
DOCTORAL SCHOOL

UNIVERSITY OF MILANO-BICOCCA

Department of Informatics, Systems and Communication

PhD program in Computer Science

Cycle XXXV

Computational strategies for single-cell
multi-omics data analysis and

integration

Lucrezia PATRUNO

Registration number : 795291

Supervisor : Dr. Alex GRAUDENZI

Co-supervisor : Prof. Giulio CARAVAGNA

Co-supervisor : Prof. Marco ANTONIOTTI

Tutor : Prof. Enza MESSINA

PhD Program Director : Prof. Leonardo MARIANI

ACADEMIC YEAR 2021/22





Abstract

The ever-increasing availability of data generated from sequencing experiments of
biological samples brings the need for efficient, scalable and reproducible algorithmic
strategies for their analysis and integration. This is particularly true in cancer research,
in which large amounts of high-dimensional data at the single-cell resolution can be now
generated from patient biopsies and patient-derived models.

In this work, I will present the achievements obtained in three main areas, namely:
(A) the development of methods for the analyses of single omics data types (DNA,
RNA and ATAC), (B) the design of strategies for their integration, (C) the implemen-
tation of a reproducible, scalable and flexible pipeline for the comprehensive analysis of
single-cell data, which includes both the new methods developed in tasks (A) and (B),
and additional state of the art techniques. All these tasks were carried out within the
Bioinformatics programme of the ”Single-cell Cancer Evolution in the Clinic”(SCCEiC)
CRUK/AIRC Accelerator project, which aims at integrating the efforts of wet- and
dry-lab scientists to deliver a fine characterization of cancer evolution, with expected
repercussions in clinical settings. However, the achievements of this work will have
a more general impact, especially on the broad field of computational science and, in
particular, in that of cancer data science and biomedical Artificial Intelligence.

In regard to task (A), I will show the most extensive to-date benchmarking of denos-
ing and imputation methods for single-cell RNA-sequencing data, which might guide
researchers both in the application of existing methods to real-world problems, and in
the design of new algorithmic strategies. I will then present a new algorithmic framework
applied to the inference of clonal trees from single-cell mutational profiles, which provides
both the first method to characterize and visualise the solution space explored during
MCMC search, and a new method to reconstruct a consensus optimal tree summarising
the explored solutions.

In regard to task (B), I will illustrate two methods for the diagonal integration of
multimodal data, which aim at integrating DNA-RNA and DNA-RNA-ATAC, respec-
tively. Both frameworks exploit a sound Bayesian framework and learn the parameters
through stochastic variational inference, and have the goal of mapping multiple omics
on the latent space of genomic alterations. Not only the performance of both meth-
ods proved robust on simulations, but the application to real-world datasets showed the



effectiveness in producing usable knowledge with translational relevance.
Last, in task (C) the efforts were directed toward the definition of a comprehensive

pipeline, with the general goal of enhancing the reproducibility and standardization of
data analysis workflow. The resulting pipeline includes multiple building blocks tailored
to the distinct omic data types, and - in its current form - includes either state-of-the-art
methods or techniques developed during tasks (A) and (B).

All in all, starting from the specific questions of the the SCCEiC project, the achieve-
ments of this work produced theoretical frameworks and tools that proved effective in
extracting knowledge from complex experimental settings and in generating of data-
driven experimental hypotheses, confirming the current necessity of multi-disciplinary
efforts in real-world scenarios.
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1
Introduction

Computer science has for a long time provided fundamental tools at the service of bio-
logical analysis. In fact, biological sciences have the goal of deriving explanations about
real-world observations and build models to make predictions [87]. Over the last decade
we have experienced a refinement of sequencing technologies, with an increase in both
the volume and the heterogeneity of the data. Indeed, a decreasing cost in sequencing
results in the increase of the volume and dimensionality of data, and the development
of new technologies results in more data types and in the generation of multimodal
measurements that extract multiple features from the same samples. At the same time,
technical limitations in sequencing technologies generate noisy measurements, and may
introduce bias in the data. For this reason, biological data analysis is tightly connected
to Machine Learning and statistical inference. In fact, there is a growing need for sound
computational approaches that enable to extract meaningful knowledge from the data
and to create reproducible pipelines for the analysis and interpretation of biological
data. By applying robust methods that model noise in the observations and enable
the construction of comprehensive workflows, it is possible to investigate multiple bio-
logical questions and formulate new experimental hypotheses in an automated fashion
(Figure 1.1).
The combination of advancements in both computer science and the design of new se-
quencing technologies has a direct application in cancer research. In fact, cancer is a
complex evolutionary process that, starting from a single cell that acquires alterations
of its (epi)genetic makeup, evolves into different heterogeneous populations that coexist,
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4 Introduction

evolve and compete over time [2] exhibiting different functional properties often referred
to as a hallmarks [191]. Thus, measuring the genomic and epigenetic traits of cancer
cells is fundamental to start unravelling such complex interplay. However, this is not
sufficient to fully explain how malignant cell populations evolve and transform, as there
are countless factors that determine cell behaviour and cell-to-cell interactions that need
to be studied [169]. All these aspects are responsible for the high degree of heterogeneity
found in tumors, both between tumors of different patients and within the same tumor
in a single patient. The latter phenomena is the so-called Intra Tumor Heterogeneity
(ITH), and is the main cause of disease relapse and of the acquisition of drug resistance
[32]. In order to shed a light into such an heterogeneous system taking into considera-
tion multiple aspects determining the behaviour of tumor cells, it is then fundamental to
study it from different points of view, performing multiple experiments and extracting
multiple features from the data.

1.1 Motivation and computational challenges

The advancements in sequencing technologies, coupled with the complexity of the data
generated, brings the need for the development of sound computational approaches to
extract knowledge and integrate different data types.
In figure Figure 1.2 we show a cartoon reporting the heterogeneity and complexity of
an experimental setting involving multiple data types: the fundamental unit is a single
patient affected by a tumor. From each patient, multiple samples can be collected
through biopsies, that can be used to grow replicas of the corresponding tumor called
Patient Derived Organoids (PDOs) [105, 103]. There can be multiple PDOs for each
patient, that may correspond to different sections of the same tumor (e.g., primary
tumor and metastatic sites [61]), and each of them can be treated with multiple drugs in
different time points (longitudinal experiments), to assess the outcome of the therapy on
the corresponding tumor [103]. Then, sequencing technologies are exploited to extract
different data types from each sample, and we refer to these data types as omics [131].
The omics involved in this work are DNA [78, 34], RNA [80] and ATAC [45, 46], and
they can be defined as multiple layers that measure different features from the data
[131]: RNA-sequencing measures gene expression levels, DNA-sequencing enables to
detect variations in the DNA sequence and ATAC-sequencing measures the amount of
open chromatin detected in each genomic region. These measurements together provide
a comprehensive description of the cancer system under different perspectives.
The experiments to extract these omics layers can be performed on multiple batches,
which can be identical replicates used to measure the same information on the same
sample multiple times [18]. Finally, each experiment can be performed at two resolutions:
single-cell or bulk [117]. On the one hand, in the former case the result is a n cells ×
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Figure 1.1: Biological and computational science are highly interconnected. In fact, the
goal of achieving a deep understanding of different biological phenomena (e.g., mech-
anisms of tumor evolution), brings the need for the development of new technologies
that generate high volume and high dimensional data to describe a biological system.
However, such data are highly heterogeneous, they are contain different data types that
need to be integrated and they are characterised by high dimensionality and high levels
of noise. Thus, it is fundamental to use sound computational strategies to process these
data from the fields of bioinformatics, machine learning and statistical inference.



6 Introduction

m features matrix containing the signal for each feature measured for each cell in the
sample. On the other hand, bulk resolution pools together the signal from an intermixed
mixture of cells (the bulk) and provides as output a vector encoding the total signal
extracted from each feature in the sample.
Given the multiple combinations of PDOs, drugs, omics layers and timepoints, and
the obvious limitation of (experimental and financial) resources in real-world scenarios,
sequencing is typically performed only on a subset of the samples, based on the research
question under investigation. To give a broad overview of the experimental settings
complexity and how different the sequencing experiments can be performed, in Figure 1.2
we use a non-transparent color to indicate the samples subsets that might actually be
sequenced.
In order to extract usable and reproducible knowledge from these complicated and typ-
ically inhomogeneous experimental settings, computer science and two of its recent de-
clinations, bioinformatics and computational biology, are vital. In particular, we need
two classes of computational methods: (A) those that analyse each sample considering
one single single omic layer, and (B) those that aim at integrating all the information
extracted from distinct layers and samples to gain a snapshot of the system [159].
With respect to (B), three types of data integration tasks can be listed: (i) horizontal,
where the information extracted from the same omic layer is integrated across multiple
samples that contain different cells, (ii) vertical, where different omics layers are measured
on the same cells and (iii) diagonal, where the goal is that of integrating different omics
layers that are extracted from different sets of cells [159]. The types of integration are
represented in Figure 1.3.
Both in the case of tasks (A) and (B), the application of sound computational approaches
to perform data analysis has multiple goals. For example, features extracted from the
data can be exploited to build classification models or to perform unsupervised clus-
tering to assess the heterogeneous composition of each sample [155]. It is possible to
build models that can describe and explain observed phenomena, for example inferring
interaction networks between multiple cellular sub-populations [170, 141, 130], defining
trajectories of differentiating cells using diffusion maps [52], or understanding which fea-
tures are distributed differently across different conditions [49, 97], to detect the ones
that are associated for example with therapy resistance. It is also possible to build mod-
els for predicting the outcome of a therapy [197] or to predict which set of mutations
accumulated during cancer progression might have critical impact in disease progression
[139].
The work of the PhD project has been mainly focused on (A) methods for analysing
single-cell RNA and DNA datasets, (B) methods to perform diagonal integration of the
three omics and (C) merging the newly developed methods into one analysis pipeline,
that is composed of multiple building blocks combining both the new algorithmic frame-
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works presented in this work and additional analyses performed using state-of-the-art
methods. The efforts led to advancements in the fields of data processing, analysis, and
integration, as they can be exploited by other researchers in the field of computational
biology to perform knowledge extraction and to formulate and investigate experimental
hypotheses.

1.2 The Single-Cell Cancer Evolution in the Clinic (SCCEiC)
project.

The PhD project was funded by the CRUCK/AIRC Accelerator Award #22790 “Single
cell cancer evolution in the clinic” led by Giovannni Tonon MD (Fondazione Centro
San Raffaele, Milan, Italy), and Prof. Andrea Sottoriva (Human Technopole, Milan).
The multidiscplinary project relies on an intermixed team including cancer biologists,
clinicians, engineers and computational scientists: while people from wet-labs generate
samples and heterogeneous data from Patient Derived Organoids (PDOs) of colorectal
cancer samples in a variety of experimental settings, dry-lab researchers design and apply
computational methods to analyse and integrate the data, so to extract usable knowledge
that can be exploited to answer biological question, and formulate new experimental
hypotheses in a possibly automated fashion.
This project is divided in 4 programs, and I worked in Programme 3: “Bioinformatics
analysis, single-cell data integration and evolutionary methods“ under the supervision
of Dr. Alex Graudenzi (University of Milan-Bicocca), Prof. Giulio Caravagna (Uni-
versity of Trieste) and Prof. Marco Antoniotti (University of Milan Bicocca, PI of the
Programme). The program has the overarching goal of delivering the bioinformatics
analysis framework to integrate the single-cell genomic, epigenomic and transcriptomic
data, which are generated by the institutes responsible for culturing and sequencing
tumor cells.
Within the SCCEiC project, specific questions have emerged over the years. Namely,
how can computational methods allow to exploit single-cell data generated from patient-
derived organoids to explain and predict cancer evolution? Given the multiple layers
extracted from each sample, what computational methods do we need to perform an
in-depth analysis of each data type, and how can we integrate them to map the infor-
mation across multiple samples? Finally, how can we merge the different methods into
a comprehensive analysis pipeline? Most of the results of the methods and pipelines
presented in this work were conceived to address these questions, and were applied on
data from PDOs generated within the project, but given the generality and relevance of
the topics, our approaches constitute also a contribution to the field of computational
sciences.
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Figure 1.2: Typical complexity of a setting with single-cell sequencing experiments in
cancer research. Multiple PDOs can be created from samples extracted from different
patients. Each PDO can be treated with different drugs for multiple timepoints, and
different sequencing technologies are exploited to extract multiple omic data types from
the samples. In each experimental setting, not all combinations are measured, and we
use non-transparent shapes to indicate those samples that undergo sequencing and need
to be analysed.
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1.3 Main achievements
This work is focused on the development and application of computational methods for
the analysis (task A) and integration (task B) of single-cell multi omics data, and the
design of a pipeline used merge the multiple building blocks to deliver a comprehensive
analysis (task C). The main achievements, grouped according to the corresponding task
are presented in the following sections.

1.3.1 Task A: Algorithmic methods for single omics data types

Benchmarking of methods to perform denoising and imputation of single-cell
RNA-sequencing data. With the growing availability of single-cell RNA sequencing
data that contain high levels of noise and missing data, multiple methods have been
proposed in the literature to perform denoising or impute missing observations. We
present a bechmarking of multiple state-of-the-art methods, were we compared their
performance using a number of metrics computed on both synthetic and real datatsets.

• This work is presented in Section 3.1.

• Collaborators: Data and Computational Biology Lab (DCB Lab). University of
Milano Bicocca, Milan, Italy.

• Article: *Patruno, L., *Maspero, D., Craighero, F., Angaroni, F., Antoniotti,
M., and Graudenzi, A. A review of computational strategies for denoising and
imputation of single-cell transcriptomic. Briefings in Bioinformatics 22.4 (Oct.
2020). doi:10.1093/bib/bbaa222. *equal contribution.

• Oral presentation: June 2020, monthly meeting of the Accelerator Award Project
#22790.

• Code: https://github.com/BIMIB-DISCo/review-scRNA-seq-DENOISING

New algorithm for improving the reconstruction of clonal trees. We present
a new algorithm that aims at improving the solution returned by methods for recon-
structing clonal trees from single-cell mutational profiles. Our method summarises the
solutions explored during inference and returns one consensus tree that summarises such
solutions.

• This work is presented in Section 3.2.1.

• Article: Maspero, D., Angaroni, F., Patruno, L., Ramazzotti, D., Posada, D.,
Antoniotti, M., and Graudenzi, A. Exploring the solution space of cancer evolution
inference frameworks for single-cell sequencing data. Accepted for publication in

https://doi.org/10.1093/bib/bbaa222
https://github.com/BIMIB-DISCo/review-scRNA-seq-DENOISING
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the conference proceedings of the 16th International Workshop on Artificial Life
and Evolutionary Computation (WIVACE 2022).

• Oral presentation: 16th International Workshop on Artificial Life and Evolu-
tionary Computation (WIVACE 2022), 14-16 September 2022, Gaeta, Italy.

• Collaborators: DCB Lab, University of Milan-Bicocca, Milan, Italy. Department
of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy. Posada Lab,
University of Vigo in Galicia, Spain.

1.3.2 Task B: Computational methods for omics data integration

CONGAS We present a method to detect clones defined based on Copy Number
Alterations (CNAs), using single-cell RNA sequencing (scRNA-seq) data and bulk DNA
sequencing to obtain a reliable estimation of copy number segments.

• This work is presented in Section 4.1.

• Article: Milite, S., Bergamin, R., Patruno, L., Calonaci, N., and Caravagna, G. A
Bayesian method to cluster single-cell RNA sequencing data using copy number al-
terations. Bioinformatics 38.9 (May 2022). doi:10.1093/bioinformatics/btac143.

• Collaborators: Cancer Data Science Lab (CDS Lab), University of Trieste, Tri-
este, Italy. DCB Lab, University of Milan-Bicocca, Milan, Italy.

• Code: https://github.com/caravagnalab/congas and https://github.com/
caravagnalab/rcongas.

CONGAS+ We present an extension of CONGAS, namely CONGAS+, that is a
method to detect clones defined based on Copy Number Alterations (CNAs), from
scRNA-seq data and single-cell ATAC sequencing (scATAC-seq), using bulk DNA se-
quencing to obtain a reliable estimation of copy number segments and set priors for the
inference.

• This work is presented in Section 4.2.

• Article: *Patruno, L., *Milite, S., Bergamin, R., Antoniotti, M., Graudenzi, A.,
and Caravagna, G. A Bayesian method to detect aneuploidy from single-cell RNA
and ATAC sequencing. In preparation.

• Collaborators: CDS Lab, University of Trieste, Trieste, Italy. DCB Lab, Uni-
versity of Milan-Bicocca, Milan, Italy.

• Code: https://github.com/caravagnalab/CONGASp. Interface currently under
development, available at https://github.com/caravagnalab/rcongas [branch
categorical].

https://doi.org/10.1093/bioinformatics/btac143
https://github.com/caravagnalab/congas
https://github.com/caravagnalab/rcongas
https://github.com/caravagnalab/rcongas
https://github.com/caravagnalab/CONGASp
https://github.com/caravagnalab/rcongas
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1.3.3 Task C: A comprehensive pipeline for reproducible single-cell
analyses

The SIgMOIDAL pipeline We present the design of SIgMOIDAL, a pipeline that
combines state-of-the-art tools and new methods presented in this work to provide a
comprehensive analysis of single-cell datasets. We also present the application of this
pipeline to two case studies.

• This work is presented in Chapter 5.

• Collaborators: CDS Lab, University of Trieste, Trieste, Italy. DCB Lab, Uni-
versity of Milan-Bicocca, Milan, Italy.

• Oral presentation: this work was presented in during the annual External Ad-
visory Board meetings for the Accelerator Award project #22790.

• Article: in preparation.

• Collaborators: DCB Lab, University of Milan-Bicocca, Milan, Italy. CDS Lab,
Trieste, Italy. Sottoriva Lab, Institute of Cancer Research (ICR), London and
Human Technopole (HT), Milan, Italy. Gastrointestinal Cancer Biology and Ge-
nomics Team, ICR, London. Functional Genomics of Cancer Unit, San Raffaele
Hospital, Milan, Italy.

• Code: currently developing a Nextflow pipeline for preprocessing and an R
ShinyApp for integration and downstream analyses.

1.3.4 Additional works

During these three years I collaborated on three additional projects in the fields of
computational biology and biomedical AI, that are listed in this section and will be
presented in the appendix. These projects were carried out with both the DCB Lab at
University of Milano Bicocca, and external collaborators.

Implementation of a Machine Learning model to predict flux variations We
present a Machine Learning model to predict flux variations in metabolic networks using
variations in metabolite abundances as input.

• This work is presented in the Appendix.

• Collaborators: DCB Lab, University of Trieste, Trieste, Italy. Department of
Biotechnology and Biosciences (BtBs), University of Milan-Bicocca, Milan, Italy.
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• Article: *Patruno, L., *Craighero, F., Maspero, D., Angaroni, F., Graudenzi,
A., and Damiani, C. Combining multi-target regression deep neural networks and
kinetic modeling to predict relative fluxes in reaction systems. Information and
Computation 281 (Dec. 2021). doi:10.1016/j.ic.2021.104798. Code: https:
//github.com/BIMIB-DISCo/FLUX-PREDICT.

EvoTraceR We present EvoTraceR, an R package that detects and analyses a set
of Amplicon Sequence Variants from the the result of a new CRISPR/Cas9 barcode
experimental kit.

• This work is presented in the Appendix.

• Collaborators: Nowak Lab, Weill Cornell Medicine, New York, USA. DCB Lab,
University of Milan-Bicocca. Department of Medicine and Surgery, University of
Milan-Bicocca, Monza, Italy.

• Article: manuscript in preparation.

• Visiting at Nowak Lab, Weill Cornell Medicine, New York, USA. From Dec. 2021
to May 2022.

• Code: https://github.com/Nowak-Lab/EvoTraceR_pipeline.

Implementation of a closed-loop optimization framework for personalised
cancer therapy The growing availability of clinical data from cancer patients makes
it possible to extract features that can be used to build methods for optimized drug
protocols. Thus, in this context we present a framework for the optimization of the
Imatinib scheduling in Chronic Myeloid Leukemia patients.

• This work is presented in the Appendix.

• Collaborators: DCB Lab, University of Milan Italy, Trieste, Italy. Department of
Biotechnology and Biosciences (BtBs), University of Milan-Bicocca, Milan, Italy.

• Article: *Angaroni, F., *Pennati, M., *Patruno, L., *Maspero, D., Antoniotti,
M., and Graudenzi, A. A closed-loop optimization framework for personalized
cancer therapy design. 2020 IEEE Conference on Computational Intel-
ligence in Bioinformatics and Computational Biology (CIBCB) IEEE,
(Dec. 2020). doi:10.1109/CIBCB48159.2020.9277647.

• Code: https://github.com/BIMIB-DISCo/closedLoop-CT4TD.

https://doi.org/10.1016/j.ic.2021.104798
https://github.com/BIMIB-DISCo/FLUX-PREDICT
https://github.com/BIMIB-DISCo/FLUX-PREDICT
https://github.com/Nowak-Lab/EvoTraceR_pipeline
https://doi.org/10.1109/CIBCB48159.2020.9277647
https://github.com/BIMIB-DISCo/closedLoop-CT4TD
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1.4 Structure of the thesis

Considering the structure presented in the previous sections, task A and B are related
to the development of new methods that need then to be combined into a comprehensive
analysis framework. This, consistent with this distinction,in this thesis, the work is pre-
sented with the following structure: first, we present methods developed for single-omics
(task A), then we describe two new methods for data integration (task B) and finally, we
present a comprehensive pipeline (task C) that combines both the methods presented
above and additional building blocks implemented using state-of-the-art methods, which
is presented in Figure 1.4. Notice that color red, yellow and green, respectively will be
consistently associated to RNA, DNA and ATAC data types throughout the text.
The structure of this work is the following:

• Chapter 2 contains the background, where we present the biological data that is
exploited in this work and the current state-of-the-art approaches to analyse and
extract knowledge from the different biological omics-layers.

• Chapter 3 presents methods developed for single omics layers, divided according
to the data type employed. In detail, in Section 3.1 is focused on single-cell RNA
sequencing (scRNA-seq)data, and we present a benchmarking of methods to per-
form denoising and imputation of scRNA-seq expression profiles, and Section 3.2.1
is focused on single-cell DNA sequencing (scDNA-seq), and we present a method
for improving the reconstruction of clonal trees, that returns one consensus tree
that summarises multiple solutions.

• Chapter 4 is focused on methods developed to integrate multi-omics data. In de-
tail, Section 4.1 presents CONGAS, a method that integrates bulk DNA sequencing
data and scRNA-seq data to detect copy number events from gene expression pro-
files. Section 4.2 presents CONGAS+, a method designed to detect Copy Number
events integrating single-cell ATAC sequencing (scATAC-seq), scRNA-seq and bulk
bulk DNA sequencing data.

• Chapter 5 presents the SIgMOIDAL pipeline to perform analysis and integration
of single-cell multi-omics data, and presents its application to two real-world case
studies.

• Finally, the Section 6.2 contains three additional works that were carried out over
the past three years. We present (i) a work on the development of a Machine
Learning method to predict flux variations in metabolic networks, (ii) a package
to detect Amplicon Sequence Variants in a CRISPR/Cas9 barcode kit and (iii) a
closed-loop optimization framework for personalised cancer therapy design.
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Figure 1.4: Complete overview on the pipeline SIgMOIDAL presented in this work.
Three omics layers are exploited: RNA, DNA and ATAC. Each omic needs to be pre-
processed to remove low quality observations. Then, scRNA-seq can optionally undergo
a denoising step, and then specific analyses are applied to extract knowledge to charac-
terise each sample. DNA sequencing data can be exploited to reconstruct clonal trees
that describe tumor evolution. When RNA and DNA sequencing are performed on two
independent subsets of cells from the same sample, they can be integrated with both
CONGAS or clonealign [111]. Next, in case RNA, DNA and ATAC are sequenced, CON-
GAS+ can be exploited to perform data integration. Finally, downstream analyses such
as differential expression can be applied, with the goal of identifying putative therapeutic
targets.
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Given that in this thesis I will discuss works that are either part of an article, and
therefore a contribution of multiple authors, or the result of projects involving also other
researchers, throughout this thesis I will use “we”, instead of “I” to discuss the efforts
and contributions.



2
Background

The work presented in this thesis involves multiple data types at the resolution of both
bulk and single-cell. Thus, in this Chapter we give an overview about the data involved
in this work: we present the data generation process, we highlight differences between
bulk and single-cell resolution and we provide the biological background describing the
multiple data types. Finally, we give an overview of state-of-the-art methods used to
perform analyses and knowledge extraction from each data type.

2.1 Biological background

2.1.1 Next Generation Sequencing data

The growth in volume and resolution of the data has been made possible by the advent
of Next Generation Sequencing (NGS) technologies [99], that revolutionised the data
generation process, by offering dramatic improvements with respect to the traditional
Sanger sequencing technologies [43]. In fact, while the first human genome required over
a decade to be sequenced with extremely high costs [30], today it is possible to sequence
the genome of an individual in only a few hours, with limited costs. Since the advent of
NGS in the beginning of the 2000s, there has been a continuous improvement of costs
over the years, that has brought many advantages, such as the increase in sequencing
resolution to the single-cell level and the increase in the type of information that can
be measured from a sample. In fact, NGS technologies can be applied to measure data
from different biological layers, such as genomic, epigenomic (ChIP-seq or ATAC-seq [20,

17
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45]) and transcriptomic (RNA-seq [22]). Such technologies offer a great opportunity to
perform in depth investigation of complex phenomena such as cancer, and thus they are
extensively employed to extract data from biological samples.

2.1.2 Data generation: samples

Sequencing can be performed over a number of different biological samples, that can
correspond to either sections of tissues extracted with a biopsy from a patient, or more
sophisticated Patient Derived Models. The latter indicate models employed in the wet
lab to grow tumor cells extracted from patients and to exploit the obtained sampled to
test multiple drugs and investigate complex experimental hypotheses. There are three
types of PDMs: Patient Derived Organoids, Patient Derived Xenografts and Patient
Derived Cells. A review of such models is outside the scope of this work, and readers
can refer to [192] for a thorough discussion.

2.1.3 Data resolution: bulk vs single-cell

Sequencing experiments can be carried out at two resolutions: bulk and single-cell.
On the one hand, the former takes a set of cells and pools together their information,
producing a signal which indicates the average behaviour of cells. On the other hand,
the latter isolates each single cell, giving as output a specific signal for every cell. Thus,
single-cell technologies can be exploited to study heterogeneous populations, enabling
the identification of small sub-populations whose signal would be hidden in the output
of a bulk experiment. However, when performing an experiment to analyse a biological
sample such as a tissue, there is a trade-off between bulk and single-cell that needs to be
taken into account. The former are older and thus they have been employed for a longer
period of time and they are more extensively used, also due to the lower cost needed for a
round of sequencing. Since they take a tissue and pool together all the cells, the amount
of material that gets sequenced and is used to compute the output signal is greater
than that employed by singe-cell technologies, where the starting material consists of
the content of each isolated single-cell. Thus, bulk experiments are characterized by
lower amounts of noise and their output is more reliable with respect to single-cell
measurements where, due to technical problems, the output signal is affected by higher
levels of noise and missing observations. However, if one is interested in studying the
heterogeneity of a biological sample, single-cell technologies provide a signal which has
higher resolution. Such experiments are relatively new and are evolving very fast, in
fact while in 2011 it was possible to analyse around 100 cells per experiment [26], it
is now possible to isolate up to 1 million cells. In addition to increasing the amount
of sequenced cells, new protocols are currently being developed to increase the type of
information we can extract from cells: while until approximately 2018, most of the efforts
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in single-cell sequencing had been devoted to RNA-sequencing for the analysis of gene
expression [112], in 2018 a new protocol that enabled scaling open chromatin sequencing
(ATAC-seq) to thousands of cells was published [88], and in 2021 10x Genomics released a
new technique that enables measuring both gene expression and chromatin accessibility
signals from the same single cells [160]. The next paragraph will describe the most
common data types we can measure, both with bulk and with single-cell technologies.

2.1.4 Multi-omics data types

The heterogeneous data that can be measured from a sample are known as omics-layers,
and correspond to the multiple factors that determine the behaviour of a set of cells. In
brief, the relationship between these layers can be described through the central dogma
of molecular biology, which states that the information flows from DNA (genome) to
RNA (transcriptome) to protein [1]. The DNA is a sequence of nucleic acids, and it
can be thought as an ensemble of genes, that are portions of the genome that encode
for specific products of the cell. In a healthy organism, the same sequence of DNA
is present in each cell, which constitutes the genotype of the organism. The specific
behaviour of different cell-types is then determined by additional regulatory elements
that govern the synthesis of proteins. We can describe the protein synthesis as a process
that, starting from a portion of the DNA corresponding to a specific gene, translates it
into mRNA molecules (transcriptome) that are then used to produce the corresponding
protein. There is thus a hierarchical structure, which is described in detail in [12], and
in the next paragraphs we will give a simplified explanation of the omics-layers that play
a role in this process, to provide an overview of the heterogeneous type of information
that can be extracted from a sample.

2.1.4.1 Data type I: DNA-sequencing data

The genome can be represented as a sequence of 6 billion characters {xi}, where i =
1, . . . , 69, over an alphabet Σ = {A, T, G, C}. This sequence is grouped into 23 pairs
of chromosomes (for a total of 46 chromosomes) that constitute the genotype of an
individual. In 2001 the Human Genome Project produced a draft of the human DNA
reference sequence [11], which has been improved over the years [74, 195].

Point mutations Given the reference sequence, every individual is characterized by
a set of mutations that affect single positions of the DNA sequence. These alterations
are known as single-nucleotide polymorphism (SNPs) or germline variants and they are
found in the genomic sequence of all cells. We recall that the human species has 23
chromosomes, and the genomic sequence in each cell has two copies for each of these
chromosome. Thus, each SNP can either be homozygous or heterozygous. The former
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refers to the case where both copies of the chromosome are characterised by an SNP
with respect to the reference, while the latter refers to a state in which one copy has the
same nucleotide as the reference sequence, and the second copy presents an SNP.
On top of this variations, tumor cell populations are characterized by additional single-
nucleotide mutations that accumulate during disease progression, known as Single Nu-
cleotide Variation (SNV). These mutations are somatic, as opposed to the germline SNPs,
they are not inherited and emerge after conception, due to random errors or mutational
processes.
Both SNPs and SNVs are the simplest type of alteration, as they affect only one nu-
cleotide in the genomic sequence. There are also more complex types of alterations,
such as insertions and deletions of a short sequence of nucleotides, whose length ranges
between 1 to 10 000 bp [24] (also known as indels), and more complex Structural Variant
(SV), that correspond to complex rearrangements in the genomic sequence, such as in-
versions and translocation of genomic regions, as well as deletions and duplications. The
latter two are also defined as Copy Number Alterations (CNAs), and will be discussed
further in the next paragraph [47].

Cancer can be seen as an evolutionary process that starts from one cell harboring
a mutation and then grows into different subpopulations [56] showing different patterns
of mutations. A subset of the mutations accumulated during disease progression confer
selective advantages to cells, and thus in order to disentangle cancer complexity it is of
great interest to understand which mutations accumulated in an individual.

Copy Number Alterations In addition to SNVs, another source of variation in
cancer cells are Copy Number Alterations (CNAs): while healthy cells have two copies
of each chromosome (that we can call alleles), cancer cells may be affected by gains or
losses of one or more copies of specific DNA segments. These CNAs are known to play
a key role in disease progression, as they are responsible for the activation of genes that
promote tumor progression and the suppression of genes that would inhibit the growth
of cancer cells [33]. Since these alterations affect a large portion of the genome and vary
across different cancer types [33, 168], it is of great importance to analyse their presence,
and to understand whether there are sub-populations of the same tumor sample that
are characterized by different CNA events.

DNA sequencing technologies Two technologies that enable measuring the DNA
sequence of cells found in a biological samples and enable the study of SNPs, SNVs and
CNAs are Whole Genome Sequencing (WGS) and Whole Exome Sequencing (WES).
While the former gives information about the full genomic sequence, the latter sequences
only the exons, that are portions of the genome that are actually used to produce pro-
teins. The most widely used methods measure the genome at the bulk level, and more
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recently DNA sequencing has been extended to the single-cell level [163, 78, 119]. A
detailed overview of single-cell methods is presented in [59].

2.1.4.2 Data type II: ATAC-sequencing data

The DNA in each cell is packaged in a structure called chromatin, whose organization
determines which genes are active in each cell and can be transcribed. In fact, each
portion of the chromatin can be either highly condensed (heterochromatin) or more ac-
cessible (euchromatin) [12]: genes found in euchromatin are accessible to transcriptional
machinery and thus are active in the cell, while biologically inactive genes are isolated
in heterochromatin [45]. This presence of both open and compact chromatin determines
a pattern of heterochromatin and euchromatin, which is also heritable as it is main-
tained after cell division [12] and has a direct impact on gene expression. Thus, when
studying heterogeneous populations of cells and complex diseases like cancer, it is of
key importance to study which are the biologically active portions of the DNA. ATAC
sequencing is a technique for measuring signal in the euchromatin, in 2015 [45] presented
a method to perform ATAC sequencing at the bulk resolution, and then a new version
was presented to perform the same assay at the single-cell level [46].
The output of a sequencing experiment are FASTQ files containing reads, i.e., frag-
ments corresponding to the genomic sequence of open chromatin that were read during
sequencing. Thus, higher reads that map to a specific genomic region correspond to
more open chromatin detected. The obtained reads are aligned to a reference genome,
in order to map each of them to their corresponding coordinates, and the final output is
an integer count matrix cells×regions, (or a vector in vase of a bulk experiment) where
the counts in the matrix correspond to the amount of open chromatin observed in that
region. Based on the pipeline used to process the output of a scATAC-seq experiment,
features can correspond to either peaks [73], that are accessible regions of the genome
[156], or fixed length genomic bins [164].

2.1.4.3 Data type III: RNA-sequencing data

So far we have described the DNA as an ensemble of genes that can be transcribed
when they are located in the open portion of the chromatin. When the chromatin is
open, the next step in the hierarchy is the actual production of the proteins that are
active in the cell and thus determine its behaviour. This process can be divided into two
main steps: (i) transcription, where the gene sequence is copied from the DNA into a
so-called mRNA transcript and (ii) translation of the transcript into the corresponding
protein (translation). The quantification of each mRNA transcript reflects how much the
corresponding gene is active in the population of cells under study, and thus it plays an
important role in the study of heterogeneous populations and a large branch of research
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is devoted to studying differences between different cell types in term of gene expression
profiles [68]. Bulk RNA-sequencing, that is the assay for quantifying the presence of each
transcript, has been widely and extensively used [93]. The first single-cell counterpart
was published in 2009 [21], when the cell isolation needed to be performed by hand, it
scaled from hundreds of cells in 2011 [26] and since then the power of sequencing has
increased to more than thousands of cells in each experiment [80].
The output of an RNA-seq experiments are FATSQ files containing reads, that are
fragments of mRNA transcript read through sequencing. Once reads are mapped to their
corresponding genomic coordinates, the final output of an RNA sequencing experiments
are read count matrices cells × genes (or a vector in case of a bulk experiment), where
a higher number of reads corresponds to higher gene expression levels. In case of single-
cell sequencing, the output matrices are high dimensional, with a number of feature of
the order of 104. However such matrices are highly sparse due to technical sequencing
errors, and a discussion about noise sources is presented in Section 3.1.

2.2 Computational background

2.2.1 Methods for DNA-sequencing data

Genomic mutations for tumor evolution In order to reconstruct evolution models
describing the history of accumulation of SNVs during disease progression, it is necessary
to first identify which clones (genetically distinct cancer cells subpopulations) are present
in a tumor sample. There are multiple methods in the state of the art that use bulk
DNA data to estimate the frequency and genotype (set of mutations that characterize
each clone) of the different clones. In fact, from such data it is possible to extract the
frequency of each mutation in the sample, also known Variant Allele Frequency (VAF),
and there are different methods that use this signal to identify clones [41, 138]. Once
clones are detected, it is possible to reconstruct the tree that describes the evolutionary
history of the tumor [138], inferring ancestral relationships between clones. Methods
that reconstruct the evolutionary history use a binary matrix as input, where rows
correspond to clones and columns represent mutations, and a 1 indicates the presence
of the mutation in the corresponding clone, and they reconstruct trees that describe the
order of accumulation of mutations.

In addition to using bulk data, given the advancements in single-cell sequencing,
there are different computational strategies in the state-of-the-art that leverage single-
cell data for reconstructing models of cancer evolution. In principle, single-cell DNA
sequencing is a powerful technology that allows to correctly assign mutations to each
single-cell. However, there are still many technological limitations that introduce high
rates of false positives, false negatives and missing values in the observed data [59]. For
this reason, there are methods in the literature that are designed to model noise in
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single-cell data to derive robust and consistent models of cancer evolution [63, 123, 161,
196]. For instance, LACE [196] aims at finding the maximum likelihood longitudinal
evolution model using single-cell mutation profiles.

Copy Number Alterations The second type of DNA alteration that can be mea-
sured from DNA sequencing experiments are CNAs. We can define three types of CNAs:
amplifications, where a portion of a chromosome is duplicated one or more times, yield-
ing to a copy number value of 3 or higher, loss of heterozygosity (LOH), where a portion
of a chromosome loses one of the two copies and copy-neutral LOH, where a chromosome
loses one of the two copies, and the copy that is left is affected by an amplification. The
third case is referred to as copy-neutral LOH because the affected portion of the genome
is still characterized by a diploid copy number state, but it actually underwent two
CNAs. In order to measure CNAs from the output of a DNA sequencing experiments,
two quantities are used: the depth ratio and the B-Allelic Frequency (BAF). The former
is the ratio between the number of reads that map to a given genomic position in the tu-
mor sample and the reads that map to the same position in a normal sample taken from
the same patient, which is a proxy for CNAs, as deviations from 1 may be due to CNAs.
BAF is calculated in the following way: first, the heterozygous SNPs are identified from
a normal sample. Then, for each genomic position corresponding to an SNP, the BAF
is computed as the fraction of reads carrying the mutated allele. In fact, if we define as
A the nucleotide found on the reference sequence, and B the nucleotide corresponding
to the SNP, in normal (diploid) cells, the heterozygous SNPs have a configuration AB
since one copy of the corresponding genomic position carries the reference nucleotide
(A) the second copies carries the SNP (B), and thus by definition BAF = 1/2 = 0.5.
When a portion of the genome undergoes a CNA event, this reflects on the BAF. For
example, a copy number of 3 indicates that one of the two alleles, i.e., either A or B, have
been duplicated, and thus two configurations are possible: AAB or BBA. The former
configuration has BAF = 1/3, while the latter has BAF = 2/3. Thus, this quantity is
also a proxy for the copy number state.
Finally, the copy number state of each region in the genome can be computed at two
resolutions: (i) total copy number and (ii) allele-specific copy number. The former gives
the total number of copies without distinguishing between which of the two alleles have
undergone the CNA, and the latter gives also the information about which one of the
two copies was affected by the CNA, giving the copy number value for each of the
two alleles. Thus, a total copy number = 3 in a genomic region can correspond to the
following allele-specific configurations (1, 2) and (2, 1). Over the years, different methods
have been proposed to compute CNAs from tumor samples using the two signals from
bulk DNA sequencing data [48, 25]. Different methods have been developed for single-
cell data [78, 119], that use the number of reads mapped to each genomic bin to infer
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total CNAs. For the purpose of inferring allele-specific copy number values from single-
cell data, the only method in the literature is CHISEL [184] using both read counts and
BAF signal. A detailed review for CNA detection in single-cell data is presented in [148].
In general, CNA detection methods are used to infer a segmentation of the genome, i.e.,
the contiguous genomic regions that are affected by the same CNA, and to infer the
actual copy number value (either total or allele-specific) of each segment.

2.2.2 Methods for ATAC-sequencing data

Over the last decade, much effort has been dedicated to the advancements of technologies
that enable measuring the regions of open chromatin, both at the single-cell and bulk
level [45, 88].
With respect to scRNA-seq, where there are multiple copies of mRNA transcripts that
are captured and sequenced, single-cell ATAC sequencing (scATAC-seq) measures the
open portions of the DNA, which is present in 2 copies in healthy cells. Thus, the starting
material is lower and the resulting matrices are highly sparse [112], and different methods
have been proposed in the literature to analyse this data and handle the sparsity. For
example, some methods binarize the count matrix to reduce bias generated by technical
sequencing problems [164], while other methods compute the z-score of each feature [86].
Once the data is processed, downstream analyses such as clustering are applied to detect
different subpopulations. As for scRNA-seq data, one of the most extensively applied
methods which has been shown to perform better than other clustering approaches like
k-means and hierarchical clustering[112], is Louvain [127].
A detailed review of computational pipelines for scATAC-seq analysis is presented in
[112].

