Deep Learning in Motor Imagery EEG Signal
Decoding: A Systematic Review

Aurora Saibene!?", Hafez Ghaemi®** and Eda Dagdevir®

'Department of Informatics, Systems and Communication, University of
Milano-Bicocca, Viale Sarca 336, Milano, 20126, Italy.
2NeuroMI, Milan Center for Neuroscience, Piazza dell’ Ateneo Nuovo 1,
Milano, 20126, Italy.
3Department of Computer Science and Operations Research, University
of Montreal, Montreal, QC, Canada.
4Quebec Artificial Intelligence Institute (Mila), Montreal, QC, Canada.
SDepartment of Electronics and Automation, Vocational School of
Technical Sciences, Kayseri University, Talas, Kayseri, 38280, Turkey.

*Corresponding author(s). E-mail(s): aurora.saibene@unimib.it;
Contributing authors: hafez.ghaemi@Qumontreal.ca;
edadagdevir@kayseri.edu.tr;

Abstract

Thanks to the fast evolution of electroencephalography (EEG)-based brain-
computer interfaces (BClIs) and computing technologies, as well as the availability
of large EEG datasets, decoding motor imagery (MI) EEG signals is rapidly shift-
ing from traditional machine learning (ML) to deep learning (DL) approaches.
Furthermore, real-world MI-EEG BCI applications are progressively requiring
higher generalization capabilities, which can be achieved by leveraging publicly
available MI-EEG datasets and high-performance decoding models. Within this
context, this paper proposes a systematic review of DL approaches for MI-EEG
decoding, focusing on studies that work on publicly available EEG-MI datasets.
This review paper firstly provides a clear overview of these datasets that can be
used for DL model training and testing. Afterwards, considering each dataset,
related DL studies are discussed with respect to the four MI decoding paradigms
identified in the literature, i.e., subject-dependent, subject-independent, transfer
learning, and global decoding paradigms. Having analyzed the reviewed studies,
the current trends and strategies, popular architectures, baseline models that
are used for comprehensive analysis, and techniques to ensure reproducibility



of the results in DL-based MI-EEG decoding are also identified and discussed.
The selection and screening of the studies included in this review follow the Pre-
ferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines, leading to a comprehensive analysis of 396 papers published between
January 1, 2017, and January 23, 2023.
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1 Introduction

Electroencephalography (EEG)-based Brain-Computer Interfaces (BCIs) provide a
real-time bidirectional communication between its user and an external application,
directly exploiting neural signals acquired in a non-invasive manner from the user’s
scalp [1]. In fact, EEG signals are recorded through sensors, called electrodes, placed
on the head surface. These data provide information on brain activity and functions
in time, frequency and spacial domain, while using technologies of low risk, ease of
application, and affordability, thus justifying their diffused use for BCI systems [2].

A standard EEG-based BCI system (Figure 1) consists of three main modules, i.e.,
signal acquisition, signal processing, and applications, that can each contain different
stages [3, 4]. The EEG signals are recorded with surface electrodes and processed
in order to decode the neural information and provide commands for the desired
application, and finally, feedback is provided to the user.

BCT applications are very diverse and can be devised for rehabilitation, orthopaedic
practice, wheelchair control, cursor control, writing systems, gaming, and neuromar-
keting purposes [5, 6], benefiting not only healthcare-related research, but also fields
spanning from education to entertainment, and from civil to industrial applications
[7].

Therefore, depending on the intended use of a BCI, different experimental
paradigms are exploited and in particular three are the ones mainly used [8]: (i) the
P300 event-related potential, (ii) the steady-state visual evoked potential, and (iii)
Motor Imagery (MI).

The former paradigm has been attracting the attention of the BCI community

thanks to the neural characteristics it exploits and its wide area of applicability [9]. MI-
EEG signals are generated in response to the imagination of motor movements in the
sensory motor cortex area of the brain [10]. MI tasks are associated with oscillations
in the p (~ 8 —13 Hz) and 8 (~ 13 — 30 Hz) EEG frequency bands [11]. In particular,
during M1, a decrease in the p amplitude (known as event-related desynchronization)
and an increase in the g amplitude (known as event-related synchronization) [10] is
observed.
Due to its unique capability to decode motor movement imagination in the brain,
MI EEG-based BCIs can be exploited in rehabilitation systems to improve disabled
people’s quality of life [12-15]. Moreover, new MI applications are developed for non-
biomedical purposes such as gaming, industry, transport, and art [16].
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Fig. 1: The main components of a standard BCI system.

Creating efficient MI EEG-based BCI systems has a number of challenges which

are caused by the low signal-to-noise ratio (SNR) of EEG signals (due to biological
or non-physiological noise), the non-stationary nature of MI-EEG signals and their
subjectivity, and the differences due to changes in environmental and experimental
conditions [17-19].
Therefore, fast and high-performance algorithms are needed to extract meaningful
information from these complex signals and decode them. Traditionally, machine learn-
ing (ML) algorithms have been employed for MI-EEG decoding [20-23]. Conventional
ML methods are usually able to achieve a good performance when the number of
data samples is small, or when high generalization abilities are not required from the
decoding model. However, in the recent decade, MI-EEG datasets with a large number
of recordings have been introduced [24-29], making the decoding task challenging for
conventional ML techniques. Furthermore, real-world BCI applications require gen-
eralizable decoding models adaptable to new subjects, a feature that traditional ML
methods usually do not provide. These issues, alongside the exponential growth of the
field of deep learning (DL) [30], the increasing ease of implementation for DL methods,
and the availability of graphical processing units for their training, have motivated the
BCI research community to increase its efforts towards the use of DL-based method-
ologies to design BCI systems, including MI EEG-based BCIs for decoding motor
intentions [9, 16, 31].

Some review papers have provided overviews on DL-based methodologies for EEG
signal decoding [18, 31], trying to understand which architectures are the most fre-
quently used in DL-based decoding and in what experimental contexts, alongside the
effects that the input type and preprocessing has on the model performance, and how



reproducibilty is guaranteed in such applications. In the specific field of MI EEG-
based BCI systems, answers to these questions are continuously sought. Al-Saegh et al.
[9] focus their attention on studies using deep neural networks (DNNs). The authors
examine the different datasets used in DL-based MI BCI, input types, preprocessing
techniques, and considered frequency intervals related to MI-EEG data to understand
which DL architectures work best for MI decoding, how the input data and type
impacts the model performance, and which frequency ranges to consider to achieve
better performances. This paper reviews 40 articles published between 2015 and 2020,
and finds that convolutional neural networks (CNNs) and hybrid CNNs are the most
dominant architectures, that usually receive in input raw EEG signals and consider
frequencies in the ranges of 6-8Hz and 38-40 Hz.

Arpia et al. [32] provide a metrological analysis of the literature in terms of
performances achieved in MI EEG-based BCI decoding, the processing trends and
their similarities, and the challenges related to uncertainty, repeatability, and repro-
ducibility of the results. The authors conduct their search by following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement [33]
and analyze 89 papers published between 2017 and 2021. The outcome of their review
can be summarized in three main statements: screened works have compatible results
for binary and multi-class cases, trends can be identified in terms of non-brain-inspired
and brain-inspired approaches, and reproducibility can be improved by standardizing
experimental procedures and performance presentation.

Altaheri et al. [5] propose a similar set of research questions to the previous reviews
and thus asks whether prepossessing techniques need to be applied before using DL
methods, what input formulations should be used depending on the DL techniques,
and what main trends exist in DL-based BCI. The PRISMA guidelines are followed
and 89 papers in the last 10 years are selected for the review. The authors find that
CNN architectures are widely diffused and that raw EEG signals are usually the input
to such models.

A systematic review of MI EEG-based BCIs using only wearable devices is pro-
posed by Saibene et al. [4]. Following the PRISMA guidelines, 84 articles published
between 2012 and 2022 have been examined with the main aim of understanding if
wearable technologies are sufficiently advanced to provide MI EEG-based BCI appli-
cations outside of controlled environments. The authors identify the importance of
denoising strategies when dealing with wireless and wearable technologies, and high-
light the strong presence of strategies that exploit handcrafted features and traditional
ML approaches, reaching the conclusion that the use of DL is at an early stage in the
wearable domain. A focus on MI experimental paradigms as well as publicly available
datasets is also provided, noticing the wide diffusion of diverse MI conditions and the
use of literature repositories for comparison with proprietary datasets.

Finally, Khadems et al. [34] are mainly interested in the challenges arising when
creating MI EEG-based BCIs. The authors compare traditional ML techniques with
novel DL approaches, which seem to be apt at dealing with complex and non-stationary
signals. However, they highlight that models are usually trained in a subject-dependent
manner due to the EEG signal subject-specific nature and the lack of large datasets
which leads to the overfitting phenomenon in DL models.



Starting from these premises regarding EEG signals, BCIs, and MI experimental
paradigm, and also considering the reported state-of-the-art survey papers, this work
systematically reviews the DL approaches used for MI-EEG decoding, strictly follow-
ing the PRISMA guidelines. To the best of our knowledge, the present work is the
most comprehensive and inclusive review of MI-EEG decoding using deep learning.
There are four main research questions driving this review paper, considering both
the challenges identified by previous survey studies, and the ones identified by the
authors of this review. The first research question is formulated as follows,

RQ1: What are the most frequently used publicly available datasets for MI EEG
decoding, specifically DL-based decoding?
To answer this question, all publicly available MI datasets that are used in the
screened studies are identified and described.
The second research question is formulated as

RQ2: What are the current trends, strategies, and architectures used in DL-based
MI-EEG decoding?

This question is not only concerned with the frequently used DL approaches
and architectures, but also aims to provide detailed comments on procedures used
in training and evaluation of decoding models. All reviewed studies are categorized
and detailed in terms of decoding paradigms, i.e., subject-dependent (SD), subject-
independent (SI), transfer learning (TL), and global evaluation, and MI datasets (the
ones resulting from RQ1).

The third research question is formulated as

RQ3: What are the DL architectures most frequently used as baseline models or as
inspirations for new decoding methodologies?

The main aim of this question is to identify widely used and reliable DL models
that are utilized for baseline performance comparison, or as a base model that can be
modified to create new decoding models.

Finally, the fourth research question that will be addressed is given as follows.

RQ4: How should methodologies and results be reported in a DL-MI decoding study to
ensure the reproducibility of results?

One of the main contributions of this review is identifying and describing studies
that make the codes corresponding to their work publicly available, and thus have
addressed the problem of reproducibility to a large degree. Specifically, 27 papers are
identified among the reviewed studies that have made their codes publicly available
(open-source). These studies are listed in Tables 4 and 5.

To answer these research questions, this review is organized as follows. Section 2
explains the procedure by which the 396 studies included in this review have been
selected for this review, following the guidelines provided by the PRISMA state-
ment. Section 3 introduces all the publicly available MI datasets that have been
employed by the reviewed studies, and provides detailed descriptions of each dataset.
This section can be consulted by researchers who want to find a suitable dataset to



evaluate their MI decoding models. Section 4 represents the core of this review, pro-
viding a detailed overview of the reviewed papers in terms of datasets and decoding
paradigms. In fact, this section is divided into subsections each corresponding to one
of the previously reported datasets to examine the current DL trends in MI-EEG
decoding for every decoding paradigm. Section 5 discusses the answers to the afore-
mentioned research questions by analyzing the materials presented in the previous
sections. Finally, conclusions are given in Section 6.

2 Systematic Review Methodology

This systematic review follows the guidelines provided by the Preferred Reporting
Items for Systematic Reviews and Meta-Analyses (PRISMA) Statement [33]. The
following sections provide the necessary information related to the identification,
selection, and interpretation of the studies included in this review.

2.1 Eligibility criteria

Studies presenting the use of EEG signals acquired during the MI experimental
paradigm and DL decoding approaches have been included in this systematic review
according to the following criteria.

1. Non-English papers were excluded.

2. Only papers published in the last five years (from January 1, 2017 to January 23,
2023) are considered. Older papers were excluded.

3. Only studies published as journal articles and conference proceedings are considered
(studies published as abstracts, book chapters, posters, reviews, Master’s theses,
and Ph.D. dissertations) were excluded.

4. Papers that did not use at least one publicly available dataset to evaluate their
decoding methods were excluded.

5. Papers that did not report an MI decoding performance measure, e.g., classification
accuracy or Cohen’s kappa (k) value on at least one of the MI datasets considered
were excluded.

6. Papers that did not use a DL architecture (any type of neural network with more
than one hidden layer) in at least one of the stages of MI decoding, including
preprocessing, feature extraction, and final decoding, were excluded.

7. Papers that did not present sufficient information to reproduce their results, e.g.,
a model architecture or a valid model evaluation strategy were excluded.

8. Papers that did not report their decoding performance in a way that can be
meaningfully compared with other studies were excluded. This exclusion crite-
rion encompasses papers that remove a number of subjects from the considered
MI dataset without justification, or the ones that report average performance
on subjects from multiple datasets without reporting detailed subject-by-subject
performance.

9. Papers that reported a lower performance than the chance level were excluded.

These criteria aim to provide the review with studies that have reproducible results
on publicly available datasets, and also have decoding pipelines that are described



with a sufficiently high level of detail to enable their re-implementation even when the
code is not publicly available.

Studies were initially collected by exploiting scientific search engines and applying
the keyword search filters mentioned in Section 2.2. The first three criteria were applied
automatically using search engine or spreadsheet filters, while the rest required a
detailed examination of each paper as detailed in Section 2.3.

2.2 Databases and search strategy

The documents to be screened were collected from two scientific search engines, i.e.,
PubMed, and Scopus. The last consultation date of these search engines was January
23, 2023. These studies were extracted by querying

e Scopus as follows: TITLE-ABS-KEY ( ( ( brain-computer AND interface ) OR bci
OR ( brain-machine AND interface ) OR bmi ) AND ( ( motor AND imagery )
OR mi ) AND ( ( neural AND network ) OR ( deep AND learning ) ) AND (
electroencephalography OR eeg ) ) AND ( LIMIT-TO ( LANGUAGE , “English” ) )

e PubMed as follows: (((Brain-Computer Interface[Title/Abstract])
OR  BCI[Title/Abstract] ~ OR  Brain-Machine  Interface[Title/Abstract])
OR  BMI|[Title/Abstract]) AND  ((Motor  Imagery[Title/Abstract])  OR
MI[Title/Abstract]) AND  ((Neural — Network[Title/Abstract]) OR  (Deep
Learning[Title/Abstract])) AND  (Electroencephalography[Title/Abstract] OR
EEG|Title/Abstract]))

The search provided 1047 records, of which 998 entries were collected from Scopus,
and 192 were collected from PubMed. Duplicate papers were removed automatically by
merging the two extracted databases from PubMed and Scopus based on the PubMed
ID field in each database and 143 duplicate entries were removed. A final manual
screening to check for any remaining duplicate publication was subsequently performed
and a number of 897 studies remained for further screening.

2.3 Screening process

In this section, the screening process to apply the eligibility criteria listed in Section
2.1 is explained. After duplicate removal as reported in the previous section, in order
to apply criteria No. 4 to 9, we required a careful manual examination of each paper.
Therefore, the remaining studies were equally divided among the authors for further
screening.

Firstly, to apply criteria No. 4 to 6, abstract, keywords, and data-related sections
were read to check if the employed datasets were publicly available and if the study
was using DL-based approaches. Afterwards, the provided performance measures were
screened. If no performance measure was present, i.e., accuracy or k value, or if
the performance was not obtained on a publicly available MI dataset the paper was
immediately discarded.

After having performed these steps, the papers were thoroughly read to apply the
eligibility criteria No. 7 to 9, and to have a better understanding of the proposed
strategies as well as of how the EEG data were used in MI decoding. Specifically, the
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Fig. 2: The PRISMA flow diagram for the systematic review.

description of model architectures were analyzed and papers were only retained if the
information about the models were sufficient to allow, at least, a partial reproduction
of the study. Furthermore, if the model evaluation was not described clearly, a part
of the MI dataset was removed without a clear justification, or the performance was
reported in a way not comparable to other studies, the paper was discarded. Finally,
the papers reporting a lower performance than the chance level were removed from
further consideration.

During the screening process, all authors carefully examined their allocated papers
to apply the eligibility criteria and extract the information required for reviewing the
studies that remained after the screening process, making their decisions based on the
overall evaluation of each paper. In cases where a paper was considered borderline or
it was unclear if it met the eligibility criteria according to one of the authors, the other
authors were notified to examine the considered study and reach a decision collectively.

2.4 Screening outcome

In this section, the final results of the screening outcome is reported. After applying
the eligibility criteria, 396 papers remained to be included in the review. Figure 2
summarizes the complete screening process based on the PRISMA guidelines. Figure 8
shows the number of remaining document for each year from 2017 to 2023 (the datum
related to year 2023 corresponds to the number of papers up to January 23). The
increasing trend of DL-based MI-EEG decoding is easily identifiable by observing
Figure 8. More statistics regarding the the final outcome of screening, specifically,
considering the MI-EEG datasets and MI decoding paradigms are given in Sections 4
and 5.
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Fig. 3: The total number of remaining studies (396) after screening per year (year
2023 refers only to the period between January 1 and January 23, 2023).

