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Abstract 
This review presents and discusses the ways in which artificial intelligence (AI) tools currently intervene, or could potentially intervene in the 
future, to enhance the diverse tasks involved in the radiotherapy workflow. The radiotherapy framework is presented on 2 different levels 
for the personalization of the treatment, distinct in tasks and methodologies. The first level is the clinically well-established anatomy-based 
workflow, known as adaptive radiation therapy. The second level is referred to as biology-driven workflow, explored in the research literature 
and recently appearing in some preliminary clinical trials for personalized radiation treatments. A 2-fold role for AI is defined according to these 
2 different levels. In the anatomy-based workflow, the role of AI is to streamline and improve the tasks in terms of time and variability 
reductions compared to conventional methodologies. The biology-driven workflow instead fully relies on AI, which introduces decision-making 
tools opening uncharted frontiers that were in the past deemed challenging to explore. These methodologies are referred to as radiomics and 
dosiomics, handling imaging and dosimetric information, or multiomics, when complemented by clinical and biological parameters 
(ie, biomarkers). The review explicitly highlights the methodologies that are currently incorporated into clinical practice or still in research, 
with the aim of presenting the AI’s growing role in personalized radiotherapy.
Keywords: radiotherapy; artificial intelligence; machine learning; deep learning; adaptive radiation therapy; personalized radiation treatment. 

Introduction
This review is structured according to the personalized radio
therapy framework as outlined in Figure 1. The definitions 
and descriptions of the tasks and methodologies are concisely 
reported in Tables 1 and 2, respectively. The aim of this re
view is to analyse the ways in which artificial intelligence (AI) 
tools currently intervene, or potentially could intervene in the 
future, to enhance the diverse tasks involved in the radiother
apy framework, outlined on 2 different levels: anatomy- 
based workflow and biology-driven workflow (Table 1). 
Broadly speaking, in the anatomy-based workflow AI is in
troduced to automate tasks and reduce time and variability 
with respect to conventional methodologies for the online 
and offline adaptation (personalization) of the treatment 
based on anatomical information. In the biology-driven 
workflow AI is conversely expected to allow for a treatment 
personalization guided by biological information, otherwise 
challenging to accomplish. Briefly explained “under the 
hood,” AI addresses both tasks by turning large amounts of 
data into models (Table 2).

Treatment planning
As cornerstone of the entire radiation therapy framework, 
treatment planning requires the identification of the radiother
apy structures on the patient model obtained from anatomical 
and functional diagnostic images, the definition of the pre
scribed dose, and the calculation of the treatment plan to be 

then delivered typically in a fractionated treatment course to 
the patient. Commercial treatment planning systems, nowa
days offering also AI-based applications, are adopted.

Target identification
Anatomy-based auto-segmentation
The image segmentation of the structures in terms of tumour 
and relevant organs at risk (OARs) is a time-consuming pro
cess, on a slice-by-slice basis when manually performed, subject 
to significant inter- and intraoperator variability. Automatic 
segmentation (ie, auto-segmentation) enables the automation 
and standardization of this process.1 Conventional auto- 
segmentation is based on the image of the patient standalone, 
as captured by the primary X-ray CT imaging, eventually com
plemented with additional knowledge coming from secondary 
imaging such as MRI and/or PET (ie, multimodality treatment 
planning). Auto-segmentation based on atlas combines prior 
knowledge from a cohort of patients as a ground truth organ 
segmentation, adapted to the patient according to deformable 
image registration (DIR) of the anatomical images. Auto- 
segmentation based on deep learning (DL) instead embeds prior 
knowledge from the cohort of patients into a parameterized 
model that is optimized to match the ground truth segmenta
tion during the training. The training is mathematically formu
lated as solving an optimization problem to find the model 
parameters that minimize a problem-specific loss function. DL 
enables in principle auto-segmentation of the tumour.2
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Figure 1. The anatomy-based workflow for anatomical personalization of the treatment (i.e., on-line and off-line adaptive radiation therapy, ART) and the 
biology-driven workflow for biological personalization of the treatment (i.e., based on biomarkers). 

Table 1. Definitions and descriptions of the tasks involved in the radiotherapy framework covered in this review.