2.2.3 Methods for RNA-sequencing data

The increasing availability of single-cell RNA sequencing data has led to the development
of a plethora of computational methods that analyse the gene expression profiles to
extract meaningful knowledge from the samples. The need for ad-hoc methods is driven
by the high dimensionality of the data and the high levels of noise that are present in the
expression profiles. In this regard, the first steps in the analysis of scRNA-seq data are
quality control and pre-processing, that are needed to remove low-quality observations
that may bias the conclusions driven from single-cell analyses. A detail overview over
the best practices for the analyses of samples is presented in [120].
Over the last years different suites have been developed in order to make analyses repro-
ducible and provide a standard for the single-cell community. Two of the most popular
toolkits for R and Python are Seurat [167], and SCANPY [104] respectively, which can be
used for quality control and downstream analyses.
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Among the different analyses that can be performed, clustering and Differential Gene
Expression enable respectively the detection and characterization of different subpop-
ulations of cells present in one or multiple biological samples, that can correspond for
example to a patient derived organoid, a cell culture or a biopsy taken from a tissue in
a patient. Two of the most frequently applied methods for clustering of single-cell data
are Louvain [14] and Leiden [127], that are community detection algorithms designed
for graph embedded data that have have been shown to outperform other clustering
methods on single-cell data in terms of scalability, robustness and accuracy [90] and
have been extensively applied [115]. Each population identified through clustering can
be characterized in terms of genes that exhibit a significant change in their expression
levels, with the goal of associating a cell type to each cluster exploiting specific expres-
sion signatures [173, 108], or to identify which cellular processes are deregulated when
studying a disease. There are multiple computational methods in the state-of-the-art
that can be exploited to perform differential expression analysis, which can be divided
in three groups: there are standard statistical tests such as the t-test or Wilcoxon test,
methods designed for bulk sequencing data that can also be applied to single-cell datasets
by computing pseudo-bulk samples and methods designed specifically for single-cell data
[100]. It has been shown that methods designed for single-cell data provide poor per-
formance compared to standard tests and bulk methods [100, 180], and for this reason
the two latter classes of tools are widely applied on single-cell RNA sequencing datasets
and they are implemented in both Seurat and Scanpy.

In addition to clustering and differential gene expression, new computational methods
have been developed to extract a temporal ordering of the differentiation state of the
cells [125], and to predict the future state of individual cells by exploiting the ratio of
abundance between spliced and unspliced mRNA in each cell [94, 137]. Despite the great
advancements achieved in the last years, a high number of challenges are still open and
there is the need for new computational strategies to improve the reliability of existing
analyses and pave the way for new ones [145].

2.2.4 Methods for data integration

In addition to perform single-omic analysis, in order to obtain a comprehensive de-
scription of the system under investigation it is important to integrate the information
extracted from multiple omics layers [159]. As described in Section 1.1, and depicted in
Figure 1.3, there are two types of data integration tasks involving multiple omics layers.
On the one hand, vertical integration consists in exploiting multi-omics technologies
such as G&T-seq [54] or GoT , and 10x multiome [160] which extract the genome-
transcriptome and transcriptome-chromatin accessibility respectively from the same set
of cells. On the other hand, diagonal integration refers to a setting where the multi-
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ple omics layers are extracted from distinct subsets of cells, and therefore there is no
straightforward method to match the two measurements. Thus, in order to characterize
the same population of cells using multiple modalities, there is the need to develop com-
putational methods to integrate the signals extracted from the different omics. Some
methods like MAESTRO [155], integrate scRNA and scATAC datasets by first detecting
subpopulations independently on the two assays, and then using the detected popula-
tions to match clusters of cells, and others aim at reconstructing an integrated latent
space [77].
In the context of cancer research, performing data integration is fundamental in order
to dissect the heterogeneity of this disease and formulate hypothesis regarding complex
mechanisms responsible for drug resistance. In fact, as it is briefly described in Sec-
tion 2.1.4.1, one of the main goals of performing DNA sequencing on a tumor sample
is that of identifying which clones are present in a samples, where for simplicity we
define a clone as a set of genetically distinct cells (please refer to Section 3.2.1 for a
more detailed discussion on the definition of a clone). However, once genetic clones have
been identified from the output of DNA-sequencing, it is not possible to characterize
them by means of their gene expression, chromatin accessibility patterns or additional
biological information. For this purpose, over the years different computational methods
have been proposed with the goal of detecting CNAs from scRNA or scATAC sequenc-
ing data [165, 89, 38, 150, 174] and to integrate single-cell DNA with gene expression or
chromatin accessibility measurements [183, 111].
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Task A: Algorithmic methods for single omics

data types

In this chapter we describe our contributions for task A, that is the design of computa-
tional strategies to analyse single omics data types.
We first present an extensive comparative assessment of multiple state-of-the-art meth-
ods for denoising and imputation methods of single-cell RNA sequencing, which enabled
us to identify which methods can be applied to improve data quality and the quality of
the results derived from downstream analyses.
Second, we introduce our contribution in the field of clonal evolution from single-cell
mutation profiles, by proposing a strategy to visualise the solutions explored during
a Markov chain Monte Carlo (MCMC) based method for the reconstruction of clonal
tres, and by proposing a new algorithm, the COB-tree algorithm, to summarise multiple
solutions explored during the search and return one consensus solution.

3.1 [RNA] Benchmarking of denoising methods for scRNA-seq
data

3.1.1 Motivation

RNA-sequencing was first introduced in 2008 [93, 23], and has been vastly employed in
the study of biological samples. In fact, by measuring the expression level of every gene
in the sample, it also enables the identification of differentially expressed genes across
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different samples. Over the last decade, this protocol has been refined in order to re-
duce the minimum amount of input material required for sequencing. This refinement,
together with the advancements in microfluidics technologies that enable the automatic
isolation of cells, made it possible to increase the RNA-seq resolution to the single-cell
level: in 2009, the first single-cell RNA-seq experiment was published, where cells re-
quired to be manually isolated. Over the following years, new microfluidics technologies
were developed that enabled the automatic isolation of cells, and this allowed scaling to
thousands of single-cells sequenced in one run. Both the sensitivity and precision in the
quantification have been improved over the last decade [134], and this has allowed for
powerful analysis to be performed over biological samples. In fact, scRNA-seq experi-
ments output a matrix, that reports the expression level of each gene in each single cell.
This type of data allows to study heterogeneous samples, making it possible for example
to characterize different cell-types present in each sample [37, 98], and it is paving the
way towards the reconstruction of a Human Cell Atlas (HCA) [72] that contain informa-
tion such as the function and the biological characteristics of multiple cell types in the
human body. Such data play an important role in cancer research, where the detection
of deregulated genes in tumor cells has been studied for a long time [7]. For example, by
identifying gene expression differences between normal and tumor samples it is possible
to detect which are the cellular processes that exhibit an anomalous behaviour and confer
cancer cells the ability to proliferate more and expand over time. Exploiting single-cell
data in cancer research has provided great insights into multiple aspects, such as tumor
heterogeneity [39, 76] and the composition of the tumor microenvironment [85]. Also,
through single-cell data, if one is able to separate single-cell expression profiles of cells
sensitive to a therapy and cells that exhibit drug resistance, through differential gene
expression analysis it is possible to identify putative genes or pathways that are deregu-
lated in resistant cells. Single-cell gene expression is thus a powerful technology, able to
provide insights into heterogeneous populations. However, given the low amount of data
that is sequenced (mRNA transcripts from one single-cell versus transcripts extracted a
pool of thousands of cells in bulk sequencing), they suffer from high levels of technical
noise, due to problems during sequencing, which will be discussed further in the next
paragraphs.

Data generation There are two main categories in which Single-cell RNA sequenc-
ing protocols can be divided: (i) full-length (e.g., Smarter and Smartseq2) [40], and
(ii) UMI-based (e.g., Drop-seq and 10x Genomics Chromium) protocols [55, 80].. In or-
der to explain the steps required for preprocessing single-cell RNA-seq data, and clarify
the motivations related to the presence of noise in this type of data, the main steps
required to perform a scRNA-seq experiment are presented below:

• Cell dissociation. Starting from a biological sample, such as cancer biopsies,
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patient derived organoids or blood samples, a suspension of single cells is generated.
This is a critical step in the experiment, as cells may be suffer from stress or
damages that then reflect on their expression profiles. In the next section, some
quality control metrics are presented that aim at detecting this highly stressed or
damaged cells to remove them from the sample.

• Cell isolation. This step is specific to the protocol used for sequencing: usually,
UMI-based sequencing protocols use droplet-based isolation (with some exceptions
such as [60]), while full-length protocols exploit plate-based techniques. Droplet-
based isolation methods create droplets that will contain one single cell, and they
are able to isolate thousands of cells. Plate-based methods instead sort cells cell
into a small plate, and they are able to isolate a lower number of cells that varies
based on the dimensionality of the plate employed. Please refer to [101] for more
details regarding cell isolation.

• Library preparation. in this step, the mRNA transcripts are extracted from
each cell, broken into fragments, converted to cDNA and amplified. However, the
fraction of transcripts that are captured in this phase is estimated to be ∼ 10−20%
of all transcripts present in a cell [92] and thus this constitutes a source of noise
for scRNA-seq data. In this step there is a difference between UMI and full-length
methods. In fact, the former attach small nucleotide sequences called Unique
Molecular Identifiers (UMI) to every transcript before amplification, so that once
fragments get amplified the information about which duplicates refer to the same
original molecule can be found in the UMI [29, 81]. This thus eliminates the ampli-
fication bias, where some molecules my be preferentially amplified with respect to
others, resulting in a distorted quantification of the corresponding gene expression
values. UMIs are attached to the end of each transcript before fragmentation, and
for this reason only those fragments that include the transcript end are sequenced.
On the other hand, full-length methods don’t include any identifier before amplifi-
cation, enabling sequencing of all fragments (hence the name full-length. However,
such technologies are affected by the amplification bias.

• Sequencing. Each cDNA fragment is sequenced producing a read, that are strings
representing the sequence read from the cDNA fragment. Such reads are then
assembled together in a FATSQ file, which together with the reads reports their
quality scores.

Technical problems during the different steps of a sequencing experiment introduce
noise in the final gene expression matrix, and thus in this work a comparative assessment
between different denoising methods is presented. For the purpose of the comparison,
both UMI and full-length protocols have been considered.
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3.1.2 Denoising of gene expression profiles

Single-cell RNA sequencing experiments are affected by technical errors, due to problems
such as low capture efficiency, amplification bias, low sequencing depth etc., and the
resulting count matrices are characterized by high levels of noise. Thus, 0 values in the
count matrix may correspond to either true biologically non expressed genes or to false
negatives, meaning that the gene was expressed in the cell but was not captured and
sequenced (i.e., dropout event).
Thus, over the last decade different computational methods have been developed with
the goal of recovering the corrupted information and missing data from single-cell gene
expression matrices. Such methods take in input the count matrix, and they return
the denoised expression profiles, exploiting different techniques and making specific as-
sumptions about data distribution. Without considering its application to single-cell
RNA-seq data, denoising is a wide computational problem that aims at recovering cor-
rupted information by building models that make assumptions about data distribution,
and several distinct Machine Learning (ML) approaches can be applied for denoising,
such as autoencoders and Bayesian models.
Given the plethora of methods developed for denoising of scRNA-seq profiles, a com-
parative assessment carried out by an independent research group would be useful in
characterizing the performance of each method and identifying the most robust tools to
be applied.
Thus, we carried out a review of 19 different denoising and imputation methods for
single-cell RNA-sequencing data. We exploited both synthetic and real-world datasets,
as the former are fundamental to assess the ability of methods in recovering corrupted
information, due to the absence of ground truth values for real data. We categorized
methods based on their assumptions and techniques used for denoising, and we assessed
their performance considering multiple quantitative metrics to evaluate the ability of
each method in (i) imputing dropout events (ii) recovering the true gene expression pro-
file (iii) characterizing cell similarities (iv) improving the identification of Differentially
Expressed Genes. To carry out the comparison, we considered gene expression data
obtained with droplet and plate-based sequencing protocols for both simulated and real
matrices. We aim at providing a fair and unbiased comparison, that can serve as a
guideline for researchers to identify which method is the most suitable according to the
data analysis task that needs to be performed and to the technology used to produce
the expression matrices.
We notice that in the literature there are other works providing an unbiased comparison
of imputation methods for scRNA-seq data, which are presented in [83, 107] and [142].
In detail, in [83] authors present an analysis where the main goal consists in quantifying
whether by performing differential expression analysis on imputed expression profiles,
false positives are introduced in the results. This work has two main limitations: first,
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it only considers the imputation impact on one specific downstream task, that is differ-
ential expression analysis, and second, the set of tools considered in the comparison is
limited to only 6 methods.
In the second work presented in [107], authors compare 8 different imputation methods
to assess their ability in imputing dropout events and improving downstream analyses.
With respect [83], this work considers a wider ranges of metrics to quantify the perfor-
mance of each method, but it still suffers from two limitations: first, the set of tools
tested is still limited to 8 leaving out some more recently developed methods. Second,
while this work uses simulated data to assess the ability in recovering missing values, it
does not take into consideration the denoising task, i.e., the task of correcting nonzero
values in expression matrices.
Finally, the third work presented in [142] is the most complete, as it considers a broader
range of methods and analyses their performance using multiple metrics. However, this
work is also not taking into consideration the denoising task separately from the im-
putation. In fact, to generate synthetic data authors employ the tool Splatter [79],
that simulates the output of a scRNA-seq experiment and enables to simulate dropout
events. On the contrary, in our work we exploited SymSim, a tool that simulates first
the biological ground truth and then the sequencing process, which enabled us to assess
the impact of each denoising method also on the recovery of non-zero corrupted values.
Thus, we believe that our comparative assessment provides a full overview over the im-
pact of each denoising methods, and can provide a guideline for the identification of the
best performing method.
From our work, we identified 4 methods, namely ENHANCE [128], MAGIC [102],
SAVER [91], and SAVER-X [129], that achieve the overall best compromise across all
the considered tasks. The methods considered can be divided in four categories based
on the assumptions and computational strategy used to solve the denoising task, that
are namely: data smoothing, Machine Learning, matrix theory and model based meth-
ods. In particular, both model based and a subset of ML based methods include prior
knowledge on the counts distribution and about their biological variability,that is used
to model the observed signal. In our work we show that two of the best performing
methods - namely SAVER and SAVER-X - include such prior information, and we also
analyse how among the ML based methods, those that include this type of prior knowl-
edge achieve better performance than the rest of the methods in the same category.
In detail, the two distributions used to model counts in single cells are the Negative
Binomial (NB) and Zero-Inflated Negative Binomial (ZINB), where the latter models
count data with a high fraction of zero values. There is a currently ongoing debate
about which of the two distributions is the most suitable to model scRNA-seq counts
[152], as there is evidence that the NB is able to explain all the observed zeros in the
data, without the need to rely on the zero-inflation [152, 151]. In our comparative as-
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sessment we included a subset of methods that model counts both with a NB, such as
SAVER-X [129], and a ZINB, such as scVI [95], and we showed that the latter method
is less effective in recovering missing and corrupted information compared to the former
that employs the NB. Thus, both the analyses presented in [152, 151] and the results in
our comparative assessment, suggest that the NB is able to model counts data, without
the need to include the zero inflation process.
Finally, when considering a scRNA-seq dataset, the choice between applying or non-
applying a denoising step should be evaluated carefully. As it is indicated also in [120],
in general it is not advisable to exploit denoised expression profiles to perform tasks
such as the identification of differentially expressed genes: in fact, since the goal of such
analyses is that of identifying the biological mechanisms responsible for the behaviour of
specific cells sub-populations, we need to minimize the probability of distorting the true
biological signal in the count matrices. However, in case one is particularly interested
in detecting cells subpopulations in single cell datasets, performing denoising could aid
the clustering task: in fact, in our work we showed how specific methods are able to
enhance cell-to-cell similarities and can serve as an effective preprocessing step. Thus,
a general practice that can be applied is that of exploiting denoised expression profiles
during the clustering step, in order to identify cell subpopulations, and then employ
the non-corrected expression profiles to compare the distribution of genes across cells
assigned to different clusters.
Please notice that here the supplementary information of this work is not included, but
it is available in the online version of the manuscript [149].
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Abstract
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Introduction

In recent years, an increasing number of studies has involved
data generated from single-cell RNA sequencing (scRNA-seq)
experiments [1, 2], which quantify gene expression levels at
single-cell resolution, thus providing insights into cell popu-
lation heterogeneity [3]. scRNA-seq methods can be used to
perform accurate transcriptome quantification with a relatively
small number of sequencing reads, isolating a typically large
number of single cells. In optimal conditions, scRNA-seq data
can recapitulate the results of standard sequencing experiments
from bulk samples, yet with a much higher resolution [4].

This is a great advantage, as many works report that even
cells in a homogeneous population may have heterogeneous
expression profiles [5–8]. For instance, scRNA-seq data can be
used to characterize rare cell subpopulations that had been
hidden in the output of bulk RNA sequencing experiments [9],
as well as in the analysis of cancer evolution, where they can
be exploited to study the heterogeneity of tumor cell subpop-
ulations [10] and the processes that lead to drug resistance or
metastasis [11]. The wide use of scRNA-seq technologies has also
allowed the creation of cell atlases for simple organisms such
as, for example, the Caenorhabditis elegans [12]; most importantly,
there is an ongoing effort to create such map for the human
organism, i.e. the Human Cell Atlas [13]. However, the analysis of
single-cell sequencing data is affected by the complex combina-
tion of biological variation and technical noise, which typically
result in sparse and noisy single-cell expression profiles.

On the one hand, stochasticity of gene expression is inherent
in most biological systems, with respect to both the biochemical
processes related to gene regulation and the fluctuations of
other cellular components and phenomena [14]. For this reason,
even cells of the same type within the same tissue may display
different gene expression distributions, complicating the iden-
tification and characterization of cellular states and transitions
[15].

On the other hand, currently available sequencing technolo-
gies are still hindered by various technical issues [2, 16, 17].
In particular, the most common approaches for scRNA-seq are
based on either droplet platforms (e.g. Drop-seq [18], InDrop [19]
and Chromium 10x [20]) or plate-based platforms (e.g. Smart-
Seq2 [21], MATQseq [22], MARS-seq [23], CEL-seq [24] and SPLIT-
seq [25]), while some further approaches rely on microfluidics
(e.g. C1 SMARTer [26]) or nanowell arrays (e.g. SEQ-well [27]).
Typically, droplet platforms allow to isolate a large number of
single cells (from a few to many thousands), by sequencing the
3′-end and by employing unique molecular identifiers (UMIs)
[28], which allow the tagging of each transcript before amplifi-
cation, thus distinguishing original transcripts from amplifica-
tion duplicates [29]. Conversely, plate-based platforms usually
employ full-length sequencing protocols and, accordingly, allow
to sequence a much lower number of single cells (∼hundreds),
yet with a considerably higher coverage. Overall, all sequencing
protocols are affected by a number of technological and experi-
mental issues, which typically result in noisy measurements.

• Capture efficiency: due to (i) the low quantity of RNA in
a given single cell, and (ii) the stochastic nature of gene
expression patterns at the single-cell level, certain gene
can display null expression level, since none of its tran-
scripts may be captured, thus resulting in zero expression
levels. These are the so-called dropout events [30] and might
be particularly relevant for scarcely expressed genes. This
issue causes both noise and a high sparsity in the data [9].

• Amplification bias: the amplification phase may be subject
to potential PCR biases in the quantification of the abun-
dance of each gene, such as preferential amplification of
certain templates. UMI-based approaches are able to miti-
gate this issue, yet in any case, amplification biases can be
a potential source of noise in the data.

• Sequencing depth: the number of sequenced reads per cell
varies between different experimental settings and plat-
forms, and this can result in noisy and sparse outputs,
especially when the depth is relatively low [29].

• Batch effects: technical sources of systematic variation may
add a confounding factor in downstream analysis. Batch
effects can be generated by analyzing samples with dif-
ferent technologies, in different laboratories or in differ-
ent runs [31, 32]. When multiple experiments are consid-
ered, it is appropriate to remove such bias. In recent years,
many methods were proposed to reach this goal. However,
the comparison of the performance of methods for batch
removal requires an in-depth investigation that is beyond
the scope of this work (see [33] for a recent review).

As a consequence, it is safe to suppose that (i) nonzero
expression values may not coincide with the true transcript
abundance in the cell and (ii) zero values observed in the gene
expression profiles may be either due to truly non-expressed
genes—in this case, we refer to structural zeros, as proposed in
[34]—or to technical limitations of the sequencing technology,
i.e. dropout events.

For this reason, many computational approaches have been
developed to retrieve lost and corrupted information from
scRNA-seq data, with the goal of returning an estimation of
the correct expression levels in each single cell. Such methods
are typically grouped in two major categories: (i) imputation
methods, with the general goal of recovering the missing values
in the data and (ii) denoising methods, aimed at adjusting the
data by removing biological and technical noise. Very often, the
two categories are mentioned indistinctly (see e.g. [35]), even
though they comprise substantially different computational
tasks.

To better distinguish the two categories, here, we propose a
rigorous categorization of imputation and denoising methods
for scRNA-seq data, in order to reduce the possible ambiguity
in the definition of the underlying computational tasks (an
analogous distinction was recently proposed in [36]).

• Imputation methods for scRNA-seq data include two major
steps. The first step is aimed at distinguishing structural
zeros (associated to non-expressing genes) from dropout
events (i.e. genes whose transcripts were not captured dur-
ing the sequencing process due to technical issues). Accord-
ingly, in the second step, such methods strive to impute
the values of dropout entries only. Nonzero entries and
structural zeros are left unchanged.

• Denoising methods for scRNA-seq data ideally include both
an imputation step (see above) and an additional com-
putational step, which is aimed at modifying the entries
which include falsely increased or decreased gene expres-
sion levels due to, e.g. biological variation or technical noise.
According to this definition, all denoising methods are also
imputation methods while the opposite is typically not true
(a rigorous definition of the two categories is provided in
section 1 of the Supplementary Material).

Methods in both categories rely on different assumptions and
employ different algorithmic strategies to perform their tasks.
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Thus, as reported in [37], a comprehensive comparison of all
available approaches might be useful and timely to clarify which
methods are more suitable for different circumstances and dis-
tinct data types. In particular, in [37], the different approaches
are grouped in the following typologies.

• Data smoothing: the methods in this category aggregate
the expression profiles of similar cells in order to perform
denoising and imputation. In this category, we find DrIm-
pute [38], DEWÄKSS [39], scHinter [40], kNN-smoothing [41],
LSImpute [42], MAGIC [43], netSmooth [44], PRIME [45] and
RESCUE [46]. Finally, other methods that use data smoothing
to impute missing values are G2S3 [47] and scTSSR [48].
However, the former aggregates the information across sim-
ilar genes to perform imputation, while the latter considers
both similar cells and similar genes.

• External knowledge integrators: these methods exploit
external knowledge to impute or denoise gene expression
profiles. In this category, we find ADImpute [49], netSmooth
[44], netNMF-sc [50], SAVER-X [51], SCRABBLE [52], scNPF
[53] TRANSLATE [54] and URSM [55].

• Machine learning (ML): these methods employ ML tech-
niques to correct for technical noise. We can find very recent
methods that employ Artificial Neural Networks (ANNs) to
infer the denoised or imputed version of the dataset, which
are AutoImpute [56], DeepImpute [57], DCA [58], EnImpute
[59], GraphSCI [60], LATE [54], scIGANs [61], SAUCIE [62],
scScope [63], scVI [64] and SISUA [65]. Next, we have meth-
ods that use regression to correct for noise in the dataset,
which are 2DImpute [66] and RIA [67].

• Matrix theory: these methods decompose the observed
gene expression matrix in a low-dimensional space to
remove noise. In this category, we find ALRA [68], ENHANCE
[69], scRMD [70], CMF-Impute [71], deepMc [72], McImpute
[73], PBLR [74], WEDGE [75], ZIFA [76] and Randomly [77].

• Model-based: these methods make assumption on the sta-
tistical model of the distribution of technical and biological
variability and noise and perform denoising and imputation
by estimating the parameters of the distributions. In this
category, we find bayNorm [78], BISCUIT [79], BUSseq [80],
CIDR [81], MISC [82], SAVER [83], scImpute [84], scRecover
[85], SCRIBE [86], SIMPLEs [87] and VIPER [88].

We here present a comparative assessment of denoising
and imputation methods for scRNA-seq data, with the goal of
providing a general overview of their features, strengths and
limitations, in order to understand in which data analysis task
they are most computationally and statistically efficient. In par-
ticular, we selected a subset of 19 different methods out of the
list mentioned above, by including some of the most widely used
approaches and which fall in the following categories.

• Data smoothing methods: DrImpute [38], kNN-smoothing
[41] and MAGIC [43].

• ML methods: AutoImpute [56], DCA [58], DeepImpute [57],
SAUCIE [62], SAVER-X [51], SCScope[63] and scVI [64].

• Matrix factorization/theory methods: ALRA [68], ENHANCE
[69], McImpute [73], Randomly [77] and scRMD [70].

• Model-based methods: bayNorm [78], SAVER [83], scImpute
[84] and VIPER [88].

The comparative assessment was carried out both on sim-
ulated data, generated via the widely used tool SymSim [89],
and four real-world scRNA-seq datasets from [90–93]. All com-
putational methods were tested with respect to a number of
metrics, in order to assess the effectiveness in imputing dropout

events, recovering the true expression profiles, characterizing
the similarity among cells and improving the identification of
differentially expressed genes (DEGs), in addition to quantify
their scalability. In the Results section, we present the results
of the extensive comparative assessment, also by releasing a
summary for a quick evaluation of the distinct techniques in
different scenarios and experimental settings.

We note that previous works reviewing imputation methods
have been proposed. In particular, in [94], the authors focus on
understanding whether six different imputation strategies intro-
duce false positives in the results of differential expression anal-
ysis. In [95], eight different methods are analyzed to understand
whether they improve the result of clustering and differential
expression analysis. Both works, however, do not include in the
analysis the most recent methods and assess the performance
of a relatively limited number of computational strategies. In
addition, both works mainly focus on the imputation task, with-
out assessing how denoising techniques may recover corrupted
information. Finally, a recent preprint on a similar subject [35]
exploits real-world data to assess the performance of imputation
methods on downstream analyses. While this work includes
a more extensive assessment of recent methods, it does not
employ simulated data, which are necessary to evaluate a num-
ber of ground truth (GT)-based performance metrics. Further
comments in this respect are provided in the Discussion section.

In the Methods section, we provide a brief description of
each denoising and imputation method included in the study,
discuss the performance assessment describing both the syn-
thetic data generation and the real-world datasets and present
the different metrics used in the analysis. In the Results section,
we present the results of the comparative assessment on both
simulated and real data, also by releasing a summary for a
quick evaluation of the distinct techniques in different scenarios
and experimental settings. Finally, in the Discussion section, we
draw conclusions about the comparison and discuss possible
future developments.

Methods
In this section, we describe in detail the 19 methods included in
the comparative assessment; we discuss the synthetic data gen-
eration and present the 4 real-world scRNA-seq datasets from
[90–93] employed in the analysis, as well as the performance
metrics.

Description of denoising and imputation methods

The 19 methods that have been analyzed and tested can be
partitioned into the following four families, according to their
assumptions and modeling techniques: smoothing, model-
based, matrix factorization/theory and ML. In the following
sections, we provide a brief description of each method. For
additional details, we refer the reader to the original papers.

Data smoothing methods

The first category includes methods that aggregate the expres-
sion profiles of similar cells, e.g. by averaging the expression
values, in order to impute (DrImpute) or denoise (MAGIC and
kNN-smoothing) their expression values.

DrImpute [38] imputes dropout events with the following
three steps: first, it computes a distance matrix between cells,
then it runs the k-means algorithm and, lastly, it defines the
expected value of a dropout event as the average value of that
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gene over the cells belonging to the same cluster. To make
the estimations more robust, the similarity matrix is computed
with both Pearson and Spearman correlations and a range of
number of clusters is tested. The averaged estimation over all
combinations is taken as the final imputation value, reducing
the risk of over-imputation.

kNN-smoothing [41] improves the signal-to-noise ratio of
single-cell expression profiles with a two-phase algorithm: first,
the k-nearest neighbors (kNNs) of each cell are identified, then
the gene expression profile of each cell is smoothed by consid-
ering its neighbor profiles. The initial step of the algorithm is
performed by normalizing the expression profiles and stabilizing
their variance. Then, to overcome the problem of finding the best
assignment for k, smoothing is applied in a progressive fashion,
by starting from k = 1 and increasing k step-by-step until the
desired level of smoothness is reached.

MAGIC [43] extracts the true similarity between cells by
amplifying biological trends, while simultaneously filtering out
spurious correspondences due to noise in the data. First, to
overcome the problem of data sparsity, a nearest neighbor graph
based on cell–cell expression distance is built. Then, an affinity
matrix is defined by applying a Gaussian kernel on the principal
components of the graph. Lastly, a diffusion process [96] is
applied on the similarity matrix to obtain a smoothed, more
faithful affinity matrix. The final imputation involves computing
the new expression of each gene as a linear combination of
the same expression in similar cells, weighted by the similarity
strength obtained in the previous steps.

ML methods

This group includes methods that apply ANNs to solve the
denoising problem (further details on ANN types are reported in
section 2 of the Supplementary Material). As reported in [37], an
increasing number of methods fall in this category (see above).
In particular, we selected DeepImpute, DCA, SAVER-X, SAUCIE,
scScope, AutoImpute and scVI.

AutoImpute [56] employs a sparse autoencoder, to learn the
distribution of the input gene expression matrix and perform
imputation. With regard to the implemented loss function,
this method takes advantage of standard reconstruction errors
such as (root) mean squared error, applied only on the nonzero
expressed genes. After training the autoencoder (AE), the
reconstructed matrix is taken as the imputed output.

DCA [58] employs AEs to perform denoising. Instead of the
classical AE decoder output, it defines a parametric decoder that
models each gene count as a negative binomial (NB) or a zero-
inflated negative binomial (ZINB) distribution; consequently, the
reconstruction error is defined as a likelihood. The predicted
distribution is then used to generate the denoised output.

DeepImpute [57] employs a deep feedforward network (DFN)
to perform imputation. After the initial preprocessing, where
only relevant genes are kept, N random groups of genes Gi are
defined. Then, for each gene in each Gi, a set Ii with the top five
Pearson correlated genes not in Gi is built. Lastly, each Ii will be
an input for a different DFN, trained to output Gi. The output of
each DFN is then used for imputing dropout events.

SAUCIE [62] is an AE-based denoising method that also sup-
ports batch correction and enhanced clustering and visualiza-
tion capabilites. More in detail, the AE embedding layer is used
for both low-dimensional visualization and batch correction, by
minimizing the difference between the probability distribution
of layer’s activations belonging to different batches. Moreover,
the activations of the decoding part are binarized to define an

encoding of each cell, which is then used for clustering. Lastly,
denoising is performed by minimizing the reconstruction error,
i.e. the mean squared error, that deals both with noise and
dropout events.

SAVER-X [51] is an extension of SAVER [83] that pairs the
Bayesian model with an AE. A NB distribution is used to
model technical and biological noise, while the AE is used to
estimate the portion of gene expression that is predictable by
the other genes. Lastly, Bayesian shrinkage is used to compute a
weighted average of the predicted expression values and the
observed data, to get the final denoised value. Additionally,
SAVER-X allows transfer learning [97] across species, thanks
to the flexibility of AEs, allowing to extract information
from data belonging to different species and experimental
conditions.

scScope [63] exploits a deep learning approach for imputa-
tion, combining an AE with a recurrent layer. The architecture
of the neural network is composed by a first layer that performs
batch correction. Successively, the encoding and decoding layers
of the AE perform compression and reconstruction, respectively,
of the batch corrected input. Lastly, the imputation layer corrects
the missing values and sends back the imputed output to the
encoding-decoding layers, to re-learn a compressed representa-
tion. The loss function is defined as a standard reconstruction
error, on the nonzero entries.

scVI [64] employs a variational AE to specify a ZINB distri-
bution, which models the true gene expression. More in detail,
the neural network takes as input each batch-annotated cell
expression and successively learns a variational distribution
accounting for, separately, the cell-specific scaling factor and
the remaining gene variation; furthermore, the defined latent
space allows to perform both clustering and visualization. Lastly,
the ZINB distribution is specified based on the learned latent
representation and the cell scaling factor.

Matrix factorization and matrix theory methods

The third category comprises four methods that denoise
(ENHANCE) or impute (ALRA, McImpute and scRMD) the
observed gene expression data by solving a matrix factorization
problem [98]. For the sake of simplicity, we added to this category
also a method that performs imputation by exploiting random
matrix theory (RMT): Randomly.

ALRA [68] performs imputation by low-rank matrix comple-
tion [99] of the observed gene expression matrix. The algorithm
is composed by two phases: firstly, a low-rank approximation
with Singular Value Decomposition [100] is computed. Then, to
distinguish dropouts from true zeros, the authors observed that
biological zeros in the computed low-rank matrix are assigned
to small values around 0, due to the approximation error. Conse-
quently, by taking the magnitude of the smallest negative value
of each gene as an approximation of the error, it is possible to
define a gene-wise threshold to distinguish dropouts and extract
the imputed values.

ENHANCE [69] is a method that combines PCA and cell aggre-
gation using kNNs to denoise the observed count matrix. The
algorithm can be divided into two main steps. The first one
accounts for reducing the bias toward highly expressed genes,
by aggregating the expression of similar cells based on the
distance between their principal component scores. The second
phase projects the aggregate matrix on the first k principal
components, where k is selected to represent only true biological
differences. Lastly, the selected components are used to derive
the final denoised matrix.



A review of denoising methods for scRNA-seq data 5

McImpute [73] is a low-rank matrix completion approach to
impute missing values in a gene expression matrix. This method
aims at finding a lower-dimensional decomposition of the input
matrix. They formulated a low-dimensional nonnegative matrix
factorization problem as an optimization problem, solved using
the majorization-maximization technique [101]. To ensure the
convexity of the problem, McImpute solves a relaxed version of
the original objective: nuclear norm minimization. Lastly, the
resulting decomposition is used to impute missing values.

Randomly [77] is a recent denoising method that extracts
the true biological signal from the gene expression data by
analyzing the eigenvector statistics predicted by RMT [102]. The
algorithm is composed by three steps. In the pre-processing
step, expression counts are normalized and genes contributing
to a sparsity-induced nonbiological signal are removed; then,
the random matrix accounting for the noise is estimated. Lastly,
the eigenvalues carrying the true biological signal are extracted
following RMT, providing a low-rank representation of the input
data; additionally, the genes that are mostly responsible for
the signal directions can be separated from the less relevant
ones.

ScRMD [70] is a method that approaches the imputation task
by means of a robust matrix decomposition (RMD) approach
[103]. The authors assumed that we can decompose each gene
expression in the following components: the mean expression
of cells belonging to the same cluster, the specific cell variability,
the measurement error and the dropouts events. The method
defines each component as a matrix decomposition problem,
solved with an alternating direction method of multiplier, by
also applying a regularizer to account for the low-rank of the
biological signal and the sparseness of the observed counts.

Model-based methods

This category is composed by methods that model the observed
expression value of each gene in each cell as a random variable
and perform imputation (scImpute and VIPER) and denoising
(bayNorm and SAVER) by estimating the parameters of their
distributions.

bayNorm [78] employs a Bayesian approach to perform
denoising. The posterior distribution of the original counts
is composed by (i) the likelihood of obtaining the observed
transcripts, modeled as a Binomial distribution, and (ii) a prior
on each gene expression value. In order to model biological
variability, bayNorm employs a prior on the underlying true
gene expression levels, by modeling them as variables following
an NB distribution. Parameters can then be estimated locally
or globally, depending on one’s interest in amplifying or not,
respectively, the intergroup differences between cells.

SAVER [83] estimates the true gene expression levels by mod-
eling observed counts as a NB distribution. More in detail, the
technical noise in the gene expression signal is approximated
by the Poisson distribution, while the gamma prior accounts
for the uncertainty in the true expression. The final recovered
expression is a weighted average of the normalized observed
counts and the predicted true counts.

scImpute [84] is a method that performs imputation, in a
three-step algorithm. Initially, it identifies subpopulations of
cells by first applying PCA and, successively, spectral clustering
[104] on the remaining dimensions. To infer which genes are
affected by dropout, it models genes in each subpopulation with
a gamma-normal mixture model. Lastly, only highly probable
dropout events are considered, to reduce over-imputation, and
the final imputation value is computed as a linear combination

of the expression of the other cells in the same subpopulation,
weighted by the pairwise similarity.

VIPER [88] is an imputation method composed of four phases.
The first step performs a pre-selection of candidate similar cells,
to reduce overfitting. Then, a least-squares method is used to
choose a local neighborhood for each cell. To prevent imputing
missing values, VIPER estimates the dropout probability and
the expected expression for each zero-valued neighbor. Further-
more, to adjust dropout events, the gene expressions in each
neighborhood are assumed to follow a zero-inflated Poisson
mixed model, estimated using expectation maximization. Lastly,
imputation is performed by computing the weighted sum of the
expression of each neighbor, by also taking into account the
computed dropout adjustments.

Performance assessment

In the original articles, the imputation and denoising meth-
ods introduced above are often compared with competing
approaches. However, such comparisons typically involve a
limited number of denoising methods and a small number
of selected experimental settings. In order to provide a
comprehensive evaluation of performances, in this work, we
tested all methods on a large number of both simulated and
real-world datasets, with respect to several metrics.

In particular, we generated an extensive array of simulated
data, for which the GT is available and which allow to quantify
the ability of each method to actually recover the lost infor-
mation (see Supplementary Material section 3 for details about
the generation of such data). Moreover, we tested all methods
on four real-world scRNA-seq datasets generated via distinct
experimental protocols and settings.

Simulations

We employed the tool SymSim [89] to generate a large number of
synthetic scRNA-seq datasets (for a total of 90 distinct synthetic
datasets). SymSim takes as input the number of single cells, the
number of genes, the number of cell subpopulations (charac-
terized by distinct gene expression patterns) and a number of
parameters that tune the amount of biological variability and
technical noise.

The tool returns as output (i) a GT expression matrix, which
includes biological variability but no noise; (ii) a theoretical
expression profile (TEP) for each cell subpopulation, which is
obtained by removing the biological variability from the GT; and
(iii) a noisy (and sparse) expression matrix (NEM), which is finally
derived by simulating the steps of a sequencing experiment.

In this work, we generated datasets simulating two main
experimental scenarios and, in particular,

(i) non-UMI full-length datasets (i.e. high-coverage, high-
amplification bias), including 100 single cells and modeling
a typical plate-based full-length sequencing experiment
(e.g. Smart-Seq2). Thirty datasets were generated with
distinct parameter settings;

(ii) UMI datasets (i.e. low-coverage, low-amplification bias),
including 3000 single cells (30 datasets) and 10000 sin-
gle cells (30 datasets) and modeling a typical droplet
sequencing experiment (e.g. Chromium 10x).

The different datasets in each scenario are characterized by
distinct parameter settings, in terms of number of cell sub-
populations ({3, 5}), noise level (5 levels), number of selected
(most variable) genes ({500, 2000, 10000}) (Table 1). A detailed
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Table 1. Summary of the simulated datasets. We simulated a total
of 90 datasets, with the following combinations of parameters: 3
values of sample size (number of single cells) ×2 different numbers
of subpopulations ×5 levels of noise ×3 numbers of selected most
variable genes

Protocol UMI Non-UMI
full-length

No datasets 60 30
No cells {3000; 10000} 100
GT sub-populations {3; 5} {3; 5}
Capture efficiency Low High
Amplification Bias No Yes
Coverage Low High
Noise levela {1; 2; 3; 4; 5} {1; 2; 3; 4; 5}
No genes {500; 2000; 10000} {500; 2000; 10000}
a The levels of noise present in the simulated datasets are defined in section 3
of the Supplementary Material, which we refer for further details on synthetic
data generation.

description of synthetic data generation can be found in the
Supplementary Material section 3.

Real-world datasets

All methods were tested also on four distinct real-world scRNA-
seq datasets, generated with distinct protocols and experimental
specifications. In detail, we have the following.

• RW-D #1 (PBMCs – 10x) [90]: this widely employed scRNA-
seq dataset is generated via 10x Genomics platform
[20] and includes 68579 peripheral blood mononuclear
cells (PBMCs), which are annotated with 11 cell types
of the immune system, via correlation with benchmark
gene expression profiles. This dataset was used in our
analysis to assess the performance of imputation and
denoising methods in characterizing cell similarities (for
further details on the dataset, please refer to [90]; instruc-
tions for download are provided in the Supplementary
Material).

• RW-D #2 (lung cell lines – 10x) [91]: this scRNA-seq dataset
is generated via the 10x Genomics platform and includes
3918 cells from 5 distinct cell lines, which were assigned
to its corresponding identity by exploiting known genetic
differences (i.e. SNPs) between cell lines [91]; this allows
not to rely on gene expression profiles for cell labeling.
We employed this dataset to assess the robustness of the
characterization of cell similarity.

• RW-D #3 (pancreatic islets – Smart-Seq2) [92]: this scRNA-
seq dataset is generated via the full-length Smart-Seq2
protocol and includes 3514 cells from human pancreatic
islets of four diabetic patients and five healthy samples.
We employed this dataset to assess the performance of
imputation and denoising methods with respect to cell
similarity characterization when processing data from non-
UMI full-length protocols.

