1
|F[L]|2 < ε.

Remark 2.1. We say A is 0-symmetric if only condition (0) holds above.

Using the monotone quantity θr(x) the following is a nice exercise, see for instance [Yu] or [NV]:

Theorem 2.2. Let A be a stationary Yang-Mills with
>

B2
|FA|

2 ≤ Λ. Then for each ε, τ > 0 there exists
δ(n, ε, τ,Λ) > 0 such that if K < δ from (1.11) and there exists x0, . . . , xk ∈ B1 with

(1) if L` = span{x1 − x0, . . . , x` − x0} then d(x`+1,L
`) > τ,

(2) |θ3 − θδ|(xi) < δ,

then B1 is (k, ε)-symmetric.

2.3. Defect Measures. The first technical result we review is from [Tia00] and relates the symmetry of the
defect measure to the symmetry of the converging connections:

Theorem 2.3 (Symmetries of Defect Measures [Tia00]). Let Ai → A with |FAi |
2dvgi → |FA|

2dvg + ν be
converging stationary Yang-Mills connections with

>
B4
|FA|

2 ≤ Λ. The following hold:

(1) If
∫

B2
|FAi[L

k]|2 → 0 and Ki → 0 from (1.11) then A and ν are both translation invariant by Lk. If
k = n − 4 then A is smooth and ν ≡ c λn−4

L
is a constant multiple of the Hausdorff measure on L.

(2) If Ai are (n − 4, i−1)-symmetric wrt Ln−4 then A ≡ 0 and ν ≡ c λn−4
L

is a constant multiple of the
Hausdorff measure on L.

The above can be viewed as the basis for the basic regularity result:

Theorem 2.4 ([Tia00]). Let Ai → A with |FAi |
2dvgi → |FA|

2dvg + ν be converging stationary Yang-Mills
connections with

>
B4
|FA|

2 ≤ Λ. Then ν = e(x)λn−4
S is n − 4 rectifiable with density e(x) > εn,k.
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2.4. ε-regularity for Stationary Yang-Mills. One of the key tools in the study of any nonlinear equation
are ε-regularity theorems. In this subsection we will discuss two such theorems. The first is the classical
ε-regularity theorem, which tells us that balls with small energy must be smooth. Precisely, we have the
following:

Theorem 2.5 ([Uhl82]). There exists an εn,k > 0 such that if A is a stationary Yang-Mills connection with
K < εn,k from (1.11) and θ(0, 2) = 24−n

>
B2
|FA|

2 < εn,k, then supB1
|FA|

2 ≤ C(n, k)
>

B2
|FA|

2 ≤ 1.

For convenience, we also introduce the concept of regularity scale at a point.

Definition 2.6. Given a smooth Yang-Mills connection A, we define the regularity scale rA(x) by

rA(x) = sup
{
s ≥ 0 s.t. ∀y ∈ Bs (x) , |FA(y)| ≤ s−2

}
. (2.7)

Note that this quantity is scale-invariant, and that an immediate consequence of the ε-regularity theorem is
that θ(0, 2r) ≤ εn,k implies rA(x) ≥ r.

Let us now discuss one further ε-regularity result which will play a role in our paper. The following tells
us that instead of assuming the energy is small on a ball, we need only assume the energy is small in a
sufficient number of directions. That is, if a ball is sufficiently symmetric in the sense of Definition 2.1 then
automatically the energy is small and a smaller ball is smooth. Precisely:

Theorem 2.7. Let A be a stationary Yang-Mills connection with
>

B4
|FA|

2 ≤ Λ. Then for each ε > 0 there
exists δ(n,Λ, ε) > 0 such that if K < δ from (1.11) and B2 is (n − 3, δ) symmetric, then supB1 |FA| ≤ ε.

Proof. We will only sketch the proof, as we refer to [CN13] for a verbatim argument in the nonlinear
harmonic maps context. So indeed, assume for some ε > 0 such a δ(n,Λ, ε) > 0 does not exist, so that
we can find a sequence of connections Ai for which B2 is (n − 3, δi)-symmetric, but the curvature is not
uniformly bounded. We may pass to a subsequence to limit Ai → A with corresponding defect measure
|FAi |

2dvgi → |FA|
2dvRn + ν. However, by theorem 2.3 we then have that both A and ν are now n − 3

symmetric, which is to say invariant under translations of some n − 3 subspace in Rn. However, by theorem
2.4 we also have that ν is n − 4 rectifiable. Combining these two points tells us that ν = 0 must be trivial.
Therefore A is smooth and reduces to a Yang-Mills connection on some R3, and is therefore itself a flat
connection. Thus we have that |FAi |

2dvgi → 0. In particular, for far enough down the sequence we may
apply the classical ε-regularity of Theorem 2.5 to get a contradiction, and thus prove the Theorem. �

2.5. Yang Mills in Four Dimensions. In this subsection we recall a couple basic points of four dimensional
solutions to the Yang Mills equations. The results of this subsection are well understood, even if they are
packaged in a form which is not completely standard. In addition to the classical methods for proving such
results, the methods of Sections 6 and 9 may be used to give distinct proofs which have the advantage of
generalizing to higher dimensions (as we shall see).

We begin by discussing four dimensional annular regions. The notion of an annular region will be a
central point to this paper, especially in higher dimensions where the analysis has been lacking to study
such regions. In dimension four they are quite well understood, and so we briefly review them here. The
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classical techniques used to prove the results of this section do not pass to higher dimensions, where the
singularities are not isolated. However, it is still helpful for intuition to review the isolated singularity case,
and additionally we will explicitly use these results in the study of finite regions in higher dimensions. The
main result is the following:

Theorem 2.8 (Annular Regions in n = 4). Let A be a stationary Yang-Mills connection on a four dimen-
sional space with r4−n

+

∫
B2r+
|FB|

2 ≤ Λ, and let A ≡ Ar−,r+
(p). There exists ε(k) > 0 such that if

(1) K < ε from (1.11).
(2) d2

x |FA|(x) < ε for x ∈ Ar−,r+
with dx ≡ d(p, x).

then there exists α(k) > 0 and C(k) > 0 such that if δ ≡ supAr− ,2r−
|FA| + supAr+ ,2r+

|FA| then we have the
improved estimate for x ∈ Ar−,r+

:

d2
x |FA|(x) < C

((dx

r+

)α
+

(r−
dx

)α)
· δ . (2.8)

In particular, we have that
∫

Ar− ,r+
|FA|

2 < C(k)δ2 and
∫

Ar− ,r+
|∇2FA| < C(k)δ

The classical method for proving results like the above is through a three annulus type lemma. The
techniques in Section 7 also give a (more involved) proof of the above result, though has the advantage of
working in higher dimensions.

We now turn our attention to more global information about four dimensional solutions. The content of
the next result is to see that the energy of a bubble can concentrate on at most a finite number of regions.

Theorem 2.9. Let B be a stationary Yang-Mills connection on R4 ×G with finite energy
∫
R4 |FB|

2 ≤ Λ. We
have C(k,Λ),N(k,Λ) such that ∃ disjoint balls {Bri(ci)}N1 ⊆ R4 with

∫
Bri
|FB|

2 > ε(k) such that for every
η > 0 if R ≥ R(k,Λ, η) then ∣∣∣∣ ∫

R4
|FB|

2 −

∫
⋃

BRri (ci)
|FB|

2
∣∣∣∣ < η . (2.9)

Remark 2.2. There is a local version as well if A is a connection on B2r(04) with
>

B2r
|FA|

2 ≤ Λ. Then one

has the estimate
∣∣∣∣ ∫Br
|FB|

2 −
∫

Br∩
⋃

BRri (ci)
|FB|

2
∣∣∣∣ < η.

In particular, if we consider a sequence of bubbles then the resulting limit may split into at most N inde-
pendent limiting bubbles. Classically one could prove this by contradiction using a bubble tree argument and
Theorem 2.8. The techniques of Section 11 can be used to give an effective proof, even in higher dimensions.

3. WEAKLY FLAT BALLS

In Section 2.4 it was discussed that the structure of a Yang-Mills connection A which is (n − 3, δ)-
symmetric is quite trivial, namely A is smooth and ε-flat. In this subsection we want to study the structure
of connections which are (n − 4, δ)-symmetric. In this case, A need not be trivially smooth, however the
structure of A is still quite simple and will form the basic building block for the top stratum of the defect
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measure. To understand this better let us discuss the notion of a weakly flat ball:

Definition 3.1 (δ-weakly flat). If K < δ from (1.11), then we say a connection A is δ-weakly flat on B1(p)
with respect to Ln−4 if

(1) For each y ∈ Lp ∩ B1 and δ ≤ r ≤ 1 we have r4
>

Br(y) |F[L]|2 < δ.
(2) For y ∈ B1(p) \ Bδ(Lp) we have the estimate |FA|(y) ≤ δ d(y,Lp)−2.

Remark 3.1. As with all definitions in this paper we will apply this in a scale invariant sense to any ball.
That is, we call Br(p) a δ-weakly flat ball if after rescaling r−1Br(p)→ B1( p̃) we have that the above holds.

Therefore a weakly flat ball does not have uniformly small curvature, but the curvature is quite small
away from a neighborhood of a n− 4 plane L. The notion of a weakly flat ball will come into play at several
stages, in particular in our defining of annular regions (one of our two main building blocks) in Section
5. Our first result, which follows quite easily from Theorem 2.7, tells us that balls which are very n − 4
symmetric must be weakly flat:

Theorem 3.2 (Existence of Weakly Flat Balls). Let A be a stationary Yang-Mills connection satisfying (1.11)
with
>

B2
|FA|

2 ≤ Λ and let ε > 0. Then there exists δ(n, k,K,Λ, ε) > 0 such that if B2 is (n − 4, δ)-symmetric,
then either:

(1) supB3/2
|F| ≤ ε, or

(2) B1 is ε-weakly flat and
>

B1
|F|2 > εn,k .

Remark 3.2. The constant εn,k > 0 is from the ε-regularity of Theorem 2.5.

Let us now consider the following self-improvement theorem for weakly flat balls, which will be used
for local estimates in the study of both quantitative bubble regions and annular regions. In short, it gives us
a local pinching estimate which tells us that if B1(p) looks δ-weakly flat on many scales, then B1 improves
and it actually 10−2δ-weakly flat.

Theorem 3.3 (Curvature Pinching of Weakly Flat Balls). Let A be a stationary Yang-Mills connection with
0 < κ < 1 and δ > 0. There exists c(k, κ) > 0 and δ′(n, k,Λ, κ, δ) > 0 such that if K < δ′ from (1.11) with>

Bc−1
|FA|

2 ≤ Λ,
>

Bc−1
|FA[L]|2 < δ′ and such that Br(p) is δ-weakly flat ball wrt L for c ≤ r ≤ c−1, then we

have that B1(p) is κδ-weakly flat.

If n = 4 the above can be viewed as a rewriting of Theorem 2.8. However, in higher dimensions the
above result is morally much weaker because the bound on

>
B2
|FA[L]|2 depends on δ. In particular, iterating

this result to obtain further improvements on more scales requires apriori better bounds in the L-directions.
Improving this estimate to a true generalization of Theorem 2.8 which is scale independent is accomplished
in the structure theorem on annular regions in Section 5. Regardless, the above local version will be useful
at several stages as a more coarse estimate.
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We end with a key covering tool, which for us will be the dichotomy that either a ball is weakly flat, or
away from a set of small n − 4 content we must have the energy strictly drops. Precisely, our result is the
following:

Theorem 3.4 (Weakly Flat Covering). Let A be a stationary Yang-Mills connection with K < δ from (1.11),>
B16
|FA|

2 ≤ Λ. Then there exists η(n, k,K,Λ, δ) > 0 such that either

(1) B4(p) is δ-weakly flat, or
(2) We can cover B1(p) ⊆

⋃
c Brc(xc) ∪

⋃
d Brd (xd) such that

(a)
∑

c rn−4
c < δ,

(b) θrd (xd) ≤ θ1(p) − η with
∑

d rn−4
d < C(n, k,K,Λ, δ).

3.1. Proof of Theorem 3.2. The proof is really just an application of theorem 2.3 with a contradiction
argument. Thus let us assume for some ε > 0 no such δ > 0 exists. Then there exits a sequence Ai of
connections which are (n − 4, δi)-symmetric with

∫
B2
|FAi |

2 ≤ Λ. After passing to a subsequence we have

Ai → A ,

|FAi |
2dvgi → |FA|

2dvg + ν . (3.1)

Using theorem 2.3 we have that A ≡ 0 with ν = cλn−4
L

a constant multiple of the n− 4 Hausdorff measure
on L. In particular, for far enough into the sequence B1 is ε-weakly flat.

To finish the proof we have two options, either ν(B1) ≥ εn,k or not. In the first case we have (2), thus let
us assume ν(B1) < εn,k. In this case we have by Theorem 2.5 that Ai are uniformly smooth on B1/2 suffi-
ciently far in the sequence, and in particular we actually have ν ≡ 0. Thus we have that Ai → 0 smoothly
on B3/2, and for far enough into the sequence we have |F| < ε on the ball, which shows case (1) is satisfied. �

3.2. Proof of Theorem 3.3. For δ, κ > 0 fixed let us assume no such δ′(n, k,Λ, δ, κ) > 0 exists. Thus we
have a sequence of connections Ai with

∫
Bc−1
|FAi[L]|2 → 0 such that for c ≤ r ≤ c−1 we have that Br(p) is

δ-weakly flat. We will choose c = c(n, κ) > 0 before the end of the proof. Passing to a subsequence we can
use theorem 2.3 to conclude that Ai → A and |FAi |

2dvgi → |FA|
2dvg + ν, where A defines a smooth n − 4

symmetric Yang Mills connection on Bc−1(p) and ν = cλn−4
L

. In particular, we can now apply theorem 2.8 to
conclude for cδ ≤ d(x,L) ≤ 1 the estimate

d(x,L)2|FA|(x) ≤ C(k)c(k, κ)α
((dx

1

)α
+

( δ
dx

)α)
δ . (3.2)

For c(k, κ) sufficiently small we see that B1(p) is 1
2κδ-weakly flat. In particular, for far enough in the se-

quence we have that B1(pi) is κδ-weakly flat, which proves the Theorem. �
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3.3. Proof of Theorem 3.4. Let us define the set

Eη ≡ {x ∈ B1 : |θ10 − θη| < η} . (3.3)

Picking τ = δ2 and c(n) ≡ 10−6n and using Theorem 2.2, if η < η(n, k,Λ, δ′) and Vol(B2τEη) > c(n)δτ4

then we know B8 is (n − 4, δ′)-symmetric, and hence by Theorem 3.2 that B4 is δ-weakly flat so that (1) is
satisfied. Therefore, we may assume this is not the case and choose a covering

B2τ(Eη) ⊆
⋃

c

Brc(xc) , (3.4)

where rc ≡ τ and
∑

rn−4
c < δ. Let us define rd ≡ η, and note now that for every point x ∈ B1 \

⋃
c Brc(xc) we

have that θrd (x) ≤ θ1(p) − η. By picking a Vitali covering of B1 \
⋃

c Brc(xc) ⊆
⋃

Brd (xd) of such balls we
have completed the construction. �

4. δ-BUBBLE REGIONS

In this section we study a quantitative form of a bubble region. These will play a role in both our
Quantitative Bubble Tree decomposition in Section 9 and the Annulus/Bubble decomposition of Section
11. Recall from Definition 1.1 the notion of a bubble B. We begin with a definition:

Definition 4.1 (δ-Bubble Region). Given that K < δ from (1.11) with b = {b j} a discrete set and r : b→ R

such that r j ≤ δ, then B = Bδ−1(p) \ Br j(b) is a δ-bubble region with respect to L = Ln−4
B if

(b1) If b⊥ ≡ b ∩ L⊥p then for any bi ∈ b we have bi ∈ Lb⊥j
with ri = r⊥j for some b⊥j ∈ b⊥.