Definition Description

Anatomy-based  
workflow

Auto-segmentation Automatic identification of the structures in terms of tumour and the relevant organs at 
risk (OARs)

Auto-planning Automatic prediction of the dose-volume histogram or the dose distribution
Automatic prediction of the radiation beam parameters

Pretreatment verification In-room anatomical imaging for the update of the patient model, prior to the treatment 
fraction (ie, online adaptation) or for the subsequent treatment fraction (ie, offline adaptation)

Tumour tracking and motion 
compensation

Real-time, dynamic adaptation of the treatment based on time-resolved patient model and 
in-room imaging

Transmission/emission-based 
treatment verification

Imaging of radiation induced phenomena for possible update of the patient model

Biology-driven  
workflow

Biology-driven dosing Personalized dose/fraction regimen relying on outcome/toxicity prediction models and 
decision support systems

Biology-driven treat
ment adaptation

Dose adjustment in response to changes during the fractionated course of treatment

Table 2. Definitions and descriptions of the AI-based methodologies relevant to this review.

Definition Description

Artificial neural  
network (ANN)

Interconnected group of nodes, organized in layers, defining a model as a function of node activation functions and 
parameters (ie, weights and biases)

Convolutional neural  
network (CNN)

Interconnected groups of nodes working on structured data (ie, tensors) where the connectivity between nodes is 
implemented as a convolution. CNN models are trained by optimizing the convolution kernels to extract features 
from the tensors (ie, feature channels)

Machine learning (ML) Methodology that builds a classification or regression model learning from examples (ie, training)
Deep learning (DL) ML methodology based on ANNs in which multiple layers are used to extract progressively features from the data
Reinforcement  

learning (RL)
ML methodology in which the training is driven by interactive environment reactions as a trial-and-error 
learning process

U-net Convolutional neural network made of downsampling and upsampling layers operating on the feature channels
Generative adversarial  

networks (GANs)
The training of generative model is framed as a supervised learning problem with 2 sub-models: the generator 
model that generates examples based on data and the discriminator model that tries to “judge” the generated 
examples. The 2 models are trained together in a zero-sum game, adversarial, until the discriminator model is 
fooled about half the time, meaning the generator model is generating plausible examples

Radiomics ML methodology in which the extraction of hand-crafted or DL-derived biomarkers from medical images are 
used to develop predictive models

Dosiomics ML methodology that extracts biomarkers from dose distributions of treatment plans
Multiomics ML methodology where biomarkers are extracted also from clinical, histological and genomical data
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The accuracy of the DL-based auto-segmentation is 
expected within the interoperator variability, as the network 
cannot perform better than the manual segmentation adopted 
as ground truth.3 Therefore, auto-segmentation is eventually 
revised and edited by clinical operators.

DL-based auto-segmentation is widely investigated in the 
literature, including comparison with manual segmentation4

as well as atlas-based auto-segmentation, and commercial 
DL-based software solutions for organ auto-segmentation are 
currently available. In general, because of the local nature of 
the segmentation process, DL-based auto-segmentation is 
based on fully convolutional neural networks. The architec
ture of the adopted networks is mostly undisclosed, but some 
are reported to be based on modifications of the U-net. 
Examples5-7 are listed in the following:

� MIM Contour Prot�eg�eAI based on U-net architectures,8

compared to atlas-based segmentation (MIM Maestro)9; 
� Mirada Medical DLCExpert based on multiple U-nets, 

compared to atlas-based segmentation (ABAS software, 
Mirada Medical)10; 

� Therapanacea ART-Plan Annotate based on an ensemble 
of DL models11; 

� RaySearch Laboratories, RayStation v9B and v10A based 
on fully convolutional neural networks12 and RayStation 
2023B optimized for scanned proton beams13; 

� AI-Rad Companion Organs RT, Siemens Healthineers14; 
� ADMIREv.3.41, Elekta AB, based on U-net architecture.11

Biology-driven target identification
Biology-driven target identification refers to the exploitation 
of functional information offered by molecular imaging to im
prove the definition of the target. In particular, involved nodal 
radiation therapy (INRT) relies on the inclusion of malignant 
lymph nodes (LNs) in the radiotherapy target. LN invasion is 
typically assessed by means of fluorodeoxyglucose-based PET 
(FDG-PET), which has known spatial resolution limits, and 
surgical staging. Surgical staging is however an invasive proce
dure that can lead to postsurgery morbidity and delays in ther
apy start. AI models able to noninvasively and accurately 
assess LN invasion could play a role in extending the INRT ap
plication and improve radiotherapy outcomes.