• RW-D #4 (melanoma cell lines – 10x, Fluidigm/Smart-
Seq, bulk) [93]: this dataset includes three different
measurements from the same biological samples, namely
(i) bulk RNA-seq experiments, (ii) 10x Genomics scRNA-seq
experiments with 737280 barcodes, (iii) Fluidigm/Smart-
Seq scRNA-seq experiments with approximately 100 single
cells. Since no cell type labels are provided in this dataset,
we here used the data to compare the performance

of imputation and denoising methods with respect to
the correct identification of DEGs, by setting the results
obtained on bulk data as baseline.

All real-world datasets were preprocessed to consider only
high-quality single cells, and downsampled, to ensure a uniform
assessment scheme for all methods. In Table 2, one can find
the main features of all datasets employed in the analyses
(see Supplementary Material section 4 for further details on
preprocessing and downsampling).

Performance metrics

To evaluate the performance of the 19 selected methods, we
employed a number of metrics, which were assessed with
respect to either simulated or real-world data, according to the
specific cases. All metrics are further detailed in section 5 of the
Supplementary Material.

Imputation of dropout events (simulations) The effectiveness
of the methods in identifying and correcting dropouts events can
be evaluated by employing the GT expression matrix obtained
from simulations (see Supplementary Material section 5 for
additional details). In order to quantify the correct imputation of
the dropout entries present in the GT, we employed three distinct
metrics.

In particular, we computed (i and ii) precision and recall on
dropout entries only (i.e. entries that are > 0 in the GT and are
= 0 in the NEM), (iii) the Spearman correlation delta between the
imputed/denoised expression matrix (for the sake of readability,
we will refer to as denoised expression matrix, from now on) and
the GT with respect to all the zero entries in the NEM, which
allows to evaluate how imputed entries are correlated with GT
values (this metric is shown in the Supplementary Material
section 5).

Notice that the false discovery rate (FDR) can be easily deter-
mined from precision (FDR = 1−precision) and, in this case,
allows to evaluate the effectiveness of the methods in not imput-
ing structural zeros (i.e. entries that are 0 both in the GT and in
the NEM).

Recovery of true gene expression profiles (simulations) To
estimate the ability of each method in recovering the true single-
cell gene expression profiles, we relied on both the GT and the
NEM obtained from simulations.

In particular, we computed the difference between the
Spearman correlation coefficient ρ computed after imputation
or denoising (i.e. ρ between denoised expression matrix and
GT) and that computed before imputation or denoising (i.e.
ρ between NEM and GT). This measure is denoted as delta
correlation in the following, �ρ.

Characterization of cell similarity (simulations and real-
world data) In order to evaluate the effectiveness of each
method in capturing the similarity among cells, we computed
the average silhouette coefficient (or width) [105] by grouping
single cells according to the GT labels, i.e. cell subpopulations
labels for both simulated data, and cell type/line labels for real
data. Higher values of the average silhouette coefficient indicate
that cells are grouped consistently with GT labels. Therefore, we
here measured the difference between the average silhouette
coefficient obtained from denoised data and that computed
from the NEM (i.e. silhouette delta). Further detail about the
evaluation of such metric is given in the Supplementary Material
section 5.

We finally remark that, with regard to simulations, we here
employed the TEP of all cell subpopulations as performance
benchmark.
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Table 2. Features of real-world datasets. Main features of the four real-world datasets used in the assessment of imputation and denoising
methods: RW-D#1 [90], RW-D#2 [91], RW-D#3 [92] and RW-D#4 [93]

Dataset Number of cells

RW-D Name Protocol Original Employed Task

#1 PBMC [90] UMI 68579 3000 Cell sim.
UMI 68579 10000 Cell sim.

#2 Lung cell lines [91] UMI 3918 3918 Cell sim.
#3 Pancreatic islets [92] Non-UMI 352 245 Cell sim.

Non-UMI 383 243 Cell sim.
Non-UMI 383 197 Cell sim.
Non-UMI 383 224 Cell sim.
Non-UMI 383 196 Cell sim.
Non-UMI 383 263 Cell sim.
Non-UMI 383 93 Cell sim.
Non-UMI 384 275 Cell sim.
Non-UMI 384 293 Cell sim.

#4 Sake (Parent.) [93] UMI 737280 3178 DEGs
Non-UMI 113 113 DEGs

Sake (Resist.) [93] UMI 737280 3085 DEGs
Non-UMI 84 84 DEGs

Identification of DEGs (real-world data)
To assess the improvement on the identification of DEGs due to
the application of imputation/denoising methods, we employed
real-world dataset RW-D#4 which includes two independent cell
populations, namely parental and resistant, for which single-
cell 10x, single-cell Fluidigm/Smart-Seq and bulk sequencing
experiments were executed.

We proceeded as follows: for each single-cell dataset (10x and
Fluidigm/Smart-Seq), we performed a standard Wilcoxon test
to select the DEGs (p < 0.05) between parental and resistant
populations, with respect to both the NEM and the denoised
expression matrix, and which results in two distinct lists of
DEGs.

The expression profiles of the DEGs are then used to calcu-
late the Spearman correlation coefficient between each single
cell and the corresponding bulk profile. The distribution of the
difference of the Spearman correlation coefficient as computed
on denoised data and that on the NEM is used to evaluate the
performance for this task.

Computation time (simulations) We finally analyzed the
computational time of each tested method to impute or denoise
datasets with distinct numbers of observations (i.e. single cells)
and of variables (i.e. genes), with respect to a selected number of

simulated datasets. All computations were performed on a HP
®

Z8 G4 Workstation equipped with two Intel
®

Xeon
®

Gold 6240
processors at 2.60 GHz, 1 TB DDR4 RAM at 2933 MHz and Linux
Mint 19.2 Tina.

We note that, in the original papers, the authors do not
declare any theoretical worst-case performance in terms of O(·)
notation; although for many of them, it would be derivable from
literature. We therefore present an empirical study of the relative
performances of the methods.

Parameter settings of computational methods

Most methods were run on both simulated and real-world
datasets using default settings and following guidelines
provided from the authors, if any. For additional details on
parameter settings of all methods, please refer to section 6 of
the Supplementary Material and to Supplementary Table 4.

Note that we report the results SAVER-X without pre-training,
as its performance seems to be only slightly affected by pre-
training on real-world datasets, as shown in Supplementary
Figure 9. Besides, for analyses involving synthetic datasets, we
did not run AutoImpute, McImpute, scImpute and VIPER on
datasets with 10 000 cells and 10 000 genes, and we did not
execute VIPER on RW-D#1 (downsampled to 10 000 cells and
10 000 genes), due to the high computational time required by
such methods. Furthermore, for 10 out of 30 non-UMI full-length
simulated datasets, SAUCIE collapsed all cells into one unique
profile. Thus, such datasets were not included in the analysis.
Finally, please note that for Fluidigm/Smart-Seq datasets in RW-
D#4, the computation of bayNorm and ENHANCE raised errors
and, therefore, their results are not reported.

Results
We start by providing a qualitative example of the effect of the
tested imputation and denoising methods: Figures 1 and 2 show
the tSNE low-dimensional representation [106] of a synthetic
dataset (3000 cells, 5 subpopulations and 2000 genes) and of
one real dataset (RW-D#1, downsampled to 3000 cells and 2000
genes; see the Methods section for further details). For the
synthetic dataset, we show the GT expression matrix, the NEM
and the denoised datasets returned by each method, whereas
for RW-D#1 we show its original expression matrix and the
corresponding denoised versions.

From this qualitative analysis, one can appreciate the sub-
stantial different data transformations which are determined by
the distinct methods.

While it is difficult to draw conclusion from single exper-
iments, certain methods apparently tend to reduce the vari-
ability of gene expression profiles, resulting in more compact
representations on the tSNE space (e.g. kNN-smoothing, SAUCIE,
MAGIC), some others appear to enhance the inter-cluster dis-
tance (scImpute, SAVER and ENHANCE), while most methods
seem to preserve the original disposition in the transcriptomic
space, with some exceptions (note that in this and subsequent
analyses, AutoImpute seems not to have reached convergence,
with default parameters).
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Figure 1. Effect of 19 imputation and denoising methods on a selected simulated scenario via tSNE low-dimensional representation. tSNE low-dimensional

representation [106] of the gene expression profile of 3000 single cells of a selected synthetic UMI dataset with 5 subpopulations and 2000 genes. For this dataset,

we present the tSNE plot of the GT expression matrix generated via SymSim and the NEM obtained after simulating the sequencing experiment. The remaining tSNE

plots represent the gene expression of the cells after the application of all tested denoising and imputation methods to the NEM.

The visualization of three further synthetic datasets and of
real-world datasets RW-D#2 and RW-D#3 are shown in Supple-
mentary Figures 1–5. The results of the quantitative assessment
with respect to the metrics described in the Methods section are
presented in the following.

Imputation of dropout events (simulations)
We first assessed the performance of all methods in imputing
dropout events (i.e. entries = 0 in the NEM but > 0 in the
GT expression matrix), leaving structural zeros unchanged (i.e.
entries = 0 both in the NEM and the GT). The parameters of all
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Figure 2. Effect of 19 imputation and denoising methods on real-world dataset RW-D #1 via tSNE low-dimensional representation. tSNE low-dimensional representation

[106] of the gene expression profile of 3000 selected cells from RW-D #1 (PBMCs – 10x) [90] as computed on the 2000 most variable genes. For this dataset, we present

the tSNE projection of the original dataset, which includes nine cell types and the tSNE plots of the single-cell expression profiles after the application of all methods

under analysis.

simulations are recapitulated in Table 1 and in Supplementary
Tables 1 and 2. Please refer to the Methods section and to
Supplementary Material sections 3 and 5 for details on synthetic
data generation and performance metrics. Note that Randomly
was not included in this test, since it provides an already scaled
expression matrix as output.

In Figure 3, one can find, for each method, the median
precision and recall on correctly imputed dropouts (in this case,
a true positive is an entry > 0 both in the GT and in the denoised
expression matrix but = 0 in the NEM), grouped according to the
number of (most variable) selected genes ({500, 2000, 10 000})
and the number of single cells (100 for non-UMI full-length
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Figure 3. Performance assessment on imputation of dropout events (simulations). Assessment of imputation of dropouts, as evaluated on non-UMI full-length simu-

lated datasets (100 single cells) and UMI simulated datasets ({3000, 10000} single cells), with {500, 2000, 10000} genes. In each panel, we display a scatter-plot returning,

for each imputation and denoising method, the median precision (y-axis) and recall (x-axis) as computed on correctly imputed dropouts (computed on 10 simulations

per setting). In this case, a true positive, is an entry that is > 0 in the denoised expression matrix and in the GT but is = 0 in the NEM (see the Methods section for

further details and Supplementary Table 3 for the confusion matrix). The squared shade indicates methods with precision and recall > 0.80. In Supplementary Figure 6,

the distribution of precision and recall is displayed.

and {3000, 10000} for UMI datasets). In order to identify the
methods showing high precision (i.e. how many imputed entries
are dropouts) and high recall (i.e. how many dropouts are
imputed) scatter-plot areas corresponding to high values for
both measures (> 0.80) were highlighted (in Supplementary
Figure 6 the distributions of precision and recall on settings are
displayed).

As a first result, most methods struggle when dealing with
non-UMI full-length datasets (with 100 cells), as proven by the
relatively lower value of average precision. This aspect is likely
due to the low number of observations (single cells) as compared
with the number of variables (genes) and consistently affects the
performance of all methods on most tasks (see below).

Conversely, we observe a subset of methods that achieve
extremely positive performances (both precision and recall >

0.80) for UMI datasets with 3000 and 10 000 cells. In detail, VIPER
provides the best performance with datasets with 500 genes,
while for datasets with 2000 and 10 000 genes, ALRA, bayNorm,
DrImpute, ENHANCE, kNN-smoothing, MAGIC, SAVER, SAVER-
X and scVI consistently provide optimal and analogous perfor-
mances. In particular, such methods show values of recall very
close to 1 in all experimental settings (with the exception of kNN-
smoothing). While this effect might be due to over-imputation,
such methods also display significantly high precision in most
settings. Notice also that higher values of precision implicate a

lower fraction of wrongly imputed structural zeros (entries = 0
both in the GT and the NEM), as measured by the false discovery
rate (FDR = 1− precision).

Finally, we note that scRMD and scImpute display the high-
est values of precision in most settings, which, however, are
most likely due to the conservative nature of the approaches,
which tend to limit the number of imputed values. This obser-
vation is strengthened by considering the low values of recall for
both methods: indeed, as recall corresponds to the fraction of
imputed dropouts, a value close to 0 indicates that the method
did not impute most of the events.

To further extend the analysis on imputation of dropouts,
in Supplementary Material section 7 (Supplementary Figure 7),
we return the analysis of the Spearman correlation coefficient
computed considering zero entries of the NEM and which allows
to quantify the correlation between imputed entries and the
corresponding GT expression values. On the one hand, bayNorm,
DrImpute, ENHANCE, MAGIC, SAVER and SAVER-X provide the
most accurate and robust results in most scenarios, proving
effective in correctly recovering the true expression values of
imputed entries. On the other hand, ALRA, kNN-smoothing and
scVI and VIPER, which exhibit good values of precision and
recall on imputed dropouts (see above), display a relatively lower
performance in terms of correlation of the imputed entries with
respect to the GT expression values.
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Figure 4. Performance assessment on recovery of true gene expression profiles (simulations). Assessment of recovery of true expression profiles, as evaluated on non-

UMI full-length simulated datasets (100 single cells, panel A) and UMI simulated datasets ({3000, 10000} single cells, panels B and C), with {500, 2000, 10000} genes. The

boxplots return the distribution of correlation delta, �ρ, i.e. the difference between the Spearman correlation coefficient computed between the denoised expression

matrix and the GT and that computed between the NEM and the GT, for all methods in each experimental setting. The baseline median Spearman correlation coefficient

(MSC) between the NEM and GT is reported on top of the panels, for each setting, while in Supplementary Figure 8, the relative distributions are returned.

Recovery of true gene expression profiles (simulations)

We next tested the capability of each method in recovering the
GT gene expression profiles, by using simulated data. In Figure 4,
one can find the difference of the Spearman correlation coeffi-
cient as computed between the GT and the denoised expression
matrix after the application of all 19 methods and that computed
between the GT and the NEM. Such difference is denoted as
correlation delta, �ρ, from now on (see the Methods section and
Supplementary Material section 5 for further details).

In particular, the results are displayed according to the num-
ber of genes, {500, 2000, 10000} and number of cells, 100 for non-
UMI full-length and {3000, 10 000} for UMI experiments, as this
allows to analyze the performance under different experimental
settings. Note that, as for the analysis on imputed entries, we
here do not include the output of Randomly, which provides a
scaled output matrix.

As expected, sample size and protocol-type highly influence
the capability of any method to recover corrupted information,
as the performance of all methods generally improves with
datasets with a larger number of single cells and generated via
UMI-based protocols. More specifically, most methods appear to
struggle when processing non-UMI full-length datasets charac-
terized by a low number of cells (i.e. = 100), delivering unreliable
and often erroneous denoised expression profiles, as proven by
the negative Spearman correlation delta observed in most cases
(up to −0.45 for some methods).

Conversely, correlation deltas progressively improve with
UMI datasets including larger numbers of cells and/or genes,
and, in particular, all methods with the exception of ALRA and
scScope, achieve a positive median delta with datasets with
10 000 genes and 10 000 cells.

Examining the methods in greater detail, we observe that
bayNorm, SAVER and SAVER-X are the methods with the best
overall performance, as they always provide a positive corre-
lation delta and achieve the best results with both non-UMI
full-length and UMI datasets. Furthermore, we note that such
approaches show an extremely low variance, suggesting that the
results are robust. Among the other approaches, we note that
DrImpute displays a high correlation delta with UMI datasets,
whereas both ENHANCE and MAGIC exhibit remarkable perfor-
mances with datasets with more than 3000 cells and more than
2000 genes.

All in all, the results of this and the previous analyses sug-
gest that bayNorm, SAVER and SAVER-X might be an adequate
choice for both imputing dropouts and recovering corrupted

information, as they show the most accurate and stable per-
formances with both UMI and non-UMI full-length datasets,
whereas DrImpute, ENHANCE and MAGIC are similarly effective
when processing UMI datasets.

Characterization of cell similarity (simulations
and real-world data)

When analyzing scRNA-seq data, one might be interested in
characterizing the possible heterogeneous populations included
in the dataset, typically performing unsupervised clustering. For
example, the Scanpy [107] and Seurat [108] packages for single-
cell analyses incorporate the Louvain and Leiden algorithms
for community detection [109], which identify clusters based
on a nearest neighbors graph constructed from the profiles of
each single cell. Therefore, it is clear that improving the iden-
tification of cell similarities might result in better clustering
performances. To this end, we assessed the effectiveness of all
tested methods in enhancing cell similarity with respect to both
simulated and real data.

In Figure 5, we show the difference between the average
silhouette coefficient computed on denoised expression matrix
and that obtained from the NEM, by grouping single cells accord-
ing to the GT labels. Higher values of the average Silhouette
coefficient indicate that cells are close to other cells of the
same subpopulation and separated from those belonging to
other subpopulations. In particular, GT labels are provided by
cell subpopulation labels for simulated data and by cell type/line
labels for real-world datasets (see the Methods section and the
Supplementary Material for further details). We remark that
the silhouette coefficient allows one not to rely on arbitrarily
chosen clustering approaches, to evaluate the correct grouping
of single cells. In fact, currently available clustering methods
for scRNA-seq data are characterized by different properties,
goals and specifications and produce results that are extremely
sensitive to parameter choices and variations, and which might,
in turn, undermine the comparison of denoising and imputation
methods on this specific task.

Results are shown for simulated datasets with {500, 2000,
10000} genes and 100 (non-UMI full-length) or {3000, 10000} sin-
gle cells (UMI), as well as for real-world datasets RW-D#1, RW-
D#2 and RW-D#3. Note that we employed the TEP of all cell
subpopulations as benchmark for the assessment on simulated
datasets: in particular, the silhouette coefficient delta between
the TEP and the NEM represents the largest theoretical improve-
ment in each setting.
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Figure 5. Performance assessment on cell similarity characterization (simulations and real-world data). Assessment of enhancement of cell similarity characterization

after denoising, as evaluated on (i) simulated datasets (non-UMI full-length with 100 single cells and UMI-simulated datasets with {3000, 10000} single cells, panels

A–C) and (ii) real-world datasets RW-D#1 (downsampled to {3000, 10000} cells, 10x platform, panels D and E), RW-D#2 (3918 cells, 10x platform, panel F) and RW-D#3

({93, 196, 197, 224, 243, 245, 263, 275, 293} cells, Smart-Seq2, panel G). The boxplots (respectively, barplots) in all panels, depict the distribution (respectively, values) of

the Silhouette delta, i.e. the difference between the average silhouette coefficient computed on the denoised expression matrix and that computed on the NEM, for all

methods. The difference between the average silhouette coefficient evaluated on the TEP and that computed on the NEM is also shown for all simulated datasets.

Overall, most methods cause an increase of the average sil-
houette coefficient in most settings, suggesting that imputation
and denoising approaches are indeed effective in enhancing the
similarity of the expression profiles of cells belonging to the
same sub-populations.

This effect is significantly intensified with datasets with
larger sample size and generated (or simulated) with UMI pro-
tocols, as proven by the overall increase in delta magnitude.
In particular, MAGIC and ENHANCE appear to produce the best
results, with respect to both simulated and real-world datasets,
yet with noteworthy variance in some scenarios, and with the
latter method improving its performance with UMI datasets.
We further notice that ALRA, kNN-smoothing and scVI deliver
notable performances in most scenarios, closely followed by
DCA. Surprisingly, SAUCIE exhibits a negative delta with sim-
ulated non-UMI full-length datasets but produces good results
with real-world Smart-Seq2 dataset RW-D#3.

We recall that, among the best performing methods for the
imputation and expression recovery tasks (see above), in addi-
tion to the aforementioned MAGIC and ENHANCE, SAVER-X
and SAVER consistently produce improvements of the average
silhouette delta in most simulated and real-world scenarios,
whereas bayNorm and DrImpute appear to be less effective with
respect to this specific task.

We finally specify that the results on simulated and real-
world datasets are mostly coherent across experimental scenar-
ios, further proving the suitability of simulations in assessing the
performance of imputation and denoising methods.

Identification of DEGs (real-world data)

In order to quantify the effect of denoising and imputation
methods on the identification of DEGs, we leveraged on bulk
RNA-sequencing data included in real-world dataset RW-D#4
[93]. In detail, we first computed the DEGs between the parental

and resistant samples included in the dataset, with respect to
both the original expression matrix and the denoised matrix (via
Wilcoxon test, P < 0.05), and which resulted in two distinct lists
of DEGs. The analysis was repeated for both the Fluidigm/Smart-
Seq dataset (84 and 113 single cells for resistant and parental cell
lines, respectively) and the 10x datasets (3085 and 3178; see the
Methods section and the Supplementary Material section 4 for
further details).

In Figure 6, we display the difference of the Spearman cor-
relation coefficient between the expression profile of the DEGs
obtained from the denoised expression matrix and the bulk
expression profile (computed for each single cell), and the one
computed on the profiles of DEGs determined from the original
expression matrix.

Noteworthy, most approaches produce an increase of the
correlation with respect to the bulk expression profile. In par-
ticular, kNN-smoothing, MAGIC and SAUCIE deliver a median
Spearman delta > 0.10 for both the Fluidigm/Smart-Seq and the
10x datasets, while bayNorm, ENHANCE, SAVER, SAVER-X and
scVI show a median Spearman delta > 0.10 for the latter protocol
only.

Overall, this result indicates that, in many cases, imputa-
tion and denoising methods might be effective in improving
downstream analyses, such as the identification of DEGs.

Computation time (simulations)

Figure 7 reports the results of the computational time assess-
ment on three simulated datasets: (i) non-UMI full-length (100
cells) (ii) UMI (3000 cells), and (iii) UMI (10 000 cells), with respect
to {500, 2000, 5000} genes, plotted in logarithmic scale.

We can observe that all methods suffer an approximately
exponential increase of computational time with respect to
the number of cells and the number of genes, with extremely
significant difference in magnitude. Overall, the most scalable
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Figure 6. Performance assessment on identification of DEGs (real-world data). Assessment of identification of DEGs, as computed on RW-D#4 [93]. DEGs between

parental and resistant cell lines of RW-D#4 are identified via Wilcoxon test (P < 0.05), both starting from the original scRNA-seq dataset and from the corresponding

denoised matrices, for both Fluidigm/Smart-Seq and 10x datasets (panel A and B). The Spearman correlation coefficient between the expression profile of all single

cells and the corresponding bulk expression profile is computed with respect to all the DEGs included in the distinct lists. The distribution (on all single cells) of the

difference between the Spearman correlation coefficient computed with original data matrix and that computed with the denoised version is then shown as boxplots

for both 10x and Fluidigm/Smart-Seq datasets. In the rightmost panels, the baseline distribution of the Spearman correlation coefficient between the NEM and bulk

data (with respect to the corresponding list of DEGs) is shown, for both scenarios.

algorithms appear to be ALRA, kNN-smoothing and scRMD
while, in general, matrix theory appears to be the most
computationally efficient category.

Summary of the performance assessment on denoising
and imputation methods

In Figure 8, we present a recapitulation of the performance
assessment. The schema includes seven panels, structured as
follows:

• imputation of dropout events,
• recovery of gene expression profiles,

• characterization of cell similarity,
• identification of DEGs,
• computation time,
• task,
• release code quality.

In particular, we selected a subset of simulated datasets,
characterized by selected parameter settings in terms of
single-cell number ({100, 3000, 10000}), sequencing protocol
{non-UMI full-length, UMI} and number of genes (2000 for all
settings)—and all four real-world datasets (see the Methods
section), which we employed to compute a schematic ranking of
all methods with respect to the distinct tasks.
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Figure 7. Computational time assessment. Running time of each method in denoising/imputing datasets with increasing number of cells and genes. In (A) results with

100 cells, in (B) results with 3000 cells and in (C) results with 10 000 cells. Values are plotted in logarithmic scale.

More in detail, for each selected parameter setting of the
simulated dataset and for each real-world dataset, we ordered all
19 methods with respect to the average values of the following
metrics:

(i) average Spearman correlation delta for zero entries of the
NEM (for imputation of dropout events),

(ii) average Spearman correlation delta on the whole expres-
sion matrix (for recovery of gene expression profiles),

(iii) average silhouette delta (for characterization of cell similar-
ity),

(iv) average Spearman correlation delta (for identification of
DEGs),

(v) computation time.

The ranking is visually represented with dots with respect to
each experimental setting, where the largest dot corresponds to
the best performing method (green) and the smallest dot to the
worst performing method (red).

The task panel indicates whether each method performs
either denoising or imputation (see the Introduction section
and Supplementary Material section 1 for a rigorous classifica-
tion of the two tasks). Finally, the last panel reports a summary
of selected quality code metrics, which were used to evaluate the
different tools. In particular, usability and documentation range
from 1, i.e. the worst result, to 4, corresponding to the best score.
Usability is calculated by considering a set of characteristics that
contribute in worsening the overall usability of the tool: (i) either
input preprocessing, preliminary operation, e.g. clustering, or
output post-processing, e.g. re-normalization, are required to the
user; (ii) at least one parameter depends on the input, i.e. a grid-
search is required; (iii) parameters meaning is not intuitive, e.g. it
has no biological meaning; (iv) the tool is not available on a pack-
age distribution platform, e.g. Bioconductor or pip/conda. If a
tool has none of the previously introduced features is assigned
to the maximum score of 4; otherwise, the scoring is reduced to
a minimum of 1. Documentation score is assigned as follows: 1
indicates that the authors did provide neither a documentation

nor a detailed tutorial, 2 indicates that the authors provided a
tutorial but did not write a detailed explanation for the param-
eters, 3 indicates that a detailed tutorial is available and 4 indi-
cates that the authors provided both a detailed tutorial and a full
explanation of all parameters. Finally, we indicate both whether
the program is maintained, i.e. updated in the past 2 years, and
the programming language on which the tool was implemented.

Discussion
We presented a review of the current state-of-the art of compu-
tational approaches for denoising and imputation of scRNA-seq
data. Extensive tests on both real and synthetic datasets allowed
to evaluate the performances and the robustness of each method
under different experimental scenarios.

In light of the presented results, distinct methods appear
to be more suitable for different tasks. In particular, ENHANCE,
MAGIC, SAVER, and SAVER-X provide the best overall compro-
mise and show robust performances with respect to all consid-
ered tasks. In addition to such methods, bayNorm and DrImpute
are especially effective in recovering the true expression pro-
files and imputing dropout entries, while kNN-smoothing and
scVI in improving the characterization of cell similarity and the
grouping of single cells in coherent subpopulations, as well as
the identification of DEGs.

We also note that, as expected, most methods appear to
struggle with non-UMI full-length datasets, likely due to the
low number of observations (cells) as compared with the high
number of variables (genes). Furthermore, as already mentioned
and as reported in [110], denoised expression values returned
by any method should be considered with caution, due to the
presence of possible artifacts, as proven by the low correlation
with GT expression profiles from simulations recorded in many
cases and, particularly, with non-UMI full-length datasets.

By focusing on machine learning frameworks, we notice
that methods that employ assumptions on biological variability
and technical noise (i.e. DCA, SAVER-X, scVI) typically exhibit
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Figure 8. Summary of the performance assessment on denoising and imputation methods. The five leftmost panels report a schematic ranking of all 19 tested

denoising and imputation methods, as computed on a selected panel of synthetic and real-world datasets, in terms of average Spearman correlation delta for zero

entries of the NEM (for imputation of dropout events), average Spearman correlation delta on the whole expression matrix (for recovery of gene expression profiles),

average silhouette delta (characterization of cell similarity), average Spearman correlation delta (identification of DEGs) and computation time. The size of each round

marker is proportional to the ranking, with the largest (green) dots corresponding to the best performing tool and the smallest (red) dots to worst performing tool, with

respect to the considering metric. The task panel indicates whether the method can perform either denoising or imputation tasks. Finally, the rightmost panel reports

a summary of a quality code metrics that were used to evaluate the different tools in terms of usability, documentation, maintenance and availability (please refer to

the Methods section (Summary of the performance assessment on denoising and imputation Methods) for further details).

better performances, hinting at the importance of including
prior knowledge to inform the learning algorithms. Model-
based methods present a typically good performance in both
imputation and expression recovery, yet at a usually high com-
putational cost, and generally showing suboptimal performance
in cell similarity enhancement. Matrix theory-based techniques
show good performance in terms of characterization of cell
similarity, in addition to noteworthy scalability, even with large
datasets. Finally, data smoothing approaches present typically
good performances, yet with significant differences according
to the specific task.

All in all, the performance of all methods appear to be highly
dependent on the specific features of the dataset, as very distinct

results are observed for the same method in different experi-
mental scenarios, as recapped in Figure 8. This summary should
guide potential users in selecting an optimal method according
to the research needs and the available data types.

We further note that a review on a similar subject can be
found as a preprint in [35]. Despite achieving similar conclusions
on several methods included in our review, such work does
not include comparisons on simulated data, which allow to
evaluate a number of metrics with respect to the GT. For instance,
certain methods that were identified as highly performing in
[35], appear to struggle in dealing with true expression profiles
recovery, an effect that can be evaluated only via simulations.
The virtually unlimited number of in silico scenarios that can

10 s
1 m 1 2 h 27 h

Time scale
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be generated via methods such SymSim [89] suggests that simu-
lations should be increasingly used to quantitatively assess the
performance of data science methods and especially to test the
robustness of their results.

Possible limitations of our assessment might be related to
the application of most methods with default parameters, while
one can expect improvements when fine tuning the parameters.
In this respect, setting guidelines provided by the authors were
followed when present and appear to be extremely beneficial to
increase the overall usability and performance of the methods.

We also recall that for some methods, such as those based on
AEs, it would be possible to use the latent variable space to per-
form single-cell clustering, while in our analysis we chose to use
the denoised expression profiles, to provide a fair comparison
for all methods.

We finally remark that scalable methods for denoising of
single-cell transcriptomic data might pave the way for refined
downstream analyses, for instance, by improving the reliability
and accuracy of variant calling pipelines from scRNA-seq data
to provide an accurate mapping of genotype and phenotype of
single cells [111, 112], as well as by allowing a better estimation
of metabolic fluxes from scRNA-seq data in the investigation of
cancer metabolism [113, 114].

Key Points
• Extensive tests on synthetic and real datasets pro-

vide a quantitative assessment of the performance of
denoising and imputation methods in distinct scenar-
ios.

• Some methods are effective in improving the char-
acterization of cell similarity, some others in recov-
ering the true gene expression profiles and imputing
dropouts.

• Appropriate assumptions on the noise model are ben-
eficial to recover lost information.

• Overall, ENHANCE, MAGIC, SAVER and SAVER-X con-
stitute a good compromise on all tasks.

• Corrected expression values returned by any method
should be considered with caution in downstream
analyses.

Supplementary Data

Supplementary data are available online at https://academi
c.oup.com/bib.

Data availability

The source code used to replicate all our analyses, including
synthetic and real datasets, is available at this link: https://
github.com/BIMIB-DISCo/review-scRNA-seq-DENOISING.
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.

3.2 [DNA]Inference of clonal trees from single-cell mutational
profiles

3.2.1 Introduction

Phylogenetics. A phylogenetic tree is a graph that describes the pattern of descent
among individuals (e.g., species, cancer clones, etc.) by considering their similarities in
terms of phenotypic or genetic characteristics. This graph in typically a tree, where the
root corresponds to the common ancestor of the population under study, and it contains
those features that are common to all individuals. The leaves in the tree are the observed
individuals and the internal nodes correspond to unobserved events, as each node is the
unobserved most recent common ancestor of all its descendants. Each branch in the
tree corresponds to the accumulation of one or more events that distinguish the child
from the parent node. An example is Darwin’s tree of life [58, 62], which represents
the evolution of life and describes the temporal relationships between living and extinct
organisms. Reviews for the reconstruction of phylogenetic models are presented in [5,
6].

Cancer phylogenetics. The standard phylogenetic analysis can be applied to can-
cer data, leveraging DNA sequencing technologies that allow to measure the genomic
sequence in biological samples. As described in section 2.1.4.1, cancer is an evolution-
ary process characterized by the accumulation of mutations, which can correspond to
SNVs, more complex Structural Variants (SV) or CNAs. The process is initiated by one
cell that acquires an alteration conferring a selective advantage with respect to the rest
of the population, which gets propagated to its successors. Disease progression leads
to the emergence, competition and (positive/negative) selection of genetically distinct
subpopulations of cells called clones [3], as cancer evolves into multiple heterogeneous
subpopulations that accumulate different mutations.
Thus, we can distinguish between clonal events that are acquired early in the disease
and are present throughout the tumor, and subclonal events that are acquired later on
and affect only subsets of the tumor cells. Please note that above we gave a general
definition of a clone as a set of genetically distinct cells. However, cancer is the result of
a complex interplay between different factors (e.g., genome, chromatin, gene expression),
and the exact definition of cancer clone is still subject of debate [138]. Given that during
disease progression only a subset of the mutations (the so-called driver mutations) confer
a selective advantage to cells, and we don’t want to consider as a clone a set of cells that
is characterized by a distinct mutational pattern but has no biological difference from
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the other tumor cells, we can define a clone as a set of cells that are characterized by a
growth/survival advantage with respect to the rest of the population [138].

Thus, it is of great interest to reconstruct the evolutionary relationship between clones
that emerge during disease progression. We can identify three distinct tasks: (i) detecting
which mutations are present in cells, (ii) detecting the clonal mutations and identifying
the subclones present in the sample and (iii) reconstructing the evolutionary history of
the tumor. The types of alterations specified in the previous section (SNV, CNV and
SV) need specific computational tools to be detected in each sample, and CNVs require
specific frameworks to model their evolution [106, 42, 71], which are outside the scope of
this work. Thus, throughout this chapter we will refer to works that deal with SNVs and
SV, and we use the term mutation to indicate these two types of mutations. Task (i)
is carried out exploiting technologies for DNA sequencing to get the genomic sequence
from the biological sample and using computational methods to compare the obtained
sequence with a reference for detecting SNVs and Structural Variants. Many efforts have
been recently carried out to reconstruct the clonal structure of a sample and to build
models of cancer evolution from available data. Some approaches tackle both the problem
of detecting clones in the sample and reconstructing their evolutionary relationships
[53] while other works present approaches to reconstruct the clonal structure [138, 44].
The reason because there is great interest for such methods is that by characterizing
the evolutionary history of a tumor it is possible to: (i) distinguish between types of
evolution e.g., linear, branching, neutral, or punctuated [70]; (ii) assess the effect of
therapies [185]; (iii) evaluate the fitness pressure of clones (e.g., selection coefficients
or clonal prevalence variation) [178]; (iv) assess the presence of preferential temporal
ordering (e.g, selective advantage relations)[19, 114, 158, 162]; (v) identify prognostic
bio-markers [175]; (vi) date the key cancer evolution events [143]; (vii) investigate the
genotype-phenotype relation; (viii) predict the possible future evolution of the tumor
[36, 113].

Clonal trees Given the final goal of reconstructing a tree describing the ancestral
relationship between clones, it is possible to reconstruct two types of trees: phylogenies
and clonal trees. On the one hand, the former have been described in the previous
paragraph, and are characterised by having observed clones on the leaves in the tree.
Clonal trees on the other hand are not characterised by that constraint: edges correspond
to ancestral relationships between two clones and they are labeled with the mutations
that distinguish the parent from the child [53]. Given one node v, the mutations found
on the shortest path between the root and v define the genotype of the corresponding
clone, i.e., its set of driver mutations.
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3.2.2 Improving the clonal tree inference with COB-tree.

Over the last years different computational approaches have been presented to recon-
struct clonal trees from bulk [53] and single cell data [196, 63]. For instance, LACE [196]
is a method that leverages single-cell data to reconstruct longitudinal models of cancer
evolution, by solving a matrix factorization problem optimizing a weighted log-likelihood
through a Markov chain Monte Carlo (MCMC) search schema. The final output of the
algorithm is one model describing the evolutionary history of the tumor.
The approximated computational complexity of LACE to reach convergence is
O(nm3 log(m)), where n is the number of observations and m is the number of
mutations. Thus, for large values of n and m the amount of time and computational
resources required would become too high to reach convergence. model may fail to
reach convergence. In addition to this problem, there may be multiple equivalent
solutions that have the same likelihood but correspond to distinct topologies, and
by returning only one maximum likelihood solution all the equivalent ones explored
during the MCMC search are ignored. Thus, we worked on a method to (i) explore
the solution space explored during the MCMC search and (ii) exploit regularities in
the search space to return one Consensus Optimum Branching Tree (COB-tree) that
summarises the trees explored during the MCMC. This method is not designed to work
strictly with the output of LACE, but it takes in input a list of trees generated with
any MCMC based algorithm and it returns the COB-tree solution. In order to assess
the performance of our COB-tree algorithm we simulated multiple synthetic datasets
with a different number of mutations, and we also present a case study on a real dataset
containing longitudinal samples. To explore the solution space we build a 3-dimensional
representation that takes into account both the similarity between solutions and their
likelihood value: 2 dimensions encode the relative distance among the different trees,
and a third dimension corresponds to their Negative Log Likelihood. This work entitled
”Exploring the solution space of cancer evolution inference frameworks for single-cell
sequencing data” was presented in the 16th International Workshop on Artificial
Life and Evolutionary Computation (WIVACE 2022), and it has been accepted for
publication in the conference proceedings.
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Abstract. In recent years, many algorithmic strategies have been devel-
oped to exploit single-cell mutational profiles generated via sequencing ex-
periments of cancer samples, to return reliable models of cancer evolution.
Here, we introduce the COB-tree algorithm, which summarizes the solu-
tions explored by state-of-the-art methods for clonal tree inference, to re-
turn a unique consensus optimum branching tree. The method proves to be
highly effective in detecting pairwise temporal relations between genomic
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melanoma xenografts shows significant differences between the COB-tree
solution and the maximum likelihood ones.
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In cancer data science, many efforts are devoted to the design of methods for
the reconstruction of cancer evolution models from sequencing data [2, 27, 21, 16,
22, 3]. Indeed, such models are becoming essential to identify possible regularities
and repeated evolutionary patterns across tumors, as well as to investigate the
impact of therapeutic strategies [6]. In particular, single-cell DNA and RNA se-
quencing experiments, performed, e.g., on biopsies or on patient-derived models,
are a priceless source of high-resolution data on individual tumors.
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Despite the typically high levels of noise, mostly due to technical and experi-
mental limitations [20], with such data it is possible to call genomic variants (e.g.,
single-nucleotide variants, indels, structural alterations, copy-number alterations)
via consolidated pipelines [18, 28, 24]. Accordingly, the most widely used methods
to reconstruct the evolutionary history of tumors from single-cell mutational pro-
files rely on robust statistical frameworks to return accurate models by reducing
the impact of noise (see [16, 23, 22]).

In this lively field, key attention is devoted to the characterization of the so-
lution space of the inference frameworks. This can be of help both from the the-
oretical and the application perspectives [27, 1, 8]. In brief, the approximate es-
timate of the computational complexity of the statistical frameworks proposed in
some of the most recent works in the field, namely SCITE [16], LACE [22], VERSO
[25], is O(nm3 log(m)) to reach MCMC convergence, where n is the number of
cells/samples (observations), and m is the number of mutations (variables), as ini-
tially discussed in [17]. Thus, for mutation tree reconstructions, it is evident that
the complexity mainly depends on the number of mutations included in the final
model. Unfortunately, as this number increases (i.e., more mutations are present)
it may becomes unfeasible to reach convergence. In addition, in many cases, the
algorithm may return equivalent solutions, which share the same likelihood value,
but with different topologies.

For these reasons, in this work we aim at: (i) characterizing the space of solu-
tions explored during the MCMC inference of state-of-the-art algorithms for the
reconstruction of clonal trees from single-cell mutational profiles; (ii) summarising
the collection of solutions, so to return a unique Consensus Optimum Branching
tree (COB-tree), instead of the Maximum Likelihood one (ML tree). In other words,
the goal is to design an algorithm that takes as input a collection of trees sampled
during the MCMC of an arbitrary method for clonal tree inference, and exploits
the regularities of the solution space to return a unique COB-tree solution.

Note that similar approaches have already been employed in classical phylo-
genetic studies. For example, BEAST 2 [5] uses the Maximum Clade Credibility
method, whereas in [19] the authors propose to employ the Majority Rule. Such
approaches could not be directly employed in our analyses due to the intrinsic dif-
ferences between phylogenetic trees and clonal trees. In particular, the former are
binary trees, and thus the number of edges is fixed and depends on the number of
samples. This is not valid in clonal trees, where any node could have an arbitrary
number of outgoing edges.

We also point out that the opportunity of computing consensus trees in cancer
phylogeny is debated. For example, in [1] the authors argue that summary methods
returning only a single tree may not accurately represent the topological features
of the solution space. By assuming that the solution space is rugged and includes
different local minima related to clonal trees displaying distant topologies, the
authors suggest to cluster the tree solutions and, successively, apply a summary
method for each cluster. Such approach is not computationally feasible for our
goal, because the clustering step is limited to a small number of (small) trees,
which is orders of magnitudes lower than the trees sampled during an MCMC. We
also note that, in their conclusion, the authors state that a proper characterization
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of the solution space under an error model of single-cell mutation profiles has not
been presented yet.

