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Abstract
Mean reversion, stochastic volatility, convenience yield and presence of jump clustering
are well documented salient features of commodity markets, where Asian options are very
popular.We propose amodelwhich takes into account all these stylized features.Wefirst state
our model under the historical measure, then, after introducing a structure preserving change
of measure, we provide a risk-neutral version of the same model and we show how to price
geometric and arithmetic Asian options. To this end, we derive semi-closed formulas for the
geometric Asian options price and develop a computationally efficient simulation scheme
for the price process, allowing to price the arithmetic counterparts using control variate
technique. Finally, we propose a simple econometric experiment to document presence of
jump clusters in commodity prices and evaluate the performances of the proposed simulation
scheme on some parameter sets calibrated on real data.
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1 Introduction

Commodity derivatives markets had a tremendous growth in recent years, both in trading
volume and variety of offered products, raising the need for models able to replicate correctly
observedmarket prices. To quantify this growth, we present in Fig. 1 the time series of trading
volumes of commodity futures and options. The total number of trades hasmore than doubled
over the last ten years. Moreover, we note that in 2020 volumes increased substantially with
respect to 2019 (by 35.7% for futures and 26.2% for options). This is possibly due to the fact
that during highly uncertain times (like the COVID-19 outbreak) investors are more likely
to hedge risk than in calm periods (see Gonzato and Sgarra, 2021 and references therein).

Much literature has been devoted to the study of empirical properties of commodity prices.
Bessembinder et al. (1995) find clear evidence of mean reversion across many commodity
markets. This is also confirmed by other prominent studies such as Schwartz (1997), Casas-
sus and Collin-Dufresne (2005), and others. In commodity markets mean reversion is mainly
induced by convenience yields, which stem from both the reduction in cost of acquiring
inventory and the value of being able to profit from temporary local shortage of the commod-
ity (Yan, 2002). Lutz (2010) surveys different methodologies proposed in literature to jointly
model mean reversion and convenience yield and concludes that the so-called "autonomous
convenience yield" approach provides good empirical performances for a wide variety of
commodities. Based on this finding, we model mean reversion in the spot price directly by
means of an Ornstein-Uhlenbeck process and assume that the convenience yield follows a
mean reverting process which is independent of the spot price. Since typically convenience
yield may assume both positive and negative values, following Casassus and Collin-Dufresne
(2005), we assume a Gaussian Ornstein-Uhlenbeck process. Another salient feature of com-
modity markets is stochastic volatility of the log-returns, as documented, among others, by
Trolle and Schwartz (2009) and Cortazar et al. (2017). Finally, there is intuition for the pres-
ence of self-excitation in the jumps process. This is the phenomenon, also named "jump
clustering", in which whenever a jump in the asset price occurs, the possibility of observing
subsequent jumps increases. Filimonov et al. (2014) found clear evidence of this effect in

Fig. 1 Historical time series of volumes of commodity futures (blue line) and options (red line) in billions
of contracts. Source: World Federation of Exchanges (2019) for data until 2019 and https://focus.world-
exchanges.org/articles/commodity-derivatives for data on 2020
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many commodity markets and concluded that: "At least 60-70 per cent of commodity price
changes are now due to self-generated activities rather than novel information". Additional
studies confirm the importance of including self-excitation in commodity price modeling
for derivatives pricing, hedging and forecasting (Jiao et al., 2019 and Gonzato and Sgarra
2021). In the course of this paper we provide further evidence of jump clustering effects in
oil and precious metal markets. Following standard asset pricing literature (see Fulop and Li,
2019 and the references therein), we model the stochastic jump intensity through a Hawkes
process with exponential kernel.

The resulting proposed model is a 4-factor affine model for commodity prices. The model
takes into account all aforementioned stylized features and its primary scope is to accurately
price commodity derivatives. To this end, after describing our model under the historical
measure, we propose a structure preserving change of measure which allows formulation
of the model under a risk–neutral pricing measure. The necessity of using general multi–
factor models for pricing commodity derivatives is highlighted in Cortazar et al. (2017) and
Schöne and Spinler (2017). The model can be considered as an extension of that proposed in
Casassus and Collin-Dufresne (2005) with stochastic volatility and self-exciting jumps. Due
to its affine structurewe obtain closed formulas for the futures price and semi-closed formulas
for European options on futures, useful for model calibration purposes, as detailed in Sect. 5.
Moreover, as we discuss later on, the process can be accurately simulated and allows for
efficient evaluation procedures for Asian options. This is very important for several reasons:
(i) in commodity markets Asian options are traded much more frequently than in equity
or interest rate markets; (ii) model sophistication typically precludes exact formulas for the
price of exotic derivatives and pricing must be performed through simulation; (iii) general
multi-factor models present multiple sources of randomness leading to a large variance in
the simulation step and, if the simulation is not accurate enough, to relevant mispricing of
the derivative instrument (as we document in the case of the Euler scheme).

Asian options are very popular among commodity derivatives traders and risk man-
agers,Here we don’t mean that Asian options are the most traded options in general, but
that they are strongly linked to the commodity market and they are quite popular among
practitioners, especially in OTC markets (see e.g. Kaminski, 1999). as their payoff depends
on the arithmetic average of the prices assumed by the underlying during the life of the
contract and represent a cheaper alternative to European options. The averaging process is
responsible for their popularity: it smooths possible market manipulations occurring near
the expiry date, reduces payoff’s volatility and allows for better cash flow matching. Hence,
many institutions started quoting average price options for highly volatile assets such as com-
modities (we refer to Roncoroni et al., 2015, Chapter 18 for a nice description of the traded
products). However, Asian options are traded mainly in Over the Counter (OTC) markets
(e.g. Kaminski, 1999).

Even if exact computation of the price of an arithmetic Asian option is precluded, we
obtain semi-closed formulas for the price of a discretely monitored geometric Asian option
under the proposedmodel. In this context, we contribute to the literature deriving themoment
generating function of the arithmetic average of the asset returns, extending the results in
Fusai and Kyriakou (2016) to the case of multi-factor affine models with mean reversion.
Then, for accurate model simulation, we rely on two different streams of literature on the
exact simulation of option pricingmodels with stochastic volatility (Broadie andKaya, 2006)
and on the exact simulation of affine point processes (Dassios and Zhao, 2013). We use their
results as building block for the construction of an almost exact simulation scheme for the
proposed model which allows to simulate asset price trajectories observed at discrete times
and produce almost unbiased estimates for exotic derivatives prices. Unfortunately, exact
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simulation is possible only in absence of mean reversion, in the opposite case we propose a
simple approximation, whose accuracy is investigated through extensive numerical experi-
ments. Due to the approximation, accuracy increases with the number of time discretization
steps. Since we consider four stochastic factors we observe high Monte Carlo variance in the
simulation step. Therefore, we employ the previously computed geometric Asian option price
as control variate to reduce the variance of the estimator for the arithmetic Asian option price
(Kemna and Vorst, 1990). Effectiveness of the proposed pricing methodologies is confirmed
through extensive numerical experiments using realistic model parameters calibrated on real
market quotes. We show that the bias of the proposed simulation scheme decays faster than
that of the Euler scheme (used as benchmark) with a higher convergence rate of the Root
Mean Squared Error (RMSE) and better overall performances in terms of trade-off between
accuracy and computational effort.

The rest of the paper is organized as follows. In Sect. 2we introduce themodel specification
and derive pricing formulas for European call options on futures (which will be later used for
model calibration). In Sect. 3 we present an efficient simulation algorithm for the proposed
model, while Sect. 4 deals with Asian option pricing. In Sect. 5 we perform numerical studies,
where we document the presence of jump clusters and investigate the performances of the
proposed simulation scheme. Section 6 concludes.

2 Model setup

In this section we outline our model under the historical probability measure. Then, we
introduce a structure preserving change of measure and describe our model under the risk–
neutral measure. Finally, we show how to price futures and options on futures contracts under
this model specification.

