SCUOLA DI DOTTORATO
UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA

Department of Physics "Giuseppe Occhialini"
Ph.D. Program in Physics and Astronomy - XXXV cycle Curriculum in Applied Physics and Electronics

Transceiver Design for Supply-Embedded Communication in Differential Automotive Networks

Federico D’Aniello
Registration Number: 854573

Tutor: Prof. Dr. Andrea Baschirotto
Coordinator: Prof. Dr. Stefano Ragazzi

Abstract

Automotive wire harness has become nowadays a very complex structure as the number of electronic systems and sensors inside a vehicle has increased dramatically. To manage this complexity, and to support the automotive systems of tomorrow, new communication methods need to be investigated.

In this research activity, a Supply-Embedded Communication (SEC) transceiver for differential automotive networks is developed to provide advantages in cost, complexity, and weight. In a Supply-Embedded Communication system, the power supply is merged on the communication bus and hence the number of interconnections is drastically reduced. The proposed approach is intended to be an effective additional physical layer to the Controller Area Network (CAN) which is the most widespread bus in the automotive industry, and hence transmission speed in the order of some Mbps is desired.

Two transmitter topologies based on switching capacitors and their implementation in a first test chip in 180 nm CMOS SOI technology are presented. The prototype is validated by communication tests in the laboratory connecting it to a discrete component-based demonstrator receiver board through an unshielded twisted pair cable. A receiver circuit based on StrongArm Latches is designed and integrated into the second version of the prototype to realize a full SEC transceiver. Compared to commercially available solutions, the proposed approach can reach a data transmission rate of 2 Mbps making it able to implement high-speed event-driven networks, such as the CAN.

As a side project, a second order curvature compensated bandgap reference circuit is proposed. Voltage references are used in almost every integrated circuit and, one of them is also present in the SEC transceiver prototype to furnish the required bias to the circuit. Although the main project is done in 180 nm technology, the side project is developed in 110 nm technology for educational purposes. The proposed circuit is validated by simulation in a temperature range from $-40^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ in a 6σ process spread. The second order compensation introduces a considerable improvement in performance by reducing the maximum variation from the room temperature to a value lower than 1 mV in the typical corner.

The motivations and the principle behind this activity are shown in Chapter 1. The transmitter and receiver designs are respectively reported in Chapter 2 and Chapter 3 including layout and simulation results. Chapter 4 shows the top level implementation of the two developed prototypes, while the measurement results are presented in Chapter 5. The proposed bandgap reference circuit is illustrated in Chapter 6. Finally, the conclusions are drawn in Chapter 7.

Abstract

Negli ultimi anni il numero dei sistemi e dei sensori elettronici, utilizzati all'interno degli autoveicoli, è aumentato sensibilmente e, di conseguenza, il loro sistema d'interconnessioni è divenuto uno dei più complessi e critici da progettare. Al fine di gestire tale complessità e di favorire lo sviluppo dell'automobile del futuro, è divenuto quindi necessario studiare nuove soluzioni progettuali.

Nella presente attività di ricerca, viene proposto un ricetrasmettitore Supply-Embedded Communication (SEC) in grado di semplificare il sistema di cablaggio e di ridurre il costo ed il peso dell'autoveicolo. Infatti, nel sistema Supply-Embedded proposto, l'alimentazione è stata integrata sul bus di comunicazione, riducendo notevolmente il numero d'interconnessioni necessario. Il metodo presentato si propone, quindi, come un layer fisico addizionale al Controller Area Network (CAN), il bus attualmente più diffuso nell'industria automotive.

Sono stati realizzati due trasmettitori, basati su capacità di commutazione, ed entrambi sono stati implementati in un test chip in tecnologia 180 nm CMOS SOI. Il prototipo è stato validato da test di comunicazione sviluppati in laboratorio, connettendo il chip con un ricevitore a componenti discreti. Un ricevitore basato su StrongArm Latch è stato sviluppato ed integrato nella seconda versione del prototipo, realizzando un ricetrasmettitore SEC completo. Paragonato alle soluzioni già disponibili sul mercato, il metodo proposto consente il raggiungimento di una velocità di trasmissione dati pari a 2 Mbps , rendendolo in grado d'implementare reti ad alta velocità come avviene nel bus CAN.

Come progetto secondario, è stato sviluppato un circuito di bandgap reference con compensazione al secondo ordine. I bandgap reference sono presenti ormai in quasi tutti i circuiti integrati, come anche nel ricetrasmettitore SEC oggetto di questo lavoro di tesi, al fine di fornire la necessaria polarizzazione ai circuiti. Per scopi didattici, il progetto secondario è stato realizzato in tecnologia 110 nm CMOS SOI, diversamente dal progetto principale. Il circuito proposto è stato validato da simulazioni svolte in un range di temperature da $-40^{\circ} \mathrm{C}$ a $175^{\circ} \mathrm{C}$ in un processo a 6σ. La compensazione al secondo ordine ha consentivo di ottenere una massima variazione dalla temperatura ambiente inferiore ad 1 mV nel corner tipico.

Le motivazioni ed il principio alla base del lavoro svolto sono presentati nel Capitolo 1. I design del trasmettitore e del ricevitore sono riportati rispettivamente nel Capitolo 2 e nel Capitolo 3, comprensivi di layout e risultati delle simulazioni. Il Capitolo 4 mostra l'implementazione top level dei due prototipi sviluppati, mentre i risultati delle misure sono illustrati nel Capitolo 5. Il circuito di bandagap reference proposto è riportato nel Capitolo 6 e, infine, nel Capitolo 7 sono tratte le conclusioni.

Contents

1 Introduction 1
1.1 Motivation 1
1.2 Charge Injection Concept 3
2 Transmitter Design 5
2.1 H-bridge Transmitter Topology 5
2.2 3-Switches Transmitter Topology 7
2.3 High-Voltage Switches Design for TX circuits 8
2.3.1 Low Side Switch 9
2.3.2 High Side Switch 10
2.3.3 Floating Switch 13
2.4 Transmitters Implementation 15
3 Receiver Design 19
3.1 Input Capacitor Divider 20
3.2 Differential Buffer 21
3.3 Strong-Arm Latch 23
3.4 Receiver Top Level 25
4 Test Chips Implementation 29
4.1 Test Chip 1 29
4.2 Test Chip 2 35
5 Measurement and Validation Results 39
5.1 Test Chip 1 Validation 39
5.1.1 Static Measurements TC1 41
5.1.2 Dynamic Measurements TC1 47
5.2 Test Chip 2 Validation 53
6 Bandgap Reference Circuit with 2nd Order Curvature Compensation 57
6.1 Introduction 57
6.2 Proposed 2nd order compensated Bandgap Reference 59
6.3 Simulation Results 62
7 Conclusion 65
Bibliography 67
Appendix 77
A Appendix Python Scripts 77
A. 1 Supply-Embedded Communication Package 77
A. 2 Supply parameters test 79
A. 3 Switches leakage current 81
A. 4 Switches on-resistance 84
A. 5 Supply-Embedded Communication Package Extended for TC2 89
Publications 93

Acronyms

BH	Bus High,
BJT	bipolar junction transistor,
BL	Bus Low,
CAN	Controller Area Network,
CMOS	complementary metal-oxide semiconductor,
CTAT	complementary to absolute temperature,
DUT	device under test,
ECUs	electronic control units,
ESD	field-programmable gate array,
FPGA	Floating Switches,
FS	High-Side Switches,
HSS	high voltage,
HV	input/output,
I/O	integrated circuit,
IC	intellectual property,
IP	light emitting diode,
LED	low voltage, Interconnect Network,
LIN	LSS

MOS	metal-oxide semiconductor,
MV	medium voltage,
NMOS	n -type metal-oxide semiconductor,
PCB	printed circuit board,
PLC	Power-Line Communication,
PMOS	p-type metal-oxide semiconductor,
PRBS	pseudo-random bit stream,
PTAT	proportional to absolute temperature,
QFN	quad-flat no-leads,
RX	receiver,
SEC	Supply-Embedded Communication,
SOI	silicon-on-insulator,
TC	temperature coefficient,
TC1	first test chip,
TC2	second test chip,
TX	transmitter,
URZ	unipolar Return-to-Zero,
VNC	virtual network computing,

CHAPTER 1

Introduction

1.1 Motivation

The automotive industry is living a big transformation as the number of electronic systems and sensors is increasing dramatically. This allows carmakers to improve safety, comfort, and entertainment and to introduce new functions such as Advanced Driver Assistance Systems (ADAS), power-train control, and means for diagnostics. Forecasts on the automotive market suggest that 80% of the innovation in this industry is linked to electronics and that the electronic content growth will rise to 50% by 2030 [1, 2]. As the number of automotive subsystems relying on electronics is increasing, so is the cabling required for their interconnection. Electronic functions, implemented as nodes, are controlled by dedicated electronic control units (ECUs) and are usually connected by a communication bus, the power supply lines, and possibly addressing lines. Since the late 1980s serial communication buses have been used to interconnect the ECUs and signals. Compared to 1-to-1 communication, applying a serial data bus reduces the number of wires by combining the signals on a single wire through time division multiplexing. To handle this level of complexity, many efforts have been done by the automotive industry to standardize the software architectures as well as the communication protocols. Some of the most common Fieldbus technologies used nowadays are the Local Interconnect Network (LIN), the Controller Area Network (CAN), and the FlexRay [3]. LIN is a single-wire, serial network protocol that provides time-triggered communications up to $20 \mathrm{Kbit} / \mathrm{s}$ and it is meant for inexpensive communication without reliability or timeliness requirements. CAN is a message-based protocol that provides event-triggered communication at speed of up to 1 Mpbs where each message or data frame is transmitted sequentially. It is the most commonly used Fieldbus thanks to its versatility and relatively high data rate. FlexRay provides time-triggered communication at speeds up to 10 Mbps . It is meant for safety-critical systems, ensuring high data rates and fault tolerance but it is usually more expensive than other Fieldbus.
However, a single modern vehicle can contain up to 150 ECUs, making the wire harness a very complex system that results in high production costs, increased weight of the car,
and extraordinary consumption of raw material [4]. As a consequence, new solutions to drastically reduce the amount of cabling in the near future need to be investigated. In this research topic, a communication approach that merges the power supply on the communication bus is analyzed, since the available spectrum is being unused. This approach, named Supply-Embedded Communication (SEC), is designed to be comparable to CAN since this is the most widespread protocol. A data rate of 2 Mbps is therefore set as a target. Communication methods on the supply lines, known as Power-Line Communication (PLC), are already used in other contexts such as industrial communication, Ethernet, and smart home appliances. However, unlike these applications, the power supply voltage in a car is a DC battery, and furthermore, the compatibility and safety requirements are much more stringent.

The feasibility of PLC systems in an automotive environment has already been proven by commercially available proposals based on a carrier modulation [5-8] but the resulting data rate $\leq 500 \mathrm{kbps}$ and latency would disable the use in high-speed event-driven applications ($\geq 1 \mathrm{Mbps}$). Therefore, in this work, a base-band SEC system is examined to realize a CAN protocol with a modified physical layer. The result is a system of n nodes connected to each other only through the communication bus as shown in Fig. 1.1. In this Thesis, the communication bus is referred to as Bus High (BH) and Bus Low (BL) for the analogy with the CAN. Each node must be able to transmit and receive signals on the bus and therefore must include a transmitter (TX) and a receiver (RX). The basic concept consists in injecting defined charges on the transmission line through switching capacitors to obtain signal pulses for communication. Such charge injection principle and some preliminary considerations are detailed in Section 1.2.

This research project was done in collaboration with Andreas Ott. In his Thesis [9], more details on the concept, and the architecture of the test chips including the power supply system, the digital control, and the protection scheme can be found, while this Thesis focuses on transceiver design, layout, simulations, and measurements.

Figure 1.1: Supply-Embedded Communication concept

1.2 Charge Injection Concept

Figure 1.2: Equivalent s-domain model of the charge injection

To understand the principle of charge injection, and to evaluate some design specifications, the discharge phase of a functional switching capacitor C_{f} was studied. In Fig.1.2 the equivalent s-domain model of a charge injection event is shown. C_{f} is connected by a switch with finite on-resistance $R_{S W}$ to the transmission line. The line has characteristic impedance $\left|Z_{0}\right|$ and, it is terminated by resistor $R_{t 1}$. The capacitance C_{p} associated with the physical implementation aspects is also included. In a SEC, since supply and communication are merged on the same line, a coupling feed from the power source is needed to separate it from the communication channel [10]. In the following analysis, the coupling feed is composed of L_{c} and $R_{t 2}$, and the inductance L_{c} is assumed to be sufficiently high so that $X_{L c} \gg\left|Z_{0}\right|$ at 10 MHz . Assuming that the capacitor is initially charged to the DC supply level $V_{s}(0)$, the pulse waveform of a discharge event can be evaluated by solving the inverse Laplace transform of the presented scheme:

$$
\begin{equation*}
V_{p}(t)=V_{\text {peak }}\left(e^{-\frac{t}{\tau_{2}}}-e^{-\frac{t}{\tau_{1}}}\right) \tag{1.1}
\end{equation*}
$$

The peak voltage, the rising $\left(\tau_{1}\right)$, and falling $\left(\tau_{2}\right)$ time constants are:

$$
\begin{align*}
& V_{\text {peak }}=\frac{Q_{C_{f}} R_{t}}{\kappa} \approx \frac{Q_{C_{f}} R_{t}}{C_{p} R_{t}+C_{f}\left(2 R_{s w}+R_{t}\right)} \tag{1.2}\\
& \tau_{1,2}=\frac{2 C_{f} C_{p} R_{s w} R_{t}}{C_{p} R_{t}+C_{f}\left(2 R_{s w}+R_{t}\right) \pm \kappa} . \tag{1.3}
\end{align*}
$$

with

$$
\begin{equation*}
\kappa=\sqrt{\left(C_{p} R_{t}+C_{f}\left(2 R_{s w}+R_{t}\right)\right)^{2}-8 C_{f} C_{p} R_{s w} R_{t}} \tag{1.4}
\end{equation*}
$$

and $R_{t}=R_{t 1}=R_{t 2}$. Simulation results with different sizes of C_{f} are shown in Fig.1.3 where it was assumed to design a switch with $R_{s w}=10 \Omega$ and, $R_{t}=\left|Z_{0}\right|=100 \Omega$, $C_{p}=10 p F, L_{c}=100 u H, V_{S}(0)=12 \mathrm{~V}$. The resulting τ_{2} values are $30.0 \mathrm{~ns}, 59.5 \mathrm{~ns}$ and $118.0 n s$ respectively for $0.5 n F, 1.0 n F$ and $2.0 n F$.

Figure 1.3: Simulation result of a discharge event

To reach a data rate of 2 Mbps , it can be deduced that the switching capacitor should be $\leq 2 n F$ so that $\tau_{2} \approx 0.1$ to $0.15 D R^{-1}$ where $D R$ is the data rate. This analysis leads to considering external capacitor C_{f} in the developed proposal, both for the area occupation and the higher flexibility. More details about the modeling and system specifications are reported in [9].

CHAPTER 2

Transmitter Design

In this chapter two Supply-Embedded Communication transmitter implementations based on switching capacitors are proposed. The first circuit, named H-Bridge topology, is shown in Section 2.1 and it requires 4 switches and 1 external capacitor. The second proposal, named 3 -Switches topology and described in Section 2.2 , instead requires only 3 switches but 2 external capacitors. Section 2.3 details the implementation and the stand-alone simulations of the needed switches. Finally, Section 2.4 shows the composition of the two transmission circuits and some simulation results.

2.1 H-bridge Transmitter Topology

Figure 2.1: H-Bridge TX Topology

The first transmitter topology is the H-Bridge implementation of Fig. 2.1. The supply is applied on the communication bus through the coupling feed composed of $R_{t} / 2$ and L_{c}. Moreover, the line is terminated by an ac-coupling capacitor $\left(C_{c}\right)$ and two series $R_{t} / 2$ resistors. The circuit consists of a switching capacitor $\left(C_{H B}\right)$, which can be connected to the bus through two equal High-Side Switches (HSS), S_{1} and S_{3}, and two equal Low-Side Switches (LSS), S_{2} and S_{4}, which operate in an H-Bridge topology. The circuit commutes among three possible states, as described in Table 2.1, which are alternating at each received data edge. Assuming that $C_{H B}$ is initially discharged, at the first Charge-State
(e.g. Charge 1-4) is it charged to $Q_{C H B}=C_{H B} \times V_{S}$. As a guard against overlap and unwanted cross currents between the transmission rails, an Open-State is always placed after a charge event, during which the charge in $C_{H B}$ is preserved. In the next step, the second Charge-State (e.g. Charge 2-3) is reconnecting the capacitor to the communication line and is charging it to $-Q_{C H B}$. As illustrated in Fig. 2.2, a drop on the differential bus $B_{H}-B_{L}$ occurs at each received data as a result of the charge transferred from the line itself to $C_{H B}$.

Table 2.1: States of H-bridge Transmitter Topology

State	S_{1}, S_{4}	S_{2}, S_{3}	Description
Open	Open	Open	$C_{H B}$ not connected. Charge is pre- served
Charge 1-4	Close	Open	charge accumulated during Charge $2-3$ phase is recharged to V_{S} level
Charge 2-3	Open	Close	charge accumulated during Charge $1-4$ phase is recharged to $-V_{S}$ level

The obtained timing constant ($\tau_{\text {charge }}$), and the average current consumption $\left(I_{H B}\right)$ can be evaluated as follows:

$$
\begin{align*}
& \tau_{\text {charge } 1-4,2-3}=\left(R_{t} / 2+R_{H S S}+R_{L S S}\right) \times C_{H B} \tag{2.1}\\
& I_{H B}=2 C_{H B} \times V_{S} \times D R \tag{2.2}
\end{align*}
$$

where DR is the data rate, and uniform distribution of ' 0 ' and ' 1 ' and a costant message stream are supposed. The transmitted signal is unipolar and thus a pre-coding is needed since falling or rising edges of the data signal cannot be distinguished. Hence, for an uncoded data stream applied to the TX, the protocol frame structure needs to be taken into account so that a message header like in [11] can be used to assign the correct data polarity. But the simplest encoding to resolve the ambiguity is to encode the data as a unipolar Return-to-Zero (URZ) stream [12].

