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Generation and simplicity in the airplane
rearrangement group

Matteo Tarocchi

Abstract. We study the group TA of rearrangements of the airplane limit space introduced by Belk
and Forrest (2019). We prove that TA is generated by a copy of Thompson’s group F and a copy
of Thompson’s group T , hence it is finitely generated. Then we study the commutator subgroup
ŒTA; TA�, proving that the abelianization of TA is isomorphic to Z and that ŒTA; TA� is simple,
finitely generated and acts 2-transitively on the so-called components of the airplane limit space.
Moreover, we show that TA is contained in T and contains a natural copy of the basilica rearrange-
ment group TB studied by Belk and Forrest (2015).

1. Introduction

In the work [2], Belk and Forrest introduced the basilica rearrangement group TB of cer-
tain homeomorphisms of the basilica Julia set (depicted in Figure 11), a Thompson-like
group that generalizes Thompson’s groups F and T . These two famous groups are defined
as certain groups of orientation-preserving homeomorphisms of Œ0;1� and S1, respectively,
but they have as many equivalent definitions as there are places in which they appear. The
group T , introduced by Richard Thompson in the 1960’s in connection with his work
in logic, is the first example of a finitely presented infinite simple group, and it contains
natural isomorphic copies of F . More about Thompson’s groups can be read in [7].

Figure 1. The airplane limit space.
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In the subsequent article [3], Belk and Forrest introduced the family of rearrangement
groups of limit spaces, which includes Thompson’s groups F , T and V and the basilica
rearrangement group TB . Each of these groups is associated to a certain fractal and con-
sists of certain homeomorphisms of the fractal that permute the self-similar cells that it is
made up of.

In this paper, we study the group TA of rearrangements of the airplane limit space
depicted in Figure 1, which is homeomorphic to a fractal known as the airplane Julia set.
We prove that TA is generated by natural copies of both Thompson’s groups F and T ,
hence TA is finitely generated. Then we focus our attention on the commutator subgroup
of TA, proving in particular that it is simple, finitely generated and infinite index in TA.
More precisely, we prove the results collected in the following theorem.

Main Theorem. The group TA is finitely generated and its commutator subgroup ŒTA;TA�
is simple and finitely generated. Moreover, TA ' ŒTA; TA� Ì Z.

This result shows uncommon behavior in the world of generalized Thompson’s groups,
since TA is a finitely generated group whose commutator subgroup is infinite index and
finitely generated. In several known cases of finitely generated Thompson’s groups whose
commutator subgroup has been studied and shown to be infinite index, the commutator
subgroups have also been proved to be infinitely generated: this is, in fact, true for Thomp-
son’s group F , the Cleary golden ratio group F� [6], generalized Thompson’s groups Fn
and more generally finitely generated Stein groups over the unit interval Œ0; 1� (see [10]),
since the commutator subgroup in all these groups has support bounded away from 0 and 1
and so the standard argument to show infinite generation works out (we will use this kind
of argument in Proposition 9.1 for a special subgroup of ŒTA; TA�). One notable exception
is given by certain topological full groups associated to irreducible shifts of finite type (the
groups JG'k K discussed at the end of [9]), although these groups are much more “V -like”,
whereas TA is arguably more “T -like”.

We also show that T contains an isomorphic copy of TA, and we prove that TA includes
an unexpected natural copy of the basilica rearrangement group TB studied in [3]. More-
over, we study an infinitely generated subgroup E of the commutator subgroup of TA and
investigate its transitivity properties, which then extend to both TA and ŒTA; TA�.

This paper is organized as follows. Section 2 gives a brief introduction to Thompson’s
groups F and T . In Section 3, we recall the essential definitions of rearrangements and
limit spaces from [3]. In Section 4, we define components, rays and component paths
in the airplane limit space. In Section 5, we exhibit two important natural copies of F
and T in TA. In Section 6, we prove that TA is finitely generated. Section 7 is all about
the commutator subgroup ŒTA; TA�. In Section 8, we prove that T contains an isomorphic
copy of TA. Section 9 deals with a specific subgroup E of TA defined by its action on
the extremes of the airplane limit space. Finally, in Section 10, we exhibit a natural copy
of TB contained in TA.
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2. Thompson’s groups F and T

In this section, we briefly introduce Thompson’s groups F and T , giving their definitions
and standard sets of generators. For more details about Thompson’s group, we refer the
reader to the introductory notes [7].

Consider those partitions of Œ0; 1�, such as the one depicted in Figure 2, which can be
obtained by cutting the unit interval in half and obtaining ¹Œ0; 1

2
�; Œ1

2
; 1�º, then cutting one

or both of these two intervals in half, and so on, a finite amount of times. These partitions
are called dyadic subdivisions of Œ0; 1�, and they consist of intervals of the formh a

2b
;
aC 1

2b

i
;

which are called standard dyadic intervals. Moreover, the extremes of these intervals are
dyadic points of Œ0; 1�, which means that they belong to ZŒ1

2
� \ Œ0; 1�.
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Figure 2. An example of dyadic subdivision of Œ0; 1�.

Consider the unit circle S1 WD Œ0; 1�=¹0; 1º. By taking the quotient of dyadic subdivi-
sions of Œ0; 1� under the set ¹0; 1º, we obtain the dyadic subdivisions of S1.

A dyadic rearrangement of the unit interval Œ0; 1� (the unit circle S1) is an orientation-
preserving piecewise linear homeomorphism f W Œ0; 1� ! Œ0; 1� (S1 ! S1) that maps
linearly between the intervals of two dyadic subdivisions. Thompson’s groups F and T
are the groups under composition of the dyadic rearrangements of the unit interval Œ0; 1�
and the unit circle S1, respectively.

The elements of Thompson’s group F are specified by a pair of dyadic subdivisions
of Œ0; 1� with the same number of dyadic intervals, such as those in Figure 3. By this we
mean that the n-th interval of the first subdivision is mapped linearly into the n-th interval
of the second subdivision. In a similar fashion, the elements of Thompson’s group T are
specified by a pair of dyadic subdivisions of S1 with the same number of dyadic intervals,
along with certain colorations of the dyadic intervals for the two subdivisions, such as
those in Figure 4. By this we mean that an interval of the first subdivision is mapped
linearly to the interval of the second subdivision that has the same color (or, equivalently,
the same letter). Note that a single color (or a single letter) would suffice since the elements
of T are orientation-preserving.
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Figure 3. The generators X0 and X1 of Thompson’s group F .
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Figure 4. The three generators of Thompson’s group T .

The groupF is generated by the two elementsX0 andX1 depicted in Figure 3, while T
is generated by Y0, Y1 and Y2 depicted in Figure 4. Further properties of F and T can be
found in [1, 5, 7].

3. Limit spaces and rearrangements

Limit spaces of replacement systems and their rearrangements were introduced in [3],
which goes in much more details than we will get to do. In this section, we briefly describe
these notions, introducing the airplane limit space along the way.

3.1. Replacement systems and limit spaces

Essentially, a replacement system consists of a base graph � colored by the set of colors
Col, along with a replacement graph Rc for each color c 2 Col. Figure 5 depicts the so-
called airplane replacement system, denoted by A. We can expand the base graph � by
replacing one of its edges e by the replacement graph Rc indexed by the color c of e, as
exemplified in Figure 6. The graph resulting from this process of replacing one edge by
the appropriate replacement graph is called a simple expansion. Simple expansions can
be repeated any finite amount of times, which generate the so-called expansions of the
replacement system, such as the one in Figure 7.

Note that each edge of an expansion corresponds to the unique finite sequence of edges
“converging” from the base graph. As an example, consider the leftmost edge in Figure 7.
In order to identify this edge, one must first restrict their attention to the leftmost blue

(a)

vi

vt

vi

vt

vi

vt

vi

vt

(b)

Figure 5. The airplane replacement system A. (a) The base graph. (b) The two replacement rules:
e ! Rred if e is red, and e ! Rblue if e is blue.
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Figure 6. Two simple expansions of the base graph of the airplane replacement system A.

edge e0 of the base graph; then one expands this edge with the blue replacement graph
and restrict their attention to the leftmost edge e1 that has thus been generated; finally, one
expands this edge and consider the leftmost edge e2 generated by the last expansion, which
is precisely the edge that we were looking for. In this sense, we say that the leftmost edge
in Figure 7 corresponds to the sequence e0e1e2. For more precise definitions, we refer the
reader to [3, Section 1.1].