3 Datasets

In this section, all of the publicly available datasets employed by the 396 reviewed
papers are presented and described. The 22 resulting datasets are listed in Table 1,
alongside the acronyms that will be used in the rest of this review paper, the related
references, and the links to their repositories (last accessed August 21, 2023). Table
2 complements the previous table by providing a brief description of each dataset in
terms of the number of electrodes used for EEG recording, the experimental paradigms,
and subject-related details, i.e., the number of participants and their age, gender,
health status, and their dominant hand. Blank spaces represent missing information.
Considering the experimental paradigm column in Table 2, left/right hand imag-
ination appears to be a very popular paradigm for EEG-based MI datasets. In fact,
based on our analysis of the reviewed datasets, about 40% of the reviewed papers use
datasets with experimental paradigms specialized in cue-based left/right hand imag-
ination [24, 26, 27, 29, 36-38, 44], while about 90% consider datasets that involve
motor tasks related to tongue [37, 38], foot [25, 37, 38, 45], fist [25] and random letter
generation [37] in addition to left/right hand imagination. A particular case is rep-
resented by MED-62, which presents an online BCI system utilizing left, right, and
up-down imagination for cursor control [28].
The SameLimb dataset [42] moves away from traditional MI-related datasets and
proposes a multi-channel EEG recording during motor imagery of different joints
(hand or elbow) from the same limb, utilizing kinesthetic motor imagery. Notice that,
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besides SameLimb, some of the reported datasets present paradigms that are very
diverse compared to the more diffused ones concerning left/right hand and tongue
MI. Nikki2021 [27] proposes cue-based cylindrical, spherical, and lumbrical MI grasps,
while Kaya2018 [40] introduces five different BCI interaction paradigms including both
motor execution and imagination: (i) called CLA, consisting of closing and opening
fists MI or showing a circle for passive response; (ii) called HaLT, including left /right
hand, left/right leg, and tongue imagery (brief movements of the leg or foot for leg
imagery, imagining a distinct letter or sound for tongue imagery, and a circle for pas-
sive state); (iii) called 5F, considering finger flexion according to the number shown
on the fingers of a virtual hand depicted on a screen; (iv) called FreeForm, involv-
ing the pressing of the d and [ keys on the keyboard using the right or left hand in
the desired order; (v) called NoMT, focusing on consistency check and baseline deter-
mination with passive participants. This particular dataset is selected by six of the
reviewed papers [46-51].

Considering other datasets, that differ from the classical left/right hand MI
paradigm, Jeong2020 [39] designs 11 different upper extremity movement tasks,
including arm-reaching along six directions, hand-grasping of three objects, and wrist-
twisting with two different motions. MIDistraction [41] proposes the left/right hand
motor imagery data collection procedure with six variations: without distractions, eyes
closed, listening to new sequences, searching for letter-number combinations, watch-
ing flickering videos, vibrotactile stimulation on both forearms with carrier frequencies
of 50 and 100 Hz, modulated at 9, 10 and 11 Hz. Instead, in the kinesthetic-based
dataset UpperLimb [43], motor execution and MI experiments are performed, consid-
ering right upper limb, elbow flexion/extension, forearm supination/pronation, and
hand open/close paradigms.

Thanks to the availability of diverse experimental paradigms the variety of MI
studies in the literature is increasing. Also, as can be observed from Table 2, more
recent datasets have a larger number of trials which makes them more suitable for DL-
based decoding. Another observation that can be made by analyzing Table 2 is related
to the number of subjects involved in the experiments for each of the reported datasets.
Newer datasets usually consider a greater number of subjects, as introduced in Section
1. This trend can be noticed by observing Figure 4 that shows the number of subjects
enrolled for the datasets used in the reviewed papers, providing a brief reference to
the year of dataset publication. Besides eegmmidb published in 2009 and providing the
dataset with the higher number of subjects (109), Jeong2020 and SameLimb (2020)
present 25 subjects, the 2019 datasets MBT-42 and OpenBMI as well as Nikki2021
provide data collected from more than 40 subjects.

To conclude the observations in Table 2, 13/22 and 12/22 datasets report the
subjects’ age and gender, respectively. All the datasets provide data collected from
healthy subjects, besides WCCI2020-Glasgow which consider hemiparetic stroke
patients. Notice that MBT-62 considers both a control group and subjects trained in
mindfulness-based stress reduction (MBSR). Also, the information on the dominant
hand is reported in 9/22 dataset descriptions.

An interesting datum present in Table 1 is related to the number of employed
electrodes for EEG signal recording. It can be observed that this number varies greatly
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Fig. 4: Number of subjects involved per dataset. The dataset year of publication is
reported in parenthesis.

from a minimum of 3 to a maximum of 128 sensors. This information is extremely
correlated with the hardware details reported in Table 3, that presents also the used
sampling frequency for EEG signal acquisition, and if a filtering technique was applied
by the dataset authors. The first field (Dataset) allows the cross-referencing with the
other tables by reporting the acronym of each dataset. The Sampling rate field presents
the sampling frequency (Hz) and down sampling frequency (Hz) between parenthesis.
Notice that most of the datasets consider a 250 Hz sampling frequency, but that the
majority of the authors downsample the data to 100 Hz or 200 Hz. Besides five datasets
not mentioning it, the Filtering field reports a vast use of notch filters and bandpass
filters. Usually the lower bound of the filter is either 0.1 or 0.5 Hz, while the upper
bound is either 100 or 200 Hz. The last column (Used device and/or system) of Table 3
presents the systems used for data collection. EEG caps are included, if mentioned in
the dataset description file. Most of the presented datasets use Brain Products GmbH
devices, while there is an increase use of g.tec GmbH technologies especially in more
recent data collections.

4 Deep learning approaches

This section and the following (Section 5) represent the core of this review, providing
an overview and a discussion on the studies remaining after the screening process
described in Section 2. As previously discussed (Section 1), the main aim of this
review is not to present a treatise on DL architectures but to provide pointers to the
EEG-based MI datasets commonly used to train and test decoding models, to show
the current trends in the DL-MI field, to discuss the models used for benchmarking
purposes, and to better understand how the results are presented to the research

13
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Fig. 5: Number of reviewed studies considering different datasets for DL-based MI-
EEG decoding

community. Figure 5 gives an overview of the distribution of the MI datasets that are
used for DL-based MI-EEG decoding’, showing a diffused use of the BCI-IV-2a and
the BCI-IV-2b datasets.

Therefore, this section is divided in subsections corresponding to the datasets
presented in Section 3. Moreover, for each dataset, the studies are categorized with
respect to the MI decoding paradigms. The main decoding (evaluation) paradigms
in MI are the subject-dependent (SD) and subject-independent (SI) ones. Other two
paradigms present in the reviewed studies are the transfer learning (TL) and global
ones. Descriptions for these decoding paradigms are given below.

® Subject-dependent: This paradigm is the traditional and most frequently used
one in MI EEG decoding. For each subject, a different decoding model is built for
training and evaluation using only the data of the individual subject under analysis.
As the model is specifically fit to a single subject’s data, it may lack generalization
and have a low performance when tested on another subject’s data.

® Subject-independent: This paradigm usually considers a decoding approach
based on leave-one-subject-out cross-validation (LOSO-CV), i.e., for each subject a
model is trained on the data related to all other subjects, and the final model is
evaluated on the subject considered, without any fine-tuning on this subject’s data.

1As some papers have considered multiple studies to evaluate their models, the sum of the numbers
reported on this plot exceeds the number of papers reviewed (which is 396).
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This process is repeated for all subjects, and the mean decoding measure is reported
as the final SI performance. Therefore, as the test subject’s data is never seen dur-
ing the training process, the SI decoding performance is a good representation of
the generalization capabilities of the decoding model.

® Transfer learning: TL and domain adaptation are popular techniques used in
machine learning and deep learning that exploit an already trained model on a
given task to boost performance on related tasks [52, 53]. In DL MI decoding, TL is
usually applied by combining the SD and SI paradigms. In particular, the decoding
model is firstly trained on a subset of subjects. Afterwards, it is fine-tuned on a
subset of the test subject’s data before being evaluated on another unseen subset
of this subject’s data. Therefore, this approach can be useful when a small number
of recordings is present for the test subject and the goal is to increase the model
decoding performance. This TL approach is known as subject-transfer learning.
Another TL approach in MI decoding is session-transfer learning, in which the model
is first trained on the data related to one MI recording session of a given subject,
and subsequently fine-tuned and tested on another session of the same subject.

® Global: In this paradigm, the evaluation process does not take into account the
subject index corresponding to a recording. Instead, the whole EEG dataset con-
sisting of all subjects’ data is randomly divided into training and test sets, and the
model is trained and evaluated accordingly. This paradigm can also provide infor-
mation on a model generalization capabilities as it is not calibrated on a specific
subject’s data.

Figure 6 gives an overview of the distribution of each decoding paradigm in DL-
based MI decoding, while Figure 7 shows the paradigms in relation to the datasets
reported in Section 3. Notice that the majority of the reviewed papers add an SD
decoding paradigm to their analyses. Moreover the use of the SD approach as the
only paradigm employed is evident for the BCI-II-1II, BCI-III-V, WCCI-2020Glasgow,
Jeong2020, MIDistraction, SameLimb, UpperLimb, and Weibo201/ datasets. Instead,
a greater variety of decoding paradigms is adopted for other datasets, e.g., BCI-IV-2a
and BCI-IV-2b, and eegmmidb.

Finally, particular attention has been given to the studies that reported available
online resources or the ones that provided a clear description to reproduce their pro-
posed approach. Out of 396 works remaining after the screening process, 31 provide
references to the codes used for their studies. One paper [54] reports Python codes
in the appendix, while three links land to unavailable repositories. The remaining 27
linked resources are reported in Table 4 and Table 5. Notice that the links have been
accessed on July 10, 2023, and that the tables are organized to contain the code ref-
erence papers, the employed datasets, the topic related to the presented approaches,
and the complete link for each resource. Table 4 lists the works published from 2018
to 2021, while Table 5 the ones in 2022 and 2023 for better readability.

In what follows, studies that report decoding performances on each dataset are
discussed and further categorized based on the decoding paradigm (i.e., SD, SI, TL,
and global). The most common performance measure reported by the reviewed papers
is accuracy. Sometimes standard deviation over multiple runs or subjects is provided
and thus denoted in this review paper as average accuracy = standard deviation %
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https://github.com/hauke-d/cnn-eeg
https://github.com/ShiuKumar/OPTICAL
https://github.com/ShiuKumar/OPTICAL
https://github.com/mahtamsv/TA-CSPNN
https://github.com/mahtamsv/TA-CSPNN
https://github.com/gumpy-bci/gumpy-deeplearning
https://github.com/gumpy-bci/gumpy-deeplearning
https://github.com/rootskar/EEGMotorImagery
https://github.com/rootskar/EEGMotorImagery
https://github.com/dalinzhang/GCRAM
https://github.com/dalinzhang/GCRAM
https://github.com/IoBT-VISTEC/MIN2Net
https://github.com/IoBT-VISTEC/MIN2Net
https://github.com/dfcollazosh/DWCNN_TL
https://github.com/dfcollazosh/DWCNN_TL
https://github.com/jingwang2020/ECML-PKDD_MMCNN
https://github.com/jingwang2020/ECML-PKDD_MMCNN
https://github.com/Matthijspals/neuromorphic-EEG
https://github.com/Matthijspals/neuromorphic-EEG
https://github.com/vlawhern/arl-eegmodels
https://github.com/vlawhern/arl-eegmodels
https://github.com/waseemabbaas/Motor-Imagery-Classification.git
https://github.com/waseemabbaas/Motor-Imagery-Classification.git
https://github.com/SulemanRasheed/EEG-HandGrasp-Classification
https://github.com/SulemanRasheed/EEG-HandGrasp-Classification
https://github.com/Mrswolf/alignment-methods-and-adabn
https://github.com/Mrswolf/alignment-methods-and-adabn
https://github.com/jesus-333/Dynamic-PyTorch-Net
https://github.com/jesus-333/Dynamic-PyTorch-Net
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Fig. 6: Distribution of different MI decoding paradigms.

(some studies also report other performance measures that are common in ML model
evaluation such as F'l-score, recall, and precision, yet as most MI datasets considered
have balanced class distributions, the main comparative measure in this review will
is the mean accuracy). Some studies have also reported Cohen’s kappa (k) values
alongside or instead of accuracy?.

4.1 2020-International-BCI

Being very recent, there are a few studies remaining after the screening process (only
five) related to the 2020-International-BCI dataset [35] with respect to other bench-
marking databases present in the literature (e.g., BCI Competitions datasets described
in Section 3). The related papers have been published in 2021 or 2022. The proposed
approaches mainly consider the use of CNNs [79, 82-84] to learn deep features and
address the multi-class problem of discriminating between different types of MI grasps:
cylindrical, spherical, or lumbrical.

Two out of five papers consider an SI approach [79, 82, 85]. In particular, Partovi
et al. [82] propose the use of a simple CNN, obtaining the best average accuracy
among the three SI works, but with a great variability (61.55 +16.23%). Instead, Han
and Jeong [85] employ transfer learning using a backbone residual network (ResNet)
obtaining an accuracy of 51.06 + 12.29%.

Yang et al. [79] considers both SD and SI paradigms, and provide their codes to
the research community (Table 4). The authors propose an end-to-end deep CNN

2Notice that the reported performance values have been denoted with the same decimal number precision
(i.e., two decimal numbers for the accuracy values and four for the k ones) for consistency. However, the
reviewed studies may provide their results with different precision.
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Fig. 7: Distribution of different MI decoding paradigms with respect to the identified
publicly available MI-EEG datasets.

combining EEGNet [86] and a temporal convolution network, achieving an average
accuracy of 56.73% for the SD approach and 55.24% for the SI one.

Considering the SD approaches, Kwon et al. [84] provide results considering the
use of intra- or inter-session data. The authors use the BBCI toolbox and openBMI
to pre-process the signals, and apply a data augmentation through the sliding win-
dow methodology. The achieved accuracy values are 69.68 + 10.10% intra-session and
52.76 4+ 12.23% inter-session. Instead, an accuracy of the 62.58% is obtained by using
a ResNet with a one-session-hold-out in the last SD work [83].

4.2 BCI Competition IT dataset III

For the left/right hand MI BCI-II-IIT [36], only studies using an SD paradigm have
been considered, having that it has been collected on a single subject. The screen-
ing resulted in 21 papers and besides some variations of standard NNs [87-92] or
CNNs [93-99] using either handcrafted or deep features extracted from raw signals or
their time-frequency images, works dealing with BCI-II-III and using less common
approaches are reported in finer details.

A data augmentation technique prior to classification is proposed by Zhang et
al. [100]. The authors create artificial EEG frames by swapping the intrinsic mode
functions obtained by the application of empirical mode decomposition. Moreover,
the data are transformed in tensors exploiting the Morlet wavelet transform and the
authors propose the use of a CNN and a wavelet neural network (WNN). Using a 5-
fold cross-validation (CV), the CNN and WNN models achieve an accuracy of 90.00%
and 85.20%, respectively.
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Other approaches consider the use of a temporal spatial CNN combined with
stacked autoencoders [101], or the use of a deep transfer learning Alexnet-based model,
while exploiting the feature extracted through continuous wavelet transform (CWT)
[102]. These two approaches obtained an accuracy of 90.60% and 96.43% (x = 0.9286),
respectively.

An ensemble approach using a factorization machine to combine models learning
features from multiple domains is proposed by Wen [103]. The author concatenates the
outputs of a common spatial pattern (CSP) plus linear discriminant analysis (LDA),
a WT plus CNN, and a long-short term memory (LSTM) model and inputs this
concatenation to the factorization machine. After 5-fold CV, 85.00% average accuracy
is achieved. A similar approach is related to a time- and frequency-domain dual-stream
CNN [104], which obtains 90.71% accuracy.

A novel approach is proposed by Malibari et al. [105], in which model comprises
(i) denoising through a multi-scale principal component analysis based algorithm,
(ii) CWT based decomposition, (iii) feature extraction through RetinaNet [106], (iv)
hyperparameter optimization through an arithmetical optimization algorithm, and (v)
the application of an ID3 classifier. The obtained accuracy is of the 86.53%. Another
use of DL models is presented by Salimpour et al. [107], who propose a CNN for deep
two-dimensional time—frequency maps feature extraction and consider a majority vot-
ing classification based on traditional ML techniques, e.g., support vector machine
(SVM), achieving 94.91% accuracy. Finally, an interesting case is represented by Xu et
al. [108] who consider a dual alignment-based multi-source domain adaptation frame-
work. The proposed approach has some promising characteristics, like the selection of
informative samples and the use of a multi-branch deep network, but it obtains only
a 69.45% accuracy.