Figure 2.2: Example of data transmission in H-Bridge TX Topology

2.2 3-Switches Transmitter Topology

Figure 2.3: 3-Switches TX Topology

The second proposed transmitter topology is the 3-Switches switching capacitor scheme of Fig. 2.3 where two capacitors $\left(C_{S 1}, C_{S 2}\right)$ are charged and discharged according to the 3 possible states described in Table 2.2. During the Charge-State $C_{S 1}$ and $C_{S 2}$ are charged in parallel through the HSS S_{1} and the LSS S_{2} to $Q_{C H}=2 C_{S} \times V_{S}$, where $C_{S}=C_{S 1}=C_{S 2}$. In the next step, the capacitors are discharged in series through the Floating Switches (FS) S_{3} to $Q_{D H}=\frac{1}{2} C_{S} \times V_{S}$. Similar to the H-Bridge, an Open-State is placed in between to avoid cross currents and during which the charges are preserved. As result, as shown in Fig. 2.4, positive and negative pulses appear on the differential bus and so the data polarity can be recovered directly. Unlike the H-Bridge, the states are not symmetrical and, the charging $\left(\tau_{\text {charge }}\right)$ and discharging $\left(\tau_{\text {discharge }}\right)$ timing constants are not equal:

$$
\begin{align*}
& \tau_{\text {charge }}=\left(R_{t} / 2+\left(R_{H S S} / / R_{L S S}\right)\right) \times 2 C_{S} \tag{2.3}\\
& \tau_{\text {discharge }}=\left(R_{t} / 2+R_{F S}\right) \times C_{S} / 2 \tag{2.4}
\end{align*}
$$

The average current consumption ($I_{3 S}$) can be evaluated as

$$
\begin{equation*}
I_{3 S}=C_{S} / 4 \times V_{S} \times D R \tag{2.5}
\end{equation*}
$$

and since the charge is partially reused, the consumption is reduced by a factor of 2 compared to the one in the H-Bridge TX. Assuming that the same data rate and the same capacitors size are applied, the current consumption is thus 8 -times less than in the previous approach.

Table 2.2: States of 3-Switches Transmitter Topology

State	S_{1}, S_{2}	S_{3}	Description
Open	Open	Open	$C_{S 1}, C_{S 2}$ not connected. Charges are preserved
Charge	Close	Open	$C_{S 1}, C_{S 2}$ are connected in parallel to the bus and charged to V_{S}
Discharge	Open	Close	$C_{S 1}, C_{S 2}$ are connected in series and discharged to $V_{S} / 2$
Raw data			

Figure 2.4: Example of data transmission in the 3-Switches TX Topology

2.3 High-Voltage Switches Design for TX circuits

The designs of the transmitters proposed in Fig. 2.1 and Fig. 2.3 require proper switches functions. Efficient low-side switch (LSS, connected to ground), high-side switch (HSS, connected to the power supply), and floating switch (FS, not directly connected to ground or supply), are required. According to equations (2.1),(2.3),(2.4), assuming that switching capacitors of $\approx 1 n F$ are used, switches with on-resistance of $\approx 10 \Omega$ (and in any case $\leq 30 \Omega)$ are required to keep the termination resistance dominant and to reach a data rate of 2 Mbps . Table 2.3 reports the chosen technology for this project which is an XFAB 180 nm silicon-on-insulator (SOI) complementary metal-oxide semiconductor (CMOS) technology and it includes high voltage (HV) transistors up to 40 V in addition to low voltage (LV) transistors at 1.8 V and medium voltage (MV) transistors at $5 \mathrm{~V}[13]$. Since the pulses over the communication bus can be up to $2 \times V_{S}$, where $V_{S}=12 \mathrm{~V}$ is the battery voltage, HV devices are required as switches.

The switches are driven by controlled current sources properly designed by using MV transistors. Both the HV and the MV devices have a gate-source voltage range from -5.5 V to 5.5 V which is always ensured to guarantee safe operations even when the pulses appear over the transmission lines. Note that the circuits share a common current master mirror (CM) of $10 \mu A$. The resistors used in the following design are poly and high-R poly resistors.

Table 2.3: Selected properties of the wafer process

Process name	XT018
Metalization option	Al, 5 thin, 1 thick (top)
Isolation	BOX, DTI
LV transistors	1.8 V
MV transistors	5 V
HV transisors	40 V
Capacitors	fringe, p-type varactor
Resistors	diffusion, well, poly and high-R poly

2.3.1 Low Side Switch

The LSS is implemented by an HV n-type metal-oxide semiconductor (NMOS) sized with $L=0.4 \mu \mathrm{~m}$ and $W=1 \mathrm{~mm}$ to realize a nominal 9Ω on-resistance switch. The full design is shown in Fig. 2.5 where $M_{L 0}$ is the LSS device. The source is directly connected to the Bus High (BH) while the drain is connected to the external capacitor pad C_{L} (i.e. $C_{H B}$ or $\left.C_{S 2}\right)$ through the electro-static discharge (ESD) protection diode $D_{L 0}$.

Figure 2.5: LSS schematic

The switch is turned on by the current source referred to ground $M_{L 1}$ controlled by the signal $V_{O N}$ applied on the gate of the corresponding cascode HV NMOS $M_{L C 1}$. The generated current is 5 times bigger than the $10 \mu A$ master and is doubled again by the p-type metal-oxide semiconductor (PMOS) mirror composed of $M_{L 2}$ and $M_{L 3}$. The resulting $100 \mu A$ current flows into $R_{L 1}$ and pulls up the gate of $M_{L 0}$ turning it on with a timing constant given by $R_{L 1} \times C_{G S M L 0} . C_{G S M L 0}$ is estimated to be $\approx 720 \mathrm{pF}$ in saturation, while $R_{L 1}$ can be selected equal to $50 k \Omega$ so that $V_{G S M L 0}=R_{L 1} \times I_{M L 3}=5 \mathrm{~V}$ in steady state. Moreover, a stack of diode-connected PMOSs $\left(D_{L 1}\right)$ is placed as protection clamping the voltage between its terminal, and hence between gate and source of $M_{L 0}$, to 5.5 V .

Similarly, the signal $V_{O F F}$ controls the switching off of the LSS. A $50 \mu A$ current is enabled to flow from $M_{L 4}$, through $M_{L 5}$ and $M_{L 6}$, to $R_{L 2}$ so to turns $M_{L 7}$ on. Consequently, the gate of $M_{L 0}$ is pushed down to ground and the LSS is turned off. Resistor $R_{L 2}=25 \mathrm{k} \Omega$ is sized to get $V_{G S M L 7}=R_{L 2} \times I_{L 6}=5 V$, while $D_{L 2}$ is a stack of diode-connected PMOSs used as protection. Since $M_{L 7}$ is a small MV device, its $C_{G S}$ is just a few $p F$, thus its turn-on timing constant $R_{L 2} \times C_{G S M L 7}$ can be neglected and the LSS turn-off timing constant can be evaluated just as $C_{G S M L 0} \times\left(R_{L 1} / / r o n_{M L 7}\right) \approx C_{G S M L 0} \times r_{\text {ron }}^{M L 7}$.

Finally, note that all the PMOS cascodes are constantly on thanks to the VPC voltage applied to their gates. This is generated by a dedicated block that is shared between all the switches and it is here illustrated. A current tail is provided by $M_{L 8}$ and is applied to the diode-connected device $M_{L 9}$. Similarly to the previous ones, $D_{L 3}$ is a stack of diode-connected PMOSs and is used as gate-source protection.

Standalone post layout simulations in a 6σ process spread in a temperature range from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ were carried out to evaluate the transition times of the designed switch. Ideal 14 V DC voltage and $10 \mu A$ current sources were used as well as a load capacitor of $1 n F$. The turn-on and turn-off in the typical corner are shown in Fig. 2.6 and are evaluated to be respectively $12.8 n s$ and $16.2 n s$ by referring to the threshold voltage $V_{T H}$. In the worst corners, times lengthen and become 28.7 ns for turning on and 22.5 ns for turning off.

Figure 2.6: LSS turn-on and turn-off times in typical conditions

2.3.2 High Side Switch

Ideally, a perfect matching between the HSS and the LSS is desired to have a perfectly symmetrical structure. One solution to achieve this target can be to use an HV NMOS
also as HSS. To fully charged the load capacitor, a bootstrap circuit is needed. A possible implementation is shown in Fig. 2.8 where $M_{B 0}$ is the main switch and the pad C_{L} (i.e. $C_{H B}$ or $C_{S 1}$) is the connection to the load.

Figure 2.7: HSS bootstrap schematic

Initially, V_{P} is assumed to be low so that $M_{B 4}$ is off, $C_{B T S}$ is charged to the DC value of $B H$ (i.e. V_{S}), while $M_{B C 1}$ is on and a push down current keeps the HSS off. The $V_{G S}$ of $M_{B 0}$ is kept below the maximum limit by level shifters $M_{B 2}$ and $M_{B 3}$. Once that V_{P} rises, $M_{B C 1}$ is turned off and $M_{B 4}$ is turned on. The charge stored in $C_{B T S}$ is shifted up to the bootstrapped voltage $V_{B T S}=V_{S}+V_{P}$. Consequently, $M_{B 5}$ is turned on and the bootstrapped voltage is transmitted to the gate of $M_{B 0}$ turning it on. The diode D_{B} allows the current to flow only in one direction preventing $V_{B T S}$ to instantly back to V_{S} and, moreover, it acts as gate-source protection for $M_{B 5}$.

Figure 2.8: HSS bootstrap circuit concept simulation

However, this circuit suffers from some limitations making the implementation difficult:

- assuming the load capacitor is not charged, i.e. $V_{L}=0 V$, if $M_{B 0}$ is switched on by the bootstrap voltage, then its $V_{G S}$ exceeds the maximum value allowed by the technology;
- in case of the HSS does not require to be turned on, but a pulse appears on the transmission bus (this is, for instance, the case of the switch S_{3} during the Charge 1-4 phase of Tab.2.1), unwanted turn-on of $M_{B 5}$ can happen. An always-off system should be designed to prevent both this event as well as the overlap between on and off states;
- to design a 9Ω device, $M_{B 0}$ needs to be a large device, and therefore its $C_{G S}$ is also relevant. Thus, the bootstrap capacitor is estimated to be about 100 pF to provide sufficient charge and occupies a non-negligible area.

For these reasons it was preferred to develop the HSS in a complementary way to the LSS using an HV PMOS as shown in Fig. 2.9. Due to the lower mobility, to obtain the same nominal on-resistance of $9 \Omega, M_{H 0}$ is sized around 3 times bigger than the LSS, and thus $L=0.5 \mu \mathrm{~m}$ and $W=3 \mathrm{~mm}$. As drawback, its $C_{G S}$ is also 3 times bigger and higher currents are needed to get the same performances as in the LSS. The source is connected to $B H$ while the drain is connected to the external pad through an ESD protection diode.

Figure 2.9: HSS schematic

The switch is turned on by a $300 \mu A$ pull-down current generated by $M_{H 1}$ and enabled by the signal $V_{O N}$ applied on the corresponding cascode device. The current flows into resistor $R_{H 1}=16.5 \mathrm{k} \Omega$ so that $M_{H 0}$ is turned on and $V_{S G M H 0}=R_{H 1} \times I_{M H 1}=5 \mathrm{~V}$ in steady state. The timing constant is given by $C_{G S M H 0} \times R_{H 1}$ and, compared to the LSS, a higher current is applied to obtain a similar behavior.

The off state is activated by rising $V_{O F F}$ to apply a $100 u A$ pull-down current on the gate of the MV PMOS $M_{H 3}\left(R_{H 2}=50 \Omega\right)$. Similar to the LSS, the turn-off constant can be evaluated as $C_{G S M H 0} \times\left(R_{H 1} / /\right.$ ron $\left._{M H 3}\right) \approx C_{G S M H 0} \times$ ron $_{M H 3}$ where the turn-on time of $M_{H 3}$ is neglected. Stacks $D_{H 1}$ and $D_{H 2}$ are also placed to ensure safe operations.

Standalone post layout simulations in the typical corner are shown in Fig. 2.10 for transition times. Simulations were carried out in a temperature range from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ and with an ideal voltage source and current feed. The load capacitor was still supposed equal to $1 n F$. Turn-on time is $19.9 n s$ in typical conditions and $30.7 n \mathrm{~ns}$ in the worst corner. As desired, the result is very similar to the LSS making the structure as symmetric as possible. Turn-off times instead are $3.9 n \mathrm{~s}$ and 4.3 ns in typical and worst corners respectively.

Figure 2.10: HSS turn-on and turn-off times in typical condition

2.3.3 Floating Switch

For the 3-Switches transmitter, a third kind of switch is required. Since it is connected between two floating points, it is called Floating Switch (FS), and it is the most demanding one to design. The schematic is proposed in Fig. 2.11, where the HV NMOS $M_{F 0}$ is the FS device. According to Fig. 2.3, its source is connected to the node between $C_{S 2}$ and the LSS S_{2}, which varies between 0 and $V_{S} / 2$, and its drain is connected to the node between $C_{S 1}$ and the HSS S_{1}, which varies between V_{S} and $V_{S} / 2 . M_{F 0}$ dimensions are $L=0.4 \mu \mathrm{~m}$ and $W=1 \mathrm{~mm}$ realizing a nominal 9Ω on-resistance switch.

When $V_{O N}=5 V, M_{F 1}$ operates as a current source providing a current 5 times bigger than the $10 u A C M$. The generated current passes through the PMOS unity factor

Figure 2.11: FS schematic
current mirror consisting of $M_{F 2}$ and $M_{F 3}$, and pulls up the gate of $M_{F 0}$ turning the FS on. $M_{F 6}$ operates as a source follower and keeps $V_{G S M F 0}$ below the upper limit of the technology. A stack of diode-connected PMOSs $\left(D_{F 1}\right)$ is placed to ensure also a high overdrive: $V_{G S M F 0}=V_{S G M F 8}+V_{D F 1}=5 V$. The turn-on timing constant is dominated by the $C_{G S M F 0}$ which is estimated to be around 720 pF in saturation.

The off branch is enabled when $V_{O F F}=5 \mathrm{~V}$ so that $M_{F 4}$ generates a $200 u \mathrm{~A}$ pull-down current to turn off the switch. The NMOS $M_{F 7}$ operates as a source follower and ensures that the $V_{G S M F 0}$ is not violating the lower limit of the functional range. In the case of both $V_{O N}$ and $V_{O F F}$ are down, and the 3 -Switches TX is not required, a permanent $2.5 u \mathrm{~A}$ pull-down off current is applied by $M_{F 5}$ to ensure a no floating gate.
The result of post layout simulations of the turn-on and turn-off are shown in Fig. 2.12

Figure 2.12: FS turn-on and turn-off times in typical condition
where switching capacitors of $1 n F$ and ideal sources were used. The typical values are 17.46 ns and 36.43 ns respectively, while in the worst corner are 21.7 ns and 43.4 ns .

2.4 Transmitters Implementation

With the presented switches design, the two transmitter circuits of Fig. 2.1 and Fig. 2.3 can be implemented. The layout views of the H-Bridge topology and the 3-Switches topology are respectively shown in Fig. 2.13 and Fig. 2.14 where the switches are indicated by labels. The size difference between the HSS and the LSS is immediately evident, while the FS has the same size as the LSS even if for practical reasons the single-finger-dimension \times number-of-fingers ratio is different. The H-Bridge circuit occupies an area of $434 \mu m \times 220 \mu m$ while the 3 -Switches circuit occupies $315 \mu m \times 220 \mu m$ and, since it requires one switch less, is about 28% smaller.

Figure 2.13: Layout view of the H-Bridge transmitter circuit

The designs were simulated in Virtuoso by Cadence in a temperature range from $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ over corners in a process spread at 6σ. The H-Bridge topology test bench is shown in Fig. 2.15. The supply source is equal to $14 V$, the load capacitor is $0.8 n F$, while the coupling system is composed of $R_{t}=50 \Omega$, and $L_{C}=100 \mu H$. The control signals for the switches are generated by a Verilog code which implements in a loop the four states of Table 2.1. Each phase has a duration of 500 ns , and so a pulse is expected every $1 \mu \mathrm{~s}$ on the bus. The intermediate open state is placed to avoid overlap between the charging states and hence a fatal short circuit between the lines. Ideal sources are used for the 5 V supply and the $10 \mu A$ biasing current.

The target values (Spec. input) and the obtained schematic and post layout simulation results are reported in Table 2.4. Both the pulse durations over the bus $t_{B H}, t_{B L}$, and

Figure 2.14: Layout view of the 3-Switches transmitter circuit

Figure 2.15: Virtuoso test bench for the H-Bridge transmitter
the charging time of the load capacitor $t_{C L}$ are reported, and, even in the worst corner, the goal is satisfied making the proposal valid for the 2 Mbps implementation. A target of around 4 V is set for the pulse width so to simplify later the receiver system design. A picture of the post layout corner simulation is shown in Fig. 2.16.

Table 2.4: Simulation results of the H-Bridge transmitter

	Spec input	Unit	Schematic Simulation			Post Layout Simulation		
			Min	Typ	Max	Min	Typ	Max
$t_{B H}$	<500	ns	217	247	411	224	257	418
$t_{B L}$	<500	ns	216	246	410	223	257	417
$t_{C L}$	<500	ns	259	296	471	266	307	477
$V_{P B H}$	4	V	1.5	4.4	6.1	1.5	4.1	5.8
$V_{P B L}$	4	V	1.4	4.3	6.1	1.4	4.1	5.7

In Fig. 2.17 the 3 -Switches solution test bench is reported. The two switching capacitors

Figure 2.16: Post layout simulation results of the H-Bridge transmitter
C_{L} and C_{H} are sized to $0.8 n F$ and the same values as before are used for supply and coupling feed. The switches control is implemented in a Verilog code according to Table 2.2 with a phase duration of 500 ns . A picture of the post layout result is shown in Fig. 2.18 while in Table 2.5 are finally reported all the obtained results and the target values. Also in this case the targets are satisfied making the design suitable for the application.

Figure 2.17: Virtuoso test bench for the 3-Switches transmitter

Table 2.5: Simulation results of the 3-Switches transmitter

	Spec input	Unit	Schematic Simulation			Post Layout Simulation		
			Min	Typ	Max	Min	Typ	Max
$t_{B H}$ charge	<500	ns	307	326	366	311	331	371
$t_{B L}$ charge	<500	ns	305	323	364	309	329	369
$t_{C L}$ charge	<500	ns	253	274	311	257	280	315
$t_{C H}$ charge	<500	ns	253	274	311	257	280	315
$V_{P B H}$ charge	4	V	1.5	2.1	2.3	1.5	2.1	2.3
$V_{P B L}$ charge	4	V	1.4	2.0	2.2	1.4	2.0	2.2
$t_{B H}$ discharge	<500	ns	187	204	231	198	216	243
$t_{B L}$ discharge	<500	ns	181	198	225	191	210	237
$t_{C L}$ discharge	<500	ns	164	182	211	174	193	223
$t_{C H}$ discharge	<500	ns	156	173	198	167	184	210
$V_{P B H}$ discharge	4	V	2.0	2.4	2.7	1.9	2.2	2.5
$V_{P B L}$ discharge	4	V	2.0	2.4	2.7	1.9	2.2	2.5

Figure 2.18: Post layout simulation results of the 3-Switches transmitter

CHAPTER 3

Receiver Design

To realize the full Supply-Embedded Communication transceiver, in addition to the transmitter of Section 2, a receiver (RX) needs to be designed. The circuit must operate with both the proposed transmitter topologies and so must be able to detect both unipolar pulses (H-Bridge Transmitter) and bipolar pulses (3-Switches Transmitter). It can be assumed a maximum pulse duration of 500 ns since the main goal is still to reach a data rate of 2 Mbps to replace the CAN bus. Pulses amplitude strongly depends on the size of the switching capacitors. Moreover, other factors affect the pulse amplitude, such as the wire length between the different nodes which can even be bigger than 10 m and can introduce a significant attenuation. Therefore, a pulse range between 0.5 V and 6 V (i.e. $\left.V_{S} / 2\right)$ needs to be considered and a very flexible design is needed to guarantee the correct functionality.