Figure 7. A generic expansion of the airplane replacement system A.

Consider the full expansion sequence, which is the sequence of graphs obtained by
replacing, at each step, every edge by the appropriate replacement graph, starting from the
base graph. Figure 8 shows the first graphs (except for the base graph) of the full expansion
sequence for the airplane replacement system A. If a replacement system satisfies certain
simple properties (which A satisfies), then we can define the limit space, which is essen-
tially the limit of the full expansion sequence of the replacement system [3, Definition 1.8
and Proposition 1.9]. Keeping in mind that finite sequences of edges correspond to edges
of expansions, we should consider the limit space as the set of infinite sequences of edges
modulo an equivalence relation that “glues” certain sequences together. For example, if
one expands the top red edge of the base graph and then keeps expanding (infinitely many
times) the leftmost red edge, or if one expands the left blue edge of the base graph and

Figure 8. The beginning of the full expansion sequence for A.
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then keeps expanding the rightmost blue edge, then one has found the same point with two
distinct sequences, which must then be glued together; intuitively, this point corresponds
to the second vertex of the base graph, from the left. Again, for more details we refer
to [3, Definitions 1.6 and 1.7]. In particular, the airplane limit space is the space depicted
in Figure 1. By [3, Proposition 9], this is a compact and metrizable topological space.

It is worth mentioning that our airplane limit space (and limit spaces of replacement
systems in general) is a topological space, whereas the airplane Julia set is a fractal embed-
ded in the Euclidean plane. This Julia set is only one of the infinitely many quadratic Julia
sets corresponding to the complex functions f .z/ D z2 � p for p belonging to the same
interior component of the Mandelbrot set as p D 1:755, and these are all homeomorphic
as topological spaces, although they are different as Julia sets and have different metric
properties. Here we will only be treating the airplane fractal as a topological space.

3.2. Cells and rearrangements

Intuitively, a cell �.e/ of a limit space corresponds to the edge e of some expansion,
along with everything that appears from that edge in later expansions. More precisely, if
the edge e corresponds to the finite sequence e0 : : : ek , then the cell �.e/ is the subset
of a limit space consisting of those infinite sequences of edges that start with e0 : : : ek .
For instance, Figure 9 shows examples of cells in A. Moreover, we say that the cell �.e/
is colored by c if the edge e is colored by c.

Figure 9. The two types of cells in the airplane replacement system A, distinguished by the color
of the generating edge.

There are different types of cells �.e/, distinguished by two aspects of the generating
edge e: its color and whether it is a loop or not. It is not hard to see that there is a canon-
ical homeomorphism between any two cells of the same type. More precisely, if the two
cells correspond to the edges identified by the sequences e0 : : : ek and f0 : : : fl , then the
homeomorphism maps each infinite sequence e0 : : : ekw to f0 : : : flw. A canonical home-
omorphism between two cells can essentially be thought of as a transformation that maps
the first cell “rigidly” to the second. More details are given in [3, Section 1.3]. Note that
there are only two types of cells in the airplane limit space, the red one and the blue one
(depicted in Figure 9), because no edge of any expansion is ever a loop.
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Definition 3.1. A cellular partition of the limit space X is a cover of X by finitely many
cells whose interiors are disjoint.

Note that there is a natural bijection between the set of expansions of a replacement
system and the set of cellular partitions, which consists of mapping each edge e of the
expansion to the cell �.e/.

Definition 3.2 ([3, Definition 1.14 (2)]). A homeomorphism f WX ! X is called a rear-
rangement of X if there exists a cellular partition P of X such that f restricts to a canon-
ical homeomorphism on each cell of P .

It can be proved that the rearrangements of a limit space X form a group under com-
position, called the rearrangement group of X [3, Proposition 1.16]. In particular, the
rearrangement group of the airplane limit space is denoted by TA.

Similarly to how dyadic rearrangements (the elements of Thompson’s groups) are
specified by certain pairs of dyadic subdivisions, rearrangements of a limit space are spec-
ified by certain graph isomorphisms between expansions of the replacement systems,
called graph pair diagrams [3, Section 1.4]. For example, the rearrangement of the air-
plane limit space depicted in Figure 10 is specified by the graph isomorphism depicted in
the same figure, where the colors mean that each edge of the domain graph is mapped to
the edge of the same color in the range graph.

A
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E A

B
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D

E

A
B

C

D

E A

B

C
D

E

Figure 10. A rearrangement of the airplane limit space, along with a graph pair diagram that repre-
sents it.

Graph pair diagrams can be expanded by expanding an edge in the domain graph and
its image in the range graph, resulting in a graph pair diagram that represents the same
rearrangements. It is important to note that, for each rearrangement, there exists a unique
reduced graph pair diagram, where reduced means that it is not the result of an expansion
of any other graph pair diagram.

One may note that the graph isomorphism depicted in Figure 10 is not valid because
the orientation of the green edge is reversed. In truth, it is not hard to see that expanding
that edge in both domain and range graphs provides a valid graph pair diagram. This holds
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in general for blue edges, because there is a graph automorphism of the blue replacement
graph that switches the initial and terminal vertices, so the expansion of a blue edge is
independent of its orientation. In practice, this means that we do not need to keep track
of the orientation of blue edges for graph pair diagrams. However, this is not true for red
edges.

3.3. The rearrangement group of the basilica limit space

As another example of rearrangement group, consider the basilica limit space (Figure 11)
resulting from the (monochromatic) basilica replacement system (Figure 12), whose rear-
rangement group TB is the object of the study of Belk and Forrest in [2]. In particular,
Belk and Forrest proved that TB is generated by the four elements depicted in Figure 13,
and that the commutator subgroup ŒTB ; TB � is simple. In Section 10, we will prove that TA
contains a natural copy of this group TB .

Figure 11. The basilica limit space B .

(a)

vi vt vi vt

(b)

Figure 12. The basilica replacement system. (a) The base graph B1. (b) The replacement rule
e ! R.

A A A A

A A A A

Figure 13. The four generators of the basilica rearrangement group TB .
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4. The airplane limit space and its rearrangements

In this section, we give a few definitions that are useful to work with the airplane limit
space, and in Section 4.3 we exhibit five important elements of TA that will later turn out
to generate the entire group.

4.1. Components of the airplane limit space

Consider the airplane replacement system depicted in Figure 5. Note that each expansion
of the base graph is a planar graph, thus it can be embedded in the Euclidean plane. When
a blue edge is expanded, two new red edges are generated, and this pair of red edges
encloses a connected region of the plane. These regions appear in each subsequent graph
of the full expansion sequence, and then in the limit space, as exemplified in Figure 14.
We call component any of these regions. The component colored in blue in Figure 14 is
called central component and is denoted by C0. It is not hard to see that elements of TA
map components to components.

C0

C1

C2

C3

Figure 14. Examples of components of the airplane limit space.

Observe that the boundary @C of any component C is homeomorphic to

S1 D Œ0; 2��=¹0; 2�º;

and there is a natural homeomorphism under which the dyadic angles of S1 (i.e., ele-
ments of 2�ZŒ1

2
�=¹0; 2�º � S1) correspond to vertices between red edges. We will then

refer to points of @C as angles of S1 under this homeomorphism, under counterclockwise
orientation.

4.2. Rays of the airplane limit space

We have already seen what blue cells look like in Figure 9. We say that a blue cell is
a primary blue cell if it is maximal according to the set inclusion order. Note that these
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cells are adjacent to the central component, and that every other blue cell is included in
exactly one of the primary blue cells.

Now, consider a blue edge e. The corresponding cell must depart from a certain com-
ponent C , and it identifies a segment departing perpendicularly at some dyadic angle
of @C . When expanding e, the segment is divided into three parts: the central one is split
into two red edges that make up the boundary of a component, and the two other parts
result in new blue edges that lie on the segment. By expanding these blue edges, each half
of the segment is broken again in a similar fashion. Expanding the red edges generates
new blue edges departing from the associated component. Then the blue cell �.e/ is made
up of the segment identified by e, after it has been split into the boundaries of the infinitely
many components that lie on that segment, along with the infinitely many other blue cells
departing from each of those components.