4.3 BCI Competition III dataset IIIa

The BCI-III-II1a [37] collects the data recorded during a cue-based experiment of
left /right hand, tongue and foot MI. Only one out of 17 studies consider an SI approach
[109], which proposes a novel methodology for feature extraction by transforming
the EEG signal into the weight vector of an autoencoder. A one-vs-all strategy was
applied and a SVM classifier used to discriminate the MI conditions, achieving 95.33%
accuracy.

The remaining works employ an SD approach and consider the use of different DL
strategies. Accuracy values of 69.50% (x = 0.6950) with one-versus-rest validation on
the four-class task, 80.68%, 89.45%, 85.30% (x = 0.8040), and 91.85% using 10-fold
CV, are respectively achieved by a functional link NN [110], a Fisher discrimination
dictionary extreme-learning machine [111], a multi-frequency brain network where
each layer corresponds to a specific frequency band [112], a temporal constrained sparse
group Lasso regularization with EEGNet [113], and a spatial-frequency-temporal 3D
CNN model [114].

Data augmentation strategies are also proposed to complement the DL models,
starting from standard approaches like the sliding window method applied before using
one-vs-rest CSP and a CNN (91.90%) [115], or by adding noise to the data, before using
CSP and classifying with a CNN (88.89%, £ = 0.8519) [116]. A more complex strategy
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is proposed by Choo and Nam [117], who use CWT for image feature extraction,
augment the data through a deep convolutional generative adversarial network (GAN)
and use a CNN to perform the classification. Through 5-fold CV, the authors achieve
83.04% accuracy.

Another approach considers the modification of the images obtained by transform-
ing the EEG signal after having extracted features through quick-response eigenface
analysis [118]. A CNN is finally applied and an accuracy of 91.11% is obtained.

Another novel method considers the use of EEG zero-time windowing to track
sensorimotor rhythms temporally and extract features from them using CSP, before
using a CNN classifier (88.14%) [119]. Instead, Liu et al. [120] propose a bispectrum-
based hybrid NN and combine a CNN with squeeze-and-excitation modules obtaining
an accuracy of 74.44% considering the binary classification of left and right hand
MI. Among the studies presented in Table 5, the one by Ko et al. [75] reports
semi-supervised generative and discriminative adversarial learning. The authors devel-
oped three different GAN architectures exploiting deep recurrent spatio-temporal NN,
Deep and Shallow ConvNet [121]. Moreover, they consider different percentages of data
for training. By using the 75% data for training, the authors achieved the 79 & 9.00%
accuracy using Deep ConvNet (with semi-supervised generative adversarial learning).

Finally, the remaining studies consider the evaluation of spiking neural models
[122], the use of an ANN [123], the development of a multi-class support matrix
machine based on evolutionary optimization [124], and the use of LDA after the
application of a graph CNN [125].

4.4 BCI Competition III dataset IVa

The MI conditions (classes) presented by BCI-III-IVa [37] are three: left/right hand
and foot motor imagery. After the screening procedure, 46 studies remained, out of
which 34 use an SD paradigm, three consider an SI approach, two consider SD and
SI, five use TL approaches, one uses the global paradigm, one reports both SD and
global performances, and one reports TL and SD performances.

Starting from TL studies, Fahimi et al. [126] propose a deep convolutional gen-
erative adversarial network (GAN) for data augmentation and apply a CNN model
with a leave-one-out-subject transfer learning strategy. The discriminator receives
subject-independent samples and generated subject-dependent samples, alongside the
subject’s feature vector to predict the labels. The generator gets the subject’s fea-
ture vector and add random noise. Notice that BCI-III-1Va is used to test the model
trained on the authors’ proprietary dataset, obtaining 71.14% accuracy. Instead, Chen
et al. [127] start from an EEGNet structure, considering classification and domain
adaptation loss. Afterwards, they exploit the adaptation loss that has a class-wise and
a time-wise difference component between subjects. The devised model achieves an
accuracy of the 82.61%. Zaremba and Atyabi [128] consider cross-subject and cross-
dataset subject transfer settings, with the aim of (i) highlighting the effectiveness of
subject-transfer, and (ii) evaluating the hypothesis concerning the presence of unique
MI patterns. The authors apply a CNN and consider three experiments. The first con-
siders a baseline single trial EEG design with 5-fold CV. The second is a cross-subject
within-dataset subject transfer experiment. The third is a cross-subject cross-dataset
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subject transfer experiment. The final accuracy values are as follows: 85.0 4= 1.40% for
the first scenario, 85.0+1.4% for the second, and 85.8 +1.4% for the last scenario. Liu
et al. [129] propose a TL approach for subject adaptation using a CNN and acheive
a performance of 81.71 4+ 9.27%. Considering the binary classification of right hand
vs right foot, Theng and Atyabi [130] apply session- and subject-transfer, on the data
processed with wavelet transform. The authors use a CNN as the predictive model ad
achieves the best average single-trial accuracy (dbl0) equal to 70.28% and the best
average subject-transfer accuracy (db7) equal to 75.90%.

For the studies considering both SD and SI paradigms, strategies exploiting stan-
dard feed-forward NNs (FFNNs), multilayer perceptrons (MLPs), and CNNs have
been proposed and high performances are obtained by the authors of these works.
Firstly, [92] consider time and frequency features which are extracted using improved
empirical Fourier decomposition passed as inputs to a FFNN classifier. After 10-fold
CV, the model achieves 99.82% and 82.70% for the SD and SI paradigm, respectively.
Finally, Sadiq et al. [131] present a simple MLP with input features extracted from
empirical wavelet transform and reduced by dimensionality reduction methods. The
model obtains 100% and 97.80% for the SD and SI paradigm, respectively.

Considering the global paradigm, Zhang et al. [132] use a spatio-temporal CNN
architecture and achieve an accuracy of 85.32 & 3.00% using 10-fold CV. Moving to
the studies using the SI approach, a CNN-based framework achieving an SI 94.66%
accuracy is proposed by Ortiz-Echeverri et al. [133], while an MLP-based model with
entropy and energy features achieves a performance of 81.71 + 9.27% [134]. Autoen-
coders are also exploited to provide features for random forest classifiers, achieving
99.92 £+ 0.08% accuracy [135].

Balim et al. [136] apply a constant-Q time-frequency transform to better detect
the energy variations in low frequencies. Afterwards, they concatenate the images
obtained on each channel and feed them to a CNN. Again, 10-fold CV is applied and
the following results obtained: 76.80 4 4.80% and 77.30 4 1.60% for the SD and global
paradigms, respectively.

Regarding the SD studies, considering their numerosity (34 studies), a more
detailed description will be provided only to works using novel DL strategies or report-
ing higher accuracy values compared to the majority of the studies. For example, a
very high accuracy (99.35%, k = 0.9869) has been obtained by Chaudhary et al. [137]
considering the binary classification of right hand vs right foot MI. The authors pro-
vide time-frequency image representations of the EEG signals using CWT and inputs
them to a CNN model, considering 80% of the data for training. Another binary clas-
sification is performed by Stephe and Kumar [138], who propose a deep generative
adversarial network and obtain 95.29% accuracy.

The semi-supervised generative and discriminative adversarial learning models pro-
posed by Ko et al. [75] and presented in the BCI-III-IIla dedicated Section 4.3 are
also used on BCI-III-IVa and achieve around 77 £ 9.00% accuracy considering the
application of Shallow ConvNet in the semi-supervised generative adversarial learn-
ing scenario. Instead, Sadiq et al. [139] propose a pipeline comprising a multiscale
principal component analysis for denoising, the 2D modeling of the modes obtained
by empirical wavelet transform, the extraction of geometrical features, and a cascade
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FFNN obtaining 95.30% accuracy. Dokur and Olmez [116] augment the dataset with
noise, afterwards apply CSP and feed the CSP features to a CNN. The output of the
CNN is compared to a predetermined Walsh matrix to predict the class. The final
classification accuracy reported is 98.50% (xk = 0.9700).

Particular proposals are presented by Jin et al. [140] and Lin et al. [141]. In the
first study, the authors create a graph for each EEG signal based on mutual informa-
tion and the distance between electrodes and between different classes. Afterwards,
they use a special CNN that converts graphs into embeddings and performs convo-
lution. The output of the CNN is given to a fully-connected layer for classification.
After 10-fold CV, their proposal achieves a 95.94 4+ 4.4% accuracy. The second study
adopts a simplified distributed dipoles model. Firstly, the signals are filtered in mul-
tiple sub-bands, and are ranked based on average energy. Afterwards, the sSLORETA
algorithm [142] is applied to assign a dipole to each of the obtained top sub-bands in a
simplified brain cortex model. Afterwards, 68 scouts (regions of interest in the brain)
are created with a 3D coordinate and time series. For each N top scout and the cor-
responding coordinates, a 3D CNN is trained. Finally, the resulting features are fused
and classified, obtaining an accuracy of 97.98 &+ 0.82% (x = 0.9596) after 10-fold CV.

DL models are also used to learn features that are provided as inputs to traditional
ML algorithms. In fact, a CNN model is used to extract features before performing the
classification through an ensemble SVM-based voting system (96.34% accuracy) [143].
Another example is represented by the use of a graph CNN prior to LDA application
(89.14% accuracy) [125].

For completeness, other approaches using an SD paradigm considered the eval-
uation of spiking neural models [77], a multi-kernel extreme-learning machine [144],
and a Fisher discrimination dictionary extreme-learning machine (ELM) [111]. Other
proposals regard models based on CNN architectures using tensor-based feature rep-
resentation through wavelet transform and tensor discriminant analysis [145], CWT
image features after data augmentation through deep convolutional GAN [117], CSP
features after EEG zero-time windowing [119], or spatial-spectral-temporal [146],
spatial-frequency [147], time-frequency [148-151], or frequency features [152] as inputs.
CNNs are also proposed in combination with an autoencoder [153] or considering
benchmark models like the Shallow ConvNet [154]. Other deep architectures are a
spatial-frequency-temporal 3D CNN [114], a brain-area-recombination EEGNet-based
model [65], a bispectrum-based hybrid NN where a CNN is combined with squeeze-
and-excitation modules [120], a temporal-rearrange based MI-EEG network called
TRMINet [155], an AlexNet [156] based CNN [157], a MLP preceded by a GAN
data augmentation [158], and a FFNN applied after channel and neuron number
selection [159]. Deep NNs presenting LSTM layers and considering time-frequency
auto-regressive domain features are also present among the screened studies [160-162].

4.5 BCI Competition III dataset IVb

BCI-III-IVb [37] presents recordings collected during the MI of left hand, right foot,
and tongue. Only five studies remain after screening and present some basic architec-
tures, where the one by Sadiq et al. [131] presented in the previous Section 4.4, is the
only work using both SD and SI paradigms, and others work on the SD paradigm. The
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accuracy values obtained by the MLP model fed with the reduced empirical wavelet
transform features are equal to 100% and 92.20% for the SD and SI approaches, respec-
tively. Considering the SD paradigm, the same group of authors [159] achieve 99.52%
accuracy by applying a FFNN after 10-fold CV.

Other approaches consider the application of an adaptive neuro-fuzzy inference
system [87], and the use of an AlexNet-based CNN [157]. A more complex procedure
is proposed by Yu et al. [92] who apply multi-scale principal component analysis for
denoising, and improved empirical Fourier decomposition to obtain different modes,
before inputting the data into a FFNN. The 10-fold CV obtains 93.33% accuracy.

4.6 BCI Competition 1II dataset V

The motor imagery experimental paradigm considered by BCI-III-V [37] consists of
the left and right hand imagination. Of the seven (all SD) related studies, some basic
approaches proposed for other datasets [92, 122, 157, 159] are present and achieve
62.90 + 2.60% (spiking neural models), 99.33% and 88.08% (FFNNs), and 89.90%
(AlexNet-based CNN) accuracy, respectively.

Other methodologies rely on simple architectures based on LSTM given power
spectral density and CSP features (68.51% accuracy) [163]. Tiwari et al. [164] pro-
pose MIDNN;, which is a deep neural network (DNN) devised to detect left and right
hand MI. The authors divide the signal in different frequency sub-bands by band-
pass filtering the data, and compute the power spectral density. The final accuracy
value reported is equal to 82.48%. Finally, Sadiq et al. [165] propose the exploitation
of pre-trained networks and provide the time-frequency representations of the signals
through CWT. Different CNN architectures are applied and the authors obtain the
best accuracy (97.77%) with ShuffleNet [166].

4.7 BCI Competition IV dataset 1

The MI conditions considered by BCI-IV-1 [38] vary among subjects, having that
the subjects had the option to choose two conditions among left /right hand and foot
MI. Among the 16 studies remaining after screening, one considers both SD and SI
paradigms, three presents a TL approach, and the rest work on the SD paradigm.

Yang et al. [167] propose the use of a multi-layer CNN to spatially represent the
data. The invariant spatial representations are extracted by considering inter-subject
training with a spatial autoencoder. Notice that the signals are divided in segments
of 2s with 0.5s overlap. The final reported accuracy are equal to 85.10% and 84.70%
for the SD and SI paradigm, respectively.

A few studies [128-130] consider the use of TL strategies (see Section 4.4 for details
of these models). Liu et al. [129] obtains an accuracy of 79.35 £ 12.01%. Instead,
Zaremba and Atyabi [128] approach using cross-subject and -dataset subject transfer
achieves accuracy values of 83.20+1.50% in the single-trial EEG design, 82.20+1.90%
in the cross-subject within-dataset experiment, and 84.40 4+ 1.80% in the cross-subject
cross-dataset scenario. Also, Theng and Atyabi [130] achieve final accuracy values of
67.12% on the single-trial experiment, and 73.20% on the subject transfer experiment
in the TL paradigm.
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Concerning the remaining SD works (12 papers), some studies consider the use of
FFNNs, or standard CNNs [168-173].

Kumar et al. [56] make their codes publicly available (see Table 4) and use the
OPTICAL predictor. This method combines CSP and LSTM to extract features that
are reduced via LDA and are given to an SVM for classification. After 10-fold CV,
82.52+8.17% accuracy (k = 0.6500) is obtained. Another proposal [125] regarding the
use of DL strategies before classification, applies a graph CNN to provide a channel
selection based on brain activity. Afterwards, CSP and LDA are used to extract fea-
tures and classify the resulting data. The accuracy achieved after 10-fold CV is equal
to 79.76%.

Instead, Wu et al. [174] propose TransEEG, which is a hybrid network exploiting
convolutional operations and self-attention mechanisms. The main aim is to model
both local and global dependencies for EEG signal processing by exploiting a CNN
encoder and three transformer blocks (with graph embeddings). The final reported
accuracy is 77.404+6.00%. Han et al. [175] use a parallel CNN considering the data col-
lected only on subjects performing left/right hand MI, and obtain a 84.50% accuracy
(k = 0.6900).

Concerning the remaining SD studies, a bispectrum-based hybrid NN [120] achieves
73.25% accuracy. Finally, Ou et al. [155] obtains 73.14% using a temporal-rearrange
based MI-EEG network based on the Shallow ConvNet model.

4.8 BCI Competition IV dataset 2a

BCI-IV-2a [38] is widely used as a benchmark dataset to test novel processing and
classification approaches. Having that the remaining studies after screening are 228 and
wanting to avoid an extremely lengthy section, BCI-IV-2a entries have been treated
as follows:

1. Priority is given to the studies that report publicly available codes (whose reference
are presented in Table 4 and Table 5).

2. The remaining entries are divided per paradigm (i.e., SD, SI, both SD and SI, and
other mixed approaches, if any).

3. The works that have novel approaches among the top 20 in terms of accuracy are
presented with a higher level of detail.

4. The remaining papers are clustered by DL approach and further details are provided
only for novel proposals.

Notice that the highest reported accuracy referred at point No. 3, may not be directly
compared in all the cases, due to the presence of different performance evaluation
strategies (e.g., hold-out or k-fold cross-validation). However, the studies resulting
from this ranking procedure are discussed, specifying the validation method, when
present. Considering this analysis flow, 16 studies report available codes, 168 use an SD
approach, 29 a SI one, 15 employ both paradigms, and the remaining papers consider
TL strategies or other types of approaches.

26



4.8.1 Studies reporting available codes

Observing, the code links and references reported in Table 4 and 5, 16 out of 27
table entries use BCI-IV-2a [57, 60, 61, 63, 66, 68-71, 73-75, 77, 78, 80]. Notice that
regarding Uyulan [54] work, Python codes are included in the paper appendix. Starting
from this study, the author proposes the application of principal component analysis
for noise removal and afterwards performs classification using a DL model composed
by a 1D CNN integrated with a LSTM. Applying 10-fold CV, the author obtains
95.62 + 1.23% accuracy with an SD approach.

Salami et al. [77] consider an SI paradigm and propose FEG-ITNet, an explain-
able Inception temporal convolutional network that achieves 76.74 4- 11.48% accuracy
after 10-fold CV. Ko et al. [75], described in Section 4.3, reports an accuracy of
66 + 14.00% using Shallow ConvNet with their semi-supervised generative adversar-
ial learning strategy, in an SD configuration. This paradigm as well as the SI one are
applied in another study [70] using a physics-informed attention temporal convolu-
tional network. The final achieved accuracy values are equal to 85.38% and 70.97%
for the SD and SI paradigm, respectively.