The proposed receiver is based on a StrongArm Latch, to be used as a high sensitivity comparator [14, 15]. The advantages of this circuit are that it does not consume static energy, it directly produces rail-to-rail outputs, and its input-referred offset derives mainly from a differential pair. Furthermore, an imbalance between the two branches of the Latch can be deliberately introduced to control their hysteresis and, therefore, to set detection thresholds $[16,17]$. The design is done using the MV devices of the same 180 nm CMOS SOI technology used for the TX, and since the communication bus is based on the DC level of the battery (typically 12 V) a scaling is needed. This is done by a capacitor divider with a digitally controlled factor which still guarantees high flexibility. A critical point is that the StrongArm Latch is very sensitive to common mode oscillation that can be generated by asymmetry on the communication bus. The transmission circuit itself is also introducing an asymmetry as the high-side and low-side switches are not perfectly equal. A differential buffer is hence placed to provide common mode immunity and make the pulse detection efficient. The complete receiver scheme is finally shown in Fig. 3.1. The second StrongArm Latch is required only in case the 3-Switches Transmitter is used since the transmitted signal is bipolar.

Figure 3.1: Receiver block diagram

3.1 Input Capacitor Divider

Since the communication bus DC level is $\approx 12 \mathrm{~V}$, and the following design is done in a 5 V technology, the capacitor divider of Fig. 3.2 is used to scale the input signal, and to ensure safe operations of the receiver. The division is composed of a fixed part given by the HV top fringe capacitance $C_{T O P}=680 \mathrm{fF}$, the MV bottom fringe capacitance $C_{B O T}=2.5 p F$, and a variable bottom factor. The variable factor is realized by 4 digitally-controlled additional MV capacitors per side connected by switches, as highlighted in red in Fig. 3.2.

Figure 3.2: Capacitor Divider: 4 -bit d_{h} and d_{l} set the division of B_{H} and B_{L}

The exact capacitance, including the corresponding switches, of a single additional block is evaluated by simulation and results to be $C_{O F F}=8 f F$ in off-state and $C_{O N}=457.4 f F$ in on-state.
The division factor k is then given by the following formula where d is the number of connected elements per side:

$$
\begin{equation*}
k=\frac{C_{T O P}}{C_{B O T}+d \times C_{O F F}+(15-d) \times C_{O N}} \tag{3.1}
\end{equation*}
$$

A comparison of theoretical and simulated k factors is shown in Table 3.1 for some points. A small discrepancy is due to non-idealities and parasitic effects. Capacitors are designed according to the available die size and also to be sufficiently large to avoid unwanted high pass filtering effects. The area occupied by $C_{T O P}, C_{B O T}$, and the additional bottom capacitors are respectively $950 \mu m^{2}, 2100 \mu m^{2}$, and $6800 \mu m^{2}$ per each side. The divider outputs are coupled by $R_{H}=R_{L}=1 M \Omega$ resistors to a 2.5 V common mode voltage obtained by an external block (refer to Section 4.2). These resistors are designed to implement $f_{c}=49 \mathrm{kHz}$ high pass cut-off frequency.

Table 3.1: Theoretical k vs simulated k

no. of connected elements	0	3	6	9	12	15
theoretical k	4.0	6.0	8.1	10.1	12.1	14.1
simulated k	5.2	7.1	9.1	11.0	12.9	14.9

3.2 Differential Buffer

The common mode immunity is ensured by the resistively degenerated differential pair with split tail current source of Fig. 3.3.

Figure 3.3: Differential pair with native NMOS input

To extend the input voltage range as much as possible, native NMOS are used as input devices. The absence of a p-well in these metal-oxide semiconductor (MOS) transistors ensures a nearly zero threshold voltage, which is needed in this case. The extrapolated threshold voltage $V_{t h}$ is -0.16 V . Resistors $R_{D 1}$ and $R_{D 2}$ are equal to $100 \mathrm{k} \Omega$ and are designed with $W=900 \mathrm{~nm}$ and $L=320 \mu \mathrm{~m}$ to offer a good matching parameter, which, for this technology, results to be 0.092σ. A wide swing cascode current mirror is used to increase signal swing and reduce the dependency on the input common mode level. Each current tail is $10 \mu A$ and the common mode output of the differential pair is then given by $V_{D D}-\left(R_{D} \times I_{T A I L}\right)=4 V$. This level is also the upper limit of the input signal since it must be ensured that M_{1} and M_{2} operate in saturation, and, therefore, that the condition $V_{G D}<V_{T H}$ is satisfied. Since the maximum $V_{G S}$ allowed by the technology is $5.5 V, M_{7}$ and M_{8} are used to shift the common mode level to $3 V$, which guarantees that no violation appears at Latches input devices when positive pulses are transmitted. It must also be ensured that this level is not too close to $V_{T H}$, otherwise, negative pulses can turn off latches input MOS, and alter the normal functioning. The differential gain of the designed buffer over the used input range is shown in Fig.3.4. The gain variation vs. common mode input level is shown on the left side of Fig. 3.6 for signal frequencies of 1 MHz and 10 MHz . The minimum gain is around $-2.5 d B$ and since this corresponds to the typical input common mode level $(\approx 2.5 \mathrm{~V})$, the applicable common mode variations do not lead to a signal reduction below the detection threshold. Moreover, in Fig. 3.5, a Montecarlo mismatch simulation on 500 points shows that the designed buffer has a good common mode rejection up to 10 MHz . The histogram obtained by the Montecarlo simulations at $1 M H z$ is presented in Fig. 3.6. The mean value is $-61.4 d B$, the maximum is $-45.43 d B$, and the standard deviation is 7.776 .

Figure 3.4: Differential gain of the proposed buffer

Figure 3.5: Common-mode gain of the proposed buffer

Figure 3.6: Differential gain variation at 1 MHz and 10 MHz over the input range, and Common-mode Montecarlo histogram at 1 MHz on 500 mismatch points

3.3 Strong-Arm Latch

The core of the receiver is composed of two StrongArm Latches with tunable hysteresis. The circuit is shown in Fig. 3.7.

At clock $=1$, the input PMOS M_{1} and M_{2} are off. The nodes $\mathrm{P}, \mathrm{Q}, Q_{P}$, and Q_{N} are grounded since NMOS M_{7}, M_{8}, M_{9}, and M_{10} are on. Whit the negative edge of the clock, M_{1} and M_{2} turn-on, and the levels in P and Q start to increase. When they reach $V_{T H n}$, M_{3} and M_{4} turn-on and the two output levels start to increase too. The first output reaching $V_{T H n}$ will activate the cross-connected NMOSs (i.e. M_{5} or M_{6}), which will pull the other output to ground while the first one is free to reach V_{5}.

Figure 3.7: StrongArm Latch with tunable hysteresis - MOS varactor are inserted in nodes P and Q by 4 -bit per side b_{h} and b_{l}

The Latch must be sized to obtain the best trade-off between power consumption, delay, and input-referred noise. Large $M_{1,2}$ and thin $M_{3,4}$ ensure low delay. Large devices provide lower input-referred noise but come with a higher power consumption [18]. The chosen sizes, which correspond to the best compromise, are $w_{M 1,2}=15 \mu m$ and $w_{M 3,4}=2 \mu m$. Fig. 3.8 shows a speed comparison sweeping $w_{M 1,2}$ and $w_{M 3,4}$ from $2 \mu m$ to $20 \mu m$. Quick discharge of nodes P and Q is given by selecting $w_{M 9,10}=2 \mu m$.
Inserting a charge imbalance at nodes P and Q allows control of the hysteresis, and thus sets detection thresholds. The imbalance is realized by digitally-controlled MOS varactors, sized to furnish the best ratio between two biasing points. Sizing needs to be done carefully since it degenerates the latch timing performances. Fig. 3.8 shows the obtained capacitance value of a single MOS varactor designed with $W=2 \mu \mathrm{~m}$ and $L=6 \mu \mathrm{~m}$. The biasing point is swept from -5 V to 5 V and a ratio of 3 is reachable using 0 V and 5 V .

Figure 3.8: StrongArm Latch sizing, and capacitance offered by a MOS varactor

3.4 Receiver Top Level

In addition to the presented schemes, an output stage is added to the capacitor divider. This consist of 5 switches disposed as in Fig. 3.10 and it is intended for use in debugging to compare the common mode voltage $V_{C M}$ with the common output signal (non-differential). Therefore, 5 additional control bits are needed to implement the states described in Table 3.2. The switches $S W_{3}$ and $S W_{4}$ are redundant but are both placed for symmetry reasons.

Table 3.2: Capacitor divider output stage configuration

State	Closed	Open
Normal operation	$S W_{1}, S W_{2}$	$S W_{0}, S W_{3}, S W_{4}$
Common-mode	$S W_{0}, S W_{1}, S W_{4}$	$S W_{2}, S W_{3}$
Common-mode	$S W_{0}, S W_{2}, S W_{3}$	$S W_{1}, S W_{4}$

The proposed circuit, implemented in the layout of Fig. 3.9, was validated by post layout simulation with the setup of Fig. 3.11. The total area occupied by the circuit is $50000 \mu \mathrm{~m}^{2}$. The supply feed, transmitter, receiver, and bus termination are connected through a $2 m$ model fitting of an unshielded twisted pair cable, which is a multi-segmented RGLC-model. The line impedance Z_{N}, as reported in [9], is assumed to be 50Ω.

In Fig. 3.12 the 3 -Switches Transmitter with $1 n F$ switching capacitors is used to transmit at a data rate of 2 Mbps . In Table 3.3 the amplitudes of the pulses at different stages of the proposed receiver are reported. The divider is configured with $d h=d l=6$ additional elements connected and the resulting division factor k is around 9 as expected from Table

Figure 3.9: Full receiver layout

Figure 3.10: Capacitor divider output stage

Figure 3.11: Receiver simulation setup

Figure 3.12: Receiver simulation result
3.1. The buffer is filtering the signal to the Latches and it provides a 2.98 V common mode voltage. Due to its differential gain, it is also providing attenuation of about $20-25 \%$.

By the use of 4 bits per side, there are 256 possible combinations of imbalance in the designed StrongArm Latch. The range of possible levels is shown in Fig. 3.13 where the number of varactors biased with 0 V is kept to 0 on one side (i.e. $b h$ or $b l$) and is swept from 0 to 15 on the other. The resulting minimum is 15 mV while the maximum is 225 mV .

To detect both positive and negative pulses, in Fig. 3.12 the hysteresis is set inversely

Table 3.3: Simulation results: divider and buffer outputs

State	BH	BL	BHS	BLS	BHB	BLB
Charge	-1.87	1.91	-0.200	0.208	0.150	-0.150
Discharge	1.78	-1.77	0.192	-0.189	-0.150	0.150

Figure 3.13: Achievable levels of hysteresis
for the two latches, which means that $b h_{L A T C H 1}=b l_{L A T C H 2}=h$ and $b l_{L A T C H 1}=$ $b h_{L A T C H 2}=0$. An external 50 MHz clock is applied, and flip-flops are placed downstream of the outputs to reconstruct the received signal. In the first half of the simulation, the pulses are detected because the hysteresis is set to 25 mV . At $90 \mu \mathrm{~s}$ the threshold is raised to 160 mV , which is higher than the received pulses, and so no output variation occurs. The effect of the imbalance obtained by the increasing of capacitances at node P is shown in Fig. 3.14 where the Latch inputs are set as $B_{H B}=V_{C M}-V_{D}, B_{L B}=V_{C M}+V_{D}$. In the case of high hysteresis, node P does not become faster than node Q even in the presence of the pulse, and therefore the output is not triggering.

Figure 3.14: Hysteresis set used in simulation

CHAPTER 4

Test Chips Implementation

Two prototypes were developed to validate the proposal of this work in the laboratory. The first test chip (TC1) includes only the transmitter part and was developed to verify the validity of the Supply-Embedded Communication concept in an intermediate step. The second test chip (TC2) was designed following the successful tests carried out on the TC1, and it implements the full transceiver since it includes also the receiver circuit. To simplify the work, the first prototype was designed taking into account the possible future developments: a sufficiently large empty space was intentionally left to insert the receiving circuit, and not all available pins were used. The chips have the same basic architecture and are packaged in a 24 -pin quad-flat no-leads (QFN) package, although the TC1 only uses 20 pins. In this chapter, first, the TC1 architecture is described in detail in Section 4.1, and then the design extension to realize the complete transceiver in TC2 is shown in Section 4.2.

4.1 Test Chip 1

The first test chip implements only the transmission function, and both the H-Bridge and the 3-Switches topologies are included in the prototype since they offer different advantages interesting to analyze. An appropriate driving system is necessary to avoid the simultaneous function of the two circuits and to turn the switches on and off properly. Moreover, a block that generates the required supply voltages and currents, and a protection system are needed. The top level block diagram of TC1 is shown in Fig. 4.1 where 4 main structures can be distinguished: the transmission block, the supply system, the digital control, and the padring interface.

- Transmitter Block

The two transmitter circuits described in Section 2, are connected in parallel on the transmission bus as shown in Fig. 4.2 so as not to influence each other. For each implementation, the control signals are passed through a pre-driver. Such pre-drivers have an enable signal which is inverted for the two circuits (i.e. SELN $=$!SELP) so that they can never operate simultaneously.

Figure 4.1: Top level block diagram of the TC1

- Supply System

To operate properly, the switches need, besides the main power supply and the control infrastructure, a 5 V voltage, and a biasing current. Moreover, also the digital control and the padring need to be supplied properly. Thus, inside the chip coexist different supply voltage levels which can be distinguished by the color code used in Fig. 4.1. The supply system, detailed in [9], is composed of available intellectual property (IP) subcircuits such as a 5 V regulator and a bandgap reference circuit, and takes the external battery voltage V_{S} as input to generate the internal sources. The 5 V voltage, indicated in blue in Fig. 4.1, is particularly critical as the switch control signals are based on it. However, the maximum gate-source interface voltage for the MV and HV devices, and the maximum drain-source voltage of the MV devices,

Figure 4.2: Transmitter block inside the TC1
in this technology is 5.5 V making the margin of error of the 5 V generation quite small. Both the internal regulator and the bandgap reference circuit have an internal 4 -bit trimmer that makes their settings flexible so that any post-production errors or process variations can be easily adjusted within a certain range. The setting is managed by a 8 -bit signal TRIM $<7: 0>$ applied through the digital control. As an additional option, it is also included the possibility to use an external 5 V source and bypass the internal regulator. Indeed, 3-bits from the digital and named $C T R L<2: 0>$ are dedicated to respectively enabling the transmitter bias current, the 5 V regulator bias current, and the 5 V regulator operation. As illustrated in green in Fig. 4.1, an additional voltage called $V_{C O R E}$ is also generated by the supply system. This voltage has a typical value of 3.8 V and it is dedicated to supplying all the parts of the TC1 that are not dedicated to the transmission itself, as the digital control. Finally, a $5 \mu A$ current (named $I P D 5 U$ and illustrated as $V_{B I A S}$ in Fig. 4.1) is generated and injected into the Current Master mirror ($C M$) of the transmitter which will double it to $10 \mu A$ to feed the switches as explained in Section 2 . The pin AIO is dedicated to the supply debugging. Through the 4 -bit TMUX $<3: 0>$ it is possible to set an internal multiplexer that outputs 4 possible values as shown in Table 4.1 which indicates the correct functionality.

Table 4.1: Test signal mux to $A I O C$

Muxer input	Signal to AIOC
TMUX $<3>$	VBIAS
TMUX $<2>$	VCORE
TMUX $<1>$	VBG
TMUX $<0>$	IPD5U

- Padring Interface

To protect the test chip from electrostatic discharge, a dedicated protection scheme is required. The design is particularly complex for the pins connected to the bus and to the switching capacitors since the voltage level in these nodes can reach values higher than V_{S} or lower than $0 V$. Furthermore, in order to operate correctly, the transmission circuit needs to draw currents directly from the bus, and therefore the connection through the pins must be done properly so as not to affect the operations. An external power supply, VIO and GNDIO indicated in purple in Fig. 4.1, is dedicated to the input/output (I/O) interfaces. Implementation details of such interface and advanced simulations are reported in [9].

- Digital Control

The digital control block is realized by a synthesis of a Verilog code and it takes some external inputs to generate the needed internal control signals. The first task performed by this block is to manage the data transmission. First, the circuit topology is selected through the pin $S S E L$, then the switch states are set by means of the two pins $S S T A T E<1: 0>$ which implement all the possible working configurations as shown in Table 4.2. An external clock is applied via the dedicated pin (CK) to synchronize the SSTATE signals. The mode in which both signals SSTATE are high is called "Configuration Mode" and it is used to set the parameters of the supply system. A shift register of 16 -bit length is transmitted through the $T D A$ pin and the test clock $T C K$ to generate the controls for the $5 V$ regulator trimmer, the bandgap trimmer, the multiplexer input, and the enables of the supply system. Note that an additional pin is dedicated to disabling the 5 V regulator in case an external source wants to be used. The 16 -bit stream required to set all the parameters of the TC1 is summarized in Fig. 4.3. Even if the digital control block is supplied by the $V_{C O R E}$ voltage, to provide high overdrive and speed up the switches transitions, the switches control signals are shifted to the 5 V domain, and hence are indicated in blue in Fig. 4.1. The pin $R N$ is dedicated to the reset. The full Verilog code is reported in [9].