1 Materials and Methods

COB-tree: a new algorithm for clonal tree inference. In this work, we introduce
a new algorithm for the inference of clonal trees from binary mutational profiles.
The general idea is to return a unique consensus tree, obtained by exploiting the
solutions explored during the MCMC of an arbitrary algorithm for clonal tree
reconstruction, such as LACE [22], VERSO [25] or SCITE [16].

In detail, given an edge-weighted digraph in which any weight is the number
of times that a given parental relation is returned during the MCMC (i.e., the
frequency of such edge as sampled by the MCMC, which underlying its posterior
probability), we identify a unique consensus tree by applying algorithms for opti-
mum branching. The outcome COB-tree model includes all nodes connected with
a set of edges that maximises the weight sum. To do this, in our case we employed
the efficient implementation of Tarjan [29] of the optimum branching tree method
originally proposed in [9, 12]. This method is analog to the minimum spanning
tree problem, but when considering a directed graph. Note that our algorithm is:
(i) deterministic; (ii) computationally efficient, to handle the vast number of trees
sampled during an MCMC; (iii) independent of the order of the input tree list.

The algorithmic steps are detailed in the following:

– The COB-tree algorithm takes as input a binary data matrix D, with n rows
representing samples (i.e., single cells or biological samples) and m columns
representing genomic mutations. Each entry of D is equal to 1 if the mutation
is present in a given sample, 0 if it is absent, NA if the information is missing
(e.g., due to low coverage). Such data format is widely used in cancer phylogeny
studies. For example, the same data format was used in [22].

– In the first step, a generic algorithm for the reconstruction of clonal/mutational
trees (e.g., LACE, VERSO or SCITE) is applied to input data D, recording all
the solutions sampled during the MCMC. In the output tree T nodes represents
mutations (clones) and edges represent parental relations, as in [22].

– For each tree T p sampled during the MCMC, we generate the corresponding
adjacency matrix Mp with dimension m×m , where p ∈ [1, . . . r] and r is the
number of MCMC iterations.

– We compute a weighted adjacency matrix W with dimensions m×m, where

each entry is defined as: Wi,j =
∑r

p=1 Mp
i,j

r . So, Wij stores a weight that corre-
sponds to the frequency by which the mutation i is found as parent of mutation
j in all sampled trees. W represents a edge-weighted digraph.

– Finally, we apply the Tarjan algorithm to W in order to find the COB-tree
model.

Synthetic data generation. In order to both characterize the solution space and test
the performance of the COB-tree algorithm, we generated a number of simulated
datasets with the following procedure. We first randomly generated a number of
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ground-truth topologies Tgt. In particular, given a specific number of nodesm (i.e.,
mutations or clones), 20 topologies are created. Starting from the root, we attached
a random number (between 2 to 5) of children nodes. We then selected one of the
children nodes and repeated the process until all the nodes were attached. Trees
including 50, 100 and 200 mutations were considered, thus, a total of 60 topologies
are eventually generated. An example of a tree with 50 mutations is reported in
figure 3.

We sampled 1000 single cells to generate the ground-truth single-cell genotypes
matrixDgt (cells ×mutations) from each topology Tgt. In particular, we populated
each row of Dgt (i.e., cell genotype) by randomly selecting a node. Then, the
genotype of a cell (i.e., row of Dgt) is populated by assigning 1, if the mutation is
included in the shortest path from the selected node to the root, or 0, otherwise.
Notice that this path is unique because each node can have only one parent. Since
it is unrealistic to observe a high number of clones in a cancer sample, we increased
the probability of selecting any of the leaf nodes (i.e., the most recent clones) with
respect to that of selecting one of the internal nodes. The former probability is
5 times higher than the latter. As a result, Dgt is a binary matrix with 1000
rows and m columns (notice that each clone can be defined by the last mutation
accumulated, so the number of clones equals the number of mutations).

In order to include data-specific noise in the simulated datasets, we defined
low, middle, and high noise levels by setting the rates of False Positives (α), False
Negatives (β), and Missing values (γ) as follows:

– Low noise level: α = 0.005, β = 0.05, and γ = 0
– Middle noise level: α = 0.01, β = 0.1, and γ = 0.1
– High noise level: α = 0.02, β = 0.2, and γ = 0.2

From eachDgt, 3 different noisy datasetsD are generated, by randomly selecting α
of the entries equal to 1, β of 0 entries and changing them into 0 and 1, respectively.
Then, a fraction γ of all the entries are replaced with missing values (NA).

Simulation settings. The procedure described above yields a total of 180 noisy
datasets. In this preliminary analyses, we employed SCITE [16] as inference frame-
work, since it is one of the state-of-the-art approaches for single-cell mutational
tree inference. In particular, each inference is performed multiple times for each
dataset, with distinct values of MCMC iterations. We performed 10 independent
SCITE runs (with 10 restarts), with the following MCMC iterations:

– for models with m = 50 → [1000, 2000 (short), . . . , 6000 (average),
. . . , 10000 (long)] MCMC iterations,

– for models with m = 100 → [5000, 10000 (short), . . . , 30000 (average),
. . . , 50000 (long)] MCMC iterations,

– for models with m = 200 → [50000, 100000 (short), . . . , 300000 (average),
. . . , 500000 (long)] MCMC iterations.

Performance Metrics. In order to compare the solution provided by the COB-tree
algorithm and the corresponding ML solutions, we considered the differences with
respect the ground-truth topologies on simulated data. To this aim, we computed
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two different metrics (i.e., Parent-Child distance PC and Clonal Genotype errors
GC), which assess either the local or the global structure in terms of errors between
the obtained COB and ML trees, and the ground-truth topologies.

– Parent-Child distance (PC). This metric is widely used to compare different
trees, for example in [1, 13]. In brief, the parent-child distance between two
trees enumerates the edges unique in either trees. Small values of this metric
reflect a correct recovery of the relations between two consecutive nodes, but
disregard their position in the topology, so it is considered a local measure.
We compute the PCML, and PCCOB for evaluate the goodness of maximum
likelihood and optimal branching tree respectively.

– Clonal Genotype errors (CG). As explained above, each clone can be associ-
ated with the node representing the last accumulated mutation. So, its geno-
type includes all the mutations in the path from such node to the root. Thus,
clonal genotypes depend on the overall topology. For each inference, we trans-
formed the ground-truth topology, the ML tree, and the COB-tree model into
the corresponding clonal genotype matrices. Then, we computed the Ham-
ming distance, i.e., the total number of errors, between the clonal genotype
of the ground-truth and either the ML tree (CGML) or the COB-tree model
(CGCOB).

Finally, we define ∆PC = PCML − PCCOB distance and ∆CG = CGML −
CGCOB . Positive values indicate an improvement of our approach with respect to
the ML tree.

Characterization of the solution space. In order to provide a way of characterizing
and visualizing the solution space of the inference framework, we decided to plot
the distribution of the sampled trees during the MCMC. To do this, we applied
Principal Coordinate Analysis (PCA) [15, 14] on the distance matrix computed
considering the PC distance.

This approach returns a 2-dimensional representation of the tree space, where
the relative distance among each point (i.e., sampled trees) is maintained. We
added the value of the likelihood L of each tree as a third dimension, by computing
the − ln(L). Notice that, after the transformation, the best likelihood values are
the lowest.

Real data processing As a proof of principle, we applied the COB-tree algorithm to
a real-world longitudinal scRNA-seq dataset of patient-derived xenografts (PDXs)
of BRAFV600E/K mutant melanomas produced in [26]. The authors generated four
datasets collected at different time points, before, during, and after therapy ad-
ministration of a BRAF/MEK-inhibitor with a total of 674 cells. For the aim of
the current work, we pre-processed them as independent datasets to defined a set
of highly confided SNVs, by using GATK pipeline [10] for alignment and variant
calling, and by using filters based on statistical significance (explained in the fol-
lowing). Thus, we selected a set of 55 mutations with a highly significance, well
separated from the background noise.

For variant calling from scRNA-seq data, we applied the same steps performed
in [22] which are here briefly reported:
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1. Considering the expression data, we discarded cells with a high fraction of
mitochondrial reads. So, we kept 475 high-quality cells.

2. Via SRA toolkit we downloaded the FASTQ files (one for each cell) from the
GEO dataset using the accession number GSE116237.

3. Using Trimmomatic (v. 0.39) [4], we removed the nucleotides with a poor
quality score.

4. Using 2-pass mode STAR aligner [11], we aligned the reads to the human
reference genome (GRCh38 release). This step generate one SAM file for each
cell.

5. We added read groups, we sorted, we marked duplicates and we indexed the
reads in each BAM file via Picard tools

6. With GATK (v. 3.8.1) we hard clipped intronic regions (via SplitNCigarReads
command) and we re-calibrate the base alignment (via BaseRecalibrator com-
mand)

7. Finally, we used HaplotypeCaller and VariantFiltration to call Single Nu-
cleotide Variants and to remove the ones with poor quality score (we applied
default parameters).

The above steps generated a VCF file for each cell which we merged together
and load it into an R envirorment, as matrix with cells as row and mutations as
columns, to perform downstream filtering steps. In particular:

1. Considering each entry of the mutational matrix, we set as NA (i.e., missing
data) mutations that fall in a position covered with less than 3 reads

2. We removed mutations (columns) which display a frequency of missing data
higher than 0.4 in at least one time point.

3. We compute the frequency of every mutation in each time point and we remove
rare mutations by keeping only those with a frequency sum higher than 0.15

We selected 55 high-quality mutations, and we use those mutational profiles
for generating the input file to infer the tumour evolution via SCITE. We run one
inference using a false discovery rate equal to 0.02, an allele dropout rate of 0.2,
and 30 restarts of Markov Chain Monte Carlo with a length of 20000 steps.

SCITE considers the first 25% trees sampled as burning and discards them.
Thus, we sampled the remaining 450000 trees from which we removed the ones
with a likelihood value less than 1.3× Maximum log-Likelihood (we highlight that
the log-likelihood is negative so we are discarding trees with a low likelihood value).
Finaly, we draw the solution landscape by considering 4740 unique trees using the
approach described in the above section.

2 Results

Characterization of the search space. We first characterized the search space of
the clonal trees inferred via one of the state-of-the-art approaches for mutational
tree inference – SCITE [16]. SCITE was selected for the extremely efficient im-
plementation and the good computational costs. The experiments were executed
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by repeatedly performing the inference on synthetic datasets generated from a
number of distinct topologies (the whole simulation settings is described in the
Materials and Methods section).

In figure 1 we report the results of the PCA applied on the trees sampled
from the inference of a selected dataset, generated from a tree topology including
m = 100 mutations. We show the solution considering three different MCMC
lengths i.e., 10000 (short), 30000 (average), and 50000 (long) steps.

As one can see, the 10 independent chains tend to reach the same global mini-
mum but, when the MCMC is short, the trees with better likelihood are far away
from each other. We also marked the COB-tree solutions with red dots, and they
appear to be placed in a central position among the trees sampled late in the
inference. This interesting result suggests that, in this case, applying a consen-
sus approach that does not depend on a clustering step seems to be a reasonable
algorithmic choice.

Average MCMC Long MCMCShort MCMC

-
doohilekiL goL

Fig. 1. Visual representation of the solution space explored during the inference of a
clonal tree from the same synthetic single-cell dataset (with 100 mutations and 1000
cells), in three independent MCMC runs with 10 restarts (via SCITE). From left to right,
the total number of MCMC increases (10000, 30000, and 50000 steps). The solution space
is defined by computing a PCA on the distance matrix (using parent-child distance) of the
trees sampled during each inference. Z-axis reports the corresponding likelihood value.
Red dots indicate the position of the COB-tree solutions.

Performance assessment of COB-tree. We applied the COB-tree algorithm to the
synthetic datasets described in the Materials and Methods section. To this end,
we considered all the trees sampled during the MCMC. Since SCITE discards the
first 25% trees, we only considered the remaining 75% and kept only the trees
with a likelihood between Lbest and Lbest×1.3, so to focus on the final part of the
MCMC. The Tarjan algorithm was finally applied to retrieve the unique COB-tree
model. Notice that we also kept track of the ML tree (Lbest). We considered three
MCMC lengths to evaluate how this affects the performance the COB-tree method.
Results are reported in figure 2.
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It is possible to observe how our approach improves the local phylogenetic
structure, by recovering a better ordering of the accumulation of mutations. In-
stead, the improvement is not that evident when considering the CG metric under-
lying the global phylogenetic structure. Even though the COB-tree method often
improves this metric as well, it sometimes returns trees with a global structure
very far from the ground-truth.
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Fig. 2. Differences between Maximum Likelihood and COB trees are reported. Positive
values of ∆CG errors or ∆PC distance indicate an improvement for the global structure
or the local structure of the COB-tree solutions over the ML ones. Colours indicate the
level of noise (i.e., rate of FP events, FN events, and missing values) included in the
simulated datasets.

Note that it is possible to have trees with high PC distance values and low
CG metric values. A possible explanation is illustrated in the example depicted
in figure 3. In the plot, it is possible to observe how COB-tree retrieves a better
ordering of mutation pairs. Still, the few errors drastically changed the global
topology of the tree by shifting an entire subtree.

Application of COB-tree to PDX melanoma datasets. We finally applied the COB-
tree algorithm to a real-world dataset of patient-derived xenografts (PDXs) of
BRAFV600E/K mutant melanomas. The preprocessing steps are described in the
Materials and Methods section.

The model includes 55 nodes. In Figure 4 one can find both the COB-tree
solution and three equivalent ML solutions. As one can see, significant differences
are present in the model.
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Fig. 3. The 3 clonal tree comparison highlights the difference between local and global
tree structures. The order of mutational events are improved in the COB-tree solution
(wrong edges marked with red dots, ∆PC = +16), while the global structure is worse
(∆CG = −48) due to a error propagation of few nodes being misplaced (most relevant
are highlighted with green circle). The numbers in the nodes indicate distinct mutations.

3 Conclusions

The preliminary analyses illustrated in this work show that in case one is interested
in defining the ordering of mutational events the COB-tree algorithm is a reliable
and effective option.

This aspect might be of particular relevance, for instance, if someone is inter-
ested in detecting possible patterns of repeated cancer evolution across different
patients [6], as this might help in identifying possible therapeutic targets, as well
as weak points of specific tumor types.

Currently, other methods to generate aggregated trees are available [7]. They
are based on specific assumptions and exploit different strategies to summarize
the solution space. A comparison between them and COB-tree could be useful to
highlight the specific behavior of each method.

Further development of the COB-tree algorithm are underway, aimed, e.g., at
better exploiting the properties of the solution space so to improve the performance
with respect to the global structure too. However, on the basis of the simulation
results and on the fact the – by definition – the COB-tree algorithm returns a
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Fig. 4. Clonal tree comparison between the COB-tree solution and three equivalent max-
imum likelihood solutions returned by SCITE considering the mutational profiles from
the melanoma PDX dataset. The node labels define the gene involved and the genome
position of the SNVs. The inference was performed with SCITE using a false discovery
(fd) rate of 0.2, an allele dropout (ad) rate equal to 0.2, 30 restarts, and a MCMC with
20000 steps.

unique solution, we believe that it could be a reliable and robust option for clonal
tree inference.

4 Acknowledgments

This work was supported by a Bicocca 2020 Starting Grant and Google Cloud
Academic Research Grant to DR and FA. Partial support is also granted by the
CRUK/AIRC Accelerator Award #22790 “Single-cell Cancer Evolution in the
Clinic”. The funders had no role in the design and conduct of the study, analysis,
and interpretation of the data, preparation of the manuscript, and decision to
submit the manuscript for publication.

References

[1] Nuraini Aguse, Yuanyuan Qi, and Mohammed El-Kebir. “Summarizing the
Solution Space in Tumor Phylogeny Inference by Multiple Consensus Trees”.



COB-tree 11

In: Bioinformatics 35.14 (July 15, 2019), pp. i408–i416. doi: 10 . 1093 /
bioinformatics/btz312.

[2] Philipp M Altrock, Lin L Liu, and Franziska Michor. “The mathematics of
cancer: integrating quantitative models”. In: Nature Reviews Cancer 15.12
(2015), pp. 730–745.

[3] Fabrizio Angaroni et al. “PMCE: Efficient Inference of Expressive Models of
Cancer Evolution with High Prognostic Power”. In: Bioinformatics (Oct. 14,
2021), btab717. doi: 10.1093/bioinformatics/btab717.

[4] Anthony M Bolger, Marc Lohse, and Bjoern Usadel. “Trimmomatic: a flex-
ible trimmer for Illumina sequence data”. In: Bioinformatics 30.15 (2014),
pp. 2114–2120.

[5] Remco Bouckaert et al. “BEAST 2: A Software Platform for Bayesian Evo-
lutionary Analysis”. In: PLOS Computational Biology 10.4 (Apr. 10, 2014),
e1003537. doi: 10.1371/journal.pcbi.1003537.

[6] Giulio Caravagna et al. “Detecting Repeated Cancer Evolution from Multi-
Region Tumor Sequencing Data”. In: Nature Methods 15.9 (9 Sept. 2018),
pp. 707–714. doi: 10.1038/s41592-018-0108-x.

[7] Sarah Christensen et al. “Detecting Evolutionary Patterns of Cancers Us-
ing Consensus Trees”. In: Bioinformatics 36 (Supplement 2 Dec. 30, 2020),
pp. I684–I691. doi: 10.1093/bioinformatics/btaa801. pmid: 33381820.

[8] Sarah Christensen et al. “Detecting evolutionary patterns of cancers using
consensus trees”. In: Bioinformatics 36.Supplement 2 (2020), pp. i684–i691.

[9] Yoeng-Jin Chu. “On the Shortest Arborescence of a Directed Graph”. In:
Scientia Sinica 14 (1965), pp. 1396–1400.

[10] Mark A DePristo et al. “A framework for variation discovery and genotyp-
ing using next-generation DNA sequencing data”. In: Nature genetics 43.5
(2011), p. 491.

[11] Alexander Dobin et al. “STAR: ultrafast universal RNA-seq aligner”. In:
Bioinformatics 29.1 (2013), pp. 15–21.

[12] Jack Edmonds. “Optimum Branchings”. In: Journal of Research of the Na-
tional Bureau of Standards, B 71 (1967), pp. 233–240.

[13] Kiya Govek, Camden Sikes, and Layla Oesper. “A Consensus Approach
to Infer Tumor Evolutionary Histories”. In: Proceedings of the 2018 ACM
International Conference on Bioinformatics, Computational Biology, and
Health Informatics. BCB ’18. New York, NY, USA: Association for Com-
puting Machinery, Aug. 15, 2018, pp. 63–72. isbn: 978-1-4503-5794-4. doi:
10.1145/3233547.3233584.

[14] J. C. Gower. “Adding a Point to Vector Diagrams in Multivariate Analysis”.
In: Biometrika 55.3 (Nov. 1, 1968), pp. 582–585. doi: 10.1093/biomet/55.
3.582.

[15] J. C. Gower. “Some Distance Properties of Latent Root and Vector Meth-
ods Used in Multivariate Analysis”. In: Biometrika 53.3-4 (Dec. 1, 1966),
pp. 325–338. doi: 10.1093/biomet/53.3-4.325.

[16] Katharina Jahn, Jack Kuipers, and Niko Beerenwinkel. “Tree Inference for
Single-Cell Data”. In: Genome Biology 17.1 (May 5, 2016), p. 86. doi: 10.
1186/s13059-016-0936-x.



12 D. Maspero et al.

[17] Jack Kuipers and Giusi Moffa. “Uniform Random Generation of Large Acyclic
Digraphs”. In: Statistics and Computing 25.2 (Mar. 1, 2015), pp. 227–242.
doi: 10.1007/s11222-013-9428-y.

[18] Ben Langmead and Steven L Salzberg. “Fast gapped-read alignment with
Bowtie 2”. In: Nature methods 9.4 (2012), pp. 357–359.

[19] Joseph E O’Reilly and Philip C J Donoghue. “The Efficacy of Consensus
Tree Methods for Summarizing Phylogenetic Relationships from a Poste-
rior Sample of Trees Estimated from Morphological Data”. In: Systematic
Biology 67.2 (Mar. 1, 2018), pp. 354–362. doi: 10.1093/sysbio/syx086.

[20] Lucrezia Patruno et al. “A Review of Computational Strategies for Denois-
ing and Imputation of Single-Cell Transcriptomic Data”. In: Briefings in
Bioinformatics 22.4 (July 1, 2021), bbaa222. doi: 10.1093/bib/bbaa222.

[21] Daniele Ramazzotti et al. “CAPRI: Efficient Inference of Cancer Progres-
sion Models from Cross-Sectional Data”. In: Bioinformatics 31.18 (Sept. 15,
2015), pp. 3016–3026. doi: 10.1093/bioinformatics/btv296.

[22] Daniele Ramazzotti et al. “LACE: Inference of cancer evolution models from
longitudinal single-cell sequencing data”. In: Journal of Computational Sci-
ence 58 (2022), p. 101523. doi: https://doi.org/10.1016/j.jocs.2021.
101523. url: https://www.sciencedirect.com/science/article/pii/
S1877750321001848.

[23] Daniele Ramazzotti et al. “Learning Mutational Graphs of Individual Tu-
mour Evolution from Single-Cell and Multi-Region Sequencing Data”. In:
BMC Bioinformatics 20.1 (Apr. 25, 2019), p. 210. doi: 10.1186/s12859-
019-2795-4.

[24] Daniele Ramazzotti et al. “Variant calling from scRNA-seq data allows the
assessment of cellular identity in patient-derived cell lines”. In: Nature com-
munications 13.1 (2022), pp. 1–3.

[25] Daniele Ramazzotti et al. “VERSO: A Comprehensive Framework for the In-
ference of Robust Phylogenies and the Quantification of Intra-Host Genomic
Diversity of Viral Samples”. In: Patterns 2.3 (Mar. 12, 2021), p. 100212. doi:
10.1016/j.patter.2021.100212.

[26] Florian Rambow et al. “Toward Minimal Residual Disease-Directed Therapy
in Melanoma”. In: Cell 174.4 (Aug. 9, 2018), 843–855.e19. doi: 10.1016/j.
cell.2018.06.025.

[27] Russell Schwartz and Alejandro A. Schäffer. “The Evolution of Tumour Phy-
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4
Task B: Computational methods for omics data

integration

As presented in section 1.1, in order to have a complete picture of the system under
study, in addition to perform single-omics experiments, it is necessary to integrate the
information extracted from the multiple layers. In the context of cancer research, data
integration is fundamental. In fact, mechanisms that are responsible for drug resistance
are the result of a complex interplay between different layers, as this might lead to
explanatory and predictive models of disease evolution, supporting experimental and
clinical research in the definition of diagnostic, prognostic and therapeutic strategies.
In this chapter we discuss the main contribution regarding task (B), that is diagonal
integration of multi-omics data. We present two methods, CONGAS and CONGAS+
that integrate respectively RNA-DNA and RNA-DNA-ATAC.

4.1 [DNA] + [RNA] CONGAS
In order to perform data integration the general goal is to map measurements in a shared
latent space, which can be built following two types of approaches: first, it is possible to
exploit deep-learning based methods such as variational autoencoders [84, 121, 136, 189,
193]. These approaches constitute a powerful tool, as they can accommodate known co-
variates and external domain knowledge [121] and they can be used to perform multiple
tasks such as the reconstruction of a joint space and data denoising [189]. By including
covariates and external knowledge, such methods are able to perform data integration
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in two directions: first, by including the batch label as a covariate they can perform
horizontal integration (See Section 1.1 for more details) and remove the non-biological
variability in the data introduced by the batch effect. Second, they are able to inte-
grate data from different modalities, accommodating both the integration of multiomics
measurements performed on the same set of cells (vertical integration) and on different
subset of cells (diagonal integration) [193].
However, the major drawback of deep learning based methods is that the latent space
is not interpretable, and thus in case we want it to reflect a specific biological property
we need to rely on other approaches. For example, given the hierarchy described in
section 2.1.4, it is possible to assume that the Copy Number status of a specific genomic
region predicts linearly the number copies of RNA transcripts for the genes mapped to
that region [111], and this relation can be exploited to define a mapping and integrate the
multiple omics layers. Over the years, different computational methods have been pro-
posed to infer CNAs from single-cell RNA sequencing data. HoneyBadger [89], CaSpER
[150], InferCNV [38] and CopyKAT [165], are designed to be applied on datasets that
consist of a mixture of both tumor and normal cells. In fact, normal cells are used to
compute the baseline expression value for each gene, so that differences in expression
between tumor and normal cells can be imputed to CNAs and are used to infer the copy
number state of tumor cells. However, the presence of normal cells is not guaranteed in
biological samples such as PDOs and cell lines, where the prevalence of tumor cells is
100%.

One method that doesn’t rely on such assumption is clonealign [111], that instead of
using solely scRNA-seq data to extract CNAs, it aims at finding a map between two
measurements: one is single-cell DNA sequencing, from which it is possible to measure
CNAs at the single cell resolution and thus identify the copy number profiles of the
multiple subclones present in a tumor sample. Next, under the assumption that the copy
number status of a segment is a linear predictor for the gene expression of genes mapping
to that segment, clonealing aims at associating to each single-cell gene expression profile
the corresponding CNA clone profile detected from scDNA-sequencing.

Clonealign is a supervised algorithm which requires in input the profiles of all clones
that we aim at detecting in the data, and thus it relies on expensive single-cell DNA
sequencing experiments. Therefore, we investigated whether we could apply the same
linear model linking CNAs and gene expression in an unsupervised framework to detect
new clusters from scRNA-seq data, relying on the output of a bulk DNA sequencing
experiment. We developed CONGAS, a Bayesian method that clusters single-cell gene
expression profiles using CNAs. Our method integrates scRNA-seq with bulk DNA
data, using the latter to reliably identify genomic segments and set Bayesian priors
on the CNAs values for the different clusters. We tested CONGAS on both synthetic
and real datasets, comparing its performance with CopyKAT, InferCNV and clonealign.
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Please notice that the supplementary information of this work is not included here, but
it is available in the online version of the manuscript [194].
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Abstract

Motivation: Cancers are composed by several heterogeneous subpopulations, each one harbouring different genet-
ic and epigenetic somatic alterations that contribute to disease onset and therapy response. In recent years, copy
number alterations (CNAs) leading to tumour aneuploidy have been identified as potential key drivers of such popu-
lations, but the definition of the precise makeup of cancer subclones from sequencing assays remains challenging.
In the end, little is known about the mapping between complex CNAs and their effect on cancer phenotypes.

Results: We introduce CONGAS, a Bayesian probabilistic method to phase bulk DNA and single-cell RNA measure-
ments from independent assays. CONGAS jointly identifies clusters of single cells with subclonal CNAs, and differ-
ences in RNA expression. The model builds statistical priors leveraging bulk DNA sequencing data, does not require
a normal reference and scales fast thanks to a GPU backend and variational inference. We test CONGAS on both
simulated and real data, and find that it can determine the tumour subclonal composition at the single-cell level to-
gether with clone-specific RNA phenotypes in tumour data generated from both 10� and Smart-Seq assays.

Availability and implementation: CONGAS is available as 2 packages: CONGAS (https://github.com/caravagnalab/
congas), which implements the model in Python, and RCONGAS (https://caravagnalab.github.io/rcongas/), which
provides R functions to process inputs, outputs and run CONGAS fits. The analysis of real data and scripts to gener-
ate figures of this paper are available via RCONGAS; code associated to simulations is available at https://github.
com/caravagnalab/rcongas_test.

Contact: gcaravagna@units.it

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cancers grow from a single cell, in an evolutionary process modu-
lated by selective forces that act upon cancer genotypes and pheno-
types (Greaves and Maley, 2012; McGranahan and Swanton,
2015). The fuel to cancer evolution is genotypic and phenotypic cel-
lular heterogeneity, and much is yet to be understood regarding its
effect on evolution and response to therapy (McGranahan and
Swanton, 2017; Turajlic et al., 2019). Notably, the heterogeneity
observed in cancer can also be produced during normal tissue devel-
opment, and therefore the quest for understanding heterogeneity has
implications far beyond cancer (Martincorena, 2019; Martincorena
et al., 2015).

While the evolutionary principle of cancer growth is intuitive to
conceptualize and replicate in vivo (Acar et al., 2020), it is still hard
to precisely measure clonal evolution using sequencing technologies

(Caravagna, 2020). Even if popular single-omic assays from 10�
and Smart-Seq achieve higher resolution than bulk counterparts
(Picelli et al., 2014; Wang et al., 2021), their analysis poses many
challenges (Lähnemann et al., 2020). Nowadays, much hope is put
into multiomics technologies that probe multiple molecules from the
same cell (Macaulay et al., 2015). Multiomics data explicitly gather
DNA and RNA measurements per cell; unfortunately, however,
such assays are still too expensive to scale to more than hundreds of
cells. An interesting opportunity is attempting the integration of dif-
ferent types of single-omic assays that, individually, already scale to
thousands of cells. At least conceptually, the statistical integration
of independent assays comes from mapping one dataset on top of
another, leveraging a quantitative model for the relation between
the sequenced molecules (e.g. we may wish to predict DNA from
RNA, or vice versa).
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In this work, we develop a Bayesian method for total copy num-
ber genotyping from single cells (CONGAS), which integrates total
copy number alterations (CNAs) obtained from bulk DNA sequenc-
ing and single-cell RNA (scRNA) data from independent cells
(Fig. 1a). Our method is similar to clonealign, which uses two
single-cell assays to assign scRNA profiles to tumour clones prede-
termined from low-pass single-cell DNA sequencing (Campbell
et al., 2019). CONGAS and clonealign conceptualize the same linear
model to link total CNAs—i.e. the sum of the major and minor al-
lele copies (Househam et al., 2021)—with RNA counts, but while
clonealign fixes the set of clones from its input and is therefore
supervised (Supplementary Fig. S1), CONGAS is unsupervised and
finds new clusters by leveraging Bayesian priors from the input bulk
(Fig. 1b). Precisely, CONGAS uses input CNAs to define the genome
segmentation and parametrize a prior for total CNAs of each seg-
ment—then each cluster has its posterior distribution over the ploidy
of the segments. We note that the extra input for CONGAS can be
generated from a routine low-pass bulk DNA assay, which is much
cheaper than the single-cell counterpart required by clonealign.

With CONGAS we formulate an unsupervised clustering prob-
lem: we seek to group cells with segment-level RNA profiles that
can be explained by similar CNAs (Fig. 1c and d), inferring CNAs
and clusters jointly. There are methods that are alternative to
CONGAS, for instance InferCNV, HoneyBADGER, CASPER and
copyKAT, that detect CNAs by segmenting scRNA counts (Fan
et al., 2018; Serin Harmanci et al., 2020). These methods, however,
decouple CNA detection from clustering, requiring to select the
number of optimal clusters with some heuristic. Instead, CONGAS
detects subclonal CNAs and clusters cells in a unified model, there-
fore integrating uncertainty with its Bayesian formulation.
Compared to some of the alternative methods CONGAS also has
the advantage of working without reference scRNA expression; this
avoids using RNA tissue databases, or requiring normal cells in the
input scRNA assay. Therefore, CONGAS can be applicable in
designs where the normal signal is difficult to obtain, e.g. with can-
cer organoids. CONGAS can associate CNA-associated cancer sub-
clones to transcriptomic profiles, providing an explicit mapping
between genotype and phenotype at the clone level. This is particu-
larly important in cancer, where we want to characterize how
chromosomal instability drives tumour evolution (Watkins et al.,
2020), or, where we want to understand how precancerous cells can
be causally linked to the onset of cancer (Martincorena, 2019).

2 Materials and methods

The aim of CONGAS is to statistically integrate DNA and RNA
measures for every cell, deriving a measure of total DNA abundance
per segment (i.e. total copy number) and RNA counts per cell. This
accounts for emulating a DNA–RNA multiomics assay, which we
use to cluster cells whose RNA profile can be explained by similar
copy numbers.

2.1 CONGAS
CONGA is a Bayesian method that ‘genotypes’ bulk CNAs on top
of scRNA data; The term genotyping elicits the use in CONGAS of
an input set of CNAs obtained from bulk DNA sequencing, here
used to create Bayesian priors. A vector of input total copy number
profiles drives the calling of subclonal CNAs from single cells, in a
way that new CNAs can be obtained as ploidy changes with fixed
breakpoints. In particular, breakpoints are used to pool RNA counts
per segment, and bulk-level total copy numbers constitute a
Bayesian prior per segment. Therefore, the model is able to infer var-
iations of single-cell CNAs around the input bulk. The CONGAS
likelihood is a mixture of K > 0 Poisson distributions for scRNA
counts per segment, and works also with data normalized in com-
mon units; the likelihood is conditioned on the latent CNAs that we
infer for each of the K cluster, and normalizes counts for library size
and number of genes per segment if required.

A low-pass bulk DNA assay to generate the input CNAs required
for CONGAS is inexpensive. If this is unavailable, RNA

segmentation can also be attempted, or an arm-level segmentation
with constant ploidy 2 can be used to detect large CNAs. Input
CNAs simplify the statistical inference problem and avoid the seg-
mentation of noisy scRNA data. The model chases subclonal popu-
lations that show different total CNAs at the resolution of the input
segments. For instance, it can detect a subclonal population underly-
ing a loss of heterozygosity (Fig. 1b). After pooling RNA counts on
every segment (Fig. 1c), under a linear model that links DNA abun-
dance to RNA counts (Campbell et al., 2019), we use Poisson distri-
butions parameterized by unobserved copy number values to
explain counts (Fig. 1d). By this definition, clonal CNAs—i.e. pre-
sent in 100% of the input cells—show the same RNA signal and
cannot be detected unless normal cells are in the sample (e.g. tumour
versus normal). Nonetheless, the difference across subpopulations
can be still captured wherever present (e.g. tumour subpopulation 1
versus tumour subpopulation 2).

The model likelihood with the usual independence assumption
among cells and segments iS

pðYjh; l;C;Z; pÞ ¼
YN
n¼1

YI

i¼1

pðynijh; l;C;Z; pÞ

.
Here, Y is the N � I input data matrix of RNA counts, which de-

scribe N sequenced cells and I input segments (mapped anywhere on

Fig. 1. (a) CONGAS works with (1) total CNA data (ploidy values per segment)

from a bulk DNA assay and (2) scRNA sequencing data. The two assays are gener-

ated from independent cells of the same starting sample. The aim is to identify

CNA-associated subclones from RNA counts. (b) CONGAS is a Bayesian unsuper-

vised method to identify clusters of cells whose differences in scRNA counts can be

explained by total CNAs. Subclonal CNAs are here inferred at the resolution of the

input segments. (c and d) Assume subclones C1 and C3 differ for a portion of DNA

(right segment): C3 has a subclonal LOH (A genotype), where C2 is heterozygous

diploid (AB genotype). CONGAS identifies CNAs by examining total RNA counts

mapped to segments: subclone C3 shows fewer RNA counts on the deleted segment,

and the subclones have similar RNA counts on the segment where both clones are

heterozygous diploid (left segment)
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the genome). Counts on a segment yn;i are summed up by pooling all
genes that map to the segment; with cumulative counts we rarely ob-
serve 0-counts segments, which allows us to avoid zero-inflated dis-
tributions (Sarkar and Stephens, 2021). The segment likelihood iS

pðynijh;l;C;ZÞ ¼ Pois
hn � l

QK
k¼1 Cznk

ikPI
i¼1

QK
k¼1 Cznk

ik

 !
;

where the model uses hn, a Gamma-distributed latent variable
which models the library size for cell n, and li for the number of
genes in segment i (a constant determined from data). In
CONGAS, C is the clone CNA profile for k clones, where each
clone is defined by I segments and associated CNAs; the prior for
C is a log-transform of a normal distribution, consistently with
the fact that ploidies are positive values. In this formulation, Z
are the N � k latent variables that assign cells to clusters, and p
the k-dimensional mixing proportions (Supplementary Fig. S2).
Based on this modelling idea, we also built alternative models
that can process input data when these are already corrected for
library size (e.g. in units of transcripts or read fragments per mil-
lion) using Gaussian likelihoods; see Supplementary Materials.

Another way of thinking of the denominator in the formula is,
given that all the effects are linear, as a matrix decomposition of the
input. Note that here the denominator is omitted.

CONGAS parameters are learnt via stochastic variational infer-
ence (Blei et al., 2017). The model joint distribution can be factored
aS

pðY;Z;C; h; pÞ ¼ pðYjC; h;pÞpðZjpÞpðpÞ
Y

ik
pðcikÞ

Y
n
pðhnÞ

and in the variational framework, latent variables are approximated
as variational distributions qðZ;C; h; pÞ, supposed to be independent
and factorizable. The prior distributions for our latent variables are

• p cikð Þ � LogNorm mik; vð Þ; where mik is the input CNA value

from bulk DNA; and the variance v governs how far the

actual CNAs can be compared to input ðdefault v ¼ 0:5);
• pðhnÞ � Gammaðes; erÞ; a scarcely informative prior that works

well in most cases ðdefault es ¼ 3; er ¼ 1);
• pðpÞ � DirichletðrÞ; a prior over cluster distributions; by

default all assumed to have equal proportions ði:e: r ¼ 1=k).

The CONGAS model is implemented in 2 open-source R/Python
packages. One, called CONGAS, implements the model in the Pyro
probabilistic programming language, a backend that allows running
on both CPU and GPU (Bingham et al., 2019). A frontend R pack-
age, called RCONGAS, provides functions for data preprocessing,
visualization and model inference.

3 Results

3.1 Synthetic simulations
Generative model: We tested CONGAS by simulating synthetic data
from its generative model, emulating a common 10� assay (1000
cells) for tumours of various complexities. Overall, we could retrieve
the generative model in a number of scenarios for tumours with up
to five CNA-associated subclones, evolving both linearly and
branching (Fig. 2a). The performance was measured via the adjusted

rand index (ARI), the ratio of agreements over disagreements in cell
clustering assignments, and was consistent with other information-
theoretic scores (Supplementary Fig. S3). Clustering assignments
were stable across a number of configurations of different subclonal
complexities (Fig. 2b).

CONGAS could also work with negative binomial overdis-
persed data, a violation of its Poisson model. Performance clearly
increased for lower dispersion, plateauing for non-dispersed data
(Supplementary Figs S4 and S5). We also tested how errors in the
input segmentation affects deconvolution. Precisely, we generated
subclonal CNAs that were shorter than the input bulk segments,
so that only a percentage of genes mapping to a segment were
showing a signal in RNA data (from 10% to 90% of mapped
genes). This is another test-case where the assumptions of
CONGAS are violated. We observed good performance when
>40% of the genes that map to a segment are associated to the
subclonal CNA (Supplementary Figs S4 and S6), which suggests
that genotyping focal amplifications that involve a handful of
genes might be hard, while larger CNAs are generally identifiable
even with imperfect segmentation.

scRNA-based tools: We compared CONGAS against InferCNV
and copyKAT, two popular CNA-calling methods for scRNA, using
an independent scRNA simulator to avoid biases (Zappia et al.,
2017). We tested the performances with 500 cells from a variable
number of subclones, assuming a linear model for the CNA-
expression dependency. Overall, CONGAS obtained the highest
ARI (always above 0.75 in all configurations), showing the ability to
recover the real clusters in most cases. In general, CONGAS per-
formance was particularly good in settings with <7 subclones, with
clear difference to inferCNV. In those cases, inferCNV showed a
tendency to overestimate the real number of clusters by a factor of 2
(i.e. one false cluster for every true one), while CONGAS retrieves
on average the exact number of subclones in the data. copyKAT
showed slightly worse performance than inferCNV. From tests, we
also observed that the probability of miscalling a cluster goes to zero
as the size of the cluster increases, as corroborated by the fact that
most of the clusters missed by CONGAS had less than 25 cells, and
were therefore too small (<5% of the simulated cells) to detect
(Fig. 2c and f, Supplementary Materials). To avoid our conclusions
being derived solely from using different model selection criteria, we
compared the performance of inferCNV and copyKAT on the same
dataset of simulations used previously, but this time giving the den-
drogram cutting algorithm the true number of clusters. We indeed
observed that the performances, especially for inferCNV, increase a
lot for low k. Instead for k > 10; the ARI does not improve and in
some cases (k ¼ 12) decreases (Fig. 2d, Supplementary Materials).

clonealign: We compared CONGAS (unsupervised) against clo-
nealign (supervised) using synthetic simulations and three possible
inputs (Fig. 2e, details in Supplementary Materials) in order to cap-
ture different qualities for the supervision set of clonealign. We con-
sidered (i) the ideal input, when clonealign knows all the simulated
clonal profiles (perfect clustering from scDNA-seq), (ii) a noisy in-
put, where we applied noise to the clonal profiles, simulating more
realistic noisy scDNA-seq clustering and (iii) a partial information,
where only a subset of the real input profiles is given to clonealign.
This last case simulates imperfect clustering from scDNA-seq (miss-
ing clones); this type of input could also mimic usage of a subclonal
copy number caller from bulkDNA-seq (instead of scDNA-seq),
where we call certainly fewer clusters than with a single-cell assay
(Supplementary Materials).