Zhang et al. [60] propose a graph based convolutional recurrent attention model.
The EEG spatial information is modeled through a graph, and subsequently a convo-
lutional recurrent attention model is deputed to learn temporal and spatial features.
Using an ST approach with a LOSO validation, the authors obtain a best average accu-
racy of 60.11 £ 9.96% considering an N-Graph. Instead, Song et al. [78] consider a
data augmentation step previous to the application of the proposed EEG Conformer,
which is a compact convolutional transformer composed by 1D temporal and spatial
convolution layers, a self-attention module, and fully-connected layers. Considering
an SD paradigm, the model achieves 78.66% accuracy. Another approach [74] pro-
poses a CNN-based classification with fuzzy fusion and obtains 67.93 & 0.13% and
53.28 & 0.16% accuracy for the SD and SI paradigm, respectively.

Faria et al. [73] are particularly interested in testing different data augmentation
approaches (i.e., sliding window, segmentation and recombination, empirical mode
decomposition, noise addition, and amplitude perturbation) and consider within- and
cross-session EEGNet classification for a same subject. The authors obtain 70.80 +
14.80% and 80.80+15.30% accuracy, considering the multi-class and binary (left/right
hand MI) classification problems. Auttahasan et al. [61] propose MIN2Net, a model
that exploits end-to-end multi-task learning, integrating deep metric learning into a
multi-task autoencoder. This allows to provide an efficient representation of the EEG
signals and classify them at the same time. The model achieves 65.23 4= 16.14%, and
60.03 +9.24% accuracy for the SD and SI approaches, respectively.

Instead of proposing a novel architecture, Zancanaro et al. [69] design DynamicNet,
a tool to develop CNN-based DL models in a quick and flexible manner, and their
best average achieved accuracy is of the 70% for the left/right hand MI classification
task. Considering the multi-class problem, 67.88 4 1.19%, 72.50 4 1.80%, 59.35 +
1.97% accuracy values are obtained by using an SD paradigm, applying an SI strategy
considering all the subjects test data for testing, or a LOSO validation. Jia et al. [63]
focus on a strategy that can avoid signal preprocessing, while considering the inter-
subject and time-variability. Therefore, the authors propose a multi-branch multi-scale
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CNN and verify that considering a greater number of channel usually provides more
information to classify the EEG data. Their model achieves 81.40 4+ 1.17% in an SD
configuration. Instead, accuracy of 59.20% and 69.20% are obtained by a temporally
adaptive CSP NN (10-fold CV) [57] and by a multi-band 1D CNN [80], respectively.

A more complex approach is proposed by Xu et al. [68]. The source dataset is
used to train EEGNet and Shallow ConvNet considering four preprocessing strategies,
i.e., channel/trial normalization and Euclidean/Riemannian alignment. Afterwards a
transfer performance is applied on the target datasets using the pre-trained networks.
Interval co-variate shift is reduced with adaptive batch normalization. Notice that
the performance models were evaluated using a 5-fold stratified sampler and consid-
ering a random trial division as follows: training (60%), validation (20%), and test
(20%) set. Moreover, three experiments were performed: (1) withing-subject classifi-
cation, (2) cross-dataset classification, and (3) baseline comparison. The considered
datasets are BCI-1V-2a, Cho2017, eegmmidb, and Weibo2014. Concerning BCI-1V-2a,
the within-subject best accuracy (around 89%) is achieved using EEGNet with Rie-
mannian alignment. Instead, the cross-dataset experiment obtains the best accuracy
78.8% using as source dataset eegmmidb and EEGNetv4 with Euclidean alignment and
adaptive batch normalization. A high accuracy (81 & 7.90%) is also achieved by con-
sidering a simple LSTM model taking CSP features as input [66]. Finally, Chen et al.
[71] study describes a meta transfer learning with a symmetric positive definite CNN
architecture and fine-tuning the model for each subject obtains an average accuracy
of 47.44 4+ 4.10%.

4.8.2 Studies using a subject-dependent paradigm

Remind that, given the large number of papers in this paradigm, the papers with the
highest reported accuracy (as introduced at the beginning of Section 4.8) are reported.
Afterwards, papers with novel and interesting approaches according to the authors’
perspective are discussed.

Starting from the top 20 studies, the reported results span from 89.68% to 99.96%
accuracy. Jayashekar and Pandian [176] use CSP and a CNN to extract features, and
afterwards classify the data using a multi-SVM obtaining 89.68% accuracy. Lee et al.
[177] focus on the data dimensionality problem and propose a data-driven data aug-
mentation based on ensemble empirical mode decomposition. Moreover, the authors
exploit filter bank CSP (FBCSP) [22] and CNN for classification. The best average
accuracy (91.24 +5.67%) is achieved by augmenting of five times the original dataset.

Kim et al. [178] employ a sequential transfer learning approach obtaining 91.34 +
5.45% accuracy, while [179] propose a novel lightweight feature fusion network based
on an attention mechanism and tensor decomposition. The authors augment the
data through an enhance-super-resolution GAN and obtain 91.58% accuracy. Instead,
Kambhi et al. [180] focus on finding the best hyperparamter through Bayesian optimiza-
tion for the CNN average ensemble strategy they devised and obtain 92% accuracy.
A similar value (92.40%, with 50% training data) is also achieved applying FBCSP
before using an artificial neural network (ANN) for classification [181], or exploiting a
depth separable convolution bidirectional convolution LSTM model based on an atten-
tion mechanism (92.60% accuracy) [182]. The use of an attention mechanism is also
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proposed by Lashgari et al. [183] using a CNN-based model, which achieves 93.60%
accuracy. A simpler classifier is instead considered by Ferreira et al. [184], who extract
features through wavelet energy spectrum and average power with discrete Fourier
transform, and then apply a simple MLP (94.06 + 1.37%).

Another simple approach [185] employs features computed through continuous
wavelet transform and CSP as inputs to a CNN, obtaining 94.44 +2.18% accuracy for
the binary classification of left/right hand MI. Instead, Li and Ruan [141], described
in Section 4.4 and which proposed a simplified distributed dipole model exploit-
ing LORETA, achieving 94.53% accuracy applying a 10-fold CV. A similar result is
achieved by applying non-negative matrix factorization and a CNN classifier obtaining
94.58% accuracy (and 99.53% accuracy considering left/right hand MI only) [151].

Wankhade and Chorage [186] propose RideNN classifier, a NN using the rider
optimization algorithm and receiving in input the feature extracted by CSP, tunable
Q-wavelet transform, and holo-entropy based wavelet packet decomposition. The final
achieved accuracy is equal to 95.32%. Judith et al. [187] obtains 96% accuracy provid-
ing a two phase classification starting from the use of an ANN and finishing with the
application of an adaptive SVM. Another approach [188] considers the selection of an
optimal frequency band to better characterize the EEG data computing the energy
in different sub-bands through discrete wavelet transform. Power spectral density is
used to extract features, while a visual geometric group network based CNN achieves
96.21% accuracy (augmenting the data through the sliding window methodology). Sun
et al. [189] propose an end-to-end deep learning framework called EEG channel active
inference NN, based on graph CNNs. The authors main aim is to exploit temporal and
spatial domain correlations. Notice that the model architecture is composed as fol-
lows: temporal feature extraction module, channel active reasoning module, repeated
in sequence for other two times, plus a final temporal feature extraction module, fol-
lowed by a flatten and softmax layer. Moreover, it has been tested only on the left /right
hand MI conditions to allow comparison with their proprietary dataset. The proposed
framework obtains 96.90 & 3.50% accuracy.

Choi et al. [118] create multiple images for each EEG signal and use quick-response
eigenface analysis for feature extraction. Data augmentation is applied before using
a CNN for classification, obtaining 97.87% accuracy. A data augmentation strategy
based on linear interpolation is instead proposed by Li et al. [190], who use a plain
CNN to achieve 98.23+1.60% accuracy (10-fold CV). Balmuri et al. [191] focus on the
use of an enhanced grasshopper optimization algorithm for optimum statistical feature
selection and apply an extreme learning machine (ELM) to obtain 99.12% accuracy. A
similar value (99.40%) results from a cascade network composed of a CNN and a gated
recurrent unit (GRU) [192], while 99.96 + 0.04% accuracy is achieved by classifying
the data through a random forest algorithm, after having used an autoencoder for
feature extraction [192].

Besides these (accuracy-based) top 20 studies, some other works present peculiar
approaches and/or analyses. Starting from papers reporting Cohen’s kappa (k) as the
only performance measure, Razzak [124] proposes the use of a multi-class support
matrix machine based on evolutionary optimization, achieving a x value of 0.6560
(5-fold CV), while Chen et al. [193] propose a semi-supervised DL approach based
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on a stacked variational autoencoder, obtaining x = 0.6300 (70% data for training).
Instead, Liu et al. [194] consider frequencies in the range 4-38 Hz and propose a spatial-
spectral feature learning neural network to improve the FBCSP feature separability
(k = 0.7000). Another work uses a spatio-temporal CNN with residual connections,
achieving £ = 0.4500 (10-fold CV) [195], while also considering the possibility of
analyzing the learned network weights from a neurophysiological point of view, and
thus observing MI-related neural patterns.

Another couple of peculiar works are the ones by Jin et al. [140] and Wang et al.
[196]. In the first study, as described in Section 4.4, the authors propose the generation
of graphs for each EEG signal and then converts them into embeddings to feed to a
CNN. After 10-fold CV they achieve 92.47 +11.50% and 90.33% accuracy considering
the binary classification of left/right MI and all the experimental conditions, respec-
tively. Instead, Wang et al. [196] perform the binary classification of all the different
combinations of the dataset tasks using a variational sample-LSTM. Their proposal
obtains an average binary accuracy value of left vs right hand, left hand vs foot, left
hand vs tongue, right hand vs foot, right hand vs tongue, and foot vs tongue equal to
92.52%, 94.72%, 94.34%, 94.31%, 95.33%, 96.44%, respectively.

Virgilio et al. [197] employ a spiking neural network and provide two experiments:
(i) considering input features with constant values, and (ii) considering input features
with temporal information. The classification task consider binary combination of rest,
left /right hand, foot, and tongue MI. The average accuracy on all the classification
tasks is 81.36%. Sorkhi et al. [198] use multi-scale FBCSP to extract features and
propose a model based on compact CNN plus a LSTM, which hyparameters are tuned
by applying Bayesian optimization. The model achieves 89.26% accuracy. Instead, Li
et al. [199] consider the use of fast Fourier and Clough-Tocher interpolation to generate
the spatio-frequency images, which are fed to a modified VGGNet obtaining 88.87%
accuracy (k = 0.7800).

A new approach is provided by Zhang et al. [200], who propose EEG Inception, i.e.,
a CNN architecture based on an inception-time network. The model achieves 88.39 4
7.06% accuracy considering a data augmentation step, which exploits data over 100
Hz to add noise between trials. Another novel proposal is a multi-level generative deep
learning based methodology [201]. A deep belief network model composed by multiple
basic restricted Boltzmann machine blocks as well as a stacked sparse autoencoder
model consisting of different stack autoencoder blocks are considered. The best average
accuracy is achieved with the stacked sparse autoencoder and is equal to 87.99%.

Bang et al. [202] consider first pre-defined and subject-optimized (using mutual
information) filters. Then create a 3D normalized sample covariance matrix from the
filter outputs and pass them as inputs to a 3D CNN, which reconstructs the feature
map that are visualized topographically. The author use a hold-out validation strategy
and obtain 87.15+7.31% accuracy. Instead, the use of an Euclidean data alignment as
a preprocessing method and a multi-scale CNN with a TL approach achieve 86.03 4+
0.55% accuracy [203].

Xue et al. [112] consider multi-frequency brain network already applied on BCI-
III-IITa (Section 4.3) obtains 83.83% accuracy; similarly, Musallam et al’s [204]
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TCNet-Fusion achieves 83.73% accuracy. TCNet-Fusion is a fixed hyperparameter-
based CNN model that exploits temporal convolutional networks, separable and
depth-wise convolution, as well as layer fusion. In Altuwaijri and Muhammad [205], the
authors use fusion multi-branch EEGNet with convolutional block attention module
and knowledge-driven feature component [206] to achieve 83.68% and 88.63% accuracy,
respectively.

Yang et al. [207] propose a 3D representation of the data and exploit a two-branch
(spatial and temporal feature learning branches) 3D CNN. Also, the authors introduce
a 3D data augmentation based on cyclic translation in the time dimension and obtain
83.20 £ 11.52% accuracy. 83% and 82.87% accuracy are instead achieved by a time-
contained spatial filtering and spatial-temporal analysis network [208], and a multi-
branch EEGNet with squeeze-and-excitation blocks [209], respectively.

Zhang and Yang [210] introduce an adaptive layer into the fully connected layer
of a deep CNN. This new layer objective function considers the minimization of the
local maximum mean discrepancy, the prediction error and the distance within each
class, while maximizing the distance between classes within each domain. Applying
10-fold CV for ten times, the proposed model achieves a best average accuracy of the
82 + 0.13%. Yang et al. [211] focus on improving the feature vector by proposing a
discriminative feature learning strategy. Notice that a CNN framework including a cir-
cular translation data augmentation is applied and 81.854-10.15% accuracy achieved.
Instead, Hong et al. [212] propose a dynamic joint domain adaptation network based
on adversarial learning strategy to learn domain-invariant feature representations. The
source domain is represented by the session 1 data, while the target domain the session
2 ones. The final obtained average accuracy is equal to 81.52%.

Another use of DL models is proposed by Chen et al. [213], who consider a multi-
attention CNN for feature extraction and tune it by inter-session discriminator loss
to reduce inter-session variability. Notice that the features are given to another layer
of the CNN for classification, which achieves 81.48% accuracy (x = 0.7530). Gao et
al. [214] also focus on features and augment them by considering the combination of
a GRU and a CNN. The classification is performed by a simple ANN and obtains
80.70% accuracy (k = 0.7400).

A densely feature fusion CNN achieves 79.90% accuracy [215], which is also
obtained by a multi-scale fusion CNN based on an attention mechanism that also
extracts spatio-temporal multi-scale features [216]. Instead, He et al. [217] develop S-
CAMLP-Net to predict next EEG segments using a self-supervised learning approach.
This mechanism consists of a 1D CNN encoder, and LSTM and convolutional lay-
ers. The weights of the encoder are given to a downstream classification task encoder.
Afterwards, a channel attention MLP mixer and an ANN classifier are applied. The
authors obtain 79.43 4+ 1.73% accuracy with 5-fold CV. Another interesting approach
is proposed by Huang [218]. The author focuses on the fact that CNNs are generally
unable to handle the low SNR of EEG signals and thus proposes a novel residual shrink-
age block to construct a CNN model called RSBConvNet. Moreover, this work verifies
the denoising efficacy of the model and applies both trial-wise and trial-cropping
classification strategies. An accuracy of 79.17% is achieved considering a one-vs-rest
classification of the multi-class problem.
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The best average results obtained by Wang and Li [219] is equal to 77.54% (10-
fold CV). The authors propose a channel importance based image method (called
CIBI) by computing the power in the 8-30 Hz range for each channel with discrete
Fourier transform. The power is given in input to a random forest algorithm to find
channel contributions considering the p and S activity. Time-frequency images are
then generated and fed to a dual branch fusion CNN. Instead, Ju and Guan [220]
propose a model called Tensor-CSPNet, which is a geometric DL framework trying to
model the temporal, spatial and frequency patterns of EEG data. In particular, this
framework consists of a tensor stacking stage, the use of CSP, the application of a
temporal convolution, and the classification. Considering a 10-fold CV strategy and
an hold-out validation, the model obtains 74.92414.63% and 72.96+14.98% accuracy,
respectively.

Another interesting approach is proposed by Liao et al. [221], who consider three
DL models that are adaptations of Shallow ConvNet: (i) multiple-local spatial con-
volution, (ii) global spatial convolution, and (iii) a parallel architecture combining (i)
and (ii). Moreover, the authors consider a topographical representation of the EEG
signal and augment the data by using a cropping and voting approach (sliding win-
dows of length 2s, obtaining 74.6% using session 1 as the training data and session 2
as the test ones). Liu et al. [222] propose a SincNet-based hybrid neural network to
improve the use of EEG information. The EEG signal is segmented and CSP applied.
SincNets are used as filter bank bandpass filters, while the sparse representation of the
data is obtained by a squeeze-and-excitation block. A CNN is used for deep feature
representation and 74.26% accuracy achieved. Instead, Ling et al. [223] apply CWT
using a Bump wavelet and generate time-frequency images of the various signals for
each channel. A VGG-16 network is used and binary classifications deriving from the
combination of the different conditions are considered, obtaining an average accuracy
of 68.33 + 12.75%.