Consider the blue cell �.e/ and subtract from it its two extremes and all of the blue
cells that it includes and that do not lie on the segment. The resulting set is what we call
an interval, and the subset denoted by I in Figure 10 is an example. Note that intervals
are quite similar to blue cells, but not the same: each interval corresponds to the segment
associated to some blue edge e, after it has been split into the boundaries of the infinitely
many components that lie on it, but it does not include anything else that departs from
these components. In this sense, intervals follow a unique direction, while blue cells also
expand from many points of the boundaries of the included components into new rays.

What we are really interested in are those intervals that are maximal with respect to
the set inclusion order, which means that they represent an entire segment departing from
a component. We call these rays, and if a ray departs from the central component, we
call it a central ray. Figure 15 shows two examples of rays, R1 and R2, of which R1 is
a central ray. Note that, differently from intervals, each ray is uniquely determined by the
component it departs from along with the angle it departs at. This idea will be explored
further in Section 4.4.

R1

I

R2

Figure 15. Examples of an interval, highlighted in green, and two rays. The blue ray is central, while
the red one is not.
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We also define the right and left horizontal rays as the central rays departing from the
central component C0 with angles 0 and � , respectively, and denote the right one by R0.
We then define Hor (which stands for horizon) as the union of the two horizontal rays
and the boundary of the central component. Hor and C0 will have great importance in the
study of TA, as described in the next section.

Finally, given two components, we say that they are related if one lies on a ray
departing from the other. For example, in Figure 14 the component C2 is related to both
components C3 (small on the right) and C0, but these last two are not themselves related.
Instead, the component C1 (small on the left) is not related to any of the components
colored in this picture.

4.3. The elements of TA

Figure 16 depicts five specific elements of TA: ˛, ˇ,  , ı and ". In this figure, gray dot-
ted lines show the action of these rearrangements. In Section 6, we will show that these
elements generate the entire group TA.

A ˛ A

A ˇ A

A  A

A ı A

A " A

Figure 16. The five generators of TA.

Those who are familiar with the basilica rearrangement group TB studied in [2] might
have noted that the first four of the five rearrangements we just introduced are very sim-
ilar to the four rearrangements of the basilica depicted in Figure 13, which generate the
entire TB ; this idea will be discussed in Section 10. The element " instead does not corre-
spond to any element of TB ; we will see in Section 5.2 that it allows TA to act on rays as
Thompson’s group F does on .0; 1/.
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4.4. Component paths

Consider the airplane replacement system A (Figure 5). We ignore the direction of the
edges in the replacement system and give a new orientation as described below. Also, we
identify each angle 2�k with the number k, which is the point of S1 D Œ0; 1�=¹0; 1º that
corresponds to the angle.

Note that at each step of the full expansion sequence, rays are generated by halving
red edges and components are generated by halving blue edges. This means that rays
departing from a fixed component correspond to certain dyadic numbers, and the same
holds for components lying on a fixed ray. In particular, we identify each ray with the unit
interval .0; 1/, where 0 corresponds to the inner extreme, and we identify the border of
each component with S1, where the angle 0 corresponds to the direction that needs to be
taken to travel back towards the central component (or the right direction if the component
is the central one itself).

LetC be the component colored in green in Figure 17. We can build a “path” of a finite
amount of pairwise related components starting from the central one and ending at C , and
it is unique if we assume that it is minimal. This path is depicted in red in Figure 17, and
it is specified by the following indications:

(1) departing from the central component at angle 1
2

, which identifies a ray;

(2) traveling on that ray for 1
2

of its length, which identifies a component;

(3) departing from that component at angle 3
4

, which identifies a new ray;

(4) traveling on that ray for 1
2

of its length, which identifies the component C .

We then say that this path is identified by ..1
2
; 1
2
/; .3

4
; 1
2
//.

Figure 17. The component path ..12 ;
1
2 /; .

3
4 ;
1
2 //, highlighted in red, and the component that it

identifies, highlighted in green.

For each component C , there is a unique minimal path, built like the one we just
described, that goes from the central component C0 to C . This path is identified by the
list of components at which the path takes a turn, which is why we call such paths by the
name component paths. Note that the empty path represents the central component.
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When citing a component path, we refer to the component of A that it identifies. We
can represent the component path as the list .C1; C2; : : : ; Cn/ of components at which the
component path takes a turn. We can also use certain finite sequences of pairs of dyadic
numbers: if ..�1; l1/; .�2; l2/; : : : ; .�n; ln// is such a sequence, then �1 identifies the ray
that departs from the central component at angle 2��1, while l1 identifies the component
lying on the ray previously found that corresponds to the dyadic number l1; the following
pairs then work in the same way starting from the new component.

We also define the depth of a component in the airplane limit space to be the number
of non-central components in its component path, including itself unless it is the central
component. Note that if .C1;C2; : : : ;Cn/ or ..�1; l1/; .�2; l2/; : : : ; .�n; ln// is a component
path for the component C D Cn, then n equals its depth.

5. Copies of Thompson’s groups F and T in TA

In this section, we exhibit two natural copies of Thompson’s groups T and F contained
in TA that will have great importance in studying the action of TA.

We say that a rearrangement f extends canonically on a cell �.e/ if it restricts to
a canonical homeomorphism on �.e/, which intuitively means that f maps �.e/ “rigidly”
to some other cell of the same type.

5.1. A copy of Thompson’s group T in TA

Definition 5.1. The rigid stabilizer ofC0, denoted by rist.C0/, is the group of all elements
of TA that map the component C0 to itself and that extend canonically on the blue cells
that depart from C0.

It is clear that this is a subgroup of TA. The name “rigid” comes from the fact that
an element of rist.C0/ is determined entirely by its action on @C0. Also note that we can
equivalently define rist.C0/ as the group of all elements of TA whose reduced graph pair
diagrams have no component other that C0.

Theorem 5.2. We have rist.C0/ D hˇ; ; ıi ' T , and rist.C0/ acts on @C0 as T does
on S1. In particular, its action is 2-transitive on the set of central rays.

The proof of this theorem is essentially the same as the ones of [2, Theorem 6.3 and
Corollary 6.4], with the proper definitions. It is important to note that ˇ,  and ı (Fig-
ure 16) act on @C0 exactly as the three generators Y0, Y1 and Y2 of Thompson’s group T
(Figure 4) act on S1.

5.2. A copy of Thompson’s group F in TA

Definition 5.3. The rigid stabilizer of Hor, denoted by rist.Hor/, is the group of all ele-
ments of TA that map the horizon Hor to itself and that extend canonically on the red cells
that make up components lying on Hor.
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It is clear that this is a subgroup of TA. The name “rigid” comes from the fact that an
element of rist.Hor/ is determined entirely by its action on Hor. Also note that we can
equivalently define rist.Hor/ as the group of all elements of TA whose reduced graph pair
diagrams have no ray other than the two horizontal ones.

Theorem 5.4. We have rist.Hor/ D h˛; "i ' F , and rist.Hor/ acts on Hor as F does on
Œ0; 1�. In particular, its action is transitive on the set of components lying on the horizon.

The proof of this theorem is very similar to the one of Theorem 5.2, itself similar to
the ones of [2, Theorem 6.3 and Corollary 6.4]. Note that the elements ˛ and " (Figure 16)
act on Hor exactly as the two generators X0 and X1 of Thompson’s group F (Figure 3)
act on Œ0; 1�.

In a similar manner, we can study the subgroup h"; "˛
�1
i of rist.Hor/, which we denote

by rist.R0/. The two generators act on the right horizontal ray R0 as the generators X0
and X1 of Thompson’s group F act on Œ0; 1�, so we obtain the following assertion.

Proposition 5.5. We have rist.R0/ ' F , and rist.R0/ acts on R0 as F does on Œ0; 1�.
In particular, its action is transitive on the set of components lying on R0.

We will use the subgroup rist.R0/ in the proofs of Lemma 6.1 and Theorem 7.12.

6. Generators of TA

In this section, we prove that ˛, ˇ,  , ı and " (depicted in Figure 16) generate TA.