Table 4.2: State control

SSEL	STATE $<1: 0>$	Mode
0	00	off state
	01	Charge 1-4
	10	Charge 2-3
	11	Config. mode
1	00	off state
	01	Charge
	10	Discharge
	11	Config. mode

spare		supply cnt		TMUX				5 V trimmer				bandgap trimmer			
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	bo

Figure 4.3: Control bit stream for the TC1

The top level layout of the TC1 is shown in Fig. 4.4. The area occupied by the transmission block including the Current Master mirror is $0.18 \mathrm{~mm}^{2}$, the area occupied by the supply system is $0.12 \mathrm{~mm}^{2}$, and the one occupied by the digital block is $7000 \mu \mathrm{~m}^{2}$. Stack of a MV PMOS accumulation mode varactor and fringe capacitor from metal 1 to 5 implements decoupling capacitor of $350 p F$ and $210 p F$ respectively to the V_{5} and $V_{C O R E}$ voltages and take an area of $0.23 \mathrm{~mm}^{2}$. The layout included 5 metal layers plus the thick top metal which is dedicated to the main connection and is clearly visible in the 2000x microscope picture of Fig. 4.5. Empty areas were filled with dummy patterns for the planar process so that only the elements on the top metal are visible. A large empty space in top right region was intentionally left for inserting the receiver circuit later.

Figure 4.4: Top level layout of the TC1

Figure 4.5: TC1 2000x micrograph picture

4.2 Test Chip 2

Since no problems come out from the tests performed on TC1 (refer to Section 5), the design could be extended to TC2 to include the RX circuit as well. The resulting top level block diagram is shown in Fig. 4.7 similar to TC1. Three additional pins are required: two for the received outputs ($R X O 1$ and $R X O 2$) and one for the received clock ($R X C K$). Only two of the four outputs of the Latches are taken out (one per Latch) as the received signal can be reconstructed by means of simple digital post-processing of these. Besides the $V 5$, the receiver circuit needs two $5 \mu A$ biasing currents for the differential buffer and a common-mode voltage reference for the capacitor divider. This can be obtained by a simple level-shifting of the $V_{C O R E}$ as illustrated in Fig. 4.6. A third $5 \mu A$ biasing current is then required. These are obtained similarly to the transmitter bias by a simple extension of the supply system and are named respectively $V_{\text {BIASRX }}, V_{\text {BIASRXC }}$, and $V_{\text {BIASRXDIV }}$.

Figure 4.6: Generation of the $V_{C M}$ voltage by level-shifting of the $V_{C O R E}$

The digital control block must also be extended according to the new requirements. In particular, 8 -bits are needed to set the input division factor, 8 -bits to set the hysteresis of Latch 1,8 -bits to set the hysteresis of Latch 2,5 -bits to set the output stage of the divider (and hence the receiver operation mode), and 1 bit to enable the RX itself. The extended bit stream of 64 -bits is reported in Fig. 4.8. In addition, 2-bits (enDOUT/OD) were introduced to set the output states of the RX pads [9]. The new top level layout is shown in Fig. 4.9. The area occupied by the RX block is $50000 \mu m^{2}$, and an additional $11700 \mu m^{2}$ is occupied by a $37 p F$ decoupling capacitor for the internal common mode voltage implemented by a stack of a MV PMOS accumulation mode varactor and fringe capacitor from metal 1 to 3 . The digital size was extended to $20000 \mu m^{2}$ while no relevant increase happen in the supply system. The shapes of the decoupling capacitor of V_{5} and $V_{C O R E}$ were slightly modified according to the available spaces but no relevant changes in the size was done. Finally, a micrograph of the silicon is shown in Fig. 4.10.

Figure 4.7: Top level block diagram of the TC2

spare								$\begin{array}{\|c} \text { en RX } \\ \hline \text { b55 } \end{array}$	en DOUT/OD		RX divider output stage				
b63	b62	b61	b60	b59	b58	b57	b56		b54	b53	b52	b51	b50	b49	b48
CNT1 - hysteresis control latch1								CNT2 - hysteresis control latch2							
b47	b46	b45	b44	b43	b42	b41	b40	b39	b38	b37	b36	b35	b34	b33	b32
spare								DIVD - RX input divider							
b31	b30	b29	b28	b27	b26	b25	b24	b23	b22	b21	b20	b19	b18	b17	b16
spare		supply cnt		TMUX				5 V trimmer				bandgap trimmer			
b15	b14	b13	b12	b11	b10	b9	b8	b7	b6	b5	b4	b3	b2	b1	bo

Figure 4.8: Control bit stream for the TC2

Figure 4.9: Top level layout of the TC2

Figure 4.10: TC2 micrograph picture

CHAPTER 5

Measurement and Validation Results

The TC1 was taped out and tested in the laboratory in September 2021. In addition to a testing printed circuit board (PCB) containing the chip and the components necessary for its operation, the standard laboratory instrumentation, and an external source to generate the control signals were required. In the carried out tests, a Raspberry PI was used for the static measurements (supply and other fundamental parameters tests), while a field-programmable gate array (FPGA) was used for the dynamic measurements (data transmission between two nodes tests).

In Section 5.2 the TC 2 is validated by advanced post-layout simulations between two nodes. Moreover, the implementation is verified by measurements on the silicon which show the correct operation of the transceiver and the setting of its parameters.

5.1 Test Chip 1 Validation

In order to test the TC1, a testing PCB was designed in Altium Designer. As shown in the schematic of Fig. 5.1, just a few external to the chip components are needed. For the switching capacitors C_{F}, C_{L}, and C_{H} a 1206 footprint was chosen, and devices with a DC voltage rating higher than 20 V should be applied. A double option between standard inductors (L_{1} and L_{2}) and a common mode choke (L_{3}) is provided for the supply coupling. Connector J_{4} acts as an interface between the FPGA/microcontroller board and the test chip, while the transmission bus can be connected on J_{3}. Finally, some external decoupling capacitors can be inserted for V_{S} and V_{5}. The designed PCB is a 2 layer board where the bottom is dedicated to the ground plane while the top layer is reserved for the net interconnections. Four vias are provided under the chip to help heat dissipation. The resulting populated board is shown in Fig. 5.2.

As a preliminary stage, static tests were performed to verify the proper function of the power supply and to ensure the absence of internal short circuits and any other possible fatal errors. Then communication tests between two nodes have been carried out. Since the TC1 implements only the transmission function, the discrete component breadboard developed in [9] was used as a receiver.

Figure 5.1: Schematic of the PCB for testing designed for the TC1

Figure 5.2: Picture of the PCB for testing designed for the TC1

The demonstrator board composed of off-the-shelf components shown in Fig. 5.3 is composed of the following blocks:

- Local supply: provides the necessary internal voltages starting from a $5 V$ micro-usb power supply;
- Transmitter: implements the H-Bridge and 3-Switches topologies of Section 2 through an ADG5413 [19] by Analog Devices that contains four independent single-pole/singlethrow (SPST) with a nominal on-resistance $\leq 10 \Omega$;
- Receiver: consists of a 4 GHz LNA LTC6268-10 [20] coupled to the transmission line and which acts as a high-speed differential amplifier whose single-ended output is compared to a generated low and high thresholds by two low voltage differential signaling (LVDS) comparators;
- Analog-to-digital converter (A/D) to convert the received signal from the analog to the digital domain.

Figure 5.3: PCB Demonstrator

An FPGA can be connected to the demonstrator to manage the control for both master and slave configuration. The design was made for fitting a TE0725 FPGA from Trenz on top of the PCB. In this work, a can-like protocol named Melexis Light Bus (MeLiBu) [21] is used as a protocol layer and so a UART/CAN interface bridge can be connected to connector J_{6} so as to make the received signal and clock available.

5.1.1 Static Measurements TC1

By static measurements are meant all the preliminary measurements made before testing the data transmission itself. These basic measures are needed to verify the correct functionality of the power supply system and the absence of fatal errors. For these tests, a Keithley 2602B Source Meter [22] was used. It provides two completely isolated channels (CH-A and CH-B) of wide dynamic source and measures within the same footprint. Each 40W channel provides a $6^{1} 2 / 2$ digit precision resolution source and measures from 10 A pulse to $0.1 f \mathrm{~A}$ and 200 V to 100 nV at less than $100 \mu \mathrm{~s}$ pulse width and within 0.1% of settled value. It also supports the PyVISA package which is a Python package that enables the user to control all kinds of measurement devices independently of the interface (e.g. GPIB, RS232, USB, Ethernet). To take full advantage of this feature and to automatize the measurement process as much as possible in order to reduce the possibility of errors, a Raspberry PI3 was chosen to generate the control signals since it also supports Python coding [23]. The Rasberry PI3 can be connected to the connector J_{4} of the testing PCB as shown in Table 5.1 and according to the pinout shown in Fig. 5.4.

As illustrated in the setup of Fig. 5.5, both the Raspberry PI3 and the Keithley 2602B were connected over the ethernet, and through a PC and a virtual network computing (VNC) software some Python codes could be loaded into the Raspberry to both set the TC1 parameters and the source meter instructions. A Python package has been written to

Table 5.1: Raspberry PI3 pinout assignment

PCB J_{4} PIN	Raspb. PI3 PIN	Function
VIO	17	$3.3 V$ PWR
GNDIO	39	GND
DISV5	39	GND
GNDIO	39	GND
RN	11	GPIO17
SSEL	12	GPIO18
SSTATE1	26	GPIO7
SSTATE0	24	GPIO8
CK	23	GPIO11
TCK	13	GPIO27
TDA	15	GPIO22

Figure 5.4: Raspberry PI3 pinout
implement the functions necessary to drive the test chip such as:

- INIT(RNpin, SSELpin, SSTATE1pin, SSTATE0pin, CKpin, TCKpin, TDApin) \#initialization and pin assignment
- RES(RNpin, ckdelay) \#reset
- SEL(SSEL, solution) \#selection of TX topology
- STA(SSTATE1, SSTATE0, CK, state, ckdelay) \#set SSTATE<1:0>
- TM(TCK, TDA, en__pd, en_pu, tmux, tv5, tbg, tmwrite, tckdelay) \#set TM shift register

The complete Python sripts of these functions is reported in Appendix A.1.

Figure 5.5: TC1 static measurements laboratory setup

Static measurements on 7 samples of TC1 were carried out. The first tests were carried out to measure the voltage $V 5$ and some power supply parameters available through the $A I O$ pin: $V_{B I A S}, V_{C O R E}, I P D 5 U$. The measurement process was performed in an automatized way using Python scripts: the Raspberry PI3 switched the internal trimmers to all possible values (from 0 to 15), while the two channels of the source meter were connected on $V 5$ and $A I O$ to perform the measures. Details of the Python code are reported in Appendix A.2. Fig 5.6 shows the colormap of all the possible values of $V 5$ obtained on the first device under test (DUT). In the default trimmers setting ($T_{V 5}=7$ and $T_{B G}=0$) the expected value is 5.00 V and the measured one is 5.05 V which is really close.

Table 5.2 shows the values of $V 5$ obtained for the 7 DUTs in the default trimmers setting, expected 5.5 V setting, expected 4.5 V setting, and the maximum and minimum measured values.

Table 5.2: Measured 5 V over the possible settings

V5						
	DEF	5.5 V	4.5 V	MAX	MIN	UNIT
$D U T_{1}$	5.05	5.55	4.52	5.70	4.48	V
$D U T_{2}$	5.00	5.50	4.48	5.64	4.44	V
$D U T_{3}$	5.02	5.51	4.50	5.66	4.46	V
$D U T_{4}$	5.01	5.51	4.49	5.66	4.45	V
$D U T_{5}$	4.98	5.47	4.46	5.61	4.42	V
$D U T_{6}$	5.02	5.53	4.50	5.67	4.46	V
$D U T_{7}$	5.09	5.54	4.55	5.68	4.47	V

Figure 5.6: All $V 5$ values measured on DUT-1

Similarly, by simply changing the value of $T M U X$, and therefore the output available on the $A I O$ pin, the values of $V_{B I A S}, V_{C O R E}$ and $I P D 5 U$ were measured for all the possible trimmers configurations. The results are reported respectively in Table 5.3 and Table 5.4 for the dafault $V 5$ setting, expected 5.5 V , and expected 4.5 V . The obtained results show that the measured values are perfectly in line with the expectations and that there are also no relevant differences between the 7 devices under analysis.

Table 5.3: Measured $V_{C O R E}$ and $V_{B I A S}$ over the possible settings

VBIAS				VCORE			
	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	UNIT
$D U T_{1}$	0.82	0.82	0.82	3.66	3.66	3.67	V
$D U T_{2}$	0.82	0.82	0.82	3.70	3.70	3.70	V
$D U T_{3}$	0.81	0.81	0.81	3.74	3.74	3.74	V
$D U T_{4}$	0.82	0.82	0.82	3.66	3.66	3.66	V
$D U T_{5}$	0.82	0.82	0.82	3.67	3.67	3.67	V
$D U T_{6}$	0.82	0.82	0.82	3.68	3.68	3.68	V
$D U T_{7}$	0.82	0.82	0.82	3.70	3.70	3.70	V

As a next step, the leakage current in each switch was measured. Through the source meter channels, a voltage equal to V_{S} was applied between the drain and source of the switch under examination and the flowing current was measured. The Python code used for the 3-Switches transmitter is reported in Appendix A. 3 and can be applied similarly to the H-Bridge transmitter. The obtained leakage currents, reported in Table 5.5 and Table

Table 5.4: Measured IPD5U over the possible settings

IPD5U				
	DEF	5.5 V	4.5 V	UNIT
$D U T_{1}$	4.70	4.70	4.70	μA
$D U T_{2}$	4.89	4.89	4.89	μA
$D U T_{3}$	4.78	4.78	4.78	μA
$D U T_{4}$	4.68	4.68	4.68	μA
$D U T_{5}$	4.96	4.96	4.96	μA
$D U T_{6}$	4.66	4.68	4.68	μA
$D U T_{7}$	4.68	4.68	4.68	μA

5.6, are in most cases in the order of few pico-amperes, and in any case never higher than a few nano-amperes.

Table 5.5: Leakage currents in the H-Bridge transmitter

HSS			LSS				
	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	UNIT
$D U T_{1}$	-13858	201	156	28	97	100	pA
$D U T_{2}$	-17095	255	119	15	96	96	pA
$D U T_{3}$	16428	227	209	251	70	82	pA
$D U T_{4}$	20069	285	-45	241	78	90	pA
$D U T_{5}$	10911	250	103	37	75	72	pA
$D U T_{6}$	-12238	202	-127	67	86	110	pA
$D U T_{7}$	18246	177	274	88	115	111	pA

Table 5.6: Leakage currents in the 3-Switches transmitter

HSS			LSS			FS				
	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	UNIT
$D U T_{1}$	8971	-565	-507	218	26	15	-55	-66	-38	pA
$D U T_{2}$	-9440	-939	-859	30	24	18	-76	-75	-71	pA
$D U T_{3}$	-14604	-528	-723	205	32	27	-66	-66	-76	pA
$D U T_{4}$	17866	-981	-914	34	34	44	-68	-77	-78	pA
$D U T_{5}$	13398	-1094	-1013	221	23	12	-67	-48	-74	pA
$D U T_{6}$	12311	-710	-582	36	36	28	-109	-115	-124	pA
$D U T_{7}$	-12813	-990	-985	250	54	58	-85	-77	-86	pA

Finally, the on-resistances of each switch were measured. However, only for the FS it was possible to execute the measure directly since the drain and source terminals are accessible externally through the $C H$ and $C L$ pins. For the HSS and the LSS, indeed, as shown in

Fig. 2.9 and Fig. 2.5 respectively, the ESD protection diodes are present between the drain terminal and the external pin, making the direct measure not possible. Measures were performed by injecting a current, e.g. from 50 m to 60 mA , and measuring the voltage in 100 points per switch. The on-resistance is then evaluated by applying Ohm's law $R=V / I$. The full Python code used for the 3-Switches transmitter is also reported in Appendix A. 4 and can be applied also to the H-Bridge transmitter. As reported in Table 5.7 and Table 5.8 , the FS exhibits a $r_{o n}$ of about 10Ω which, considering process variations and parasitic elements introduced by pads and connections, is very close to the expected value of 9Ω. In both the transmitter topologies, the measured values for the HSS switches have an average value of about 16Ω while the LSS has an average value of about 25Ω. Comparing the obtained results with analogous simulations including the series diodes, it can be concluded that the results are reasonable. There are no relevant differences between the 7 tested DUTs.

Table 5.7: Switches on-resistance in the H-Bridge transmitter

HSS				LSS			
	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	UNIT
$D U T_{1}$	15.68	16.71	16.02	23.91	25.19	24.41	Ω
$D U T_{2}$	15.39	16.39	15.69	21.88	23.07	22.28	Ω
$D U T_{3}$	16.78	16.87	16.22	28.25	28.22	27.46	Ω
$D U T_{4}$	15.4	16.42	16.1	19.87	21.01	20.71	Ω
$D U T_{5}$	16.9	16.91	16.15	26.23	26.19	25.29	Ω
$D U T_{6}$	16.64	15.95	15.91	21.91	21.05	21.08	Ω
$D U T_{7}$	16.63	16.82	16.08	23.23	23.41	22.59	Ω

Table 5.8: Switches on-resistance in the 3-Switches transmitter

HSS			LSS			FS				
	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	DEF	5.5 V	4.5 V	UNIT
$D U T_{1}$	16.26	16.04	15.83	24.93	24.61	24.12	10.70	10.68	10.70	Ω
$D U T_{2}$	15.62	16.69	16.12	22.64	23.92	23.32	10.40	10.43	10.43	Ω
$D U T_{3}$	16.15	17.18	16.69	27.97	29.41	28.86	10.95	10.95	10.97	Ω
$D U T_{4}$	15.64	16.58	16.10	20.24	21.28	20.80	10.01	10.05	10.03	Ω
$D U T_{5}$	17.06	16.97	16.52	26.89	26.68	26.20	10.79	10.73	10.76	Ω
$D U T_{6}$	17.00	16.45	17.05	22.60	21.89	22.72	10.17	10.18	10.19	Ω
$D U T_{7}$	16.00	16.92	16.43	22.95	24.04	23.53	10.38	10.37	10.40	Ω

5.1.2 Dynamic Measurements TC1

Data transmission tests between two nodes were carried out using the TC1. Since the Raspberry PI3 does not include a real time clock, an FPGA TE0725 from Trenz [24] that hosts a Xilinx Artix-7 XC7A100T [25] was used. Since the TC1 implements only the transmitter function, the discrete component breadboard was used as a receiver. The block diagram of the laboratory setup is shown in Fig. 5.7, while in Fig. 5.8 a real picture of the same setup is reported.