Sher et al were the first to investigate an AI-based INRT 
framework inside a phase II clinical trial for head and neck 
(HN) squamous cell carcinoma (HNSCC) (INRT-AIR, 
https://clinicaltrials.gov/study/NCT03953976).15 HNSCC 
definitive radiotherapy ordinarily includes elective neck irra
diation. Chen and colleagues developed an LN classification 
model based on both hand-crafted and DL-derived features, 
working on FDG-PET and contrast-enhanced CT images.16

In the clinical trial, 67 patients were enrolled and only LNs 
classified as malignant by the AI model were included in the 
target. Excellent oncologic outcomes and patient-reported 
quality of life were observed, supporting additional prospec
tive studies that, if positive, could lead to an implementation 
of the model in the clinical settings.15

Lucia et al developed and assessed, on a multicentre data
set, 2 neural network models to predict para-aortic LN in
volvement in locally advanced cervical cancer. The first 
model takes as inputs 2 hand-crafted radiomic PET features 
(a texture feature and a morphological feature) computed in
side the primary tumour volume and properly harmonized 

among different centres, relying on the removal of nonbiolog
ical sources of variance in imaging biomarkers in multicentre 
studies (ie, ComBat). The second model uses the clinical stan
dardized staging from the International Federation of 
Gynecology and Obstetrics (ie, the FIGO stage 2018) as the 
third input. On the 3 test sets, both models achieved an area 
under the receiver operating characteristic curve (AUC) larger 
than 0.9, to be compared with an AUC ranging from 0.62 to 
0.69 for a clinical model relying on FIGO stage 2018, tumour 
size and pelvic LNs on PET/CT.17 These promising models 
have not been assessed yet inside an INRT clinical trial but 
offer evidence of the emerging role of AI in providing these 
decision-making tools.

Biology-driven radiotherapy dosing
In current clinical practice, treatment planning aims at 
matching dose-volume requirements and constraints in tar
gets and OARs, respectively. To this aim, standardized dose/ 
fraction regimens are used. Analytical population-based ra
diobiological tumour control probability (TCP) and normal 
tissue complication probability (NTCP) models cannot be 
used to personalize treatment. Radiosensitivity in targets and 
OARs varies indeed among patients, tumour, and organ char
acteristics, which these models do not consider. AI is expected 
to allow the construction of comprehensive data-driven out
come and toxicity prediction models that, properly associated 
with optimal decision-makers, could be used to personalize 
dose/fraction regimens in both target and OARs.18

Lou and colleagues in 2019 proposed a baseline (ie, pre
treatment) DL framework predicting local failure and calcu
lating a personalized optimal dose for lung cancers treated 
with stereotactic radiation therapy (SRT). The framework is 
composed of (1) Deep Profiler, a DL block taking in input 
pretreatment CT and gross tumour volume and generating an 
image-based failure risk score; (2) iGray, a multivariable re
gression model relying on image-based failure risk score, bio
logically effective dose and histological subtype, able to 
predict local failure and to calculate a personalized dose that 
ensures a treatment failure probability <5% at 24 months. The 
DL framework, trained on 849 patients, most receiving 50 Gy 
in 5 fractions, was assessed on an independent 95 patient test 
set, where it predicted treatment failure with an AUC of 0.77.19

The Deep Profiler þ iGray framework is currently under assess
ment in a prospective clinical trial (RAD-AI, https://clinical 
trials.gov/study/NCT05802186), in which the personalized 
dose is applied and local failures are evaluated.

Other works in the literature exploit AI to create baseline 
radiotherapy outcome models, including carbon ion beam 
therapy.20,21 However, these models have not yet been asso
ciated with optimal decision-makers, nor inserted into any 
dose/fraction regimen personalization workflow.