Lemma 6.1. The group h˛; ˇ; ; ı; "i acts transitively on the set of components of A.

Proof. Let Cn be any component of depth n. We will show that Cn can be mapped to the
central component by an element of h˛; ˇ; ; ı; "i by induction on n.

If n D 0, then Cn is itself the central component, and we are done. Otherwise, Cn is
connected to the central component C0 by a component path .C0; C1; : : : ; Cn/. Consider
the component C1, which is related to the central component, thus it lies on some central
ray R. Because of Theorem 5.2, there exists an element f 2 hˇ; ; ıi for which f .R/ is
the right horizontal ray. Then f .C1/ must be a component lying on the right horizontal
ray and so, because of Proposition 5.5, there is a g 2 h"; "˛

�1
i such that .g ı f /.C1/ is

the component in the middle of the right horizontal ray. Then clearly .˛�1 ı g ı f /.C1/
is the central component C0.

It is easy to see that ..˛�1 ı g ı f /.C1/; : : : ; .˛�1 ı g ı f /.Cn// is a component path,
hence .˛�1 ı g ı f /.Cn/ has depth n� 1. By our induction hypothesis, .˛�1 ı g ı f /.Cn/
can be mapped to C0 by h˛; ˇ; ; ı; "i, thus Cn can as well.

We will now prove that these five elements generate the entire TA. Recall that if f
and g are rearrangements, then in order to compute their composition f ı g, we need to
expand both their graph pair diagrams so that the range graph for g is the same as the
domain graph for f .
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Theorem 6.2. The group TA is generated by the elements ¹˛; ˇ; ; ı; "º.

Proof. Let f 2 TA. By the previous lemma, up to replacing f by g ı f for a suitable
g 2 h˛;ˇ; ; ı; "i, we may assume that f .C0/D C0. We must show that f 2 h˛;ˇ; ; ı; "i.
We proceed by induction on the number n of non-central components in the reduced graph
pair diagram for f .

The base graph for the airplane does not contain any non-central component, so the
base case is n D 0. If n D 0, then f 2 rist.C0/, which is generated by ˇ,  and ı because
of Theorem 5.2; therefore, f belongs to h˛; ˇ; ; ı; "i.

Suppose that n � 1. Since f .C0/ D C0, the action of f permutes the points of depar-
ture of central rays from C0, which correspond precisely to dyadic points of S1. Because
of Theorem 5.2, there exists an element g 2 hˇ; ; ıi that permutes the points of depar-
ture of the central rays in the same way as f . Then the composition h WD g�1 ı f fixes
each of these points. It suffices to prove that h 2 h˛; ˇ; ; ı; "i.

Since g�1 does not have any non-central component in the domain graph for its
reduced graph pair diagram, h has exactly n non-central components in its reduced graph
pair diagram. Now, call p1; : : : ; pm the points of departure of the central rays from C0 in
the reduced graph pair diagram for h. The right horizontal ray R0 appears in every expan-
sion of A, so we can assume that p1 is the point of adjacency between C0 and R0. Note
that the component path for each non-central component travels through one and only one
of these pi . We now distinguish two cases.

Case 1: Suppose that the reduced graph pair diagram for h has non-central components
with component paths that travel through more than one pi (as in Figure 18). Then we can
express h as a composition h1 ı � � � ı hm, where each hi has a graph pair diagram obtained
from the reduced graph pair diagram for h by removing all non-central components except
for those with component paths that travel through pi (along with every ray that departs
from the components removed this way). For example, Figure 19 depicts h1 and h2
for the h in Figure 18. Then each hi must have fewer than n non-central components.
By induction, it follows that each hi 2 h˛;ˇ;;ı;"i, and therefore h2 h˛;ˇ;;ı;"i as well.

Case 2: Suppose that all non-central components in the reduced graph pair diagram for h
have component paths that travel through the same pi . Because of Theorem 5.2, there
exists a � 2 hˇ; ; ıi such that �.p1/D pi . Let k WD h� , and note that we can conjugate h
by � without expanding the blue cells involved in the action of h, so k has at most n

h

Figure 18. An example for case 1 of the proof of Theorem 6.2. The two colored points represent p1
and p2.
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h1

h2

Figure 19. The element h in Figure 18 can be written as h1 ı h2 since it has two center-adjacent
components.

non-central components. Moreover, all the non-central components of the reduced graph
pair diagram for k have component paths that travel through p1. It suffices to prove that
k 2 h˛; ˇ; ; ı; "i.

Consider the reduced graph pair diagram for k, which is sketched in Figure 20. Both
the domain and the range graphs only have non-central components in the right primary
blue cell. Let CD be the component on the right horizontal ray that is closest to C0 in the
domain graph, and let CR be the component in the range graph that is the closest to C0,
which must be k.CD/. Note that CD D ..0; 1

2d
// and CR D ..0; 1

2r
// for some d � 1

and r � 1. Therefore, "d�1.CD/D ..0; 12 // and "r�1.CR/D ..0; 12 //, so both the domain
and the range graphs of the reduced graph pair diagram for l WD "r�1 ı k ı "�dC1 have
..0; 1

2
// as the closest component to C0 on the right horizontal ray. Hence both domain

and range graphs in the reduced graph pair diagram for l are such that no component lies
on the inner half ofR0, as shown in Figure 20, and the number of non-central components
in the reduced graph pair diagram for l is the same as the one for k. It suffices to prove
that l 2 h˛; ˇ; ; ı; "i.

We can now conjugate l by ˛ without performing any expansion of the cells involved
in the action of l . The resulting graph pair diagram for l˛ D ˛�1 ı l ı ˛ is shown in Fig-
ure 20: it is similar to the one of l , but the action is shifted to the left, and the central

CD k CR

CD
l

CR

CD
l˛

CR

CD

Figure 20. Sketches of k, l and l˛ for case 2 of the proof of Theorem 6.2. Everything drawn in black
is fixed pointwise, while everything colored may not be; rays may depart from red components, and
components may lie on dashed red lines.
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component in both the domain and range graphs for l ends up in ..1
2
; 1
2
// in the graphs

for l˛ , with no ray departing from it, so it can then be reduced. Then l˛ has n � 1 or less
non-central components, so by induction we have that l˛ belongs to h˛; ˇ; ; ı; "i. Thus l
does too.

Remark 6.3. Recall from Theorems 5.2 and 5.4 that rist.C0/ D hˇ; ; ıi and rist.Hor/ D
h˛; "i. Therefore, as a consequence of Theorem 6.2, we have that

TA D hrist.C0/; rist.Hor/i;

where rist.C0/ and rist.Hor/ are arguably the two “most natural” copies of Thompson’s
groups T and F in TA, respectively.

Question 6.4. We have just proved that TA is finitely generated. Is TA also finitely pre-
sented? We recall that TB is not, as proved by Witzel and Zaremsky in [11].

7. The commutator subgroup of TA

In this section, we study the commutator subgroup of TA. We first find a characterization
of the rearrangements of ŒTA; TA� in terms of their action on the extremities of the airplane,
and we find an infinite generating set along the way. Then we prove that ŒTA; TA� is simple,
and finally we find a finite generating set for ŒTA; TA�.

Remark 7.1. It is easy to see that ŒTA; TA� is quite large. Indeed,

(1) ŒTA; TA� � rist.C0/ since rist.C0/ ' T (Theorem 5.2) and T D ŒT; T �.

(2) ŒTA; TA� � Œrist.Hor/; rist.Hor/�, which is the group of those rearrangements of
rist.Hor/ that act trivially at the left and right extremes of Hor, since rist.Hor/'F
(Theorem 5.4).

Since rist.C0/ D hˇ; ; ıi, we have that ˇ; ; ı 2 ŒTA; TA�. A direct computation shows
that ˛ D Œ"; ı� ı Œ"�1; ˛�2�, so the commutator subgroup of TA also contains ˛. Hence, we
already know that ŒTA; TA� contains four out of five generators of TA. We will see along
the way that it does not contain ".