We again generated assays with 500 cells using the same CNA
model as the previous simulations. As expected, with prefect data
clonealign has better ARI when the number of clones increases; in
these cases, since cluster size decreases with fixed number of cells,
CONGAS is not able to separate well some clusters. Clonealign
seems also very robust with respect to the adopted noise. On the
other hand, when we simulate more realistic partial input profiles,
the performance of clonealign decreases rapidly and proportionally
to the number of clusters in the original data, and the performance
of CONGAS is higher. Further, comparison between the two tools is
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discussed below on real data collected from one triple-negative

breast cancer.

3.2 Subclonal CNAs in a triple-negative breast

xenograft
We used CONGAS to analyze a triple-negative breast cancer

dataset generated with 10� technology; we use this case study to
validate our method against single-cell low-pass DNA data, used
initially for clonealign (Campbell et al., 2019). This dataset is the

patient-derived xenograft SA501X2B collected from patient
SA501, and has been used before to determine clone-specific
phenotypic properties that associate with a complex clonal

architecture, also validated by reproducing clonal dynamics over
serial xenograft passages (Eirew et al., 2015). From low-pass
whole-genome CNA calling, the authors estimated three genetic-
ally distinct clones (prevalence 82.3%, 10.8% and 6.9%); one
clone sweeping in next engraftments.

To run CONGAS, we retrieved the input genome segmentation
from the largest clone identified in the original paper (82.3% of the
cells). After retaining segments with at least 10 mapped genes and
performing quality control, we retained n ¼ 503 cells from which
we could identify two of the three clones (Fig. 3a). The signals iden-
tified by CONGAS are clear across multiple segments, with particu-
lar strength on chromosomes 15, 16 and 18 (two-sided Poisson test,
p < 0:001, Fig. 3b). This is consistent with low-pass analysis

Fig. 2. (a) CONGAS synthetic tests with different subclonal architectures, obtained sampling clone trees with variable number of nodes. The degree of tumour heterogeneity is

tuned by an evolutionary distance, which counts the number of CNAs that a subclone acquires, relative to its ancestor. The bulk input profile for CONGAS is generated by

considering CNA segments from the most prevalent clone. We scan models with up to nine clones, with distance ranging from 1 to 4. The performance is measured by using

the ARI between simulated and retrieved cell assignments. The heatmap reports the mean. (b) Smoothed density for the percentage of cluster labels matched in every simula-

tion, split by simulated tumour trees of increasing distance to mimic subclonal complexity. (c) CONGAS, inferCNV and copyKAT were run on a set of synthetic scRNA-data-

set with 500 cells and a linear model for CNA effect on expression. Overall, CONGAS obtained the highest ARI score, and all other methods overestimated the true number of

clusters in the data. (d) The same simulations from panel (c) were reclustered by cutting the dendrogram generated in output by copyKAT and inferCNV using the actual num-

ber of clusters. Despite the improvement in performance, especially for little k, CONGAS (unsupervised) continues to perform better than the other two tools. (e) CONGAS

and clonealign (supervised) were tested on a set of simulated dataset with the same generative process as in panel (b). For clonealign we tested three scenarios where we input

the ground truth data (‘no noise’), the ground truth data upon stochastically flipping subclonal CNAs (‘noise’), a subset of the original subclones (‘partial’). We observe that

the ARI of both methods equates until many clones are present (>5); the performance of clonealign partial degrades largely. (f) Performance of CONGAS in detecting clusters

based on cellular proportion. Cases with accuracy above 70% are marked, showing the relation between cluster size and probability of detection. The line represents a logistic

regression curve fit on the observed probability. The data are the same as panels (c, d)
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(Campbell et al., 2019), validating our inference (Supplementary
Figs S7 and S8). Our analysis, however, does not detect the third
subclone from the original analysis; this was explained by observing
that subclonal CNAs defining that population contain <10 genes,
and have been removed from data. We note, however, that this clus-
ter is poorly supported also in Campbell et al. (2019), which reports
assignment uncertainty between the second largest clones and this
population. Moreover, we tested if clonealign could have been used
with a bulk whole-genome, instead of a low-pass single-cell one, to
detect such cluster. In particular, we run the subclonal copy number
caller ReMixT (McPherson et al., 2017) on bulk data from the pri-
mary tissue of SA501, and used its results as input for clonealign.
Consistently with our analysis, in this case, the tool was unable to
discriminate the different populations (Supplementary Fig. S7).

The populations identified by CONGAS show significant dif-
ferences in RNA counts (Fig. 3b and Supplementary Fig. S9): the
largest subclone consists of n ¼ 380 cells (~75%), and the smallest
one of n ¼ 123 (~25%). We also performed clone-specific differen-
tial expression analysis with the DeSeq2 (Love et al., 2014) and
found (Fig. 3c) 122 genes significantly up-regulated or down-regu-
lated using a Wald test over negative binomial coefficients
(adjusted p < 0:001 via Benjamini–Hochberg correction),

imposing absolute log-fold change (LFC) >0.25 to determine the
regulatory state (Fig. 3c). Note that some of these genes do not
overlap with CNAs, and therefore could only be marginally
explained by genetic changes. Instead, they might be explained by
more complex regulatory mechanisms indirectly linked to these,
and other events. Library factors were also found quite variable
across cells (Supplementary Fig. S11).

We tested these data with inferCNV and copyKAT as well.
Consistently with trends observed in simulations, while the true
CNAs are identified even by these methods, the final number of
clones is overestimated and spurious clusters are reported
(Supplementary Materials and Figs S12 and S13).

3.3 Tumour normal deconvolution in primary

glioblastoma
We used CONGAS to analyze the glioblastoma Smart-Seq data
released in Patel et al. (2014). This dataset consists of n ¼ 430 cells
from five primary glioblastoma, from which we analyzed patient
MGH31 (n ¼ 75 cells). MGH31 was chosen as it harbours sub-
clones, according to both the original paper and a successive analysis
(Fan et al., 2018). With this scRNA CONGAS was mainly

Fig. 3. (a) CONGAS analysis of n ¼ 503 cells from a 10� assay from a triple-nega-

tive breast xenograft, where k ¼ 2 populations are identified with 380 (�75%), and

123 cells (�25%). The heatmap shows input raw RNA counts (normalized per seg-

ment, with z-score) on chromosome 15, 16 and 18 where differences among CNAs

are detected across the two subclones (red boxes). (b) RNA transcripts count for the

genes mapping to a segment on chromosome 15, and one on 16. The densities on

top of the histograms are the Poisson mixtures inferred by CONGAS. (c) Genome-

wide clone-specific differential expression analysis highlights n ¼ 212 dysregulated

genes with adjusted p < 0:01 and absolute log-fold change (LFC) >0.25 (up-regula-

tion) or <0.25 (down-regulated); notice that some of those genes do not overlap

with CNAs that characterize the populations

Fig. 4. (a) CONGAS two-steps analysis of n ¼ 75 cells from a Smart-Seq assay of a

glioblastoma. The analysis first identifies normal cells in the sample, and then reclus-

ters tumour subclones; in the end, k ¼ 3 subclones are identified with 32, 23 and 10

cells. The heatmap shows input raw RNA counts (normalized per segment, with z-

score) for a segmentation obtained directly from B-allele frequencies in RNA, and

clusters from the first run (normal cells have no CNAs). (b) Sankey plot of clustering

assignments for the two runs. Cluster C3 from the first run are normal cells; tumour

clusters are consistent across both steps of the analysis. (c) RNA transcripts count

for the genes mapping to a segment on chromosome 20, and one on 14. The den-

sities on top of the histograms are the Gaussian mixtures inferred by CONGAS,

here used instead of Poisson because data were normalized
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challenged by (i) the lack of an input CNA segmentation and (ii) the
presence of normal cells in the assay (also known from the original
analysis). To process this sample, we have created a simple pipeline
around CONGAS.

We have first developed a variational Hidden Markov Model
to segment B-allele frequencies from germline single nucleotide
polymorphisms called by scRNA (Supplementary Material). In
this way, we obtained segments with evident losses of heterozy-
gosity, as well as large amplifications on chromosomes 7, 10, 13
and 14 (Supplementary Fig. S14). In a first run (Fig. 4b),
CONGAS identifies k ¼ 3 clusters from all cells (normal plus tu-
mour); one of them (n ¼ 10) lacked any CNA. The very same set
of cells were classified as ‘normal’ by a comparison with a
healthy reference (Fan et al., 2018). We removed normal cells
and rerun CONGAS on the remaining tumour cells, finding k ¼ 3
distinct subclones (Fig. 4a–c). These two-steps results were con-
sistent with a solution with k ¼ 4 clusters, obtained in the first
run. Manual phylogenetic reconstruction after CONGAS sug-
gested an early branching from an ancestor harbouring chromo-
some 7þ (amplification) and 10� (deletion). Clones then
branched out: one sustained by 5þ (34% of cells), while a linear
path described the evolution of two nested clones with increasing
aneuploidy (with the largest subclone with 34% of cells), distin-
guished by 14� but harbouring the same deletion on chromo-
some 13 (Supplementary Fig. S14).

The DE analysis of these few cells was inconclusive due to the
small number of sequenced cells (data not shown); nonetheless
this two-steps analysis shows how CONGAS can perform signal
deconvolution in the presence of normal contamination of the in-
put sample. This is interesting and consistent with the fact that the
method can work without a reference normal expression.

We note that this data have been analyzed also with
inferCNV, honeyBADGER and CaSpER (Fan et al., 2018; Patel
et al., 2014; Serin Harmanci et al., 2020). In all three cases, how-
ever, only two clones were found, one characterized by 5þ, and
another characterized by 13� and 14�, in substantial agreement
with our analysis. However, our analysis is higher resolution,
since it splits the latter clone based on the presence or absence of
13� (Supplementary Fig. S13).

3.4 Monosomy of chromosome 7 in haematopoietic

cells
To show the versatility of CONGAS we have also analyzed mixtures
of non-cancer cells collected within one experiment associated with
the Human Cell Atlas project (Rozenblatt-Rosen et al., 2017). In
this case, the dataset provides scRNA from haematopoietic stem
and progenitor cells from the bone marrow of healthy donors and
patients with bone marrow failure. We focussed on one patient
(patient 1) with severe aplastic anaemia that eventually transformed
in myelodysplastic syndrome, and for which cytogenetic analyses
revealed monosomy of chromosome 7, a condition that increases
the risk of developing leukaemias (Zhao et al., 2017).

To analyze this data, we pooled patient 1 together with one
healthy donor, gathering n ¼ 101 total cells (Supplementary Fig.
S15). This gives CONGAS both diploid cells (control, from the
health patient), and cells with chromosome 7 deletion.

This dataset comes without a suitable input segmentation, so we
used full chromosomes (arm-level segments) with a diploid prior.
Aneuploid cells were clearly distinguished from diploid cells by
CONGAS, which found k ¼ 2 clusters. One, containing diploid cells
from both patients, the other cells from patient 1 that are associated
with monosomy of chromosome 7. Clone-specific differential
expression performed as for the breast xenograft reported 99 genes
differentially expressed at significance level p < 0:01, and with ab-
solute log-fold change >0.25. Interestingly, the top dysregulated
genes were not expressed in the aneuploid chromosome, suggesting
that an integrated study of transcriptomics and CNAs could lead to
a better understanding of how these genomic events—which have
considerable dimension—can alter cellular behaviour across differ-
ent pathways and functional modules.

4 Discussion

In this article, we presented CONGAS, a Bayesian method to de-
tect CNAs that can cluster scRNA sequencing profiles, opening
the way to study tumour subclonal composition at the single-cell
copy number level. CONGAS requires inputs that can be gener-
ated by following a split design, leveraging both bulk and single-
cell assays. In this way, the inference is easier and more precise
compared to methods that call CNAs directly from scRNA. The
method compares also against methods that assign scRNA to sub-
clonal CNA profiles, with the main advantage of being unsuper-
vised. In this sense, input clonal CNAs are used to build a
Bayesian prior to detect subclonal CNAS in single cells. In other
approaches, instead, the clusters are predetermined and cannot
mutate during the cell-assignment process.

CONGAS also has other interesting features. First, it does not
require a normal RNA reference from a matched tissue, or the
presence of normal cells in the sample. This means that it can find
subclones with different CNAs regardless of reference expression,
a major advantage in organoids designs where we do not collect
non-tumour cells (Vlachogiannis et al., 2018). Second, CONGAS
reconciles copy number heterogeneity from RNA using a prob-
abilistic model for cell assignment. Compared to callers that do
not attempt clone detection or that separate calling from cluster-
ing, the advantage is that uncertainty is modelled in a unique
framework, both for copy number estimation and clustering
assignments. Third, the method uses a powerful probabilistic pro-
gramming backend to scale to thousands of cells, overcoming
computational limitations of other methods (Supplementary Figs
S15 and S16).

CONGAS can be used to curate clonal evolution models
(Caravagna et al., 2016, 2018), or to assess clone-specific phenotyp-
ic signatures at the RNA level. This mapping comes out as a byprod-
uct of the integration of genetic copy number events together with
RNA data. With CONGAS one detects CNA-associated subclones
and their patterns of differential expression, a key step to study how
selective pressures shape genotype and phenotype evolution in can-
cers (Caravagna et al., 2020). In addition, CONGAS is also able to
correctly estimate the magnitude of subclonal copy number events.
Which together with the input segmentation obtained from bulk
sequencing, allow the estimation of the subclonal karyotypic profiles
(Supplementary Fig. S17 and Materials).

This work offers a complementary perspective to DNA-only
methods, for which many single-cell CNA detection algorithms
have been developed (Garvin et al., 2015; Kuipers et al., 2020;
Macintyre et al., 2018; Wang et al., 2018; Zaccaria and Raphael,
2020). Working with DNA, these methods can infer a de novo
segmentation of the tumour genome—i.e. without prior input
segmentations—and in the future, it will be key to integrate ideas
at the core of these models together with RNA-genotyping
methods such as CONGAS. Notably, in this work, we also
show—across multiple case studies—that we can determine
clone-specific differentially expressed genes that can be
explained only partially by copy numbers, pointing to complex
non-trivial regulatory mechanisms that link genotype states with
expression patterns. Our method provides a solid statistical
framework to approach this type of investigation, which is cru-
cial to determine disease clonal dynamics, as well as cell plasti-
city and patterns of drug response from the large wealth of
single-cell data available nowadays.
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4.2 [DNA] + [RNA] + [ATAC] CONGAS+

4.2.1 Introduction

Cancer is a disease in which cell subpopulations with enhanced functional capabilities
emerge, evolve and undergo selection against the immune system response and treatment
[191]. The investigation of the evolution and heterogeneity of single tumours in terms
of omics layers – e.g., genome, transcriptome, proteome, epigenome, metabolome – has
key translational repercussions [135], and can benefit from the widespread availability
of single-cell sequencing technologies [147] such as those that can probe RNA (scRNA-
seq), DNA (scDNA-seq) and ATAC (scATAC-seq), generated from biopsies and patient-
derived model systems [192]. With the current technologies, the most recent protocols
can extract multiple measurements from the very same cell (e.g., G&T macaulay2015g or
GoT [122] for matched scRNA and scDNA, or 10x multiome [160] for scATAC/ scRNA),
even if “multimodal” technologies have still limited diffusion because they are very ex-
pensive and relatively low throughput. For this reason, a much more common single-cell
design is based on separating cells before sequencing, with many computational efforts
focused on integrating, a posteriori, data generated from different pools of cells.

In this second scenario, sometimes referred to as diagonal integration [159], the gen-
eral idea is to map the two (or more) measurements in a latent space, using some unsu-
pervised integration method. If we do not need the latent space to reflect any specific
biological quantity, methods based on variational autoencoders or factor analysis can be
adopted [84, 121, 136]. Otherwise, when it is required that the latents are biologically
interpretable, other approaches should be preferred. In the context of cancer genomics
and tumour evolution studies, one possibility to reconcile RNA and ATAC measure-
ments stems from the observation that both capture distinct aspects of the same DNA
molecule. In this sense, RNAs are products of the transcriptional processes that initiate
from DNA, and ATAC is an assessment of chromatin conformation, a physical feature
of DNA. Therefore, an interesting attempt – which is the one we follow in this work
– is mapping RNA and ATAC on latent DNA states. Moreover, because we are inter-
ested in cancer genomics, another layer of complexity is introduced by observing that
the latent DNA configuration can differ among tumour clones, i.e., subgroups of cells
that are characterised by multiple types of genetic lesions such as point mutations and
larger Copy Number Alterations (CNAs).

While point mutations are difficult to characterise and link to RNA and ATAC, the
opportunity of modelling latent CNAs seems more feasible. In this case, the possibility of
inferring latent tumour subclones from scRNA-seq has been already widely investigated
[194, 38, 150, 111, 165, 89], and some preliminary attempts at working with scATAC-
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seq are also present [183, 166, 174]. In this framing, we recently introduced CONGAS,
a method to perform this CNA-based integration from scRNA-seq data. CONGAS,
starting from a pre-defined genome segmentation (set of breakpoints), used a Bayesian
probabilistic model to infer latent total CNAs (i.e, per segment ploidy estimates) while
clustering input cells. CONGAS was the first model to join signal deconvolution (i.e.,
clustering), while detecting subclonal patterns of aneuploidy, and worked much better
than methods like InferCNV [38], HoneyBADGER [89], CopyKAT [165] and Numbat
[190] that performed first CNA inference, and then decoupled clustering. The solution
achieved with CONGAS was however only partially satisfactory, because the statistical
signal of CNAs in scRNA-seq is generally found to be affected by strong confounders
such as allele-specific expression and post-transcriptional regulation, two biological phe-
nomenon that are only partially understood and play an important role in cancer [15,
177, 157]. In practice, the distribution of read counts in RNA space (the inverse of
the latent mapping), is not a perfect predictor of CNAs, and a better-quality signal
can instead be achieved by examining chromatin conformation, a direct measurement of
DNA. As in CONGAS, one can leverage the intuition that the more alleles (i.e., copies)
of a chromosome region are open, the stronger the signal of ATAC on the region should
be. In this sense, a model a-la-CONGAS could be developed to link the latent CNA
to the observable ATAC peaks. As far as we understand, such an intuition has never
been leveraged before, missing the possibility of integrating independent scRNA-seq and
scATAC-seq measurements using a biology-informed latent model of DNA alterations.

Building on this intuition, in this paper we develop CONGAS+, a Bayesian prob-
abilistic graphical model to map single-cell RNA and ATAC measurements in a latent
copy number space, clustering cells across the two data modalities, and predicting clones
with a well-defined discrete copy number profile. Doing so, the CONGAS+ framework
naturally allows one to estimate and compare both the gene expression and the chro-
matin accessibility profiles of copy number clones, also separating tumour from normal
cells when the former are characterised by aneuploidy, a very common situation in can-
cer. The model is unsupervised, and the likelihoods of RNA and ATAC are computed
separately but conditioned on the same latent CNAs, but combined thanks to a shrinkage
statistics that allows to weight the contribution of the data modalities unevenly, which
helps when one of the two modalities (usually RNA) is a worst predictor of CNAs. The
overall model uses stochastic variational inference and gradient descent to learn parame-
ters from data, and enjoys a fast implementation via probabilistic programming in Pyro
[110]. This allows deploying CONGAS+ on GPUs seamlessly, analysing datasets with
tens of thousands of cells in matters of minutes thanks to the massively parallel architec-
tures offered by graphical devices. In this paper we show the application of CONGAS+
to three real-world datasets from (i) basal cell carcinoma ( 1200 cells RNA, 1200 cells
ATAC), (ii) B-cell lymphoma ( 6400 cells RNA+ATAC multimodal), (iii) prostate can-
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cer cell line LNCaP ( 7600 cells RNA, 8800 cells ATAC). In all cases we observe that
CONGAS+ is a solid statistical method to distinguish tumour from normal cells, and
to detect subclonal copy number events that distinguish distinct populations of cancer
cells.

4.2.2 The CONGAS+ model

4.2.2.1 Relationship between single-cell signal and copy number.

The goal of CONGAS+ is that of identifying subsets of cells that are characterized by
the same copy number value over each segment. We employ a bulk DNA sequencing ex-
periment output to identify the segments, and we use their coordinates to aggregate the
RNA and ATAC signal of each single cell over each segment. This choice is motivated
by the goal of identifying a tradeoff between reliability of the model and overall cost
of the analysis: compared to a single-cell assay, bulk DNA-seq experiments are charac-
terized by a lower cost and they can be exploited to confidently identify Copy Number
segments through a wide range of well-established tools, such as Sequenza [48], CNVkit
[66] and GATK best practices [154]. Through this step we can model segments as inde-
pendent entities, using as input to the model the aggregated counts for each single cell.
CONGAS+ models the observed counts for each single-cell in each segment as variables
dependent on the copy number state of that segment: once counts have been aggregated,
we assume that the hidden copy number state influences the gene expression and chro-
matin accessibility signal through a linear relation: this is based on the intuition that if
one tumor cell loses one of the two alleles in one segment, the genes on that segment will
be characterized by a lower signal compared to the same genes in a normal (i.e., diploid)
cell. This dependence has already been succesfully exploited on RNA in [111] and in our
previous work [194], and we extended this to the chromatin accessibility signal: higher
or lower Copy Number values for a specific segment predict more or less transcripts for
those genes mapped to the segment, and amount of open chromatin on the segment.

4.2.2.2 Full formulation of CONGAS+ statistical model

The model takes in input two single cell datasets Xatac and Xrna of sizes Natac × I and
N rna×I, containing respectively the signal of RNA and ATAC cells per segments. These
two matrices are the result of a pre-processing step, were the counts are aggregated over
each segment i by summing all the features that map to i, with i = 1, . . . I. RNA features
correspond to genes, while ATAC features correspond to peaks or fixed-length genome
bins. Both these two matrices can either be non-normalised integer counts or normalised
values, where in the latter case, we compute the z-score for each input feature (i.e., gene
for scRNA and peak/genomic bin for scATAC). The type of input provided determines
the distribution used to model the data, as it is explained in the next section.
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CONGAS+ is a finite Dirichlet mixture of K ≥ 1 distributions that model the K clones
present in the single-cell samples. The likelihood of our model has the following form:

p(Xt|∆t, Φ, πt) =
Nt∏

n=1

K∑
k=1

πt
k

I∏
i=1

f(xt
n,i|∆t, Φ), (4.1)

where N t is the number of cells for modality t, K the number of clusters and I the number
of segments. Here f is a generic likelihood function which models the observed signal for
the omic, πt are the clusters mixing proportions and Φ the probability distribution over
discrete copy number values for each cluster and each segment: each of the k clusters
is associated to a probability distribution per segment ϕk,i,h = P (Ck,i = h) over the
possible copy number values h = 1, .., H that the i − th segment may assume, where by
default, H = 5. The prior on the probabilities is a Dirichlet distribution

Φk,i,h ∼ Dirichlet(α), α = (α1, ...., α5), αi ∈ R>0, (4.2)

where the concentration vector α is a hyperparameter chosen by the user. Given the
ploidy p of the segment, one may choose α = (α1 = 0.1, ...αp = 0.6, ...α5 = 0.1). Note
that the tensor Φ does not change between modalities since cells from both omics are
assigned to the same set of clusters.
CONGAS+ accommodates settings where the two omics have clusters in different pro-
portions, which is achieved by using two different vectors πatac and πrna, that model the
mixing proportion for each cluster. Each entry πk is sort by another Dirichlet distribu-
tion:

πrna
k ∼ Dirichlet(βrna), πatac

k ∼ Dirichlet(νatac) (4.3)

where we choose νrna = νatac = (1/K, ......, 1/K). Our model allows also to have a
shared parameter π to control the mixing proportions in ATAC and RNA jointly.

The generic likelihood function f in Equation eq. (4.1) is defined based on the
type of input matrix provided. On the one hand, for integer count matrices use
Negative Binomial (NB) distributions to model the observed signal. On the other hand,
with normalised counts each feature is z-scored prior to aggregating the signal over each
segment and f is defined as a Gaussian likelihood.

Joint likelihood The joint scRNA/scATAC CONGAS+ log-likelihood has a shrinkage
form:

P (X|∆∆∆, Φ) = λ × log(p(Xrna|∆rna, Φ)) + (1 − λ) × log(p(Xatac|∆atac, Φ)), (4.4)

where λ is an hyperparameter to weight the likelihood of both modalities, X are datasets
Xatac and Xrna, and ∆ are parameters of the model ∆atac and ∆rna.
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Integer count matrix With segment-specific integer counts we use the Negative Bi-
nomial (NB) likelihood,

p(xt
ni|ρt

n, θt
i , rt

i , Φk,i) = NB

(
µk,i,n

µk,i,n + rt
i

, rt
i

)
, (4.5)

where µk,i,n and rt
i are the mean and size of the NB, respectively. The prior distribution

on ri is ri ∼ Unif(at
i, bt

i) for some choice of the extrema at
i, bt

i. The mean of the NB is
defined as

µk,i,n = θt
i · (∑h ωk,i,h · h) · ρt

n (4.6)

Here θt
i are omic-specific variables that represent the average signal of a single copy of

the i-th segment. For these quantities we choose a Gamma prior

θt
i ∼ Γ(αt

i, βt
i), (4.7)

where the hyperparameters αt
i, βt

i can be estimated from the data.
Through the definition of the Negative Binomial mean described in eq. (4.6), we are
modeling our assumption that the observed signal for each cluster in each segment is
proportional to the number of DNA copies of that segment for that specific cluster.

In fact, given the distribution Φk,i over possible discrete CNA values h ∈ 1, . . . , H

(by default H = 5) for each cluster k and segment i, samples from this distribution are
represented by Ωk,i, that are one-hot vectors of length H whose positions h = 1, . . . , H

correspond to the copy number value. Thus, to obtain the CNA for cluster k on segment
i we sum each entry ωk,i,h multiplied by h, and then we multiply the obtained CNV by
the latent parameter θi, scaling counts by DNA ploidy.
We also introduce the cell specific normalization factors ρt

n, which take into account
possible expression differences due to sequencing. These are hyperparameters of the
model and can be estimated from the data.

Normalized count matrices CONGAS+ supports also datasets where where prior
to aggregation, each feature has been z-scored. In this case we assume the aggregated
signal over each segment to be normally distributed, with the mean equal to the copy
number value:

p(xt
ni|Φk,i, σt

i) = N
(
µk,i, σt

i

)
(4.8)

where
µk,i =

∑
h

ωk,i,h · h (4.9)

and the standard deviation σi is sorted by a uniform distribution

σi ∼ Unif(arna
i , brna

i ). (4.10)
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The definition of mean of the Gaussian presented in eq. (4.9) is analogous to that of
the Negative Binomial in eq. (4.6): Ωk,i are indicate samples from the distribution Φk,i

over possible discrete CNA values h ∈ 1, . . . , H (by default H = 5) for each cluster k

and segment i. Ωk,i are one-hot vectors of length H where the positions h = 1, . . . , H

correspond to the copy number value, and by summing each entry ωk,i,h multiplied by
h we obtain the CNA for cluster k on segment i.

Parameters estimates Our inference algorithm requires marginalizing the likelihood
with respect to the clustering and copy number assignment and calculating the Maximum
A Posteriori (MAP) MAP estimates of the continuous parameters.
Once the MAP estimators have been computed, we can compute the copy number profile
of each cluster Ck,i by taking Ck,i = arg maxh (ϕk,i,h) . Given also the copy number
states, one can compute the clustering assignment probabilities P t

n,k of the cells for both
modalities. These are

P t
n,k =

πt
k

∏
i f
(
xt

n,i|Φk,i, ∆t
)

∑
k πt

k

∏
i

(
f
(
xt

n,i|Φk,i, ∆t
)) (4.11)

Using the above probabilities one can estimate for each cell the assignment vector
zt

n,k

zt
n,k =

1 if k = argmax
(
P t

n,k

)
0 otherwise

(4.12)

The Probabilistic Graphical Model(PGM) of CONGAS+ for the Negative Binomial
distribution is presented in fig. 4.1.

4.2.2.3 Variational inference for parameter estimation

Given the model definition presented above, we want to estimate the values for all
parameters by learning their posterior distribution, defined using the Bayes rule. For
simplicity, we use U to indicate all the parameters in the model and thus we can write
the posterior as

P (U |X) = P (X|U)P (U)
P (X) (4.13)

Where P (X) is the marginal likelihood, also called evidence. The denominator is
usually intractable, and thus we need to approximate the real posterior. CONGAS+,
like CONGAS uses Stochastic Variational Inference (SVI) [31] to get the approximation
of the true posterior p(U |X). The aim of SVI is to find a variational distribution q(U)
that belongs to a family of probability distributions Q and can approximate the real
posterior. This can be formulated as an optimization problem, where the goal is to
minimize the Kullback-Leibler (KL) divergence between p(U |X) and q(U) [31, 57]:
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q∗(U) = arg min
q(U)∈Q

{KL(q(U)||p(U |X))} (4.14)

However, this term is still untractable, as it requires to compute the posterior. Thus,
the objective function that gets optimized in SVI is the Evidence Lower Bound (ELBO):

ELBO(q) = E [log p(U, X)] − E [log q(U)] . (4.15)

and maximizing this quantity is equivalent to minimizing the KL divergence [9, 13, 31].
In detail, the variational distribution q is parametrized by γ, which is what we want to
learn during the inference, and in order to optimize the ELBO, SVI computes gradient
descent optimization taking a Monte Carlo estimates of the gradient, which is defined
as:

∇γELBO = ∇γEqγ(U) [log p(x, u) − log qγ(U)] . (4.16)

To reduce the search space we first identify segments with at least two clusters
(K > 1) from an independent run, and then we retain only multi-modal segments.
CONGAS+ is implemented in Pyro [110], a probabilistic programming language based
on Python which implements SVI, we use Adam as an optimizer.

4.2.2.4 The Gumbel-Softmax distribution

CONGAS+ uses SVI to approximate the posterior by performing gradient descent. How-
ever, our model contains a discrete random variable Φ, that encodes the probability dis-
tribution over the possible discrete copy number values. In order to be able to estimate
the gradient for this categorical variable, we use the Gumbel-softmax [64] (GSM), which
is a continuous distribution that can approximate samples from a categorical distribu-
tion.
Considering the categorical probability distribution Φ which has H probability classes
α1, α2, . . . , αH and models the distribution over the possible copy number values, a
sample ω from such distribution can be seen as a one-hot vector that lies on the corners
of a (h − 1)-dimensional simplex ∆h−1:

ω = one hot(argmaxh[gh + logαh]) (4.17)

where gh are i.i.d. samples drawn from Gumbel(0, 1) [64].
In order to approximate the argmax to make it continuous and differentiable, the

softmax is employed. Thus, a H-dimensional sample vector from the Gumbel-softmax
distribution is a vector ω ∈ ∆h−1 defined as:

ωh = exp ((log(αh) + gh)/τ)∑k
j=1 exp ((log(αj) + gj)/τ)
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Where i = 1, 2, . . . k and τ is the temperature parameter. As τ approaches 0, the
samples from the Gumbel Softmax become one-hot vectors and thus sampling from the
GSM becomes identical to drawing samples from the categorical distribution Φ.

In the GSM definition, α is the vector of parameters of the distribution, and it corre-
sponds to the vector of the probabilities for the H classes of the categorical distribution.
For values of the temperature greater than zero, the GSM has a well defined gradient
with respect to its parameters, and thus if we replace the categorical samples with the
Gumbel Softmax it is possible to use backpropagation during training to compute the
gradients.
However, the samples from the GSM are not identical to samples from the corresponding
categorical distribution when τ is not zero and thus there is the need for identifying a
trade-off between large and small temperatures. In fact, on the one hand for temper-
atures close to zero samples are close to one-hot, but the variance of the gradients is
large. On the other hand, large temperatures yield small gradient variance but smooth
samples. The solution is to decrease the temperature following a schedule: in Pyro we
start from a value τstart, and then at each step j of gradient descent optimization we use
the temperature τj = τstart/ log(j + 0.1).

4.2.2.5 Model selection

CONGAS+ optimises the number of clusters in the finite mixture K via model selection,
letting the user choose from three well-known metrics: Bayesian Information Criterion
(BIC) [4], Akaike Information Criterion (AIC) [8] and Integrated Completed Likelihood
Criterion (ICL) [10]. In particular, given the complete likelihood P (X), the number of
parameter v(k) for a model with k components we can compute:

• BIC = v(k)ln(n) − 2ln(L(k)) where n is the number of cells in the dataset

• AIC = 2v(k) − 2ln(L(k))

• ICL = BIC + H(Z) where Z is the latent variable modelling cell clustering assign-
ments and H(Z) is the entropy defined as −

∑
i p(zi) log(zi)

Given a vector of possible K as a hyperparameter, we pick as the optimal one the
value lowest score for the Information Criterion chosen.

4.2.2.6 Implementation

CONGAS+ is implemented in 2 open-source packages: one, in Python, implements
the model in the probabilistic programming language Pyro [110], while the other, in
R, provides data processing and model visualisation functions, interacting with Python
through Reticulate.
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4.2.3 Model validation and parameterization

4.2.3.1 Synthetic data simulations

Synthetic data simulations. We performed extensive simulations to assess the perfor-
mance of CONGAS+ in scenarios with increasing complexity in terms of clonal composi-
tion, mimicking real data analysis settings. Noting that CONGAS+ is also a generative
model, i.e., it can sample simulated data, in order to obtain a performance assessment
that is unbiased and realistic, we opted to simulate scRNA and scATAC data outside of
our tool.
We first simulated scRNA and scATAC of a normal cell population via simATAC [172]
and SPARsim [109], two tools for synthetic data generation that recapitulate signals
consistent with modern sequencing technologies. Then, we added CNAs for K clones
(minimum 2, maximum 10) assembled from a clonal tree [196] with K nodes. Starting
with a random CNA profile for the root (ancestral clone), we iteratively attached the
remaining clones at random, generating its copy number profile by randomly changing
the value of D=5 segments from the parent. Finally, we generated the clusters mixing
proportions from a Dirichlet distribution with uniform concentration, and assigned cells
to clusters. We simulated 10 replicas for each value of K, for a total of 90 synthetic
datasets, each one including 1500 scRNA-seq and 1500 scATAC-seq cells.
We applied CONGAS+ to 90 datasets, searching for up to 10 clusters in each run, and
measuring several standard performance metrics including (i) the Adjusted Rand Index
(ARI), which assesses the similarity between the ground truth and the inferred cluster
memberships, and (ii) the mean absolute error (MAE) between the inferred cluster-
specific CNA profile, and the simulated one. Together, by combining (i) and (ii) we
assessed the ability of CONGAS+ to retrieve the cells from each clonal population, and
their copy number profiles. In Figure 4.2 we observe a very good performance, with a
median ARI higher than 0.8 for every value of and a MAE consistently lower than 1,
which is a good result, suggesting that, on average, CONGAS+ does not estimate copy
number profiles that are too extreme with respect to the ground truth (Figure 4.2B).

4.2.3.2 The importance of using a joint assay.

CNA-associated signal quality is not necessarily even across ATAC and RNA, with the
latter showing higher overdispersion due to difference in sample preparation, library size,
gene expression variability, and sequence-specific biases [179, 188]. High overdispersion
can act as a confounder, making it difficult to infer poorly separable clusters from scrNA-
seq data alone, eventually leading to failures in detecting subclones. Using ∼ 1800
scRNA and ∼ 600 scATAC profiles from the Basal Cell Carcinoma (BCC) SU008 [133,
124], we created a dataset of tumour and normal cells in even proportions, subsetting the
genome to two diploid and two with aneuploidy, with bimodal signal poorly evident in
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Figure 4.2: Validation of CONGAS+. A: Adjusted Rand Index (ARI) computed com-
paring the ground truth labels of simulated cells with the clustering assignments returned
by CONGAS+. 90 datasets with 1500 cells for scRNA and 1500 cells for scATAC were
simulated. For any number of ground truth clusters , the median ARI is always higher
than 0.8. B: For the same data in panel (A), Mean Absolute Error (MAE) between
the ground truth and the inferred copy number profiles. C: Boxplot showing the ARI
for copyKAT [165], CONGAS [194] and CONGAS+ (computed on scRNA and scATAC
separately) obtained running the tools on bootstrap samples characterised by a bimodal
signal poorly evident in RNA.



90 Task B: Computational methods for omics data integration

RNA. Then, we performed non-parametric bootstrapping for the genes in each segment,
and compared 30 inferences with CONGAS+ (RNA plus ATAC), CONGAS (RNA) and
copyKAT (RNA). Using a joint ATAC-RNA assay, CONGAS+ with λ = 0.1 detected
CNAs that distinguish tumour from normal cells, obtaining a median ARI ≈ 0.7 on
ATAC but a lower ARI on RNA (Figure 4.2C). In general, due to the weaker RNA
signal, all tools that looked only at RNA struggled separating tumour and normal cells,
with copyKAT and CONGAS unable to detect the split (Figure 4.2C). In this test, copy-
scAT failed to execute with standard parameters. Overall, this shows that with a joint
inference on the ATAC and RNA modalities we can detect the clonal structure of the
dataset also when one data modality has a weak signal.

4.2.3.3 Shrinkage effect with Basal Cell Carcinoma data.

CONGAS+ likelihood depends on a shrinkage hyperparameter which serves to weigh
differently the evidence available from the two datasets, which might not be even. This
serves as a natural hyperprior to decrease the importance given to a modality that we
believe is more noisy or affected by some consistent bias. A natural question is how does
this affect the inference, and what value for should be suggested in the general case.
To this aim, we used CONGAS+ in two controlled scenarios: (i) one where the signal
is present only in one modality and (ii) another where the signal is present in both. To
make this more realistic, we exploited data from [133] and [124] which include scRNA-seq
(∼ 6400 cells), scATAC-seq (∼ 6400 cells) and bulk WES data of Basal Cell Carcinoma
(BCC) samples. The two datasets (SU006 and SU008) include a mixture of tumour and
normal cells, and were subsampled to obtain similar cell proportions.
For sample SU006, we selected 2 diploid segments and 2 segments in a loss of heterozy-
gosity (LOH) state, where the latter are characterised by a bimodal distribution in both
ATAC and RNA counts. As shown in Figure 4.3A, the peaks in the bimodal distribution
for LOH segments have lower dispersion in the ATAC with respect to the RNA. For this
reason, we assessed whether this greater variability in the RNA signal might impact the
inference results when varying λ. To do so, we set K=2 and performed 10 independent
runs with λ = {0.05, 0.15, ..., 0.95}. For each run, we compared the cluster assignments
with the ground truth labels via ARI (Figure 4.3C), observing for both modalities val-
ues stable against changes in λ, and CONGAS+ is always able to separate tumour from
normal cells. For sample SU008, we selected 2 diploid segments and 2 segments with an
amplification. In this case, the amplification is reflected only on the ATAC signal, which
exhibits a neat bimodal distribution (Figure 4.3E). We employed the same design used
for SU006, but this time we observed (Figure 4.3F) that for λ < 0.5 the ARI for ATAC
cells is stable (ARI ), whereas it decreases as λ approaches 1. In Figure 4.3G-H we
report the inference result for the best and worst ARI values, respectively (λ < 0.25 and
λ < 0.95), showing the percentage of tumour and normal cells assigned to each cluster.
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With 0.25 < λ < 0.95 CONGAS+ cannot fit the ATAC bimodal signal, merging 63%
of tumour cells and 90% of normal cells in cluster C2. Instead, for λ < 0.25 it retrieves
the bimodality and correctly identifies tumour cells from ATAC. As expected, the model
is never able to retrieve tumour and normal clusters from RNA, due to its unimodal
distribution.
Overall, these tests show that, with real data, the quality of the two assays might be
different, and that tuning λ can be important to favour one assay over the other. Based
on our experience, scATAC-seq tends to have a more clearly multimodal signal, arguably
because it is a direct measurement of DNA, whereas RNA expression is more subject
to complex nonlinearities. For this reason, values lower of λ can be used to favour
ATAC signals. CONGAS+ offers a principled approach based on likelihood to inspect
the optimal value of λ, and a final decision has to be taken on each and every datasets,
also inspecting the quality of the fits.

4.2.4 CNA-associated drug-resistance clones in a prostate cancer cell
line

Copy number events can lead to the emergence of complex cancer phenotypes, sometimes
even capable of resisting negative selection induced by anticancer drugs. To test if CON-
GAS+ could identify clonal populations with associated CNAs that resist treatment, we
collected data of the prostate cancer cell line LNCaP from [182], where scRNA-seq and
scATAC-seq were performed on independent cells to study drug resistance.
In detail, Taavitsainen et al. sequenced the LNCaP parental cell line (DMSO), one line
treated for 48 hours with AR antagonist enzalutamide (ENZ), and two resistant lines
(RES-A and RES-B) derived after long-term exposure to ENZ and RD-162, respec-
tively. To search for high-resolution subclonal CNAs we downloaded the copy number
segmentation of the parental LNCaP from the DepMap portal [28], and used it to obtain
breakpoint coordinates and priors for copy number values. We merged the 4 samples
(parental, ENZ-48, RES-A, RES-B), and filtered out segments with more than 10% of
cells showing zero counts.