As to tumour control modelling, Valli�eres et al in 2017 were 
among the first to propose and assess on an independent co
hort, an HN tumour failure model relying on hand-crafted 
radiomics features computed on PET-CT pretreatment 
images.22 Regarding instead the use of DL radiomics features, 
Jalalifar et al proposed a DL framework to predict local failure 
in brain metastases treated with SRT. The framework relies on 
treatment planning contrast-enhanced T1 and T2-FLAIR MRI 
and on clinical parameters (histology, tumour location and size, 
number of brain metastasis). It consists of a 2D convolutional 
neural network (CNN) (InceptionResNetV2) that extracts fea
tures from 2D images in treatment planning structures 

BJR|Open, 2024, Volume 6, Issue 1                                                                                                                                                                                           3 

D
ow

nloaded from
 https://academ

ic.oup.com
/bjro/article/6/1/tzae017/7714694 by guest on 03 Septem

ber 2024

https://clinicaltrials.gov/study/NCT03953976
https://clinicaltrials.gov/study/NCT05802186
https://clinicaltrials.gov/study/NCT05802186


including oedema and of a recurrent network (ie, a long short- 
term memory network) that takes as inputs imaging features 
along with clinical parameters and incorporates spatial depen
dencies between 2D images. The model, trained and optimized 
on 156 lesions, obtained an accuracy of 82.5% when tested on 
an independent dataset of 40 lesions, thereby showing very 
promising results when compared to an accuracy of 67.5% 
achievable with clinical features only. Heat maps show that le
sion margin areas are those mainly influencing the pre
dicted outcome.23

As to toxicity modelling, several authors proposed to over
come the limits of conventional NTCP models based on dose- 
volume histogram (DVH) features by extracting radiomics 
features from 3D dose maps (dosiomics). Bourbonne et al 
proposed hand-crafted dosiomics toxicity models for lung 
cancers treated with volumetric modulated arc therapy. The 
model has been trained on 117 patients for acute and late 
lung toxicity prediction. On the 50 patients’ independent test 
set, the proposed models obtained a balanced accuracy 
(BAcc) of 0.92 for acute lung toxicity and 0.89 for late pul
monary toxicity, while models relying on clinical/DVH fea
tures obtained a BAcc of 0.69 and 0.80, respectively.24

Again, in lung cancer intensity modulated radiotherapy, Lee 
et al and Zheng et al proposed to combine hand-crafted dos
iomics features with hand-crafted radiomics CT features to, 
respectively, predict acute phase weight loss and acute radia
tion esophagitis.25,26 Men et al proposed to combine dose 
maps and CT information into a 3D residual CNN model to 
predict xerostomia in HNSCC. The model inputs are plan
ning CT images, dose maps, parotid and submandibular 
gland contours. On a test set of 78 patients, an AUC of 0.84 
was obtained.27 Cui et al proposed a multiomics model for 
NSCLC able to simultaneously predict time-to-event proba
bilities for local control and radiation pneumonitis. The 
model relies on dose parameters, PET hand-crafted radiomics 
features as well as biological information (ie, cytokines and 
microRNAs). It consists of variational autoencoders for fea
ture selection, NNs, and survival neural networks. The model 
has been assessed on both internal and external test sets, pro
viding an AUC of 0.70 for radiation pneumonitis and 0.73 
for local control.28 Wei et al recently proposed a DL model 
for the prediction of liver toxicity in stereotactic body radia
tion therapy (SBRT) of hepatocellular carcinoma (HCC), that 
relies on pretreatment MR hepatobiliary contrast uptake rate 
maps and treatment dose maps. Post-treatment contrast up
take rate maps are estimated with a conditional GAN with 
Waserstein loss; NTCP is modelled starting from estimated 
pre-/post-treatment contrast uptake rate change and treat
ment dose maps. On a small patient cohort, the model has 
shown promising albeit preliminary results.29

Treatment plan calculation
Anatomy-based auto-planning
Conventional treatment planning requires inverse optimiza
tion to determine the radiation beam parameters that match 
the prescribed dosimetric criteria for controlling the tumour, 
including constraints accounting for the radiosensitivity of 
OARs and normal tissue. These criteria are expressed as dose 
and volume scalars (eg, homogeneity index), DVHs, or even 
as a reference dose distribution. The optimized parameters 
can be manually adjusted with time-consuming and labour- 
intensive trial-and-error workflow, especially in highly con
formal treatment modalities. To automatize the exploration 

of the trade-off between multiple dosimetric criteria, multi- 
criteria optimization has been introduced to support the se
lection of the treatment plan. Therefore, conventional treat
ment planning is a computer-aided but ultimately human- 
driven process.