2.1 Model dynamics under the historical measure

Let (�,F, (Ft )t∈[0,T ],P) be a filtered probability space, which supports all the processes we
encounter in the sequel. If we denote by St the spot price process, the log-return process is
Xt := log(St/S0). Under the historical measure P the dynamics of the log-returns is defined
by the following system of stochastic differential equations:

d Xt =
(

μ − Vt

2
− λtμ

∗ − δt − αXt

)
dt +√

Vt dW x
t + Jx d Nt , (1)

dVt = kv(θv − Vt )dt + σv

√
Vt dW v

t , (2)

dδt = kδ(θδ − δt )dt + σδdW δ
t (3)

dλt = kλ(θλ − λt )dt + βd Nt , (4)

where Jx Nt is a marked point process with stochastic intensity λt and random jump size
Jx and μ∗ = eμJ +σ 2

J /2 − 1 its compensator. We assume a set of initial conditions satisfied
by each one of the processes described by the SDE system: {X0, V0, δ0, λ0}. Following
Casassus and Collin-Dufresne (2005, Proposition 2), we assume that the convenience yield
δt evolves according to an independent Gaussian Ornstein–Uhlenbeck process (which can
assume both positive and negative values). The parameter α ≥ 0 controls the speed of mean
reversion. Following Larsson and Nossman (2011), Brooks and Prokopczuk (2013), Gonzato
and Sgarra (2021), we assume a Cox et al. (1985) (CIR) square-root diffusion process for the
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variance Vt , which is correlated with the price process through the coefficient ρ ∈ [−1, 1],
i.e. E

[
dW x

t dW v
t

] = ρdt . We model abrupt changes in log-returns Xt by including an
independent compound Poisson process with stochastic intensity λt , such that the counting
process exhibits a self-exciting behavior, whichmeans that a jump increases the probability of
observing subsequent jumps.Although the jump intensityλt is stochastic andpath-dependent,
it is possible to prove that the vector process {Xt , Vt , δt , λt } is Markovian and affine (as we
discuss later on). The characterization of price jumps is completed by specifying a probability
density function for their sizes, which are i.i.d. Gaussian and denoted by Jx ∼ N (μJ , σ 2

J ).
The coefficient μ describes a constant drift with respect to the historical measure. We further
assume that the following non-explosion condition for the Hawkes process Nt in (4):

kλ > β, (5)

and the well-known Feller condition on the parameters of (2) (granting the strict positivity
of Vt for all t > 0) 2kvθv ≥ σ 2

v hold.
The model nests many other models proposed in literature to describe a large variety of

commodities dynamics, we mention just a few of them. The classical Gibson and Schwartz
(1990) model is obtained with Vt = λt = 0 and constant interest rates, the model in Casassus
andCollin-Dufresne (2005),well suited for a large number of commodities such as oil, copper,
gold, silver is obtained imposing Vt = λt = 0. Eydeland and Geman (1998) propose a model
for gas and electricity which is obtained with δt = λt = 0, while the one of Geman (2000)
(for oil) with λt = 0. Moreover, we mention the model proposed in Larsson and Nossman
(2011) for oil prices which is a special case with δt = α = 0 and constant λt .

Before performingour analysis on the proposedmodelwewant to examine the issue related
to existence and uniqueness for the system of stochastic differential equations characterizing
our model. We have the following

Proposition 1 There exists a solution to the system of (1–4) when a non explosion condition
holds and this solution is adapted to the filtration generated by the driving processes. This
solution is unique when standard initial data (F0-measurable initial data) are assigned.

Proof See Appendix A. ��
As far as positivity of (2) and (4) is concerned (neither positivity of Xt nor positivity of δt

are required at all), the classical Feller condition on the parameters describing the volatility
dynamics 2kvθv > σ 2

v will grant the strict positivity of Vt for t > 0, while (4), as an Ornstein-
Uhlenbeck SDE driven by a jump process with positive long-term mean θλ and with only
positive jumps in the driver, cannot exhibit a negative solution.

2.2 Risk–neutral dynamics

In order to deal with derivatives pricing we need to introduce a risk-neutral measure. To
this end, we extend the results in Zhang et al. (2009) and Hainaut and Moraux (2018) by
introducing an Esscher–type measure change. This is defined as follows. If we denote by
Lt := Jx d Nt the jump term in (1), and byψP(z) := E[ez Jx ] the moment generating function
of the jump size density, we can define the following family of exponential martingales:

Mt (ξ, φx , φδ, φv)

:= exp

[
κ1(ξ)λt + ξ Lt + κ2(ξ)t − 1

2

∫ t

0
φ2

x (u)du −
∫ t

0
φx (u)dW x

u

]
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× exp

[
−1

2

∫ t

0
φ2

v (u)du −
∫ t

0
φv(u)dW v

u − 1

2

∫ t

0
φ2

δ (u)du −
∫ t

0
φδdW δ

u

]

where κ1(ξ), κ2(ξ), η (with κ1(ξ), κ2(ξ) functions of ξ ) denote the risk premium related to the
jumps and φx , φv, φδ (stochastic processes adapted to the reference filtration Ft ) denote the
risk premium related to the diffusion components of log-returns, volatility and convenience
yield respectively. We state the following result.

Proposition 2 If, for any ξ , there exist functions κ1(ξ), κ2(ξ), which are solutions of the
following system of algebraic equations:{

κ1kλ − [exp (κ1(ξ)β)ψ(ξ) − 1] = 0

κ2 + κ1kλθλ = 0,
(6)

then Mt (ξ, φx , φδ, φv) is a local martingale. If, moreover, the non-explosion condition (5)
holds for Nt and the Novikov condition holds for φx , φv, φδ , Mt is a true martingale.

Proof See Appendix B ��
The following result shows that the measure change introduced by the likelihood process

dQ
dP

∣∣Ft
= Mt (ξ,φx ,φδ,φv)

M0(ξ,φx ,φδ,φv)
preserves the model structure.

Proposition 3 The dynamics under the risk-neutral measure Q of XQ

t , VQ

t , λ
Q

t , δ
Q

t is given
by the following system of stochastic differential equations:

d XQ

t =
(

−1

2
VQ

t − μ�,Qλ
Q

t − δ
Q

t − αXQ

t

)
dt +

√
VQ

t dW x,Q
t + JQ

x d NQ

t , (7)

dVQ

t = kQv (θQv − VQ

t )dt + σQ

v

√
VQ

t dW v,Q
t , (8)

dδ
Q

t = kQδ (θ
Q

δ − δ
Q

t )dt + σ
Q

δ dW δ,Q
t , (9)

dλ
Q

t = kQλ (θ
Q

λ − λ
Q

t )dt + βQd NQ

t , (10)

where JQ

x NQ

t denotes the jump process with respect to Q and μ�,Q = eμ
Q
J + 1

2 σ
Q,2
J − 1. The

relations between the relevant parameters under P and Q are the following:

dW x,Q
t = dW x,P

t + φx (t)dt, dW v,Q
t = dW v,P

t + φv(t)dt, dW δ,Q
t = dW δ,P

t + φδ(t)dt

σ
Q

δ = σδ, σQ

v = σv, kQv = kv + φvσv, kQδ = kδ, kQλ = kλ, ρQ = E[dW x,Q
t , dW v,Q

t ]/dt = ρ

θQv = θv

kv

kv + φvσv

, θ
Q

δ = θδ + φδ

σδ

, θ
Q

λ = θλeκ1(ξ)βψ(ξ), βQ = eκ1(ξ)βψ(ξ)β.

Moreover, under Q the jump size JQ

x is still normally distributed with mean μ
Q

J and volatility

σ
Q

J , with moment generating function given by ψQ(z) = ψ(z + ξ)/ψ(ξ).

Proof See Appendix C. ��
Remark 1 We shall assume in the following that the risk premium terms φx , φv are such that
the following equality is satisfied for all t ∈ [0, T ]:

μ −√
Vt [ρφv(t) +

√
1 − ρ2φx (t)] + λt [ψ(1) − 1] = 0,

in such a way that the dynamics of log-returns underQ can be written as in (7), by observing
that ψ(1) − 1 = μ∗.
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Remark 2 The last sentence in Proposition 3 implies that the relations between the mean and
the variance of the jump size with respect toQ and P are the following: μQ

J = μJ + ξσ 2
J and

σ
Q

J = σJ .

We point out that when α > 0 the spot price does not satisfy the standard no-arbitrage
condition and the spot price process is not a local martingale with respect to Q. This is not
a problem since commodities with storage costs of the good are not directly traded assets,
therefore the drift of the log-returns can be of the mean-reverting type under the risk-neutral
measure (see e.g. Schwartz, 1997; Lutz, 2010; Benth, 2011; Cai et al., 2014). As a result,
the proposed framework is well suited also for option pricing, as witnessed also by the large
amount of literature dealing with option pricing under mean reversion of the asset price (see
Fusai et al., 2008;Wong and Lo, 2009; Chung andWong, 2014; Brignone et al., 2021, among
others). However, in the special case with α = 0 the price process is a local martingale under
the risk-neutral measure Q. We are also assuming that the short rate is equal to 0. This is in
agreement with most theoretical models with stochastic convenience yields (e.g. Schwartz,
1997; Routledge et al., 2000).

Remark 3 The non-explosion condition under Q is now given by kQλ > βQ, i.e. kPλ >

exp (κ1(ξ)β)βP, that we’ll assume to be satisfied in the following.

In the next subsection, we show how to perform option pricing under the model (7)–
(10). Despite the growing interest and success in modeling jump clustering in finance (see
e.g. Fulop and Li, 2019 and the references therein), the application of such framework on
commodity options is still unexplored and we provide a first contribution on this topic.

Remark 4 Since in the rest of the paperwe shall work always under the risk-neutral dynamics,
we shall drop the superscript Q from all the relevant quantities.