Figure 5.7: Block diagram of the data transmission measurement setup

Figure 5.8: Picture of the data transmission measurement setup

The Test Chip Board, powered by a standard bench power supply, is connected via a twisted pair cable of length l_{1} to the first breadboard $(B 1)$ which acts as a receiver. Another segment of twisted pair cable of length l_{2} connects $B 1$ to a second breadboard ($B 2$) which is not supplied and acts just as a line termination of 50Ω. The FPGA is mounted on $B 1$ and, moreover, it is connected to the TC1 board through a dedicated cable so that it is both driving the transmission and managing the reception of the signal. A digital circuit
handled as a configuration file that can be uploaded to the FPGA is implemented for the testing. The circuit takes the outputs from the receiver, synchronizes them with the FPGA master clock which has a frequency of 100 Mhz and through a decoder extracts the data signal using a coding scheme. For the 3 -switches transmitter the coding is immediate as the signal has both negative and positive pulses. For the H-bridge it is possible to implement either a direct coding or a URZ code as summarized in Table 5.9.

Table 5.9: Coding schemes

TX Topology	Coding
H-Bridge TX	Direct coding
	Unipolar return-to-zero code (RZ)
3-Switches TX	Simple coding

The received and transmitted data streams are then compared and in case the error counter overflows, an error flag is set which is visualized by a light emitting diode (LED) located on the FPGA board. In the TC1 board, $100 \mu H$ surface mounted inductors and 50Ω resistors were used to populate L_{1}, L_{2}, R_{1}, and R_{2}, while L_{3} was left un-populated. The default settings for the supply system were used as it was verified that the values generated under these conditions are as expected. The data transmission is regulated by a 9-bit pseudo-random bit stream (PRBS) generator. The received data stream and the recovered clock are available at the outputs of the UART/CAN interface.

The first communication tests were carried out using $820 p F$ switching capacitors so that, by using equations $2.1,2.3$, and 2.4 , a data rate of 2 Mbps is achievable for both the H-Bridge and the 3 -Switches:

$$
\begin{align*}
& \tau_{\text {charge } 1-4,2-3}=\left(R_{t} / 2+R_{H S S}+R_{L S S}\right) \times C_{H B}=63 \mathrm{~ns} \tag{5.1}\\
& \tau_{\text {charge }}=\left(R_{t} / 2+\left(R_{H S S} / / R_{L S S}\right)\right) \times 2 C_{S}=105 \mathrm{~ns} \tag{5.2}\\
& \tau_{\text {discharge }}=\left(R_{t} / 2+R_{F S}\right) \times C_{S} / 2=28 \mathrm{~ns} \tag{5.3}
\end{align*}
$$

Three different combinations of twisted pair cables length l_{1} and l_{2} were tested: $l_{1}=$ $l_{2}=0.25 m, l_{1}=6.00 \mathrm{~m}, l_{2}=0.25 \mathrm{~m}$, and $l_{1}=0.25 \mathrm{~m}, l_{2}=6.00 \mathrm{~m}$. Fig. 5.9 and Fig. 5.10 show the differential bus measured at the RX node (therefore at a distance l_{1} from the TX), the received data, and the received clock when $l_{1}=6.00 \mathrm{~m}$ and $l_{2}=0.25 \mathrm{~m}$ are used. A URZ coding was applied for the H -Bridge transmitter.

Table 5.10 and Table 5.11 report the amplitudes of the measured peaks at the RX and termination nodes, and the capacitor charging times for the H-Bridge and the 3-Switches topologies respectively. The attenuation introduced by the 6.00 m cable is evident even if it

Figure 5.9: H-Bridge TX: Data transmission measurement result with switching capacitors of 820 pF , cable lenghts of $l_{1}=6.00 \mathrm{~m}$ and $l_{2}=0.25 \mathrm{~m}$

Figure 5.10: 3-Switches TX: Data transmission measurement result with switching capacitors of 820 pF , cable lenghts of $l_{1}=6.00 \mathrm{~m}$ and $l_{2}=0.25 \mathrm{~m}$
is still not critical as the pulse amplitude is higher than $1 V$. The charging time can be estimated by the curves measured by an oscilloscope to the switching capacitor terminals as illustrated in Fig. 5.11. The difference in $C H$ and $C L$ during the charge state is due to the asymmetry introduced by the HSS and the LSS in the parallel charge. The obtained results match with the expectation from the theoretical assumption, considering that the capacitors are not completely discharged to ground in the 3-Switches approach.

Figure 5.11: Measured voltages across switching capacitors

Table 5.10: Result of H-Bridge TX with $820 p F$ switching capacitors

		$\mathrm{l} 1=0.25 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$\mathrm{l} 1=6.00 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$\mathrm{l} 1=0.25 \mathrm{~m} \mathrm{l} 2=6.00 \mathrm{~m}$
$\Delta V[V]$	Charge	3.29	2.85	4.35
$4 \tau[n s]$	Charge	240	251	246

Table 5.11: Result of 3-Switches TX with 820 pF switching capacitors

		$11=0.25 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$\mathrm{l} 1=6.00 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$\mathrm{l} 1=0.25 \mathrm{~m} 12=6.00 \mathrm{~m}$
$\Delta V[V]$	Charge	2.88	2.13	3.38
$4 \tau[n s]$	Charge	211	254	203
$\Delta V[V]$	Discharge	2.5	1.81	2.81
$4 \tau[n s]$	Discharge	96	95	94

Further tests for purely investigative purposes were carried out with capacitor values of 330 pF and 180 pF which would theoretically allow reaching data rates of 5 Mbps and 10 Mbps respectively. The results obtained with the 330 pF are shown in Fig. 5.12 and Fig. 5.13, while the resulting values are reported in Table 5.12 and Table 5.14. Finally, results for the $180 p F$ are reported in Table 5.13 and Table 5.15 however, the proposed design is done for a 2 Mbps target and hence it does not foresee such high data rates where parameters like the switches transition times and the parasitic effects along the line start giving a significant contribution and more effort should be spent.

Table 5.12: Result of H-Bridge TX with $330 p F$ switching capacitors

		$11=0.25 \mathrm{~m} \mathrm{l2}=0.25 \mathrm{~m}$	$11=6.00 \mathrm{~m} \mathrm{l2}=0.25 \mathrm{~m}$	$11=0.25 \mathrm{~m} 12=6.00 \mathrm{~m}$
$\Delta V[V]$	Charge	3.16	2.6	4.04
$4 \tau[n s]$	Charge	120	124	125

Table 5.13: Result of H-Bridge TX with $180 p F$ switching capacitors

		$11=0.25 \mathrm{~m} \mathrm{l2}=0.25 \mathrm{~m}$	$11=6.00 \mathrm{~m} \mathrm{l2} 2=0.25 \mathrm{~m}$	$11=0.25 \mathrm{~m} \mathrm{l2} 2=6.00 \mathrm{~m}$
$\Delta V[V]$	Charge	2.75	2.19	3.14
$4 \tau[n s]$	Charge	81	91	83

Table 5.14: Result of 3 -Switches TX with $330 p F$ switching capacitors

		$\mathrm{l} 1=0.25 \mathrm{~m} 12=0.25 \mathrm{~m}$	$\mathrm{l} 1=6.00 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$\mathrm{l} 1=0.25 \mathrm{~m} 12=6.00 \mathrm{~m}$
$\Delta V[V]$	Charge	2.63	1.59	2.88
$4 \tau[n s]$	Charge	97	140	114
$\Delta V[V]$	Discharge	1.31	1.03	1.56
$4 \tau[n s]$	Discharge	72	72	70

Table 5.15: Result of 3 -Switches TX with $180 p F$ switching capacitors

		$11=0.25 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$11=6.00 \mathrm{~m} \mathrm{l} 2=0.25 \mathrm{~m}$	$11=0.25 \mathrm{~m} \mathrm{l} 2=6.00 \mathrm{~m}$
$\Delta V[V]$	Charge	2.16	1.44	2.44
$4 \tau[n s]$	Charge	55	96	78
$\Delta V[V]$	Discharge	0.78	0.59	0.97
$4 \tau[n s]$	Discharge	65	59	60

Figure 5.12: H-Bridge TX: Data transmission measurement result with switching capacitors of 330 pF and cable lenghts of $l_{1}=l_{2}=0.25 \mathrm{~m}$

Figure 5.13: 3-Switches TX: Data transmission measurement result with switching capacitors of 330 pF and cable lenghts of $l_{1}=l_{2}=0.25 \mathrm{~m}$

5.2 Test Chip 2 Validation

The TC 2 is first validated by advanced post layout top level simulations by using the simulation setup of Fig. 5.14, which is composed of two transceivers connected to each other via a 1 m reliable RGLC-model of a twisted pair cable to emulate a real automotive environment. The first TC2 (TC-T) is configured as a transmitter, therefore its RX is not activated, while the second TC2 (TC-R) works only as a receiver. The configuration settings and the stimulus are generated via a Verilog code.

Figure 5.14: Setup of the top Level Virtuoso test bench for the TC2

After an initial reset, and after having waited a sufficient time to stabilize the power supplies, the RX function is enabled in the TC-R and the tunable parameters are set. The input division is set to 7.1 for both $B H$ and $B L$ which means, according to Fig. 4.3 DIVD set to 0×33. The hysteresis is set to $\approx 150 \mathrm{mV}$ for the right arm of the StrongArm Latch- 1 and the left arm of the StrongArm Latch- 2 while is kept to 0 for the other 2 branches so that one Latch can detect positive pulses while the other can detect the negative (CNT1 set to $0 x 0 \mathrm{~B}$ and CNT2 set to $0 x B 0$). An external 20 MHz RX clock is generated in Verilog. In the real implementation, a clock of 50 MHz is expected to be usually present in a node, but a lower value was chosen to speed up the simulation. Subsequently, the $S S T A T E<1: 0>$ of the TC-T are toggled according to a 2 Mbps clock, and so it starts transmitting data. Initially, the $S S E L$ signal is set to 0 and thus the H-Bridge Topology is selected. In Fig. 5.15 the simulation results show that tha StrongArm Latch 2 is detecting all the negative pulses correctly while the Latch 1 can be negleted in this case since the signal is unipolar. At $188 \mu s$ the $S S E L$ signal is switched to 1 and, after a few μs, a new data sequence is transmitted via 3 -Switches TX, so both the receiver outputs are needed now. As illustrated
in Fig. 5.15 all the pulses in both directions are detected successfully and the signal can be easily reconstructed.

Figure 5.15: Top level post layout simulation of the TC2

The design was then validated in the laboratory. A new PCB for testing, illustrated in Fig. 5.16, was designed similarly to the one in Fig. 5.2. The interface connector J_{4} was extended, and an RC path and a SMB connector were added to eventually perform Direct Power Injection (DPI) tests as described in [9]. A $100 \mu H$ coupled inductor acting in differential mode was placed as input supply feed and $820 p F$ switching capacitors were chosen to still ensure 2 Mbps data rate.

Figure 5.16: Picture of the PCB for testing designed for the TC2

Quasi-static parameters (enables, supply system settings, RX parameters, transmitter topology selection) were controlled via Raspberry PI3 by extending the previous Python
package as reported in Appendix A.5, while the communication was delegated to the TE0725 FPGA, which also provided a 50 MHz clock to the receiver. A single node with both TX and RX functions enabled was tested and, as conseguence, higher pulses than in the previous cases were detected. In Fig. 5.17 the H-Bridge TX is used to transmit, and the RX is configured with the maximum divison factor ($\mathrm{DIVD}=0 \mathrm{xFF}$) and an hysteresis of around $80 \mathrm{mV}(\mathrm{CNT} 1=0 \mathrm{x} 0 \mathrm{~B}$ and $\mathrm{CNT} 2=0 \mathrm{xB} 0)$. The pulses are reduced to $\approx 1.2 \mathrm{~V}$ and therefore are detected by the RXOUT2, while RXOUT1 is quiet. In Fig. 5.18 the 3 -Switches TX is selected and since the pulses are around 3 times smaller, the RX is set with the minimum division factor ($\mathrm{DIVD}=0 \mathrm{x} 00$) to get a similar value as before. The hysteresis is still set to 80 mV and hence the pulses are correctly detected.

In the three plots in Fig. 5.19 the dividing factor was fixed to the maximum value (DIVD $=0 \mathrm{xFF}$), while the hysteresis was varied between $100 \mathrm{mV}, 115 \mathrm{mV}$ and 130 mV $(\mathrm{CNT} 1=0 \mathrm{x} 08,0 \mathrm{x} 09,0 \mathrm{x} 0 \mathrm{~A}$ and $\mathrm{CNT} 2=0 \mathrm{x} 80,0 \mathrm{x} 90,0 \mathrm{xA} 0$ respectively $)$. Due to the not perfect symmetry, the pulses in the charge phase measure about 2.0 V , while those in the discharge phase measure about 2.2 V . Assuming that the dividing factor is exactly as expected from the post-layout simulation and thus around 14.9 according to Table 3.1, the pulses are scaled to about 130 mV and 145 mV respectively. With the first hysteresis value, all pulses are detected correctly. With the next setting, only the pulses during the discharge are detected due to the slightly higher value, while with the hysteresis set to 130 mV , no pulses are detected at all. Recalling that, as explained in Chapter 3, the differential buffer introduces an additional attenuation of $20 \%-25 \%$, it can be concluded that the results obtained are extremely close to the expectations.

Figure 5.17: TC2 single node test with H-Bridge TX

Figure 5.18: TC2 single node test with 3-Switches TX

Figure 5.19: TC2 single node test with different hysteresis settings

CHAPTER 6

Bandgap Reference Circuit with 2nd Order Curvature Compensation

As a side project, a Bandgap Reference circuit with second order curvature compensation was designed in a 110 nm CMOS SOI technology. The activity aimed to obtain a circuit capable of providing a voltage of about $1.1 \sim 1.2 \mathrm{~V}$ with a variation as small as possible in a temperature range from $-40^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$. In Section 6.1 a brief history and introduction to the bandgap circuit are presented. The circuit design is proposed in Section 6.2 and is validated in Section 6.3 by simulations.

6.1 Introduction

With the beginning of integrated electronic production in the 1950s, the need for precise integrated voltage references came out. A Bandgap Reference is a circuit capable of producing a stable and constant voltage independent of power fluctuations, temperature variations, and load swings. Nowadays, voltage references are used in almost every modern integrated circuit (IC) design as in A/D and D/A converters, voltage regulators, and measurement systems, and so they are one of the most important blocks to design. Temperature independence in electronics can usually be obtained by combining two different effects with opposite temperature coefficient (TC). It is well known that the voltage across a forward-biased diode, and hence the base-emitter voltage of a bipolar junction transistor (BJT), has a negative TC [26]. Indeed, for a constant collector current,

$$
\begin{equation*}
\frac{\delta V_{B E}}{\delta T}=\frac{V_{B E}-(4+m) V_{T}-E_{g} / q}{T} \tag{6.1}
\end{equation*}
$$

where T is the absolute temperature, $m \approx-3 / 2, V_{T}=k T / q$ is the thermal voltage, and E_{g} is the bandgap energy.

In 1964 Hilbibier of Fairchild Semiconductor noticed that two diode stacks biased with different currents generate a voltage with positive TC [27]. According to Fig. 6.1, the obtained difference

$$
\begin{equation*}
\Delta V_{B E}=V_{B E 1}-V_{B E 2}=V_{T} \ln \left(n I_{0} / I_{S}\right)-V_{T} \ln \left(I_{0} / I_{S}\right)=V_{T} \ln (n) \tag{6.2}
\end{equation*}
$$

Figure 6.1: Positive TC voltage across two diode
has a positive TC, and so can be added to a $V_{B E}$ to get a temperature independent voltage. The same result can be obtained by injecting equal currents in bipolar devices of different sizes, i.e. $Q_{1}=n Q_{2}$. Later, in 1971, Widlar developed the circuit of Fig. 6.2, which is the first Bandgap Reference based on that concept [28, 29]. The circuit sum the proportional to absolute temperature (PTAT) voltage $V_{P T A T}=\left(R_{2} / R_{3}\right) \Delta V_{B E}$ and the complementary to absolute temperature (CTAT) voltage $V_{B E 3}$ across the forward-biased base-emitter diode Q_{3}.

Figure 6.2: Widlar Bandgap Reference

Many other circuits were proposed in the following years to improve Bandgap Reference performances [30-32]. For a BJT with typical current densities $V_{B E}=V_{T} \ln \left(I_{C} / I_{S}\right) \approx$

750 mV at room temperature, yielding a TC of about $-1.5 \mathrm{mV} / \mathrm{K}$. To compensate for such value, the n factor of Eq. 6.18 needs to be extraordinarily big making the real implementation not feasible. This issue can be solved by amplifying the PTAT term before it is added to the CTAT as in the circuit of Fig. 6.3 proposed by Kujik in 1973 [32]. Thanks to the non-inverting amplifier A , the output voltage can be written as:

$$
\begin{align*}
V_{B G} & =V_{B E 1}+\Delta V_{B E} \frac{R_{2}}{R_{1}} \tag{6.3}\\
& =V_{B E 1}+V_{T} \ln (n) \frac{R_{2}}{R_{1}} \tag{6.4}
\end{align*}
$$

and the ratio of resistors R_{2} and R_{1} can be used to reduce n to a reasonable value (e.g. $8 \sim 16$) .

Figure 6.3: Kujik Bandgap Reference

However, a circuit like this, which implements a first order temperature compensation, has a strong limitation due to the nonlinear TC in the base-emitter voltage of the bipolar junction transistor [33, 34]. In modern applications where temperature coefficients lower than $20 \mathrm{ppm} / \mathrm{K}$ are required, to overcome this limitation, a variety of multi order temperature compensation methods have been developed, such as resistor ratio based [35], and generating a nonlinear current to compensate the non-linear $V_{B E}$ of BJT [36-39].