(b2) Bδ−1(p) and {Br j(b j)} are δ-weakly flat.
(b3) rA > r̄(Λ, δ) on B.
(b4) {Br j/10(b j)} are disjoint with r4−n

j

∫
Br j (b j)

|F|2 > ε(n, k) for each b ∈ b.

Remark 4.1. The constant r̄(Λ, δ) > 0 is fixed according to Theorem 4.2. Indeed, with a little work one
could estimate r̄ explicitly as a polynomial of δ, but this would require many pages of tolling with little
added value.

Remark 4.2. In (b4) we can take ε(n, k) = 1
2εn,k where εn,k is from the ε-regularity of Theorem 2.5.

One should view a bubble region in the following manner. In dimension 4, consider a δ-weakly flat ball
Bδ (p). Ideally, a perfect bubble would be a smooth nontrivial YM connection such that for all x ∈ Bδ−1 (p)
we have rA ≥ r(Λ, δ). This implies that in some sense the curvature is not concentrating on too small scales
on this bubble, and in particular the ε-regularity theorem ensures that a sequence of such bubbles would
automatically converge smoothly with estimates to another Y M connection. However, it may happen that
this is not the case. Thus, if we have some concentration of energy on scales smaller than r(Λ, δ), we do not
want these pieces to be part of our bubble, and so we cut them out by our balls Br j(b j). By definition, each
one of this pieces will carry some definite amount of scale-invariant curvature, since otherwise we need not
have cut them out in the first place.

In higher dimensions, the situation is very similar. The only difference is that, instead of cutting out
n-dimensional balls, we cut out tubes around n − 4 dimensional planes.
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Indeed, one should think of a bubble as being

B = Bδ−1(p) \
⋃

bi∈b⊥
Bri(bi + L) . (4.1)

For future convenience, instead of writing a bubble as subtracting off a tube around the planes Lb⊥ from
Bδ−1 , we will instead cover those planes by a Vitali collection of balls centered on them and subtract this
collection off. There is no fundamental difference except it is more convenient for technical reasons later.
Condition (b1) is a rephrasing of this idea.

We will prove two primary results in this section. The first is an existence theorem, which will both tell us
when bubble regions exist and fix for us our constant r̄ in our definition. The criteria for existence will help
us in our construction of bubble regions in our quantitative bubble tree decomposition. The second purpose
of this section is a structure theorem, the results of which are mostly a straight forward consequence of the
definition combined with the knowledge of the behavior of four dimensional solutions given in Section 2.5 .
This is as opposed to the corresponding structure theorem on δ-annular regions which will be introduced in
the next section, which will be quite challenging.

Let us begin with our main existence theorem. The result will build for us nontrivial bubble regions in the
sense that the energy of any removed ball Bri(bi) will drop by some strict amount. This will be an important
aspect of future constructions:

Theorem 4.2 (Existence of Bubble Regions). Let A be a stationary Yang-Mills connection, and assume∫
B2δ−1
|F[L]|2 < δ′, K < δ′ from (1.11) and that Bδ−1(p) is δ-weakly flat wrt L. If δ′ < δ′(n, k,Λ, δ), then for

r̄(Λ, δ) > 0 in Definition 4.1 there exists a δ-bubble region B = Bδ−1(p) \ Brx(b) with best subspace L. If
further we assume Br(b) is not a δ-weakly flat ball for some δ3 < r < δ−1 and some b ∈ b, then we can build
the bubble so that |θ2 − θrb |(b) > ε(n, k) for all b ∈ b.

Remark 4.3. |θ1 − θrb |(b) > ε(n, k) is a nontriviality condition, which roughly says that if the bubble is not
really an annular region in disguise, then there is a definite energy drop blow the bubble.

Our primary structure theorem for bubble regions is now the following.

Theorem 4.3 (Structure of Bubble Regions). Let A be a stationary Yang-Mills connection on a δ-bubble
region B = Bδ−1 \ Brb(b) with

>
B2δ−1
|FA|

2 ≤ Λ and
>

B2δ−1
|F[L]|2 ≤ δ′. For each ε > 0 if δ < δ(n, k,Λ, ε) and

δ′ < δ′(n, k,Λ, δ) then:

(1) If bi ∈ b with ri ≤ r ≤ δ−1 then
∑

r j∈Br(bi) rn−4
j < N(n, k,Λ)rn−4.

(2) For q ∈ L ∩ B1 let bq, j = L⊥q ∩ Lb⊥j
, then

∣∣∣θδ−1(q) − ωn−4
∫
Bq
|FA|

2 −
∑
θr j(bq, j)

∣∣∣ < ε.
(3) For q ∈ L ∩ B1 ∃ ci ∈ Bq ∩ B1 and si > 0 with #{ci} ≤ N(n, k,Λ) and s4−n

i

∫
Bsi
|F|2 > ε(k) such that

if R ≥ R(n, k,Λ, ε) then
∣∣∣ ∫

Bq∩
⋃

BRsi (ci)
|FA|

2 −
∫
Bq
|FA|

2
∣∣∣ < ε.

(4) We have the estimate δn−4
∫
B
|∇2FA| < C(n, k,Λ, δ).
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Remark 4.4. In fact, it will be a consequence of Theorem 1.2 that we have the better estimate δn−4
∫
B
|∇2FA| <

C(n, k,Λ), without the δ-dependence. However, to prove Theorem 1.2 it will be enough to first prove this
weaker result.

Remark 4.5. (2) is the energy identity for bubbles and tells us that we can compute the energy at a point in
terms of the energy of a slice.

Remark 4.6. (3) is a concentration condition and tells us that the energy of the bubble can separate into at
most N clumps, independent of δ.

4.1. Existence of Bubble Regions. In this subsection we prove Theorem 4.2. Thus let us fix δ > 0 and
assume

>
B2δ−1
|F[L]|2 < δ′, which will be fixed later. For 0 < δ′′ < δ fixed observe that ∀ x ∈ Bδ−1 there

exists a radius rx > 0 with r̄(δ′′,Λ) < rx < δ
5 such that |θ2rx − θδ′′rx |(x) < δ′′. Indeed, to see this consider the

sequence of radii sa ≡ (δ′′)aδ5 and note for all N ∈ N that
N∑
1

|θsa − θsa+1 |(x) ≤ Λ . (4.2)

Therefore for N = Λ(δ′′)−1 + 1 we see that for one of the radii s0, . . . sN we must have |θsa − θsa+1 |(x) < δ′′

as claimed, otherwise by monotonocity of θ we contradict the above sum. Given this we can choose
δ′ < δ′(Λ, δ′′) so that we can also be assured r4−n

x

>
B2rx (x) |F[L]|2 < δ′′, so that B2rx(x) is (n − 4, δ′′)-

symmetric. We now pick δ′′ ≤ δ′′(n, k,Λ, δ) so that Theorem 3.2 holds with δ.

To finish the construction of B let us consider for x ∈ L⊥p ∩ B1 the covering {Brx(x)} of L⊥p ∩ B1. Let
{Br⊥j

(x⊥j )} be a Vitali subcovering with x⊥j ∈ L
⊥ ∩ B1 such that r⊥j = rx j and with {Br⊥j /10(x⊥j )} disjoint. By

translating the centers balls over L and picking another Vitali subcovering we can extend this to a covering
{Br′j(x′j)} of B1 such that for each x′j there exists x⊥i with x′j ∈ Lx⊥i

and r′j = r⊥i . Now by using the uniform
lower bound on the radii we can apply Theorem 3.2 to each ball Br⊥j

(x⊥j ) in order to conclude that either

rA(x⊥j ) > 1
2 r⊥j ≥ r̄(Λ, δ) on Br⊥j

(x⊥j ) or that Br⊥j
(x⊥j ) is δ/2-weakly flat with θr⊥j

(x⊥j ) > εn,k. Let us now define
b⊥ = {b⊥j } ⊆ {x

′
j} to be the collection of balls for which this second condition holds, and let b ⊆ {x′j} be the

subset for which b j ∈ Lb⊥i
for some b⊥i ∈ b⊥. We then define B ≡ Bδ−1 \

⋃
Br j(b j) as expected. Note that on

B we have the regularity estimate rA ≥
1
2 min r′j ≥ r̄(Λ, δ). Therefore with δ′ < δ′(n, k,Λ, δ) we have that B

is indeed a δ-bubble region.

Let us now focus on proving |θ2 − θr j |(b j) > ε(n, k) under the assumption that for some b ∈ b and
δ4 < r < 1 we have that Br(b) is not δ-weakly flat, at least if we choose δ′ < δ′(n, k,Λ, δ) sufficiently small.
So assume this is not the case for any δ′, then we can find a sequence of connections Ai with bubble regions
Bi ≡ B1 \ Bri,x(bi) as above with

>
B1
|F[Li]|2 → 0. After passing to a subsequence we can limit Ai → A with

|FAi |
2dvgi → |FA|

2dvg + ν and Bi → B = B1 \ Brx(b), and by using Theorem 2.3 we have that A defines a
smooth Yang Mills connection on L⊥ and that ν is invariant under translation by L. By our contradicting
assumption we have that ∣∣∣(|FA|

2dvg + ν)[B2(b)] − (|FA|
2dvg + ν)[Brb(b)]

∣∣∣ ≤ ε(n, k) . (4.3)
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By choosing ε(n, k) sufficiently small, from the ε-regularity of Theorem 2.5, we then have that ν ≡ 0 on
Arb,2(b) with d2

x |FA| < ε
′(n, k) on Arb,2(b), where dx = d(x, b) and ε′(n, k) is from Theorem 2.8. Indeed, since

Bδ−1(p) is δ-weakly flat we even have that d2
x |FA| < ε

′(n, k) on Arb,δ−1(b). Now let us apply Theorem 6.2, and
using that Bδ−1(b) and Brb(b) are δ-weakly flat, we then get the improved estimate for x ∈ Arb,δ−1 :

d2
x |FA|(x) < C(k)δ

((
δ dx

)α
+

( rb

dx

)α)
, (4.4)

Now recall our assumption is that for some δ3 < r < δ−1 we have that Br(b) is not δ-weakly flat. In particular,
this implies in our case that for some x ∈ Aδ4,10(b) we must have that d2

x |FA|(x) > δ. However, for δ < δ(k)
and rb < δ5 as constructed we see from the above estimate that this is not possible, and thus we have found
our desired contradiction and proved the Theorem. �

4.2. Structure of Bubble Regions. In this subsection we give a proof of Theorem 4.3. The proof of the
content estimate (1) follows immediately from (b2) and (b4) in the definition of a δ-bubble region. Indeed,
using the lower bound rn−4

j

∫
Br j (x j)

|FA|
2 > ε(n, k) together with the fact that Br j(x j) are δ-weakly flat we

immediately have lower bounds on the slightly smaller balls

rn−4
j

∫
Br j/10(x j)

|FA|
2 >

1
2
ε(n, k) . (4.5)

Combining this with the disjoint property of {Br j/10(x j)} we have∑
rn−4

j ≤
∑

2ε(n, k)−1
∫

Br j/10

|FA|
2 ≤ C(n, k)

∫
B2

|FA|
2 ≤ C(n, k)Λ , (4.6)

which proves the content estimate.
Let us now focus on the hessian estimate of (4). Indeed, for this we use (b3) to see that rA > r̄(Λ, δ)

on B ⊆ Bδ−1 . Standard elliptic estimates then give us that |∇2FA| < C(n, k,Λ, δ) pointwise on B, which in
particular implies the weaker L1 estimate∫

B

|∇2FA| ≤ C(n, k,Λ, δ)Vol(Bδ−1) , (4.7)

as claimed.

We are now left with proving that (2) and (3) hold for δ′ sufficiently small. So assume this is not the case
for any δ′, then we can find a sequence of connections Ai with bubble regions Bi ≡ B1 \ Bri,x(bi) as above
with

>
B1
|F[Li]|2 → 0. After passing to a subsequence we can limit Ai → A with |FAi |

2dvgi → |FA|
2dvg + ν

and Bi → B = B1\Brx(b), and by using Theorem 2.3 we have that A defines a smooth Yang Mills connection
on L⊥ and that ν is invariant under translation by L.

Let us first focus on (2), and it is enough to prove this for q = p as the other cases are verbatim. Indeed,
viewing A as a connection on the four dimensional space L⊥ we have the equality

ν[Bδ−1] +

∫
Bδ−1 (0⊥)

|FA|
2 =

∑(
ν[Br⊥j /10(b⊥j )] +

∫
Br⊥j

(b⊥j )
|FA|

2
)

+

∫
B∩L⊥

|FA|
2 . (4.8)

Using that θδ−1(pi) → ν[Bδ−1] +
∫

Bδ−1
|FA|

2 with θri, j(b
⊥
i, j) → ν[Br j/10] +

∫
Br j (b

⊥
j ) |FA|

2 and ωn−4
∫
Bpi ,i
|FAi |

2 →∫
B∩L⊥

|FA|
2 this shows (2) must hold for sufficiently far in the sequence. Thus we can concentrate on (3).
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To prove (3) let us apply Theorem 2.9 to the limit A on L⊥ ∩ B4 to get points cA
1 , . . . , c

A
N ∈ L

⊥ ∩ B1. By
construction we have for R ≥ R(n, k,Λ, ε) that∫

B2∩BRs j (c j)
|FA|

2 <
ε

4
. (4.9)

Since Bδ−1(p) is δ-weakly flat we may apply Theorem 2.8 in order to see that
∫

A1,δ−1 (p) |FA|
2 < C(k)δ < ε

4 ,

and hence ∫
Bδ−1∩BRs j (c j)

|FA|
2 <

ε

2
. (4.10)

Finally, observing that supp[ν] ⊆
⋃

b Brb(b) this gives us for sufficiently far in the sequence that∫
Bp∩Bδ−1∩BRs j (c j)

|FAi |
2 < ε , (4.11)

which shows that (3) holds and thus finishes the proof. �

5. δ-ANNULAR REGIONS

In this section we consider the second piece of our quantitative decompositions, namely the δ-annular
regions. These are the regions which will turn out to be the most challenging to analyze, and the next several
sections of this paper will be dedicated to proving the results stated in this section.

Quantitative bubble regions have the property that they have large curvature, but only on bounded do-
mains. On the other hand, quantitative annular regions have small curvature, but over potentially an infinite
number of scales. Recalling the notion of a weakly flat region in Definition 3.1 we define an annular region
in the following manner:

Definition 5.1. If KM < δ from (1.11), then we call A ⊆ B2(p) a δ-annular region if there exists a closed
subset C = C0 ∪ C+ = C0 ∪ {xi}, a radius function r : C → R+ with 0 < rx ≤ δ on C+ and rx = 0 on C0, and
a n − 4 subspace L such that A ≡ B2 \ Brx(C) satisfies

(a1) {Bτ2rx
(x)} are pairwise disjoint.