7.1. A characterization of the commutator subgroup

Let E be the set of all external extremes of rays in the airplane limit space. Note that
all rearrangements f 2 TA act on the set E by permutation. We now define a concept of
derivative of a rearrangement of A around an extreme, which gives an idea of how much
the rearrangement dilates or shrinks the extremities of A compared to the length of the
respective ray. We then study the product of all these derivatives, which gives a character-
ization for the commutator subgroup of TA.

Let e be a blue edge of an expansion of the airplane replacement system. Note that e
lies on a unique rayR, and it corresponds to a portion ofR: it can be half of it, a quarter, an
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Figure 21. Examples of lengths of blue edges: green, red and blue ones have lengths 1, 12 and 1
4 ,

respectively.

eighth, etc. More precisely, it can be 1

2k
for any k 2N. We call length of e this number 1

2k
.

Figure 21 depicts a few examples. Additionally, if �.e/ is the blue cell generated by the
blue edge e, we define the length of �.e/ to be the same as the length of e.

Let p 2 E and f 2 TA. Consider the reduced graph pair diagram for f . If p does not
appear in the domain graph, we define Dp.f / to be 1. Otherwise, p corresponds to the
extremity of some blue edge ep in the graph. Then f .ep/ is the blue edge that appears
in the range graph whose extreme is f .p/. Let 1

2d
be the length of ep and 1

2r
the length

of f .ep/. We define the extremal derivative of f in p as the ratio of the length of f .ep/
to the length of ep , which is

Dp.f / WD 2
r�d :

This represents how much the action of f dilates or shrinks the extremity around p when
compared to the ray of which p and f .p/ are the external extremes.

Finally, we define the global extremal derivative of an element f of TA as the product
of all its extremal derivatives, which is

D.f / WD
Y
p2E

Dp.f /:

Note that Dp.f / equals 1 for each extreme p that does not appear in the domain graph
of the reduced graph pair diagram for f , so this product only has a finite amount of non-
trivial factors.

Now, note that Dp.f ı g/ D Dg.p/.f / �Dp.g/ for all f; g 2 TA and for all p 2 E .
Therefore, since g permutes the set E , we have that

D.f ı g/ D D.f / �D.g/:

Hence, the map DW TA ! h2iQ� is a group morphism, where h2iQ� is the multiplicative
group of all the integer powers of 2, which is an infinite cyclic group.

Theorem 7.2. We have ŒTA; TA� D Ker.D/.
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Proof. Note that D."�k/ D 2k for each integer k, so D is surjective. Hence,

TA=Ker.D/ ' h2iQ� ;

which is abelian, and so ŒTA;TA��Ker.D/. We only need to prove that Ker.D/� ŒTA;TA�.
Let f 2Ker.D/. Since TA D h˛;ˇ;; ı; "i, the rearrangement f can be written as f1 ı

f2 : : : fk , where each fi is a generator or an inverse of one. SinceD.f /D 1 andD.˛/D
D.ˇ/ D D./ D D.ı/ D 1, the number of "’s among the fi must be equal to the number
of "�1’s. Then f is the product of elements chosen from the set ¹˛"

j
;ˇ"

j
;"

j
; ı"

j
j j 2Zº.

Since ˛, ˇ,  and ı all belong to the commutator subgroup (Remark 7.1) and ŒTA; TA�
is normal in TA, these elements all belong to ŒTA; TA�. Therefore, f 2 ŒTA; TA�, and so
Ker.D/ D ŒTA; TA�.

As a consequence, we can immediately find an infinite generating set.

Corollary 7.3. We have ŒTA; TA� D hˇ; ; ˛"
k
; ı"

k
j k 2 Zi, which is the normal closure

of the subgroup H WD h˛; ˇ; ; ıi in TA.

Proof. As seen in the proof of the previous theorem, Ker.D/Dh˛"
j
;ˇ"

j
;"

j
; ı"

j
j j 2 Zi,

which is clearly the normal closure of H .
Since the supports of both ˇ and  have empty intersections with the support of ",

we have that ˇ" D ˇ and " D  , so ŒTA; TA� D Ker.D/ D hˇ; ; ˛"
k
; ı"

k
j k 2 Zi.

Since DWTA ! h2iQ� is surjective and h2iQ� is an infinite cyclic group, applying the
first isomorphism theorem to D immediately gives us the following result.

Corollary 7.4. The abelianization of TA is an infinite cyclic group. In particular, the index
of ŒTA; TA� in TA is infinite.

Finally, note that ŒTA; TA� \ h"i D ; because D."k/ D 1, k D 0 while ŒTA; TA� D
Ker.D/, and that ŒTA; TA�h"i contains the five generators of TA. Then we obtain the fol-
lowing assertion.

Corollary 7.5. We have TA D ŒTA; TA� Ì h"i.

7.2. The simplicity of the commutator subgroup

We start by noting certain transitivity properties of ŒTA; TA� that we will use later.

Lemma 7.6. The commutator subgroup ŒTA;TA� acts transitively on the set of components
of A.

The proof of this follows the same outline of the proof of Lemma 6.1. By induction
on the depth n of a component Cn whose component path is .C0; C1; : : : ; Cn/, we find
f 2 hˇ; ; ıi � ŒTA; TA� such that f .C1/ lies on the right horizontal ray R0. Then, since
rist.Hor/ ' F and ŒF; F � is transitive on the set of dyadic points of .0; 1/, we find g 2
Œrist.Hor/; rist.Hor/� � ŒTA; TA� such that g ı f .C1/ D C0, and our induction hypothesis
does the rest.
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As a consequence of this lemma, we have the following assertion.

Corollary 7.7. The commutator subgroup ŒTA; TA� acts transitively on the set of adja-
cency points between a red and a blue cell.

The proof consists of showing that an adjacency point between a red and a blue cell
can be mapped to such a point lying on @C0, which is easy using the previous lemma and
the transitivity of rist.C0/ � ŒTA; TA� (Theorem 5.2).

We will find additional transitivity properties of ŒTA; TA� in Section 9. Now, with the
aid of this corollary, we are ready to prove the simplicity of ŒTA; TA�.

Theorem 7.8. The commutator subgroup ŒTA; TA� is simple.

This follows immediately from the following more general result.

Proposition 7.9. The commutator subgroup ŒTA; TA� is the only non-trivial proper sub-
group of TA that is normalized by ŒTA; TA�.

Proof. This proof shares the overall structure with the proof of [2, Theorem 8.4], which
itself follows the basic outline for the proof of the simplicity of T , which in turn is based
on the work [8] of Epstein on the simplicity of groups of diffeomorphisms. In particular,
we use Epstein’s double commutator trick, together with an argument that TA is generated
by elements of small support.

LetN be a non-trivial subgroup of TA that is normalized by ŒTA; TA�. We wish to prove
that N D ŒTA; TA�, and we will do so by proving that N contains each of the generators
of the commutator subgroup exhibited in Corollary 7.3.

Let f be a non-trivial element of N . There must exist a small enough cell � of the
airplane limit space such that � and f .�/ are disjoint. Then, for all subsets I of �, we
have that I and f .I / are disjoint. We will now prove a property that holds for every
such I ; we denote this property by (?), and we will later use it twice.

Consider any two elements g and h of ŒTA; TA� with support contained in I . The
conjugate f ı g�1 ı f �1 has support in f .I /, so Œg; f �D g ı f ı g�1 ı f �1 has support
in I [ f .I / and agrees with g on I . Since h has support in I , it follows that

ŒŒg; f �; h� D Œg; h�:

Since N is normalized by ŒTA; TA� by hypothesis, the double commutator on the left must
be an element of N , so we have proved that

Œg; h� 2 N for all g; h 2 ŒTA; TA� with support in I: (?)

We will use property (?) for two distinct choices of the subset I of �. For each of these
choices, we will conjugate (?) by some properly chosen k�1 2 ŒTA; TA�; then, since N is
normalized by ŒTA; TA�, we will have that

Œg; h� 2 N for all g; h 2 ŒTA; TA� with support in k.I /:
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C0

C
p

�

Figure 22. An example of the first choice of I , which is the union of the blue cell and the two red
ones. The figure is “zoomed in” on the right horizontal ray for better clarity.

First choice of I ��. Consider a component C that is contained in�. Let I be the union
of the blue cell that departs from C at angle 1

2
and the two maximal red cells that make up

the boundary of C . Call p the point of @C located at angle 0. Figure 22 shows an example
of such I and p.