The automation of treatment planning is fundamentally 
based on the anatomy-to-dose correlations inferred from a 
cohort of clinical treatment plans. This is generally referred 
to as knowledge-based radiation therapy treatment.30

Automatic prediction of the dose distribution can be based 
on atlas that are adapted to the patient according to optimi
zation algorithms, including DIR.31 Dose mimicking optimi
zation then converts the reference dose distribution to a 
deliverable treatment plan. AI methodologies, with particular 
reference to DL and machine learning (ML), have been re
cently proposed to automate different stages of the workflow 
for improving treatment planning quality and efficiency, in
cluding the selection of beam angles.32 AI-based auto-plan
ning refers to the prediction of the DVH and the dose 
distribution.33,34 DL is also reported to estimate the radiation 
beam parameters without inverse optimization.35-38

The AI-based prediction of the dose distribution has been 
typically based on fully convolutional neural networks com
bined with residual connections such as Res-Net,33

DoseNet,39 and modified U-net.40 The GAN architecture has 
been proposed to replicate the role of the treatment planner 
(ie, generator) and the role of the radiation oncologist that 
evaluates the treatment planner (ie, discriminator).41,42

Reinforcement learning has been also presented as the archi
tecture to reward the treatment planning quality.43 The vi
sion of a learning loop framework based on quantitative 
evaluation of treatment outcomes has been also put forward 
to virtuously integrate AI with human knowledge.44

Commercial knowledge-based radiation therapy treatment 
planning software includes the widely investigated RapidPlan 
in Varian Eclipse planning system (Varian Medical Systems, 
Palo Alto, CA, United States)30 and feature also solutions for 
adaptive radiation therapy (ART) workflow, such as Varian 
Ethos adaptive treatment planning system (Varian Medical 
Systems, Palo Alto, CA, United States)45 and RayStation v9B 
(RaySearch Laboratories).12

Anatomy-based treatment verification 
and adaptation
To optimize the therapeutic outcome, radiotherapy is typi
cally administered in a fractionated treatment course entail
ing a few days (for hypofractionated treatment regiments) up 
to several weeks (for standard fractionation) of almost daily 
dose applications. Hence, with the advent of more advanced 
beam delivery technologies, there is a more compelling need 
to verify that the daily patient anatomy reflects the initial pa
tient model made at the early time of treatment planning (ie, 
treatment verification), and adapt the treatment plan in case 
large anatomical changes have occurred (ie, treatment adap
tation). Moreover, in the case of moving targets, advanced 
technologies and methodologies are used to monitor the tu
mour motion (ie, tumour tracking and motion compensation) 
and account for motion in the treatment delivery.

Pretreatment verification
When in-room volumetric imaging such as cone beam CT 
(CBCT) or MRI is available, the patient model can be 
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updated based on the imaging acquired in the treatment 
room prior to radiotherapy. Hence, treatments not subject 
to intra-fractional motion (ie, static treatments) can be 
re-planned without additional re-scanning of the treatment 
planning CT image according to the online or offline ART 
workflow (Figure 1). The role of AI is relevant to the defini
tion of models for converting the in-room imaging into a suit
able image for treatment planning while accounting for the 
anatomical changes. Relying on periodic in-room imaging, 
this fundamental role can be extended to the definition of 
models that anticipate such anatomical changes. The pre
dicted anatomical changes can be then accounted for in sub
sequent fractions relying on recurrent neural networks.46 The 
timing of the prediction can be even pushed forward at the 
beginning of the treatment relying on convolutional long 
short-term memory networks.47

CBCT imaging
CBCT is currently used for patient position verification. 
Treatment re-planning based on CBCT imaging requires 
Hounsfield Unit (HU) correction techniques for scattering 
and noise. Alternatively, the image quality of the treatment 
planning CT image is mapped onto the anatomy of the CBCT 
image relying on DIR,48 along with contour propagation. DL 
has been proposed for CBCT correction to enable treatment 
re-planning, according to the so-called synthetic CT image. 
For instance, Therapanacea AdaptBox (https://www.therapa 
nacea.eu/our-products/) is a commercial software for DL- 
based CBCT correction for adaptive photon therapy.