(a2) For each x ∈ C and rx ≤ r ≤ 2 we have that Br(x) is δ-weakly flat wrt Lx ≡ L + x.
(a3) For each x ∈ C and rx ≤ r with B2r(x) ⊆ B2 we have that Lx ∩ Br ⊆ Bτr(C) and C ∩ Br ⊆ Bδr(Lx).
(a4) |Lip rx| ≤ δ.

For each τ ≤ s ≤ 1 we define the regions As ≡ B2 \ Bs·rx(C) as well as the wedge regions
Wθ(x) ≡

{
y ∈ Arx/2,2(x) : d(y,Lx) ≥ cos(θ) d(y, x)

}
and Wθ

r(x) ≡Wθ(x) ∩ Acos θ r,r/ cos θ(x).

Remark 5.1. The constant τ = τn = 10−10nωn is a dimensionally chosen constant designed to neutralize any
errors obtained overlaps in covering constructions.

Remark 5.2. For a smooth connection we have C0 = ∅. For nonsmooth stationary connections one must
allow for the possibility that C0 , ∅.
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Remark 5.3. Note that (a1) and (a4) imply that B10rx(x) intersects at most C(n) other balls in the covering,
all of which have radii which are in the range [ 1

2 rx, 2rx].

Associated to each annular region is its packing measure. In the same way in which C approximates the
n− 4 defect measure of the connection, we have that the packing measure approximates the n− 4 Hausdorff
measure on the support of this defect measure. Precisely we have the following:

Definition 5.2. Let A ≡ B2 \ Brx(C) be an annular region, then we define the associated packing measure

µ = µA ≡
∑
x∈C+

rn−4
x δx + λn−4|C0 , (5.1)

where λn−4|C0 is the n − 4-dimensional Hausdorff measure restricted to C0.

The goal of this section is two fold. We will first discuss some properties of annular regions. Our three
main properties about annular regions will be to show that the packing measure is Ahlfor’s regular, and
that in the annular region we have apriori L1 hessian and L2 curvature bounds. These estimates will be the
eventual key to both the global L1 hessian estimate of Theorem 1.2 and the energy identity of Theorem 1.3.
We will prove the Ahlfor’s regularity statement in this section, however the curvatures estimates will not be
proved until later in the paper, as there is a lot of new technical constructions needed in their proofs.

Our second main goal will be to prove the existence of annular regions. In order for an annular region
to be useful in the end analysis, we will need to know many exist. In this section we will give some basic
criteria used to construct maximal annular regions. The maximal property of the constructed annular regions
will be crucial in the proof of the annulus/bubble decomposition in Section 11.

Let us now begin by stating our main structural result on the properties of annular regions:

Theorem 5.3 (Structure of Annular Regions). Let A be a stationary Yang-Mills connection on a δ-annular
region A = B2 \ Brx(C) satisfying (1.11) and

>
B4
|FA|

2 ≤ Λ. For each ε > 0 if δ < δ(n,Λ, k, ε) we then have:

(1) For each x ∈ C and rx < r < 4 we have that A(n)−1rn−4 ≤ µ
(
Br(x)

)
≤ A(n)rn−4.

(2) We have the estimate
∫
A∩B1

|∇2F| < ε.

(3) We have the estimate
∫
A∩B1

|FA|
2 < ε.

With this in hand let us see what criteria may be used to build annular regions. A key result in the
annulus/bubble decomposition of Theorem 11.1 is the n − 4 content bound on the number of pieces to the
decomposition. It is worth noting that for such an estimate to hold, one must be quite careful about the
construction of the annular regions. Indeed, if one were to build annular regions which were much smaller
than they need to be, it is possible the content estimate would fail. Therefore, we must also analyze what it
means to build maximal annular regions, a concept which will be made precise in the following Theorem:

Theorem 5.4 (Existence of Annular Regions). Let A be a stationary Yang-Mills connection with
∫

B4
|FA|

2 ≤

Λ. For each ε > 0 and 0 < δ < δ(n, k,Λ, ε) there exists δ′(n, k,K,Λ, δ) such that if
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(1)
∫

B8
|F[L]|2 < δ′ ,

(2) For each 4−1δ ≤ r ≤ 4 we have that Br(p) is δ-weakly flat wrt L,

then ∃ a δ-annular region A = B2 \ Brx(C) wrt L such that if we consider the set

Cc ≡

x ∈ C : Br(x) is δ-weakly flat for δ4rx ≤ r ≤ rx , or

x ∈ C : ∃ q ∈ L with L⊥q ∩ B̄rx(x) , ∅ and
∫
L⊥q ∩A

|FA|
2 > ε ,

(5.2)

then we have the estimate µ(Cc ∩ B1) < ε.

5.1. Proof of Ahlfor’s Regularity of Annular Region. In this subsection we prove the Ahlfor’s regularity
of Theorem 5.3.1 . Thus throughout this section A = B2 \ Brx(x) is a δ-annular region and µ is its packing
measure. To prove the result let us begin with the following:

Claim: The projection mapping π : C → L, from the center points to the annular best plane L, is a
1 + εn-bilipschitz map where εn < 100−1. That is, for x, y ∈ C we have that (1 − εn)|π(x) − π(y)| ≤ d(x, y) ≤
(1 + εn)|π(x) − π(y)|.

To prove the claim let us consider x, y ∈ C and let r ≡ d(x, y). Then by condition (a3) we have for
Lx ≡ L + x that Lx ∩ Br ⊆ Bτnr(C) and C ∩ Br ⊆ Bτnr(L). In particular, this gives us that

|π(x) − π(y)| − τnr ≤ d(x, y) ≤ |π(x) − π(y)| + τnr . (5.3)

However, we have chosen our scale so that r ≡ d(x, y), and therefore by rearranging we have

1
1 + τn

|π(x) − π(y)| ≤ d(x, y) ≤
1

1 − τn
|π(x) − π(y)| , (5.4)

which finishes the proof of the claim. �

Now to finish the proof let us pick x ∈ C with rx ≤ r < 1 such that B2r(x) ⊆ B2. Let us first prove the
upper bound on µ(Br(x)). First note that by the bilipschitz condition we have that

π(C ∩ Br(x)) ⊆ B2r(π(x)) . (5.5)

Further, since the collection of balls {Bτ2ry
(y)} are all disjoint, if we again use the bilipschitz condition we

must have that the image balls {Bτ3ry
(π(y)} are disjoint in L. But then this give us

µ(Br(x)) ≡
∑

y∈C+∩Br(x)

rn−4
y + λn−4(C0 ∩ Br(x)

)
≤ τ−3(n−4)

n

( ∑
y∈C+∩Br(x)

(τ3
n ry)n−4

)
+ λn−4(C0 ∩ Br(x)

)
≤ C(n)

( ∑
x∈C+∩Br

Vol(Bτ3ry
(π(y))) + Vol(π(C0 ∩ Br))

)
≤ C(n)Vol(B2r(π(x))) ≤ A(n)rn−4 , (5.6)

where we have used the bilipschitz condition on π multiple times and that π(Br(x)) ⊆ B2r(π(x)).

In order to prove the lower bound we start with the following claim:
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Claim: For each x ∈ C and rx ≤ r < 1 with B2r(x) ⊆ B2 we have that Bry

(
π(C ∩ Br(x))

)
=⋃

y∈π(C∩Br(x)) Bry(y) ⊇ Br/2(π(x)).

To prove the result let us assume it is false and let y ∈ Br/2(π(x)) \ Bry

(
π(C ∩ Br(x))

)
. Let us choose

z ∈ π(C ∩ Br(x)) such that

z ∈ argmin{d(z, y) : z ∈ π(C ∩ Br(x))} . (5.7)

Let s ≡ d(y, z), and note that by our assumption on y we have that s ≥ rz. But if we apply condition (a3)
to B2s(z), then we know that π(C ∩ Br(x)) is 2τns dense in B2s(π(z)) ⊆ L, which contradicts that z is the
closest point of π(C) to y and satisfies d(y, z) = s. This proves the claim. �

With the claim in hand we can now easily prove the lower volume bound. Indeed, we have:

µ(Br(x)) =
∑

y∈C∩Br

rn−4
y ≥ C(n)−1

∑
y:π(y)∈Br/2(π(x))

Vol(Bry(π(y))) ≥ C(n)−1Vol(Br/2(π(x))) ≥ A(n)−1rn−4 , (5.8)

which finishes the proof of the lower bound. �

5.2. Existence of Annular Regions. In this section we deal with the issue of proving the existence of a
δ-annular region which is maximal in a suitable sense. Let us pick some δ′′ > 0 which will be fixed later,
and now we begin by defining the following for each x ∈ B2:

sx ≡ inf
s≤1

{
∀s ≤ r ≤ 1 r4−n

∫
Br(x)
|F[L]|2 < δ′′

}
,

s′x ≡ inf
s≤1

{
∀δ3s ≤ r ≤ 1 Br(x) is δ-weakly flat

}
,

tx ≡ max
{
sx, s′x

}
. (5.9)

Now for each q ∈ L ∩ B1 let yq ∈ L
⊥
q and tq ≥ 0 be defined by

tq ≡ min
y∈L⊥q

ty ,

yq ∈ arg min
y∈L⊥q

ty . (5.10)

Now let us define {Bti(yi)} be a maximal subset of {Btq(yq)} such that {B10−1ti(yi)} are disjoint. Let us
decompose this collection into two subcollections:

{Bti(yi)} = {Bt′i (y
′
i)} ∪ {Bt̃i(ỹi)} , (5.11)

where {Bt′i (y
′
i)} is the subcollection such that

t′i = max{sy′i , s
′
y′i
} = s′y′i ≥ 10 sup

y∈Bt′i
(y′i )

sy , (5.12)

and {Bt̃i(ỹi)} are the remaining balls. Notice that if δ′ < δ′(n, δ, δ′′) then by a standard maximal function
argument we have the estimate ∑

t̃ n−4
i ≤ δ2 . (5.13)
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Let us now consider the following claim:

Claim: If δ′′ < δ′′(n, k,Λ, δ) and y ∈ B1000t′i (y
′
i), then c(k)t′i < s′y ≤ ty. Further, if y ∈ {y j} is a ball center

then we have the two sided estimate c(k)t′i < ty < 104t′i .

The upper bound ty < 104t′i in the case y is a center point follows from the Vitali condition, therefore
we will focus on the lower bound c(k)t′i < s′y for general y, which will itself follow from Theorem 3.3.
Note by the definition of t′i we have that Bδt′i (y

′
i) is δ-weakly flat, but Br(y′i) is not δ-weakly flat for some

1
2δ

3t′i < r < δ3t′i .
Now let us look at the ball Bt′i (y). If we assume s′y ≤ c(k)t′i , then we have for all c(k)δ3t′i ≤ r ≤ c(k)−1δ3t′i

that Br(y) is δ-weakly flat. Using Theorem 3.3 with κ = 10−1 we have for c(k) sufficiently small that
Br(y) is 10−1δ-weakly flat for all 10−1δ3t′i ≤ r ≤ 10δ3t′i . In particular, for δ′′ ≤ δ′′(n, k,Λ, δ) we have that
there must exist a point z ∈ L⊥y′i

∩ Bt′i such that s′z ≤ 2−1t′i . However, by the definition of Bt′i (y
′
i) we also have

that sz ≤ 10−1t′i , and therefore tz ≤ 2−1t′i . This contradicts that ty′i = minu∈L⊥
y′i

tu, and thus proves the Claim. �

To continue with the proof of Theorem 5.4 let us define the radii function

rx ≡

δ
2ti if x ∈ Bδti(yi) ,

δd(x, {yi}) if x <
⋃

Bδti(yi) .

Note that |Lip rx| < δ. Now we play a similar game as in the previous covering and define for each q ∈ L∩B1

the point xq ∈ L
⊥
q and rq ≥ 0 by

rq ≡ min
x∈L⊥q

rx ,

xq ∈ arg min
x∈L⊥q

rx . (5.14)

Now for some xq let yi be the center point such that either xq ∈ Bδti(yi) or rq = δd(x, yi), so that in either
case we have that rq ≥ δ

2ti. Since Br(yi) is δ-weakly flat for δ3ti ≤ r ≤ c(k)−1 we have by Theorem 3.3 the
improved estimate that Br(yi) is 10−1δ-weakly flat for c(k)δti ≤ r ≤ 1. In particular, we have that Br(yi) is
10−1δ-weakly flat for rq ≤ r ≤ 1. If δ′′ ≤ δ′′(n, k,Λ, δ) is sufficiently small we then conclude that Br(xq) is
itself δ-weakly flat for rq ≤ r ≤ 1.

We now define our annular region by C ⊆ {xq} so that {Brx(x)}x∈C is a maximal subset of {Brq(xq)}q∈L such
that {Bτ2rx

(rx)} are disjoint. It is a straightforward, if somewhat tedious, exercise using the remarks of the
previous paragraph to check for δ′′ ≤ δ′′(n, k,Λ, δ) that this defines a δ-annular region. We will focus then
on the nontriviality of this annular region. That is, if we consider the sets

Cc,1 ≡
{
x ∈ C : Br(x) is δ-weakly flat for δ4rx ≤ r ≤ rx

}
,

Cc,2 ≡
{
x ∈ C : ∃ q ∈ L with L⊥q ∩ B̄rx(x) , ∅ and

∫
L⊥q

|FA|
2 > ε

}
, (5.15)

then we want to see for δ′ ≤ δ′(n, k,Λ, δ) that we have the estimates µ
(
Cc,1), µ(Cc,2) < 1

2ε. We begin by
estimating Cc,1. To accomplish this let us consider x ∈ C ∩ Bt′i (y

′
i), then by using the two sided bound of the
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previous Claim, and particular that c(k)t′i ≤ t j ≤ c(k)−1t′i for any other ball center in B2t′i (y
′
i), we have the

estimate

c(k)δ t′i ≤ rx ≤ c(k)−1δ t′i .

Additionally, we know by the Claim that sx ≥ c(k)t′i , which is to say for some radius r ≥ 1
2 c(k)δ3t′i we

must have that Br(x) is not δ-weakly flat. Combining this with the above estimate we see that for some
radius r ≥ c(k)δ2rx that Br(x) is not δ-weakly flat, which for δ < δ(k) implies that x < Cc,1, and in particular
gives us the inclusion

Cc,1 ⊆
⋃

Bt̃ j(ỹ j) . (5.16)

Finally, using (5.13) and the Ahlfor’s regularity on µ proved in Section 5.1 we have the estimate

µ
(
Cc,1) ≤∑

µ
(
Bt̃ j(ỹ j)

)
≤ C(n)

∑
t̃ n−4

j ≤ C(n)δ2 < δ . (5.17)

Now we focus on estimating Cc,2, which will itself depend on the curvature estimate of Theorem 5.3.3. So
let us choose δ < δ(n, k,Λ, ε′) such that Theorem 5.3 holds with ε′ > 0. Note then that we have∫

B1(0L)

∫
L⊥q ∩A

|FA|
2 =

∫
A∩B1

|FA|
2 < ε′ . (5.18)

Using the first claim of subsection 5.1, where it is shown that the projection πL is uniformly bilipschitz on
C, this implies that ∫

B1

(?
Brx (π(x))

∫
L⊥q ∩A

|FA|
2
)

dµ[x] < C(n)ε′ . (5.19)

In particular, if ε′ ≤ c(n)ε2 then away from a set C′ ⊆ C∩B1 with µ(C′) < 1
2ε we have that

>
Brx (π(x))

∫
L⊥q ∩B1

|FA|
2 <

10−1ε. Now let us use that Br(x) is δ-weakly flat for each r > rx combined with standard elliptic estimates
to see that |∇FA| < C(n)δr−3 on Ar,r/2(Lx). This in particular gives us for each x ∈ C ∩ B1 that∣∣∣∣ max

q∈Brx (π(x))

∫
L⊥q ∩A

|FA|
2 −

?
Brx (π(x))

∫
L⊥q ∩A

|FA|
2
∣∣∣∣ < C(n)δ rx . (5.20)

For x < C′ this gives us that

max
q∈Brx (π(x))

∫
L⊥q ∩A

|FA|
2 ≤

?
Brx (π(x))

∫
L⊥q ∩A

|FA|
2 + C(n)δ rx < 10−1ε + C(n)δ2 < ε . (5.21)

Therefore we have that Cc,2 ⊆ C′ and thus µ(Cc,2) < 1
2ε, which finishes the proof of the Theorem. �

6. HARMONIC ε-GAUGE

Standard in any gauge problem is the need to choose a good coordinate system in order to study the
equations. In the context of Yang Mills the standard gauge condition one prefers is the Coulomb gauge.
Unfortunately, such a gauge will only exist locally and in general only when the underlying geometry is
quite simple (e.g. when the curvature of the connection is small).