2.3 Pricing options on futures contracts

We derive, next, the joint moment generating function of the quantities described in (7)–(10),
we will make use of this result to price derivatives under the proposed model:

Proposition 4 Given a final date T > t and the time to maturity τ = T − t , the joint moment
generating function of (XT , δT , VT , λT ) is

E[eu1XT +u2VT +u3δT +u4λT |Ft ] = exp
(
(u1 + G(u1, τ ))Xt + A(u1, u2, u3, u4, τ )

+ B(u1, u2, τ )Vt + C(u1, u3, τ )δt + D(u1, u4, τ )λt

)
(11)

where

⎧⎪⎨
⎪⎩

∂ A(u1,u2,u3,u4,τ )
∂τ

= F1(u1, u2, u3, u4, τ ),
∂ B(u1,u2,τ )

∂τ
= F2(u1, u2, τ ),

∂ D(u1,u4,τ )
∂t = F4(u1, u4, τ ),
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and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1(u1, u2, u3, u4, τ ) = kvθv B(u1, u2, τ ) + kδθδC(u1, u3, τ ) + kλθλ D(u1, u4, τ )

+ 1
2σ

2
δ C(u1, u3, τ )2,

F2(u1, u2, τ ) = − 1
2 (u1 + G(u1, τ )) + 1

2 (u1 + G(u1, τ ))

(u1 + G(u1, τ )) − kv B(u1, u2, τ )

+ 1
2σ

2
v B(u1, u2, τ )2 + ρσv B(u1, u2, τ )u1

+ρσv B(u1, u2, τ )G(u1, τ ),

F4(u1, u4, τ ) = −μ�(u1 + G(u1, τ )) − kλ D(u1, u4, τ )

+eβ D(u1,u4,τ )(e(u1+G(u1,τ ))μJ +σ 2
J /2(u1+G(u1,τ ))2 − 1),

with initial conditions A(u1, u2, u3, u4, 0) = 0, B(u1, u2, 0) = u2, D(u1, u4, 0) = u4 and

G(u1, τ ) = u1(e
−ατ − 1), C(u1, u3, τ ) = e−kδτ

(
u1
(−eτ(kδ−α)

)+ u3(kδ − α) + u1
)

kδ − α
.

Moreover, in the case with α = 0, we have

B(u1, u2, τ ) =
γ tan

(
1
2 τγ − tan−1

(
kv−σv(ρu1+σvu2)

γ

))
+ kv − ρσvu1

σ 2
v

where γ :=
√

−k2v + 2kvρσvu1 + σ 2
v u1

(
ρ2(−u1) + u1 − 1

)
.

Proof See Appendix D. ��
Remark 5 C and G can be computed full explicitly and the solution is reported in Proposi-
tion 4. In addition, also B can be computed explicitly, however, when α > 0 the solution is in
terms of hypergeometric functions. Hence, we find in practice more convenient to solve the
corresponding Ordinary Differential Equation (ODE) numerically than through the analytic
solution. D is discussed in the next remark.

Remark 6 The couple (Nt , λt ) is an affine Markov process (see e.g. Errais et al., 2010).
Therefore, the model (7)–(10) is affine and it is possible to derive an expression for the
moment generating function of log-returns as solution to a ODEs system. Nevertheless, an
explicit solution for the ODE F4 in Proposition 4 is not available and numerical solvers must
be considered (see e.g. Errais et al., 2010; Da Fonseca and Zaatour, 2014).

In the following, we will exploit Proposition 4 to perform derivatives pricing. Consider
ST = St eXT where τ = T − t is the time to maturity and St is the price of an asset at time
t . The price of futures contract F(t, T ) is given by the standard relation:

F(t, T ) = E[ST |Ft ].
Under the proposed model, we have

log F(t, T ) = log St + log E[eXT |Ft ]
= log St + (1 + G(1, τ ))Xt + A(1, 0, 0, 0, τ )+

+ B(1, 0, τ )Vt + C(1, 0, τ )δt + D(1, 0, τ )λt (12)
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where we compute the expectation by replacing u1 = 1 and u2 = u3 = u4 = 0 into (11).
We turn now our attention to the pricing of European options. Consider a maturity T and a
strike K , then the price will be given by

CE = E[max(0, ST − K )|Ft ] =
∫ ∞

K
(Sx

t − K ) fXT (x)dx (13)

where fXT (x) is the probability density function of XT obtained by numerical inversion
of the characteristic function of XT , i.e. E[eiu XT |Ft ], a special case of Proposition 4 with
u1 := iu and u2 = u3 = u4 = 0. Given a (univariate) characteristic function we compute
the corresponding probability density function through the Fourier-Cosine (COS) method
proposed by Fang andOosterlee (2008). Given the probability density function, the European
option price can be obtained in several ways, for example by solving the remaining integral
(e.g. 13) using the trapezium rule.

Consider now a European option on futures at the initial date t , with maturity of the option
T and maturity of the underlying futures contract T̃ > T , the price is given by:

CE F = E[max(0, F(T , T̃ ) − K )|Ft ] = E[max(0, STE[eXT̃ −T |FT ] − K )|Ft ]
= E[max(0, St e

YT − K )|Ft ] =
∫ ∞

K
(St e

y − K ) fYT (y)dy (14)

where YT := (1+G(1, T̃ −T ))XT + A(1, 0, 0, 0, T̃ −T )+ B(1, 0, T̃ −T )VT +C(1, 0, T̃ −
T )δT + D(1, 0, T̃ − T )λT .

Proposition 5 The moment generating function of YT is given by

E[euYT |Ft ] = eu A(1,0,0,0,T̃ −T ) exp
(
(u(1 + G(1, T̃ − T )) + G(u(1 + G(1, T̃ − T )), τ ))Xt

+ A(u(1 + G(1, T̃ − T )), u B(1, 0, 0, 0, T̃ − T ),

uC(1, 0, T̃ − T ), u D(1, 0, T̃ − T ), τ )

+ B(u(1 + G(1, T̃ − T )), u B(1, 0, 0, 0, T̃ − T ), τ )Vt

+ C(u(1 + G(1, T̃ − T )), uC(1, 0, T̃ − T ), τ )δt

+ D(u(1 + G(1, T̃ − T )), u D(1, 0, T̃ − T ), τ )λt

)
(15)

Proof The result is obtained from (11) substituting u1 = u(1 + G(1, T̃ − T )), u2 =
u B(1, 0, 0, 0, T̃ − T ), u3 = uC(1, 0, T̃ − T ) and u4 = u D(1, 0, T̃ − T ). ��

Given the moment generating function in (15) we get the characteristic function by sub-
stituting u with iu, then we compute fY (y) using the COS method and recover CE F from
(14). In the next section we tackle the problem of efficiently simulating the model in (7)–(10),
while the pricing of Asian options is deferred to Section 4.

3 Simulation

In this section we propose a simulation scheme for the model in (7)–(10). As will later
become clear, the accuracy of the algorithm increases with the number of time discretization
steps. We start by illustrating the procedure step by step, then we discuss the sources of error.
Consider a set of dates 0 =: t0 < t1 < · · · < tn := T , we are interested in simulating
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Xt j for j = 0, . . . , n. Anyway, for sake of clarity, let us illustrate the proposed method in
the case where one wants to simulate directly (XT |X0, V0, δ0, λ0), omitting intermediate
dates. This is without loss of generality since only simple adaptations are needed to include
also the intermediate dates, as we show in Algorithm 1 where we summarize the whole
simulation procedure for a generic set of dates. Given the underlying asset price trajectory is
then possible to pricemany kind of exotic options on spot prices, includingAsian options. For
what concerns the price of options on futures, we note that the underlying can be simulated
easily from (12) requiring only the additional simulation of {δt j }n

j=1 (not required in the case
of the spot price).

Step 1: Exact simulation of
∫ T
0 �sds given �0

Using Dassios and Zhao (2013, Algorithm 3.1) we obtain a sample of the triplet(
NT , {τk}NT

k=1, {λτk }NT
k=1

)
, where NT is the total number of jumps in the period [0, T ] and τk

is the k−th jump time. Given the triplet we can compute

λT = θλ + (λ0 − θλ)e
−kλT +

NT∑
k=1

βe−kλ(T −τk ),

∫ T

0
λsds = −λT − λ0 − kλθλT − βNT

kλ

.

(16)

Step 2: Exact simulation of
(

ıT,
∫ T
0 ısds

)
given ı0

Following Glasserman (2004, Section 3.3) we have[
δT∫ T

0 δsds

]
∼ N (μδ,�δ) (17)

where

μδ =
[

(δ0 − θδ)e−kδT + θδ

θδT + (δ0 − θδ)
1−e−kδ T

kδ

]
,

�δ =
⎡
⎢⎣

σ 2
δ

2kδ
(1 − e−2kδT )

σ 2
δ

2k2δ
(1 − e−kδT )2

σ 2
δ

2k2δ
(1 − e−kδT )2 − σ 2

δ

2k3δ
(1 − ekδT )2 + σ 2

δ

k2δ
(t − 1−e−kδ T

kδ
)

⎤
⎥⎦ .

The transition of
(
δT ,

∫ T
0 δsds

)
can thus be simulated exactly and efficiently by means of

standard random numbers generators from a multivariate normal distribution.