Now, because of Corollary 7.7, there exists an element k 2 ŒTA; TA� that maps p to the
point of adjacency between the central component and the left horizontal ray. Then k.I /
must be the union of the right horizontal blue cell and the two maximal red cells that make
up the boundary of C0. We denote this set by K.

Note that I is included in �, so the property (?) holds. Then, conjugating (?) by k�1,
we find that

Œg; h� 2 N for all g; h 2 ŒTA; TA� with support in K:

Next recall that rist.C0/ � ŒTA; TA� (Remark 7.1), so Œg; h� 2 N for all g; h 2 rist.C0/
with support in K. Also recall from Theorem 5.2 that rist.C0/ is isomorphic to Thomp-
son’s group T ; under this isomorphism, the set of those elements of rist.C0/whose support
is included in K corresponds to the stabilizer of 1

2
in T , which is a copy of Thompson’s

group F . Since F is not abelian, there exist at least two elements g;h 2 rist.C0/ with sup-
port inK for which Œg; h� is non-trivial. Then Œg; h� belongs to bothN and rist.C0/, so the
intersection N \ rist.C0/ is a non-trivial normal subgroup of rist.C0/. But rist.C0/ ' T
and T is simple, so N \ rist.C0/ D rist.C0/, and therefore rist.C0/ � N .

Second choice of I � �. Let C be a component that is contained in�. Let R1 and R2 be
distinct rays that depart from C , and let p1 be the point of adjacency between C and R1,
and p2 between C and R2. Call I the union of @C , �.R1/ and �.R2/, where �.Ri / are
the blue cells associated with the rays Ri . Figure 23 shows an example of I , p1 and p2.

Because of Corollary 7.7, there exists an element k1 2 ŒTA; TA� that maps p1 to the
point of adjacency between the central component and the right horizontal ray. Then
k1.@C / D @C0, k1.�.R1// D �.R0/, k1.�.R2// is some blue cell adjacent to C0, and
so k1.I / is the union of these three sets.

Now, since T acts 2-transitively on the set of dyadic points of S1 and because of
Theorem 5.2, there exists an element k2 2 rist.C0/ that fixes k1.p1/ and maps k1.p2/ to
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C0

C
p1
p2�

Figure 23. An example of the second choice of I , which is the union of @C and two blue cells
departing from C . The figure is “zoomed in” on the right horizontal ray for better clarity.

the point of adjacency between the central component and the left horizontal ray. Then
k2 ı k1.I / is the union of @C0 and the two horizontal central blue cells, and we denote
this set by K. Also, since rist.C0/ � ŒTA; TA� (Remark 7.1), we have that k2 2 ŒTA; TA�,
therefore k2 ı k1 2 ŒTA; TA�.

Note that I is included in �, so the property (?) holds. Then, conjugating (?) by
k2 ı k1, we find that

Œg; h� 2 N for all g; h 2 ŒTA; TA� with support in K:

Next, recall from Theorem 5.4 that the group rist.Hor/ is isomorphic to Thompson’s
group F . Under this isomorphism, the set of those elements of rist.Hor/ whose support
is included in K corresponds to the stabilizer of 1

2
. Since 1

2
corresponds to the central

component, this means exactly that

Œg; h� 2 N for all g; h 2 S.C0/; (�)

where S.C0/ WD stabŒrist.Hor/;rist.Hor/�.C0/ is the group consisting of those elements of
Œrist.Hor/; rist.Hor/� that fix the component C0.

Now, since ŒF; F � is transitive on the set of dyadic points of .0; 1/, for each compo-
nent C 0 lying on Hor, there exists an element l of Œrist.Hor/; rist.Hor/� � ŒTA; TA� such
that l.C 0/ D C0. Conjugating the group S.C0/ by l , we clearly obtain exactly the group
S.C 0/ WD stabŒrist.Hor/;rist.Hor/�.C

0/ consisting of those elements of Œrist.Hor/; rist.Hor/� that
fixC 0. Since we can do this for each componentC 0 lying on Hor, conjugating (�) by each l
found this way, we have that

Œg; h� 2 N for all g; h 2 S.C 0/; for all C 0 lying on Hor: (#)

We now prove that Œrist.Hor/; rist.Hor/� � N . First note that, since rist.Hor/ ' F

and ŒF; F � D F 00 (where F 00 denotes the group ŒŒF; F �; ŒF; F ��), it suffices to prove
that rist.Hor/00 � N . By definition, rist.Hor/00 is generated by the elements Œg; h� for
g; h 2 Œrist.Hor/; rist.Hor/�, so we only need to prove that these elements belong to N .
If g; h 2 Œrist.Hor/; rist.Hor/�, then they both act trivially around the extremes of Hor,
so the intersection of their supports cannot be the entire Hor and there must be some
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“external enough” component C 0 lying on Hor that is fixed by both g and h, which means
that g; h 2 S.C 0/. Therefore, because of (#), their commutator Œg; h� belongs to N . So
Œrist.Hor/; rist.Hor/� � N .

So far we have shown that

(1) rist.C0/ D hˇ; ; ıi � N ;

(2) Œrist.Hor/; rist.Hor/� D Œh˛; "i; h˛; "i� � N .

With this in mind, we now show that N contains each element of the set ¹ˇ; ; ˛"
k
; ı"

k
º,

which generates ŒTA; TA� as seen in Corollary 7.3.
Since rist.C0/ � N , we have that ˇ,  and ı belong toN . Consider ı"

k
for any k 2 Z:

with a direct computation, we note that ı ı ˇ has order three and ı D ı�1, so ı D ı�1 D
ˇ ı ı ı ˇ ı ı ı ˇ, and then ı"

k
D .ˇ ı ı ı ˇ ı ı ı ˇ/"

k
. Since ˇ and "k have disjoint

supports, we have that ˇ"
k
D ˇ. Therefore, ı"

k
D ˇ ı ı"

k
ı ˇ ı ı"

k
ı ˇ D ˇ ı ˇı

"k

ı ˇ,
which belongs to N because ˇ 2 N and ı"

k
2 ŒTA; TA� D N . Then ı"

k
2 N for all k 2 Z,

and we only need to prove that ˛"
k
2 N .

Recall that, as noted in Remark 7.1, ˛ D Œ"; ı� ı Œ"�1; ˛�2�, which can be seen with
a direct computation. Note that

Œ"; ı� D ı"
�1

ı ı 2 N and Œ"�1; ˛�2� 2 Œrist.Hor/; rist.Hor/� � N;

and so ˛ 2 N . Finally, note that ˛"
k
D ˛ ı Œ˛�1; "�k � 2 ˛ Œrist.Hor/; rist.Hor/� � N for

all k 2 Z.
Therefore, ˇ,  , ı"

k
and ˛"

k
belong to N for all k 2 Z, so ŒTA; TA� � N , which is

what we needed to prove.

Question 7.10. Having just proved that ŒTA; TA� is finitely generated, it is natural to ask if
it is finitely presented or if it is not, as is the case for TB and ŒTB ; TB � (see [11]). We have
not investigated this question when writing this paper.

7.3. The commutator subgroup is finitely generated

In this subsection, we exhibit a finite set of generators for the commutator subgroup
ŒTA; TA�.

Remark 7.11. It is easy to prove that Œı; "�k D Œı; "k � using the fact that "�1 and "ı have
disjoint supports.

Theorem 7.12. We have ŒTA; TA� D h˛; ˇ; ; ı; Œı; "�; Œ"�1; "�1 ı ˛�i.

Proof. Consider G WD h˛; ˇ; ; ı; Œı; "�; Œ"�1; "�1 ı ˛�i, which is clearly a subgroup of
ŒTA; TA�. We will show that G is the entire commutator subgroup of TA by proving that it
contains the infinite generating set ¹ˇ; ; ˛"

k
; ı"

k
º of Corollary 7.3.

Clearly, both ˇ and  belong to G. Also note that thanks to Remark 7.11, we have
ı"
k
D ı ı Œı; "�k � D ı ı Œı; "��k , which belongs to G. Hence, we only need to prove that

˛"
k
2 G for all k 2 Z.
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Figure 24. The two generators of F0. (a) The element Œ"�1; "�1 ı ˛�. The left horizontal ray is fixed,
hence it is omitted. (b) The element Œı; "�.