A key object of study in this paper are annular regions. Annular regions A ⊆ B2 are regions for which the
connection looks very flat in a weak sense, but there is some curvature concentration on B2 which is only
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visible on small scales inside the singular balls. A Coulomb gauge will in general certainly not exist on the
whole ball.

Instead in this section we will introduce a form of linearized Coulomb gauge associated to the induced
vector bundle E → M coming from the orthogonal representation of G ⊆ SO(k). This gauge will exist
and solve an equation on the whole ball B2, a point which will be important and useful in the analysis.
On the other hand, this linearized gauge will only form a a legitimate (vector bundle) gauge on part of the
ball. Recall that if A is a Yang-Mills connection on P then E is equipped with a metric connection ∇A. In
particular, we have the associated Laplace operator ∆A : Γ(E) → Γ(E). Let us begin by defining our notion
of an ε-gauge on E:

Definition 6.1. We say that sections V1, . . . ,Vk ∈ Γ(Br, E) form a harmonic ε-gauge on Br(x) if the follow-
ing hold:

(1) ∆Va = 0.
(2) |Va| ≤ 1 + ε .
(3)
>

Br
|〈Va,Vb〉 − δab| < ε.

(4) r2
>

Br
|∇V |2 < ε2.

The goal of this section is to prove the existence of ε-gauges on balls B2 which admit annular regions
A ⊆ B2, and to prove that Va forms an actual vector bundle gauge over the whole annular region A. The
difficulty of this second statement is that apriori the sections Va, which have bounded norm, may have norm
tending to zero near the singular balls or may be becoming linearly dependent. While one cannot say this
doesn’t happen, in fact in the whole ball it must happen, we will see that it cannot happen faster than at a
small polynomial rate, and thus the sections remain a basis. In fact, we will show something much stronger,
we will see that for every x ∈ C and r ≥ rx that there exists a k × k matrix T such that T ◦ V is an ε-gauge
on Br(x). The idea for this is related to the ideas of [CN15]. We will also discuss some applications of these
estimates which will be useful later in the paper.

In the next section we will tackle the more refined estimates on ε-gauge’s, which will tell us for most
points x ∈ C that for any ball Br(x) with r ≥ rx, the Va remain an ε-gauge, even without transformation.
This result will be crucial in the proof of the energy identity and L1 hessian estimate. However, our first
main result of this section is the following, which begins by showing the existence of harmonic ε-gauge’s
on sufficiently symmetric balls:

Theorem 6.2. Let A be a stationary Yang-Mills connection with
>

B4
|FA|

2 ≤ Λ and B4(p) a δ-weakly flat
ball. For each ε > 0 if δ < δ(n, k,Λ, ε), then there exists a harmonic ε-gauge Va ∈ Γ(B2, E).

With the existence of an ε-gauge established, we would like to understand how close to being a gauge
the Va actually are. The L2 condition only concludes that the the Va form a gauge on a set of almost full
measure. This is actually pretty weak, and we would like to understand that the Va form a gauge on all of
A. In fact, it will be important for us to understand much more than this and have some effective control
on the behavior of the Va at small scales. Motivated by the transformation theorem which is to come, let us
make the following definition:
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Definition 6.3. Let A be a stationary Yang-Mills connection on a δ-annular region A ≡ B2 \ Brx(C), and let
Va ∈ Γ

(
B4, E

)
be an ε-gauge. Given x ∈ C with rx ≤ r ≤ 2 and θ ≡ 10−2 we define the k × k symmetric

transformation matrix:

T = T (x, r) =

(?
Wθ

r (x)
〈Va,Vb〉

)−1/2

. (6.1)

Remark 6.1. Recall that the wedge regions are defined by Wθ(x) ≡
{
y ∈ B2 : d(y,Lx) ≥ cos(θ) d(y, x)

}
and

Wθ
r(x) ≡Wθ(x) ∩ Acos θ r,r/ cos θ(x).

Remark 6.2. Apriori T may have infinite eigenvalues as defined, however we will see in Theorem 6.4 below
that this is not the case.

Remark 6.3. For the sake of the theorems of this section one could have made the slightly simpler definition
T =

( >
Br(x)〈V

a,Vb〉
)−1/2, where one averages over a ball instead of a small portion of it. Taking the average

away from the singular set becomes important in the next section, when we try and control in a more refined
manner the behavior of T . In this case, if one were to average over all of Br, then this adds small errors at
every scale which may potentially pile up.

The following sums up the the use of the transformation matrices:

Theorem 6.4. Let A be a stationary Yang-Mills connection on a δ-annular region A ⊆ B2(p) satisfying
(1.11) and

>
B4
|FA|

2 ≤ Λ, and let Va ∈ Γ(B4, E) be a δ-gauge. For each ε > 0, if δ < δ(n,Λ, ε), then for all
B2r(x) ⊆ B2 with x ∈ C we have that

(1) T (x, r) is nondegenerate, in fact 1 − ε ≤ T ≤ (1 + ε)r−ε .
(2) Ṽa ≡ (T ◦ V)a = T a

b Vb is an ε-gauge on Br(x).

The first immediate corollary is that Va is everywhere nondegenerate on A and thus defines a vector
bundle gauge. The second immediate corollary, which is itself not otherwise obvious, is that by using the
uniform lower bound on T (x, r) and standard elliptic estimates we have for each x ∈ A10−6 the pointwise
estimates

d(x,C)|∇V |(x) < C(n)ε ,

d(x,C)2|∇2V |(x) < C(n)ε . (6.2)

Indeed, the fact that |∇V | and |∇2V | are scale invariantly bounded follows from the global L∞ estimate on
|V |. However, the smallness of this bound is more subtle to prove, and will be directly used in Section 7.

6.1. Computation Properties and Basic Estimates of Harmonic Sections. In this subsection we record
some basic computation properties of harmonic sections, as well as some basic estimates over ε-regularity
regions. Let us begin with the following computations for harmonic sections over a vector bundle E equipped
with a Yang Mills connection:

Lemma 6.5. Let V ∈ Γ(Br, E) satisfy ∆V = 0, where E is equipped with a Yang Mills metric connection ∇A.
Then the following hold:
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(1) ∆|V |2 = 2|∇V |2 ≥ 0.
(2) ∆|∇V |2 = 2|∇2V |2 + 2F(∇V,∇V) + 2Rc(∇V,∇V).

Remark 6.4. We leave both as an easy exercise, but let us point out that the Yang-Mills condition plays a
role in the second equation, as typically there is a divF term which appears in this computation.

Let us now also record a basic estimate of ε-gauges inside ε-regularity regions:

Lemma 6.6. Let V ∈ Γ(B2r, E) satisfy ∆V = 0, where E is equipped with a Yang Mills metric connection
∇A. Assume that we have the regularity scale estimate rA ≥ 4r. Then for k ≥ 1 we have the estimate
rk supBr

|∇kV | ≤ C(n, k) r
>

B2r
|∇V |.

Proof. Let us briefly outline this because it uses the Yang-Mills conditions in two ways. Since this is a
scale invariant estimate we can assume r = 1 without any loss. First, as in Lemma 6.5 we may compute
∆∇V = F(∇V) using the Yang-Mills condition, and thus on B3(x) we have the inequality

∆|∇V | ≥ −C(n)|∇V | , (6.3)

so that |∇V | satisfies a subharmonic inequality. We may therefore use the mean value theorem for nonnega-
tive functions satisfying the above in order to conclude that supB5/2

|∇V | ≤ C(n)
>

B2
|∇V |. Now we may use

standard elliptic estimates on the equation ∆∇V = F(∇V) in order to conclude the result. �

6.2. Proof of ε-Gauge Existence of Theorem 6.2. We will prove the result by contradiction. Indeed, let
us assume for some ε > 0 that no such δ(n, k,Λ, ε) exists. Then we can find a sequence of Yang-Mills
connections Ai with B4(pi) δi-weakly flat balls with δi → 0 for which there does exist an ε-gauge Va on B2.

After possibly composing with a rotation, there is no harm in assuming each weakly flat ball is with
respect to the n − 4 plane of symmetry Li ≡ L ≡ Rn−4 × {0}. Note that since δi → 0, we have that the
underlying manifolds are converging

B4(pi)
C1,α

−→ B4(0) ⊆ Rn . (6.4)

Additionally, we have on B4 \ Bδi(L) that the curvature satisfies |Fi| → 0. Thus if we restrict the bundles
Ei → Bδ−1

i
\ Bδi(L) then after passing to a subsequence we can limit

Ei → E ,

Ai → A , (6.5)

where E → Rn \ L and A is a flat connection on E. In particular, we can pick global parallel sections
E1, . . . , Ek on E, and thus canonically extend E to the trivial bundle Rk ×Rn → Rn.

Let us consider the convergence Bδ−1
i
→ Rn and Ei → E in slightly more detail, as it will be useful in

the coming analysis. Specifically, our convergence tells us that for all i sufficiently large we may find a C2,α
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diffeomorphism and G-bundle maps such that the following diagram commutes:

Ei
ϕE //

πi

��

E

π

��
Bδ−1

i
(pi) \ Bδi(L)

ϕ // Rn \ Bδi(L)

(6.6)

Let us now define the sections V1
i , . . . ,V

k
i ∈ Γ(Ei, B3) as the unique harmonic sections ∆Va

i = 0 in B3(pi)
which satisfy the Dirichlet boundary values

Va
i (x) =

ϕ
∗
EEa if x ∈ ∂B3(pi) \ Bδi(L) ,

0 if x ∈ ∂B3(pi) ∩ Bδi(L) .

Now let us see that for i sufficiently large this defines our ε-gauge. Let us begin by showing the pointwise
estimate |Va

i | ≤ 1. Indeed, we have on ∂B3 that |Va
i | ≤ |ϕ

∗
EEa| ≡ 1. On the other hand, by Lemma 6.5 we

have that |V | is a subharmonic function. Therefore by a maximum principle we have the estimate |Va
i | ≤ 1

on all of B3.

We will want to show the gradient estimate
>

B4
|∇Va

i |
2 < ε2. Let us begin by proving the related, but

apriori weaker, estimate that if B8r(x) ⊆ B3 then r2
>

Br
|∇Va

i |
2 < C(n). Indeed, let φ : B8r(x) → R be a

smooth cutoff function with

φ ≡ 1 on B4r , φ ≡ 0 outside B7r ,

r |∇φ| , r2 |∇2φ| < C(n) . (6.7)

Thus we can compute?
B4r

|∇Va
i |

2 ≤ C(n)r−n
∫

φ|∇Va
i |

2 = C(n)r−n
∫

φ∆|Va
i |

2

= C(n)r−n
∫

∆φ|Va
i |

2 ≤ C(n)r−2 sup
B7r

|Va
i |

2 ≤ C(n)r−2 , (6.8)

where in the middle equality we have used Lemma 6.5.1.
The global L∞ bound on Va

i combined with the curvature bound |Fi| → 0 on B4(pi) \ Bδi(L) tells us that
after passing to a subsequence we can limit

Va
i → Va ∈ Γ(E, B3(0n) \ L) , (6.9)

where the convergence is in C1,α on compact subsets of B3(0n) \ L. Using |Va
i | ≤ 1, ∆Va

i = 0 and (6.8) we
therefore obtain

|Va| ≤ 1 ,

Va ∈ H1
loc(B3) ,

∆Va = 0 on B3 \ L . (6.10)
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Note that we have already identified E as the trivial Rk bundle over Rn, and thus we may view Va : B3 \L→

Rk canonically.

Using the H1
loc estimate above and that the set L has capacity zero we can therefore conclude that Va

extends a smooth solution of ∆Va = 0 over all B3. On the other hand, since the convergence is smooth on
compact subsets of B3\L we know that Va = Ea on ∂B3. The Ea are themselves harmonic, so by uniqueness
if Va = Ea on ∂B3 then Va = Ea on all of B3. Thus we have concluded that

Va
i → Ea , (6.11)

where the convergence is C1,α on compact subsets of B3 \ L. In particular, we have that

〈Va
i ,V

b
i 〉 → δab pointwise on B3 \ L . (6.12)

Using the pointwise bound |Va
i | ≤ 1 and that Vol(B3 ∩ Br(L)) → 0 as r → 0 one therefore easily concludes

the L2 almost orthogonality ?
B3

∣∣∣〈Va
i ,V

b
i 〉 − δ

ab
∣∣∣→ 0 . (6.13)

Finally, if we can show that
>

B2
|∇Va

i |
2 → 0, then we will proved that for all i sufficiently large Va

i forms
an ε-gauge, which is our desired contradiction. Thus, for any x ∈ B2 let us consider the ball Br(x) = B1/16(x)
with B8r ⊆ B3, and let us consider the cutoff function φ from (6.7). Then we can make a slightly more refined
version of the previous computation in order to conclude?

Br(x)
|∇Va

i |
2 ≤ C(n)

∫
φ|∇Va

i |
2 = C(n)

∫
φ∆|Va

i |
2

= C(n)
∫

φ∆
(
|Va

i |
2 − 1

)
= C(n)

∫
∆φ

(
|Va

i |
2 − 1

)
≤ C(n)

?
B3

∣∣∣|Va
i |

2 − 1
∣∣∣→ 0 . (6.14)

Since this hold for any ball B1/16(x) with x ∈ B2 we have
>

B2
|∇Va

i |
2 → 0 as claimed, which proves our

desired contradiction and thus proves the theorem. �

6.3. Proof of Transformation Theorem 6.4. The proof will be by contradiction. Therefore let us assume
for some ε > 0 the result fails, and thus we can find a sequence of δi-annular regions Ai ⊆ B2(pi) with
δi-gauges V1

i , . . . ,V
k
i ∈ Γ(B4(pi), Ei) such that the result fails for each i with δi → 0. Let us choose xi ∈ Ci

to be one of the points for which the result fails, and define

ri ≡ min{rxi ≤ r < 2 : ∀ r ≤ s ≤ 2 we have that (1) and (2) hold on Bs(xi)} . (6.15)

We have by assumption that ri > rxi , and therefore either (1) or (2) must fail for some radius r > 1
2 ri. Notice

that ri → 0 since δi → 0. Let Ti ≡ T (xi, ri) and let us denote Ṽa
i ≡ Ti ◦ Vi to be the transformed sections.