Step 3: Exact simulation of
(
VT,

∫ T
0 Vsds

)
given V0

The transition density of the terminal variance is known

VT
(law)= σ 2

v (1 − e−kvT )

4kv

χ ′2
d (λ) (18)

where χ ′2
d (λ) denotes the non-central chi-squared distribution with d := 4θvkv/σ

2
v degrees

of freedom and non-centrality parameter λ := 4kve−kvT V0/σ
2
v (1− e−kvT ). Hence, (VT |V0)
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is simulated exactly using standard generators from the non-central chi-squared distribution.1

The next step consists in simulating
(∫ T

0 Vsds|VT , V0

)
, not a trivial problem. Broadie and

Kaya (2006) develop an exact simulation scheme. Nevertheless, their proposed methodology
presents several implementation issues, being generally slow to run and, despite theoretically
exact, biased in practice (see e.g. Glasserman and Kim, 2011; Kienitz and Wetterau, 2012).
To overcome these issues, Kyriakou et al. (Forthcoming) suggest an alternative approach

based on fast computation of the moments of
(∫ T

0 Vsds|VT , V0

)
and subsequent random

sampling from a 4-moments matched Pearson distribution. This methodology turns out to be
faster andmore accurate than competing benchmarks, hence, we will adopt this methodology

for fast sampling
(∫ T

0 Vsds|VT , V0

)
.2 Finally, we have

∫ T

0

√
VsdW v

s = 1

σv

(
VT − V0 − kvθvT + k

∫ T

0
Vsds

)
. (19)

Step 4: Simulation of XT given VT,
∫ T
0 Vsds, ıT,

∫ T
0 ısds, �T,

∫ T
0 �sds and {�k}NTk=1

From (7) and (19):

XT = X0 − 1

2

∫ T

0
Vsds − μ�

∫ T

0
λsds −

∫ T

0
δsds − α

∫ T

0
Xsds+

+ ρ

σv

(
VT − V0 − kvθvT + k

∫ T

0
Vsds

)
+
√
1 − ρ2

∫ T

0

√
VsdW v

x +
NT∑
i=1

Jx,i

where {Jx,i }NT
i=1 is a sequence of i.i.d. normal (with mean μJ and standard deviation σ j )

random variables. Thus, we have

XT + α

∫ T

0
Xs ∼ N

(
μ̄ +

NT∑
i=1

Jx,i , (1 − ρ2)

∫ T

0
Vsds

)
(20)

where

μ̄ = X0 − 1

2

∫ T

0
Vsds − μ�

∫ T

0
λsds −

∫ T

0
δsds + ρ

σv

(
VT − V0 − kvθvT + kv

∫ T

0
Vsds

)
.

Therefore, we can simulate {Jx,i }NT
i=1 and the quantity XT +α

∫ T
0 Xsds by means of standard

random numbers generators from a normal distribution. Note that in case of absence of mean
reversion (α = 0) the model is simulated exactly through the proposed approach. However,
in presence of mean reversion, a full exact simulation scheme seems not doable. Hence, we
employ a central discretization (compare with Andersen, 2008, Eq. 32):∫ T

0
Xsds ≈ T

XT + X0

2
. (21)

If we denote with Z the random sample from XT + α
∫ T
0 Xsds, then we have that XT ≈

Z−αT /2X0
1+αT /2 =: X̃T .

1 We use the built-in Matlab® function ncx2rnd.
2 We refer to Kyriakou et al. (Forthcoming) for more details on the algorithm, including practical implemen-
tation, runtime-accuracy studies and numerical performances (on several models) against competing methods.
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The whole simulation procedure contains two sources of error: i) the simulation of(∫ T
0 Vsds|VT , V0

)
; i i) the approximation in (21). The first is negligible in practice as illus-

trated in Kyriakou et al. (Forthcoming) and also confirmed by the numerical studies we will
present in Sect. 5. The second source of error is more important. In particular, accuracy
depends on the length of the interval [0, T ] (we expect high accuracy for small values of T )
and on the value of the parameter α. In this case, the smaller α the smaller the error. We will
investigate this point in the numerical section.

Finally, the asset price is computed as ST = S0eXT . In addition, it is possible to recover∫ T
0 Xsds from (21) and the price of futures from (12).

Algorithm 1 Simulation scheme for the model (7)–(10)
Inputs:
Model parameters: α, kv , θv , σv , ρ, kδ , θδ , σδ , kλ, θλ, β, μJ , σJ
Monitoring dates: {t0, t1, . . . , tn := T }
State variables at initial date Xt0 , Vt0 , δt0 , λt0
Outputs:
Trajectory of the state variables: {Xt j , Vt j , δt j , λt j }n

j=1

1: Simulate the couple
(

NT , {τk }NT
k=1

)
using Dassios and Zhao (2013)

2: Simulate corresponding i.i.d. jump sizes {Jk }NT
k=1 with Jk ∼ N (μJ , σ 2

J )

3: for j = 1 : n do

4: Simulate
(
δt j ,

∫ t j
t j−1

δsds
∣∣∣δt j−1

)
from (17)

5: Simulate
(

Vt j ,
∫ t j

t j−1
Vsds

∣∣∣Vt j−1

)
using (18) and the moment based random numbers generator in

Kyriakou et al. (Forthcoming)

6: Recover
∫ t j

t j−1

√
VsdW v

s from (19)

7: Compute number of jumps in the interval: A = #{k : t j−1 < τk ≤ t j }
8: if A = 0 then

9: L = 0, λt j = θλ + (λt j−1 − θλ)e−kλ(t j −t j−1),
∫ t j

t j−1
λsds = − λt j −λt j−1−kλθλ(t j −t j−1)

kλ

10: else

11: L = ∑
{k:t j−1<τk≤t j } Jk , λt j = θλ + (λt j−1 − θλ)e−kλ(t j −t j−1) +∑A

k=1 βe−kλ(t j −τk )

12:
∫ t j

t j−1
λsds = − λt j −λt j−1−kλθλ(t j −t j−1)−β A

kλ

end

13: Simulate X ∼ Xt j + α
∫ t j

t j−1
Xsds from (20)

14: Recover Xt j from (21)

15: end

4 Asian option pricing

In this section we derive formulas for the price of Asian options. The payoff depends on the
average of a commodity’s spot-price. Consider the usual set of dates 0 =: t0 < t1 < · · · <

tn := T , then the payoff of an Asian option with strike K and maturity T is

X = max(0, An − K ), Y = max(0, Gn − K ) (22)
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where the arithmetic and geometric averages are defined respectively as An = 1
n

∑n
j=1 St j

and Gn = exp
(
1
n

∑n
j=1 log St j

)
. This kind of option is very popular in OTC markets, espe-

cially when the underlying is the price of metal commodities (see, among others, Kaminski,
1999, Shiraya and Takahashi, 2011). In practice averaging is usually arithmetic rather than
geometric. However, pricing geometric Asian options is still very important as i) this allows
for exact pricing formulas and ii) the payoff of geometric averaged options is highly cor-
related with that of their arithmetic averaged cousins. This fact is exploited in synthetic
variance reduction methods for Monte Carlo simulation. Consequently, it comes natural to
use the geometric Asian option price as a control variable in a Monte Carlo simulation to
obtain accurate price estimates for the arithmetic counterpart. Let’s start our discussion from
the price of the geometric Asian option which is given by:

CGn = E[max(0, Gn − K )] = E

⎡
⎣max

⎛
⎝0, S0 exp

⎛
⎝1

n

n∑
j=1

Xt j

⎞
⎠− K

⎞
⎠
⎤
⎦

=
∫ ∞

K
(S0eh − K ) fHT (h)dh, (23)

where HT := 1
n

∑n
j=1 Xt j . We derive, next, the moment generating function of HT . The

following proposition extends the results in Fusai and Kyriakou (2016) to the case of a mean
reverting multi-factor affine model.

Proposition 6 Define B0 := 0, C0 := 0, D0 := 0, G0 := 0. The moment generating function
of
∑n

j=1 Xt j is

E[eu
∑n

j=1 Xt j |Ft0 ] = e(nu+Gn)Xt0+Bn Vt0+Cnδt0+Dnλt0+∑n
j=1 A( ju+G j−1,B j−1,C j−1,D j−1,tn− j+1−tn− j ),

where

B j := B

⎛
⎝ ju +

j−1∑
i=0

Gi , B j−1, tn− j+1 − tn− j

⎞
⎠ ,

C j := C

⎛
⎝ ju +

j−1∑
i=0

Gi , C j−1, tn− j+1 − tn− j

⎞
⎠ ,

D j := D

⎛
⎝ ju +

j−1∑
i=0

Gi , D j−1, tn− j+1 − tn− j

⎞
⎠ ,

G j := G

⎛
⎝ ju +

j−1∑
i=0

Gi , tn− j+1 − tn− j

⎞
⎠ .

Proof See Appendix E. ��
Given the moment generating function we obtain the characteristic function replacing u

with iu and we price the geometric Asian option using the COS method. We turn now our
attention to the pricing of the arithmetic counterpart. Kemna and Vorst (1990) first proposed
to exploit the high correlation between the arithmetic and the geometric average of asset
prices to reduce the variance of the Monte Carlo simulation estimator. In particular, the price
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of the geometric counterpart is used as control variable. We employ in our context a standard
Control Variate Monte Carlo setup where, for a high accuracy, we simulate the underlying
asset price process using Algorithm 1. We summarize the whole procedure in Algorithm 2
and refer to Glasserman (2004) for a detailed description of the usage of control variates
method for Asian option pricing.