CONGAS+ on the 4 samples identified 3 clusters present in both ATAC and RNA
modalities. As shown in Figure 4.4B, the DMSO and ENZ-48 lines were clustered to-
gether in C1, while RES-A and RES-B were split in two clusters (C2 and C3), respec-
tively. This is perfectly consistent with the experimental design [182]: in fact, ENZ48 has
not yet acquired resistance to therapy due to the short-term drug exposure, and cluster
C1 is composed only of cells from this line and the parental. Moreover, the two other
clusters are composed of almost fully-resistant cells, with C2 sharing the greatest overlap
with RES-A, and C3 mainly composed of cells from RES-B. These two clusters share
specific CNAs such as an amplification (21q+) on the q-arm of chromosome 21 (Fig-
ure 4.4A), which is the main event to distinguish resistant RES-A and RES-B cells from
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Figure 4.3: Impact of lambda variation on CONGAS+ performance using Basal Cell
Carcinoma data. A,B,C,D: Basal Cell Carcinoma sample SU006 from , where we selected
segments with bimodal signal in both scRNA-seq and scATAC-seq profiles. E,F,G,H:
BCC sample SU008 from [133, 124], where we selected segments in which ATAC signal
is bimodal and RNA unimodal. A,E: normalised counts distribution coloured by the
ground truth cell labels. B,G: distributions coloured according to clustering assignments
obtained from the solution showing the highest ARI. C,F: ARI value for each modality,
computed for every lambda ranging from 0.05 to 0.95. D,H overlap between clustering
assignments and ground truth labels for the solution with highest ARI . I-J: normalised
distribution (I) and clustering overlap with ground truth labels (J) for the worst solution
in terms of ARI.
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Figure 4.4: CONGAS+ application to a prostate cancer dataset from [45], composed
of a mixture of four cell lines with 7600 scRNA-seq cells and 8800 scATAC-seq cel. A:
copy number profiles inferred by CONGAS+ for each cluster, and density plots and his-
tograms of normalised counts coloured according to cluster assignments for chromosome
6p where an amplification event is private to cluster C3, and chromosome chr21q where
an amplification is shared by clusters C2 and C3. B: Sankey plot showing the overlap
between the sample of origin and the cluster inferred by the model.

sensitive ones. Additionally, since the two resistant populations are clustered separately,
this suggests that there are additional CNAs that characterise the two populations. In
fact, CONGAS+ finds that RES-B cells have, on top of 21q+, also an amplification on
the p-arm of chromosome 6 (6p+).

Overall, this analysis shows that complex lineage relation associated to tumour subclones
with copy number alterations can be effectively detected by CONGAS+, laying the
foundations for more systematic investigation on the causal roles of certain CNAs against
therapy resistance.
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4.2.5 ATAC and RNA phasing in B-cell lymphoma multimodal data

We used a multimodal dataset of B-cell lymphoma 1 sequenced with the 10x multiome kit
[160] to test if CONGAS+ can identify clusters across the two modalities, and assign cells
the same copy number clusters. This is the ideal test because this kit can measure both
gene expression and chromatin accessibility from the same cell, which means that we can
exploit the one-to-one correspondence between scRNA-seq and scATAC-seq barcodes to
phase cells across modalities. Our expectation is that, even if we do not input it, all
cells in the same RNA cluster should also be part of the same ATAC cluster. In other
words, there should not be mismatches in clustering assignments across modalities.

We processed 6400 cells after quality control via Seurat [167] and Signac [181], for
which cell types were manually annotated by the authors. Cell types are distinguishable
in the UMAP low-dimensional representation [96] obtained by integrating RNA and
ATAC via Seurat (Figure 4.5B): two tumour cell populations (B and B-cycling) are
present and cluster together, whereas normal cells form three clusters that correspond
to Monocytes, T and B cells. Note that, while we can expect to have distinct copy
number profiles to tell apart normal from tumour cells, the distinction among B and B-
cycling tumour subpopulations is unlikely to be explainable by CNAs, because cell cycle
entry dynamics are linked to regulation in the ligation of the B-cell receptor complex
and other receptor agonists [16].

We run CONGAS+ with chromosome arm-level segmentations and diploid default states
a priors, and searched for K=2 clusters. We first compared the inferred clusters with
the ground truth labels by computing the fraction of tumour and normal cells detected
in each cluster. In Figure 4.5D and 3E, we see that 96% of tumour cells are assigned to
cluster C2 for both modalities, whereas 96% and 98% of normal cells in ATAC and RNA
respectively are assigned to cluster C1. This reflects the fact that CONGAS+ detects
copy number events that distinguish tumour from normal cells. Moreover (Figure 4.5F),
high values of ARI ≈ 0.85 and consistent confusion matrices are observed for the inferred
clustering assignments and the cell types annotated in the original paper.

Overall, this tests demonstrated that CONGAS+ can assign independent observations
to the same clustering structure with real multimodal data, opening the opportunity of
using both modalities as well as independent assays within one unique framework. To
the best of our understanding, in terms of CNA detection, CONGAS+ is the only model
to work seamlessly with these two types of assays.

1https://www.10xgenomics.com/resources/datasets/fresh-frozen-lymph-node-with-b-cell-
lymphoma-14-k-sorted-nuclei-1-standard-2-0-0

https://www.10xgenomics.com/resources/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-0
https://www.10xgenomics.com/resources/datasets/fresh-frozen-lymph-node-with-b-cell-lymphoma-14-k-sorted-nuclei-1-standard-2-0-0
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Figure 4.5: Application of CONGAS+ to prostate cancer cell line LNCaP with indepen-
dent assays. CONGAS+ application to a prostate cancer dataset from [182], composed
of a mixture of four cell lines with 7600 scRNA-seq cells and 8800 scATAC-seq cells. A:
The copy number profiles inferred for each clone, focusing on two subclonal copy number
events. The panels in the top row contain the density plots, whereas on the bottom row
the histograms display the normalised counts for the inferred clusters. B: Sankey plot
showing the overlap between the sample of origin and the cluster inferred by the model.
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4.2.6 Discussion

We introduced CONGAS+, the first Bayesian method designed to cluster single-cell
gene expression and chromatin accessibility profiles on copy number clones. Extensive
simulations allowed us to prove its robustness and accuracy in retrieving both the ground
truth clonal composition and the corresponding copy number profiles, by exploiting the
signal of simulated scRNA-seq and scATA-seq data. This result was further confirmed
through the application to real-world datasets.

By applying CONGAS+ on a B-cell lymphoma multiomic dataset, we could prove
that our framework correctly assigns single cells from independent assays to the same
copy number clones, also in absence of input WGS/WES bulk data. The case study on
prostate cancer cell lines showed the capability of our method in inferring a complex
subclonal architecture, which may allow one to compare both the gene expression and
the chromatin accessibility states of the inferred genetic clones, with straightforward
translational applications. Finally, the application of CONGAS+ to basal cell carcinoma
data enabled us to quantitatively assess the effect of tuning the shrinkage hyperparameter
λ, which can be used to shift the inference weight towards the most “reliable” data
type. In this regard, CONGAS+ includes functions to inspect data distribution before
performing the inference, so to set λ accordingly.

Extensions of CONGAS+ are underway. For example, the identification of single-
nucleotide polymorphisms from scATAC-seq data would allow one to compute the B-
Allelic Frequency (BAF) profiles, which would in turn enable the detection of complex
copy number events, such as copy-neutral losses of heterozygosity. The BAF profiles
might also be exploited in conjunction with the read counts signal to implement an
algorithm for genome segmentation and copy number calling, without requiring any
input bulk DNA data.



5
Task C: A comprehensive pipeline for

reproducible single-cell analyses

Giving the availability of extensively used tools for pipeline development, such as
Nextflow and Snakemake, it is possible to build modular frameworks to generate
reproducible analyses and flexible pipelines. In this chapter we discuss the main
contribution regarding task (C), presenting a currently ongoing effort to convey the
work presented here into SIgMOIDAL, one reprodcible, modular, flexible and scalable
pipeline for multi-omics data analysis and integration. SIgMOIDAL is being developed
following the principles of open science and the FAIR guidelines for data management,
with the goal of working towards the reproducibility of the results. We note that data
analysed through the pipeline are not shared in this thesis, as they have been produced
as part of the Accelerator Award project #22790 and will be made available upon
publication of the results.

SIgMOIDAL combines different modules that were developed over the past three years.
However, the pipeline is modular and it will be adapted to include new strategies, based
on most recent developments in the field of computational biology. The current modules
combine both State-Of-The-Art (SOTA) methods and frameworks that were developed
to improve existing approaches, that were presented as new contribution in the previous
chapters. In detail, the structure of SIgMOIDAL with the multiple sub-modules is the
following:

97
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SIgMOIDAL (Jan 2023 implementation)

Module Omics data type Task Implementation

Module 1: pre-processing
RNA Quality Check SOTA

Denoising/Imputation New Result - Section 3.1
DNA Quality Check SOTA
ATAC Quality Check SOTA

Module 2: single-omic specific analyses

RNA

Low-dimensional projection SOTA
Clustering SOTA

Batch correction SOTA
Cell cycle phase SOTA

Diapause New Result - Section 5.1
CMS New Result - Section 5.1

Cell type New Result - Section 5.1
Differential Expression Analysis SOTA

DNA Cancer evolution models New result - Section 3.2

ATAC
Low-dimensional projection SOTA

Clustering SOTA
Differential peak accessibility SOTA

Module 3a: diagonal data integration RNA + DNA
CONGAS New result - Section 4.1
clonealign SOTA

LACE SOTA
RNA + DNA + ATAC CONGAS+ New result - Section 4.2

Module 3b: vertical data integration RNA + DNA G&T-seq data analysis Note 1
Module 4: downstream analyses Note 2

Note 1: notice that during the Accelerator project G&T-seq data (see Section 1.1)
have been generated and might be exploited to assess both the gene expression and the
clonal composition of the sequenced samples. SIgMOIDAL pipeline can accommodate
the analyses of this multi-omics data, but we leave this to further works.
Note 2: given the characterization of cancer subpopulations obtained via data analy-
sis and/or integration, it is possible to perform downstream analyzes. Ongoing efforts
are aimed at defining an automated framework for clone-specific differential expression
analysis, where we want to automatise the investigation of differences in gene expres-
sion patterns among clones defined via data integration, via diagonal integration (i.e.,
CONGAS+, CONGAS, etc.) or vertical integration approaches.

The analyses are implemented in Python and R, using the package Scanpy to manipu-
late single-cell RNA-sequencing objects, and the package Signac to work with scATAC-
seq data.
In this chapter, we describe the complete analysis workflow, showing its application on
two different experimental settings. Please notice that the case studies do not handle
all the data types. In fact, one case study involves scRNA-seq data and the second
processes scRNA-seq and scDNA-seq data. The motivation behind the absence of a case
study involving scATAC-seq data is that the project involving the generation of that
data type from PDOs is still under development, as new data are being produced during
the last year of the Accelerator award project and the currently ongoing analyses are
still in their preliminary phase.
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5.1 SIgMOIDAL pipeline description

5.1.1 Module 1: pre-processing

5.1.1.1 Preprocessing of scRNA-seq data

The main raw-data output from sequencing are FASTQ files containing reads information
for every single-cell. These files need to be aligned to the reference genome, meaning that
each read has to be mapped to its position in the genome to then quantify the presence
of each gene by counting the number of reads that map to its position. Among the
most popular alignment tools for scRNA-seq, STARsolo was employed in this pipeline.
This option was chosen with respect to another popular pipeline for alignment which is
CellRanger for its higher efficiency in terms of runtime and number of detected genes per
cell [187]. STARsolo performs multiple steps to produce the final count matrix encoding
the expression level of each gene in each single cell [171], which are described below.
Please note that each step can be performed with multiple options, and here the ones
employed in this work are reported.

• Read mapping: each read is aligned to the reference genome, and the corre-
sponding gene is annotated.

• Barcode passlisting: each cell is identified by a barcode, that is a sequence
of nucleotides that uniquely identifies a cell. STARsolo takes as input a list of
possible barcodes and considers reads containing those barcodes. To take into
account possible nucleotide substitutions due to technical errors, barcodes that are
characterized by one mismatch with respect to the provided list are also considered.

• UMI deduplication: in order to take into account possible sequencing errors,
UMIs with a Hamming distance ≤ 1 are collapsed together.

• Quantification: for each gene in each cell, the expression is quantified by the
number of UMI that map to it.

• Cell filtering: most of the barcodes contained in the matrix produced in the
step above correspond to droplets containing ambient RNA. Thus, a preliminary
filter based on counts is performed to filter out these empty droplets: a threshold t

corresponding to the 99 − th percentile of UMI counts in all barcodes is computed,
and then barcodes with a total count lower than 10% of t are removed.

Quality control and denoising The output of the previous step is a genes-by-cells
expression matrix, that has already been preliminary filtered by the alignment tool.
However, additional metrics need to be computed to perform Quality Control of the
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obtained matrix and remove low-quality observations. First, we filter out cells cells with
zero counts for more than 90% of the genes. Indeed, a very low number of counts for a
specific observation may be caused by cell death, premature cell rupture, or the capture
of random mRNA which ”escaped” from other cells (i.e., the observation is not an actual
cell, but a mixture of random mRNA molecules) [82]. Then, we remove doublets filtering
cells based on their total counts and we remove cells with high mitochondrial activity.
In fact, observations with (i) a low number of total counts, (ii) few detected genes,
and (iii) a high fraction of mitochondrial counts may correspond to cells whose mRNA
has leaked out through a broken membrane, leaving only the mRNA located inside the
mitochondria membrane [120]. This factors are thus an indicator of the death of the
cell, therefore it is important to consider the fraction of mitochondrial gene counts when
filtering out cells in the observed matrix.

5.1.1.2 Preprocessing of scDNA-seq data

Raw scDNA-seq data are FASTQ files containing the reads, i.e., short sequences that
contain the DNA sequence of one genome fragment. These reads need to be aligned
to a reference sequences, in order to identify mutations. Our analysis was implemented
exploiting the output of 10x Genomics kit 1, that enables sequencing of the DNA to
estimate Copy Number Variation profiles at single-cell level. We note that the production
and sale of the 10x solution has been discontinued. However, our analysis is not binded
to this technology, as any other scDNA-seq protocol that enables copy number calling
at the single-cell resolution [119] could in principle be applied.
The reads contained in the FASTQ files are aligned to the reference genome, using 10x
Genomics software CellRanger, which performs the alignment and calls copy number
alterations. Given the heterogeneity of the profiles inferred at the single cell resolu-
tion, one fundamental step is to perform clustering of the obtained profiles, that is the
subsequent step in CellRanger in which hierarchical clustering is applied.

5.1.1.3 Preprocessing of scATAC-seq data

The FASTQ files that result from of a scATAC-seq experiment are aligned with
CellRanger, that in addition to map reads on the reference genome performs also the
peak calling step, where contiguous regions of open chromatin (peaks) are detected,
and are used as features in the output read count matrix. Together with this matrix,
CellRanger returns a fragment file, that contains read count information of fixed-length
genomic bins, that are used to perform peak calling. Like in scRNA-seq, The obtained
data needs to be pre-processed to remove low quality observations. In case of ATAC,
multiple metrics described in the following paragraphs are employed.

1https://www.10xgenomics.com/products/single-cell-cnv

https://www.10xgenomics.com/products/single-cell-cnv
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Nuclesome/nucleosome-free regions It is possible to exploit the distribution of
fragment lengths to detect low quality cells. In fact, high quality cells are expected to
have that distribution enriched at 100 and 200 bp, while low quality cell exhibit different
patterns. For more details regarding this filter, please refer to [156]. So for a successful
experiment one should observe a fragment-length distribution that is enriched around
100 and 200 bp (the peaks should decrease).

Transcription Starting Site enrichment The other metric used to detect low qual-
ity cells is the Transcription Start Site (TSS) Enrichment score. In fact, TSS are open
chromatin regions and they are expected to have an enriched number of reads. Thus, by
computing the TSS enrichment score it is possible to detect those cells for which there is
no enrichment in TSS and discard them as low quality. For more detail on this quality
check metric please refer to [156].

Total number of fragments in peaks analogous to what’s performed with the
RNA, barcodes with a low number of fragments in peaks are removed. Then, to remove
doublets cells with high values of fragments in peaks are excluded.

Fraction of fragments mapping to peaks Barcodes with a low fraction of fragments
that map to peaks are considered as low-quality and they are removed.

5.1.2 Module 2: single-omic specific analyses

The second module of SIgMOIDAL contains data-type specific analyses, that are used
to extract knowledge from one single data type. In this section we review the methods
from the SOTA and we describe the new modules that were implemented.

5.1.2.1 Analyses of scRNA-seq data

Once quality control metrics have been computed and data have been pre-processed,
multiple downstream analyses can be performed with the goal of extracting knowledge
from the data and characterize the observations. In the context of Colorectal Cancer,
over the last years different analysis have been proposed aiming at characterizing cancer
cells populations. In this work we merged multiple building blocks re-implementing
different metrics, with the goal of providing an end-to-end solution for an in depth
analysis and characterization of high dimensional single-cell gene expression data. The
data extracted from our workflow can be used by clinicians and wet-lab experts to
formulate and/or validate biological hypothesis.
In detail, the analyses that have been implemented aim at associating to each single-
cell multiple features, namely Consensus Molecular Subtype (CMS), diapause, cell type,
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and cell cycle, and additional analyses implemented from the state-of-the-art enable to
perform clustering, low-dimensional projection of cells, batch correction and differential
expression analysis. In the following paragraphs we will give an overview of all analyses.

Low-dimensional projection Given the high dimensionality of the count matrix,
whose number of features is in the order of 104, it is necessary to apply sound methods to
project single-cell profiles onto a low-dimensional space, that should capture similarities
between cells. The standard dimensionality reduction method is Principal Component
Analysis (PCA). Next, two methods have been proposed and have been extensively
applied, namely UMAP [96] and t-SNE [17], for projecting high dimensional data in a
low-dimensional space where similar points in the original space have similar embeddings,
while distant points in the projection correspond to distant elements in the original space.

Clustering As it has been presented in Section 2.2, the most popular clustering meth-
ods of scRNA-seq data are Louvain [14] and Leiden [127], that are methods designed
for community detection and thus require data to be embedded in a k-Nearest Neighbor
(k-NN) graph. scanpy [104] and Seurat [167] implement the embedding step by first
computing PCA and UMAP/t-SNE, and use the obtained low-dimensional representa-
tions to build the k-NN graph. Finally, they use this graph to run Louvain or Leiden
and identify clusters.

Batch correction When scRNA-seq experiments, are performed at different times or
in different laboratories, one additional source of noise needs to be taken into account,
namely the batch-effect, which adds one additional source of variation that causes single-
cell profiles from different experiments to appear different in the read count matrix,
even though they correspond to the same biological population. Over the years multiple
frameworks have been introduced to perform batch effect correction, which have the aim
of both removing technical variability while preserving true biological signal. In order
to avoid removing true biological variability, it is fundamental to carefully evaluate the
impact of such methods on the data under investigation, and in [153] authors present
a benchmark of 14 recent methods, where they employ both visualization techniques
(t-SNE and UMAP) and quantitative metrics to assess the methods performance, and
identify 3 best-performing methods, namely Harmony [116], LIGER [132], and Seurat
v3 [126].

Consensus Molecular Subtype. Colorectal Cancer is characterized by a high de-
gree of heterogeneity, and by extracting specific features from gene expression data it is
possible to classify this disease using a stratification that reflects important biological
features, tumor phenotype and clinical outcome [50]. The classes are defined as Consen-
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sus Molecular Subtypes (CMS), and until 2020 they were extracted only from bulk RNA
sequencing data. Then, in [146], authors applied the concept of CMS to single-cell gene
expression datasets, with the goal of understanding whether each tumor is characterized
by multiple CMSs in a subset of its cells. Thus, the first analysis that we included in
our workflow is the association of a subtype to each gene expression profile, following
the approach presented in [146]. In detail:

1. We consider signatures for 4 CMS from the package CMSclassifier, where each
CMS s has 5 profiles derived from 5 different datasets d. Each signature is a vector
containing the expected expression value of each gene in the corresponding CMS:
vd,s = vd,s,1, . . . , vd,s,f .

2. We compute the Pearson correlation between each single-cell gene expression profile
xc = {xc,1, . . . , xc,f }, ρd,s = corr(xc, vd,s).

3. We associate to each single-cell, the CMS s showing the highest correlation mean:
cmsc = arg maxs⟨ρd,c,s⟩d.

Cell-type association In order to assess whether PDO cancer cells recapitulate with
the expression signatures of intestinal subtypes, we have employed the cell-type signa-
tures defined with the canonical markers in [146] to associate a cell type to each PDOs
gene expression profile. They provide the signatures for 6 cell types composed of 11
genes, where each signature is a vector of length 11 containing the scaled expression
value for the corresponding genes:

vs = {vs,1, . . . , vs,11} (5.1)

Thus we perform the following steps:

• For each PDO, we compute the z-score of each gene in the signature.

• For each single-cell profile xc = {xc,1, . . . , xc,11}, we compute the Pearson correla-
tion coefficient between each cell and each signature ρc,s = corr(xc, vs).

• Finally, we assign to xc the cell-type s showing the highest correlation typec =
arg maxs(ρc, s).

consider each organoid and we compute the z-score we computed the Pearson correlation
coefficient of every single-cell and cell-type signature, and we return the cell-type showing
the highest correlation.
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Diapause state. It has been shown that one mechanism exploited by Cancer Cells
to survive treatment is that of entering a Drug Tolerant Persister state (DTP), where
cells are slow-cycling or quiescent and then start growing again during drug holiday.
Thus, cells that enter DTP are able to survive treatment without acquiring any genomic
mutation that makes them different from the parental population, and once they exit
the quiescent state they are still sensitive to treatment. In [176], authors show that
the transcriptomic profiles of cells in DTP state recapitulate with that of embryonic
cells in a paused state. This state mimics a natural phenomenon where development is
arrested, known as diapause. Then, in [176] authors develop a diapause state signature
score which can be associated to each single cell. This score is a vector of +1 and -1,
computed using 124 genes that are de-regulated in embryonic stem cells and diapaused
embryos: genes that are up-regulated in diapaused state cells are assigned +1, and
conversely -1 is associated to every down-regulated gene. Thus, by (i) taking the z-score
of each gene and (ii) computing the scalar product between each single-cell and the
diapause signature, we compute a diapause state score.

Cell cycle phase The life of a cell can be seen as a cycle made of different phases,
where each phase is characterized by a different behaviour of the cell. Understanding in
which phase each single-cell is located, can provide great insights on the overall compo-
sition of the sample, as it can help in understanding whether specific subsets of cells are
quiescent or actively dividing. In order to associate a cell cycle phase to each single-cell
gene expression profile, suites like Scanpy and Seurat implement methods to compute
a score for three different phases exploiting the expression level of known genes involved
in the cell-cycle. Thus, following the best practices for single-cell data analysis we have
also incorporated the cell-cycle phase computation in our workflow.

Differential gene expression analysis In order to identify putative processes re-
sponsible for drug resistance, the first step consists in identifying those genes that are
differentially expressed between different conditions, i.e., genes whose distribution across
two condition is significantly different. Given the functions provided in Scanpy to per-
form differential expression testing and filtering the results, we implemented a wrapper
that uses a stratification of gene expression profiles into multiple groups (e.g., cluster-
ing labels, metadata on therapy resistance, etc.), and performs all pairwise comparisons
to detect DEGs. Next, we filter results according to the following attributes: mini-
mum number of cells expressing the genes in either one of the two groups, p-value and
Log-Fold Change (LFC). Finally, in case of multiple pairwise comparisons, we perform
a post-processing step where we aim at identifying those genes that are consistently
differentially expressed across conditions.
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5.1.2.2 Analyses of scDNA-seq data

To investigate the evolutionary history of a tumor, applying algorithms for the recon-
struction of clonal trees enables to reconstruct the order of accumulation of mutations
[53]. When single-cell mutational profiles are available, it is possible to apply MCMC
based frameworks such as LACE [196] that return a maximum likelihood tree. From
the inference result, it is possible to exploit our COB-tree algorithm to compute the
consensus tree (Please see Section 3.2.1 for additional details on the algorithm).

5.1.2.3 Analyses of scATAC-seq data

Single-cell ATAC profiles need to be processed differently from scRNA-seq profiles. In
fact, as it has been presented in Section 2.2, there are several approaches to perform
normalisation and dimensionality reduction. One approach consists in binarizing the
count matrix and applying Term Frequency-Inverse Document Frequency transformation
[181], and projecting data on a low-dimensional space using Singular Value Decomposi-
tion (SVD). Once these steps have been computed, like for single-cell RNA sequencing
(scRNA-seq) data, single-cell profiles are projected onto UMAP coordinates, and Lou-
vain can be applied to perform clustering.

5.1.3 Module 3a: diagonal data integration

5.1.3.1 Integration of DNA and scRNA data

clonealign In order to integrate scRNA-seq and scDNA-seq data, in 2019 clonealign
was developed [111], which is a framework that taks in input (i) the single cell gene ex-
pression profiles and (ii) the profiles of the copy number clones inferred from scDNA-seq
experiment, mapping each profile to the corresponding clone. Clonealign uses a statisti-
cal model that assumes a linear relation between copy number and gene expression.
This method does not detect de novo the clonal profiles, but it is a supervised method
that aims at associating to each known copy number clone detected via scDNA-seq the
corresponding set of gene expression profiles.

CONGAS We developed a new Bayesian framework, presented in Section 4.1 that
infers copy number states from scRNA-seq data. Unlike clonealign, our framework is
unsupervised and does not require to know a priori which clones to detect in the data.
Please refer to Section 4.1 for a through discussion about CONGAS.

5.1.3.2 Integration of DNA, scRNA and scATAC data

CONGAS+ We also presented a method to perform multimodal clustering and ex-
tend CONGAS to incorporate single-cell ATAC sequencing (scATAC-seq) signal, which
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can be applied to characterise copy number clones considering their gene expression and
chromatin accessibility profiles.

5.1.4 Module 3b: vertical data integration

5.1.4.1 Integration of DNA and RNA data

When a pool of cells is sequenced via full-length technologies, it is possible to exploit
frameworks that accommodate using variants called from scRNA-seq data to reconstruct
models of cancer evolution, such as LACE [196]. Such models are an example of vertical
integration, as the information about genetic mutations and gene expression is associated
to the same set of cells.

5.2 Case study #1: 20 Patient Derived Organoids of Colorectal
Cancer [RNA]

5.2.1 Data

Experimental design The analyses explained above have been applied to a biobank
of patient derived organoids of Colorectal Cancer cells. We have exploited our workflow
to analyse 20 samples in total, that correspond to 20 PDOs derived from metastatic sites
of 16 colorectal cancer. Prior to the the biopsy used to grow the corresponding PDOs,
the patients underwent different rounds of treatment. However, the stratification and
analysis of this cohort according to previous treatment regimens is outside the scope of
this work.

Figure 5.1 reports a summary of the PDO cohort, where we report for each organoid
the stratification into sensitive or resistant to 3 different therapies, that are Oxaliplatin
(Oxa), SN-38 and 5-FU. Such stratification was carried out by wet lab experts, who
tested different drug concentrations and reported the IC50 value, that corresponds to
the mean concentration leading to the death of 50% of the original population of cells.
Given that high values of IC50 correspond to higher drug concentrations, organoids with
higher values of IC50 were classified as drug resistant, while lower values were associated
with drug sensitivity. For each drug, PDOs were sorted according to their IC50 values:
the organoids with the lowest 5 IC50 values were classified as sensitive, and those with the
top-5 IC50 were in turn classified as resistant. All the scRNA-seq data from the PDOs
were sequenced before treatment with any of the aforementioned mentioned drugs.

5.2.2 Results

Alignment and preprocessing We aligned scRNA-seq data to the GRCh38 reference
sequence using STARsolo, as described in Section 5.1. Next, we performed quality check
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to remove low quality observations using Scanpy: we removed cells with more than
90% of zero counts, cells that may correspond to doublets, cells with a high fraction of
mitochondrial counts and genes that had 0 expression across all cells. For mitochondrial
fraction filtering, we computed for each organoid the mean µ and standard deviation
σ of the distribution, with the goal of taking into account possible differences in the
distribution across multiple samples. In fact, we computed t = µ + σ, and for values of
t lower than 20%, we use t as upper bound for filtering, otherwise we set the threshold
to 20%.

After preprocessing, we log-normalized each gene expression profile ci, dividing all
values for cell ci by its total counts ∑i ci, multiplying by a scaling factor s = 104 and
computing the log-transformation of the obtained values. In order to visualize the dis-
tribution of counts in the gene expression space, we computed UMAP coordinates, by
(i) scaling the input features, (ii) computing Principal Components Analysis, (iii) em-
bedding the single-cells in a neighborhood graph and (iv) finally, computing the UMAP
dimensionality reduction. The result is presented in Figure 5.2. Considering the distribu-
tion in the UMAP space of the different single-cell profiles, we observe high inter-patient
variability, as the organoids are grouped according to the patient of origin. In fact, only
samples associated to the same patient such as 1021BL and 1021PD are characterised
by expression profiles closer in the UMAP space.
Given that the main goal of our analysis is to characterise each organoid and assess
whether there are any features that are consistently deregulated between sensitive and
resistant organoids, we did not perform any batch correction, to avoid introducing any
bias in gene expression distributions[120]. The subsequent analyses that we performed
on the PDO cohort consists in the identification of DEGs using the stratification of
the organoids according to drug resistance, and in the characterization of each organoid
using multiple metrics.

Differential Expression Analysis The first analysis that we performed has the goal
of identifying, for each treatment, those genes that are consistently up or down regu-
lated between sensitive and resistant populations. We exploited the presence of multiple
samples associated to different drug sensitivity values in the cohort to perform multiple
pairwise comparisons, which may provide an opportunity to identify shared mechanisms
responsible for drug resistance, identifying those genes that are consistently de-regulated
between multiple pairs of organoids. Thus, given the three drugs, namely Oxaliplatin,
5-FU and SN-38, we considered the stratification into sensitive and resistant (Figure 5.1)
samples, and we performed the following steps:

1. For each pair of sensitive and resistant organoids (si, ri), we performed the
Wilcoxon test on each gene, comparing its distribution across the two conditions.

2. We filtered the results of the previous step, selecting those genes characterised by
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Figure 5.1: PDOs cohort considered in the analysis. There are 20 PDOs, which can be
stratified into sensitive and resistant to 3 different therapies (namely Oxaliplatin, SN-38
and 5-FU) according to IC50 data. Data generated during the SCEICC AIRC/CRUCK
Accelerator project #22790
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Figure 5.2: Patient Derived Organoids cohort. A: UMAP dimensionality reduction of
the PDOs cohort. There is high inter-patient variability, as organoids are grouped in
space according to the patient of origin. B: barplot showing that are respectively kept
and filtered out after quality check.

a p-value ≤ 0.05, | LFC| ≥ 1 and expressed in at least 30% of cells in either one of
the two organoids.

3. For each sensitive organoid, we kept only genes deregulated against all resistant
organoids, and we finally selected genes found consistently deregulated (previous
step) for at least 3 out of 5 sensitive organoids.

From this analysis we obtained one list of genes per drug type, containing the features
that are consistently up (or down) regulated between the multiple pairs of sensitive
and resistant organoids. The two-step filter enables to (i) detect for each sensitive
organoid those genes that consistently exhibit a higher or lower expression compared to
the sensitive organoids, and (ii) merge the results obtained from each sensitive PDO to
identify genes that are consistently de-regulated for multiple sensitive organoids. We
present results in Figure 5.3, where we show the genes that were selected from our
analysis for each drug. These lists have been subsequently analysed by wet lab experts
to identify possible targets that can be experimentally validated.

Knowledge extraction from multiple metrics In order to characterize the full
cohort, we extracted multiple features from the data using the measures described in
Section 5.1, and we show the result in Figure 5.4.
Considering the stratification into multiple CMS, in Figure 5.4A we show that the highest
proportion of cells is associated to CMS2, and only three organoids present heterogeneous
composition in term of CMS2. In Figure 5.4 we report the distribution of the diapause
score across the organoids in the cohort, and we show that there are a subset of the
organoids whose cells are characterised by a higher diapause score. Unfortunately, when
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Figure 5.3: Results of the differential expression analysis performed by merging the
results of multiple pairwise comparisons to identify the genes that are consistently up or
down regulated.
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we couple this information with the stratification into sensitiveness and resistance to
the therapies tested, we observe that the median scores are randomly distributed across
the sensitive and resistant states for all the drugs. In Figure 5.4C-D we report the
distribution of the 11 cell types identified through the cell lineage analysis presented in
Section 5.1.2.1, and the distribution of cell cycle phases. In this case, we observe low
heterogeneity among the multiple organoids that compose the cohort.

Conclusions The analysis of the PDOs cohort enabled us to design and setup an
analysis pipeline that handles the preprocessing of raw data, quality control to remove
low quality observations and downstream analyses. In order to improve the knowledge
extraction step and favour reproducible results, we believe it’s valuable to provide a
comprehensive workflow that merges together multiple strategies presented in different
state-of-the-art publications, with the goal of making such analyses reproducible and
enhance the quality of the knowledge extracted from single-cell data applied on cancer
research.

5.3 Case study #2: Data integration of longitudinal samples
from 4 Patient Derived Organoids of colorectal cancer
[RNA + DNA]

5.3.1 Data

The next case study we present is the analysis of 4 PDOs, that are all derived from the
same parental organoid, which was treated with 2 drugs, namely MK2206 and AZD5363
at two different concentrations. In Figure 5.5A we show the experimental design: (i) the
Parental is the untreated organoid, which (ii) was treated with MK2206 and AZD5363 at
1uM concentration for 35 days, in order to obtain two resistant organoids. The drug was
then removed, the two organoids were left expanding for 35 days and then sequencing
was performed on both organoids. Finally, a second round of treatment was applied with
a higher drug concentration of 5uM for 40 days, and the organoid treated with AZD5363
was sequenced.
In the next part of this section we will use the following IDs to refer to each organoid:
Parental is the original untreated PDO; MK-1uM and AZD-1uM are the two resistant
organoids obtained after treatment with 1uM concentration of MK2208 and AZD5363
respectively and AZD-5uM is the resistant sample obtained after treatment with 5uM
concentration of AZD5363. In detail we have the following samples: (i) scRNA-seq of
Parental, AZD-1uM and AZD-5uM and (ii) scDNA-seq of Parental, MK-1uM and AZD-
5uM. Both scRNA-seq and scDNA-seq experiments were carried out using 10x genomics
kit.
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Figure 5.4: Results of downstream analyses of the organoids cohort. A: Visualization
of the distribution of the different CMS profiles across the organoids in the cohort.
B: Distribution of the diapause score. The violinplot shows how the score values are
distributed in each organoid, sorted according to the median score. C: composition of
the organoids in terms of epithelial cell types. D: cell cycle phase distribution.
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5.3.2 Results

In this setting, is was possible to exploit the two single-cell datasets for performing data
integration, which was particularly interesting given the observed clonal dynamics. In
detail, Figure 5.5B shows the clonal profile observed in the parental organoid: while
the majority of cells were clustered into the clone that we define as clone 1, there was
an additional clone (namely, clone 2), that exhibited a different behaviour from clone1
in specific segments of chromosome 2.This clone, was also characterized by a subclone,
whose copy number profile differed from clone 2 in chromosome Chr 5. Then, Figure 5.5C
shows the results on the resistant organoid AZD5-5uM, which is the same as we observe
in AZD-1uM and MK-1uM: clone 3 that was present in a low portion of cells in the
parental, becomes the most prevalent. These observations can be summarised in the
clonal evolution plot reported in Figure 5.5: the first observed time-point corresponds to
the untreated parental organoid, where we observe clone 1 with the highest prevalence
and lower proportion of cells are associated to clone 2 and clone 3. Then, the following
timepoints correspond to the resistant organoids derived after treatment, where clone 3
is the most prevalent clone.
Thus, while clone 1 is a sensitive population that doesn’t survive after treatment, clone
3 corresponds to the resistant population, that becomes the most prevalent after treat-
ment. Given this clear clonal evolution, where we could characterize the resistant and
sensitive cells in terms of their copy number profile, we wanted to exploit single-cell gene
expression profiles to characterize these clones. In detail, given the following inputs (i)
the clonal and subclonal copy number profiles detected with single-cell resolution and
(ii) the single-cell gene expression profiles of each organoid, we could apply clonealign
[111] to find a mapping between the two input data.
Thus, we extracted the copy number profile of clone 1, clone 2 and clone 3, and we ran
the tool on the 4 organoids, mapping each gene expression profile to the corresponding
clone. The results, shown in Figure 5.6, are consistent with the clonal evolution history
inferred from scDNA-seq: in fact, while most of the cells in the parental PDO are mapped
to clone 1, in the resistant PDOs clone 3 shows the highest prevalence.
Performing a mapping between the two data types, makes it possible to study differences
between clones defined from DNA-sequencing, considering their gene expression patterns,
which would not be possible without using a framework that models the statistical
dependence between data types and performs the mapping. Thus, this shows how tools
that perform data integration between independent samples are fundamental in order to
obtain a comprehensive overview of the system that is under investigation.
In order to study difference among copy number clones considering their gene expression,
we performed differential gene expression analysis, using the mapped copy number clones
to stratify cells into sub-groups. In detail, we considered the following classes of cells:

• Clone 1 pre treatment: cells in the parental organoid mapped to clone 1
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• Clone 3 pre treatment: Cells in the parental organoid mapped to clone 3.

• Clone 1 post treatment: cells in any of the resistant organoids mapped to clone 1.

• Clone 3 post treatment: cells in any of the resistant organoids mapped to clone 3.

Considering both the clone label and the PDO label, we performed differential expression
analysis to study the following differences:

• Pre-existing diversity: genes that are differentially distributed between clone 1 and
clone 3 in the parental organoid.

• Plasticity of clone 1: given that we have cells assigned to clone 1 both before and
after treatment (that are thus identical in terms of copy number profiles), we can
detect if there are any differences between cells from this clone that arise during
treatment.

• Plasticity of clone 3: as we did for clone 1, we can study the changes in gene
expression among clone three in the sensitive and resistant organoids.

We performed the Wilcoxon test, setting a threshold of 0.05 to the p-value and |LFC|
> 1. We identified a list of genes that were subsequently analysed by wet-lab experts
and clinicians, to determine whether any of the genes could be selected as a putative
target for subsequent experiments to investigate further the drug resistance mechanisms.
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Figure 5.6: Results of mapping copy number clones to each gene expression profile.
Consistently with what is observed in scDNA data, the majority of cells in the Parental
organoids are associated with clone 1, while resistant organoids have the highest preva-
lence of clone 3. A: UMAP of the gene expression profiles colored by organoid ID. B:
UMAP colored by copy number clone mapped by clonealign. C: zoom on the clonal
evolution with MK2206 drug. D: zoom on the clonal evolution with AZD5363 drug.
In both C and D, the results obtained with clonealign are consistent with the clonal
evolution inferred using scDNA data.



6
Conclusions

This PhD project has been focused on the design and application of computational
strategies to perform data analysis and integration of high-dimensional and heteroge-
neous multi-omics data. The work was divided in three main tasks: (Task A) methods
for single-omics data types, (Task B) methods for the integration of multi-omics data
and (Task C) a pipeline for reproducible analyses. Each of these categories delivered
important achievements. Overall, the contributions have a two-fold impact, both on the
progress of the SCCEiC project and in the advancement in the broad field of computa-
tional sciences. A detailed discussion of the impact follows.

6.1 Impact

Task A: Methods of single-omics data types This work led to two major achieve-
ments with respect to methods tailored to the analysis of specific omic data types.

i Benchmarking of denoising methods for scRNA-seq data (Section 3.1):
we carried out an extensive comparison of state-of-the-art tools for denoising and
imputation of scRNA-seq data, which in most cases rely on machine learning strate-
gies to perform the task. Extensive simulations were performed in order to assess
the ability of each method in recovering the corrupted information. Also, multiple
real-world datasets were employed to discuss the impact of denoising in real sce-
narios. By exploiting both real and simulated datasets we computed a number of
different metrics, and provided a comprehensive evaluation of all methods, provid-
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ing a ranking of the methods according to different dimensions and perspectives.
This line led to publication [149].
Contribution to the SCCEiC project: given the extensive availability of
scRNA-seq data within the project, that are generated from PDOs derived from
samples collected from colorectal cancer patients, this benchmarking has enabled to
characterise which methods could be included in the final data analysis pipeline.
From this work, we also identified which method provide inaccurate results by
artefactually reducing the biological variability in the data or inferring inaccurate
missing values, and as this has allowed to avoid the application of preprocessing
strategies that would bias subsequent analyses. As a result, downstream analyses
of scRNA-seq data benefitted from improved quality of the data, enhancing the
reliability of the results.
Impact on computational sciences: in our work, we implemented an extensive
comparison of multiple computational tools, that were grouped into different cat-
egories according to the assumptions and techniques used for denoising. In [149]
we present a thorough and schematic summary of all the results, which can serve
a guideline for computational scientists using denoising and imputation tools.
The generation of realistic data to be used in testing of computational methods is
a particularly hot topic [186]. We contributed to this field by defining a rigorous
and reproducible workflow for data generation. the design of extensive simulations
settings, that takes into account differences in the data generation process can also
be exploited by other researchers for the validation of new computational strate-
gies.
Finally, other fields such as deep learning (computer vision or natural language
processing), where similar denoising or imputation methods might be applied, can
benefit from the analysis of the performance assessment presented in our work,
where we highlight strength and weaknesses of multiple methods, discussing also
their assumptions and the models exploited for denoising.

ii Consensus approach for the inference of clonal trees from single-cell mu-
tational profiles (Section 3.2.1): we presented a method that can be exploited to
improve current approaches for the reconstruction of clonal trees. The presented
approach consists of (i) a new data visualization approach that sumarises the so-
lution space explored during the MCMC search and (ii) an algorithm that exploits
regularities in the search space to return one Consensus Optimum Branching Tree
(COB-tree) that summarises the trees explored during the MCMC. The work led
to the publication presented in Section 3.2.1, which has been accepted for publica-
tion in the conference proceedings of the 16th International Workshop on Artificial
Life and Evolutionary Computation (WIVACE 2022).
Contribution to the SCCEiC project: given that our proposed method was
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designed to work with the output of MCMC methods that infer clonal evolution
models using single-cell mutational profiles, the COB-tree algorithm can be applied
on mutation data produced within the project, for instance by calling variants
(single-nucleotide, indels, copy numbers) from DNA- RNA- or ATAC-seq data, in
order to improve the inference of cancer evolution models.
Impact on computational sciences: this method represents an advancement
in the field of cancer phylogenetics, as it represents the first method designed to
explore and summarise the solution space of MCMC based algorithm for clonal
tree reconstruction. The framework could also be applied to other computational
methods that infer solutions through MCMC sampling, as it highlighted note-
worthy differences with the standard maximum likelihood strategies. Finally, by
reconstructing clonal trees using our approach it is possible to build better ex-
planatory models of the evolutionary history of tumors. This in turn might allow
to improve the the quality, robustness and reliability of the inference, possibly lead-
ing to the identification of repeated evolutionary patterns [87] within and between
patients that could be exploited for anticipating tumor evolution.