Zou et al. [224] propose a combination of broad learning and CSP, where broad
learning is defined by the authors as "an effective and efficient incremental learning
algorithm with simple neural network structure”. The average accuracy is equal to
66.91%. Instead, Xu et al. [225] focus on different feature extraction strategies and pro-
vide deep multi-view feature learning through the usage of a deep restricted Boltzmann
machine network improved by t-distributed stochastic neighbor embedding. SVM is
used to classify the deep-learned features, obtaining 78.51% accuracy.

Other works propose a dual alignment-based multi-source domain adaptation
framework [226], a temporal-spectral-based squeeze-and-excitation feature fusion net-
work [227], a temporal constrained sparse group Lasso regularization with EEGNet
[113], a multi-scale convolutional transformer [228], and a natural evolution opti-
mized DL method [229]. Other studies provide a combination of a feature-level graph
embedding method with EEGNet [230], a temporal spatial convolution neural network
fused with mutual information [231], a multi-domain CNN that learns subject-specific
and electrode dependent features (time, spatial and phase domain) [232], a mutual
graph network [233], and a filter bank Sinc-ShallowNet, while augmenting the data
through an empirical mode decomposition based mixed noise adding methodology
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[234]. Other works propose a CNN combined with bidirectional GRU [235], a channel-
wise convolution with channel mixing [236], an auxiliary multi-scale input CNN [237],
a CNN-LSTM combined with a dynamic channel selection approach based on Davies-
Bouldin index [238], a deep adversarial domain adaptation with few-shot learning
model [239], and a DL method based on multi-task learning composed by represen-
tation, reconstruction and classification modules [240]. Moreover, some authors use
publicly available architectures like InceptionV3 [241], Shallow ConvNet and/or EEG-
Net [242, 243], and consider the combination of CNN and Riemannian geometry
[244].

Other studies consider the use of ANNs [90, 110, 245-253], different CNN models
[94, 104, 116, 119, 125, 146, 150, 154, 209, 247, 251, 254-304] that could present
a TL mechanism [130], LSTM architectures [305-307], and a combination of CNN
and LSTM models [308-311] or MLPs [312]. Moreover, some attention mechanisms
are sometimes considered when proposing different DL models [313-318] as well as
self-supervised learning [319], ELMs [111, 320], or neuro-fuzzy classifiers [321].

4.8.3 Studies using a subject-independent paradigm

Similar to Section 4.8.2, Starting from the top 20 studies, the reported results span
from 74.75% to 99.96% accuracy. Zhao et al. [322] presents a deep representation-
based domain adaptation method, which is constituted by modules deputed to feature
extraction, classification and domain discrimination, achieving an accuracy of 74.75%.
Instead, Lee et al. [323] propose a lightweight EEG-inception squeeze-and-excitation
network constituted by a depth-wise convolution to learn channel-wise features and
squeeze-and-excitation blocks to manage such features. In fact, the authors’ main aim
is to decode channel-wise dependencies while having a small network. They use a 10-
fold and a 5-fold CV for the training and evaluation data, respectively, and finally
obtain 76.52% accuracy. Simpler methods appear in the next positions after this
method. Machida et al. [324] use a CNN for classification after employing a transposed
convolution as a pre-processor to set the window width and number of output fea-
tures, achieving 77.83% accuracy. An accuracy of 78% is instead obtained by avoiding
subject-specific model selection through the application of highway networks [325]. A
similar result (78.38% accuracy) is obtained by Zhang et al. [326], who propose a fil-
ter bank Wasserstein adversarial domain adaptation framework. Notice that feature
extraction is performed through a filter bank CNN model.

Siamese NNs obtains 79.05% accuracy considering the experimental conditions in
pairs, while 80.07% accuracy is obtained using 5-fold CV on the left/right hand condi-
tions performing analyses of continuous asynchronous on-line application of EEGNet
[327]. Instead, Zhang et al. [328] propose a hybrid deep neural network (CNN plus
LSTM to decode spatial and temporal features) using transfer learning. The authors
want to fine-tune the parameters for a single subject at a time and obtain 81% accu-
racy. Lian et al. [329] apply a Shallow ConvNet and a BiLSTM achieving 82.704+5.57%
accuracy. Similarly, Amin et al. [316] consider firstly an attention-based Inception
CNN to model spatial information, and then apply a BILSTM to exploit the temporal
ones. The best average accuracy is equal to 82.80%. An accuracy of 83.43 +12.06% is
instead achieved by using CSP and a domain adversarial NN [330].
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Xie et al. [331] combine a LSTM GAN with a multi-output CNN, obtaining 83.99%
accuracy, while a very similar result (84.00% accuracy) is achieved by a temporal
attention convolutional network [332]. The use of a data augmentation step is also
presented by Li et al. [333], who obtain 86.12% accuracy by considering multiple spatial
convolution kernels and sliding windows of 500 samples with step 20 samples on all the
data (5000 entries for the test set). Instead, Jeong et al. [334] apply a subject-transfer
decoding method based on a CNN. The CNN is pre-trained with other subjects’ data
and fine-tuned on the target subject. Notice that the authors augment the data of
the 50% and propose a multi-model CNN concatenating a Shallow ConvNet, a Deep
ConvNet and an EEGNet. Using session 1 for training and session 2 for testing, the
authors obtain 86.54 +7.78% accuracy with subject-transfer. A similar result (86.80%
accuracy) is achieved by a temporal and channel attention convolutional network
[335], while 92% accuracy is obtained through a hybrid neural network consisting
of a CNN followed by a LSTM [336]. Phadikar et al. [109] previously (Section 4.3)
presented methodology based on the extraction of features through an autoencoder
and a classification with an SVM achieves 97% accuracy. Similarly, Samanta et al.
[135] use an autoencoder for feature extraction and random forest for classification,
obtaining 99.96 + 0.04% accuracy.

Considering other interesting works outside of the accuracy ranking, Zaremba and
Atyabi’s approach [128], described in Section 4.4, and tested on numerous datasets,
achieves 73.80 £ 1.30% accuracy considering a single-trial EEG. Moreover, it obtains
71.80 £+ 2.06% and 67.20 & 2.10% accuracy considering cross-subject within-dataset
and cross-subject cross-dataset configurations, respectively.

Other studies propose an ensemble of CNNs [337], consider a signal alignment
before performing CNN regularization [338] or a transfer learning strategy [51], a semi-
supervised framework combining self-supervised contrastive learning and adversarial
training [339], a two layers FFNN [340], or a supervised autoencoder [341].

4.8.4 Studies using both a subject-dependent and -independent
paradigm

In this case, all the 15 studies remaining after screening will be reported without
applying any kind of ranking. Details are not provided for works exploiting standard
architectures, i.e., using simple CNN variations [342-345].

Considering the other studies, Jia et al. [346] propose a novel metric-based spatial
filtering transformer and apply EEG pyramid for data augmentation. In particular,
their model achieves 86.11% accuracy for the SD scenario, 61.92% for the SI one.
Moreover, the authors train the feature extractor with BCI-IV-2a and fine-tune the
classifier with BCI-IV-2b obtaining 83.38% average accuracy. Instead, Yacine et al.
[347] develop ARK-ANN, a novel adaptive Riemannian kernel ANN, where a MLP
classifies the covariance matrices of the EEG signals related to the MI tasks. The
model achieves 87.40% and 77.30% for the SD and SI paradigm, respectively. Notice
that for the SI case, a LOSO validation is applied. Another approach [348] considers
a CNN with an end-to-end serial-parallel structure and afterward applies a transfer
learning strategy, obtaining 72.13 + 12.79% for the SD paradigm (10-fold CV) and
56.02% with transfer learning for the SI paradigm.
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Another proposal is provided by Milanes et al. [349], who develop an ensemble
Shallow ConvNet using a Monte Carlo dropout to ameliorate the classification and
provide uncertainty estimation. The final achieved accuracy values are 80.46% and
69.76% for the SD and SI paradigm, respectively. Bria et al. [350] propose a novel DL
model called Sinc-EEGNet. They design it with four layers combining FBCSP and
EEGNet. The first layer is set to use parameterized sinc functions that implement
band pass filters. Notice that for the cross-subject experiment, the data are normalized
using Z-score. Moreover, a LOSO validation is applied, considering only the training
data of the subjects diverse from the target one for the training set, and the test data
of the target subject for the test set. The SD paradigm obtains 70.56% accuracy, while
the SI one 58.98%. Another novel proposal develops an attention-based 3D densely
connected cross-stage-partial network model based on CNN [351]. The model achieves
84.45% and 64.53% accuracy for the SD and ST (LOSO validation) paradigms. Instead,
Wang et al. [352] use one dimension-aggregate approximation to provide a suitable
representation of the EEG signals to LSTM networks. They also consider the dataset
conditions in pair, performing binary classifications: right vs left hand, left hand vs
feet, left hand vs tongue, right hand vs feet, right hand vs tongue, feet vs tongue.
The final achieved accuracy per classification task and considering the SD paradigm
are as follows: 69.70%, 69.40%, 69.30%, 69.50%, 69.60%, 77.30%. Similarly, for the SI
paradigm the following accuracy values are achieved: 74.80%, 74.20%, 72.50%, 76.30%,
74.30%, 79.60%.

Another study considers the use of a TL-based multi-scale feature fused CNN
and obtains 89.20 £ 0.96% and 91.61 £ 0.88% for the SD and SI (LOSO validation)
paradigm, respectively. Instead, He et al. [353] firstly employ a spatio-temporal CNN
module to extract features, then apply an ANN and consider a multi-task learning
loss by supervised learning as well as an unsupervised metric learning. Their proposal
achieves 71.52 +12.61% and 65.08 & 6.82% for the SD (10-fold CV) and SI paradigm,
respectively. Liu et al. [354] extract multiscale temporal and spatial features to better
represent the MI neural pattern using and end-to-end 3D CNN. Therefore, the authors
propose a mechanism to assign higher weights to channels and time points related to
the motor activity. The devised model achieves 93.06% and 63.27% for the SD and SI
paradigm, respectively. Finally, Ai et al. [355] apply an ensemble learning strategy for
the SD approach, while they move to a transfer learning mechanism considering the
SI one. A serial parallel CNN is used and 74.90% and 56% best accuracy achieved for
the SD and SI configurations.

4.8.5 Studies reporting TL-based or global performances

Considering other studies using decoding paradigms diverse from the SD and SI ones,
Wu and Chan’s [356] Reptile-EEG TL-based meta-learning model is proposed. This
model achieves an accuracy of 66.03% =+ 12.28 using a LOSO validation strategy and
five-shot fine-tuning on the test subject. Few-shot learning with a convolutional atten-
tion module and a relation module is instead considered by An et al. [357], obtaining
an accuracy value of 59.10+11.10%. Notice that the relation module is used to provide
the final classification, which is based on relation scores computed between a support
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set and a query signal. Instead, the twin-cascaded softmax CNN devised by Luo et al.
[358] achieves 80.03% global accuracy.

4.9 BCI Competition IV dataset 2b

The analyses of the papers remaining after the screening process for BCI-IV-2b [38]
follow the rationale described at the beginning of Section 4.8. The 99 studies have the
following characteristics: six works reporting available codes, 78 studies use the SD
paradigm, 10 work on SI, five works use both paradigms, and the remaining studies
considering a TL or a global approach.

4.9.1 Studies reporting available codes

As for Section 4.8.1, the studies here reported are listed in Table 4 and Table 5. No
ranking criteria have been applied, since the number of works providing codes and
remaining after the screening process are six.

Starting from the less recent paper, Tayeb et al. [58] use Gumpy BCI toolbox® for
signal preprocessing and develop three DL models, i.e., a (i) LSTM, a (ii) spectrogram-
based CNN, and a (iii) recurrent CNN. The best average accuracy among the proposed
models is achieved by employing the second one and is equal to 84.24 + 14.69% with
an SD approach. Notice that by applying a Deep ConvNet the authors obtain 92.28 +
1.69% accuracy. Instead, Jia et al.’s [63] multi-branch multi-scale CNN (Section 4.8.1)
achieves 84.40 £+ 7.50% accuracy.

Puals et al. [64] apply an SI approach and using a spiking NN and a 5-fold CV obtain
75.63 4+ 12.25% accuracy. A similar results (76% accuracy) is achieved by Zancanaro
et al. [69] DynamicNet and considering an SD paradigm. Notice that this and the
following studies have been described in the previous Section 4.8.1. Faria et al.’s [73]
approach, exploiting different data augmentation techniques, obtains 76.40 + 14.20%
accuracy, while Song et al. [78] EEG Conformer achieves 84.63% accuracy.

4.9.2 Studies using a subject-dependent paradigm

The majority of the studies remaining after the screening process consider the use
of an SD paradigm, thus the papers with the highest reported accuracy are firstly
discussed and other studies with novel and interesting approaches from the authors’
perspective are then introduced.

Starting from the top 20 works, the reported results span from 87.33% to 96.82%
accuracy. Shen et al. [282] multi-scale Siamese CNN is related to the first reported
accuracy value, while Huang et al. [266] consider the use of an EEGNet-based CNN
and supervise the training process by monitoring the model loss. By considering a
data division as for the competition (i.e., training and evaluation set), they obtain an
accuracy of the 87.52 & 8.54%.

Lashgari et al. [183] apply a CNN-based neural network with an attention
mechanism, achieving 87.83% accuracy, while a time-contained spatial filtering and
spatial-temporal analysis network obtains 88% accuracy [208]. Zhang et al. [200] EEG
Inception model, using data augmentation, achieves 88.58 & 5.50% accuracy, Dokur

Shttps://github.com/gumpy-bci (last accessed on August 02, 2023)
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and Olmez [116] proposed data augmentation with noise addition, CSP application,
and CNN use, obtaining 88.60% accuracy (x = 0.7720).

Tian and Liu [359] achieve the same accuracy (89.07%), while firstly using the
short-time Fourier transform outputs combining time, frequency and location infor-
mation to extract band-pass and power spectral density features, which are given as
inputs to a CNN. Secondly, the authors test two different CNNs: (i) a single-input
CNN considering as input the results of a short-time Fourier transform, and (ii) a
multiple-input CNN with a 3D input [360]. The use of a combination of frequency,
temporal, and spatial features is also considered by Liang et al. [125], who apply a
CNN and obtain 89.19% accuracy.

A very different approach is proposed by Gomes, Rodrigues, and dos Santos [361],
who firstly pre-process the signal by windowing and filtering it. Afterwards, the
authors apply two feature extraction methods: (i) using sinogram images and applying
VGGNet and LeNet, and (ii) extracting numerical features directly from the signals.
The features are then selected using evolutionary search and a random forest classifier
is applied for the final classification. Note that SMOTE (synthetic minority oversam-
pling technique) is used for data augmentation and 92.47 4+ 1.19% accuracy achieved
(k = 0.8500) with 10-fold CV.

Instead, 92.56% and 93.08% accuracy values are obtained by a dual alignment-
based multi-source domain adaptation framework [108], and a CNN receiving the
outputs of a short-time Fourier transform [96], respectively. Wankhade and Chorage
[186] RideNN classifier, described in Section 4.8.2, achieves 93.30% accuracy, while Cai
et al. [362] combine a CNN with a gated recurrent unit, obtaining 93.57% accuracy.
Tang et al. [363] consider seven subjects of BCI-IV-2b and propose a semi-supervised
KNN-based smooth autoencoder model achieving 94.81% accuracy, while Malibari et
al. [105] proposal, described in Section 4.2, obtains 96.14% accuracy.

Two other studies achieve 96.50% accuracy with a 10-fold CV. The first one [190]
presents a data augmentation step based on linear interpolation before using a plain
CNN, while the second one [140] considers graph embeddings and CNNs (a detailed
description is provided in Section 4.4). Wang et al. [196] obtain 96.77% accuracy, using
variational sample-long short term memory to perform multi-band decomposition and
spectral discriminative analysis for MI classification. Finally, Li et al. [199] use fast
Fourier transform and Clough-Tocher interpolation to generate the spatio-frequency
images, inputted to a modified VGGNet, and obtain 96.82% accuracy (x = 0.9400)
with 10-fold CV.

Besides these top 20 studies according to the accuracy ranking, other interesting
approaches have been presented for BCI-IV-2b. In particular, Xu et al. [364] pro-
pose a deep transfer CNN framework based on VGG-16. The inputs are images with
dimension 224x224x3, where the third dimension corresponds to the C{3,4,z} chan-
nel images obtained through short-time Fourier transform. Notice that the authors
exploit the datset in two ways: (i) considering the signals from second 0.5 to 3.5 after
the stimulus, and (ii) considering the signals from second 1 to 4 after the stimulus.
The best achieved average accuracy is equal to 74.20%. Bang et al. [202] proposal,
based on filters and 3D CNNs and tested on BCI-IV-2a (details in Section 4.8.2),
achieves 75.85 + 12.80% accuracy, while Xie et al.’s approach [365] obtains 78.22%.
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The authors propose a novel method, called parallel stacking encoded convolutional
network, to extract features and classify them. The authors combine a stacked denoise
autoencoder with a CNN, and thus consider both an unsupervised and a supervised
learning approach.