Algorithm 2 Pricing Asian options using control variates
Inputs:
Model parameters: α, kv , θv , σv , ρ, kδ , θδ , σδ , kλ, θλ, β, μJ , σJ
Monitoring dates: {t0, t1, . . . , tn := T }
State variables at initial date Xt0 , Vt0 , δt0 , λt0
Number of simulations: N
Number of simulations for control variates: NCV

Outputs:
Price of the arithmetic Asian option: CAn
1: Compute CGn using Proposition 6

2: for i = 1 : NCV do

3: Simulate {Xt j }n
j=1 using Algorithm 1

4: Compute St j = St0e
Xt j for j = 1, . . . , n

5: Compute XCV
i and YCV

i from (22)

6: end

7: Compute b� = Cov(XCV ,YCV )

Var(YCV )

8: for i = 1 : N do

9: Simulate {Xt j }n
j=1 using Algorithm 1

10: Compute St j = St0e
Xt j for j = 1, . . . , n

11: Compute Xi and Yi from (22)
12: end

13: Compute CAn = 1
N
∑N

i=1 Xi − b�(Yi − CGn )

We have considered options written on the average of spot prices. Another possibility is
to average futures rather than spot prices. For sake of brevity, we will not consider this case
in this work. However, the payoffs of the Asian options on futures can be obtained replacing
St j with F(t j , T̃ ) into (22). Results obtained for the spot price can be extended to the case of
Asian options on futures similarly to the case of the European options (see Proposition 5). As
a final remark, we point out that is also possible to price continuously monitored geometric
Asian options under the proposed model applying the method outlined in Hubalek et al.
(2017, Proposition 3) and extended in Brignone and Sgarra (2020, Proposition 2).

5 Numerical results

In this section we present numerical results. Before assessing the accuracy of Algorithm 1
and the pricing of Asian options we start by examining the time series of spot returns for four
different commodities, namely, WTI crude oil, gold, silver and copper. We detect jumps in
the historical price time series and present an econometric test which shows that jumps are
not uniformly distributed over time, but tend to appear in clusters, providing further support
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for the proposed model. Then, we calibrate the model on real market option prices. Finally,
using calibrated parameters, we evaluate the accuracy of Algorithm 1 and present numerical
results on the pricing of Asian options.

All the computations are done using Matlab® (Version R2021a) in Microsoft Windows
10® running on a machine equipped with Intel(R) Core(TM) i7-9750HQ CPU @2.60GHz
and 16 GB of RAM.

5.1 Jump clusters in commodity prices

We illustrate and discuss the clustering effects of commodity prices, which provides us with
an empirical justification for the introduction of self-excitation in the jump process. To this
aim, we consider the historical time series of the spot prices from 30-Aug-2000 to 11-Dec-
2020 (5048 daily observations) of four different commodities: gold, silver, crude oil, copper.3

The sample involves periods of crisis and financial turmoil such as the 2008 credit crisis,
the summer 2011 European sovereign debt crisis, and the recent COVID-19 outbreak. Spot
prices are displayed in Fig. 2 along with jump occurrences (black bars). In order to detect
jumps we employ the iterated re-weighted least squares technique developed in Callegaro et
al. (2017) (see also Bernis et al, 2021 for more implementation details). Jump occurrences
are displayed in Fig. 2. We note that jumps are very frequent in commodity markets: we
identify in the whole sample a total of 144 jumps for gold price, 210 for silver, 137 for crude
oil, 135 for copper. Therefore, a model which omits the jumps in the price process is likely
misspecified. We also observe that jumps appear in clusters. This is particularly evident in
the case of crude oil, where we observe prolonged periods of tranquillity (e.g. we observe no
jumps between 29 Jun 2012 and 26 Nov 2014) followed by periods with a lot of jumps (11
jumps in 2015). In order to show that jumps do not exhibit a constant arrival rate we propose a
statistical test. If the arrival rate is constant then the jump process is a homogeneous Poisson
process and the distribution of the interarrival times is exponential with mean 1/λ, where λ

is the average arrival rate computed as the ratio between the total number of jumps and the
number of observations in the sample (e.g. 144/5048 = 0.0285 for gold). We then perform
a two sample Kolmogoroff-Smirnov (KS) test, where null hypothesis is that the interarrival
times are exponentially distributed with mean 1/λ. The null hypothesis is rejected at the
5% significance level for all the commodities considered, supporting the idea of stochastic
jump intensity. In particular, for crude oil we obtain a p-value of 9.30E-07 which indicates
a strong rejection of the hypothesis of a constant arrival rate. A graphical illustration is
provided in Fig. 3 where we compare the empirical distribution of the interarrival times with
the theoretical exponential distribution. If the arrival rate was constant then the two cdfs
would match, but we note that this is not the case. The choice of using an Hawkes process
to model the jump intensity (which is standard in the literature on equity price modeling)
allows to take into account this feature of commodity returns.

5.2 Calibration

We calibrate the proposed model (7)–(10) on observed market option prices. In commodity
markets the most liquid quoted options are American options. Hence, for a given date (Friday
5 March 2021) we collect American option prices for four different commodities: crude

3 Source: Refinitiv Eikon (formerly, Thomson-Reuters’ Datastream).
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Fig. 2 Historical time series of the spot price of four different commodities and jump occurrences (black bars)

Fig. 3 Empirical (blue points) and theoretical (red lines) cumulative distribution function (cdf) of the interar-
rival times for four different commodities. The theoretical cdf is the one of an exponential distribution with
mean 1/λ, where λ is the daily average arrival rate (0.0285 for gold, 0.0416 for silver, 0.0271 for crude oil,
0.0303 for copper)
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oil WTI, gold, silver and high grade copper.4 We consider three different maturities for
each commodity ranging from 1 to 9 months (options with longer maturities are not liquid
enough). In order to avoid liquidity problems, we keep all the contracts whose trading volume
at the end of the day is greater than two. We end up with 125 options for crude oil WTI,
57 for gold, 44 for silver and 38 for copper. Then, we convert American option prices
to Europeans. Following Trolle and Schwartz (2009) we compute the implied volatility
from American option prices using the Barone-Adesi and Whaley (1987) formula, then, we
calculate European call options on futures prices using the Black (1976) formula. Hence,
we can calibrate the model by matching market and model implied prices of European call
options (on futures). Model implied prices are computed from (14), for implementing the
COS method infinite summations are truncated at the 29-th element and ODEs are solved
numerically using an explicit Runge-Kutta (4,5) formula.5 More precisely, we solve the
following optimization problem:

min
�

1

ñK

1

ñT

ñT∑
t=1

ñK∑
k=1

(CMkt
t,k − C�

t,k)
2

CMkt
t,k

where � is the vector of parameters, ñK is the number of strikes, ñT is the number of
maturities, CMkt

t,k is the market price of the European call option on future while C�
t,k is the

model price. We impose standard constraints: {V0, λ0, α, σJ , kv, θv, σv, kδ, σδ, kλ, θλ, β} >

0, −1 < ρ < 1 and kλ > β. In order to mitigate the dependence on the initial point supplied
to the optimizer we randomly generate 5000model parameters, thenwe evaluate the objective
function in each of them and take the 10 parameters combinations with smallest objective
function (the total running time for this step in our PC is around 11 minutes). Next, we run
10 different optimizations starting from those points (optimization is performed using the
built in Matlab® function fmincon with the interior point algorithm and the time required
for this step is around 1 hour, i.e. nearly 6 minutes for each starting point). Finally, we
take those parameters where the objective function presents the smallest value. The results
of this procedure are reported in Table 1, where we show calibrated parameters, and in
Fig. 4, where we compare the model and market option prices. Now, some comments are
in order. The parameter controlling the mean reversion α is smaller for crude oil than the
other commodities. This is consistent with literature on oil modeling. Indeed, despite mean
reversion in commodity markets is a widely acknowledged stylized feature, for the specific
case of oil, many authors started excluding mean reversion from price dynamics (Trolle and
Schwartz, 2009; Larsson and Nossman, 2011; Shiraya and Takahashi, 2011; Cortazar et al.,
2017). In particular Larsson and Nossman (2011) find no evidence of autocorrelation of
log-returns from 25-May-1989 to 25-May-2009. Meade (2010) finds better out of sample
performances for models without mean reversion. On the other hand, we find strong mean
reversion in the copper price, consistently with Schöne and Spinler (2017). For what concerns
the parameters governing the volatility process, we find that the volatility of crude oil returns
is much less persistent than other commodities as witnessed by the higher value of kv .
Moreover, we find that the Feller condition (2kvθv > σ 2

v ) is respected for silver and copper
but not for crude oil and gold. Note that this does not indicate that the model is misspecified
for crude oil and gold. Indeed, when option pricing models with CIR-type variance (e.g.