Since the result holds for ri we have that Ṽa
i is an ε-gauge on Bri(xi), but note that we cannot have that Ṽa

i is
a 10−2nε-gauge on Bri(xi). If this were to hold, then it is clear that (1) and (2) must still be satisfied for all
r ≥ 1

2 ri, which is not the case.
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Therefore let us rescale the geometry so that Bri(xi) → B2(x̃i), so that Ṽa
i ∈ Γ(Br−1

i
(x̃i), Ei) is an ε-gauge

on B2(x̃i). After rotation we may assume the best plane Li ≡ L for each annular region Ai is a constant. Let
us begin with the following claim:

Claim: For each 1 ≤ r ≤ r−1
i and 0 < s < 1 we have the estimates

(1) supBr
|Ṽi| ≤ C(n)rε .

(2) r2
>

Br(x̃i)
|∇Ṽa

i |
2 ≤ C(n)r2ε .

(3)
∫

Br∩Bs(L) |∇Ṽa
i |

2 ≤ C(n)rn−4+2ε s2.

To prove the claim let us observe that for every 1 ≤ r ≤ r−1
i we have by the definition of ri that if

T̃ ≡
( >

Wθ
r (x̃i)
〈Ṽa

i , Ṽ
b
i 〉

)−1/2
, then by condition (2) we have that T̃ ◦ Ṽa

i is an ε-gauge on Br(xi). In particular,

sup
Br

|T̃ ◦ Ṽa
i | ≤ 1 + ε . (6.16)

However, by condition (1), rescaled since our original ball Bri now has radius 2, we have the estimate

1
2

r−ε ≤ T̃ ≤ 2r−ε . (6.17)

Plugging this into (6.16) we arrive at the first estimate of the claim. The second and third estimates are
proved by a verbatim argument, so let us focus on the second. Choose a cutoff function φ so that φ ≡ 1 on
Br(x̃i), φ ≡ 0 outside of B2r(x̃i) and r |∇φ|, r2 |∇2φ| ≤ C(n). Multiplying both sides of Lemma 6.5.1 by φ and
integrating we arrive at ?

Br

|∇Ṽa
i |

2 ≤ C(n)r−n
∫

φ|∇Ṽa
i |

2 = C(n)r−n
∫

φ∆|Ṽa
i |

2

= C(n)r−n
∫

∆φ|Ṽa
i |

2

≤ C(n)r−2 sup
B2r

|Ṽa
i |

2 ≤ C(n)r−2r2ε , (6.18)

which finishes the proof of the claim. �

Now as in the proof of Theorem 6.2 using that δi, ri → 0 we may pass to a subsequence in order to limit
our spaces

Br−1
i

(x̃i)→ Rn ,

Ei → E ≡ Rk ×Rn , (6.19)

where E is apriori a flat bundle over Rn \L which may be canonically extended to the trivial bundle Rk×Rn.
Using the estimates of the previous claim we may also pass to a subsequence to also limit

Ṽa
i → Ṽa ∈ Γ

(
E,Rn) , (6.20)

where the convergence is smooth on Rn \L. By using (3) of the claim and that Ṽa
i → Ṽa smoothly on Rn \L

we also see that ?
Br(x)
|∇Ṽa

i |
2 →

?
Br(x)
|∇Ṽa|2 , (6.21)
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so that the H1 norms converge.
Now using that E is flat and trivial we may view Ṽa : Rn → Rk, and by the estimates of the previous

Claim we have

(1) supBr
|Ṽ | ≤ C(n)rε .

(2) r2
>

Br(xi)
|∇Ṽ |2 ≤ C(n)rε .

Since the convergence of Ṽa
i → Ṽ is smooth on Rn \ L we have that Ṽ is harmonic on Rn \ L. However,

since Ṽ ∈ H1
loc by (2) above and since L is a set with zero capacity, we have that Ṽa extends to a smooth

harmonic function on all of Rn.
However, since |Ṽ | is growing at most at a small polynomial rate, we have by Liouville’s theorem that

|∇Ṽa| ≡ 0 . (6.22)

In particular, we have that 〈Ṽa, Ṽb〉 = constant for each a, b . However, by construction we also have that?
Wθ

2 (0)
〈Ṽa, Ṽb〉 = δab . (6.23)

Combining these points we get that

〈Ṽa, Ṽb〉 = δab , (6.24)

on all of Rn. In particular, Ṽa is a 0-gauge. Recall now that while Ṽa
i is an ε-gauge on B2, by the construction

of ri it is not a 10−2nε-gauge. However, using (6.21) and that Ṽa is a 0-gauge we see that for i sufficiently
large this is our desired contradiction, and thus we have proved the Theorem. �

7. ε-GAUGE’S ON ANNULUS REGIONS

In the previous section we showed the existence of ε-gauge’s on δ-annular regions and proved some ba-
sic estimates. In this section we study more carefully the properties of such ε-gauge’s and prove our main
analytic estimates. There are two main results we wish to prove and discuss in this section. The first is that
we will see that on most of the δ-annular region our ε-gauge is a legitimate vector Coulomb gauge which is
ε-orthonormal. Precisely:

Theorem 7.1. Let A be a stationary Yang-Mills connection on a δ-annular region A = B2 \ Brx(C) and>
B2
|FA|

2 ≤ Λ, and let V be a δ-gauge on B4. For each ε > 0 if δ < δ(n, k,Λ, ε) then there exists a subset
Cε ⊆ C ∩ B1 such that

(1) µ
(
Cε

)
≥ (1 − ε)µ

(
C ∩ B1

)
.

(2) For each x ∈ Cε and rx ≤ r ≤ 1 we have that V is an ε-gauge on Br(x).

In fact the above result will eventually follow from the scale invariant gradient estimate discussed in the
next theorem, which is where most of the work of this section focuses. Precisely, we have the following:
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Theorem 7.2. Let A be a stationary Yang-Mills connection on a δ-annular region A = B2 \ Brx(C) and>
B2
|FA|

2 ≤ Λ, and let V be a δ-gauge on B4. For each ε > 0 if δ < δ(n, k,Λ, ε) then we have the following
estimates: ∫

A10−4∩B3/2

r−3
A |∇V | ,

∫
A10−4∩B3/2

r−2
A |∇

2V | ,
∫
A10−4∩B3/2

|∇4V | < ε .

(7.1)

7.1. Annular Green’s Function. In this subsection we introduce and study the Green’s function GA as-
sociated to an annular region. Recall that Gx(y) ∼ αn|x − y|2−n is the standard Green’s function, which
is the solution of −∆Gx = δx. Since we work under the assumption that K ≤ δ, by (1.7) and standard
estimates, we have that there exists a constant C for which C−1d(x, y)2−n ≤ Gx(y) ≤ Cd(x, y)2−n, and also
C−1d(x, y)1−n ≤ |∇Gx(y)| ≤ Cd(x, y)1−n. The annular version of the Green’s function GA satisfies the fol-
lowing:

Definition 7.3. Let A = B2 \ Brx(C) be a δ-annular region with packing measure µ. Then we define:

(1) The annular Green’s function GA(y) ≡
∫

Gx(y) dµ[x], which is the global solution of −∆GA = µ.
(2) The annular distance function b(y) = bA(y) which is defined by the formula GA ≡ b−2.

Notice in the above that if one viewed A as a perfect annulus A ≡ B2(0n) \Rn−4, then bA(y) ∝ d(y,Rn−4)
would be the distance to the singular set. Therefore b is our smooth approximation to such a distance. Let
us see that this is a fair interpretation in the general case:

Lemma 7.4. Let A be a stationary Yang-Mills connection on a δ-annular region A = B2 \ Brx(C) satisfying>
B2
|FA|

2 ≤ Λ, and let b(y) be the annular distance function. Then if δ < δ(n, k,Λ) then there exists C(n)
such that the following hold:

(1) C−1 d(y,C) < b(y) < C d(y,C) for all y ∈ A10−6 .
(2) C−1 < |∇b| < C on A10−6 .

Remark 7.1. Recall that As ≡ B2 \ Bs·rx(C) is the extended annulus.

Proof. Let y ∈ A10−6 with x ∈ C the closest point of C to y and r ≡ 2d(x, y). Let us denote the sequence of
scales rα ≡ 2αr, then we can write

Gµ(y) =

∫
Gz(y) dµ[z] ∼

∫
Br(x)

Gz(y) dµ[z] +
∑
α≥0

∫
Arα+1 ,rα (x)

Gz(y) dµ[z] . (7.2)

Thus our upper and lower bounds are derived from the estimates

Gµ(y) ≤ C(n)
∑
α

r2−n
α · rn−4

α = C(n)
∑

2−2αr−2 ≤ C(n)r−2 = C(n)d(x,C)−2 ,

Gµ(y) ≥
∫

Br(x)
αnd2−n(y, z) dµ[z] ≥ C(n)−1r2−nrn−4 = C(n)−1r−2 , (7.3)

where we have used the Ahlfor’s upper bounds proved in theorem 5.3.
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The upper bound on the gradient estimate is proved similarly with

|∇Gµ|(y) ≤ C(n)
∫

Br(x)
αnd1−n(y, z) dµ[z] + C(n)

∑
α≥0

∫
Arα+1 ,rα (x)

αnd1−n(y, z) dµ[z]

≤ C(n)
∑

r1−n
α · rn−4

α ≤ C(n)r−3 = C(n)d(x,C)−3 . (7.4)

The lower bound on the gradient takes a little bit more work. Let us consider the radial vector at y given
by v = ∇d(x, y). Note that for every z ∈ C ∩ Br(x) that ∇vGz(y) > C−1d(z, y)1−n. Further, by condition (a3)
we have that for every β > 0 if δ < δ(β) then for every z ∈ Brβ(x)∩C we have that ∇vGz(y) > 0. In particular,
if this holds for a given β then we can estimate

|∇Gµ|(y) ≥ ∇vGµ(y) ≥
∫

Br(x)
∇vGz(y) dµ[z] +

∑
0≤α≤β

∫
Arα+1 ,rα (x)

∇vGz(y) dµ[z]

+
∑
β+1≤α

∫
Arα+1 ,rα (x)

∇vGz(y) dµ[z]

> 2C(n)−1r1−nrn−4 −C(n)
∑
α≥β+1

r1−n
β rn−4

β ,

≥
(
2C(n)−1 −C(n)2−β

)
r−3 . (7.5)

Thus if β = β(n) then we obtain the estimate

|∇Gµ|(y) ≥ C(n)−1r−3 , (7.6)

which completes the proof of the Lemma. �

The following straightforward but useful computations are at the heart of what we will use the annular
distance functions for:

Lemma 7.5. Let A = B2 \ Brx(C) be a δ-annular region with packing measure µ and annular distance
function b(y). If f is a smooth function let us define S (r) = r · r−3

∫
b=r f |∇b|. Then we have

r
d
dr

(
r

d
dr

S
)

= S +

∫
b=r

∆ f |∇b|−1 . (7.7)

Proof. Let us note that ∆b = 3
b |∇b|2 and that the mean curvature of the level set b = r is given by

Hb=r = div
( ∇b
|∇b|

)
= 3
|∇b|

b
−
〈∇b,∇|∇b|〉
|∇b|2

. (7.8)

One can then compute

r
d
dr

S = S + r−1
∫

b≤r
∆ f . (7.9)

Applying r d
dr again leads to the result. �
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7.2. Super Convexity for Scale Invariant L1 Gradient. In this subsection we derive a superconvexity
estimate for the gradient |∇V | of an ε-gauge on an annular region. This estimate will turn out to be the key
technical tool in the proofs of Theorem 7.2 and Theorem 7.1.

We will begin by defining a convenient cutoff function associated to an annular region. For this let
0 ≤ φ(s) ≤ 1 be a fixed smooth cutoff with φ ≡ 0 for |s| ≤ 8

10 , φ ≡ 1 for |s| ≥ 9
10 and with the estimates

| dk

dskφ| ≤ C(k). For each x ∈ B2 and 0 < r ≤ 10 we can then define φx,r(y) ≡ φ
(
r−2d2(x, y)

)
. Associated to an

annular region A ⊆ B2(p) we then define the cutoff

φA(y) ≡ (1 − φp,2)(y) ·
∏
x∈C

φx,10−5rx
(y) = (1 − φp,2(y)) · φ̃A(y) . (7.10)

Using (a1)→ (a4) and Remark 5.3 it is easy to check the following properties of the cutoff

φA ≡ 1 in A10−5 ,

supp |∇φ̃A| ⊆ B10−5rx
(C) \ B10−6rx

(C) ⊆ A10−6 ,

|∇(k)φA| ≤ C(n, k)r−k
x in each Brx(x) . (7.11)

Let us begin with the main computation of this subsection:

Proposition 7.6. Let A be a stationary Yang-Mills connection on a δ-annular region A = B2 \ Brx(C)
satisfying

>
B2
|FA|

2 ≤ Λ, and let V be a δ-gauge on B4. Let us define the scale invariant quantity S (r) =

r · r−3
∫

b=r |∇V |ϕA |∇b|, then for each ε > 0 if δ < δ(n, k, ε,Λ) then:

r
d
dr

(
r

d
dr

S
)
≥ (1 − ε)2S − e(r) , (7.12)

where |e(r)| ≤ ε µ
(
{x : C−1r ≤ rx ≤ Cr}

)
+ Cr for C = C(n).