Let F0 WD hŒı; "�; Œ"�1; "�1 ı ˛�i � G. The generators are depicted in Figure 24. It is
not hard to see that F0 acts on R0 as Thompson’s group F does on Œ0; 1�, which is also the
same way rist.R0/ acts on R0 (Proposition 5.5). We remark that the overall action of F0
on the airplane limit space is not trivial outside of R0.

Let r; l 2 E be the external extremes of the right and the left horizontal rays, respec-
tively, and let f be an element of F0 such that Dr .f / D 1. Then Dl .f / D 1 as well,
because f 2 ŒTA; TA� and every other extremal derivative is clearly trivial. Now, since
f 2 F0, there exists a finite product of elements chosen among ¹Œı; "�; Œ"�1; "�1 ı ˛�º
that equals f . Since both these elements fix r and l , and since all extremal derivatives of
Œ"�1; "�1 ı ˛� are trivial, the value of Dl .f / only depends on the total sum of the expo-
nents of Œı; "� in that product, so that total sum must be zero. Now, since Œ"�1; "�1 ı ˛�
acts trivially on the left horizontal ray, the action of f on that ray only depends on the
total sum of exponents of Œı; "�. Then f must act trivially on the left horizontal ray, which
means that f only acts on R0. This proves that all elements f 2 F0 such thatDr .f / D 1
belong to rist.R0/.

Now consider an element g of rist.R0/ \ ŒTA; TA�: since F0 acts on R0 as rist.R0/
does, there exists an f 2 F0 such that f acts on R0 as g does. Then note that Dr .f / D
Dr .g/ (because r is the external extreme of R0), and Dr .g/ D 1 because g 2 ŒTA; TA�,
so Dr .f / D 1. Then, as noted right above, f belongs to rist.R0/, and therefore it acts
exactly as g does on the entire Hor. Since both f and g are elements of rist.Hor/, they are
entirely determined by their action on Hor, so f D g. Therefore, we have that rist.R0/ \
ŒTA; TA�� F0.

Finally, let us prove that ˛"
k
2 G. Since ˛ 2 G and ˛"

k
D Œ"�k ; ˛� ı ˛, it suffices to

prove that Œ"�k ; ˛� 2 G. Note that Œ"�k ; ˛� acts trivially on the left horizontal ray, and so
it belongs to rist.R0/. Then

Œ"�k ; ˛� 2 ŒTA; TA� \ rist.R0/ � F0 � G;

and we are done.
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8. Thompson’s group T contains a copy of TA

In this section, we show that T contains an isomorphic copy of TA.
Let C.A/ be the replacement system whose set of colors is ¹blue; redº and having

base graph and replacement graphs as depicted in Figure 25. It is easy to see that this
replacement system is such that its limit space exists (see [3, Proposition 1.22]), hence its
rearrangement group exists, and we denote it by CA. We will now prove that T contains
a copy of CA and then that CA contains a copy of TA.

A replacement system is said to be circular if its base graph is a closed path and each
of its replacement graphs consists solely of a path. Note that each expansion of a circular
replacement system is always a closed path. Then it is not hard to prove that Thompson’s
group T contains an isomorphic copy of any rearrangement group of a circular replace-
ment system. It is clear that C.A/ is a circular replacement system, so T contains an
isomorphic copy of CA.

Then we only need to prove that CA contains an isomorphic copy of TA. We will first
define an injective map ˆWEA ! EC.A/, where EA is the set of all expansions of the
airplane replacement system A and EC.A/ is the set of all expansions of C.A/. Then we
will use ˆ to build an injective group morphism �WTA ! CA.

Note that the base graph �C of C.A/ can be obtained from the base graph of A

by splitting each vertex into two except for the two extremes, as shown in Figure 26.
We define ˆ.�/ WD �C . Each red edge of � is mapped to a red edge of �C , while each
blue edge is split into a pair of blue edges. Conversely, each red edge of �C descends from

.a/

vi vt vi vt

vi vt vi vt

.b/

Figure 25. The replacement system C.A/. (a) The base graph �C . (b) The replacement rules.

rl

Figure 26. The base graph �C of C.A/ obtained from the base graph � of A (drawn with dashed
lines).
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a unique red edge of � , while certain pairs of blue edges of �C descend from a unique
blue edge of � . Informally, this gives a correspondence between the edges of � and those
of �C that is one-to-one between red edges and one-to-two between blue edges.

We now extend this correspondence to any expansion of the airplane replacement sys-
tem A. IfE is an expansion of A and e is one of its edges, we denote byE C e the simple
expansion obtained by replacing e in E. Since each expansion E of A is a finite sequence
of simple expansions, it suffices to define ˆ.E C e/ starting from ˆ.E/. We do this in
the following way, depending on the color of the edge e:

• if e is red, then ˆ.E C e/ comes from ˆ.E/ by replacing its red edge corresponding
to e according to the red replacement rule of C.A/ (Figure 27);

• if e is blue, thenˆ.E C e/ comes fromˆ.E/ by replacing the blue edges correspond-
ing to e according to the blue replacement rule of C.A/ (Figure 28).

e
expanding e

Figure 27. An example of ˆ.E C e/ from ˆ.E/, where e is a red edge.

e expanding e

Figure 28. An example of ˆ.E C e/ from ˆ.E/, where e is a blue edge.

Note that we still have a correspondence between edges of E and edges of ˆ.E/
that is one-to-one between red edges and “one-to-two” between blue edges. It is not hard
to see that the order of simple expansions does not matter (that is, if e1; e2 2 E1, then
ˆ.E C e1 C e2/ D ˆ.E C e2 C e1/), and that ˆ is injective.

Now consider the map �W TA ! CA defined in the following way. If f is an ele-
ment of TA, let D ! R be a graph pair diagram for f . Then �.f / is the element of CA
that is represented by the graph pair diagram ˆ.D/! ˆ.R/, where the graph isomor-
phism is defined by the correspondence between red edges of D (resp. R) and red edges
of ˆ.D/ (resp. ˆ.R/), as well as between blue edges of D (resp. R) and pairs of blue
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edges of ˆ.D/ (resp. ˆ.R/), that is, if D ! R maps the edge eD to the edge eR, then
ˆ.D/! ˆ.R/maps the edge(s) corresponding to eD to the edge(s) corresponding to eR.
This definition does not depend on the graph pair diagram chosen to represent f , since
expansions in A correspond to expansions in CA (one-to-one or “one-to-two”, depending
on the color of the edge).

Now, let f and g be rearrangements of the airplane limit space, and consider their
respective graph pair diagrams Df ! Rf and Dg ! Rg such that Df D Rg . Then their
composition f ı g is represented by the graph pair diagram Dg ! Rf , so �.f ı g/ is
represented by ˆ.Dg/! ˆ.Rf /. We also have that ˆ.Df / D ˆ.Rg/, which means that
the domain graph ofˆ.Df /!ˆ.Rf / is the same as the range graph ofˆ.Dg/!ˆ.Rg/.
Hence, their composition �.f / ı �.g/ is represented by ˆ.Dg/! ˆ.Rf /. It is easy to
see that these graph pair diagrams share the same graph isomorphism, thus � is a group
morphism.

Also, the kernel of � is trivial. Indeed, if f 2 TA is such that �.f / is trivial, then
consider a graph pair diagram for f and let e be a red edge of the domain graph: the
corresponding edge in the domain graph of �.f / must be fixed by �.f /, hence e is fixed
by f . The same holds for blue edges. Then f must be trivial too.

Now, since � is an injective morphism, we have found that CA contains an isomorphic
copy of TA. Since we have previously seen that T contains an isomorphic copy of CA, we
can finally conclude the following.

Theorem 8.1. Thompson’s group T contains an isomorphic copy of TA.