Task B: Methods multi-omics data integration In task C2, the main achieve-
ments regarded two Bayesian methods that solve the following integration tasks:

i CONGAS (Section 4.1) integrates scRNA-seq data with bulk DNA-sequencing
measurements with the goal of inferring genetic copy number clones from gene
expression data, by clustering single-cell profiles in groups characterised by the
same copy number state. It implements a model that links the copy number to
the RNA signal, and it infers the parameters of the model through SVI. This line
led to publication [194].

ii CONGAS+ (Section 4.2) is the first method that maps two distinct omics
(scRNA-seq and scATAC-seq) on the latent space of copy numbers, It enables
to detect and characterise copy number clones considering their gene expression
and chromatin accessibility patterns. The integration of both scRNA-seq and
scATAC-seq profiles is implemented through a shrinkage coefficient, that is an
hyperparameter that controls the weight given to the two omics in the final
likelihood. This hyperparameter enables to incorporate external knowledge in the
model regarding the reliability of the two signals.
Another interesting feature of the framework is that it models the latent copy
number states using a probability distribution over discrete values. Given that
the parameters are learnt via SVI, and the optimization requires to estimate the
gradients of all the variables, to sample from the copy number state distribution we
implement the Gumbel-softmax distribution [64] that is a continuous distribution
that can approximate samples from a categorical distribution.
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Both Bayesian frameworks model the copy number values as latent variables, and aim
at assigning single-cells (ATAC/RNA) by exploiting a linear relation between the copy
number state and the observed single-cell signal. We assessed the robustness of our
methods using both simulated and real datasets, showing that both methods are able
to accurately retrieve copy number clusters and correctly map single-cell profiles to the
clones.
Contribution to the SCCEiC project: our integration methods fit well within the
project experimental setting, and are one of the building blocks of the Sigmoidal pipeline
(see Chapter 5). In fact, they provide a strategy to map genetic clones on single-cell
datasets (either RNA or ATAC), enabling the characterization of biological subpopula-
tions in each PDO considering their genetic alterations. This will be applied to datasets
from PDOs of 16 cancer patients, from the cohort presented in Chapter 2, eventually
allowing to assess and compare both the gene expression and the chromatin accessibility
of the genetic clones of the different samples. Importantly, this will allow to evaluate the
impact of the distinct therapeutic strategies tested in the project both on the genotype
and the phenotype of cancer subpopulations.
Impact on computational sciences: our methods are Bayesian frameworks that ex-
ploit SVI to infer the posterior of the parameters. CONGAS+ is characterised by two
interesting features: the shrinkage coefficient and the use of a categorical variable to
infer copy number states. The first feature can be applied in principle to other compu-
tational problems where the goal is to combine together multiple data types and that
would benefit from the introduction of external knowledge about each data type.
Second, given the presence of a discrete variable in the model, we implemented the
Gumbel-softmax distribution that is a continuous distribution that can approximate
categorical samples. Thus, our work may be useful to other computational scientists who
need to model discrete factors while using approaches that require computing gradients
for optimization.

Task C: SIgMOIDAL, a pipeline for reproducible single-cell analysis The
efforts summarised above have brought to the definition of a pipeline that combines dif-
ferent strategies to deliver reproducible and standardized analyses of biological samples.
Contribution to the SCCEiC project: this pipeline has been employed for the anal-
yses of samples generated within the project, and will be used in the sampled generated
in the near future. The two case studies in which we exploited our pipeline are presented
in Section 5.2 and Section 5.3. Through SIgMOIDAL we could extract usable knowl-
edge from scRNA-seq samples, identifying multiple features to characterise each sample,
also performing data integration to characterise genetic clones considering their gene
expression. This results have allowed to generate data-driven experimental hypotheses
on cancer evolution and especially on the motivations underlying drug resistance in col-
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orectal cancer.
Impact on computational sciences: the design of SIgMOIDAL provides a scaffold for
the design of comprehensive pipelines that need to take into account complex experi-
mental settings with multiple data types, multiple experiments and possibly longitudinal
data. We remark that with respect to widely used tools such as Seurat [167] and Scanpy
[104], the design of SIgMOIDAL is specifically tailored for cancer research. Its design
combines multiple modules highlighting current state-of-the-art techniques to perform
knowledge extraction from cancer samples, that can be modified or updated to accomo-
date new frameworks. The effort of designing SIgMOIDAL goes in the direction of the
principles of open science and the FAIR guidelines [67] for data management, towards
an improvement of the reproducibility of data analysis workflows.

6.2 Limitations and future works

Despite the various achievements, the methods presented in this thesis have several
limitations.
With respect to the COB-tree tree algorithm and the visualisation approach that de-
scribes the solution space explored during MCMC search Section 3.2.1, we note that in
[140], another consensus approach for clonal trees is presented, that is applied to the
different problem of inferring one consensus solution from the clonal trees in cohort of
patients. Thus as future developments we aim at testing our COB-tree algorithm on the
problem tackled in [140] and [87], with the goal of understanding whether using one con-
sensus tree per patient improves the inference of the evolution models, which might in
turn be used to find the repeated patterns of evolution via models such as REVOLVER
[87] that aim at studying repeated patterns of evolution.
Regarding the task of diagonal integration, our frameworks CONGAS and CONGAS+
take in input the segmentation from bulk sequencing, and thus they are able to detect
copy number clones at the resolution of input segments inferred from the bulk. One
limitation of these works is that, given the segment-level resolution, we may not observe
subclones that are affected by one or more copy number events present on a sub-portion
of an input segment. However, given that scATAC-seq reads correspond to fragments
of the DNA in open chromatin regions, it may be possible to extend our framework to
incorporate a segmentation step that would exploit this data type and would enable to
detect subclones in the data. From preliminary analyses, we observed that it might be
possible to extend our approach to a two-step inference, where we first separate tumor
from normal cells, we employ the ATAC signal on the obtained clusters to detect SNPs
and we finally compute the BAF, that is be used in conjunction with the read depth
to perform the segmentation and copy number calling to feed to the next run of the
inference.
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Regarding the design of SIgMOIDAL, one limitation that arised within the SCCEiC
project concerns the experimental settings. In fact, the case study presented in Sec-
tion 5.2 where multiple PDOs from different patients are analysed, is characterised by
high inter-patient variability, that introduces multiple confounding factors in the data
that hinder the identification of putative target genes for personalised therapy. In order
to improve methods for knowledge extraction, it is necessary to design experimental set-
tings that enable the in depth characterization of each PDOs, collecting multiple omics
data type for each organoid.
Finally, a progressive development of our pipeline SIgMOIDAL is ongoing. At the mo-
ment, multiple building blocks are implemented in bash, R and Python, but we are
working on (i) a comprehensive Nextflow implementation of the preprocessing steps
and (ii) an interactive module to perform data integration and clone-specific differential
expression analyses. We believe that implementing an interactive solution to perform
integration and downstream analyses is key to improve the reproducibility and usability
of our approaches.
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Appendix: Additional papers

A.1 Deep Learning model for Predicting Relative Fluxes in Re-
action Systems

When studying differences between healthy and pathological systems from the point of
view of their metabolic reactions transforming one chemical into another, it is important
to understand differences between their fluxes. However, current technologies allow only
to measure the abundance of metabolites involved in the reactions, making the task
of predicting the variation of fluxes across steady states very challenging. One solu-
tion is to use constrained optimization to predict flux variations from relative chemical
abundances [65]. However, performing such an optimization requires many assumptions
and simplifications. Thus, we developed a multi-target Deep Neural Network predicts
the variation of reaction fluxes between two states of a reaction system, using as input
features the variation of metabolites abundances.
Given limitations in technologies to measure flux variations, we used a dataset of a
yeast metabolic network simulated using using kinetic modeling [69]. We also tested
whether flux variations are affected also by chemicals that are not directly involved in
the reaction, by reducing the set of chemicals given in input to the model. We show that
our DNN is able to predict variations in fluxes also when we reduce the input features.
The code for all the experiments performed in the paper is available at https://github.
com/BIMIB-DISCo/FLUX-PREDICT.
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The strong nonlinearity of large and highly connected reaction systems, such as metabolic 
networks, hampers the determination of variations in reaction fluxes from variations 
in species abundances, when comparing different steady states of a given system. We 
hypothesize that patterns in species abundance variations exist that mainly depend on 
the kernel of the stoichiometric matrix and allow for predictions of flux variations. To 
investigate this hypothesis, we applied a multi-target regression Deep Neural Network 
(DNN) to data generated via numerical simulations of an Ordinary Differential Equation 
(ODE) model of yeast metabolism, upon Monte Carlo sampling of the kinetic parameters. 
For each parameter configuration, we compared two steady states corresponding to 
different environmental conditions. We show that DNNs can predict relative fluxes 
impressively well even when a random subspace of input features is supplied, supporting 
the existence of recurrent variation patterns in abundances of chemical species, which can 
be recognized automatically.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

The determination of the rate at which a substance is transformed into another through a given reaction or pathway (i.e. 
the flux) on the basis of routine measurements of the abundance of chemical species, when the mechanistic dynamics of 
the systems is not fully characterized, is an important problem in different fields, from life [1] to environmental sciences [2]. 
Knowledge on relative fluxes is important, as it may translate into knowledge about the controllable mechanisms underlying 
the differences between two steady states of a system (e.g. pathological vs healthy state). This translation occurs more 
directly and successfully than in the case of abundances of chemicals, which provide a mere snapshot of the system [1]. Yet, 
fluxes are hardly measurable with current technologies, whereas abundances can be largely measured with high throughput 
methods.
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We investigate the problem of estimating relative fluxes from relative abundances, by means of both theoretical reasoning 
and simulations. We show that the problem can be solved analytically only if enzymatic kinetics are neglected. When 
enzymatic kinetics are taken into account, extra information is required, namely relative abundances of enzyme-substrate 
complexes when mass action rate law formulation is used, kinetic constants (i.e. the binding affinity of enzymes) when the 
Michaelis-Menten approximation is used. Both types of information are currently not measurable on a large scale. Moreover, 
analytical solutions require knowledge on the abundance of each single substrate involved in a reaction, whereas the current 
sensitivity of abundance quantification techniques (as e.g., mass spectrometry) typically allows detecting only a subset of 
them at a time.

To overcome this lack of knowledge, current approaches mainly rely on optimization subject to constraints to identify 
feasible solutions out of a very large set of candidates. Along with stoichiometric constraints and mass balance, such ap-
proaches incorporate constraints on relative abundances of metabolites in the form of constraints on relative fluxes. For 
example, iReMet-flux [3] seeks to minimize the distance between any pair of flux distributions in the feasible region, whose 
ratio between each flux is within upper and lower bounds, derived from the ratios of metabolic and enzyme abundances, 
according to the mass action formulation (see Section 2). Pandey et al. [4], instead, convert the variation in the abundance of 
a given metabolite into a constraint on the generic variation in the fluxes responsible of either its production or consump-
tion and seek to maximize the consistency with such constraints, along with other constraints on relative fluxes assumed 
from relative gene expression data.

By requiring relative metabolic abundances to be incorporated in the form of constraints on relative fluxes, the above 
approaches require many assumptions and simplifications. Another limitation of these approaches is that they require the 
definition of an objective function. Moreover, it is difficult to find the optimal trade-off between narrow constraints leading 
to infeasible solutions and loose constraints leading to too wide feasible regions.

Here, we propose a different approach based on the combination of kinetic modeling and Machine Learning (ML). The 
combination of computational modeling, and in particular constraint-based modeling, with machine learning techniques 
is an emerging field which is revealing great potential. Recent approaches exploit the mechanistically linked information 
provided by context-specific models as the input of either supervised or unsupervised machine learning approaches, as 
reviewed in [5–7]. Although some of these studies have used neural network to predict e.g., individual fluxes from enzyme 
or gene expression data [8] or abundances of metabolites from other -omics data [9,10], to our knowledge, this is the first 
time that ML is used to predict overall flux variations from overall relative abundances.

The approach that we are proposing originates from the hypothesis that recurrent patterns resulting from stoichiometric 
and mass balance constraints exist. Hence, we can exploit information of the vector of abundance variations δx or, possibly, 
of a subspace of it, in order to predict with a good confidence level the vector of flux variations δv . We expect these 
patterns to be learned and recognized by ML regression algorithms.

However, given that fluxes are hardly measurable in real-world scenarios, it is unrealistic to obtain a large and hetero-
geneous experimental training set of (δx, δv) pairs to properly train any ML algorithm. To overcome this limitation, we 
propose to simulate (δx, δv) pairs with kinetic modeling, namely via standard ODEs. Notice that reaction rate equations 
and constants are largely undetermined, otherwise it would suffice to directly simulate δx with a ODE model to predict δv . 
Here, we assume that, in light of the steady state constraint, f (δx) = δv is largely independent from the specific values of 
kinetic constants.

To investigate the validity of our assumption, we propose to randomly sample the space of kinetic parameters, as in 
[11–13]. For each sampled set of parameters, δx and δv can be collected, by comparing the state of the ODE model in two 
different environmental conditions in a time invariant condition (i.e., the steady state). In a preliminary phase, we employed 
the simulated dynamics of a previously published yeast metabolic network [12,11], undergoing nutritional perturbations, to 
train, validate and test different configurations of Deep Neural Networks (DNNs). We also evaluated the predictive perfor-
mance of DNNs in the realistic scenario in which the abundance of metabolites can be measured for a limited subset of the 
model species.

2. Motivation and main assumptions

A biochemical reaction system is defined by a set X = {X1, . . . , XM } of molecular species occurring in the system, and 
a set R = {R1, . . . , R N} of chemical reactions taking place among the species. We define reactions as: Rr : ∑

q∈Q r
αq Xq ⇒∑

t∈Tr
βt Xt where αq, βt ∈ Q+ are stoichiometric coefficients associated, respectively, with the q-th reactant and the t-th 

product of the r-th reaction, and Q r and Tr are the set of reaction substrates and products of reaction r, respectively. Let 
[Xm](t), with m = 1, . . . , M be the abundance of Xm at a given time t in the system’s evolution, either expressed as number 
of molecules or as concentration. Let Vr , with r = 1, . . . , N be the rate (or flux) through reaction Rr in a unit of time, i.e. the 
number of times Rr occurs in that unit of time. Such a system is said to be at steady state if ∂[Xm](t)/∂t = 0, ∀m. Steady 
state is thus the condition in which fluxes may occur but the concentration of all species does not change in time. Let S be 
a M × N matrix, referred to as stoichiometric matrix, whose element sm,r , takes value −αm,r if species Xm is a substrate of 
reaction Rr (i.e., Xm ∈ Q r ), βm,r if species Xm is a product of reaction Rr (i.e., Xm ∈ Tr ), 0 otherwise. Let v = (V 1, . . . , V N)

be the vector of reaction fluxes, then a system is at steady state when S v = 0.
It is worth mentioning that, if a reaction Rr is reversible, a reaction Rb exists such that sm,r = −sm,b, ∀m. Typically, life 

scientists use the term flux to indicate the net rate Vr − Vb , that is, the rate of the forward reaction minus the rate of the 

2
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reverse reaction. However, in this work reversible reactions are represented with two distinct and complementary forward 
reactions, thus the terms flux and rate coincide.

Now let i and j be two different steady states of the system and xi = ([X1]i, . . . , [XM ]i) be the vector of abundances 
of the chemical species in steady state i and vi = (V 1

i, . . . , V N
i) be the vector of reaction fluxes in steady state j, and 

let x j = ([X1] j, . . . , [XM ] j) be the vector of abundances of the chemical species in steady state j and v j = (V 1
i, . . . , V N

j)

be the vector of reaction fluxes in steady state j. We define the species abundance variation between state i and j as 
δxi, j ≡ (δ[X1]i, j, . . . , δ[XM ]i, j) = x j − xi , and the variation of reaction fluxes as δvi, j ≡ (δV i, j

1 , . . . , δV i, j
N ) = v j − vi . In the 

following, δxi, j and δvi, j are also referred to as relative abundances and relative fluxes, respectively.
The aim of this work is to deduce flux variations from species abundance variations, that is, δvi, j from δxi, j . In the 

following, we will make use of a very simple and specific example of reaction system to motivate, without loss of generality, 
the complexity of the problem and the non linearities that one may encounter when trying to deduce flux variations from 
species abundance variations.

Example 1. Let us assume a very simple system composed of 4 chemical species X = {A, B, C, D} (e.g., metabolites) and 3
reactions R = {R1, R2, R3} defined as follows:

R1 : A ⇒ B

R2 : C ⇒ B

R3 : B ⇒ D

In order for the system above to be able to reach a steady state, unbalanced reactions (also referred to as exchange 
reactions) must be included, for A and C – which must be fed into the system (∅ ⇒ A; ∅ ⇒ C ) – and for D – which must 
be depleted (D ⇒ ∅).

At the steady state, the rate of production and consumption of the species must balance. Hence, if any event (e.g., an 
external perturbation of the system) determines the increase of either V 1 and/or V 2, then V 3 must eventually increase to 
reach a new steady state. Consequently, when comparing two steady states of the system, if δV 1 + δV 2 > 0 then δV 3 > 0.

Let us now suppose that information on δxi, j is given and, for instance, that an increase in [B] (δ[B]i, j > 0) and an 
increase in [D] (δ[D]i, j > 0) were observed. This must be imputed to one of the following cases:

1. an increase in V 3 and an increase in V 1,
2. an increase in V 3 and an increase in V 2,
3. an increase in V 3 and an increase in both V 1 and V 2.

Information on δ[A] and δ[C] does not let us to exclude case 1 or case 2. In fact, case 2 is compatible with both: (i)
δ[C] > 0, i.e., an increase in the reaction’s substrate [C] and (ii) δ[C] = 0, if the higher depletion of C , resulting from an 
increase in δV 2 > 0, is compensated by a higher influx of C . Along similar lines, case 1 is compatible with both: δ[A] > 0
and δ[A] = 0.

Example 1 demonstrates the complexity of the problem of determining analytically flux variations from relative abun-
dances. The complexity is expected to increase with the number of interconnected reactions and when reactions of higher 
order and/or feedback loops come into play, as it is typically observed in real-world scenarios.

However, the following assumptions would allow one to analytically estimate relative fluxes from relative abundances:

• for each reaction r in the system, the mass action law is assumed: Vr = kr ∗ ∏
q∈Q r

[Xq]|Sq,r | , where kr is the kinetic 
constant of reaction r, Xq is the qth substrate of the set Q r of substrates of reaction r, and Sq,r is the stoichiometric 
coefficient of substrate Xq i.e., how many molecules of the substrate partake to the reaction;

• at (steady) states i and j, the kinetic constant kr of any reaction r of the system is assumed to be identical.

Given such assumptions, the variation between the flux of an irreversible reaction r in two steady states i and j can be 
analytically determined as the ratio V i

r/V j
r :

V i
r

V j
r

=
∏

q∈Q r

(
[Xq]i

[Xq] j

)|Sq,r |
(1)

which does not depend on kr .
The above situation completely neglects enzymatic kinetics, which are an important factor in the dynamics of chemical 

systems. Let us suppose, for instance, that reaction R1 in the previous example is catalyzed by enzyme E1. Hence, the series 
of steps through which reactants bind to specific enzymes before being transformed into products should be taken into 
account, as follows:
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R1 : A + E1 ⇔ AE1 ⇒ B + E1

In principle, one can apply equation (1) to the last reaction step, but knowledge of the relative abundance of intermediate 
complexes (δAE1) is required. Yet, owing such a level of detail of information is unrealistic with current technologies.

When dealing with cellular metabolic reactions, it is reasonable to assume that they are far from thermodynamic 
equilibrium and that substrates are in excess over enzyme-substrate complexes. Hence, the enzyme kinetics is generally 
approximated with Michaelis-Menten rate laws [14,15]. The Michaelis-Menten formulation does not explicitly take into ac-
count the abundance of enzymes, but it models saturation kinetics, by describing the variation of the rate of a reaction as 
a function of substrate’s abundance. In the simplest scenario, the rate of a reaction Rr involving a single substrate Xr with 
unitary stoichiometric coefficient would be described as:

Vr = V M A X
r [Xr]

K M
r + [Xr]

(2)

where, briefly, V M A X
r is the maximum rate of reaction r (when the enzyme is saturated with substrate), whereas K M

r is the 
concentration of substrate that permits the enzyme to achieve half V M A X

r , which depends inversely on the affinity of the 
enzyme for its substrate. In this scenario, the ratio V i

r/V j
r describing the variation between the flux of a irreversible reaction 

r in two steady states i and j is defined as follows:

V i
r

V j
r

= [Xr]i(K M
r + [Xr] j)

[Xr] j(K M
r + [Xr]i)

(3)

which does depend on K M
r . Given the incomplete knowledge of the value of K M

r of metabolic reactions, δvi, j cannot be 
analytically derived from δxi, j in this scenario.

Moreover, both equations (1) and (3) require information on the variation of the abundance of each substrate partaking 
in reaction Rr . However, in real-life scenarios only a fraction of the species involved in a reaction system is detected by 
chemical quantification technologies. Hence, we here investigate the possibility of using information about variations in 
other species in the network to improve predictions of δVr when information on the abundance of substrates of Rr is 
lacking.

Our hypothesis originates from the consideration that all the steady states of a biochemical reaction system abide by the 
constraint S v = 0 and, therefore, relationships among v i and v j exist which are independent from specific rate laws and 
kinetic constants of reactions. Hence, we speculate that similar relationships between xi and x j may also exist, which do 
not depend on kinetic constants values. In this work, we investigate such hypothesis by means of simulation experiments 
and machine learning.

The general idea of the proposed approach is depicted in Fig. 1.

3. Methods

3.1. Synthetic dataset

To preliminarily investigate our hypothesis, we used a dataset previously generated via numerical simulations of an 
ODE model [11], in which elementary mass action law was assumed for every reaction rate. The model is defined by a 
set of N = 48 reactions and a set of M = 34 metabolites. The metabolic network model is available in SBML format at 
this link: github .com /BIMIB -DISCo /FLUX-PREDICT, and a graphical representation of it is shown in Fig. 1. For the sake of 
notation simplicity, in the following, we will refer to the name of specific reactions with the name of the first substrate 
and the name of the main product separated by the underscore symbol. For instance the reaction in the top left corner 
of the map (Glc + AT P ⇒ G6P + AD P ) will be referred to as Glc_G6P . Reverse reactions are considered separately and 
are indicated with the suffix _reverse. P = 100 000 sets of kinetic constants K1 = {k1, k2, . . . , kN }, K2 = {k1, k2, . . . , kN}, 
. . . , KP = {k1, k2, . . . , kN } for the model reaction rates were generated randomly from a uniform distribution in [0,1). Initial 
abundances of metabolites were defined according to data in literature and are reported in [11]. For each parameter set 
Kp , with p = 1, . . . , P , we retrieved two steady states of the model corresponding to two different nutritional conditions: 
condition i – low glucose (2.8 mM), condition j – high glucose (25 mM). Glucose concentration is maintained fixed during 
the simulation. The model was simulated via integration of ODEs by means of the LSODA solver [16] for a simulated 
time of 50 seconds. The quasi-steady state condition was determined according to a small threshold (0.01) on the average 
standard deviation (σ ) of the value of species concentration for the last 10% of time dynamics. For further details on 
the simulations the reader is referred to [12]. For each parameter set Kp , with p = 1, . . . , P , we obtained the vector of 
abundances at steady state of the chemical species in condition i xi

p = ([X1]i
p, [X2]i

p, · · · , [XM ]i
p) and in condition j x j

p =
([X1] j

p, [X2] j
p, · · · , [XM ] j

p) and the vectors of fluxes vi
p = (V i

1,p, V i
2,p, · · · , V i

N,p) and v j
p = (V j

1,p, V j
2,p, · · · , V j

N,p) and we 

computed the vector of variations of abundances δxp
i, j = x j

p − xi
p and of fluxes δvi, j

p = v j
p − vi

p between conditions i and 
j. We decided to compute the difference rather than the ratio between conditions to avoid problems related to divisions by 
zero. We finally obtained 100 000 pairs of metabolites-flux variations (δxp

i, j, δv p
i, j), with p = 1, 2, · · · , 100 000.
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Fig. 1. Schematic representation of the proposed approach and diagram (adapted from [11]) of the yeast metabolic network used to generate the synthetic 
dataset. Blue/red represent positive/negative variations in species abundances and fluxes. The DNN diagram is for representative purposes only. In our 
setting, the input layer has less nodes (M = 34) that the output layer (N = 48). (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

For the sake of simplicity, in the following we will refer to δx = (δxi, j
1 , . . . , δxi, j

p ) as the matrix of size P × M , where δxp
is the vector of variation of abundances for constants Kp and δx∗,m is the vector of variation of abundances of metabolite 
m for all the P parameters. Similarly, we will refer to δv = (δvi, j

1 , . . . , δvi, j
p ) as the matrix of size P × N , where δv p is 

the vector of variation of fluxes for constants Kp and δv∗,r is the vector of variation of flux r for all the P parameters. 
In addition, we will refer to a specific metabolite variation δx∗,m and a specific flux variation δv∗,r with the name of the 
corresponding metabolite and reaction.

Data pre-processing Prior to training the neural network, the input dataset was pre-processed. We removed zero variance 
predictors [17] from the relative metabolites δx and we removed zero variance output features from the relative fluxes δv . 
In detail, we removed 1 out of 34 relative metabolites (namely, O 2) and 2 out of 48 relative fluxes (namely the exchange 
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reactions of Glc and O 2). Finally, in order to proceed with the training phase of our DNN model, we standardized the input 
variables (i.e. metabolite variations), by removing the mean and scaling to unit variance.

3.2. Model definition

In order to define a model that predicts the vectors of flux variations δv p from the vectors of abundance variations δxp , 
we built a multi-target regression DNN. Such model is depicted in Fig. 1: its input layer contains as many nodes as the 
number of abundance variations (i.e., M), and the output layer is composed of a number of nodes equal to the number of 
flux variations that need to be predicted (i.e., N). As commonly done, networks are trained in order to minimize the Mean 
Squared Error (MSE) between true and predicted flux variations.

We considered a multi-target regression DNN rather than single-target to reduce computational costs and hopefully to 
exploit relationships among the output variables to improve the goodness of fit [18].

3.3. Cross-validated grid search

The selection of the hyperparameters that define the DNN was performed by a cross-validated grid search over a set H
of 48 possible hyperparameters configurations. More in detail, for each configuration h ∈ H we estimate the performance 
on unseen data by cross-validation and then define our chosen model with the best performing h.

Train and test sets We split our dataset in training (outer training set) and test set with a percentage of 90% − 10%. The 
former partition is used to fit the neural network and to perform hyperparameter selection, while the latter partition is 
used to provide an unbiased evaluation of the prediction error, as it is used neither during the training phase, nor for 
hyperparameter optimization.

Hyperparameters The main aim of our grid search is to explore whether there is a need for deep networks or if wide 
networks with one single hidden layer may suffice, and to exclude configurations with low predictive power. To this aim, 
we varied the following hyperparameters:

• Hidden layers sizes, to take into account different widths (number of neurons for each layer) and depths (number of 
layers). In detail, we considered the following settings:

{(100), (200), (500), (100,100), (200,200), (100,100,100)},
with each tuple indicating the number of neurons for each hidden layer.

• Optimization algorithms: {Adam, SG D}.
• Initial learning rate: {0.01, 0.001}.
• With and without the dropout regularization technique, that is commonly used to improve generalization. When used, 

we set the dropping rate to 50%.

In addition to varying the hyperparameters just listed, for each neural network configuration h we kept the following 
elements fixed: (i) batch normalization method to normalize the input of each activation function, with the aim of im-
proving the stability of the training process. (ii) ReLU activation function. (iii) Early stopping heuristic to halt training if the 
model doesn’t improve in 200 epochs, in order to prevent overfitting. (iv) Exponential decay schedule for the learning rate. 
(v) Batch size of 128. (vi) Mean Squared Error (MSE) as loss function. For a detailed explanation of all the techniques please 
refer to [19].

Cross validation The grid search procedure was combined with a 5-fold cross validation procedure (i.e. cross-validated grid 
search), see Fig. 2 for a schematized representation. In detail, the outer training set was split into 5 groups of equal size, the 
so-called folds (Step 1 in Fig. 2). Then, each neural network configuration h ∈ H was trained using 4 folds for the training 
process (inner training set) and the last one for performance evaluation (valid set). This procedure was repeated 5 times (CV 
Loop), so that each fold is employed once as validation set.

In order to have an unbiased estimation of when performing early stopping (i.e. without taking into account the valid 
set), for each iteration the inner training set was partitioned in two sets with a percentage of 90%-10% (Step 2b), using the 
former for training and the latter for early-stopping.

Then, when the training phase was concluded, the performance of the network was tested over the valid set (Step 2c). In 
detail, for our experiments we calculated the coefficient of determination R2 for each flux r:

R2(δv∗,r, δ̂v∗,r) = 1 −
∑F

f =1(δv f ,r − δ̂v f ,r)
2∑F

f =1(δv f ,r − δ̄v∗,r)2
(4)

where F is the number of samples, δv∗,r is the vector of variations for flux r, δ̂v∗,r is the corresponding vector of predicted 
values, δv f ,r and δ̂v f ,r are the values for sample f and δ̄v∗,r is the mean variation for flux r. R2 measures the goodness 
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Fig. 2. Diagram of the 5 fold cross-validation procedure for hyperparameter selection with DNNs, where we take into account also an additional split for 
the early-stopping heuristic (step 2b).

of fit of the model by normalizing the sum of squared errors by the total deviance observed in ground truth data. After 
calculating R2 for each flux r, we calculated the average R2.

The final result of this cross-validated grid search consisted in 5 performance scores (average R2) for each DNN configu-
ration. Finally the model h ∈ H showing the best mean score was selected and evaluated on the test set (Step 3).

For details about the selected models see the Results section. See also Supplementary algorithm 1, for the pseudo-code 
of the Cross Validated Grid Search.

4. Results

4.1. Selected features

The main goal of this work is to investigate whether the prediction of the flux variation in a given reaction can benefit 
from information in the abundance variation of metabolites not directly involved in such reaction. To address this issue, 
we assessed the effect of reducing the number of input metabolites on the output prediction. To select a fraction g of the 
original features δxp to be removed, with g = 70% and g = 50%, at first instance, we followed the common practice of basing 
the choice on their redundancy. Firstly, we computed the pairwise Pearson correlation between metabolites. The heatmap 
in Fig. 3 shows the correlation of each pair. As already pointed out in [11], it can be observed that correlations between 
metabolites are not obvious. For example H2 O correlates strongly with N AD P even though they are not directly involved 
in the same reaction. Next, we ranked the pairs of metabolites by decreasing order of their absolute correlation. Starting 
from the most correlated one, we removed one feature from each pair until only a fraction g of the original metabolites 
was left.

4.2. Selected hyperparameters

We applied the overall methodology to train, cross-validate and test the best model, given simulated (δxp , δv p) pairs, 
with p = 1, 2, · · · , 100 000 (as illustrated in Section 3) for different fractions g of input metabolites.

We first applied the methodology by using the entire set of features, i.e., the variation of all the metabolites in the 
simulated network. In this case, the cardinality of δxp coincides with the number of metabolites in the model |δxp | = M . 
The cross-validated grid-search procedure selected as best model the DNN with 2 hidden layers of 200 neurons each, 
i.e. (200, 200), no dropout, learning rate = 0.001 and optimizer = Adam. By analyzing the performances achieved by 
the different configurations (see Supplementary Table 1) we observed that models with one hidden layer provide simi-
lar performances regardless of their width. Thus, increasing the width is not enough to improve the performance and it is 
fundamental to explore deeper configurations. Indeed, an improvement in the predictive power of the model is observed 
when increasing the depth of the network. Finally, the best configuration provides an increase in the performance of ≈ 4%
with respect to the second best (100, 100, 100). This result indicates that, by employing either wider or deeper models, 
the regression performance may be further improved. However, since the goal of this article is proving the potentiality of a 
Neural Network-based approach for predicting flux variations, exploring additional architectures is beyond the scope of this 
work. See Supplementary Table 1 for details about the performance of all the other DNN configurations tested.

We then tested the performance of the best model for g = 70% and g = 50% of features. On the one hand, the best DNN 
model selected by the cross-validated grid search procedure for g = 70% has 3 hidden layers with 100 neurons each, no 
dropout, learning rate = 0.001 and optimizer = Adam. On the other hand, for g = 50% the best selected model has 2 hidden 
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Fig. 3. Pearson correlation coefficient ρ for each pair of relative metabolites abundance variations δx∗,m . The ρ correlations were computed by considering, 
for each metabolite, the vector of abundance variations over all samples in the dataset, with the aim of removing redundant features. For simplicity, we 
use metabolite names to refer to their δs, and for improved readability we sorted metabolites by their average absolute correlation |ρ|.

Fig. 4. Distribution of the R2 coefficients calculated between true and predicted values of each flux r , and for different percentages g of features. The 
sensitivity of R2 to outliers generates some negative outliers; as an example, AC D_Eth for g = 100%, is plotted in Fig. 5. For simplicity, we use the fluxes 
names to refer to their δs.

layers with 200 neurons each, no dropout, learning rate = 0.001 and optimizer = Adam. See Supplementary Table 2 for the 
MSE values of the best DNNs.

It is worth noticing that in all the experiments, we observed that configurations with no dropout, learning rate of 0.001
and Adam as optimizer outperformed the other possible combinations of those hyperparameters. This result indicates that 
we may rely upon this selection for downstream analyses, without repeating the hyperparameters selection procedure.

4.3. Performance evaluation

The three best configurations selected were retrained on the outer training set and, then, used to predict flux variations 
δv p on the test set.

The performance was evaluated computing, for each output feature, the R2 score, which is a measure of the amount of 
variance in the target values captured by the values predicted by the model (see Eq. (4)). The median value of R2 obtained 
for g = 100% is 0.8, while for g = 70% it is = 0.71 and for g = 50% it is equal to 0.64. The distribution of R2 values for 
the three cases is reported in Fig. 4. As expected, the R2 decreases as the fraction g of selected input features gets smaller. 
Interestingly, the reduction in the number of features by 30% and 50% corresponds to a modest reduction of R2 by 11% and 
20%, respectively.
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Fig. 5. Scatterplots of true and predicted values for selected fluxes. The 95% confidence interval of the regression line is visualized. For simplicity, we use 
the flux names to refer to their δs. (A) AC D_Eth for g = 100% with R2 = −0.35, (B) AC D_Eth for g = 100% with the greatest outlier removed improves to 
R2 = 0.34, (C-D) The two fluxes with best Pearson coefficient (ρ = 0.971) for g = 50%.

Thus, results in terms of R2 are overall good, except for a very few output features, such as the flux AC D_Eth in the 
g = 100% setting (see boxplots in Fig. 4). The existence of outlier reactions may be motivated with the choice of multi-target 
modeling. As motivated in Sec. 3.2, in our experiments we relied on MSE over all the predicted fluxes, and we weighed
the error of each flux equally. As a result, the selected model corresponds to the one that performed better on average 
over all the fluxes, but the goodness of fit of different hyperparameters may vary across fluxes, as it can be observed in 
Supplementary Figure 1. Besides, low values of R2 can be due to outliers in the error distribution of a single flux, especially 
when the variance of the true data is small. In fact, if we consider the predictions of the flux AC D_Eth (Fig. 5A), it stands 
out the presence of one single point for which the prediction error is many times higher than the deviance of the true 
values. The removal of this single outlier makes R2 improve from R2 = −0.35, up to 0.34 (Fig. 5B).

We also considered the Pearson correlation coefficient between true and predicted values (briefly ρ) to evaluate the 
models. It can be observed in Fig. 6 that the Pearson correlations are high. The median value of ρ is 0.90 for g = 100%, 0.86 
for g = 70% and 0.82 for g = 50%.

To investigate in detail how the DNN performance is affected by a reduction of the number of features considered, we 
compared the ρ of each flux for the three g cases in Fig. 7. It can be observed that the worsening of the performance 
(decrease in ρ) is not homogeneously distributed among the different fluxes. On the contrary, the capability to predict 
many fluxes is nearly not affected by the change in g , whereas it dramatically worsens for a few fluxes.

It is natural to wonder whether the goodness of fit directly depends on the choice of the features that have been 
removed. The list of features that have been removed when g = 50% is: AC D , AT P , AcCo Ac, Eth, F 16B P , F AD H2, Glyox, 
H2O , MalCo A, Mal, N AD H , N AD P H , N AD P , N AD , P yr, T r P , O 2.

Surprisingly, the list includes most of the metabolites directly involved in the reactions with the best predictions in the 
g = 50% case, namely F AD H2_H2O (F AD H2 + AD P + 0.5502 ⇒ F AD + AT P + H20) and N AD H_H2O (N AD H2 + AD P +
0.55O 2 ⇒ N AD + AT P + H20). The ability of the DNN to predict well these two fluxes is also evident in the scatterplots 
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Fig. 6. Relation between Pearson and R2 coefficients for true and predicted variation of each flux r , for different fractions of the original metabolites. We 
removed in advance the outliers for R2 with a coefficient inferior to -5 (see Fig. 4).

Fig. 7. Pearson correlation coefficient ρ for true and predicted variation of each flux r , for different fractions of the original metabolites. Results are sorted 
by decreasing ρ for the 50% fraction. For simplicity, we use the flux names to refer to their δs.

of true and predicted relative fluxes in Fig. 5B-C. This is a remarkable result, because it demonstrates that information on 
other metabolites in the network supports predictions in case of missing features.

However this consideration does not always hold. In fact, the list also includes all the metabolites directly involved in 
the reaction F 16P _T r P _reverse (2T r P ⇒ F 16B P ), and the substrate of the reaction Mal_O A A_reverse (M AL + N AD ⇒
O A A + N AD H), which display the worse prediction in the g = 50% case.

Taken together, the results of the performance evaluation confirm our hypothesis that patterns in metabolite abundance 
exist and that information in abundance variation can support the prediction of the flux variation even in reactions not 
directly involving those metabolites.

4.4. Performance is robust to feature reduction

Not all variation in the abundance of the different metabolites can be measured in a real system, and the variations that 
can be measured are hardly likely to coincide with our set of selected features. For this reason, it is relevant to investigate 
the effect of removing a random subset of features, instead of selecting them by looking at their pairwise correlation. To 
this aim, we evaluated the model performance for 10 randomly selected subsets of g = 50% and g = 70% metabolites with 
the overall best performing hyperparameters (i.e. hidden layers sizes (200,200), learning rate 0.001, optimizer Adam and 
no dropout). The results are reported in Fig. 8, where we show the distribution of the median R2 of the test predictions 
for each random subset. It can be observed that by keeping g = 50% of the metabolites, the model performance showed 
greater variability (standard deviation = 0.058) than the case with g = 70% (standard deviation = 0.034). Interestingly, the 
model performance observed for our selected set of features falls within the first quartile and the median, in both cases. 
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Fig. 8. Median test R2 of 10 random subsets of g = 50% and g = 70% the original metabolites. The diamond indicates the median test R2 obtained by our 
selection of features based on the absolute correlation and the dashed line corresponds to the median test R2 achieved by keeping all the features, i.e. 
g = 100%.

Remarkably, the median performance for R2 drops by 6.4% only, when decreasing the cardinality of the set of features from 
g = 100% to g = 70%, whereas it exhibits a drop of 16% when 50% of the features are removed.

It is also interesting to investigate whether the sensitivity to feature reduction differs across fluxes. In Supplementary Fig-
ure 2, the distribution of the reduction in the DNN prediction performance is reported for each flux. If we consider g = 50%, 
it can be observed that some fluxes tend to be more sensitive to feature reduction, including the F 16P _T r P _reverse flux, 
which in fact resulted sensitive also in Fig. 7. On the contrary, flux SuCo A_Succ_reverse does not seem to be particu-
larly sensitive in Fig. 7, while displaying lower goodness of fit on average for random selections, suggesting that the low 
sensitivity of this flux observed in our selection was a result of the particular set of selected features.