6.2 Proposed 2nd order compensated Bandgap Reference

A Bandgap Reference Circuit with second order curvature compensation is presented in Fig. 6.4. The basic network is similar to the one of Fig. 6.3 proposed by Kujik, except that trimmer resistor R_{4} is added as in [40]. The second-order compensation is performed by

Figure 6.4: Proposed Bandgap Reference
comparing the $V_{B E 1}$ of bipolar Q_{1} polarized with the PTAT current $I_{P T A T}=\Delta V_{B E 12} / R_{1}$ and the $V_{B E 3}$ of bipolar Q_{3} polarized with a CTAT current. The CTAT current can be obtained in many ways, e.g. by applying across a resistor a CTAT voltage as $V_{B E}$ [37], or $V_{B G}$ itself [38]. This mean that the operational amplifier A now has two input stages: the first input stage is dedicated to first order compensation as in almost every previously presented design, while the second stage is dedicated to additional compensation. The output voltage of the proposed circuit can therefore be written as

$$
\begin{equation*}
V_{B G}=\left[g m_{1}\left(V_{1+}-V_{1-}\right)+g m_{2}\left(\left(V_{2+}-V_{2-}\right)\right] r_{\text {out }}\right. \tag{6.5}
\end{equation*}
$$

where $r_{\text {out }}$ is the output resistance of the operational amplifier, $g_{m 1}$ and $g_{m 2}$ are the transconductances of the first and second input stages respectively. According to Fig. 6.4, the inputs of the amplifier can be written as

$$
\begin{align*}
& V_{1+}=V_{B E 1} \tag{6.6}\\
& V_{1-}=V_{B E 2}+I_{2} R_{1}+V_{O S} \tag{6.7}\\
& V_{2+}=V_{B E 1} \tag{6.8}\\
& V_{2-}=V_{B E 3} \tag{6.9}
\end{align*}
$$

and the Eq. 6.5 can be rewritten as

$$
\begin{equation*}
V_{B G}=\left[\left(V_{B E 1}-V_{B E 2}-I_{2} R_{1}-V_{O S}\right)+\frac{g m_{2}}{g m_{1}}\left(V_{B E 1}-V_{B E 3}\right)\right] A_{1} \tag{6.10}
\end{equation*}
$$

where $A_{1}=g_{m 1} r_{\text {out }}$. Voltages across the resistors are given by the following expressions:

$$
\begin{align*}
& V_{B G}=\left(I_{1}+I_{2}\right) R_{4}+I_{1} R_{3}+V_{B E 1} \tag{6.11}\\
& V_{B G}=\left(I_{1}+I_{2}\right) R_{4}+I_{2}\left(R_{1}+R_{2}\right)+V_{B E 2} \tag{6.12}
\end{align*}
$$

and the currents I_{1} and I_{2} in the two branches of the Bandgap network can be found:

$$
\begin{align*}
& I_{1}=\frac{V_{B G}-V_{B E 2}-I_{2}\left(R_{1}+R_{2}+R_{4}\right)}{R_{4}} \tag{6.13}\\
& I_{2}=\frac{V_{B G} R_{3}+R_{4}\left(V_{B E 1}+V_{B E 2}\right)-R_{3} V_{B E 2}}{F} \tag{6.14}
\end{align*}
$$

where F is a proportional factor given by

$$
\begin{equation*}
F=R_{1} R_{4}+R_{2} R_{4}+R_{1} R_{3}+R_{2} R_{3}+R_{3} R_{4} \tag{6.15}
\end{equation*}
$$

Finally, Eq. 6.10 can be rewritten highlighting the compensation factors the for first and second order compensations:

$$
\begin{align*}
V_{B G} & =\frac{A_{1}}{1+\frac{A_{1} R_{1} R_{3}}{F}}\left[V_{B E 1}\left(1-\frac{R_{1} R_{4}}{F}\right)-V_{B E 2}\left(1-\frac{R_{1}\left(R_{3}+R_{4}\right)}{F}\right)-V_{O S}\right. \tag{6.16}\\
& \left.+\frac{g m_{2}}{g m_{1}}\left(V_{B E 1}-V_{B E 3}\right)\right]
\end{align*}
$$

The first order compensation is already well known [40] while the second part depends on $\Delta V_{B E 13}$ and the ratio $g_{m 2} / g_{m 1}$. Assuming that Q_{1} and Q_{3} have the same size, and hence the same I_{S}, the term $\Delta V_{B E 13}$ merely depends on the ratio of the emitter currents:

$$
\begin{equation*}
\Delta V_{B E 13}=V_{B E 1}-V_{B E 3}=V_{T} \ln \left(I_{1} / I_{S}\right)-V_{T} \ln \left(I_{3} / I_{S}\right)=V_{T} \ln \left(I_{1} / I_{3}\right) \tag{6.17}
\end{equation*}
$$

If the input devices of the two input stages of the operational amplifier A operate in saturation, $g_{m}=\sqrt{\mu C_{O X} 2 I_{D} \frac{W}{L}}$, and assuming a relation between device sizes and current
tails respectively $W_{1}=N W_{2}$ and $I_{D 1}=M I_{D 2}$, the term $g_{m 2} / g_{m 1}$ can be written as:

$$
\begin{equation*}
\frac{g_{m 2}}{g_{m 1}}=\frac{\sqrt{\mu C_{O X} 2 I_{D 2} \frac{W_{2}}{L_{2}}}}{\sqrt{\mu C_{O X} 2 I_{D 1} \frac{W_{1}}{L_{1}}}}=\frac{1}{\sqrt{N M}} \tag{6.18}
\end{equation*}
$$

On the other hand, if these devices are operating in sub-threshold, $g_{m} \approx 2 I_{D} /\left(V_{G S}-V_{T H}\right)$ and hence $g_{m 2} / g_{m 1}=1 / N$.

6.3 Simulation Results

The equations derived in the previous section were implemented in a mathematical model used to find the best trade-off between the parameters. According to the obtained result, the circuit of Fig. 6.4 was implemented in Cadence Virtuoso in a 110 nm CMOS SOI technology.

For the circuit of Fig. 6.3, which realizes only the first order compensation, the best sizing of the resistors network was found to be $R_{1}=19.5 k \Omega, R_{2}=R_{3}=56 k \Omega, R_{4}=68 k \Omega$ while the ratio between Q_{1} and Q_{2} was selected equal to 8 . The results over a temperature range from $-40^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ of the mathematical model and the real circuit simulation in typical corner are shown in Fig. 6.5. The maximum variation from the room temperature value is 3.1 mV for the circuit simulation, and 4.2 mV for the theoretical model.

Figure 6.5: Comparison between the mathematical model and the schematic simulation for the 1st order compensation design

When the second order compensation is introduced, many parameters start playing a role and obtaining a good matching between the mathematical model and the Virtuoso simulation becomes quite challenging. Indeed, some ideal assumptions were considered to derive equations:

- the operational amplifier gain was assumed $\rightarrow \infty$;
- the currents I_{1} and I_{2} were supposed equal, while in reality the mismatch and the non-ideality of the amplifier made them slightly different;

Moreover, it turned out that the modeling of some technological parameters (e.g. the BJT saturation current I_{S}) greatly influences the accuracy of the equations and therefore a great effort should be spent for a good result. For these reason, although the model is still useful as a starting point, parameter simulations need to be run to find the best circuit sizing.

In Fig. 6.6 the comparison between the mathematical model and the Virtuoso simulation is reported. The resistive network is sized with $R_{1}=27.4 k \Omega, R_{2}=R_{3}=60.1 k \Omega$, $R_{4}=76 k \Omega$. The current I_{3} in Q_{3} is equal to $900 n A$, while $I_{1}=I_{2}=3 \mu A$. Finally, the ratio $g_{m 2} / g_{m 1}$ is chosen equal to $1 / 15$ with devices operating in sub-threshold. Both curves show a change in the slope as typical for second-order compensated bandgap, but precise matching is not achieved. The proposed design shows a DC value of around 1.165 V and has a deviation from maximum to minimum value of just $730 \mu \mathrm{~V}$.

Figure 6.6: Comparison between the mathematical model and the schematic simulation for the 2nd order compensation design

A corner simulation plus R_{4} trimming in a 6σ process spread from $-40^{\circ} \mathrm{C}$ to $175^{\circ} \mathrm{C}$ is shown in Fig. 6.7. Resistor R_{4} is swept from $68 k \Omega$ to $83 k \Omega$ by the use of 4 -bits. The maximum variation from the room temperature in the range from $0^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ is lower than 1 mV in all corner except corner 6 where is 2.5 mV as shown in Table 6.1. The maximum variation in the full temperature range is lower than 1.75 mV in most of the corners making exception for corner 6,13 and 14 . Corner 6 can be easily adjusted to $<1.75 \mathrm{mV}$ too by extending the trimming range to lower value ($65 \mathrm{k} \Omega$), while corner 13 and corner 14 show a slight divergence of the curve at very low temperature $\left(<-20^{\circ} C\right)$ which does not depend on the sizing of the network but on the polarization of the circuit itself, which should therefore be revised.

Figure 6.7: Corners simulation of the proposed circuit

Table 6.1: Bandgap simulation with the best trimming setting for each corner

Corner	$V_{M A X}-V_{T 0}$	$V_{M A X}-V_{T 0}$		$V_{M A X}-V_{T 0}$	$V_{M A X}-V_{T 0}$
	$[0: 125]^{\circ} C$	$[0: 175]^{\circ} C$	Corner	$[0: 125]^{\circ} C$	$[0: 175]^{\circ} C$
	$[\mathrm{mV}]$	$[\mathrm{mV}]$		$[\mathrm{mV}]$	$[\mathrm{mV}]$
	0.24	0.28	9	0.16	1.28
2	0.26	0.41	10	0.28	1.41
3	0.03	0.71	11	0.23	1.06
4	0.15	0.80	12	0.37	1.75
5	0.08	0.83	13	0.14	4.70
6	2.53	4.50	14	0.23	5.02
7	0.48	0.69	15	0.24	1.36
8	0.17	1.33	16	0.56	1.25

CHAPTER 7

Conclusion

In this work, the design of a Supple-Embedded Communication transceiver for differential automotive networks was proposed. Two different transmitter circuits based on switching capacitors were analyzed. The H-Bridge topology requires fewer external components (1 switching capacitor) than the 3-Switches topology (2 switching capacitors), but its current consumption is 8 -times higher. Moreover, it occupies an area 1.4 times bigger than the 3 -Switches implementation and a coding scheme is required to reconstruct the transmitted signal. A test chip was realized to validate the proposed implementations and was successfully tested in the laboratory by connecting it to a discrete component demonstrator receiver board. A data rate of 2 Mbps was reached and, furthermore, operations up to 5 Mbps and 10 Mbps have been theoretically proven. A receiver based on StrongArm Latches was proposed and implemented in a second test chip to realize a full Supply-Embedded Communication transceiver. The circuit includes many tunable parameters that make the design very flexible. The chip was validated by top level post layout simulations in a real automotive environment model and by laboratory measurements which showed a good matching with the simulations. The use in real applications must be tested in the near future to actually provide benefits in the automotive wiring harness.

As a side project, a second order curvature compensated bandgap reference circuit was designed. The circuit exhibited a maximum deviation from the value at room temperature of just $730 \mu \mathrm{~V}$ in the typical corner and has been tested over corners with good results. A mathematical model has been proposed but better modeling of some parameters is required for a perfect matching with the circuit simulations. The validity of the proposal will be verified by a test chip in the close future.

Bibliography

[1] A. Ahmad. 'Automotive Semiconductor Industry - Trends, Safety and Security Challenges'. In: ICRITO 2020 - IEEE 8th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (2020), pp. 1373-1377 (cit. on p. 1).
[2] S. P. Nelson. Challenges and Technologies The Human Friendly Vehicle in 2030 and Beyond Growth of Automotive Electronics. 2009. URL: https://www.nxp.com/filesstatic/training_pdf/VFTF09_AA106.pdf (cit. on p. 1).
[3] T. Nolte, H. Hansson, and L. Lo Bello. 'Automotive communications - Past, current and future'. In: IEEE International Conference on Emerging Technologies and Factory Automation, ETFA 12 VOLS.January (2005), pp. 985-992 (cit. on p. 1).
[4] P. Heisler, M. Kuhn, R. Sus-Wolf, and J. Franke. 'Innovative Solutions for the Covering Process in the Manufacturing of Wire Harnesses to Increase the Automation Degree'. In: Proceedings of 2020 IEEE 11th International Conference on Mechanical and Intelligent Manufacturing Technologies, ICMIMT 2020 (2020), pp. 193-201 (cit. on p. 2).
[5] F. Benzi, T. Facchinetti, T. Nolte, and L. Almeida. 'Towards the powerline alternative in automotive applications'. In: IEEE International Workshop on Factory Communication Systems - Proceedings, WFCS 1 (2008), pp. 259-262 (cit. on p. 2).
[6] G. A. Lodi, A. Ott, S. A. Cheema, M. Haardt, and T. Freitag. 'Power Line Communication in automotive harness on the example of Local Interconnect Network'. In: 2016 International Symposium on Power Line Communications and its Applications, ISPLC 2016 (2016), pp. 212-217 (cit. on p. 2).
[7] S. De Caro, A. Testa, and R. Letor. 'A power line communication approach for body electronics modules'. In: 2009 13th European Conference on Power Electronics and Applications, EPE '09 (2009), pp. 1-10 (cit. on p. 2).
[8] A. Llaria, G. Terrasson, and N. Pierlot. 'Feasibility of power supply over CAN bus: Study on different elementary design aspects'. In: AIAA/IEEE Digital Avionics Systems Conference - Proceedings. Vol. 2018-Septe. London,UK: IEEE, 2018, pp. 1-7 (cit. on p. 2).
[9] A. Ott. 'Supply-Embedded Communication in Differential Automotive Networks'. Unpublished doctoral dissertation. Milano-Bicocca, 2022 (cit. on pp. 2, 4, 25, 30, 32, $35,39,54)$.
[10] F. Grassi and S. A. Pignari. 'Coupling/decoupling circuits for powerline communications in differential DC power buses'. In: 2012 IEEE International Symposium on Power Line Communications and Its Applications, ISPLC 2012 (2012), pp. 392-397 (cit. on p. 3).
[11] ISO/TC 22/SC 31. 'ISO 17987-3:2016: Road vehicles - Local Interconnect Network (LIN) — Part 3: Protocol specification'. 2016 (cit. on p. 6).
[12] H. L. Deffebach and W. Frost. A Survey of Digital Baseband Signaling Techniques. Tech. rep. Alabama: NASA George C. Marshall Space Flight Center, 1971 (cit. on p. 6).
[13] X-FAB. XT018 - The leading 180 nm BCD-on-SOI technology for your application needs. URL: https://www.xfab.com/xt018 (cit. on p. 8).
[14] A. Almansouri, A. Alturki, A. Alshehri, T. Al-Attar, and H. Fariborzi. 'Improved StrongARM latch comparator: Design, analysis and performance evaluation'. In: PRIME 2017-13th Conference on PhD Research in Microelectronics and Electronics, Proceedings (2017), pp. 89-92 (cit. on p. 19).
[15] B. Razavi. 'The StrongARM latch [A Circuit for All Seasons]'. In: IEEE Solid-State Circuits Magazine 7.2 (2015), pp. 12-17 (cit. on p. 19).
[16] L. Khanfir and J. Mouïne. 'A new latch comparator with tunable hysteresis'. In: Proceedings of the International Conference on Microelectronics, ICM 0 (2016), pp. 261-264 (cit. on p. 19).
[17] A. Wang, A. Waters, and C. J. Shi. 'A sub-nW mV-range programmable threshold comparator for near-zero-energy sensing'. In: Proceedings - IEEE International Symposium on Circuits and Systems 2016-July (2016), pp. 1054-1057 (cit. on p. 19).
[18] N. R. Whitehead. Design and Measurement of StrongARM Comparators. 2019. URL: https://scholarsarchive.byu.edu/etd/8715/ (cit. on p. 24).
[19] Analog Devices. ADG5413. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/ADG5412_5413.pdf (cit. on p. 40).
[20] Analog Devices. LTC6268-10. URL: https://www.analog.com/media/en/technical-documentation/data-sheets/626810f.pdf (cit. on p. 40).
[21] Melexis. MeLiBu® the new standard protocol for automotive high-speed lighting animation. 2021. URL: https://www.melexis.com/en/tech-talks/melibu (cit. on p. 41).
[22] Tektronix. 2600B Series SMU. URL: https://www.tek. com / en / products / keithley/source-measure-units/2600b-series-sourcemeter (cit. on p. 41).
[23] Raspberry. Raspberry PI 3. URL: https://www.raspberrypi.com/products / raspberry-pi-3-model-b/ (cit. on p. 41).
[24] Trenz. TE0725. URL: https://wiki.trenz-electronic.de/display/PD/TE0725+ Resources (cit. on p. 47).
[25] Xilinx. Series FPGAs Data Sheet: Overview. URL: https://docs.xilinx.com/v/u/ en-US/ds180_7Series_Overview (cit. on p. 47).
[26] B. Razavi. 'The Bandgap Reference [A Circuit for All Seasons]'. In: IEEE Solid-State Circuits Magazine 8.3 (2016), pp. 9-12 (cit. on p. 57).
[27] D. F. Hilbiber. 'A New Semiconductor Voltage Standard'. In: International Solid-State Circuits Conference (1964), pp. 32-33 (cit. on p. 57).
[28] R. J. Widlar. 'Some Circuit Design Techniques for Linear Integrated Circuits'. In: IEEE Transactions on Circuit Theory 12.4 (1965), pp. 586-590 (cit. on p. 58).
[29] R. J. Widlar. 'New Developments in IC Voltage Regulators'. In: IEEE Journal of Solid-State Circuits 6.1 (1971), pp. 2-7 (cit. on p. 58).
[30] A. P. Brokaw. 'A Simple Three-Terminal Three-Terminal IC Bandgap Reference'. In: IEEE Journal of Solid-State Circuits 9.6 (1974), pp. 388-393 (cit. on p. 58).
[31] R. Gregorian, G. A. Wegner, and W. E. Nicholson. 'An Integrated Single-Chip PCM Voice Codec with Filters'. In: IEEE Journal of Solid-State Circuits 16.4 (1981), pp. 322-333 (cit. on p. 58).
[32] K. E. Kuijk. 'A Precision Reference Voltage Source'. In: IEEE Journal of Solid-State Circuits (1973), pp. 222-226 (cit. on pp. 58, 59).
[33] Y. P. Tsividis and R. W. Ulmer. 'A CMOS Voltage Reference'. In: IEEE Journal of Solid-State Circuits 13.6 (1978), pp. 774-778 (cit. on p. 59).
[34] R. Paul and A. Patra. 'A temperature-compensated bandgap voltage reference circuit for high precision applications'. In: Proceedings of the IEEE INDICON 2004-1st India Annual Conference (2004), pp. 553-556 (cit. on p. 59).
[35] W. Kui and J. Zhou. 'A Bandgap Reference Circuit with 2nd Order Curvature Correction'. In: Physics Procedia 33 (2012), pp. 1849-1855 (cit. on p. 59).
[36] P. Malcovati, F. Maloberti, C. Fiocchi, and M. Pruzzi. 'Curvature-compensated BiCMOS bandgap with 1-V supply voltage'. In: IEEE Journal of Solid-State Circuits 36.7 (2001), pp. 1076-1081 (cit. on p. 59).
[37] D. Spady and V. Ivanov. 'A CMOS bandgap voltage reference with absolute value and temperature drift trims'. In: Proceedings - IEEE International Symposium on Circuits and Systems (2005), pp. 3853-3856 (cit. on pp. 59, 60).
[38] G. Ge, C. Zhang, G. Hoogzaad, and K. a. a. Makinwa. 'A Single-Trim CMOS Bandgap Reference With a 3σ Inaccuracy of 0.15% From -40C to 125C'. In: IEEE Journal of Solid-State Circuits 46.11 (2011), pp. 2693-2701 (cit. on pp. 59, 60).
[39] Z. H. Ning and L. N. He. 'A low drift curvature-compensated bandgap reference with trimming resistive circuit'. In: Journal of Zhejiang University: Science C 12.8 (2011), pp. 698-706 (cit. on p. 59).
[40] D. M. Nuernbergk, C. Lang, and N. Dobrostomat. 'Advantages of an asymmetric design of kuijk's bandgap used in an automotive environment'. In: ANALOG 202017. ITG/GMM-Fachtagung (2020), pp. 79-83 (cit. on pp. 59, 61).