The replacement system C.A/ (Figure 25) and the way in which it is related to the
airplane limit space (as depicted in Figures 26, 27 and 28) are inspired by the original
study of the basilica rearrangement group TB in [2]: there, the group is not defined by the
action on the basilica Julia set, but instead by its action on the lamination of the fractal.
The lamination is essentially the “explosion” of the basilica on S1, and it expresses the
canonical way in which the basilica Julia set is a quotient of the circle. Here we essentially
did the same for the airplane, and it would be interesting to see how and when this can
be replicated to other fractals. It must be noted, however, that there are fractals for which
similar arguments would not provide an embedding into T such as the Vicsek fractal [3,
Example 1.12], for its rearrangement group contains finite subgroups that are not cyclic.

9. Rearrangements with trivial extremal derivatives

In this section, we study the following subgroup of ŒTA; TA�:

E WD ¹f 2 TA j Dp.f / D 18p 2 Eº:

We show that E is not finitely generated, and then we study its transitivity properties.
In particular, we will see that its action is 2-transitive on the set of components, and so is
the action of both TA and ŒTA; TA�.
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9.1. The subgroup E is not finitely generated

We say that a blue edge is external if one of its two vertices corresponds to an element of E

in the limit space. With this in mind, we say that a blue cell is external if it is generated
by an external blue edge.

Recall the definition of length of blue edges and cells given at the beginning of Sec-
tion 7.1. Recall from Section 4.4 that each component is uniquely identified on the ray
on which it lies by a dyadic number in .0; 1/. For each n 2 N n ¹0º, let C.n/ be the set
of those components that lie at position 1 � 1

2n
on some ray. For each n 2 N n ¹0º, we

define En to be the subset of TA consisting of all rearrangements f such that

• f acts by permutation on the set C.n/;

• f acts canonically on the red cells corresponding to the boundaries of components
in C.n/;

• f acts canonically on the external blue cells of length 1 � 1
2n

.

Intuitively, these rearrangements are the ones that act “rigidly” on anything that lies “be-
yond” a component of C.n/, while they act without further constraints on the inner part
of the airplane delimited by the components of C.n/. Figure 29, for n D 1 and n D 2,
respectively, exhibits in red the component lying on the right horizontal ray that belongs
to C.n/ and in blue the corresponding set on which En acts canonically. Keep in mind
that En acts canonically on similar sets on every ray.

.a/ .b/

Figure 29. The component of C.n/ that lies on the right horizontal ray, for nD 1; 2. The groups En
act “rigidly” on the entire colored subset, and the same happens for each ray of the airplane.
(a) n D 1. (b) n D 2.

Note that all En are groups, and they are all proper subgroups of E because they
preserve lengths around each extreme. Also, it is clear thatEn �EnC1 for all n 2N n ¹0º.
Moreover, it is easy to see that [

n>0

En D E:

Then, since E is an ascending union of proper subgroups, we have the following.

Proposition 9.1. The group E is not finitely generated.

Recall that a subgroup H of a finitely generated group G is also finitely generated if
the index jG W H j is finite (see [4, p. 70, Corollary 9.2]). Then we immediately have the
following consequence of the previous proposition.

Corollary 9.2. The index of E in ŒTA; TA� is infinite.
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9.2. Transitivity properties of E

If C and C 0 are two distinct components, we can define, similarly to what we have done
in Section 4.4, a unique component path that reaches C 0 starting from C instead of C0.
Let n � 2 and let C1; C2; : : : ; Cn be distinct components of the airplane limit space.
We say that these components are aligned if there exist two of them, Ci and Cj , such that
the component path between Ci and Cj travels through all the components. We then say
that Ci and Cj are the extremes of these aligned components. It is not hard to see that
rearrangements of the airplane limit space preserve alignment, that is, if f 2 TA, then
C1; C2; : : : ; Cn are aligned if and only if f .C1/; f .C2/; : : : ; f .Cn/ are.

Note that if C1; C2; : : : ; Cn are aligned, we can rename them so that C1 and Cn are
the extremes and the components Ci are ordered from the first to the last traveled from C1
to Cn. Once we have renamed them in this fashion, we say that .C1; C2; : : : ; Cn/ is an
ordered n-tuple of aligned components.

It is clear that E contains both rist.C0/ and Œrist.Hor/; rist.Hor/�. Recall that rist.C0/
acts transitively on the set of central rays (Theorem 5.2). Also, it is well known that ŒF;F �
acts transitively on the set of ordered n-tuples of dyadic points of .0; 1/. Hence, because
of Theorem 5.4, the group Œrist.Hor/; rist.Hor/� acts transitively on the set of ordered n-
tuples of aligned components that lie on Hor. Using these transitivity properties of rist.C0/
and Œrist.Hor/; rist.Hor/�, it is not hard to prove the following result.

Proposition 9.3. For all natural n > 0, the group E acts transitively on the set of ordered
n-tuples of aligned components.

Since any two components are aligned, the case n D 2 is interesting on its own.

Corollary 9.4. The group E acts 2-transitively on the set of components. In particular,
the groups ŒTA; TA� and TA act 2-transitively on the set of components.

Remark 9.5. The group TA does not act 3-transitively on the set of components, there-
fore neither ŒTA; TA� norE do. Indeed, consider three components that are not aligned (for
example, any three components lying on three distinct central rays) and three components
that are aligned (for example, any three components that lie on Hor): since rearrange-
ments preserve alignment, there cannot exist any rearrangement that maps those first three
components to the others.

10. A copy of TB in TA

In this section, we exhibit an isomorphic copy of the basilica rearrangement group TB
that is contained in TA. Note that it is already clear that TA contains an isomorphic copy
of TB : indeed, the subgroup rist.C0/ of TA is isomorphic to T (Theorem 5.2), and T
contains a copy of TB (proved in [2]). This reasoning, however, does not tell us much
about the nature of this copy of TB in TA. Here we instead find a natural copy of TB in TA
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by specifying its generators. In particular, this section focuses on proving the following
result.

Theorem 10.1. We have TB ' h˛; ˇ; ; ıi � TA.

We start by defining a non-directed graph �B in the following way:

• its vertices are the components of B;

• its edges link pairs of adjacent components.

Note then that �B is a rooted regular tree of infinite degree, where the root is the central
component. Since rearrangements of the basilica limit space permute components of B
and preserve their adjacency, TB acts faithfully on �B by graph automorphisms. This
means that there exists an injective morphism

�B W TB ! G;

where G WD Aut.�B/.
We now define a similar tree for the airplane limit space by considering the compo-

nents whose component paths have the following form:��
�1;

2k1 � 1

2k1

�
; : : : ;

�
�n;

2kn � 1

2kn

��
for some naturals n > 0 and ki > 0, and for some dyadic �i 2 Œ0; 1/. We denote by C

the set consisting of all these components, along with the central component. Figure 30
depicts examples of components that belong to C (in blue) and that do not (in red). Note
that these components are the ones that can be obtained by halving any central ray (which
locates certain central components), then halving the external remaining part of that ray
or halving any new ray departing from the located component, and so on until one stops
at the newfound component.

C0

C1

C3

C2

C4

Figure 30. The components colored in blue belong to C, while those in red do not.

Note that these components have a natural concept of adjacency: the component path
representing a component C that belongs to C travels through a finite amount of other
components in C, the last of which is said to be C-adjacent toC . For example, in Figure 30
the component C1 is adjacent to both C2 and C0, but it is not adjacent to C3 nor C4 (which
are themselves adjacent to each other); moreover, C2 and C0 are not adjacent (despite
being related).
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Now, let �A be the graph defined in the following way:

• its vertices are the elements of C;

• its edges link pairs of C-adjacent components.

Note that �A is a rooted regular tree of infinite degree, hence it is isomorphic to �B , and so
the previously defined group G D Aut.�B/ is isomorphic to Aut.�A/. We can then refer
to G as the automorphism group of both �B and �A.

Let H WD h˛; ˇ; ; ıi � TA. It is easy to see that the action of H maps elements of C

in elements of C and preserves C-adjacency, hence it is by graph automorphisms on �A.
It can also be shown that the action is faithful: it suffices to prove that if h 2 H fixes each
component in C, then it must fix each component C of the airplane. Now, since the action
of H on �A is faithful and it is by graph automorphisms, there exists an injective group
morphism �AWH ! G. Finally, it is easy to note that the four generators of the group TB
(depicted in Figure 13) act on �B exactly as ˛, ˇ,  and ı do on �A, which proves that
TB ' h˛; ˇ; ; ıi � TA.
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