Another study [366] presents the use of sparse spectro-temporal decomposition to
extract time-frequency features, and then the application of a CNN with squeeze-and-
excitation blocks, which are used to recalibrate channel-wise feature responses. The
final achieved accuracy is equal to 79.30+1.60%. Instead, Chen, Wang, and Song [367)
bandpass (8-30 Hz) the signals and apply wavelet transform to generate time-frequency
images. Notice that the authors use only the signals recorded by the C3 and C4
electrodes. Afterwards, image subtraction of these two channels is performed and the
resulting image fed to the model, which is a mix of convolutional blocks and attention
module. After 10-fold CV, the proposed strategy obtains 79.60 + 1.80% accuracy (x =
0.5920). Similarly, CWT is used to produce concatenated time-frequency images of
each channel, which are then fed to a CNN model, obtaining the best average accuracy
83.00 + 1.60% considering both p and 8 rhythms [97].

An accuracy of the 80.78% is instead achieved by exploiting a CNN model for deep
two-dimensional time—frequency maps feature extraction and different traditional ML
models used for classification [107]. Similarly, a multi-attention CNN is used for feature
extraction [213] and tuned by an inter-session discriminator loss to reduce inter-session
variability. The classification resulted in an accuracy of the 82.54% (x = 0.6510). Hong
et al. [212] dynamic joint domain adaptation network based on adversarial learning
(Section 4.8.2) achieves 83% accuracy, while Han et al. [175] parallel CNN (Section
4.7) obtains 83.00 + 3.40% accuracy (k = 0.6590), after applying for five times 10-fold
CV.

Huang et al. [218] RSBConuNet, described for BCI-IV-2a (Section 4.8.2), achieves
83.04% accuracy, dividing the dataset in train (80%) and test (20%) sets. Another
model described for the same dataset, i.e., a SincNet-based hybrid neural network
[222], obtains 83.49% accuracy. Tao et al. [368] use short-time Fourier transform to
produce time-frequency graphs and give them in input to a deep convolutional GAN.
The proposed model achieves 85.70% accuracy. Instead, Yang et al. [211] discrimina-
tive feature learning strategy and a deep adversarial domain adaptation with few-shot
learning framework [239] (Section 4.8.2) obtain 85.46 + 10.44% and 84.63% accu-
racy, respectively. To conclude, Zhao et al. [322] deep representation-based domain
adaptation method achieves an accuracy of 83.98% (k = 0.6796).

Finally, the remaining screened studies are quickly reported for the sake of com-
pleteness. Different works use CNN-based architectures [98, 256, 259, 262, 290, 304,
313, 342, 369-380] with transfer learning strategies [381], variational or stacked autoen-
coders [101, 382, 383], generative adversarial networks [384], and pyramid pooling
[287]. Moreover, benchmark models are also considered as they are or with some vari-
ations, like Shallow ConvNet [95, 284]. Other studies propose a frequential deep belief
network [385], the use of filter bank CSP as inputs to gate recurrent units or LSTM
models [307], a weight sharing CNN-LSTM model [386], a LSTM autoencoder [387],
a distribution-based learning network [388], multi-kernel or sparse Bayesian ELMs
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[144, 389], capsule NNs [390-392], a dual-attention-based adversarial network [318],
and the temporal-rearrange based MI-EEG network TRMINet [155].

4.9.3 Studies using a subject-independent paradigm

The studies remaining after screening and considering a SI paradigm are 11, thus no
ranking will be applied. Moreover, the works described in previous sections will not
be detailed, but cross-references provided to avoid an excessive paper length. A CNN
ensemble [337] (Section 4.8.3) achieves 64.34+8.31% with a LOSO validation strategy.
Other studies reported in Section 4.8.3 are Xie et al. [331] LSTM GAN with a multi-
output CNN, achieving 94.31% accuracy; Li et al. [333] spatial convolution kernels,
obtaining 75.53% accuracy; and Chen et al. [51] CNN model, which achieves 76.65%
accuracy. Liu et al.’s[129] subject adaptation CNN, which is described in Section 4.4,
obtains 86.42 4 5.42% accuracy.

The remaining studies present diverse approaches. Zhang et al. [393] propose an
instance transfer subject-independent framework based on perceptive Hash algorithm
to measure the similarity between the spectrogram of the EEG signals of different
subjects and combine it with a CNN. This proposal achieves 94.70 & 2.60% accuracy.
Instead, Roy [394] multi-scale CNN obtains 93.74% accuracy performing data aug-
mentation and considering intrinsic feature integration.

Sun et al. [395] propose a network constituted by a generator and a CNN. The authors’
main aim is to transfer the features of BCI-friendly subjects to BCl-illiterate ones,
obtaining 80.70 £ 6.10% accuracy.

Instead, Yang et al. [396] devise a framework capable of capturing spatial and spec-
tral dependencies of the signals and consider a combination of CNN and a recurrent
NN LSTM. The data is augmented and 76.44 4+ 6.60% achieved. Finally, Bayesian
hyperparameter optimization is applied to a CNN, obtaining 76.37 & 13.91% accuracy
[397].

4.9.4 Studies using both a subject-dependent and -independent
paradigm

Considering the use of both SD and SI paradigms, Wu et al. [345] propose a paral-
lel multiscale filter bank CNN and obtain 84.30% and 84.70% accuracy for the two
paradigms, respectively. Jia et al. [346] approach, described in Section 4.8.4, achieves
83.38% accuracy considering a cross-task classification, while 88.39% is achieved with
a SI configuration. Instead, Milanés-Hermosilla et al. [349] ensemble Shallow ConvNet,
described as well in Section 4.8.4, provides the following accuracy values: 78.58% for
the SD and 78.20% for the SI paradigm.

Zhu et al. [398] employ CSP handcrafted features and propose a separated channel
CNN. By applying a LOSO validation strategy, the authors obtain 64% and 83% accu-
racy for the SD and SI approaches, respectively. Finally, a Shallow ConvNet based
CNN [154] considering the last two sessions of the dataset as the training set, achieves
an accuracy of 77.50% for the SD paradigm and of 75.33% for the SI one.
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4.9.5 Studies reporting TL-based or global performances

Considering other studies using decoding paradigms diverse from the SD and SI ones,
the twin-cascaded softmax CNN [358] reported in Section 4.8.5 achieves 88.05% global
accuracy. An et al. [357] few-shot learning algorithm (Section 4.8.5) obtains instead
74.60 + 10.20% global accuracy with a 9-fold CV.

4.10 Cho2017

Cho et al. dataset [26] provides data of left/right hand MI collected on 52 subjects,
thus with a greater numerosity in respect to the previously reported datasets. The
remaining studies using Cho2017 are 13, of which three consider a SI paradigm, one
a transfer learning strategy, and the rest work on the SD paradigm. TL is used by
Collazos-Huertas et al. [62] (which also appears on Table 4). CWT is applied to gen-
erate signal topograms to be used by a CNN for feature extraction. Afterwards, a TL
strategy is applied for classification with an MLP. The pre-training is based on ker-
nel matching with subjects’ features and with the questionnaires available as part of
the dataset. Applying 10-fold CV, and considering 10% of the data for the test set,
the authors obtain 79.50 & 10.80% accuracy considering an SD approach without TL,
while 82.60 & 8.40% applying the TL strategy.

A methodology exploiting a dataset-transfer learning mechanism is also proposed
by Xu et al. [68], whose method was discussed in Section 4.8.1 and code link listed
on Table 4. In the SD paradigm, the best accuracy using EEGNetv4 with Euclidean
alignment is around 74%. Instead, in the cross-subject (SI) scenario, the best accu-
racy was obtained by using BCI-IV-2a as the source dataset, Shallow ConvNet with
Euclidean alignment, and adaptive batch normalization, and is around 71.60%.

The SI paradigm is present in three studies [356, 399, 400]. In the first case [399], the

highest average accuracy (62.60%) is obtained by the application of Shallow ConvNet,
considering 80% data for training and 20% for testing. Instead, Jeon et al. [400] use
a deep network to estimate the mutual information between feature representations
by decomposing features in class-relevant and -irrelevant ones, and enhancing class
discrimination of feature representations. Notice that each subject is considered as one
domain, and that two DL methods were used, i.e., Deep ConvNet and EEGNet. The
final layer is the global encoder, while the previous one a local encoder. The author
exploit a concat-and-convolve architecture and considered a cross-subject learning and
zero-training scenario. Notice that the best average accuracy (76.60 & 12.48%) in the
first scenario is obtained by EEGNet, which achieves the best average accuracy also
for the zero-training scenario with 73.73 + 13.75% accuracy.
A TL approach is employed by Wu and Chan [356], who develop a model called
Reptile-EEG, which exploits the meta-learning algorithm Reptile and integrates it to
a deep neural network. Notice that a LOSO validation is performed and that the
authors declare that the best accuracy is achieved by EEGNet, used as benchmark
model. Reptile-EEG best accuracy is equal to 70.73 + 12.18%.

Considering the SD studies, Kumar et al. [56] proposal (Section 4.7) achieves
68.19 & 9.06% accuracy (x = 0.3740). Instead, Wankhade and Chorage [186] RideNN
classifier described in Section 4.8.2, achieves 92.02% accuracy.
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Santos, San-Martin, and Fraga [401] consider two feature extraction methods, i.e.,
CSP and LORETA. The authors verify that they can achieve better results using CSP
features and in particular they obtain 91.60 & 8.90% feeding them to a MLP.

Finally, CNN models are applied by the remaining works, considering channel
selection [402] or data augmentation preceding the classification [46], or proposing the
use of CWT [165] and CSP features [185, 403].

4.11 EEG Motor Movement/Imagery Database

eegmmidb* is the third most frequently used datasets for the evaluation of MI BCI
decoding models with 43 remaining studies after the screening process. Among the 43
studies, there are eight works that have made their code publicly available. Categoriz-
ing the studies based on the decoding paradigms, 11 studies work on the SD paradigm,
eight studies on the SI paradigm. The remaining works report global or TL-based per-
formance measures. Similarly to previous sections, only cross references are provided
for studies and model architectures already discussed to avoid repetitions.

4.11.1 Studies reporting available codes

As for Sections 4.8.1 and 4.9.1, the studies with an available code are referenced to
Table 4 and 5. In what follows, eight studies from these lists and using eegmmidb are
described in chronological order.

Dose et al. [55] utilize temporal and spatial 1D-CNN layers for feature extraction
followed by pooling and fully connected layers for classification. They report decoding
accuracy values for both the global and the TL paradigm (with fine-tuning on the
test subject) considering the classification of two, three, and four classes of eegmmidb
and using 5-fold CV. They report a mean global accuracy of 59.71% and a mean TL
accuracy of 68.93% for the classification of four MI classes. Roots et al. [59] propose a
multi-branch CNN with EEGNet style branches, termed EEGNet Fusion. The model
achieves an SD mean accuracy of 83.80% on 103 subjects considering only two classes
of left and right hand with hold-out train/validation/test split. Zhang et al. [60], using
the model architectures described in Section 4.8.1, report the best SI accuracy of
74.41 + 4.19% using 95 subjects for training and 10 subjects for testing. Using a 10-
layer 1D CNN architecture and SMOTE for data augmentation, Mattioli et al. [76]
split the EEG channels into six regions of interests (ROIs) and report global accuracy
values for each ROI. The authors claim that one of these ROIs achieves a performance
of 99.38% for the global paradigm.

Considering the global paradigm, Yue et al. [404] map filtered EEG signals (u and
bands are preserved using a wavelet transform) to images by a trivariate Clough-Tocher
scheme [405] that also takes into account the geometry of electrodes on the head.
The authors propose Denoised-ConvNet consisting of color space and spatial transfor-
mations, and CNN with fully-connected layers, for classification. The reported global

4This dataset is sometimes called the “PhysioNet” dataset as it is part of the large PhysioNet (https:
//physionet.org/) physiological signals database. This dataset consists of 109 subjects out of which four,
five, or six subjects have been reported to have data annotation errors, and therefore have been excluded
by some of the studies during MI-EEG decoding. Note that we only considered studies that use the motor
imagery portion of this large dataset.
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accuracy using a one-vs-rest classification scheme for the five-class (MI plus rest state)
eegmmidb task is 99.06%. Zancanaro et al. [69] using their proposed EEGNet-based
tool DynamicNet (see Section 4.8.1) achieve a performance of 83% on the SI binary
classification task of right and left hand movements with LOSO-CV. Instead, Xu et
al. [68] achieve an SD performance of 73.10% with EEGNetv4, Euclidean alignment
and adaptive batch normalization, using the same approach discussed in Section 4.10.
Furthermore, they obtain a cross-dataset TL accuracy of 67.10% with BCI-IV-2a as
the source dataset, EEGNet with Riemannian alignment and adaptive batch normal-
ization as the model architecture. Alnaanah et al. [80] (see Section 4.8.1) report an
SD accuracy of 58% and k = 0.4750. Finally, Fadel et al. [406] apply a Clough-Tocher
interpolation algorithm to derive 2D images from EEG signals, and then use a CNN
followed by an LSTM for classification. They report a mean SI accuracy of 70.64% in a
LOSO-CV scenario with another subject’s data as the validation set on 103 subjects.

4.11.2 Studies using a subject-dependent paradigm

The papers providing an SD performance are reported in descending order with respect
to the performance value, giving priority to the papers that consider the three and four-
class tasks instead of a binary (left/right hand MI) classification task. Remind that
due to different performance evaluation strategies, e.g., hold-out or cross-validation,
these performance measures may not be directly compared in all cases.

There are five studies with performance evaluation on the classification task with
four classes of the dataset, and one on a classification task with three classes of the
dataset. Sorkhi et al. [407] extract features through multi-scale FBCSP and pass them
through a CNN after applying a Hilbert transform. Their hyperparameter selection
is done through Bayesian optimization which helps them achieve a high SD perfor-
mance (98.02%) using 10-fold CV. Li and Ruan [141] (see Section 4.4 for model
details) achieve an SD accuracy of 95.09% on 109 subjects with 10-fold CV. Lomelin-
Ibarra, Gutierrez-Rodriguez, and Cantoral-Ceballos [408] take advantage of a backbone
ResNet-18 [409] followed by a three-layer CNN to classify spectrogram images. They
report as their best performance an accuracy of 93.32% using 80/10/10 train/valida-
tion/test split on 105 subjects. Wang et al. [410] propose a residual learning attention
CNN which consists of CNNs with residual connections followed by attention modules
and max pooling layers. They also use a backbone CNN with residual connections for
feature extraction from only nine channels relevant to MI. Excluding four subjects
with erroneous annotations, they report SD accuracy values on the binary (left/right
hand), three-class (left/right hand, and rest), and four-class (left/right hand, rest,
and both feet) tasks on 105 subjects with 84.69%, 84.81%, 75.85% reported accuracy
values, respectively.

Alwasiti, Yusoff, and Raza [411] propose a deep metric learning framework with
a DenseNet-121 [412] as its body. Stockwall time-frequency transform, which is a
generalization of short-time Fourier transform is used to create images from EEG
signals. For deep metric learning, the anchor output is compared to positive and
negative instance images and the loss is calculated to make the output embedding
similar to the positive instance and different from the negative one. The authors
report an SD accuracy of 64.70 &+ 1.22% with a 80/20 hold-out evaluation method.
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Finally, considering a three-class task (left/right hand and rest), Alwasiti and Yusoff
[413] proposed mix-up data augmentation with ResNet-18 [409] and DenseNet-101
[414] backbones to classify EEG spectrograms. They obtain the best performance
(93 £ 1.00%) using the DenseNet-101 backbone and hold-out SD evaluation.

Concerning studies that work on the left /right hand classification task of the eeg-
mmidb dataset in the SD paradigm, Nekrasova, Kanarskii, and Sudareva [415] use
a simple MLP fed by CSP features and report a 4-fold CV 99% accuracy on 103
subjects. Awais et al. [416] use 91 out of 109 subjects, declaring the presence of too
contaminated recordings. The authors extract channel connectivity features using par-
tial directed coherence and directed transfer functions. The classification is performed
using a probabilistic NN. The authors report a high SD accuracy of 98.65%.

Jin et al. [140] (see Section 4.4 for details) achieve an accuracy of 80.20% using
6-fold CV. Kang et al. [417] apply non-linear analyses such as sample entropy, permuta-
tion entropy, and recurrent quantification analyses to extract subject-specific features
from EEG signals. Afterwards, they compare the performance of FBCSP with three
DL models including EEGNet, Shallow and Deep ConvNet. The best performance is
achieved by Shallow ConvNet (63.50 & 1.16%) in the binary SD task using 5-fold CV
on 104 subjects. Finally, an interesting approach used in the SD and TL paradigms is
the one by Ju et al. [418], who consider a federated learning framework consisting of
three non-federated stages for feature extraction including a manifold reduction layer,
a common embedded space, and a tangent projection layer, followed by a federated
layer (i.e., a NN whose weights are updated by federated aggregation). Considering
the binary classification task, the authors report a performance of 60% in the SD
paradigm, and an accuracy of 54.90% using a transfer learning approach.