List of Figures

1.1 Supply-Embedded Communication concept 2
1.2 Equivalent s-domain model of the charge injection 3
1.3 Simulation result of a discharge event 4
2.1 H-Bridge TX Topology 5
2.2 Example of data transmission in H-Bridge TX Topology 6
2.3 3-Switches TX Topology 7
2.4 Example of data transmission in the 3-Switches TX Topology 8
2.5 LSS schematic 9
2.6 LSS turn-on and turn-off times in typical conditions 10
2.7 HSS bootstrap schematic 11
2.8 HSS bootstrap circuit concept simulation 11
2.9 HSS schematic 12
2.10 HSS turn-on and turn-off times in typical condition 13
2.11 FS schematic 14
2.12 FS turn-on and turn-off times in typical condition 14
2.13 Layout view of the H -Bridge transmitter circuit 15
2.14 Layout view of the 3-Switches transmitter circuit 16
2.15 Virtuoso test bench for the H-Bridge transmitter 16
2.16 Post layout simulation results of the H -Bridge transmitter 17
2.17 Virtuoso test bench for the 3 -Switches transmitter 17
2.18 Post layout simulation results of the 3-Switches transmitter 18
3.1 Receiver block diagram 20
3.2 Capacitor Divider: 4-bit d_{h} and d_{l} set the division of B_{H} and B_{L} 20
3.3 Differential pair with native NMOS input 21
3.4 Differential gain of the proposed buffer 22
3.5 Common-mode gain of the proposed buffer 23
3.6 Differential gain variation at 1 MHz and 10 MHz over the input range, and Common-mode Montecarlo histogram at 1 MHz on 500 mismatch points 23
3.7 StrongArm Latch with tunable hysteresis - MOS varactor are inserted in nodes P and Q by 4 -bit per side b_{h} and b_{l} 24
3.8 StrongArm Latch sizing, and capacitance offered by a MOS varactor 25
3.9 Full receiver layout 26
3.10 Capacitor divider output stage 26
3.11 Receiver simulation setup 27
3.12 Receiver simulation result 27
3.13 Achievable levels of hysteresis 28
3.14 Hysteresis set used in simulation 28
4.1 Top level block diagram of the TC1 30
4.2 Transmitter block inside the TC1 31
4.3 Control bit stream for the TC1 33
4.4 Top level layout of the TC1 34
4.5 TC1 2000x micrograph picture 34
4.6 Generation of the $V_{C M}$ voltage by level-shifting of the $V_{C O R E}$ 35
4.7 Top level block diagram of the TC2 36
4.8 Control bit stream for the TC2 36
4.9 Top level layout of the TC2 37
4.10 TC2 micrograph picture 37
5.1 Schematic of the PCB for testing designed for the TC1 40
5.2 Picture of the PCB for testing designed for the TC1 40
5.3 PCB Demonstrator 41
5.4 Raspberry PI3 pinout 42
5.5 TC1 static measurements laboratory setup 43
5.6 All $V 5$ values measured on DUT-1 44
5.7 Block diagram of the data transmission measurement setup 47
5.8 Picture of the data transmission measurement setup 47
5.9 H-Bridge TX: Data transmission measurement result with switching capaci- tors of 820 pF , cable lenghts of $l_{1}=6.00 \mathrm{~m}$ and $l_{2}=0.25 \mathrm{~m}$ 49
5.10 3-Switches TX: Data transmission measurement result with switching ca- pacitors of 820 pF , cable lenghts of $l_{1}=6.00 \mathrm{~m}$ and $l_{2}=0.25 \mathrm{~m}$ 49
5.11 Measured voltages across switching capacitors 50
5.12 H-Bridge TX: Data transmission measurement result with switching capaci- tors of 330 pF and cable lenghts of $l_{1}=l_{2}=0.25 \mathrm{~m}$ 52
5.13 3-Switches TX: Data transmission measurement result with switching ca- pacitors of 330 pF and cable lenghts of $l_{1}=l_{2}=0.25 \mathrm{~m}$ 52
5.14 Setup of the top Level Virtuoso test bench for the TC2 53
5.15 Top level post layout simulation of the TC2 54
5.16 Picture of the PCB for testing designed for the TC2 54
5.17 TC2 single node test with H-Bridge TX 55
5.18 TC2 single node test with 3-Switches TX 56
5.19 TC2 single node test with different hysteresis settings 56
6.1 Positive TC voltage across two diode 58
6.2 Widlar Bandgap Reference 58
6.3 Kujik Bandgap Reference 59
6.4 Proposed Bandgap Reference 60
6.5 Comparison between the mathematical model and the schematic simulation for the 1st order compensation design 62
6.6 Comparison between the mathematical model and the schematic simulation for the 2 nd order compensation design 63
6.7 Corners simulation of the proposed circuit 64

List of Tables

2.1 States of H-bridge Transmitter Topology 6
2.2 States of 3-Switches Transmitter Topology 8
2.3 Selected properties of the wafer process 9
2.4 Simulation results of the H -Bridge transmitter 16
2.5 Simulation results of the 3 -Switches transmitter 18
3.1 Theoretical k vs simulated k 21
3.2 Capacitor divider output stage configuration 25
3.3 Simulation results: divider and buffer outputs 27
4.1 Test signal mux to $A I O C$ 32
4.2 State control 33
5.1 Raspberry PI3 pinout assignment 42
5.2 Measured 5 V over the possible settings 43
5.3 Measured $V_{C O R E}$ and $V_{B I A S}$ over the possible settings 44
5.4 Measured IPD5U over the possible settings 45
5.5 Leakage currents in the H -Bridge transmitter 45
5.6 Leakage currents in the 3-Switches transmitter 45
5.7 Switches on-resistance in the H-Bridge transmitter 46
5.8 Switches on-resistance in the 3-Switches transmitter 46
5.9 Coding schemes 48
5.10 Result of H-Bridge TX with $820 p F$ switching capacitors 50
5.11 Result of 3 -Switches TX with 820 pF switching capacitors 50
5.12 Result of H-Bridge TX with $330 p F$ switching capacitors 51
5.13 Result of H-Bridge TX with $180 p F$ switching capacitors 51
5.14 Result of 3 -Switches TX with 330 pF switching capacitors 51
5.15 Result of 3-Switches TX with $180 p F$ switching capacitors 51
6.1 Bandgap simulation with the best trimming setting for each corner 64

A Appendix Python Scripts

A. 1 Supply-Embedded Communication Package

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
def INIT(RN, SSEL, SSTATE1, SSTATE0, CK, TCK, TDA):
    GPIO.setup(RN, GPIO.OUT)
    GPIO.output(RN, GPIO.LOW)
    GPIO.setup(SSEL, GPIO.OUT)
    GPIO.output(SSEL, GPIO.LOW)
    GPIO.setup(SSTATE1, GPIO.OUT)
    GPIO.output(SSTATE1, GPIO.LOW)
    GPIO.setup(SSTATE0, GPIO.OUT)
    GPIO.output(SSTATE0, GPIO.LOW)
    GPIO.setup(CK, GPIO.OUT)
    GPIO.output(CK, GPIO.LOW)
    GPIO.setup(TCK, GPIO.OUT)
    GPIO.output(TCK, GPIO.LOW)
    GPIO.setup(TDA, GPIO.OUT)
    GPIO.output(TDA, GPIO.LOW)
    # TM reg defaults:
    en__pd = 0
    en_pu = 1
    tmux = 0
    tv5 = 7
    tbg = 0
    tmwrite = 0
    return[en_pd, en__pu, tmux, tv5, tbg, tmwrite]
def RES(RN, ckdelay):
    print("# issue reset ... ")
    GPIO.output(RN, GPIO.LOW)
    time.sleep (ckdelay)
    GPIO.output(RN, GPIO.HIGH)
    tmux = 0
    tbg}=
    tv5 = 7
```

```
    en_pu = 1
    en_pd = 0
    tmwrite = 0
def SEL(SSEL, solution):
    print('# set SSEL to ',solution)
    if solution == 0:
        GPIO.output(SSEL, GPIO.LOW)
    else :
        GPIO.output(SSEL, GPIO.HIGH)
def STA(SSTATE1, SSTATE0, CK, state, ckdelay):
    print('# set SSTATE to ',state)
    GPIO.output(CK, GPIO.LOW)
    if state == 3:
        GPIO.output(SSTATE1, GPIO.HIGH)
        GPIO.output(SSTATE0, GPIO.HIGH)
        tmwrite = 1 # allows writing tmreg
    elif state == 2:
        GPIO.output(SSTATE1, GPIO.HIGH)
        GPIO.output(SSTATE0, GPIO.LOW)
        tmwrite =0# disables writing tmreg
    elif state == 1:
        GPIO.output(SSTATE1, GPIO.LOW)
        GPIO.output(SSTATE0, GPIO.HIGH)
        tmwrite =0# disables writing tmreg
    else :
        GPIO.output(SSTATE1, GPIO.LOW)
        GPIO.output(SSTATE0, GPIO.LOW)
        tmwrite =0# disables writing tmreg
    # CK Pulse
    time.sleep(ckdelay)
    GPIO.output(CK, GPIO.HIGH)
    time.sleep(ckdelay)
    GPIO.output(CK, GPIO.LOW)
    return(tmwrite)
def TM(TCK, TDA, en__pd, en__pu, tmux, tv5, tbg, tmwrite, tckdelay):
    if tmwrite == 1:
        tmreg = bin(en__pd* 2**13 + en__pu*2**12 + tmux*2**8 + tv5*2**4 +tbg)[2:].zfill(16)
        GPIO.output(TCK, GPIO.LOW)
        GPIO.output(TDA, GPIO.LOW)
        time.sleep (tckdelay)
        print("# send TMREG ",tmreg)
        for i in range (0,16):
```

```
            if tmreg[15-i] == '1':
                    GPIO.output(TDA, GPIO.HIGH)
            else:
                    GPIO.output(TDA, GPIO.LOW)
                time.sleep(tckdelay)
                GPIO.output(TCK, GPIO.HIGH)
                time.sleep(tckdelay)
                GPIO.output(TCK, GPIO.LOW)
            GPIO.output(TDA, GPIO.LOW)
            time.sleep(tckdelay)
else :
    print("# Cannot write TM, PLEASE set SSTATE to 3 before !!!")
```


A. 2 Supply parameters test

```
import SECpkg as PKG
import pyvisa as visa
import time
import numpy as np
import csv
import os
# GPIOs assignment & defaults:
RN=17 # J8__11 (GPIO17)
SSEL=18 # J8_12 (GPIO18)
SSTATE1=7 # J8__26 (GPIO7)
SSTATE0=8 # J8__24 (GPIO8)
CK=11 # J8__23 (GPIO11)
TCK=27 # J8__13(GPIO27)
TDA=22 # J8_15 (GPIO22)
[en__pd,en_pu,tmux,tv5,tbg,tmwrite]=PKG.INIT(RN,SSEL,SSTATE1,SSTATE0,CK,TCK,TDA)
ckdelay = 0.0001 # clock delay
tckdelay =0.0001 # test clock delay
tdelay = 1 # delay between measurements
mes =0 # enable measurements
v = np.zeros((16,17)) # matrix to store measurements on channelA
w}=\textrm{np}\cdotzeros((16,17)) # matrix to store measurements on channelB
x = np.zeros(17) # vector to store tv5 value
PKG.RES(RN,0.05) # initial reset
rm = visa.ResourceManager('@py') # Use the pyvisa-py backend
address = "TCPIP0::10.49.41.51::inst0::INSTR" # Keithley DAQ6510 IP address TCP/IP string
sm = rm.open_resource(address)
```

```
sm.write("reset () ") # sm initial reset
while (mes==0): # Start operation
    print("Insert test board number:") # insert csv file name
    tcn = input("cmd>>")
    name = "SupplySystem1_TB"+tcn
    # Set sm CHA as DC-V source, set I/V limits, I_OUT=0, tunr output ON
    sm.write("smua.source.func = smua.OUTPUT__DCAMPS")
    sm.write("smua.source.limitv = 3")
    sm.write("smua.source.limiti = 0.000001")
    sm.write("smua.source. leveli = 0")
    sm.write("smua.source.output = smua.OUTPUT_ON")
    # Set sm CHB as DC-V source, set I/V limits, I_OUT=0, tunr output ON
    sm.write("smub.source.func = smub.OUTPUT_DCAMPS")
    sm.write("smub.source.limitv = 6")
    sm.write("smub.source.limiti = 0.000001")
    sm.write("smub.source.leveli = 0")
    sm.write("smub.source.output = smub.OUTPUT_ON")
    tmux=4 # Set tmux=4 to measure the desired output on AIO
    tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 3, ckdelay) # Enter STA=3 for TC config. mode
    time.sleep(tdelay)
    PKG.TM(TCK, TDA, en_pd, en_pu, tmux, tv5, tbg, tmwrite, tckdelay) # Set TDA
    time.sleep(tdelay)
    tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 0, ckdelay) # Back to STA=0
    print("Measuring bandgap voltage..")
    time.sleep(tdelay)
    # Use two for-cycles to trim TBG and TV5 from 0 to 15
    for i in range(0,16):
    tbg=i # Set TBG=i
    tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 3, ckdelay) # Enter STA=3 for TC config. mode
    time.sleep(tdelay)
    PKG.TM(TCK, TDA, en_pd, en_pu, tmux, tv5, tbg, tmwrite, tckdelay) # Set TDA
    time.sleep(tdelay)
    tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 0, ckdelay) # Back to STA=0
    print("TBG set to",i)
    time.sleep(tdelay)
    v[i,0]=i
    w[i,0]=i
    for j in range (0,16):
        tv5=j # Set TV5=j
        tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 3, ckdelay) # Enter STA=3 for TC config.
mode
```

```
    time.sleep(tdelay)
    PKG.TM(TCK, TDA, en_pd, en_pu, tmux, tv5, tbg, tmwrite, tckdelay) # Set TDA
    time.sleep(tdelay)
    tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 0, ckdelay) # Back to STA=0
    print("TV5 set to",j)
    x[j+1]=j
    # Measure VBG and V5, printing values and store in matrix
    sm.write("print(smua.measure.v())")
    valuea=sm.read()
    print("Measured value on channel A = ",valuea)
    sm.write("print(smub.measure.v())")
    valueb=sm.read()
    print("Measured value on channel B= ",valueb)
    v[i,j+1]=valuea
    w[i,j+1]=valueb
    time.sleep(tdelay)
if i==15 and j==15: # Complete the operation and save in csv
    mes=1
    with open('temp.csv','w') as f: # Build csv output file
        writer = csv.writer(f)
        header1 = ['AIO']
        header2 = ['V5']
        writer.writerow(header1)
        writer.writerow(x)
        for n in range(0,16):
            writer.writerow(v[n,:])
        writer.writerow(header2)
        writer.writerow(x)
        for m in range(0,16):
            writer.writerow(w[m,:])
    os.rename('temp.csv',name +'.csv')
```


A. 3 Switches leakage current

```
import SECpkg as PKG
import pyvisa as visa
import time
import numpy as np
import csv
import os
# GPIOs assignment & defaults:
RN=17 # J8__11 (GPIO17)
SSEL=18 # J8_12 (GPIO18)
```

```
SSTATE1=7 # J8__26 (GPIO7)
SSTATE0=8 # J8__24 (GPIO8)
CK=11 # J8__23 (GPIO11)
TCK=27 # J8__13 (GPIO27)
TDA=22 # J8__15 (GPIO22)
[en__pd,en__pu,tmux,tv5,tbg,tmwrite]=PKG.INIT(RN,SSEL,SSTATE1,SSTATE0,CK,TCK,TDA)
ckdelay = 0.0001 # clock delay
tckdelay =0.0001 # test clock delay
tdelay = 1 # delay between measurements
mes = 0 # enable measurements
v}=\textrm{np}\cdotzeros((3,8)) # matrix to store measurements
PKG.RES(RN,0.05) # initial reset
rm = visa.ResourceManager('@py') # Use the pyvisa-py backend
address = "TCPIP0::10.49.41.51::inst0::INSTR" # Keithley DAQ6510 IP address TCP/IP string
sm = rm.open_resource(address)
sm.write("reset ()") # sm initial reset
while (mes==0): # Start operation
    print("Insert test board number:") # insert csv file name
    tcn = input("cmd>>")
    name = "LeakageS2__TB"+tcn
    for i in range(0,3):
        if i==1: # Setting for V5 MAX
        tbg=13
        tv5=0
        tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 3, ckdelay) # STA=3
        time.sleep(tdelay)
        PKG.TM(TCK, TDA, en_pd, en__pu, tmux, tv5, tbg, tmwrite, tckdelay) # set TDA
        time.sleep(tdelay)
        tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 0, ckdelay) # STA=0
        time.sleep(1)
        elif i==2: #V Setting for V5 MIN
        tbg=7
        tv5=14
        tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 3, ckdelay) # STA=3
        time.sleep(tdelay)
        PKG.TM(TCK, TDA, en__pd, en__pu, tmux, tv5, tbg, tmwrite, tckdelay) # set TDA
        time.sleep(tdelay)
        tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 0, ckdelay) # STA=0
        time.sleep (1)
```

```
# Leakage HSS on CHA: set CHA as Voltage Source
sm.write("smua.source.func = smua.OUTPUT_DCVOLTS")
sm.write("smua.source.limitv = 12")
sm.write("smua.source.limiti = 0.001")
sm.write("smua.source.levelv = 12")
sm.write("smua.source.output = smua.OUTPUT_ON")
time.sleep(tdelay)
sm.write("print(smua.measure.v())")
valuea=sm.read()
v[i,0] = valuea
time.sleep (20)
sm.write("print(smua.measure.i())")
valuea=sm.read()
v[i,1] = valuea
time.sleep (5)
sm.write("reset () ") # sm reset
time.sleep (5)
# Leakage LSS on CHB: set CHB as Voltage Source
sm.write("smub.source.func = smub.OUTPUT__DCVOLTS")
sm.write("smub.source.limitv = 12")
sm.write("smub.source.limiti = 0.001")
sm.write("smub.source.levelv = 12")
sm.write("smub.source.output = smub.OUTPUT_ON")
sm.write("print(smub.measure.v())")
valueb=sm.read()
v[i,2] = valueb
time.sleep (20)
sm.write("print(smub.measure.i())")
valueb=sm.read()
v[i,3] = valueb
time.sleep (5)
sm.write("reset () ") # sm reset
time.sleep (5)
# Leakage FS: Set CHA and CHB as Voltage Sources
sm.write("smua.source.func = smua.OUTPUT_DCVOLTS")
sm.write("smua.source.limitv = 0.01")
sm.write("smua.source.limiti = 0.001")
sm.write("smua.source.levelv = 0")
sm.write("smua.source.output = smua.OUTPUT_ON")
sm.write("smub.source.func = smub.OUTPUT__DCVOLTS")
sm.write("smub.source.limitv = 0.01")
```