4 Data are taken fromBarchart, derivatives on crude oilWTI are traded on the NewYorkMercantile Exchange
(NYMEX), while derivatives on precious metals are traded on its commodity division (COMEX).
5 We use the built in Matlab® function ode45.
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Table 1 Calibrated parameters
for the model in (7)–(10) on
commodity option quotes

� Crude oil Gold Silver Copper

V0 0.0242 0.0057 0.0035 0.0051

δ0 0.1103 0.0833 0.0915 −0.0164

λ0 7.2448 4.6698 5.1943 6.3883

α 0.0637 0.0822 0.1511 0.2166

μJ −0.0099 −0.0130 −0.0056 −0.0052

σJ 0.0296 0.0163 0.0152 0.0156

ρ −0.7163 −0.9136 −0.0501 −0.0619

kv 6.7272 0.8697 0.9139 2.7416

θv 0.0175 0.1746 0.2493 0.0520

σv 0.6872 0.9176 0.6315 0.2574

kδ 0.7418 0.0667 1.8986 0.8709

θδ 0.1674 −0.1225 −0.1526 0.1065

σδ 0.4424 0.2420 0.0542 0.4271

kλ 8.8334 12.2181 8.8138 9.7457

θλ 3.8283 2.0689 4.2062 4.5081

β 2.9290 3.2874 2.9650 2.7138

Heston model) are calibrated on real option quotes, it often happens that the Feller condition
is not satisfied (see e.g. Rouah, 2013, Table 6.2). The violation of the Feller condition implies
the introduction of a non-negligible bias when pricing options via simulation with the Euler
scheme or other similar methods (see the discussion in Begin et al., 2015). This problem is not
relevant to our simulation approach outlined in Sect. 3 (see Sect. 5.3). Indeed, in our approach
we simulate the variance process directly according to a non central chi-squared distribution
which is always positive also when the Feller condition is not respected (see also Broadie
and Kaya, 2006). The parameter ρ, which controls the leverage effect, is negative across all
the commodities. This means that when the prices drop, volatility rises. The leverage effect
is consistent with the phenomenon in which many investors hedge their physical risks with
forward contracts. As a result, panic can break out when prices drop, pushing volatility up.
Anyway, we find that this effect is much more pronounced for crude and gold than silver
and copper. Regarding the convenience yield dynamics, all commodities display a similar
degree of persistence. The long run mean is positive for oil and copper and negative for gold
and silver. The diffusion coefficients have comparable magnitude, except for that of silver
which is smaller. Finally, regarding the parameters of the jump intensity, we find that the
parameter controlling the self-exciting effect β is similar among different commodities and
the expected number of jumps per year (computed according to Dassios and Zhao, 2013,
Proposition 2.3) is 5.98 for Crude oil, 4.35 for Gold, 6.10 for Silver and 7.26 for Copper.

Finally, since there is no closed solution for A, B and D in Proposition (4), we display the
values of F1, F2 and F3 together with the functions A,B,C ,D, and G for a different values
of u1 ranging between 0 and 20, u2 = u3 = u4 = 0 and different times τ .

5.3 Accuracy of Algorithm 1 and Asian option pricing

In order to assess accuracy of the proposedmodel simulation schemewe follow the procedure
outlined in Cai et al. (2017, Section 4). First, we need to estimate the error we are committing
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Fig. 4 Market (red points) and model (blue lines) implied European call option on futures prices on 3 Mar
2021 for four different commodities: crude oil (top subplots), gold (second line), silver (third line) and copper
(bottom subplots)

Fig. 5 Blue, red and yellow lines correspond to, respectively, τ = 1/4, τ = 1/2 and τ = 1

when simulating the model (7)–(10) using Algorithm 1. To this aim, we consider the problem
of pricing an at the money (ATM) European call option on spot (for simplicity and facilitation
of error comparisons, let us assume an initial price for the underlying equal for all the
commodities S0 = 100), then we compare the true option price computed from (13) using the
COSmethod and the price of the same option obtained through a high number of simulations
(following Broadie and Kaya, 2006 we use 109 simulations to get an accuracy at least to the
fourth decimal place). The bias is the difference between the two values. Results are reported
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in Table 2. From this table, we can appreciate how the accuracy drastically increases with
the number of time steps n. Moreover, for n = 16 we find that the bias is close to 0, meaning
that if one increases further n the error will disappear. This finding also confirms that the

error coming from the simulation of
(∫ T

0 Vsds|VT , V0

)
is negligible in practice. The speed

of mean reversion α impacts on the accuracy: for crude oil we have α = 0.0637 and in
this case we register the best performances of Algorithm 1, with a bias smaller (in absolute
value) than 0.01 for n = 2. When α increases we need higher n to reach similar accuracy,
for example, in the case of silver, we need n = 8 for an absolute bias smaller than 0.01.

Having confirmed that accuracy increases with the number of time steps n, the next step is
to study the performances of Algorithm 1 in terms of trade-off between accuracy (measured

through the Root mean Squared Error, RMSE =
√
bias2 + standard error2, see Li and Wu,

2019 for more details) and computational efficiency (running time expressed in seconds).
Following standard literature (e.g. Broadie andKaya, 2006, Cai et al., 2017, Li andWu, 2019)
we report the performances of the Euler scheme for benchmark comparison. First of all, it is
worth noting that the proposed simulationmethod differs greatly from discretizationmethods
like the Euler scheme. Indeed, we just need to split the time horizon into a very small number
of time discretization steps (indeed, biases are very close to 0 for n = 16), while Euler scheme
uses simple but rough approximations which work well only on small time steps, with the
natural consequence that Euler scheme needs a higher number of time steps to achieve a level
of accuracy similar to that of our proposed approach. However, when using Algorithm 1 and
the Euler scheme for the purpose of pricing options with a limited computational budget,
a trade–off is intrinsically established between increasing the number of time steps n (to
reduce the bias) and the number of simulations N (to reduce the statistical error). Increasing
n will improve accuracy but also increase the computational cost. We compute the bias of
the Euler scheme using 109 simulations for different number of time discretization steps
n = {200, 400, 800, 1600, 6400}. The behavior of the bias of both Algorithm 1 and the
Euler scheme for different time steps is reported in log-log scale in the top panel of Fig. 6.
From this figure we can appreciate how the bias of Algorithm 1 decreases faster than that
of the Euler scheme. More precisely, by regressing log10(bias) vs log10(n) we get a slope
around −2 (for all parameter sets) for Algorithm 1 and around −0.9 for the Euler scheme,
implying that the bias of our proposed simulation method is approximately proportional to
1/(n2), while the bias of the Euler scheme is approximately proportional to 1/n. Duffie and
Glynn (1995) show that if the bias decays at the order of 1/(n p), then one should increase n
proportionally to N 1/(2p) to achieve asymptotic optimality. Hence, it is possible to improve
efficiency of the proposed method with a smaller computational effort on the bias reduction
with respect to the Euler scheme: having estimated p ≈ 2 for our Algorithm 1 we can select
n increasing at the order N 1/4, while in the case of the Euler scheme, since p ≈ 1, n should
be proportional to N 1/2. The trade-off between accuracy and computational efficiency in a
log-log scale is shown in the bottom panel of Fig. 6 while numerical values of RMSE and
running times are reported (along with biases) in Table 3. Results show that the RMSE of
the proposed simulation method decays faster than the Euler scheme. In particular, we get
the following convergence rate of the RMSE for Algorithm 1: 0.44 for crude oil, 0.43 for
gold, 0.44 for silver and 0.42 for copper. These are only slightly smaller than those of a
theoretically unbiased estimator (which would be around 0.5, see e.g. Broadie and Kaya,
2006) but higher than those of the Euler scheme, which are around 0.30 for all the parameter
sets considered, confirming the superior performances of the proposed approach with respect
to the benchmark. In Fig. 6, in the case of silver we also included the case with n = 8 and
N = 1024 × 104 for Algorithm 1 to better highlight its superior performances. Another
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Fig. 6 Performances of Algorithm 1 (red line) and Euler scheme (blue line) for the problem of pricing an
European call option under limited computational budget for themodel in (7)–(10) by simulation. Top subplots
present the relationship between bias and n, while bottom subplots present the relationship between RMSE
and computing time in seconds (in log-log scale). Parameters are as in Table 1. Other parameters: S0 = 100,
K = 100 and T = 1. Further notes: see Table 2

important aspect in the comparison between the proposed approach and the Euler scheme
is that in the latter the discretization of the variance process may generate negative values
in intermediate steps with a significant probability when the Feller condition 2kvθv > σ 2

v is
violated (this is the case of the calibrated parameters for crude oil and gold). This brings extra
error in the simulation procedure, explaining the poor performances of the Euler scheme in
the case of gold (where, in addition, the initial value of the variance process V0 is very small,
increasing the probability of the variance process reaching zero).

Finally, given model parameters and having tested the accuracy of the simulation scheme,
we consider the problem of pricing an Asian option using Algorithm 2. We assume an initial
price S0 = 100 and compute the price of European and Asian call options (geometric and
arithmetic averaging) using (13) and (23) with discrete monitoring (12 monitoring dates) and
several strikes. ODEs are solved numerically using an explicit Runge-Kutta (4,5) formula,
while infinite summations for the implementation of the Fourier-Cosinemethod are truncated
at the 210 element. Algorithm 2 is implemented with N = 106 and N CV = 104 simulations.
Results are reported in Table 4. European call option price is computed in approximately 1
second, the geometric Asian option price is computed in around 8 seconds, while the price
of the arithmetic counterpart is obtained in around 110 seconds for all the parameter sets.
The usage of the geometric Asian option price as control variable turns out to be extremely
useful, allowing for a variance reduction around 99% across all the parameter sets, maturities
and strikes.
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Table 3 Speed–accuracy comparison between Algorithm 1 and Euler scheme. Further notes: see Fig. 6