DL-based CBCT corrections are either applied to CBCT in 
the projection domain prior to tomographic image recon
struction or directly on the reconstructed CBCT image. In the 
projection domain, the target of the training is represented by 
scatter-free and noise-free CBCT projections, either corrected 
or obtained relying on forward-projection of the CT 
images,49,50 but also generated using Monte Carlo 
simulations.51

In the image domain, the target of the training is repre
sented either by the CT image52 or by the corrected CBCT 
image.53 Most of the works have applied CBCT correction in 
the image domain, typically based on the U-net configura
tions, but GAN architectures have been also proposed.54,55

Investigation of DL-based CBCT corrections for treatment 
planning has been reported in the literature for different ana
tomical regions (ie, HN, lung, prostate, and pelvis).

Because of the need for imaging dose minimization and/or 
acquisition time/space constraints, image reconstruction 
based on sparse in-room projections is intended to infer the 
volumetric 3D image relying on a population-based model. 
Domain conversion typically requires fully connected layers, 
sparsely connected if accounting for geometrical correspon
dence between image and projection domains. Inspired by 
sparse view CT image reconstruction,56 a recent trend sug
gests compressed sensing57 and dictionary learning58 based 
on a sparse representation of the image relying either on mor
phological image transformation according to Wavelet and 
Shearlet basis functions (ie, compressed sensing) or on proto
type images (ie, dictionary learning). These representations 
enable a reduction of the size of the feature maps, similar to 
pooling operations in the encoding path of the network. 
Alternatively, domain conversion can be explicitly imple
mented in physics-informed networks, as unrolled algorithms 
for tomographic image reconstruction.59 DL-based CBCT 

correction during tomographic image reconstruction from 
projections, relying on domain conversion,60 is however not 
yet proposed for applications in radiotherapy.

MRI
The potential role of MRI in radiotherapy covers the entire 
ART workflow, spanning from treatment planning and re- 
planning, up to motion management and long-term treatment 
verification. The nonionizing properties and better soft tissue 
contrast of MRI are exploited to substitute X-ray imaging 
within the entire ART workflow. However, the major limita
tion of MRI in ART is the missing measurement of the elec
tron density tissue properties, related to the X-ray 
attenuation coefficients expressed in HUs, and to the stop
ping power in ion beam therapy.

The conversion of an MRI image into a pseudo-CT image 
is introduced to overcome this limitation. To this end, the 
MRI is calibrated to a pseudo-CT image relying on DIR of 
the MRI atlas or based on DL.61 The training of DL-based 
MRI into pseudo-CT conversion is typically based on co- 
registered or “paired” MRI-CT images, relying on DIR. The 
registration profoundly influences the conversion accuracy.

A modified conditional GAN architecture has been pro
posed to account for potential registration inaccuracies. The 
mutual information between the synthetic CT image and the 
CT image has been used as the metric for the generator’s loss 
function to train non-aligned MRI-CT images.62 The condi
tional GAN architecture has been adopted in proton ther
apy62,63 and in rare studies about anatomically complex 
treatment sites (ie, abdomen) in carbon ion beam therapy.64

The need for “paired” MRI-CT images has been overcome 
by the cycleGAN architecture, which has been reported for 
proton beam therapy of liver61 and prostate.65 However, the 
U-net has been the typical architecture used for DL-based 
MRI into pseudo-CT conversion. Improved training of the U- 
net based on multiplanar image slices has been proposed for 
application in proton therapy,66 aiming at solving the prob
lem of the low MRI signal of the skull bone that causes HU 
overestimation,67 along with the air cavity interface and ther
moplastic mask.68 For this purpose, the use of the cycleGAN 
architecture has been also proposed.69

DL-based MRI conversion into pseudo-CT image is mostly 
investigated for treatment planning rather than ART due to 
the current limited availability of in-room MRI, for which ex
pensive and not yet too widely spread instrumentation is 
available in photon therapy, and for which solutions for ion 
beam therapy are still under investigation due to the larger 
technical complexity and related costs. In the latter case of 
ion beam therapy, stricter accuracy requirements in the MR- 
based pseudo-CT generation are also needed because of the 
most demanding subsequent conversion to stopping power.