Proof. Let us consider ε′ > 0, which will eventually be chosen by ε′ = ε′(n, ε). We can use Lemma 7.5 in
order to compute

r
d
dr

(
r

d
dr

S
)

= S +

∫
b=r

(
∆|∇V | φ + 2〈∇|∇V |,∇φ〉 + |∇V |∆φ

)
|∇b|−1 . (7.13)

Using Lemma 6.5 and that our cutoff satisfies (7.10) supp φA ⊆ A10−6 we have that

∆|∇V | φ ≥ −C(n)δ d(x,C)−2|∇V |φ . (7.14)

If we combine this with Lemma 7.4 and integrate we arrive at∫
b=r

∆|∇V | φ ≥ −C(n)δ b−2
∫

b=r
|∇V | φ ≥ −ε S . (7.15)

In order to estimate the other error terms let us recall that we can write φA = φp,2 · φ̃A as in (7.10). Using
Theorem 6.4 with ε′ > 0 together with (6.2) and (7.11) we can therefore write

2|〈∇|∇V |,∇φA〉|(y) ≤ C(n)ε′b−2 + C(n)ε′
∑

x∈C∩B18/10

r−3
x χ[BC(n)rx(x) ∩ {C(n)−1rx < b(y) < C(n)rx}] ,

|∇V | |∆φ|(y) ≤ C(n)ε′b−1 + C(n)ε′
∑

x∈C∩B18/10

r−3
x χ[BC(n)rx(x) ∩ {C(n)−1rx < b(y) < C(n)rx}] . (7.16)
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Integrating these last two terms and using Lemma 7.4 we arrive at∫
b=r

2|〈∇|∇V |,∇φ〉| ≤ C(n)ε′b + C(n)ε′
∑

x∈B18/10∩{rx∈[C−1r,Cr]}

rn−4 ≤ C(n)ε′µ
(
{C−1r < rx < Cr}

)
,

∫
b=r
|∇V | |∆φ| ≤ C(n)ε′b2 + C(n)ε′µ

(
{C−1r < rx < Cr}

)
. (7.17)

Choosing ε′ = C(n)−1ε we have arrived at our conclusion. �

7.3. Dini Estimates and Superconvexity. In order to exploit Proposition 7.6 we will apply a maximum
principle and study solutions of the underlying superconvex equation. The following tells us how to estimate
the Dini integral of solutions:

Proposition 7.7. For each R > 0 and e(r) the solution of r d
dr

(
r d

dr S̄
)

= (1− ε)2S̄ − e(r) with S̄ (0) = S̄ (R) = 0
satisfies the Dini estimate ∫ R

0

S̄ (r)
r
≤

1
(1 − ε)2

∫ R

0

e
s

+
R−1+ε

(1 − ε)2

∫ R

0
s−ε e . (7.18)

Proof. Observe that r1−ε and r−1+ε are solutions to the homogeneous equation. With this one can check that
an explicit solution to r d

dr

(
r d

dr S̄
)

= (1 − ε)2S̄ − e(r) under the conditions S̄ (0) = S̄ (R) = 0 is given by

S̄ (r) =
1

2(1 − ε)

(
r−1+ε

∫ r

0
s−εe + r1−ε

∫ R

r
s−2+εe −

( r
R

)1−ε
R−1+ε

∫ R

0
s−εe

)
. (7.19)

From this we have the explicit computation∫ R

0

S̄ (r)
r

=
1

2(1 − ε)

( ∫ R

0
r−2+ε

∫ r

0
s−εe +

∫ R

0
r−ε

∫ R

r
s−2+εe −

∫ R

0
r−εR−2+2ε

∫ R

0
s−εe

)
. (7.20)

Estimating each of these terms is similar, so let us just focus on the first. Indeed, by changing the order
of integration we arrive at∫ R

0

∫ r

0
r−2+ε s−εe =

∫ R

0

∫ R

s
r−2+ε s−εe =

−1
1 − ε

∫ R

0

(
R−1+ε − s−1+ε)s−εe

=
1

1 − ε

( ∫ R

0
s−1e − R−1+ε

∫ R

0
s−εe

)
. (7.21)

Arguing in a verbatim manner with the other terms leads to the conclusion of the lemma.
�

Our main corollary of the above is the following, which gives a Dini estimate for our L1 Hessian:

Corollary 7.8. Let A be a stationary Yang-Mills connection on a δ-annular region A = B2 \ Brx(C) sat-
isfying

>
B2
|FA|

2 ≤ Λ, and let V be a δ-gauge on B4. Let us define the scale invariant quantity S (r) =

r · r−3
∫

b=r |∇V |ϕA |∇b|. Then for each ε > 0 if δ < δ(n, k,Λ, ε) we have the estimate∫ ∞

0

S (r)
r

< ε . (7.22)
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Proof. Recall from Proposition 7.6 that S (r) solves the differential inequality

r
d
dr

(
r

d
dr

S
)
≥ (1 − ε)2S − e(r) , (7.23)

where we have that

e(r) ≤ C(n) µ
(
{x ∈ C ∩ B19/10 : C(n)−1r ≤ rx ≤ C(n)r}

)
+ C(n)r . (7.24)

Note also that by the construction of the cutoff φA that S (0) = S (R) = 0 where R ≤ R(n). Let us then
consider the solution of

r
d
dr

(
r

d
dr

S̄
)

= (1 − ε)2S̄ − e(r) ,

S̄ (0) = S̄ (R) = 0 . (7.25)

Note by a maximum principle applied to S̄ − S we immediately yield the inequality S (r) ≤ S̄ (r). On the
other hand, let us note that ∫ R

0

e
s
≤ C(n)µ{B18/10} + C(n) ≤ C(n) , (7.26)

where in the last inequality we have used Theorem 5.3. Thus by applying Proposition 7.7 with ε′ > 0 we
have the estimate ∫ ∞

0

S
r
≤

∫ R

0

S̄
r
≤ C(n)ε′ < ε , (7.27)

where in the last line we have chosen ε′ ≡ C(n)−1ε. This completes the proof of the corollary. �

7.4. Proof of the L1 gradient estimate of Theorem 7.2. Using the coarea formula we may write∫
A∩B3/2

d−3
C |∇V | ≤

∫
d−3
C |∇V |φA =

∫ R

0

∫
b=r

d−3
C |∇V |φA |∇b|−1 , (7.28)

where b is the µ-Green’s distance associated to A and R ≤ R(n). Using Lemma 7.4 we can estimate this by∫
A∩B3/2

d−3
C |∇V | ≤ C(n)

∫ R

0
r−3

∫
b=r
|∇V |φA |∇b| = C(n)

∫ R

0

S (r)
r

. (7.29)

Using Corollary 7.8 with ε′ ≡ C(n)−1ε we then arrive at the desired estimate∫
A∩B3/2

d−3
C |∇V | ≤ C(n)

∫ R

0

S (r)
r

< ε , (7.30)

as claimed. The other estimates then follow by combining this with Lemma 6.6. �

7.5. Transformation Estimates. Recall from Theorem 6.4 that if x ∈ C then for every rx ≤ r < 1 there
exists a matrix T = T (x, r), given explicitly in Definition 6.3, such that T ◦ V is still an ε-gauge. The key to
Theorem 7.1 is to see that for most x ∈ C and for all rx < r ≤ 1, this matrix is in fact close to the identity. In
this subsection we see how to use the gradient estimate of Theorem 7.2 in order to control the transformation
matrix T , which will be used in the next section is order finish the proof of Theorem 7.1.

The main technical result of this subsection is the following:
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Proposition 7.9. Given a δ-annular region A = B2 \ Brx(C) and a δ-gauge Va ∈ Γ(B4, E), then for x ∈ C

and rx ≤ r < 1 with
∫

Wπ/4(x) r1−n
A |∇V | < εn we have for every ε > 0 that if δ < δ(n, k,Λ, ε) then

∣∣∣Id − T (x, r)
∣∣∣ < ε + C(n)

∫
Wπ/4(x)

r1−n
A |∇V | . (7.31)

In order to prove the above Proposition let us begin with the following Lemma, which is a more local
version of the above:

Lemma 7.10. Given a δ-annular region A = B2 \ Brx(C) and a δ-gauge Va ∈ Γ(B4, E), then for x ∈ C and
rx ≤ r < 1 we have for γ ≡ 4

5 that

∣∣∣Id − T (x, γ · r)T (x, r)−1
∣∣∣ < C(n)r

?
Wπ/4

r (x)
|∇

(
Tx,r ◦ V

)
| (7.32)

Proof. Let us denote Ṽa ≡ Tx,r ◦ Va, and so we are trying to estimate
∣∣∣Id − T̃ (x, γ r)

∣∣∣ where T̃ (x, γ · r) ≡( >
Wθ
γ·r(x)〈Ṽ

a, Ṽb〉

)−1/2

with θ ≡ 10−2. Using the definition of Ṽa it is equivalent for us to estimate

∣∣∣Id −
?

Wθ
γ·r(x)
〈Ṽa, Ṽb〉

∣∣∣ =
∣∣∣?

Wθ
r (x)
〈Ṽa, Ṽb〉 −

?
Wθ
γ·r(x)
〈Ṽa, Ṽb〉

∣∣∣ . (7.33)

To accomplish this let us observe the relations

B10−2r

(
Wθ

r (x)
)
, B10−2r

(
Wθ
γr(x)

)
⊆ Wπ/4

r (x) . (7.34)

We will use a Poincaré to then conclude the result. Indeed, let us estimate∣∣∣∣?
Wθ

r (x)
〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣∣ ≤ ?
Wθ

r (x)

∣∣∣〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣ ,
≤

Vol(Wπ/4
r (x))

Vol(Wθ
r (x))

?
Wπ/4

r (x)

∣∣∣〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣ ,
≤ C(n)

?
Wπ/4

r (x)

∣∣∣〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣ ,
≤ C(n)r

?
Wπ/4

r (x)

∣∣∣∇〈Ṽa, Ṽb〉
∣∣∣ ,

≤ C(n)r
?

Wπ/4
r (x)

∣∣∣∇Ṽ
∣∣∣ , (7.35)

where in the last line we have used the L∞ bounds on Ṽ . A verbatim computation also gives∣∣∣∣?
Wθ
γr(x)
〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣∣ ≤ C(n)r
?

Wπ/4
r (x)

∣∣∣∇Ṽ
∣∣∣ . (7.36)
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Combining (7.35) with (7.36) we are able to estimate (7.33) by∣∣∣Id −
?

Wθ
γ·r(x)
〈Ṽa, Ṽb〉

∣∣∣ =
∣∣∣?

Wθ
r (x)
〈Ṽa, Ṽb〉 −

?
Wθ
γ·r(x)
〈Ṽa, Ṽb〉

∣∣∣ ,
≤

∣∣∣∣?
Wθ

r (x)
〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣∣ +
∣∣∣∣?

Wθ
γr(x)
〈Ṽa, Ṽb〉 −

?
Wπ/4

r (x)
〈Ṽa, Ṽb〉

∣∣∣∣ ,
≤ C(n)r

?
Wπ/4

r (x)

∣∣∣∇Ṽ
∣∣∣ , (7.37)

which finishes the proof of the Lemma. �

With the Lemma in hand we now finish the proof of Proposition 7.9:

Proof of Proposition 7.9. Let x ∈ C be such that
∫

Wπ/4(x) r1−n
A |∇V | < εn holds, where εn will be chosen

shortly. Let us consider the sequence of scales sα ≡ γα together with the associated matrices Tα ≡ T (x, sα).
We will only prove the result for the Tα with sα ≥ rx. Using that the Tα ◦ Va are ε-gauges on Bsα(x) the
result easily extends to all radii r ≥ rx. Note also that since Va is a δ-gauge we have for δ < δ(n, k, ε) that
|Id − T0| < ε.

Now let us remark on the following. If α ≥ 0 is such that |Tα| ≤ 2, then by applying Lemma 7.10 we have
the estimate ∣∣∣Tα − Tα+1

∣∣∣ ≤ C(n)sα

?
Wπ/4

sα (x)

∣∣∣∇V
∣∣∣

≤ C(n)
∫

Wπ/4(x)∩A2−1 sα,2sα

r1−n
A

∣∣∣∇V
∣∣∣ . (7.38)

Iterating on this we see that if Tβ ≤ 2 for all β ≤ α then we get the estimate∣∣∣Tα+1 − T0
∣∣∣ ≤ C(n)

∑
β≤α

∫
Wπ/4(x)∩A2−1 sβ,2sβ

r1−n
A

∣∣∣∇V
∣∣∣ ,

≤ C(n)
∫

Wπ/4(x)∩A2−1 sα,2

r1−n
A

∣∣∣∇V
∣∣∣ ,

≤ C(n)εn < 10−2 , (7.39)

where in the last line we have chosen εn sufficiently small in a manner which depends only on dimension.
Combining this with the estimate |T0 − Id| < εn we conclude that if sα ≥ rx is such that

∣∣∣Tβ∣∣∣ ≤ 2 for all
β ≤ α, then in fact if sα+1 ≥ rx then

∣∣∣Tβ∣∣∣ ≤ 2 for all β ≤ α + 1. Therefore we have the estimate

|Tα| ≤ 2 for all sα ≥ rx . (7.40)

In particular, we then we get that (7.39) holds for all sα ≥ rx, from which we get the estimate∣∣∣Tα − Id
∣∣∣ ≤ |T0 − Id| + C(n)

∫
Wπ/2(x)

r1−n
A

∣∣∣∇V
∣∣∣ ,

≤ ε + C(n)
∫

Wπ/2(x)
r1−n

A

∣∣∣∇V
∣∣∣ , (7.41)

which finishes the proof of the Proposition. �
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7.6. Proof of Theorem 7.1. We finish the proof of Theorem 7.1 in this subsection. Let us begin by observ-
ing with rα ≡ 2−α that if supp ( f ) ⊆ A10−6 then we have the following:∫ (∫

Wπ/4
x

d(x,C)1−n| f |
)

dµ[x] ≤
∫ ( ∑

rα≥rx

∫
Wπ/4

x ∩A 1
2 rα,2rα

(C)
d(x,C)1−n| f |

)
dµ[x]

≤ C(n)
∫ ( ∑

rα≥rx

r1−n
α

∫
Wπ/4

x ∩A 1
2 rα,2rα

(C)
| f |

)
dµ[x] ,

≤ C(n)
∑
rα

r1−n
α µ

(
B4rα(x)

) ∫
A 1

2 rα,2rα
(C)
| f | ,

≤ C(n)
∑
rα

r−3
α

∫
A 1

2 rα,2rα
(C)
| f | ,

≤

∫
B2

d(x,C)−3| f | . (7.42)

With this in hand can finish Theorem 7.1. Indeed, by applying (7.42) to f = |∇V |χA∩B3/2 and by using
Theorem 7.2 with (ε′)2 we obtain the estimate∫

B1

( ∫
Wπ/4

x

d(x,C)1−n|∇V |
)

dµ[x] ≤ C(n)
∫
A∩B3/2

r−3
A |∇V | ≤ C(n)(ε′)2 . (7.43)

In particular, let us consider the set C′ ≡ {x ∈ B1 ∩ C :
∫

Wπ/4
x

d(x,C)1−n|∇V | < ε′}, then we see that
µ(B1 \C

′) ≤ C(n)ε′. On the other hand, by applying Proposition 7.9 with ε′ we see that for ε′ < c(n, k)ε that
C′ ⊆ Cε , and thus we have finished the proof of the Theorem. �

8. PROOF OF CURVATURE ESTIMATES OF THEOREM 5.3

In this section we finish the proof of the L1 hessian and L2 curvature estimates on annular regions. The
strategy of the proof is to use the scale invariant gradient estimates on V from Theorem 7.2 to show the
estimates on A wherever V remains close to being an orthogonal basis. By Theorem 7.1 this is everything
except a set of small n − 4 content, and therefore we can recover the rest and start the estimate over in a
manner for which the inductive errors give rise to a geometric series. More slowly, let us start with the
following, which is the main tool in our inductive construction:

Lemma 8.1. Let A be a stationary Yang-Mills connection on a δ-annular region A = B2 \ Brx(C) satisfying>
B2
|FA|

2 ≤ Λ, and let V be a δ-gauge on B4. For each ε > 0 if δ < δ(n, k,Λ, ε) then there exists a collection

{Br j(x j)} with x j ∈ C, r j > rx j and Ã = A \
⋃

Br j(x j) such that

(1) Bri/10(xi) ∩ Br j/10(x j) = ∅.
(2)

∑
rn−4

j < ε.
(3)

∫
Ã∩B1

|∇2F|,
∫
Ã∩B1

|F|2 < ε

Proof. For each x ∈ C and ε′ > 0, which will be fixed later, let us define the radius

r̄x ≡ min{rx ≤ r̄ < 2 : |〈Va,Vb〉 − δab| < ε′ in Wπ/4(x) ∩ Ar̄,2(x)} . (8.1)
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With this let us consider the set

C̄ ≡ {x ∈ C ∩ B1 : r̄x > rx} . (8.2)

Note from Theorem 7.1 that for δ < δ(n, k,Λ, ε′) that µ(C̄) < ε′. Let us start with the following claim:

Claim: We have the estimate µ(C̄ ∩ Br̄x/10(x)) > c(n)r̄n−4
x .

Indeed, let us consider two cases. If r̄x < 2rx then this is clear simply because µ(C̄ ∩ Br̄x/10(x)) ≥ µ(x) >
c(n)rn−4

x ≥ c(n)r̄n−4
x .