N Euler Algorithm 1

n Bias RMSE Time n Bias RMSE time

Crude oil

104 200 0.0353 0.1144 0.15 1 0.0335 0.1167 0.46

4 × 104 400 0.0322 0.0646 1.10 2 0.0081 0.0546 1.50

16 × 104 800 0.0254 0.0373 8.21 3 0.0036 0.0276 6.54

64 × 104 1600 0.0187 0.0232 62.90 4 0.0019 0.0137 31.04

256 × 104 6400 0.0146 0.0161 1093.85 6 0.0006 0.0069 166.98

Gold

104 200 0.3375 0.3547 0.19 1 0.0895 0.1339 0.24

4 × 104 400 0.2752 0.2806 1.32 2 0.0233 0.0553 1.15

16 × 104 800 0.2187 0.2204 9.55 3 0.0100 0.0270 5.59

64 × 104 1600 0.1721 0.1726 72.84 4 0.0061 0.0140 27.35

256 × 104 6400 0.1132 0.1134 1100.87 6 0.0029 0.0069 152.68

Silver

104 200 0.0586 0.1183 0.19 1 0.3751 0.4312 0.26

4 × 104 400 0.0294 0.0603 1.21 2 0.0965 0.1472 1.21

16 × 104 800 0.0130 0.0315 9.24 3 0.0435 0.0707 5.79

64 × 104 1600 0.0063 0.0192 68.37 4 0.0241 0.0367 28.17

256 × 104 6400 0.0014 0.0139 1071.30 6 0.0113 0.0179 202.02

Copper

104 200 0.0358 0.2247 0.20 1 0.1458 0.2141 0.34

4 × 104 400 0.0157 0.1118 1.36 2 0.0359 0.0876 1.32

16 × 104 800 0.0082 0.0553 9.98 3 0.0163 0.0431 6.75

64 × 104 1600 0.0040 0.0264 73.44 4 0.0096 0.0221 34.03

256 × 104 6400 0.0009 0.0100 1160.33 6 0.0036 0.0106 199.52

6 Conclusions

In this paper we propose a new model for pricing commodity options. The model accounts
for mean reversion, stochastic convenience yield, stochastic volatility and stochastic jump
intensity. For the latter, we provide empirical evidence of self-excitation across four different
commodity markets. After presenting the model under the historical measure, we introduce a
structure preserving change of measure and describe the model under a risk–neutral measure.
Then, by calibrating the proposed model on real market option prices, we find an excellent
fit. We develop an efficient simulation scheme for the proposed model, we identify sources of
error and present a comparison with the classic Euler scheme. Finally, we derive semi-closed
formulas for the price of geometric Asian options under the proposed model and combine
this result with the simulation scheme to develop a Control Variate simulation strategy for
accurate evaluation of arithmetic Asian option prices, which are very popular derivative
instruments in commodity markets. The methodology is able to provide accurate results at
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a reasonable computational cost and the simulation scheme can be used for pricing other
path-dependent derivatives written on commodity prices.
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Appendix A. Proof of Proposition 1 (Some hints)

In this section we outline the proof of existence and uniqueness of the solution of the system
of stochastic differential equations describing the model investigated in the present paper.
We write the equations again for ease of reading:

d Xt =
(

μ − Vt

2
− λtμ

∗ − δt − αXt

)
dt +√

Vt dW x
t + Jx d Nt , (A.1)

dVt = kv(θv − Vt )dt + σv

√
Vt dW v

t , (A.2)

dδt = kδ(θδ − δt )dt + σδdW δ
t (A.3)

dλt = kλ(θλ − λt )dt + βd Nt , (A.4)

where all the notations have been defined in Sect. 2.We start by focusing on the last equation,
which raises the most critical issues, involving the dynamics of the intensity of jumps of
a Hawkes process. Existence and uniqueness for this equation has been proved in different
ways and several generalization of the basic results are available in the literature, see Brémaud
and Massoulié (1996) and Morariu-Patrichi and Pakkanen (2018). The easiest way to prove
existence and uniqueness of Hawkes processes is based on the cluster representation provided
by Hawkes and Oakes (1974). This is a constructive method which allows to obtain a Hawkes
process as a linear superposition ofGalton-Watson branching processes and, by this approach,
these authorswere the first to discuss existence and uniqueness of a strong solution of (A.4) for
the stationary case. The proof of existence and uniqueness, under a non-explosion condition,
for the nonstationary (and nonlinear) case can be found in Massoulié (1998) (Theorem 1,
pag.6), where the Poisson Embedding method is exploited.

An alternative proof of existence and uniqueness of solution for (A.4) can be provided
by using the well-known Dawson and Li (2012) representation of Continuous Branching
Processes with Immigration; this approach can be applied to the present case since only
positive jumps (all of the same size β) appear in the driving term. This approach has been
exploited in Bernis et al. (2021) for an equation of similar type.

As a second step we can write (A.1) and (A.2) by decomposing the correlated Wiener
processes dW x and dW v into the linear combination of two orthogonal Wiener processes in
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the following way:

d Xt =
(

μ − Vt

2
− δt − αXt

)
dt +√

Vt [ρdW 1
t +

√
1 − ρ2dW 2

t ] + J̄x d N̄t , (A.5)

dVt = kv(θv − Vt )dt + σv

√
Vt dW 2

t , (A.6)

where J̄x d N̄t denotes the non-compensated jump process. By this way, (A.6) becomes inde-
pendent of the others. The last equation, describing the volatility dynamics, is the classical
equation of the CIR type, for which existence and uniqueness of a strong solution can be
proved by applying Yamada-Watanabe theorem (see Karatzas and Shreve, 1991, Proposition
2.13, Chapter 5, p. 291). As a continuous process, on every interval [0, T ] it will be bounded.

(A.3) is anOrnstein-Uhlenbeck stochastic differential equation driven by aWiener process
and existence and uniqueness of the solution of this equation is a classical result of stochastic
calculus. As a continuous process, on every interval [0, T ] it will be bounded as well.

Finally, we can focus on (A.5), describing the log–returns dynamics. By performing an
equivalent change of measure with the following likelihood process:

Lt := E
{∫ t

0
(λs− − 1)(d Ns − ds)

}
,

the jump term appearing in (A.5) turns into a Compound Poisson process with constant
intensity. We point out that this measure change involves only the jump term, since all the
other terms are assumed to be independent on the jump part. Moreover the measure change
will establish a one-to-one mapping between the processes under the two measures. The
likelihood process Lt , under the assumption EP[eJx ] can be proved to be a true martingale
since EP[∫ t

0 λsds] < +∞,∀t ∈ [0, T ]. (A.5) is now a linear stochastic differential equation
driven by a Lévy process, and the classical result of existence and uniqueness of strong
solutions holds (a proof can be found in Applebaum (2004, Theorem 6.2.3, p. 304), since
the boundedness of both δt and Vt on the time interval [0, T ] ensures the required Lipschitz
conditions.

Appendix B. Proof of Proposition 2

We extend to the present modelling framework the results in Zhang et al. (2009) (in our case,
we have a vector Hawkes process and the process Jx d Nt driving the log-returns dynamics is
marked). Define mt := ln Mt ; then

dmt = κ1(ξ)kλ(θλ − λt )dt + κ2(ξ)dt + κ1(ξ)βd Nt + ξ Jx d Nt − 1

2
φ2

x (t)dt − φx (t)dW x
t

− ρVtφx (t)φv(t)dt − 1

2
φ2

v (t)dt − φv(t)dW v
t − 1

2
φ2

δ (t)dt − φδ(t)dW δ
t . (B.1)

By applying Itô lemma to Mt we obtain:

d Mt = Mt dmt + 1

2
Mt d[mt , mt ]c + Mt

∫ +∞

−∞
[exp (κ1(ξ)β + ξ z)

− 1 − (κ1(ξ)β + ξ z)]F(dz)d Nt ,

where [mt , mt ]c denotes the quadratic variation of the continuous component of mt and
F(·) denotes the random measure of the jumps size J and λtν(dz)dt denotes the predictable
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compensator of the process Jx d Nt . We can write the last equation in the following form:

d Mt = Mt [κ1(ξ)kλ(θλ − λt )dt + κ2(ξ)dt + (κ1(ξ)β + ξ zF(z))d Nt ]
+ Mt

[
− 1

2
φ2

x (t)dt − φx (t)dW x
t − 1

2
φ2

v (t)dt − φv(t)dW v
t

− 1

2
φ2

δ (t)dt − φδ(t)dW δ
t − φx (t)φv(t)ρVt dt

]
+ 1

2
Mt d[mt , mt ]c

+ Mt

∫ +∞

−∞
[exp (κ1(ξ)β + ξ z) − 1 − (κ1(ξ)β + ξ z)]F(dz)d Nt ,

which, after the introduction of the compensator of the jump process, can be written as

d Mt = Mtκ1(ξ)kλθλdt + Mtκ2(ξ)dt − Mtλtκ1(ξ)kλ − Mtφx (t)dW x
t − Mtφv(t)dW v

t +
− Mtφδ(t)dW δ

t − Mtλt

∫ +∞

−∞
[exp (κ1(ξ)β + ξ z) − 1]ν(dz)dt+

+ Mt

∫ +∞

−∞
[exp (κ1(ξ)β + ξ z) − 1][F(dz)d Nt − λtν(dz)dt],

since 1
2 Mt d[mt , mt ]c = [ 12φ2

x (t)+ 1
2φ

2
v (t)+ 1

2φ
2
δ (t)+φx (t)φv(t)ρVt ]Mt dt . The integralwith

respect to the compensated jumpmeasure F(dz)d Nt −λtν(dz)dt is a local martingale as the
integrals with respect to the Wiener processes dW x

t , dW v
t , dW δ

t , so Mt is a local martingale
if and only if (6) hold. In order to prove that the likelihood process dQ

dP

∣∣Ft
= Mt (ξ,φx ,φδ,φv)

M0(ξ,φx ,φδ,φv)
is

a true martingale with E
[

dQ
dP

∣∣Ft

]
= 1, we need to apply the uniform integrability criterion

proposed by Sokol and Hansen (2015), which in this case holds thanks to the non-explosion
condition (5).