Tumour tracking and motion compensation
When the patient model accounts for moving targets, intra- 
fractional motion monitoring systems including imaging 
systems are employed for tumour tracking and motion com
pensation in dynamic treatment sites.70 When the tumour is 
not directly visible in the in-room imaging, tumour tracking 
makes use of surrogates that correlate with tumour motion. 
Prediction models define the relationship between these sur
rogates and the tumour position at each motion state. 
Surrogates can be either external (ie, acquired by optical 
tracking systems as used in conventional internal-external 
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prediction models) or internal (ie, acquired by in-room 
imaging systems as navigator images). The definition of 
subject-specific or population-based motion models, typically 
constructed as a prior relying on DIR between 4D images, 
enables the estimation of the anatomical motion state in 
terms of the volumetric 3D image for time-resolved dose cal
culation. Models that directly correlate the surrogates to the 
anatomical motion state71 or the volumetric 3D image72 are 
also proposed, thus paving the way toward ML-based motion 
modelling and motion compensation.

Despite the well-established use of neural networks for tu
mour tracking,70 ML-based motion modelling (ie, the infer
ence of the deformation fields) and motion compensation (ie, 
the prediction of the volumetric 3D image) are emerging, par
ticularly for in-room MRI applications. A population-based 
motion model has been inferred from 4D images by a neural 
network proposed by Romaguera and colleagues.72 In this 
work, patient-specific motion compensation is based on a 
multibranch (ie, 3 branches) CNN. The first branch is the 
motion encoder, to be applied to each motion state. This en
coder maps the deformation field onto a low-dimensional 
space containing compact representations of the motion 
state. A second branch is an auxiliary encoder, dedicated to 
anatomical feature extraction from the patient-specific treat
ment planning 3D image. A third branch is the temporal pre
dictive network, intended for delay compensation and thus, 
real-time motion compensation at the temporal resolution of 
the surrogate images.73 The compact representation of the 
motion states, linked to those of the patient-specific internal 
surrogates (ie, the cine MR images) and the treatment plan
ning 3D image, is then fed into the decoder to predict the de
formation field for the motion states of the surrogates, as a 
conditional variational autoencoder.

Relying on patient-specific models, the volumetric 3D im
age can be derived directly from in-room 2D projections to 
potentially enable ART in stationary irradiations, as well as 
real-time tumour tracking in dynamic treatment sites, along 
with the verification of internal-external prediction models.74

This “reconstruction” is obtained with a hierarchical neural 
network in an encoder-decoder framework. An encoder rep
resents the 2D projections into a feature space. The learned 
features are then used to generate the 3D CT image by the de
coder. The network decodes the hidden information in the 
2D projection and predicts the volumetric 3D image based on 
prior knowledge gained during training, which is based on 
augmented 2D-3D data pairs of different body positioning 
and anatomical configuration.

To the best of the authors’ knowledge, there is no record 
yet of commercial approval of patient-specific models for 
ART applications (including tumour tracking and motion 
compensation).

Transmission/emission-based treatment 
verification
Although the availability of an updated patient model in 
combination with the records of the beam delivery can al
ready enable a calculation of the delivered dose, there are on
going efforts in photon and ion beam therapy to also enable 
an online, ideally real-time verification of the delivered 
treatment. This can be achieved by measuring the transmitted 
X-ray radiation (photon therapy) or secondary emissions 
induced by the interaction of the therapeutic beam with the 
patient tissue (ion beam therapy).