4.11.3 Studies using a subject-independent paradigm

As the number of studies using the SI evaluation paradigm is only 11, all of them
are discussed in this subsection. Kostas and Rudzicz [268] consider a CNN with semi-
isolated temporal filtering and a novel learning technique called multi-domain learning
with an SI performance of 67.60% (LOSO-CV with one subject’s data used as the
validation set), and a TL performance of 78.73% on 105 subjects. Wang et al. [419]
develop a simplified EEGNet architecture and deploy it on low-power microcontroller
units that are suitable for edge-computing. The authors report an accuracy of 65.07%
considering 5-fold CV with each fold being a subset of 21 subjects among 105 subjects
of the dataset. The authors also report a transfer learning accuracy by using a model
trained on other subjects and fine-tuning it on a specific subject. Using 4-fold CV
they report a TL accuracy of 70.83%. The authors also provide statistics regarding
computation power and time as the study is intended to measure the capabilities of
edge-computing in BCI. Instead, Vivek et al. [420] propose a graph neural network
to extract spatio-temporal features. Afterwards, the features are transformed into
temporal embeddings and their graph representations are given in input to a graph
NN, from which node embeddings are produced and given to a final classifier. The
authors report an accuracy of 82.92% using 5-fold CV on the binary classification task
of right and left hand MI.
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Xie et al. [421] propose a combined temporal CNN-transformer architecture and
measure the effect of different positional embeddings on SI performance with 3 or 6s
EEG signal segments. The best performance (68.54%) is obtained using 6s segments
and relative positional embeddings for the four-class task (left/right hand, eyes open,
and both feet). Strahnen and Kessler [327], using the same methodology explained in
Section 4.8.3), report an accuracy of 77.4%. Ozdenizci et al. [422] design an adversarial
variational auto-encoder and train it on 90 subjects’ data. The trained variational
auto-encoder is used in both SI and TL paradigms for the other 13 subjects. Their
mean SI accuracy on the test subjects is 56.90% and the reported mean TL accuracy
is 63.80%. Finally, Sun et al. [189] (see Section 4.8.2 for architecture details) consider
a SI paradigm with 10 out of 105 subjects as the test set and report an accuracy of
82 + 3.60% over ten independent runs and on the binary classification of left/right
hand MI.

4.11.4 Studies reporting TL-based or global performances

For the final section on the eegmmidb dataset, the studies considering TL and global
paradigms are discussed. Considering the global paradigm, Chu and Zhang [423] use
a combination of BiLSTM, an attention module, and a CNN layer for decoding, and
report an accuracy of 88.30% on the binary classification task of left/right hand MI
using 70/30 hold-out train/test split. Shah, Albishri, and Lee [424] used a slightly
modified EEGNet architecture and proposed an Internet of things framework. Exclud-
ing six subjects with erroneous annotations, they report a global accuracy of 72.82%
on the binary classification task of both hands versus feet using a 80/20 train/test split
for model evaluation. Sun, Xie, and Zhou [425] consider transformer-based models and
report global accuracy values using 21 recordings from each subject and 5-fold CV.
The best global accuracy on the four-class categorization (68.54%) task is achieved
using a combination of CNN and temporal transformers. Wu and Chan [356] Reptile-
EEG meta learning strategy (see Section 4.10) with a five-shot fine-tuning strategy
and using 5-fold CV on 102 subjects (six subjects excluded having erroneous anno-
tations), achieves 68.49 + 13.91% and 68.60 + 14.36% on the binary classification
tasks of left/right hand and fists/both feet MI, respectively. Zhang et al. [132] pro-
posal (see Section 4.4) achieves an accuracy of 93.36 +1.68% using 10-fold CV on the
global decoding paradigm. Dose et al. [426] utilize a shallow spatio-temporal CNN
similar to the one used by Schirrmeister et al. [121] and report a global accuracy of
65.73% on the four-class task using 5-fold CV and 6s segments of the EEG signals.
A global accuracy of 58.59 + 14.67% is obtained when considering the first 3s of the
signals. The authors adopt a TL approach to fine-tune the global model on each sub-
ject before testing for five epochs. The TL accuracy for the four-class task (left/right
hands, both fists, and both feet) is reported as 68.51 & 12.56% for 3s segment signals.
With a similar evaluation strategy, Hernandez-Ruiz et al. [427] using an EEGNet-style
architecture implemented on low-energy FPGA hardware achieve a global test accu-
racy of 83.15%, 75.74%, and 65.75%, on four, three and two-class tasks, and 93.10%,
93.21%, and 89.23% in the TL paradigm. Considering the binary task of classifying
right and left hand MI, Wang and Li [428] propose a parallel deep CNN whose input
is spatio-temporal representation of the EEG signals. Each branch of the parallel
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CNN corresponds to one of the extracted sub-band spatio-temporal features (based on
Clough-Tocher interpolation) and achieve a global accuracy of 90.52% using hold-out
validation. Du, Liu, and Tian [429] apply data augmentation by superimposing (sum-
ming) and normalizing EEG signals, and afterwards use simple spatio-temporal CNN
for classification. The data augmentation approach proves effective, achieving a global
accuracy of 66.36% on 104 subjects via 5-fold CV. A mean TL accuracy of 74.60% is
obtained using 4-fold CV and the fine-tuning the global model for different subjects.

Considering a 3D CNN, O’Neill et al. [430] achieve a global test accuracy of 92.23%
on the five-class classification task (left/right hands, both feet, fists, and rest), while
Li et al. [370] (see Section 4.8.2) obtain a global accuracy of 88.62% and a x = 0.7700
on 109 subjects using 10-fold CV. Li, Li, Yang, and Du, and Li, Shi, and Li [431, 432]
use a spatio-temporal CNN, once followed by a BIiLSTM and once by GRU units
for classification achieving a mean global performance of 98.09% and 97.76% on 108
subjects, respectively using 75/25 hold-out evaluation. Khetrapal and Kadambari [433]
apply three different feature extraction methods, i.e., power of the signal, fast Fourier
transform, and power spectral density. These features are fed to a multi-branch CNN.
The authors report a global accuracy of 98.39% using 70/30 train/test split. Li et
al. [434] use gradient-class activation mapping [435] for channel EEG selection and
perform classification using a CNN followed by GRU units. The authors report a global
performance of 97.36% on the five-class task (left/right hands, both feet, fists, and
eyes closed) on 108 subjects with 75/25 train/test split. Finally, Wang and Li [219]
(see Section 4.8.2) report a global accuracy of 96.91% on the binary classification task
using 10-fold CV.

4.12 Kaya2018

Kaya2018 [40] considers different MI conditions, comprising hands, feet, and tongue
imagined movements. Of the six studies remaining after the screening procedure, two
consider a TL strategy and one a SI paradigm. For this last case, Pérez-Velasco et al.
[50] propose a DL architecture, called FEGSym, with the main aim of overcoming the
inter-subject variability problem. The final achieved accuracy is of the 85.10 4= 9.50%.

Considering the TL strategies, George et al. [48] apply TL with three different
networks, i.e., a multi-branch CNN with final concatenation and convolutional layers, a
Deep ConvNet, and a Bi-GRU. Transfer learning is applied considering two scenarios.
The first is within-subject TL, where cross-session transfer is applied and then a fine-
tuning is performed on another session. The second is cross-subject TL in which the
model is trained on all of the subjects except the target one, and then is fine-tuned
on the target subject. The within-subject cross-session TL achieved an accuracy of
76.17 + 14.62% using Deep ConvNet, and the cross-subject TL accuracy obtained an
accuracy of 80.01 & 10.00% using the Bi-GRU model.

Chen et al. [51]’s cross-subject TL strategy achieves 68.01% accuracy. In this work,
a CNN is shared between the source and the target domain, and a novel mix-up strat-
egy is also developed to provide new artificial samples by mixing two random samples
in the frequency domain. Concerning the SD paradigms, two works from similar groups
of authors [46, 47] consider different data augmentation approaches followed by the
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application of one ore more CNN models. Another peculiar data augmentation strat-
egy preceding CNN classification is proposed by Zahra et al. [49], who consider a data
augmentation through sliding windows, noise addition, or their combination. Notice
that their best average accuracy is achieved with the combined augmentation and is
equal to 57.5 £ 7.90%.

4.13 OpenBMI

Another binary MI experimental paradigm is proposed for OpenBMI, which contains
data of 54 subjects rehearsing the grasping of left and right hand. The screening on
OpenBMI resulted in 21 studies, of which eight with an SD paradigm, 10 with a SI
paradigm, and three using both SD and SI approaches.

Considering the SD only works, the best result in terms of accuracy (93.81%) is

achieved by an AlexNet-based CNN [157] after applying a 10-fold CV. The authors
employ a multi-scale principal component analysis, a novel empirical Fourier decom-
position signal resolution method with Hilbert transform, and use four pre-trained
CNNs for automatic feature extraction and selection.
Besides the use of CNN architectures with spectrally localized time-domain repre-
sentation of the signals [436], filter-bank or end-to-end filter-bank multi-scale CNN
models [285, 437], other SD approaches rely on TL strategies. For example, Zheng and
Yang [210] idea of introducing an adaptive layer into the fully connected layer of a
deep CNN;, described for BCI-IV-2a (Section 4.8.2), achieves a best average accuracy
of the 76 £+ 0.13% by applying 10-fold CV for 10 times.

Instead, Ju and Guan [220] geometric DL framework Tensor-CSPNet described in
Section 4.8.2, considering a cross-validation strategy on the first and second sessions
of OpenBMI and a hold-out validation using the second session as the test set, obtains
74.95 4+ 15.27%, 75.92 £ 14.63%, and 69.65 £ 14.97% accuracy, respectively.

In Bang et al. [202] work, cited in Section 4.8.2, 70.37 + 17.09% accuracy is obtained
by using the proposed 3D CNN and applying a hold-out validation strategy. Finally,
Yang et al. [79] work already described in Table 5 and in the 2020-International-BCI
dedicated Section 4.1, achieves 75.40% accuracy with the proposed end-to-end CNN.

For what concerns the SI-based studies, two of them present available codes [72, 77],
as reported in Table 5. The first work [77] proposes a novel model called explainable
Inception temporal convolutional network and achieves 76.19% accuracy by applying a
10-fold CV. The same validation strategy is proposed by the second study [72], which
considers a multi-subject ensemble CNN with majority voting and obtains 85.56 +
11.63% accuracy.

Other studies use different CNN models like EEGsym [50], ResNet [85], considering
relevance-based channel selection [438], or a hemisphere discrepancy network [439)].

Additional works analyze the efficacy of network pruning. Zhang and Li [440]
propose a DL model composed by a convolution (time), deep-wise (space), average
pooling, flatten, and fully connected layer, considering exponential linear unit as the
activation function. The authors obtain 62.70% accuracy after using a fast recursive
algorithm to prune redundant parameters. Instead, Vishnupriya et al. [441] use Deep
ConvNet and apply a magnitude-based weight pruning on pre-trained models. The
evaluation is conducted through the LOSO methodology, and the data from 53 subjects
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are divided in the training (85%) and validation (15%) sets. The remaining subject’s
data are used as the test set. The model with the highest validation accuracy is saved
and pruned for different sparsity levels (10%, 20% to 90%). The pruned models are
evaluated on the last 100 trials of the target subject’s data. The average accuracy
obtained on the baseline model without pruning is equal to 84.46 & 11.39%, while the
best one with pruning (sparsity level 70%) is equal to 85.53 + 11.33%.

Another peculiar approach proposed by Xu, Yao, and Ni [442] focuses on an atten-
tion mechanism. The authors custom-define a form of sequence inputs with spatial
and temporal dimensions. This form is adopted for dual headed attention via a deep
convolution network, which simultaneously learns temporal and spatial features. After-
wards, the features of spatial attention on each input head are divided in two parts for
spatial attention learning. The best average accuracy achieved by the proposed model
is equal to 75.52 4+ 11.72%.

The final work using only an SI paradigm is the one from Jeon et al. [400], presented
in the Cho2017 dedicated Section 4.10. The model achieves 76.67 + 13.01% accuracy
considering a cross-subject learning scenario and using Deep ConvNet, while it obtains
73.32 4+ 13.55% accuracy using the same DL model in the zero-training scenario.

The last part of this section is dedicated to the remaining three studies using
both SD and SI paradigms. Ko, Jeon, and Suk [443] propose a reinforcement learn-
ing assisted DL framework. Its pipeline follows three main steps: (i) estimation and
selection of reliable signals, (ii) use of an actor critic model, (iii) application of
a reinforcement learning based feature selection. For the DL embedding networks
the authors exploit Shallow/Deep ConvNet, EEGNet, and multi-scale NN. Using
the multi-scale NN with the proposed strategy they achieve 77.26 4 13.92% and
75.24 4+ 17.40% accuracy for the SD and SI approaches, respectively.

Autthasan et al. [61] provide their codes to the research community to reproduce
the results achieved by their novel DL model, called MIN2Net. The filtered EEG data
are passed through a CNN autoencoder. Afterwards, the latent vector of the encoder
is used to train a deep metric learning network to keep vectors corresponding to the
same label near and the ones corresponding to the opposite labels far. The latent
vector is also used to train a classification artificial NN. The final results consist of
61.03 & 14.47% accuracy for the SD paradigm, and 72.03 + 14.04% for the SI one.
Finally, a compact SI MI framework combining temporal convolution and CSP for
sequential extraction of spatio-temporal features is proposed by Nouri et al. [81] who
have made available their codes to the research community (Table 5). Using a LOSO
approach, they achieve 74.414+16.75% and 74.28+16.12% for the SD and SI paradigms,
respectively.

4.14 Other datasets

This section reports the studies resulting from the manual screening of MI datasets
that were used by less than five works. These datasets are Jeong2020 (one paper),
MBT-42 (two papers), MED-62 (three papers), MIDistraction (one paper), Nikki2021
(one paper), SameLimb (two papers), UpperLimb (two papers), WCCI2020-Glasgow
(one paper), and Weibo2014 (two papers).
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The Jeong2020 [39] related SD study [444] has the main aim of factorizing the EEG
data. Two identical CNNs are used, one to learn class-specific features, and the other as
a generator to extract common features through adversarial learning. The features are
combined with an MLP. The authors consider session 1 horizontal (forward, backward,
left, and right) and vertical (up, down, left, right) classes. After 10-fold CV, the model
achieves 54.2943.40% for the horizontal classes and 57.29+5.30% for the vertical ones.

EEGSym [50], already described in Section 4.13, has been used on the MBT-/2
dataset [29]. Considering a cross-subject TL paradigm, EEGSym obtains a 87.40 +
8.00% accuracy. Zhu, Forenzo, and He [445] test multiple deep classification models,
i.e., EEGNet, Shallow/Deep ConvNet, a multi-branch 3D CNN, and a parallel self-
attention network on both MBT-42 and MED-62 [28] datasets. The first two sessions
of both datasets are considered for training (20% validation), and the third session is
used for testing in the SD paradigm. The SI approach is applied only on MED-62 with
a LOSO validation (subject 62 used for testing). The best average accuracy values
are obtained by EEGNet for all paradigms and they are reported as around 73% on
MBT-42 in the SD paradigm, while they are reported as about 75% and 79% for the
SD and SI paradigms applied on MED-62, respectively. MED-62 is also employed by
Autthasan et al. [61], who use their MIN2Net model (see Section 4.8.1) and obtain
65.90 &+ 16.50% accuracy for the SD paradigm, and 59.79 + 13.72% for the SI one.
Finally, Chen et al. [294] use an SD approach and obtain 65.70% accuracy by applying
their proposed filter-bank spatial filtering and temporal-spatial CNN.

Considering the MIDistraction dataset [41], Cai et al. [446] propose a graph
sequence NN, based on self-attention graph convolutional networks and adversarial
training. The graph constructed by node topological features of EEG signals and chan-
nels is used as the input to the network. Using 6-fold CV, the proposed model achieves
a 79.56% average accuracy on the SD paradigm.

For Nikki2021 [27], Tibrewal, Leeuwis, and Alimardani [447] feed the raw EEG
signals directly to a CNN, composed by 2D convolution, pooling, flatten, fully con-
nected, and softmax layers, and exploiting Adam optimizer. The data are divided into
training (80%) and test (20%) sets, on which 69.42 £+ 4.97% accuracy is obtained on
average, considering a global paradigm.

The end-to-end DL CNN proposed by Yang et al. [79], reported in Table 5 as well as
Sections 4.1 and 4.13, is applied to the SameLimb dataset [42]. The accuracy achieved
using an SD paradigm is equal to 73.90%. Another decoding model for this dataset
is proposed by He et al. [217], who developed S-CAMLP-Net, described in Section
4.8.2. Considering an SD paradigm and 5-fold CV, the authors obtain 78.45 + 0.64%
accuracy.