By the previous construction, it follows that the moment-generating function under Q is
given by the ratio: ψQ(z) = exp (κ1(ξ)β)ψ(z+ξ)

exp (κ1(ξ)β)ψ(ξ)
, from which the result follows.

Appendix C. Proof of Proposition 3

The conditional moment generating function of λ under Q is

EQ[exp (uλ
Q

T )|Ft ] = exp (−mt )E
P

[
exp (mT + ueκ1(ξ)ψ(ξ)βλPT )|Ft

]
.

Bydenoting by f (t, u, λ, m) = EP
[
exp (mT + ueκ1(ξ)βλPT )|Ft

]
the conditional expectation,

which is a martingale by definition, by applying Itô lemma and by imposing a vanishing
condition on the drift, we obtain the following PIDE:

∂ f

∂t
+ [κ1(ξ)kλ(θλ − λ) + κ1(ξ)] ∂ f

∂m
+ kλ(θλ − λ)

∂ f

∂λ
(C.1)

+ λ

∫ +∞

−∞
[ f (t, λ + β, m + κ1β + ξ z) − f (t, λ, m)]ν(dz)]

− 1

2
[φ2

x + φ2
v + φ2

δ + 2ρV φxφv] ∂ f

∂m
+ 1

2
[φ2

x + φ2
v + φ2

δ + 2ρV φxφv] ∂
2 f

∂m2 = 0.

(C.2)

If we guess a solution of the following form:

f (t, λt , mt ) = exp [A(t, T ) + eκ1(ξ)ψ(ξ)β B(t, T )λt + C(t, T )mt ],
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with terminal conditions A(T , T ) = 0, B(T , T ) = w, C(T , T ) = 1, and denote by ε =
eκ1(ξ)βψ(ξ), we can write:

∂ f

∂t
=
[

∂ A

∂t
+ ελt

∂ B

∂t
+ mt

∂C

∂t

]
f ,

∂ f

∂m
= C f ,

∂2 f

∂m2 = C2 f ,
∂ f

∂λ
= εB f .

By inserting these expressions into (C.2) we obtain the following equation, that must be
satisfied for every value of λ, m:

∂ A

∂t
+ [εkλθλ B + kλθλκ1(ξ)C + κ2(ξ)C] + mt

∂C

∂t

+ λt

[
ε
∂ B

∂t
− κ1(ξ)kλC − εkλ B +

∫ +∞

−∞
[eCκ1(ξ)β+Bεβ+ξ z − 1]dν(z)

]

− 1

2
[φ2

x + φ2
v + φ2

δ + 2ρVtφxφv]C + 1

2
[φ2

x + φ2
v + φ2

δ + 2ρVtφxφv]C2 = 0.

We obtain C(t, T ) = 1 and

{
∂ A
∂t + εkλθλ B + kλθλκ1(ξ) + κ2(ξ) = 0

ε ∂ B
∂t − κ1(ξ)kλ − εkλ B + ∫ +∞

−∞ [eκ1(ξ)β+εBβ+ξ z − 1]dν(z) = 0.

Finally, by using conditions 6, we get:

{
∂ A
∂t = −εkλθλ B

ε ∂ B
∂t = kλεB − eεβ B + 1.

We can repeat the same computation of the conditional moment generating function of λ

under P without the introduction of the terms mt and mT and we get the following system
of ordinary differential equations:

{
∂ A
∂t = −kλθλ B
∂ B
∂t = kλ B − eβ B + 1.

By comparing the equations written under Q and P, the result follows. We can perform the
computations of the conditional moment generating functions for all the remaining state
variables Xt , Vt , δt (or alternatively of the joint conditional moment generating function),
by following the procedure outlined above for λt , both under Q and P, and, by direct com-
parison of the corresponding equations, the relations among the parameters under Q and
P can be obtained. We omit all these computations, which are tedious and straightforward.
In Appendix D an explicit solution is computed for the joint conditional moment generating
function under Q.

Appendix D. Proof of Proposition 4

We define the joint moment generating function as

�(ū, Xt , Vt , δt , λt , t, T ) = E[eu1XT +u2VT +u3δT +u4λT |Ft ],
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where ū = (u1, u2, u3, u4). For τ = T − t , by the Feynman-Kac theorem we get

− �τ +
(

−1

2
Vt − λtμ

� − δt − αXt

)
�x + 1

2
Vt�xx + kv(θv − Vt )�v+

+ 1

2
σ 2Vt�vv + ρσ Vt�xv + kδ(θδ − δt )�δ + 1

2
σ 2

δ �δδ + kλ(θλ − δt )�λ

+ λt

∫
[�(u, Xt + Jx , Vt , δt , λt + β, τ) − �(u, Xt , Vt , δt , λt , τ )] ν(d Jx ) = 0.

(D.1)

Since the model is affine we can guess a solution of the form

�(ū, Xt , Vt , δt , λt , τ ) = exp
(
(u1 + G(u1, τ ))Xt + A(u1, u2, u3, u4, τ )+

+ B(u1, u2, τ )Vt + C(u1, u3, τ )δt + D(u1, u4, τ )λt

)
.

For the jump transform we guess

�(ū, Xt + Jx , Vt , δt , λt + β, τ) − �(ū, Xt , Vt , δt , λt , τ )

= �(ū, Xt , Vt , δt , λt , τ )
[
eu1 Jx +β D(u1,u4,τ ) − 1

]
.

Now, we need the partial derivatives of �:

�τ = �(Aτ (u1, u2, u3, u4, τ ) + Bτ (u1, u2, τ )Vt + Cτ (u1, u3, τ )δt

+ Dτ (u1, u4, τ ) + Gτ (u1, τ )Xt ),

�x = �(u1 + G(u1, τ )), �v = � B(u1, u2, τ ),

�vv = � B(u1, u2, τ )2,

�xv = � [B(u1, u2, τ )(u1 + G(u1, τ ))] , �xx = �(u1 + G(u1, τ ))2,

�δ = �C(u1, u3, τ ),

�δδ = �C(u1, u3, τ )2, �λ = � D(u1, u4, τ ).

By substituting the partial derivatives into (D.1) we obtain the following expression

− (Aτ (u1, u2, u3, u4, τ ) + Bτ (u1, u2, τ )Vt + Cτ (u1, u3, τ )δt

+Dτ (u1, u4, τ ) + Gτ (u1, τ )Xt )

+ (−0.5Vt − λtμ
� − δt − αXt

)
(u1 + G(u1, τ ))

+ 1

2
Vt (u1 + G(u1, τ ))2 + kv(θv − Vt )B(u1, u2, τ )

+ 1

2
σ 2Vt B(u1, u2, τ )2 + ρσ Vt [B(u1, u2, τ )(u1 + G(u1, τ ))] + kδ(θδ − δt )C(u1, u3, τ )

+ 1

2
σ 2

δ C(u1, u3, τ )2 + kλ(θλ − δt )D(u1, u4, τ )

+ λt

∫ [
eu1 Jx +β D(u1,u4,τ ) − 1

]
ν(d Jx ) = 0.

By separating the state variables we arrive at the ODE system of the thesis.
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Appendix E. Proof of Proposition 6

By the law of iterated expectations we get

m := E[eu(Xt1+···+Xtn )|Ft0 ] = E[eu(Xt1+···+Xtn−1 )E[eu Xtn |Ftn−1 ]|Ft0 ],
then, from (11), replacing u1 = u, u2 = u3 = u4 = 0 and τ = tn − tn−1, we get

m = eA(u,0,0,0,tn−tn−1)E
[
eu(Xt1+···+Xtn−1 ) exp

(
(u + G(u, tn − tn−1))Xtn−1+

+ B(u, 0, tn − tn−1)Vtn−1 + C(u, 0, tn − tn−1)δtn−1 + D(u, 0, tn − tn−1)λtn−1

)∣∣∣Ft0

]
.

Applying again the law of iterated expectations

m = eA(u,0,0,0,tn−tn−1)E
[
eu(Xt1+···+Xtn−2 )

E
[
exp

(
(2u + G(u, tn − tn−1))Xtn−1 + +B(u, 0, tn − tn−1)Vtn−1 + C(u, 0, tn − tn−1)δtn−1

+ D(u, 0, tn − tn−1)λtn−1

)∣∣∣Ftn−2

]∣∣∣Ft0

]

we can solve the inner expectation using again (11), replacing u1 = (2u + G(u, tn − tn−1)),
u2 = B(u, 0, tn−tn−1), u3 = C(u, 0, tn−tn−1), u4 = D(u, 0, tn−tn−1) and τ = tn−1−tn−2.
Repeating these steps allows to solve all the expectations obtaining the recursive formulas
of the thesis.
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