```
    sm.write("smub.source.limiti = 0.001")
            sm.write("smub.source.levelv = 0")
            sm.write("smub.source.output = smub.OUTPUT_ON")
            time.sleep(tdelay)
            sm.write("print(smua.measure.v())")
            valuea=sm.read()
            v[i,4] = valuea
            sm.write("print(smub.measure.v())")
            valueb=sm.read()
            v[i,5] = valueb
            time.sleep (20)
            sm.write("print(smua.measure.i())")
            valuea=sm.read()
            v[i,6] = valuea
            sm.write("print(smub.measure.i())")
            valueb=sm.read()
            v[i,7] = valueb
    # Complete the operation and save in csv
    with open('temp.csv','w') as f:
            writer = csv.writer(f)
            header1 = ['Leakage SOL2 with V5typ']
            header2 = ['Leakage SOL2 with V5max']
            header3 = ['Leakage SOL2 with V5min']
            header = ['Vds_HSS','Ileakage_HSS','Vds_LSS','Ileakage_LSS','VBH_Vd__FS','Vs_FS-VBL','
Ileakage_FS','Ileakage_FS']
            writer.writerow(header1)
            writer.writerow(header)
            writer.writerow(v [0,:])
            writer.writerow(header2)
            writer.writerow(header)
            writer.writerow(v [1,:])
            writer.writerow(header3)
            writer.writerow(header)
            writer.writerow(v [2,:])
            print("Measure completed")
            os.rename('temp.csv',name +'.csv')
    mes=1
```


A. 4 Switches on-resistance

Floating Switch
import SECpkg as PKG
import pyvisa as visa

```
import time
import numpy as np
import csv
f import os
# GPIOs assignment & defaults:
RN=17 # J8__11 (GPIO17)
SSEL=18 # J8_12 (GPIO18)
SSTATE1=7 # J8__26 (GPIO7)
SSTATE0=8 # J8__24 (GPIO8)
CK=11 # J8__23 (GPIO11)
TCK=27 # J8_13(GPIO27)
TDA=22 # J8__15 (GPIO22)
[en_pd,en_pu,tmux,tv5,tbg,tmwrite]=PKG.INIT(RN,SSEL,SSTATE1,SSTATE0,CK,TCK,TDA)
ckdelay = 0.0001 # clock delay
tckdelay = 0.0001 # test clock delay
tdelay = 1 # delay between measurements
mes = 0 # enable measurements
ni =6
nv}=
istart =0
istop = 0.05
vstart = 0
vstop = 12
newv = vstart
newi = istart
istep = (istop-istart)}/(\textrm{ni}-1
vstep = (vstop-vstart)}/(nv-1
bias = np.zeros((nv,1))
v}=np.zeros((ni*nv,3)
PKG.RES(RN,0.05) # initial reset
rm = visa.ResourceManager('@py') # Use the pyvisa-py backend
address = "TCPIP0::10.49.41.51::inst0::INSTR" # Keithley DAQ6510 IP address TCP/IP string
sm = rm.open_resource(address)
sm.write("reset ()") # sm initial reset
while (mes==0): # Start operation
    print("Insert test board number:") # insert csv file name
    tcn = input("cmd>>")
    name = "onResS2__FS__V5typ__TB"+tcn
    PKG.SEL(SSEL, 1) # Set SEL=1
```

```
time.sleep(tdelay)
tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 2, ckdelay) # STA=2
time.sleep(tdelay)
# Set CHB as Voltage Source
sm.write("smub.source.func = smub.OUTPUT_DCVOLTS")
sm.write("smub.source.limitv = ",str (vstop))
sm.write("smub.source.limiti = 0.05")
sm.write("smub.source.levelv = ",str(vstart))
sm.write("smub.source.output = smub.OUTPUT_ON")
time.sleep(tdelay)
# Set CHA as Current Source
sm.write("smua.source.func = smua.OUTPUT__DCAMPS")
sm.write("smua.source.limitv = 12")
sm.write("smua.source.limiti = ",str (istop))
sm.write("smua.source. leveli = ",str ( istart ))
sm.write("smua.source.output = smua.OUTPUT_ON")
time.sleep(tdelay)
for j in range(0,nv):
    bias[j ,0] = newv
    for i in range(0,ni):
        sm.write("print(smua.measure.i())")
        valuea=sm.read()
        v[(i+(ni*j)),0] = valuea
        time.sleep(tdelay)
        sm.write("print(smua.measure.v())")
        valuea=sm.read()
        v[(i+(ni*j)),1] = valuea
        time.sleep(tdelay)
            if i>0:
                v[(i+(ni*j)),2] = v[(i+(ni*j)),1]/v[(i+(ni*j)),0]
        newi = newi }+\mathrm{ istep
        if (newi <= istop):
            sm.write("smua.source. leveli = ",str (newi))
        else :
            time.sleep(tdelay)
            newi = istart
            sm.write("smua.source. leveli = ",str (istart))
        time.sleep(tdelay)
    newv = newv + vstep
    time.sleep(tdelay)
    if (newv <= vstop):
        sm.write("smub.source.levelv = ",str (newv))
        time.sleep(tdelay)
```

```
if i==ni-1 and j==nv-1:
    mes=1
    print(v)
    with open('temp.csv','w') as f:
        writer = csv.writer(f)
        header1 = ['on resistance Sol2 with 5Vtyp']
        header = ['I_FS','V_FS','Ron']
        header2 = ['BIAS:']
        writer.writerow(header1)
        for n in range(0,nv):
            writer.writerow(header2)
            writer.writerow(bias[n,:])
            writer.writerow(header)
            for m in range((ni*n),((ni*n)+ni)):
                writer.writerow(v[m,:])
    print("Measure completed")
    os.rename('temp.csv',name +'.csv')
```

High-side switch and Low-side switch

```
import SECpkg as PKG
import pyvisa as visa
import time
import numpy as np
import csv
import os
# GPIOs assignment & defaults:
RN=17 # J8__11 (GPIO17)
SSEL=18 # J8_12 (GPIO18)
SSTATE1=7 # J8_26 (GPIO7)
SSTATE0=8 # J8__24 (GPIO8)
CK=11 # J8__23 (GPIO11)
TCK=27 # J8__13 (GPIO27)
TDA=22 # J8__15 (GPIO22)
[en__pd,en_pu,tmux,tv5,tbg,tmwrite]=PKG.INIT(RN,SSEL,SSTATE1,SSTATE0,CK,TCK,TDA)
ckdelay = 0.0001 # clock delay
tckdelay =0.0001 # test clock delay
tdelay = 1 # delay between measurements
mes =0 # enable measurements
points = 101 # Number of sweeping points
start = 0.05 # Starting value
stop = 0.06 # Ending value
step = (stop-start)}/(\mathrm{ points-1) # Step size
```

```
newlv = start # Sweeping variable
v = np.zeros((points,8)) # Matrix to store measurements
PKG.RES(RN,0.05) # initial reset
rm = visa.ResourceManager('@py') # Use the pyvisa-py backend
address = "TCPIP0::10.49.41.51::inst0::INSTR" # Keithley DAQ6510 IP address TCP/IP string
sm = rm.open_resource(address)
sm.write("reset () ") # sm initial reset
while (mes==0): # Start operation
    print("Insert test board number:") # insert csv file name
    tcn = input("cmd>>")
    name = "onResS2_HSSLSS__V5typ_TB"+tcn
    PKG.SEL(SSEL, 1) # Set SEL=1
    time.sleep(tdelay)
    tmwrite=PKG.STA(SSTATE1, SSTATE0, CK, 1, ckdelay) # STA=1
    time.sleep(tdelay)
    # Set CHA as Current source
    sm.write("smua.source.func = smua.OUTPUT_DCAMPS")
    sm.write("smua.source.limitv = 12")
    sm.write("smua.source.limiti = ",str(stop))
    sm.write("smua.source. leveli = ",str(start))
    sm.write("smua.source.output = smua.OUTPUT_ON")
    # Set CHB as Current source
    sm.write("smub.source.func = smub.OUTPUT_DCAMPS")
    sm.write("smub.source.limitv = 12")
    sm.write("smub.source.limiti = ",str (stop))
    sm.write("smub.source.leveli = ",str(start))
    sm.write("smub.source.output = smub.OUTPUT_ON")
    time.sleep(tdelay)
    # Sweep I
    for i in range(0,points):
        print("step",i)
        print("current level : ",newlv)
        newlv = newlv + step
        print("Next current level : ",newlv)
        sm.write("print(smua.measure.i())")
        valuea=sm.read()
        v[i,0] = valuea
        sm.write("print(smub.measure.i())")
        valueb=sm.read()
```

```
    v[i,4] = valueb
    time.sleep (tdelay)
    sm.write("print(smua.measure.v())")
    valuea=sm.read()
    print("Measured value on channel A = ",valuea)
    v[i,1] = valuea
    v[i,2] = v[i,1]/v[i,0
    sm.write("print(smub.measure.v())")
    valueb=sm.read()
    print("Measured value on channel B = ",valueb)
    v[i,5] = valueb
    v[i,6] = v[i,5]/v[i,4]
    if i>0
        v[i,3] = (v[i,1]-v[i-1,1])/(v[i,0]-v[i-1,0])
        v[i,7] = (v[i,5]-v[i-1,5])/(v[i,4]-v[i-1,4])
    time.sleep(tdelay)
    sm.write("smua.source. leveli = ",str (newlv))
    sm.write("smub.source.leveli = ",str (newlv))
    time.sleep(mdelay)
    if i==points-1:
    mes=1
    with open('temp.csv','w') as f:
        writer = csv.writer(f)
        header1 = ['on resistance Sol2 with 5Vtyp']
        header = ['I_HSS','V_HSS','R_HSS','Rdiff__HSS','I_LSS','V_LSS','R_LSS','
Rdiff_LSS']
            writer.writerow(header1)
            writer.writerow(header)
            for n in range(0,points):
            writer.writerow(v[n ,:])
    print("Measure completed")
    os.rename('temp.csv',name +'.csv')
```


A. 5 Supply-Embedded Communication Package Extended for TC2

```
import RPi.GPIO as GPIO
import time
GPIO.setmode(GPIO.BCM)
GPIO.setwarnings(False)
def INIT(RN, SSEL, SSELF, SSTATE1, SSTATE0, CK, TCK, TDA, EN__TEST)
    GPIO.setup(RN, GPIO.OUT)
    GPIO.output(RN, GPIO.LOW)
```

```
    GPIO.setup(SSEL, GPIO.OUT)
    GPIO.output(SSEL, GPIO.LOW)
    GPIO.setup(SSELF, GPIO.OUT)
    GPIO.output(SSELF, GPIO.LOW)
    GPIO.setup(SSTATE1, GPIO.OUT)
    GPIO.output(SSTATE1, GPIO.LOW)
    GPIO.setup(SSTATE0, GPIO.OUT)
    GPIO.output(SSTATE0, GPIO.LOW)
    GPIO.setup(CK, GPIO.OUT)
    GPIO.output(CK, GPIO.LOW)
    GPIO.setup(TCK, GPIO.OUT)
    GPIO.output(TCK, GPIO.LOW)
    GPIO.setup(TDA, GPIO.OUT)
    GPIO.output(TDA, GPIO.LOW)
    GPIO.setup(EN_TEST, GPIO.OUT)
    GPIO.output(EN_TEST, GPIO.LOW)
    # TM reg defaults:
    en_rx = 0
    en dout = 0
    en_od =0
    rxmode = 6
    hystl1_h = 0
    hystl1_l = 0
    hystl2_h = 0
    hystl2_l = 0
    rxdiv_h = 0
    rxdiv_l = 0
    en_pd = 0
    en_pu = 1
    tmux = 0
    tv5 = 7
    tbg = 0
    tmwrite = 0
    en_tx = 1
    return[en_rx, en_dout, en_od, rxmode, hystl1_h, hystl1_l, hystl2_h, hystl2_l, rxdiv_h, rxdiv_l,
en__pd, en_pu, tmux, tv5, tbg, tmwrite, en_tx]
def RES(RN, ckdelay):
    print("# issue reset ... ")
    GPIO.output(RN, GPIO.LOW)
    time.sleep (ckdelay)
    GPIO.output(RN, GPIO.HIGH)
    en_rx = 0
    en_dout = 0
```

```
    en_od = 0
    rxmode = 6
    hystl1_h = 0
    hystl1_l = 0
    hystl2_h = 0
    hystl2_l = 0
    rxdiv_h = 0
    rxdiv l = 0
    tmux = 0
    tbg = 0
    tv5 = 7
    en_pu = 1
    en_pd = 0
    tmwrite =0
    en_tx = 1
def SEL(SSEL, SSELF, solution):
    print(' # set SSEL to ',solution)
    if solution == 0:
        GPIO.output(SSEL, GPIO.LOW)
        GPIO.output(SSELF, GPIO.LOW)
    else:
        GPIO.output(SSEL, GPIO.HIGH)
        GPIO.output(SSELF, GPIO.HIGH)
def STA(SSTATE1, SSTATE0, CK, state, ckdelay):
    print(' # set SSTATE to ',state)
    GPIO.output(CK, GPIO.LOW)
    if state == 3:
        GPIO.output(SSTATE1, GPIO.HIGH)
        GPIO.output(SSTATE0, GPIO.HIGH)
        tmwrite = 1 # allows writing tmreg
    elif state == 2:
        GPIO.output(SSTATE1, GPIO.HIGH)
        GPIO.output(SSTATE0, GPIO.LOW)
        tmwrite =0# disables writing tmreg
    elif state == 1:
        GPIO.output(SSTATE1, GPIO.LOW)
        GPIO.output(SSTATE0, GPIO.HIGH)
        tmwrite = 0# disables writing tmreg
    else:
        GPIO.output(SSTATE1, GPIO.LOW)
        GPIO.output(SSTATE0, GPIO.LOW)
        tmwrite = 0 # disables writing tmreg
    # CK Pulse
```

```
    time.sleep (ckdelay)
    GPIO.output(CK, GPIO.HIGH)
    time.sleep (ckdelay)
    GPIO.output(CK, GPIO.LOW)
    return(tmwrite)
def TM(TCK, TDA, en_rx, en_dout, en_od, rxmode, hystl1_h, hystl1_l, hystl2_h, hystl2_l, rxdiv_h,
rxdiv_l, en_pd, en_pu, tmux, tv5, tbg, tmwrite, tckdelay):
    if tmwrite == 1:
        tmreg = bin(en_rx*2**55 + en_dout*2**54 + en_od *2**53 + rxmode*2**48 + hystl1_h
*2**44 + hystl1_l*2**40 + hystl2_h*2**36 + hystl2_l }*2**32 + rxdiv_h*2**20 + rxdiv_l*2**16 
en_pd*2**13 + en_pu*2**12 + tmux*2**8 + tv5*2**4 +tbg)[2:].zfill(64)
    GPIO.output(TCK, GPIO.LOW)
    GPIO.output(TDA, GPIO.LOW)
    time.sleep(tckdelay)
    print("# send TMREG ",tmreg)
    for i in range (0,64):
            if tmreg[63-i] == '1':
                    GPIO.output(TDA, GPIO.HIGH)
            else:
                    GPIO.output(TDA, GPIO.LOW)
            time.sleep(tckdelay)
            GPIO.output(TCK, GPIO.HIGH)
            time.sleep(tckdelay)
            GPIO.output(TCK, GPIO.LOW)
        GPIO.output(TDA, GPIO.LOW)
        time.sleep(tckdelay)
    else:
        print("# Cannot write TM, PLEASE set SSTATE to 3 before !!!")
def ENT(EN_TEST, en_tx):
    if en_tx == 0:
        GPIO.output(EN_TEST, GPIO.HIGH)
    else :
        GPIO.output(EN_TEST, GPIO.LOW)
```


Publications

Paper

[1] F. D'Aniello, A. Ott, and A. Baschirotto. 'Supply Line Embedded Communication in Automotive Sensor / Actuator Networks'. In: 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (2021), pp. 7-11.
[2] F. D'Aniello, A. Ott, and A. Baschirotto. '2-Mbps Power-Line Communication Transmitter Based on Switched Capacitors for Automotive Networks'. In: Electronics 11.22 (2022), p. 3651.
[3] F. D'Aniello, A. Ott, and A. Baschirotto. 'StrongArm-Latch-Based Receiver for Supply Line Embedded Communication'. In: PRIME 2022 - 17th International Conference on Ph.D Research in Microelectronics and Electronics, Proceedings (2022), pp. 321-324.
[4] A. Ott, F. D'Aniello, and A. Baschirotto. 'A Switched Capacitor Approach for Power Line Communication in Differential Networks'. In: PRIME 2022-17th International Conference on Ph.D Research in Microelectronics and Electronics, Proceedings 1 (2022), pp. 317-320.

Patents

[1] A. Ott, F. D'Aniello, A. Baschirotto, and T. Freitag. 'Transmitter For Power Line Communication'. EP3982513B1. 2022.
[2] A. Ott, F. D'Aniello, A. Baschirotto, and T. Freitag. 'Transmitter For Power Line Communication'. CN114401028A. 2022.
[3] A. Ott, F. D'Aniello, A. Baschirotto, and T. Freitag. 'Transmitter For Power Line Communication'. US 11,522,677 B2. 2023.

Acknowledgments

I would like to express my deep gratitude to Prof. Andrea Baschirotto for giving me the opportunity to join the Ph.D. in his group and for guiding me during these years. I also would like to thank all the people of the Microelectronic Group for the unforgettable time spent together in Milan and during conferences.

A special thanks to my mentor and friend Andreas Ott who was always available to help me when I needed it and made it possible to achieve the results of this thesis.

I also would like to acknowledge Melexis and all its people who supported this activity, especially Dirk Nuernbergk for his contribution and his patience.

Major thanks to my best friends, Valerio whom I can always count on for advice, and Stefano, Matteo, Fabrizio, and Raffaele for always being by my side despite the distance.

Finally, thanks to the most important people in my life, my family for always believing and constantly encouraging me, and Marcella for being the love of my life.