Considering the UpperLimb dataset [43], Zhou, Zou, and Huang [448] propose a
wavelet neural network, where EEG signals are decomposed into sub-bands through
means of wavelet packet decomposition. Afterwards, statistical features are extracted
from the sub-bands and selected by principal component analysis. 10-fold CV was
applied and different hyperparameter functions were considered. Notice that only the
first two training sessions for each subject are used and the achieved best mean SD
accuracy (with Mexican hat wavelet functions) is equal to 85.24 + 7.01%. Wang et
al. [196] strategy, described in Section 4.8.2, consider two classification tasks: (i) a
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multi-class task of elbow flexion/extension, forearm supination/pronation, and hand
open/close of right upper limb, and (ii) a binary task of MI vs rest on the UpperLimb
dataset. The authors use a variational sample-LSTM to perform multi-band decompo-
sition and spectral discriminative analysis for MI classification. Their pipeline follows
these steps: (i) channel reduction through a channel fusion operator, (ii) obtaining six
band-limited intrinsic mode functions through variational mode decomposition, (iii)
discriminative frequency bands selection considering the maximum sample entropy
value, and (iv) classification through a LSTM model. The authors ultimately found
that their model provides an efficient selection of frequency bands, and obtains a
96.60% accuracy on the binary classification task, and 76.20% for the multi-class one
in the SD paradigm.

The only study [67] using WCCI2020 [44] proposes the application of standard
methodologies, but provides open-source codes (Table 4). The best average accuracy
obtained is equal to 77%, considering the use of EEGNet in combination with differ-
ent time-frequency or spatial features. The methodology used by Xu et al. [68] (see
Section 4.10) employs the last dataset presented in this section, i.e., Weibo2014 [45].
The best accuracy using EEGNet with Riemannian alignment and adaptive batch
normalization in the within-subject (SD) scenario is around 78%. Instead, for the
cross-dataset scenario, the best accuracy (74.70%) is achieved by using Cho2017 as
the source dataset, ShallowFBCSPNet with Euclidean alignment, and adaptive batch
normalization. Finally, another approach applied to Weibo201/ presents a brute-force
CNN model without considering a feature extraction step and using an SD paradigm
[290]. The model obtains 74.75% accuracy.

5 Discussion

This systematic review provided an overview of 396 screened studies published from
2017 in EEG-based MI decoding using deep learning. In this section, the main research
questions that have been posed in Section 1 are discussed. Considering the first
research question,

RQ1: What are the most frequently used publicly available datasets for MI-EEG

decoding, specifically DL-based decoding?

It is immediately observable from Figure 5, and also from the length of correspond-
ing sections (Sections 4.4, 4.8, 4.9, and 4.11) that the most frequently used publicly
available datasets for DL-based MI-EEG decoding are BCI-IV-2a and BCI-I1V-2b with
228 and 99 related publications, respectively, followed by BCI-III-1Va and eegmmidb
and with more 46 and 43 related studies, respectively.

Notice that these datasets have been recorded and made open-source in the early
2000s, with BCI-III-1Va as the oldest (2004) and eegmmidb (2009) as the newest among
the frequently used datasets. During the years, these datasets have become the de facto
benchmarks for DL model training and testing, as well as for classical machine learning
techniques and denoising strategies. The reasons behind their vast use, besides their
time of publication, are manifold. Firstly, they present classical MI conditions, i.e., the
movement rehearsal of left/right hand, left/right foot, both hands/feet, and tongue,
that can be used for binary or multi-class classification tasks. In fact, while there are
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a great number of examples of successful MI decoding of large body parts, there are
a few number of studies facing the problem of finer MI decoding (e.g., hand grasping,
elbow flexion/extension, or forearm supination/pronation) [449, 450]. Moreover, most
of the reviewed studies proposing proprietary datasets besides the publicly available
ones, present MI experimental paradigms related to the left/right hand movement
imagination and exploit the same set of conditions as the publicly available datasets
for benchmarking purposes (see Table 2 for a summary of the characteristics of the
publicly available datasets). Another reason behind the success of these datasets lies
on the fact that the BCI Competitions have appealed to the research community as
they are among the first EEG-based BCI datasets that were published publicly. Fur-
thermore, eegmmidb is one of the first datasets presenting a large number of subjects
to analyze with a consistent MI paradigm between subjects’ recording sessions, and
also used a greater number of electrodes (64) compared to previous datasets.

Notice that the BCI-1V-2a and BCI-IV-2b present also reference electrodes that
can be exploited to reduce the ocular artifacts. While these reference data have been
exploited in classical preprocessing techniques before applying the classification models
to provide easier to interpret signals, they are also exploitable for new DL-based
denoising strategies [451] and thus the trend of using these datasets will probably stay
consistent in the future.

However, with the advancements of technologies and learning algorithms, a wider
use of more recent datasets with more subjects and trials per subject can be hypothe-
sized. For example, OpenBMI (2019) appears in 21 of the reviewed studies and presents
some appealing characteristics that can be exploited in different fields from rehabilita-
tion to robot control [24]. Figure 8 presents a detailed overview of the number of papers
employing specific datasets, taking track of the years of publication. Notice that the
2023 label refers only to the temporal span between January 1 and 23, 2023 and that
BCI-IV-2a and BCI-IV-2b are reported separately (Figure 8a) to provide a better
data readability. An increase in number of papers year by year in the field of DL-based
MI-EEG decoding can be observed. An increase in the use of less employed datasets
can be also observed, especially in 2021 and 2022, suggesting an increasing interest in
the proposed experimental paradigms and recordings as previously hypothesized.

Another interesting observation can be made considering the papers using more
than one dataset to train and test their models. Out of 396 papers, around 28% of
the studies (112) employ multiple datasets. Most of this papers use two (83) or three
(25) datasets, while only 4 considers 4 different repositories. As depicted in Figure 9,
this trend involves especially the most recent years (2021-2022). Notice that the 2023
label refers only to the temporal span between January 1 and 23, 2023, thus provides
a promising datum in respect to the use of multiple datasets. Moreover, the selected
multiple datasets present coherent MI conditions, containing at least two overlapping
tasks (e.g., left/right hand MI) and other conditions like tongue and feet MI.

Considering the given observations, some guidelines on the dataset choice are pro-
posed from the authors’ perspective.

Firstly, the choice of the dataset should be based on the classification task the experi-
menters want to perform, i.e., either a binary classification or a multi-class recognition.
Moreover, a decision should be made on the type of MI conditions to be analyzed and
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Fig. 8: Distribution per year of the reviewed papers for each of the reported publicly
available datasets.

the dataset chosen accordingly. The tables reported in Section 3 may represent a good
starting point to choose the proper datasets. Secondly, the use of multiple datasets
should be considered, especially when wanting to demonstrate the generalizability of
the proposed DL model. Finally, we can notice the number of subjects and trials per
subjects present in each dataset. In fact, a greater number of data samples is more
appropriate for DL models to avoid overfitting and curse of dimensionality. This aspect
is addressed in some studies by considering data augmentation strategies to be applied
before executing the learning model. This observation opens the discussion related to
the second research question,
RQ2: What are the current trends, strategies, and architectures used in DL-based
MI-EEG decoding?

As described in Section 1, RQ2 is not only concerned with commonly applied

DL-techniques, but also with the application of specific preprocessing strategies and
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Fig. 9: Number of papers using multiple publicly available datsets to train and test
their models, divided by year.

decoding paradigms. Browsing the different techniques presented in Section 4, the
vast use of CNN-based architectures is easily observable. In fact, around 72% of
the reviewed studies present CNN-based models that may exploit literature archi-
tectures like EEGNet, Shallow/Deep ConvNet, InceptionV3, ResNet, and VGGNet.
Figure 10 depicts the DL models used in the reviewed papers. Notice that combination
means an architecture that combines a CNN with other models like (Bi)LSTM, GAN,
GRU, and autoencoders. The label Other refers to DL-strategies like graph-based
NNs, filter-bank attention networks, capsule NNs, generative deep models, tech-
niques exploiting squeeze-and-excitation blocks, deep belief networks, spiking NNs,
adversarial networks, wavelet NNs, and other NN variations.

Considering the different CNN models proposed by the literature works, more than
modifying the architectures, the authors propose different input formats. This usually
involves the application of techniques that allow the generation of time-frequency
inputs, e.g., Morlet, continuous wavelet or fast Fourier transform, considering one or
more electrodes at a time, combined in a single image or not. Mostly, CSP or some of
its variations are employed, when proposing the use of handcrafted features.

Another interesting trend is represented by the use of attention mechanisms, which
appear in 28 papers published between 2020 and 2023. Attention is proving to be a
very important concept in the DL field, having that it can improve the identification
of relevant information present in the data [452]. In the EEG domain, researchers
have shown that time, frequency, or spatial information can be leveraged differently
depending on the applied attention mechanism and on the location of the attention
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Fig. 10: DL model types used in the reviewed papers.

layer in the considered model (CNN or LSTM) [453]. The promising efficacy of atten-
tion mechanisms is also reported by the reviewed papers, which obtain an average
accuracy of around 80% when applying such strategies, especially on BCI-1V-2a with
an SD configuration.

Considering the decoding paradigms (Figure 6), the subject-dependent one is
applied in around the 75% of the reviewed studies, while the SI in the 15%. Both
paradigms are considered by the 6% of the reviewed papers, while global results are
reported by around the 4.5% of them. Finally transfer learning strategies appear
in around the 6% of the reported studies. Therefore, the SD configuration remains
the most used even in DL-based research. While the application of such paradigm
may result in a more personalized codification of the EEG, thus providing a subject-
centered BCI, the use of SI techniques may provide weaker performances, but more
generalizable models able to learn common patterns between subjects. Surely, the TL
paradigm can also represent a good starting point to provide more reliable models
that can leverage both data coming from the same subject but different experimen-
tal sessions and from different subjects. TL application may boost DL-based analyses
especially due to the fact that it is able to manage small-scale data, while maintaining
the learning ability with different individuals [454].

The problem of small datasets is also considered by authors that do not rely on TL
mechanisms, but prefer the application of data augmentation. Of the reviewed papers,
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25 clearly report the application of such strategies and prefer the use of techniques
based on a sliding-window approach. Some generative methods based on GANs are
also considered, but no information on the possible bias introduced when augmenting
the data is reported in the various studies.

Another important topic is related to the reproducibility. While the present review
paper is focusing on studies using at least one publicly available dataset and describ-
ing their architecture visually and/or textually in a sufficiently precise manner, no
restrictions have been made considering code availability. As reported in Section 4,
out of 396 reviewed studies only 31 share publicly the codes of the devised model
and used DL strategies. Note that three of these studies landed to unavailable web
pages and that Uyulan [54] provide the codes in the paper appendix. Fortunately, the
resources reported in Table 4 and Table 5 point to very different models, spanning
from EEGNet-based architectures to LSTM models, from NNs based on temporally
adaptive CSP to graph-based networks, from transfer learning methods to data aug-
mentation techniques. Therefore, these models can be easily used as benchmarks to
newly defined DL-approaches, which should present enough information to allow their
reproducibility.

Summarizing these observations, the majority of the studies present CNN-based
architectures, providing a larger model pool for performance comparison in respect
to other DL techniques. Other models may be considered in the future, especially to
learn more representative information. Further hybrid networks may be devised to
exploit different information domain (e.g., spatial, temporal, and frequency domains)
as well as new attention mechanisms proposed to address this issue. Afterwards, one
or more decoding paradigms can be considered. When wanting to provide a more
personalized BCI, an SD paradigm may represent the best solution, while the SI and
global paradigms are particularly adapt to learn common patterns between subjects.
TL can be intended as an in-between solution, having that it can exploit data from
a single subject or from multiple subjects to avoid the problems deriving from small
data dimensionality.

Finally, the reproducibility of the study is of fundamental importance and the same
guidelines identified by Roy et al. [18] are provided by the authors’ of the present review
paper. Besides the use of publicly available datasets, the papers should provide enough
details on the architectures to be reproduced when the related codes are not made
publicly available. Moreover, the results should always be compared with baselines
(that could be represented by the works presented in Section 4) and clearly presented.

These final observations introduce RQ3 and RQ4, concerned with benchmarking
techniques and reporting results,

RQ3: What are the DL architectures most frequently used as baseline models or as
imspirations for new decoding methodologies?

As introduced for RQ2, a good number of the reviewed studies develop DL archi-
tectures based on some state-of-the-art models. In particular, this review paper starts
its analysis from 2017 to detect studies based on the pioneering works of Lawhern et
al. [86] and Schirrmeister et al. [121].

In fact, Lawhern et al. main aim was to propose a compact CNN that could be used
for different BCl-related experimental paradigms, while being able to visualize the
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Fig. 11: Number of papers citing the identified benchmarking architectures EEG-
Net and Shallow/Deep ConvNet from their first journal publication, i.e., 2018 and
2017, respectively. Self-citations are included. Statistics taken from Scopus, accessed
on August 28, 2023.

learned features. This brought to the development of the widely used EEGNet. Soon
after the first appearance of this model on arXiv (2016, journal publication on 2018),
Schirrmeister et al. proposed the Shallow and Deep ConvNet models. The novelty
introduced by the authors was not only related to learned feature visualization, but
also by the fact that the authors wanted to better understand how a CNN should
be designed to exploit raw EEG signals. Moreover, they achieved better performance
results in respect to the classical FBCSP based techniques, that represented the de-
facto baselines for EEG-based BCI decoding.

The trend of using these models as baselines for DL-based research has not become
outdated yet. In fact, searching on Scopus for these two publications (accessed on
August 28, 2023) and exporting the number of citations per year, it can be noticed
(Figure 11) how it constantly increases along time.

The authors of the present review paper suggest that a DL-based MI BCI project
should consider these benchmarks and consider the publicly available codes listed in
Table 4 and Table 5 to provide clear comparisons with such reliable and reproducible
models.

Regarding reproducibility, we can turn to the final research question,

RQ4: How should methodologies and results be reported in a DL MI decoding study to
ensure the reproducibility of results?

Diverse observations can be made on the reviewed papers. Numerous reviewed
studies have missing information on the validation process and/or data splitting into
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training, test and validation sets. Moreover, the reported performance measures are
usually limited to accuracy only. Cohen’s kappa is present in a couple of papers, espe-
cially the ones referring to the BCI Competitions datasets. There is also a lack of
consistency when reporting the performance measures, having that accuracy/x values
appear in percentages or not, and with different decimal precision. In addition, some
subject-dependent studies provide only the obtained average accuracy, instead of pre-
senting the results for each subject. Standard deviation is usually not specified when
reporting average results. Given these observations, the review authors would like to
point out that the reports on results should consider further evaluation metrics besides
accuracy only, having that this performance measure provides information only on cor-
rect and incorrect predictions and it is not reliable in presence of unbalanced datasets
in terms of classes. Therefore, precision, recall, specificity, and F1l-score [455] may be
also considered to provide a better representation of the obtained results. Moreover,
standard deviation should be reported when providing an average performance, to
better understand the reliability of the model in respect to performance variability.
Another issue is represented by the lack of comments on different bias types, e.g.,
algorithmic bias or bias due to data augmentation [456], and on computational costs.
Considering that DL models usually requires a good number of operations and that
BCI systems are devised to work in real-time environments, the missing information
on computational costs may represent a limit of the proposed studies. Therefore,
the authors of the present review paper suggest that researcher should provide this
information to allow a clear assessment on data quality, performance reliability and
efficacy of the proposed DL models in the context of MI-EEG BCI-based systems.

6 Conclusions

The use of DL strategies in MI-EEG based BCI systems is increasing thanks to the evo-
lution of BCI-related technologies, to the proliferation of graphical processing units, as
well as to the presence of new datasets presenting a larger number of samples compared
to the widely used but small BCI Competition datasets. The aim of this review paper
was to provide a comprehensive overview of the BCI literature, focusing on deep learn-
ing approaches for motor imagery EEG signal decoding. From the provided analyses,
the vast use of datasets presenting left/right MI experimental paradigms for binary
classification tasks has been detected. However, new MI experimental paradigms have
risen especially in the last few years and research is being done to provide finer and
multi-functional BCI systems.

Moreover, four main motor imagery decoding paradigms have been identified and
the reviewed studies related to each publicly available MI-EEG datasets are reported
accordingly. The subject-dependent decoding paradigm is widely used but a shift to
the other three paradigms which are driven by the aim of increasing the generaliz-
ablity of the decoding models is noticed, especially when studies aim to develop or
pave the path for real-world and reliable BCI systems. The trend in DL-based MI-
EEG decoding shows that in the future, emerging DL strategies that rely on transfer
learning and subject-independent decoding will be more prevalent. The concept of
model reliability is particularly bounded to the characteristics of the employed deep
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learning decoding strategies. DL trends concerning novel architectures and also base-
line models used for performance comparison have been identified. Great attention
to reproducible approaches in MI-EEG decoding has been also given. In fact, repro-
ducibility is ultimately bound not only to the use of publicly available data, but also
to DL model description, code availability, and clarity of the reported results.
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