On the other hand, if r̄x ≥ 2rx, then let y ∈ Wπ/4(x) ∩ ∂Br̄x(x) be such that |〈Va,Vb〉 − δab| = ε′. Let
x′ ∈ C∩ B̄r̄x/20(x) be one of the points of C∩ B̄r̄x/20(x) that is closest to y. Note then for every z ∈ Br̄x/100(x′)
that y ∈ Wπ/4(z) and with d(y, z) > rz. This last inequality holds using (a4) because d(z, y) > 3

4 d(x, y) ≥
3
2 rx > rz. In particular, we see that Br̄x/100(x′) ⊆ C̄ and thus µ(C̄ ∩ Br̄x/10(x)) ≥ µ(Br̄x/100(x′)) > c(n)r̄n−4

x by
the Ahlfor’s regularity of Theorem 5.3. This finishes the proof of the Claim. �

Now let us choose a Vitali subcovering {Br̄ j(x j)} with x j ∈ C̄. Then using the above claim we can estimate∑
r̄n−4

j ≤ C(n)
∑

µ(C̄ ∩ Br̄ j/10(x j)) ≤ C(n)µ(C̄) ≤ C(n)ε′ < ε , (8.3)

where in the last inequality we have assumed ε′ < C(n)−1ε.

We claim now that our desired curvature estimates hold on the set Ã = A \
⋃

Br j(x j). To prove this, note
that, by Theorem 7.2, we have the estimates∫

A∩B1

|∇4V | +
∫
A∩B1

|∇2V |2 +

∫
A∩B1

r−3
A |∇V | +

∫
A∩B1

r−2
A |∇

2V | < ε′ . (8.4)

Note that by the definition of curvature we have the estimates

|F(V)| ≤ 2|∇2V | ,

|∇2F(V)| ≤ 2|∇4V | + 2|∇F| |∇V | + |F| |∇2V | . (8.5)

In particular, if we are at a point y ∈ A such that |〈Va,Vb〉 − δab| < ε′ almost form an orthonormal basis,
then we have the estimates

|F|(y) ≤ 3
∑

a

|∇2Va|(y) ,

|∇2F|(y) ≤ 3
∑

a

(
|∇4Va|(y) + r−3

A |∇Va| + r−2
A |∇

2Va|
)
, (8.6)

where we have used the scale invariant estimates r2
A|F| ,r

3
A|∇F| << 1 in the above. This estimate holds for

each y ∈ Ā, and therefore we have that∫
Ā∩B1

|∇2F| ≤ 3
∑

a

(∫
A∩B1

|∇4Va| +

∫
A∩B1

r−3
A |∇Va| +

∫
A∩B1

r−2
A |∇

2Va|

)
< 5ε′ ,∫

Ā∩B1

|F|2 ≤ 3
∑

a

(∫
A∩B1

|∇2Va|
2
)
< 3ε′ , (8.7)
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which for ε′ < 1
10ε finishes the proof of the Lemma. �

With the above in hand let us now finish the proof of Theorem 5.3:

Proof of Theorem 5.3. The proof of the curvature estimates of Theorem 5.3 is now just an inductive appli-
cation of Lemma 8.1. Indeed, let us apply Lemma 8.1 with ε′ = ε′(n, ε) which will be chosen later. Then
we can write

A ∩ B1 ⊆ A0 ∪
⋃

Br j0
(x j0) , (8.8)

such that ∫
A0∩B1

|∇2F| ,
∫
A0∩B1

|F|2 ,
∑

rn−4
j0 < ε′ . (8.9)

Now note that the restriction of A to B2r0
j
(x0

j ) is a δ-annular region for each j, and therefore we may again

apply Lemma 8.1 to each of the balls B2r0
j
(x0

j ) to obtain

A ∩ Br j0
(x j0) ⊆ A j0,1 ∪

⋃
Br j0 , j1

(x j0, j1) , (8.10)

such that ∫
A j0 ,1∩Br j0

|∇2F| ,
∫
A j0 ,1∩Br j0

|F|2 ,
∑

j1

rn−4
j0, j1 < ε

′ rn−4
j0 . (8.11)

Thus by defining

A1 ≡ A0 ∪
⋃

j0

A j0,1 ,

{Br j1
(x j1)} ≡

⋃
j0

{Br j0 , j1
(x j0, j1) , (8.12)

we have the covering

A ∩ B1 ⊆ A1 ∪
⋃

Br j1
(x j1) (8.13)

such that ∫
A1∩B1

|∇2F| ≤ ε′ + ε′
∑

rn−4
j0 ≤ ε

′ + (ε′)2 ,∫
A1∩B1

|F|2 ≤ ε′ + (ε′)2 ,∑
rn−4

j1 ≤ ε
′
∑

rn−4
j0 ≤ (ε′)2 . (8.14)

Now we can observe that each A ∩ B2r j1
is a δ-annular region and repeat this process again. Again, if we

repeat this process I times then we arrive at a covering

A ∩ B1 ⊆ AI ∪
⋃

Br jI
(x jI ) (8.15)

such that ∫
AI∩B1

|∇2F| ,
∫
AI∩B1

|F|2 ≤
I∑

j=1

(ε′) j ,
∑

rn−4
jI ≤ (ε′)I . (8.16)
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In particular, we clearly get the much weaker estimate that r jI → 0 as I → ∞, and thus we have that the AI

form an exhaustion of A. Passing to the limit we then get the estimate∫
A∩B1

|∇2F| ,
∫
A∩B1

|F|2 ≤
∞∑
j=1

(ε′) j ≤ 2ε′ . (8.17)

Letting ε′ < 1
2ε this concludes the proof of our Theorem. �

9. QUANTITATIVE BUBBLE TREE AND QUANTITATIVE ENERGY IDENTITY

In this section we discuss our quantitative bubble tree and quantitative energy identity theorems. As the
names suggest, these are both quantitative and higher dimensional versions of the more classical notions
from dimension four. Both the classical bubble tree and energy identity’s are traditionally discussed for
limiting sequences of Yang Mills connections, however the quantitative versions hold on a fixed Yang Mills
connection, and so from this point of view the results are new even for dimension four. We will see that the
quantitative nature of the estimates are crucial for the applications.

Let us begin with our quantitative bubble tree decomposition:

Theorem 9.1 (Quantitative Bubble Tree). Let A be a stationary connection with
>

B4
|FA|

2 ≤ Λ. If B4(p) is
δ′-weakly flat wrt L for δ′ < δ′(n, k,Λ, δ, ε), then we have

B1(p) ⊆
⋃

a

(
Aa ∩ Bra

)
∪

⋃
b

Bb ∪
⋃

c

Brc(xc) , (9.1)

such that

(a) Aa ⊆ B2ra(xa) are δ-annular regions with respect to L.
(b) Bb ⊆ Bδ−1rb

(xb) are δ-bubble regions with respect to L.
(c)

∑
a rn−4

a +
∑

b rn−4
b ≤ C(n, k,Λ) and

∑
c rn−4

c < ε.

To state the quantitative energy identity will pick points q ∈ L on the plane of symmetry and consider
the slice L⊥q . One can view the first part of the next result as a sliced version of the quantitative bubble tree
theorem. The final part of the next theorem contains the real content of the quantitative energy identity, and
tells one how to compute the energy at a point by summing energies of bubbles.

Theorem 9.2 (Quantitative Energy Identity). Under the conditions and decomposition of Theorem 9.1 if
δ < δ(n, k,Λ, ε) and δ′ < δ′(n, k,Λ, δ) then ∃ Gε ⊆ L ∩ B1 with Vol

(
B1 \ Gε

)
< ε such that for each q ∈ Gε

the covering

L⊥q ∩ B1(q) ⊆ Aq ∪Bq =
⋃

a

Aq,a ∪
⋃

b

Bq,b

=
⋃

a

(
L⊥q ∩Aa ∩ Bra

)
∪

⋃
b

(
L⊥q ∩Bb ∩ Brb

)
, (9.2)

satisfies
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(a)
∫
Aq
|FA|

2 < ε.

(b)
∣∣∣ ∫

B1(q) |FA|
2 − ωn−4

∫
Bq
|FA|

2
∣∣∣ < ε.

(s) #
{
Aq,a

}
, #

{
Bq,b

}
< N(n, k,Λ).

9.1. Proof of the Quantitative Bubble Tree Decomposition and the Quantitative Energy Identity. In
this subsection we will prove both Theorem 9.1 and Theorem 9.2 simultaneously. Let us first pick ε′ > 0
which will be fixed later. Now since the ball B4(p) is δ′-weakly flat we have the estimate?

B4

|FA[L]|2 ≤ δ′ , (9.3)

where we will choose δ′ sufficiently small later on in the proof. Now for every point x ∈ B2 let us define the
radius

mx ≡ inf{0 < r < 1 : r4−n
∫

Br(x)
|F[L]|2 ≤ δ′′} , (9.4)

where δ′′ = δ′′(n, k,Λ, δ) is chosen so that Theorem 4.2, Theorem 5.4 and Theorem 5.3 hold with ε′ > 0.
Additionally, let us consider the set

M ≡ {x ∈ B2 : mx > 0} . (9.5)

Note for each ball Bmx(x) with mx > 0 we have the estimate∫
Bmx (x)

|F[L]|2 = δ′′mn−4
x . (9.6)

Now let us consider the covering {B10mx(x)}x∈M of M, and then we can take a Vitali subcovering

M ⊆
⋃

c

Brc,0(xc,0) ≡
⋃

s

Brs(xs) , (9.7)

where rs = 10mxs and {Brs/10(xs)} are disjoint. We give this collection two names because the remaining
c-balls which will built later in this construction will be done by different means with a different purpose, so
that although in the end we will group them altogether we keep them distinct for now for intuition simplicity.
Note now that we have the estimate∑

s

rn−4
s = 10n−4

∑
s

( rs

10

)n−4
= 10n−4δ′′−1

∑
s

∫
Brs/10(xs)

|F[L]|2

≤ 10n−4δ′′−1
∫

B3

|F[L]|2 = 10n−4(δ′′)−1δ′ < δ , (9.8)

where in the last line we have chosen δ′ < δ′(n, k,Λ, δ).

In particular, we now know that for every x ∈ B2 \
⋃

s Brs(xs) and all 0 < r < 2 that we have the estimate

r4−n
∫

Br(x)
|F[L]|2 < δ′′ . (9.9)
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Intuitively, using Theorem 4.2 and Theorem 5.4 this is telling us that every ball not strictly contained in⋃
s Brs(xs) is either a bubble region or an annular region. Finishing the proof of Theorem 9.1 is about mak-

ing this intuition precise and keeping track of the estimates along the way.

To make this precise we will build a sequence of coverings. If E ≡ supB1(p) θ1 = θ1(p), then the ith

covering of the sequence looks like

B1(p) \
⋃

c

Brc,i(xc,i) ⊆
⋃

a

(
Aa,i ∩ Bra,i(xa,i)

)
∪

⋃
b

Bb,i ∪
⋃

w

Brw,i(xw,i) , (9.10)

and will satisfy

(a) Aa,i ⊆ Bra,i(xa,i) are δ-annular with
∫
L⊥q ∩Ai

|FA|
2 < C(n, k,Λ, i)ε′ for q ∈ L ∩ B1(p) \

⋃
c Brc,i(xc,i).

(b) Bb,i ⊆ Bδ−1rb,i
(xb,i) are δ-bubble regions.

(c) For q ∈ L with L⊥q ∩
⋃

c Brc,i(xc,i) = ∅ if Bq ≡ L⊥q ∩
⋃

b Bb,i then there exists {x′w,i} ⊆ {xw,i} with
Br′w,i(x′w,i) ∩ L⊥q , ∅ such that

∣∣∣θ1(q) − ωn−4
∫
Bq
|FA|

2 −
∑
θrw,i(x′w,i)

∣∣∣ < C(n, k,Λ, i)ε′.

(w) Br(xw,i) are δ-weakly flat wrt L for 4−1δrw,i ≤ r ≤ 4rw,i and satisfy θ̄rw,i(xw,i) ≤ E − εn,k · i.
(s)

∑
a rn−4

a,i +
∑

b rn−4
b,i +

∑
w rn−4

w,i < C(n, k,Λ, i) and
∑

c rn−4
c,i ≤ C(n, k,Λ, i)ε′.

Let us begin by observing that if we can build this sequence of coverings then we have proved the The-
orems. Indeed, for i > Λ ε−1

n,k = i(n, k,Λ) we have that there are no w-balls in the covering, as their energy
would necessarily be negative. However if ε′ < c(n, k,Λ)ε it is then clear from (a) → (s) that the covering
in (9.10) would then satisfy the conditions of Theorems 9.1 and 9.2.

Our inductive covering will itself follow from a series of covering constructions. Let us begin with the
following claim, which is the first step in the process:

Claim: Let Bs(x) be δ-weakly flat wrt L for 4−1δr ≤ s ≤ 4r, then we have the decomposition
Br(x) \

⋃
s Brs(xs) ⊆ A ∪

⋃
b Bb ∪

⋃
c Brc(xc) ∪

⋃
w Brw(xw) such that

(a) A ⊆ B2r(x) is a δ-annular region with
∫
L⊥q ∩A

|FA|
2 < ε′ for q ∈ L ∩ Br(x) \

⋃
c Brc(xc).

(b) Bb ⊆ Bδ−1rb
(xb) are δ-bubble regions.

(c) For q ∈ L with L⊥q ∩
(⋃

c Brc(xc) ∪
⋃

s Brs(xs)
)

= ∅ and Bq ≡ L⊥q ∩
⋃

b Bb, there exists {x′w} ⊆ {xw}

with Br′w(x′w) ∩ L⊥q , ∅ such that
∣∣∣θr(q) − ωn−4

∫
Bq
|FA|

2 − θrw(x′w)
∣∣∣ < ε′.

(w) Br(xw) is δ-weakly flat wrt L for 4−1δrw ≤ r ≤ 4rw and satisfies θ̄rw(xw) ≤ θ̄r(x) − εn,k.
(s)

∑
b rn−4

b +
∑

w rn−4
w < C(n, k,Λ)rn−4 and

∑
c rn−4

c < ε′rn−4.