Taken together, these results demonstrate that DNNs can predict flux variation well for most fluxes, regardless of the 
given subset of features. However, a few fluxes are intrinsically sensitive to feature reduction and would deserve further 
investigation.

4.5. Availability and scalability

The procedure described above was implemented using the Python libraries Keras [20] and scikit-learn [21]. 
The code and data used are available at github .com /BIMIB -DISCo /FLUX-PREDICT.

All tests were carried out on a machine with CPU 3.50 GHz Intel Xeon E3-1245 v5 and RAM 32 GB. The mean time 
required to train a configuration on the inner training set was 23.83 ± 11.58 minutes, while training the best model on the 
outer training set took 8.64 minutes.

Of course, the most computationally demanding step of our approach is the generation of the synthetic dataset by means 
of numerical simulations. In the specific case of the model used in this work, the total computational time to produce the 
data set was reasonable [11] (i.e., 5.5h to run ODEs simulations on a MacBookPro with CPU 2.6 GHz Intel Core i7, RAM 
16 GB and to produce 268 Mb of data). Yet the computational time of this step depends on many factors, including the 
kinetic laws, the kinetic parameter values, the number of reactions and the number of simulations. An insufficient number 
of simulations, as well as the chosen variation range of each parameter, may impact on the goodness of fit of the ML model. 
However, given that we keep parameter values fixed when comparing two steady-states, the impact of under-sampling is 
expected to be limited. Furthermore, the computation of a large number of model trajectories may be reduced by exploiting 
GPU-accelerated algorithms.

5. Conclusions

We trained different configurations of deep neural networks to predict overall changes in the fluxes of a reaction system 
at the steady-state (δv p) from variations in the abundances of all or of some involved species (δxp). As training set, we used 
100 thousands (δxp, δv p) pairs, obtained by sampling the parameter space and by simulating for each parameterization the 
steady state of a small metabolic network model under two different environmental conditions [12]. We have shown that 
DNNs can predict with a good level of confidence (median Pearson correlation between true and predicted values up to 0.9) 
changes in most reaction fluxes in the synthetic test dataset.

The fit remains good (ρ = 0.82) when up to 50% of the features are removed from the training set. When analyzing the 
goodness of fit for each output feature, we observed that the DNN predicts impressively well the variation in some fluxes, 
even when information on variation of the abundance of any species directly involved in the reaction is not given.

Our results indicate that patterns in relative abundances emerge from kinetic simulations of metabolic networks, with 
Monte Carlo generation of kinetic constants. These patterns reflect stoichiometric as well as mass balance constraints. The 
main advantage of using a DNN model to recognize such patterns a posteriori, instead of imposing constraints a priori as 
in constraint-based modeling, is the possibility to directly include information on relative abundances, instead of including 
them indirectly in the form of constraints on relative fluxes, which require limitations on admitted reaction rate laws (e.g., 
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mass action) and are prone to feasibility problems. Analytical solutions, on the other hand, solve reactions individually, thus 
neglecting mass balance constraints, which are responsible to make predictions less sensitive to missing data.

A validation of the approach with experimental datasets and different metabolic models is of course desirable. Anyway, 
our approach has already the potential to pave the way for a systematic evaluation of alterations in metabolic fluxes, which 
is expected to guide drug target discovery, without the need for ad hoc laborious and expensive experiments and for explicit 
knowledge on kinetic parameters for dynamic simulations.

Our approach is not free from limitations. In order for fluxes to be predicted, the user must provide to the DNN deltas 
between two different conditions, whose difference must be controllable in order to be simulated (as e.g., difference in 
glucose availability). However, one may want to compare conditions whose triggering differences are not known a priori, 
as for instance pathological versus physiological conditions. A solution that we might envision and test in the future is to 
simulate many random perturbations to generate more heterogeneous (δxp , δv p) pairs and train a generic DNN.

In the future, we will also test our approach when more complex enzymatic kinetics are simulated. Difference in enzyme 
activities may be also taken into account by including proteomics or transcriptomics data. Finally, alternatives to DNNs, such 
as multi-target regression trees could also be evaluated.
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A.2 Optimization framework for personalised drug scheduling
Over the years we are witnessing an increasing availability of cancer patients clinical
data, from which it is possible to extract data to build computational methods that
design optimized drug scheduling protocols. We developed a closed-loop optimization
framework, that exploits the theory of optimal control to optimize the administration
schedule of Imatinib in Chronic Myeloid Leukemia patients. The framework is based on
a population pharmacokinetics (PK) and pharmacodynamic (PD) ODEs model that is
parametrized and optimized to minimize the adverse effects in a specific patient while
maintaining high efficacy. We assessed the performance of our method using simulated
data, showing the improvement in the decay of Cancer Stem Cells and a reduction in
therapy toxcity with respect to standard Imatinib dosage.

The code used to perform the analyses presented in the publication is available at
https://github.com/BIMIB-DISCo/closedLoop-CT4TD.

https://github.com/BIMIB-DISCo/closedLoop-CT4TD


A closed-loop optimization framework for
personalized cancer therapy design

Fabrizio Angaroni∗
Dept. of Informatics, Systems and Communication

Universitá degli Studi di Milano-Bicocca, Milan, Italy
∗ equal contributor

Mattia Pennati∗
Dept. of Informatics, Systems and Communication
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Abstract—A current challenge in cancer research is the devel-
opment of therapeutic strategies aimed at reducing the toxicity of
treatments, since Adverse Events (AEs) typically cause substantial
problems and long-term damages to the patients. A possible
solution to this issue lies in the personalization of therapy dosages
according to demographic factors and in the employment of
optimized data-driven drug administration protocols. Control
theory can be exploited to this end, as its application in
pharmacology allows to define optimized dosages and schedules,
aimed at minimizing AEs and maximizing the therapy efficacy.
However, an effective application of control theory approaches to
this issue is constrained by our ability in inferring the parameters
of the mathematical models from currently available data.

We here present a closed-loop optimization framework of
patient-specific pharmacokinetics (PK) and pharmacodynamics
(PD) models, combined with a mathematical model of a liquid
tumor, which aims at overcoming such limitations. The most
relevant feature of our framework is the ability to learn the
value of patient-specific parameters via a Bayesian update, by
exploiting a feedback signal obtained monitoring the tumor bur-
den dynamics of the patient. Our framework employs CasADi,
an open-source tool for nonlinear optimization, and guarantees a
good and robust numerical estimation of the optimized schedule
and a parsimonious use of computational time.

As a case study, we present the application of our framework
to Tyrosine Kinase Inhibitor administration in Chronic Myeloid
Leukemia (CML), in which we show that our optimized protocols
result in a faster decay of CSCs and in a reduction of the overall
toxicity.

Index Terms—Control theory, Cancer therapy, Bayesian up-
date, Closed-loop optimization

I. INTRODUCTION

The accumulation of clinical data on cancer patients and
the concurrent development of efficient computational methods
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Fig. 1. Schematic representation of the closed-loop optimization frame-
work. The procedure followed by our framework can be summarized with
the scheme presented in the figure. In detail, given a patient, we employ its
demographic factors inside the optimization and mathematical model and we
update unknown patient-specific parameters with a Bayesian Update procedure
employing clinical data of tumor burden dynamics (i.e., the feedback signal).
Then, we optimize the dosage and we administrate the proposed optimized
therapeutic strategy. This procedure is then iterated until treatment completion.

is paving the way to personalized cancer treatments, as it
is now possible to employ computational procedures that
automatically propose optimized drug scheduling protocols in
a reliable and robust way. Such computational strategies can
effectively exploit the information extracted from heteroge-
neous demographic factors of patients and from their ever
changing clinical status [1]. In this regard, a combination of
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methods from optimal control theory [2]–[12] techniques for
data analysis [13]–[16] and mathematical models of cancer
[17], [18] can be used to produce accurate predictive models
of the clinical outcome of a given therapy in single cancer
patients.

In this work, we introduce a closed-loop optimization
framework, which employs CasADi, an open-source tool for
nonlinear optimization and algorithmic differentiation [19],
with the goal of delivering an optimized personalized drug
administration schedule that adapts to the patient response to
therapy (see Figure 1 for a schematic representation of the
framework).

In brief, pharmacokinetics (PK) models describe the tempo-
ral dynamics of the concentration of a given drug in a certain
tissue or organ, whereas pharmacodynamics (PD) models
depict the efficacy of the drug with respect to distinct concen-
tration values. Our framework uses patient-specific PK models
based on demographic factors including age, sex and body
weight [20] and it infers the parameters of patient specific PD
model using longitudinal experimental data on tumor burden
(e.g., the fraction of tumor cells on the total, in liquid tumors)
coupled with a hierarchical population dynamics model [13],
[21]–[23].

The estimation for these parameters is obtained via a
Bayesian update [24] that mimics the continuous update of
the distribution of parameters values (our beliefs), that occurs
by exploiting new data [25].

Our theoretical scheme can be used to set optimized per-
sonalized administration strategies using different paradigms
of therapy. In particular, in this work we set a cost that allows
us to fine tune the therapy in order to rapidly minimize the
tumor burden, while taking into account (i.e., minimizing) the
toxicity and Adverse Events (AEs) of the therapy. Moreover,
by changing the functional cost and without any need for major
theoretical modifications, other applications are possible. For
example: an adaptive therapy, with the goal to maintain the
tumor burden stable and small, can be proposed [19].

Our work constitutes a proof of concept of an adaptive
and personalized cancer therapy. In particular, we test it on
the specific case of Imatinib administration in patients with
Chronic Myeloid Leukemia (CML) and we show the benefit of
employing our automated and data-driven framework in terms
of increased efficacy of the therapy and reduction of the overall
costs and toxicity.

This manuscript is structured as follows: we first introduce
the framework, then we describe in detail its application to
the CML case study and we finally present the results of
simulations over synthetic patients.

II. THEORETICAL FRAMEWORK

Since in cancer therapy it is often difficult to obtain real-
time measurements, straightforward applications of feedback-
control theory cannot be employed [3]. For such reason,
here we expand the framework presented in [26] with an
automated procedure that updates its parameters as soon as

new measurements of the patient status are collected. Our
framework is composed by the following components.

1) Mathematical models of the disease and of personalized
PK/PD.

2) A functional cost that is used to modulate the behavior
of the approach.

3) An optimization algorithm.
4) A Bayesian update scheme.

A schematic representation of the workflow can be found in
Fig. 1.

In brief, considering a time windows ∆t = tn − t0 divided
into n arbitrary intervals ∆ti = ti+1 − ti, ∀i = 1, . . . , n− 1,
we employ an optimization in the time interval ∆ti using the
estimated value of the parameters at ti. In the scheme, the
optimized drug dosage is administrated to the patient until
time ti+1. Then, we consider the new measurement taken
at ti+1 and we update the parameters of the mathematical
models. These steps are repeated until treatment completion.
More details follow.

A. Mathematical models

The key components of our scheme are the mathematical
models used to represent the dynamics of the drug (namely
PK/PD models) and the population dynamics model of cancers
cells. PK models [27] are mathematical models whose solu-
tions describe the dynamics of the concentration of a substance
in a specific tissue of the body. These models are represented
as a system of differential equations derived using the law of
conservation of mass and assuming that the body is composed
by a certain number of macroscopic coupled subsystem (i.e.,
compartments) [28]. With these assumptions, given a dosage
function D(t) (i.e., the control function – see Section II-C–
that must be continuous, differentiable and non-negative),
and r parameters of a specific drug (i.e., {ψ1, . . . , ψr}) the
concentration of a drug in the compartments of interest is a
continuous and differentiable function (C(t)) specified by the
following equation:

∂C(t)

∂t
= f(t, D(t); ψ1, . . . , ψr). (1)

A limitation of PK models is that they assume an instantaneous
mixing of the drug in a compartment and a perfect transport
among them.

In particular, our framework employs population PK models
(e.g., [20]) that assume that the drug parameters are a function
of k demographic factors (i.e., {ν1, . . . , νk}) such as age, sex
and weight of the patients. Accordingly, Eq. (1) becomes:

∂C(t)

∂t
= f(t, D(t); ψ1(ν1, . . . , νk), . . . , ψr(ν1, . . . , νk)).

(2)
Specifically, in population PK models it is assumed that

the different concentrations registered in different patients
are described by non-linear mixed effect models, and every
considered covariate is associated to an induced variance on
C(t) via a search algorithm (e.g., maximum likelihood) [29] .
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PD describes the biochemical reactions occurring in the
body [27], [30] in order to quantify the efficacy of a therapy
and its relationship with the drug concentration in the tissue
of interest (i.e., C(t)) [31]. In general, given s parameters
{ρ1, . . . , ρs}, the efficacy could be written as a continuous,
non-negative and differentiable function, i.e.:

E(t) = g(C(t); ρ1, . . . , ρs). (3)

Our framework infers the personalized values of each ρi
directly from observed data. Together, PK and PD model are
called PK/PD models and they are commonly used to define
standard dosage guidelines (e.g., [32]).

Our framework employs an additional mathematical model,
alongside PK/PD, in order to take into account the response of
tumor to the therapy. In recent years, mathematical models of
cancer population dynamics have been increasingly employed
to study the complexity of cancer, providing valuable insights
into tumor mechanisms, as well as accurate quantitative pre-
dictions [17], [18].

In particular, hematopoietic cell population dynamics has
been widely studied, both in healthy systems [33] and in
cancer [13]–[15], [17], [21]–[23].

Some of these models exploit the fact that the cells of
the hematopoietic system follow an organized and ordered
sequence of discrete differentiation states, which can also be
interpreted as a hierarchical structure. Such organization is
divided into s non-intersecting compartments or cell types
(e.g., stem cells, progenitor cells, etc.), and every cell in
the system is associated, in a unique way, to one of these
compartments.

In order to model the cancer population dynamics, our
framework employs a system of Ordinary Differential Equa-
tions (ODEs) that takes in account the differentiation hierarchy
in the hematopoietic system [13]–[15], [17], [21]–[23].

The transitions among the compartments are defined by the
underlying biological differentiation process, whose parame-
ters are the following:
• pi is the division rate of the cells in the i compartments.
• ai ∈ [0, 1] is the probability that, when a cell undergoes

mitosis, both of its daughters belong to the i compart-
ment; therefore, 1− ai is the probability of belonging to
the i+ 1 compartment.

• di(E(t)) is the death rate of the cancer cells in the i
compartment. Note that this rate is dependent on the
efficacy of the therapy and consequently on the dosage
D(t).

In general, for m compartments, we can model the dynamics
of the number of cancer cells in the patient (i.e., the Tumor
Burden) as follows:

TB(t) =

=h(t, d1(E(t)), . . . , dm(E(t)); p1, . . . , pm, a1, . . . , am).
(4)

B. Functional cost
The functional cost is one of the key elements of the

optimal control problem. Our theoretical scheme can be used

to set optimized personalized administration strategies using
different therapy paradigms. In this work, we set a cost based
on the assumption that a patient receives maximum benefit
by killing as many cancer cells as possible, in the shortest
possible time. Thus, this choice allows us to tune the therapy
in order to rapidly minimize the tumor burden TB(t), while
taking into account (i.e., minimizing) the therapy’s AEs.

To take toxicity into account, we observe that it is directly
proportional to the Area Under the Curve (AUC) of the con-
centration function C(t) [34], while to consider the variation
of the tumor burden we observe that, if in Eq. (4) TB(t) is
monotonic with respect to variations of the death rate, then
maximizing the death rate corresponds to minimizing rapidly
the tumor burden. Accordingly, we have Eq. (5) (see top of
next page).

In Eq. (5) r(p1 . . . pm, a1 . . . am, d1(E(t)) . . . ds(E(t))) is
a real, continuous and differentiable function that represents
the variation of TB(t), which depends on the death rates di.
Since the cost is a multi-objective function, we have introduced
two arbitrary weights W1 and W2, which account for the
relative relevance of the two distinct components, respectively
tumor burden and toxicity.

C. Control Problem and Optimization Algorithm

We define the control problem in the following way: let t0
and tn be the starting and the ending time point respectively
of the temporal windows in which the therapy is optimized,
then our goal is identifying the function D(t) such that the
functional cost in Eq. (5) is minimized.

Usually, the control function requires the definition of a
lower and upper bound. However, in our framework, these
bounds are implicitly regulated by the two weights W1 and
W2, as long as both of them are different from 0. This is due
to the fact that we implicitly assume that the toxicity and the
variation of TB(t) are inversely proportional.

As we aim at defining a framework that can adapt to dif-
ferent biological scenarios represented by different functional
forms of ODEs systems and costs (usually non-linear), we here
employ a set of heuristics. In particular, we have selected an
algorithm that follows the transform then optimize paradigm,
via multiple shooting [35], and which was implemented in
Python by employing the functionalities of CasADi, a pack-
age for nonlinear optimization and algorithmic differentiation
[19].

D. Bayesian Update scheme

Every time a new measurement is available, our frame-
work employs a recursive scheme for the estimation of the
parameters of the mathematical models, which is similar to the
approach of Bayesian filters, i.e., predict-observe-filter-predict-
observe-filter, etc. [36].

Roughly, for every new measurement, we treat the posterior
probability (i.e., the Bayesian estimation) computed previously
as a prior for the current iteration; then we update our
knowledge with the new measurement:
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L(t, C(t, D(t))) =

∫ tn

t0

[W1r(p1 . . . pm, a1 . . . am, d1(E(t)) . . . dm(E(t))) +W2C(t)] dt (5)

new estimation ∝ previous estimation × likelihood of new data.

An explicit (analytical) formula can be obtained only by
making specific assumptions on the functional form of prob-
ability distributions of the parameter values involved in the
update. Here, we assume normal distributions.

Let µ(ti) for i = 1, . . . n be the average values obtained
at time ti, with σµ(ti) is its variance. k is the sample size,
µ̃(ti) is the Bayesian estimation at iteration ti, with σ̃µ(ti) its
variance, and µ̃(t0) the prior value of the parameter. Then we
have that [37]:

µ̃(ti) =
kσ̃2

µ(ti)
µ(ti) + σ2

µ(ti−1)
µ̃(ti−1)

kσ̃2
µ(ti−1)

+ σ2
µ(ti)

, (6)

σ̃2
µ(ti)

=
σ̃2
µ(ti−1)

σ2
µ(ti)

kσ̃2
µ(ti−1)

+ σ2
µ(ti)

. (7)

In our framework we use the distribution of the overall
population as prior for the first update.

III. CASE STUDY

The framework above specified is general, and must be
adapted to different combination of therapy and disease. Here
we present its application to CML and tyrosine kinase inhibitor
therapy.

A. Imatinib Patient Specific PK/PD Models

Imatinib is an inhibitor of the BCR-ABL tyrosine kinase. It
binds to the inactive form of BCR-ABL even at nanomolar
concentration and competes with the ATP for its binding
pocket. This interaction hinders the switch of the fusion kinase
to the active form leading to the death of the aberrant cells
[38].

We here employ the population PK model of intravenous
administration of Imatinib [20]. Given, ka the first order
absorption rate, f the bioavailability, D(t) the time-dependent
dosage, v the volume of the distribution, CL the clearance,
C(t) the concentration in the blood, χb(t) the amount of
Imatinib in the blood (C(t) = χb(t)

v ), then:

dχb(t)

dt
= +kafD(t)− CL · C(t), (8)

Parameters of Eq. (8) are tuned to consider demographic
factors such as body weight, age and sex, thus providing

patient-specific PK models. We determine the parameters
using the equations proposed in [20], i.e.:

CL = θa

+ θ1
BW −BW

BW
+ θ2q − θ2(1− q) (9)

+ θ3
AGE −AGE

AGE
,

v = θb + θ4q − θ4(1− q), (10)

where θi, for i = a, b, 1, 2, 3, 4, are constants, BW is the
body weight of the patient and BW is its population-average,
AGE is the age of the patient and AGE its population-average
and q is a binary variable which takes value 1 for male and
0 for female. The values of such parameters, taken from [20],
are given in Tables I and II .

Parameter Value Standard Error Unit of measurement
ka 0.61 30% h−1

CL 14.3 7.1% L/h
v 347 17.9% L
BW 70 Na kg
AGE 50 Na Y ears
f 1 Na –

TABLE I
AVERAGE PARAMETERS OF PK MODEL OF IMATINIB FROM [20].

Parameter Value
ka 0.437
θa 12.8
θb 258
θ1 12.7
θ2 0.8
θ3 −2.1
θ4 61.0

TABLE II
SUMMARY OF THE DEMOGRAPHIC POPULATION PK PARAMETERS FOR

IMATINIB FROM [20].

The PD model used for this case-study is based on the
maximum-inhibition effect (Emax) [32]:

E(C(t)) =
Emax · C(t)

EC50 + C(t)
, (11)

where E(t) is the efficacy, Emax is the maximum efficacy (set
to 1), C(t) is the concentration of the drug in the blood, EC50

is the concentration of the drug that produces half of maximal
effect. In this framework, EC50 is the parameter that will be
updated at every new measurement exploiting the inference on
a patient’s data (See Section III-C).
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B. CML Mathematical Model

In order to describe the hierarchy and the dynamics of
cancer cells in CML, we employ the simplest model, including
two compartments: (i) cancer stem cells (CSCs) l1(t) and
(ii) progressively differentiated cancer cells l2(t) [13]–[15],
[21]–[23], [39]. This choice ensures that the ODEs system is
identifiable, given the available data on CML tumor burden
[26], [40], [41].

Given these hypotheses, we specify the mathematical model
for the dynamics of cancer cells (See Eq. (4)) in CML:

dl1(t)
dt = λl1(t),

dl2(t)
dt = γl1(t) + τ l2(t),

(12)

where:
λ = (2a1 − 1)p1 − d1,
γ = 2(1− a1)p1,
τ = −d2.

(13)

This is a typical example of a linear autonomous system,
and the analytical solution could be obtained in a recursive
way:

l1(t) = l1(0)eλt,

l2(t) = eτt(γl1(0)−λl2(0)+τl2(0))−l1(0)γe−λt
τ−λ .

(14)

C. Data Analysis

In the follow-up of CML, it is possible to estimate the
tumor burden using Q-PCR measurement, which distinguishes
between cancer and healthy cells by detecting BCR-ABL
mutation. This experiment is non-invasive and low-cost and
allows to have longitudinal reliable experimental data of the
dynamics of the tumor burden [13]–[16], [26]. The variation
of the tumor burden in a single patient is represented by a
biphasic exponential, which in log-scale is described by two
distinct and intersecting lines [13]–[15].

In detail, we assume that after the first major molecular
response, the data accounts for the dynamics of the CSCs
subpopulation only [13]–[15]. In this way, it is possible to
evaluate the effect of any average concentration of Imatinib
therapy directly on the CSCs decay. For every patient, it is
possible to estimate via a linear regression βj , i.e., the measure
of the CSCs decay [13]–[16], [26]. Then, given the previous
mathematical model, we obtain the following:

βj = log[e][(2a1,j − 1)p1,j − d1,j ] = log[e]λj , (15)

where j is the patient’s index and λj is the observed net growth
rate of the CSCs.
By fixing a1,j and p1,j to patient-specific constant values,
we obtain an estimate for patient specific CSCs death rate
(d1,j). Finally, by supposing a linear relation between average
efficacy 〈E〉 and the CSCs death rate 〈d1,j〉 [26], [42], we
can estimate the personalized parameters of the PD model
(i.e., EC50,j) for all patients [26], [32], [43] by means of the
following relation:

EC50,j = C̄j

[
KEmax
d1,j

− 1

]
. (16)

Where K is a conversion constant equal to 0.377 [day−1] [26].
Note that in this work, we impose that the maximum efficacy
is Emax = 1, and C̄j is the time-average drug concentration
in patients. EC50,j is the target of our Bayesian update. In
particular, we update its patient specific estimate using Eq.s
(6) (7) every two simulated q-PCR measurements. Lastly, at t0
we employ as prior the population average, where ẼC50(t0) =
0.1234 [mg/L] [32].

D. Functional Cost

Given the mathematical model defined in the previous
sections, for this CML case study the cost in Eq. (5) becomes
the one shown in Eq. (17) (see top of next page).

Notice that Eq. (17) includes the net CSCs growth rate, i.e.,
λ in Eq. (14). This choice allows to avoid the estimation of
the initial number of CSCs l1(0) [26]. The ratio φ = W1

W2

determines the overall behavior of the optimized solution (see
section IV-B).

E. Synthetic Tests

To assess the reliability of our approach, we ran two
different extensive synthetic tests.

1) Precision of the Bayesian update scheme: The first set of
tests was run to evaluate the precision of the Bayesian update
scheme. To this end, we generated 500 pairs of EC50,GT and
σEC50,GT

; for every pair we simulated up to 100 measurements
of EC50,GT with a normal error. Then, we evaluated the trend
of the relative error (Er) between the Bayesian estimation (i.e.,
ẼC50(ti)) and the ground-truth EC50,GT :

Er(ti) =
|EC50,GT − ẼC50(ti)|

EC50,GT
. (18)

Finally, we considered the average relative error (i.e. ξ(ti)) for
every iteration.

2) Control scheme performances: To study the perfor-
mances of our control scheme, we generated 50 synthetic
patients. A synthetic patient is represented by a vector of
parameters [AGE, BW, Sex, EC50, a1, p1, l1(t0 = 0)]. The
values for all the parameters, with the exception of Sex,
were sampled from a Normal Distribution (see Table III for
the specific values of mean and standard deviation for each
parameter). The values for Sex were sampled from a Uniform
distribution, given that it is a binary variable which takes value
1 for men and 0 for women.

To get the tumor progression data for each simulated patient,
we employed an in-silico simulation of the disease, given by
Eq. (12). Finally, to study a more realistic case we added
simulated guassian noise to the obtained measurements of
l1(ti) with a variance of 5%.

3) Overall Simulation Algorithm: The final layout of the
simulation steps is the following.
• Measure the tumor burden l1(ti).
• Simulate the time evolution of the tumor burden under the

optimized dosage, evaluated at ti, between ti and ti+2.
• Measure the tumor burden l1(ti+1) and l1(ti+2).
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L(t, C(t, D(t))) =
∫ tn
t0
dt [W1 · (log[e]λ(Ej(C

∗(t)))) +W2C
∗(t)]

=
∫ tn
t0
dt [W1 · (log[e]((2a1 − 1)p1 −KEj(C∗(t)))) +W2C

∗(t)]
(17)

Parameter Mean Standard deviation Unit of measurament
AGE 50 10 Y ears
BW 70 14 kg
EC50 0.12 0.024 mg/L
a1 0.87 0.174 –
p1 0.45 0.09 day−1

l1(0) 106 2× 105 cell
TABLE III

PARAMETERS OF THE SYNTHETIC DATASET. WE HAVE GENERATED EACH
PATIENT BY SAMPLING THE VALUES FOR EVERY PARAMETER FROM A

NORMAL DISTRIBUTION WITH MEAN AND STANDARD DEVIATION
SPECIFIED IN THE TABLE. NOTE THAT THE PARAMETER Sex IS NOT

INCLUDED IN THE TABLE AS IT IS A BINARY VARIABLE (1 INDICATES MEN
AND 0 INDICATES WOMEN) AND ITS VALUES WERE SAMPLED FROM A

UNIFORM DISTRIBUTION.

• Evaluate the slope of the CSCs decay between l1(ti) and
l1(ti+2).

• Compute EC50 at ti+2.
• Update the estimation of EC50.
• Solve the control problem (i.e., find the new optimized

personalized dosage).
• Simulate the time evolution of the tumor burden under

the new optimized dosage between ti+2 and ti+4.
• Restart from the first step.

For all patient, by default, we performed 30 iterations. How-
ever, note that the computation was stopped for those patients
in which the therapy was not effective (i.e., l11(t) > 107),
or for those where the therapy had eradicated all tumor cells
(i.e., l1(t) < 1).

In addition, since different values of parameter Φ highly
influence the final outcome, the whole procedure was run using
multiple values for Φ ∈ {50, 55, . . . , 90}.

IV. RESULTS

A. Performance of Bayesian Update

As stated in Section III-E, we first evaluated the precision
of the Bayesian update, measuring the population average
relative error (ξ(ti)). In Figure 2, one can see that after
≈ 40 measurements there is no substantial improvement (the
difference between two consecutive errors is smaller than 1%).
More importantly, after 30 iterations the error is smaller than
5%. This result proves that our approach to the inference of
the parameters gives good estimates for EC50 with a relative
small number of measurements, as it converges sufficiently
rapidly to the ground truth values. This demonstrates that our
framework can be employed to obtain parameters estimates in
a scenario without real-time measurements.

B. Performance of close-loop optimization scheme on CML
therapy design

In Figure 3, we present the performance assessment of the
framework by comparing the optimized therapy provided by

Fig. 2. Trend of the average relative error (ξ) between the Bayesian estimation
(i.e., ẼC50(ti)) and the ground truth EC50,GT , with respect to the number
of measurements. We observe that our method converges in ≈ 40 iterations
to the ground truth value, and it also emerges that after ≈ 30 iterations the
error is smaller than 5%.

our framework with the standard Imatinib therapy (400 [mg]
per day, simulated as in [26]). In Figure 3-A, we compare the
average decay of CSCs for each single patient obtained with
our control framework with that obtained by simulating stan-
dard Imanitinb dosage. To calculate the values displayed in the
boxplot, we computed the difference between optimized and
standard therapy; negative values indicate that the optimized
dosage leads to a faster decay of CSCs. Interestingly, one can
notice that for certain values of Φ (from 70 to 90) the absolute
value of the decay has increased. In particular, for Φ = 80 the
median improvement of the decay is −0.018[day]−1 .

Besides such improvements, in Figure 3-B we compare
the AUC obtained through the optimized protocol with that
obtained with standard therapy. Positive values in the plot
indicate higher toxicity for 400 [mg] per day of Imatinib and
we see that the median AUC difference is smaller than 0
for every Φ, with the exception of 85 and 90. Importantly,
one can notice that for Φ = 50 the median decay of the
CSCs is similar to one of standard therapy, but the AUC is
significantly smaller for almost all patients. This means that
with the dosages proposed by our framework, patients receive
high benefits in term of AEs.

Our results prove that a personalized and optimized therapy
adapts to inter-patient variability and it is viable also when
some of the patient specific parameters (e.g., EC50) are not
known at the beginning of the therapy, as they are inferred
exploiting the longitudinally of data during the drug adminis-
tration follow-up.

The greatest advantage of the administration protocol pro-
posed by our framework is not in the final outcome of the
therapy, but it lies in the significant reduction in therapy
toxicity. Then, by following optimized protocols the quality
of life for patients can be improved. In addition, an optimized
drug schedule implies a long-term lower drug dosage. This
leads to lower cost for the healthcare system and thus it
determines a wider accessibility to therapies from patients
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Fig. 3. Performance assessment of our framework. A: ∆ between the average
decay of CSCs for each single patient obtained with our framework and that
obtained by simulating standard Imanitinb dosage. Negative values indicate
that the optimized dosage has lead to a faster decay of CSCs. Tests were
carried out considering different values of Φ, which are all displayed in the
boxplot (x-axis). B: we compare the AUC obtained through the optimized
protocol with that obtained with standard therapy. Positive values in the plot
indicate higher toxicity for 400 [mg] per day of Imatinib. Also in this case,
performances are presented grouped by the value of Φ used in the tests. From
both A and B we observe that, together with the improvement of the CSCs
decay rate, our frameworks leads to a substantial decrease in the toxicity of
therapy. Indeed, median AUC values are always negative with the exception
of Φ = 85 and Φ = 90.

[44]–[46].

V. CONCLUSIONS

In this work we propose a framework for the optimization of
personalized liquid tumors treatment. Our scheme employs a
population PK model and allows us to deliver a dosage that is
consistent with the inter-patient variability due to demographic
covariates. In addition, it automatically adapts its parameters to
the response to the therapy, via a Bayesian update procedure.
We assessed the performance of the procedure by means
of synthetic simulations. First of all we have shown that
our data analysis procedure gives good results, in term of
convergence to the ground truth value. This demonstrates
that our approach can be effectively employed to estimate
the patient’s specific parameters during therapy, in a realistic
scenario that lacks real-time measurements. Furthermore, our
framework improves the current standard therapy in terms of
tumor burden reduction and striking improvements are also
observed with respect to AUC, meaning that this procedure
may lead to a substantial reduction of both the probability of
AEs and overall costs of therapy. This might impact to quality

of life and the long-term survival of cancer patients subject to
a pharmacological therapy.

We also remark that our framework might be further de-
veloped, to take advantage of the growing availability of
different data types, in order to deliver a more accurate and
robust inference, which is able to better capture the biological
complexity of pathological states. In particular, data collected
from multiple omics measurements are increasingly available
at decreasing costs and might be exploited to characterize
inter- and intra-tumor heterogeneity [47]–[50], possibly allow-
ing to explicitly consider multiple cancer sub-populations with
different drug sensitivity [51].

In addition, the cost function included in our framework can
be modified in order to model different therapy designs. For
example, it would be possible to design a cost function that
assumes that the goal of therapy is not to eradicate the tumor
burden, but to maintain it at a constant small dimension, that
is by cronicizing the disease, e.g., via evolutionary adaptive
therapy [51]).

Nevertheless, the road to automatized personalized cancer
treatments remains impervious. For instance, the significant
intrinsic variability of cancer (sub)population dynamics, which
is due to the high levels of inter- and intra-tumor heterogeneity
observed in most cancer (sub)types [52], might limit the
generality of the results and the predictions of our framework
[53], [54]. On the one hand, improvements in our ability
to model complex phenomena involved in cancer evolution
might be essential to overcome such limitations. For example,
phenomena such as intra-tumor spatial heterogeneity [55]
might be included within the modeling framework, possibly by
exploiting the resolution of high-resolution measurements such
as single-cell sequencing data [56] or spatial transcriptomic
data [57]. On the other hand, however, more complex models
clearly require the estimation of an increasing number of
parameters, and this might often been unfeasible (i.e., identifia-
bility issues). Hence, the trade-off between model expressivity
and parameter identifiability should be wisely considered when
defining any modeling framework, according to the specific
experimental scenario and the related research questions.

CODE AND DATA AVAILABILITY

1The source code used to replicate all the analyses is
available at this link: https://github.com/BIMIB-
DISCo/closedLoop-CT4TD.
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[57] P. L. Ståhl, F. Salmén, S. Vickovic, A. Lundmark, J. F. Navarro,
J. Magnusson, S. Giacomello, M. Asp, J. O. Westholm, M. Huss et al.,
“Visualization and analysis of gene expression in tissue sections by
spatial transcriptomics,” Science, vol. 353, no. 6294, pp. 78–82, 2016.

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on January 24,2023 at 14:29:58 UTC from IEEE Xplore.  Restrictions apply. 



A.3 EvoTraceR: an R package to analyse Amplicon Sequence Variants from
the EvoBC kit 147

A.3 EvoTraceR: an R package to analyse Amplicon Sequence
Variants from the EvoBC kit

Understanding what principles control the dissemination of primary tumor cells to dis-
tant metastatic sites (i.e., seeding patterns) is still an open question [51]. The main
challenge that needs to be addressed is to assess whether each metastasis originates
from one tumor cell, or there is evidence for polyclonal seeding patterns that suggest
cooperation between distant metastatic sites.
To address this question, the Nowak Lab at Weill Cornell Medicine, New York, USA, is
working on a CRISPR/Cas9 barcode platform that enables to model metastatic prostate
cancer in vivo. It consists of a barcode designed to accumulate edits during tumor
evolution, that correspond to either short insertions or deletions, i.e., indels. In fact,
the barcode is a nucleotide sequence that can be divided in 10 target sites, that are
characterised by different probabilities of being affected by indels.
This original unmutatetd barcode sequence is injected in mouse models, and while the
tumor evolves and spreads to metastatic sites, it accumulates mutations due to the
combination of the barcode with CRISPR/Cas9 that generates edits (specifically indels).
At the moment we cannot provide additional details on the barcode technology, as this
work is currently ongoing and will soon be submitted for publication.
At the end of the experiment, Amplicon Sequencing is performed on samples taken from
the primary tumor and metastatic sites. Amplicon Sequencing is a specific technology
that is able to capture and sequence specific genomic regions, and thus can be employed
to measure the barcode sequences (either mutated or not) present in each sample.
Given the specific barcode design, it was necessary to build a computational pipeline
that takes the output of a bulk Amplicon Sequencing experiments and performs (i) the
detection of the unique mutated sequences present in each sample (defined as Amplicon
Sequence Variants (ASVs)), (ii) aligns each mutated sequence to the un-mutated barcode
to detect indels and (iii) uses the obtained sequences with the corresponding mutations
to build a phylogenetic tree that described the evolutionary history of the samples. The
steps are describes below.

FAST files processing The output of the amplicon sequencing experiment consists
of two FASTQ files containing paired-end reads. For each mouse the fastq files were
demultiplexed according to the sample, which can be either a metastatic site or the
primary tumor. The files were processed to extract all ASVs present in each sample
with a standard bioinformatics pipeline, that is presented in Figure A.1A. First of all
Trimmomatic [35] trims the adapters and removes low quality bases, and Flash [27]
merges the paired-end reads. After this preliminary step we obtain merged reads, and
we make a preliminary quantification of the identical sequences, by computing their
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frequency.

Amplicon Sequence Variants Processing After the preliminary filters described
above, we perform multiple steps to take into account possible sequencing errors and
identify the final pool of ASVs to employ in the analyses:

• Hamming distance: We start by pooling together the reads characterized by
Hamming distance equals or lower than 2. To do so, we first group reads with
identical length and then we perform clustering and pooling of the counts using the
UMIClusterer class from UMI-tools package [75]. This package is designed to pool
together UMIs in a single-cell experiment, and it implements multiple methods
to perform this task. We employed the network-based method that employs a
directed graph, where each node corresponds to an ASV and edges are created in
the following way: for each pair of nodes (A, B), there is an edge from A to B

if the Hamming distance is equal or lower than a threshold (in our case we set
it to 2) and if |A| ≥ (2 ∗ |B| − 1), where |A| and |B| refer to the corresponding
sequence counts. Then, each connected component in the graph is treated as an
ASV group, where the sequence with the highest number of counts is chosen as
the representative and counts from every group member are pooled together.

• Alignment and merging: After this pooling, we align every sequence to the
original non-marked barcode, using the PairwiseAlignment function from the R
package Biostrings. For this step we employed the parameters which were tested
and selected in [118]. After alignment, we analyze all mutations and we discard
indels that happen too far from any target site to have actually been caused by
Cas9. In details, each indel that doesn’t span any target site and whose start and
end are more than 3 bp distant from any cut site is discarded. Given that Cas9
is responsible for deletions and insertions, we want to neglect substitutions, so we
pool together the counts of those sequences that are identical in terms of indels,
without taking into consideration their substitutions.

• Flanking filtering Finally, to remove possible contamination artifacts we lever-
age a property of the barcode: from its design we know that the last 10 nucleotides
(right flanking sequence) should not be mutated by Cas9. Additionally, also the
first 5 nucleotides can be used to identify barcode sequences from the pool. How-
ever, they lie in proximity to the first target site which is characterized by the
highest probability of being cut by Cas9, and we observed that they may also be
affected by indels. Thus, for the analysis we exploit the last 10 nucleotides to per-
form the contamination filtering step, discarding all sequences whose right flanking
does not match the non-marked barcode.
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In Figure A.1C, we present an example of output of our pipeline. In particular, the input
samples correspond to columns and are namely Pimary tumor (Pri.), Metastatic site 01
(Met 01) and Metastatic site 02 (Met. 02). The rows of the same table correspond to
the ASVs detected in each sample, and each element in the table corresponds to the
number of sequences detected in each sample.

Phylogenetic tree reconstruction Once all ASVs have been identified, also quan-
tifying their presence in each sample (Figure A.1C), we reconstruct the phylogenetic
tree representing the accumulation of mutations. To perform this inference, we build
a binary mutation matrix, where each row corresponds to an ASV and each column
corresponds to a mutation (Figure A.1B). Given the input binary matrix, to reconstruct
the phylogeny we use the greedy approach implemented in the suite Cassiopeia [144].
This algorithm proceeds iteratively by splitting sequences in two groups based on the
most common mutation present in the current set and keeps recursively applying the
same procedure until a set is composed by only one sequence. Finally, we obtain a tree
describing the order to accumulation of mutations (Figure A.1D).
This pipeline was implemented in an R package EvoTraceR, and is currently being
exploited to analyse multiple samples and formulate experimental hypotheses regarding
patterns of tumor evolution, that will be discussed in detail in the final manuscript that
is currently in preparation.
The code is available at https://github.com/Nowak-Lab/EvoTraceR_pipeline.

https://github.com/Nowak-Lab/EvoTraceR_pipeline
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A

CB D

EvoTraceR

Figure A.1: Representation of the EvoTraceR pipeline. A: Schematic overview of the
main steps employed for ASV detection. B: Example of a mutation matrix exploited to
reconstruct phylogenetic trees. C: Example of the count table returned by the prepro-
cessing steps of EvoTraceR. D: example of a tree describing the prder of accumulation
of mutations in the detected samples.
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