To prove the claim will require an application of Theorem 5.4 and Theorem 4.2. Indeed, let us first apply
Theorem 5.4 in order to build an annular region A = Br(x) \ Brx(C). Using the estimates on Cc we can cover

Br(x) \
⋃

s

Brs(xs) ⊆ A ∪
⋃
b′

Brb′ (xb′) ∪
⋃

c

Brc(xc) , (9.11)

where Brb′ (xb′) are δ weakly flat but Bs(xb′) is not δ-weakly flat for some δ4rb′ ≤ s ≤ rb′ . We also have the
estimates

∑
rn−4

b′ < C(n, k,Λ)rn−4 and
∑

rn−4
c < ε′rn−4. To each b′-ball we apply Theorem 4.2 in order to
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cover

Brb′ ⊆ Bb ∪
⋃

w

Brb,w(xb,w) , (9.12)

where with rb ≡ δrb′ we have that Bb ⊆ Bδ−1rb
(xb) is a δ-bubble region, and Bs(xb,w) are δ-weakly flat for

δrb,w < s < rb,w with θ̄rb,w(xb,w) < θ̄δ−1rb
(xb) − εn,k < θ̄r(x) − εn,k and

∑
w rn−4

b,w ≤ C(n, k,Λ)rn−4
b . By taking a

union over all b′ we obtain the covering

Br(x) \
⋃

s

Brs(xs) ⊆ A ∪
⋃

b

Bb ∪
⋃

w

Brw(xw) ∪
⋃

e

Bre(xe) , (9.13)

which satisfy the estimates
∑

rn−4
b +

∑
w rn−4

w ≤ C(n, k,Λ)rn−4 and
∑

rn−4
c < ε′rn−4. Condition (a) of the

claim follows from the definition of Cc in Theorem 5.4, while condition (c) follows by combining this with
(2) of Theorem 4.2, and thus we have finished the proof of the Claim. �

With the Claim in hand, we are ready to finish the construction of the inductive covering of (9.10), which
will itself finish the proof. Note first that for i = 0 we may take the trivial covering B1(p) = Brw,0(xw,0),
where xw,0 ≡ p and rw,0 ≡ 1. Thus we have the base step of the inductive construction. Now having built
the covering at stage i, let us see how to build the covering at stage i + 1. More precisely, observe that for
each ball Brw,i(xw,i) we may apply the Claim. If we do this to each w-ball then we arrive at a new covering

B1(p) \
⋃

s

Brs(xs) ⊆
⋃

a

(
Aa,i+1 ∩ Bra,i(xa,i+1)

)
∪

⋃
b

Bb,i+1 ∪
⋃

c

Brc,i+1(xc,i+1) ∪
⋃

w

Brw,i+1(xw,i+1) , (9.14)

where θ̄rw,i+1(xw,i+1) < θ̄rw,i(xw,i) − εn,k < E − εn,k(i + 1) and we have the estimates∑
a

rn−4
a,i+1 +

∑
b

rn−4
b,i+1 +

∑
w

rn−4
w,i+1 ≤ C(n, k,Λ, i) + C(n, k,Λ)

∑
w

rn−4
w,i ≤ C(n, k,Λ, i + 1) ,∑

c

rn−4
c,i+1 ≤ C(n, k,Λ, i)ε′ + ε′

∑
w

rn−4
w,i ≤ C(n, k,Λ, i + 1)ε′ . (9.15)

Conditions (a), (b), (w), and now (s) are all clearly satisfied by the new covering, while (c) follows from
the (i)-inductive hypothesis of (c) combined with (c) of the Claim. This finishes the proof of the inductive
covering, and hence of Theorem 9.1 and Theorem 9.2. �

10. PROOF OF ENERGY IDENTITY

In this section we use the quantitative energy identity from Theorem 9.2 in order to finish the proof of the
energy identity itself. Thus recall our setup that Ai → A with |FAi |

2dvgi → |FA|
2dvg + ν, where ν = e(x)λn−4

S
is the n − 4 rectifiable defect measure. For each ε, δ > 0 let us consider the subset Eε,δ ⊆ supp[ν] defined by
x ∈ Eε,δ if there exists a n − 4 plane Lx through x and points qi → x such that the following hold:

(1) ∃ δ-bubbles Bqi,b ⊆ Bδ−1rqi ,b
(xqi,b) with xqi,b ∈ L

⊥
qi

(2) #{Bqi,b} ≤ N(n,Λ).
(3) If Bqi ≡

⋃
L⊥qi
∩Bqi,b then

∣∣∣ ∫
Bqi
|FAi |

2 − e(x)
∣∣∣ < ε.
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Our goal is to show that for each ε > 0 there exists δε > 0 such that Eε,δ is a set of full measure in
supp[ν]. Let us first observe that if this is the case then we have finished the proof of the energy identity
itself. Indeed, consider the collection of points E0 ≡

⋂
ε>0 Eε,δε , which is itself a set of full measure. Then

for such a point x ∈ E0 we can find a sequence qi → x with
∣∣∣ ∫

Bqi
|FA|

2 − e(x)
∣∣∣ → 0. Since #{Bqi,b} ≤ N

we can apply Theorem 4.3.3 in order to find points ci,b ∈ Bqi and radii si,b > 0 such that for all η > 0 and
R ≥ R(n, k,Λ, η) we have ∣∣∣ ∫

Bqi

|FAi |
2 −

∫
Bqi∩

⋃
BRsi,b (xi,b)

|FAi |
2
∣∣∣ < η , (10.1)

so that ∣∣∣e(x) −
∫
Bqi∩

⋃
BRsi,b (xi,b)

|FAi |
2
∣∣∣ < η . (10.2)

Indeed, the pointed limits s−1
i,b Ai → Bb ∈ B[x] are then bubbles at x ∈ E0 such that the energy identity

e(x) =
∑

b

∫
L⊥
|FBb |

2 , (10.3)

holds. Since E0 is a set of full measure this finishes the proof of the Theorem.

Thus we need to show that each Eε,δ is a set of full measure. To accomplish this let us remark that by the
definition of ν being rectifiable we have that a.e. x ∈ supp{ν} is such that the unique tangent measure at x is
e(x)λn−4

L
, for some n− 4 plane L. In particular, for any δ′ > 0 and all 0 < r < r(x, δ′) fixed sufficiently small

that with i sufficiently large we have∣∣∣r4−n
∫

Br(x)
|FAi |

2 − ωn−4 e(x)
∣∣∣ < δ′ ,

B4r(x) is δ′-weakly flat. (10.4)

Let us choose δ′ > 0 sufficiently small that we can apply Theorem 9.2 with 1
2ε for some δ ≤ δ(n, k,Λ, ε).

Let us consider the sets Gε,i ⊆ L ∩ Br(x) coming from the Theorem and consider their Hausdorff limit
Gε,i → Gε ⊆ L ∩ Br(x). Using (10.4) above and the content of Theorem 9.2 it is immediate that Gε ⊆ Eε,δ.
Since 0 < r < r(x, δ′) was arbitrary, we have in particular that x is a ε-density point of Eε,δ. Since x ∈ supp[ν]
was a set of full measure, we have that Eε,δ ⊆ supp[ν] is a set of full measure as well. This completes the
proof. �

11. ANNULUS/BUBBLE DECOMPOSITION

In this section we introduce one last quantitative covering result, which we call the annulus/bubble de-
composition. The decomposition will split a ball into two pieces, one of which are bubble regions with
uniformly bounded curvature, and the other are annulus regions. The most important aspect of this decom-
position for us will be the effective n − 4 content estimates that come with the covering, which will be used
quite crucially in the proof of our global estimates on the hessian. Our main result in this subsection is the
following:
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Theorem 11.1 (Annulus/Bubble Decomposition). Let A be a stationary Yang-Mills connection satisfying
(1.11) and

>
B2
|FA|

2 ≤ Λ. Then for each δ > 0 we can write

B1(p) ⊆
⋃

a

(
Aa ∩ Bra

)
∪

⋃
b

Bb , (11.1)

such that

(a) Aa ⊆ B2ra(xa) are δ-annular regions.
(b) Bb ⊆ Bδ−1rb

(xb) are δ-bubble regions.
(s)

∑
a rn−4

a +
∑

b rn−4
b ≤ C(n, k,K,Λ, δ).

Remark 11.1. If the connection A is singular in the sense of [TT04] or [RPc] then one must allow an extra
piece to this decomposition, so that B1(p) ⊆

⋃
a
(
Aa ∩ Bra

)
∪

⋃
b Bb ∪ S, where S is a closed set with n − 4

measure zero. We shall point out in the proof where this happens.

Note several major differences between the annulus/bubble and the quantitative bubble tree decomposi-
tion. On the positive side, the original ball B1 does not need to be weakly flat, and there are no c-balls in
the covering. Therefore every point lies in either an annular region or a bubble region. On the negative side,
the annular and bubble regions are not with respect to some fixed L. This decomposition will be the more
appropriate one in order to prove the L1 hessian estimate, while as we have seen the quantitative bubble tree
decomposition is the appropriate one to prove the energy identity.

11.1. Proof of Theorem 11.1. The proof of Theorem 11.1 is by recursively applying the quantitative bub-
ble tree decomposition of Theorem 9.1 with the weakly flat decomposition of Theorem 3.4. Let us begin
with the following claim:

Claim 1: Let A be a stationary Yang-Mills connection satisfying (1.11) and
>

B4
|FA|

2 ≤ Λ. Then for each
δ > 0 we can write

B1(p) ⊆
⋃

a

(
Aa ∩ Bra

)
∪

⋃
b

Bb ∪
⋃

d

Brd (xd) , (11.2)

such that

(a) Aa ⊆ B2ra(xa) are δ-annular regions.
(b) Bb ⊆ Bδ−1rb

(xb) are δ-bubble regions.
(d) Brd (xd) satisfy θ̄rd (xd) ≤ θ̄1(x) − η(n, k,K,Λ, δ).
(s)

∑
a rn−4

a +
∑

b rn−4
b +

∑
d rn−4

d ≤ C(n, k,Λ, δ).

To prove the Claim let us pick δ′(n, k,Λ, δ) so that the quantitative bubble tree decomposition of Theorem
9.1 holds with ε = 10−6nωn. We will produce a sequence of coverings of the form

B1(p) ⊆
⋃

a

(
Aa,i ∩ Brb,i

)
∪

⋃
b

Bb,i ∪
⋃

c

Brc,i(xc,i) ∪
⋃

d

Brd,i(xd,i) , (11.3)

such that in addition to (a), (b), and (d) holding we will also have the estimates

(c-i)
∑

c rn−4
c,i ≤ ε

i .
(s-i)

∑
a rn−4

a,i +
∑

b rn−4
b,i +

∑
d rn−4

d,i ≤ C(n, k,Λ, δ)
∑i−1

j=0 ε
j .
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Let us first observe that if we can build this sequence of coverings then we have proved the Claim. Indeed,
this sequence differs from our desired covering in the claim only by the existence of c-balls. However, by
the content estimate we have that supc rc,i → 0 as i→ ∞. In particular, for i sufficiently (but uncontrollably)
large we have that any c-ball must define a smooth bubble region1, and therefore we can take the c-balls to
be empty in the covering for i sufficiently large, which produces the covering of our claim.

Thus let us now focus on building this sequence. Note that for i = 0 we can let the covering be defined by
the single ball B1(p) ≡ Brc(xc). Therefore our goal will be to produce the covering at the i + 1 stage given
that we have produced the covering at stage i.

To accomplish this let us focus on each c ball Brc,i(xc,i) in the covering. Let us now consider two options,
either the ball B4rc,i is δ′-weakly flat or it is not. In the first case we may apply the quantitative bubble tree
decomposition of Theorem 9.1 in order to produce the covering:

Brc,i(xc,i) ⊆
⋃

a

(
Ac,i,a′ ∩ Brc,i,a′

)
∪

⋃
b

Bc,i,b′ ∪
⋃

c

Brc,i,c′ (xc,i,c′) . (11.4)

which satisfy the estimates
∑

c′ rn−4
c,i,c′ ≤ εr

n−4
c,i and

∑
a′ rn−4

c,i,a′+
∑

b′ rn−4
c,i,b′ ≤ C(n, k,Λ, δ)rn−4

c,i . On the other hand,
if B4rc,i is not δ′-weakly flat then we may apply Theorem 3.4 in order to write

Brc,i(xc,i) ⊆
⋃

c

Brc,i,c′ (xc,i,c′) ∪
⋃

d

Brc,i,d′ (xc,i,d′) . (11.5)

with the estimates
∑

c′ rn−4
c,i,c′ ≤ εrn−4

c,i and
∑

d′ rn−4
c,i,d′ ≤ C(n, k,Λ, δ)rn−4

c,i . If we take the union of all these
coverings of every c-ball, and collect different pieces together, we arrive at the i + 1 covering

B1(p) ⊆
⋃

a

(
Aa,i+1 ∩ Brb,i+1

)
∪

⋃
b

Bb,i+1 ∪
⋃

c

Brc,i(xc,i+1) ∪
⋃

d

Brd,i+1(xd,i+1) , (11.6)

with the desired estimates∑
c

rn−4
c,i+1 ≤ ε

∑
c

rn−4
c,i ≤ ε

i+1 ,∑
a

rn−4
a,i+1 +

∑
b

rn−4
b,i+1 +

∑
d

rn−4
d,i+1 ≤

∑
a

rn−4
a,i +

∑
b

rn−4
b,i +

∑
d

rn−4
d,i + C(n, k,K,Λ)

∑
c

rn−4
c,i

≤ C(n, k,Λ, δ)
i−1∑
j=0

ε j + Cεi = C
i∑

j=0

ε j , (11.7)

which therefore finishes the inductive step of the construction and hence the Claim. �

With the Claim in hand let us now return to finish the proof of the Theorem. Indeed, we will see that the
proof of the Theorem is just a repeated application of the Claim. More precisely, let us produce a sequence
of coverings

B1(p) ⊆
⋃

a

(
Aa,i ∩ Brb,i

)
∪

⋃
b

Bb,i ∪
⋃

d

Brd,i(xd,i) , (11.8)

which in addition to satisfying (a) and (b) will satisfy the conditions:

(d-i) Brd (xd) satisfy θ̄rd (xd) ≤ θ̄1(x) − η(n, k,K,Λ, δ) i.

1This is not true if A is not smooth. However, the estimate (c − i) allows one to hausdorff limit the c-balls {Brc,i (xc,i)} to a closed
n − 4 measure zero set S, which is the additional piece of the covering in the singular case.



50 AARON NABER AND DANIELE VALTORTA

(s-i)
∑

a rn−4
a,i +

∑
b rn−4

b,i +
∑

d rn−4
d,i ≤ C(n, k,Λ, δ, i).

Let us first observe that once we have proved the existence of this sequence of coverings then we are
done. In fact, for i > η−1Λ there cannot be any d-balls in the covering as any such ball would have negative
energy. Therefore for such an i we have produced the desired covering of the Theorem.

Thus let us concentrate on proving the existence of this sequence of coverings. To produce the covering
for i = 1 we simply apply the Claim. We now construct the covering at the i + 1 stage inductively, using that
we have already built the covering at the ith stage. To accomplish this let us focus on each d-ball Brd,i(xd,i)
in the covering and apply the Claim to this ball. Taking a union produces the i + 1 covering. Hence, we have
finished the proof of Theorem 11.1.

12. PROOF OF THEOREM 1.2

In this section we put together the annulus/bubble decomposition of Theorem 11.1 with the annulus
structure of Theorem 5.3 and the bubble structure of Theorem 4.3 in order to complete the proof of the L1

hessian estimate on the curvature. Indeed, let us choose δ(n, k,Λ) sufficiently small so that Theorem 5.3
holds for εn = 10−n. Then we can estimate our L1 norm of the hessian by∫

B1(p)
|∇2F| ≤

∑
a

∫
Aa∩Bra

|∇2F| +
∑

b

∫
Bb

|∇2F| . (12.1)

On the δ-bubble regions we have by Theorem 4.3 that∫
Bb

|∇2F| ≤ C(n, k,Λ, δ) rn−4
b . (12.2)

On the other hand, by Theorem 5.3 we have on the annular regions Aa the scale invariant estimate∫
Aa∩Bra

|∇2F| ≤ εn rn−4
a . (12.3)

Putting these together with (12.1) we obtain∫
B1(p)
|∇2F| ≤ εn

∑
a

rn−4
a + Cδ

∑
b

rn−4
b ≤ C(n, k,Λ)

(∑
a

rn−4
a +

∑
b

rn−4
b

)
≤ C(n, k,Λ) , (12.4)

where the last inequality is due to the n − 4 content estimate of Theorem 11.1. This completes the proof.2 �
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