Photon therapy: electronic portal imaging device imaging
In photon therapy, the photon intensity transmitted through 
the patient during the treatment delivery can be acquired by 
electronic portal imaging devices (EPID). EPID images are 
mostly used for geometrical patient positioning as rigidly 
linked to modern linac accelerators. However, EPID-based 
measurements have been also proposed for treatment verifi
cation (ie, dosimetry), according to both planar and volumet
ric approaches. The treatment verification entails the 
comparison of the EPID image with a prediction image based 
on the treatment planning X-ray CT image or an in-room vol
umetric image, even acquired with the EPID detector itself 
(ie, Mega voltage CBCT). DL has been adopted for EPID im
age correction for photon attenuation and scattering as well 
as for the identification of treatment inconsistencies such as 
anatomical changes, positioning inaccuracies, and mechani
cal errors.75 Recently, DL has also been proposed to predict 
3D dose distributions inside the patients from EPID images, 
based on unsupervised learning (ie, GAN architecture76) as 
well as supervised learning relying on highly accurate Monte 
Carlo simulations (ie, U-net architecture77).

Ion beam therapy: imaging of secondaries
In ion beam therapy, no penetrating radiation is transmitted 
after the stopping of the beam in the tumour, but secondary 
physical emissions of a different nature are produced and can 
be detected outside the patient, which is a vivid subject of on
going research and development. As an alternative to the in
direct comparison of the measurement of these secondary 
emissions with a prediction based on the initial patient model 
and treatment plan, the actually delivered dose distribution 
can be retrieved from the distribution of the secondary emis
sions by means of “dose reconstruction algorithms.” DL has 
been proposed for dose reconstruction in the context of 
PET78-80 (ie, relying on the detection of annihilation photons 
produced by fragmentation of the tissue [and beam] nuclei) 
and prompt gamma imaging81 (ie, relying on the detection of 
energetic gamma rays produced in the fast de-excitation of 
nuclei after initial excitation through nuclear interaction be
tween the beam itself and the tissue nuclei). Some of these 
approaches have been preliminarily investigated relying on 
the ground truth distribution of the secondary emission as 
obtained from computational models like Monte Carlo simu
lations, not accounting for the effects coming from the detec
tion and the reconstruction of the events. With respect to 
that, DL has been proposed to close this gap and thus also re
trieve the prompt gamma emission distribution based on the 
measurements.82

Biology-driven treatment adaptation
AI is expected to provide tools not only for treatment person
alization in the planning phase but also for personalized 
treatment adaptation. Several authors have shown that out
come models relying on parameters acquired both at baseline 
and during treatment perform better than baseline-only mod
els.83 A personalized dose-escalation strategy can be, for ex
ample, a re-planning guided by tumour FDG-avid region 
shrinkage.84 The originally planned dose/fraction regimen 
can be however potentially adapted during the radiotherapy 
course by exploiting variations in clinical, biological, and 
radiomics parameters. In personalized biology-based treat
ment adaptation, AI is required (1) to identify prognostic 
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baseline along with delta radiomics features and to combine 
them with clinical, dosimetric, and biological features into 
data-driven outcome and toxicity models, and (2) to exploit 
outcome and toxicity predictions during the treatment course 
to optimally adapt the treatment plan.

Methodologies for reproducible delta radiomics feature se
lection have been proposed in the literature.85 A comprehen
sive general framework for AI-based personalized treatment 
adaptation has been defined by Tseng and colleagues in 
2018.86 By assuming to have optimal TCP and NTCP mod
els, adaptation can be implemented with linear or nonlinear 
feedback control systems, or with reinforcement learning 
algorithms that search over all the possible decisions and 
identify the best strategy to optimize the probability of a 
positive outcome.86,87 Niraula and colleagues recently imple
mented an AI-based multiomics interactive optimal decision- 
making software (ARCliDS) to guide personalized treatment 
adaptation. ARCliDS is composed of (1) ARTE, a Markov 
decision process modelled via supervised learning that, start
ing from pre- and during treatment parameters and planned 
dose, gives an estimate of TCP and NTCP; (2) ODM, a rein
forcement learning optimal decision-maker, that recommends 
optimal daily dosage adjustment to maximize TCP and mini
mize NTCP. ARCliDS has been retrospectively trained and 
applied on an NSCLC adaptive radiotherapy dataset and on 
an HCC adaptive SBRT dataset. In the learning phase, 13 
multiomics features were selected for both applications, 
partly baseline and partly delta features. In the operation 

phase, ARCliDS was found able to reproduce 36% of good 
clinical decisions and improve 74% of bad clinical decisions 
in NSCLC treatment and to reproduce 50% of good clinical 
decisions and improve 30% of bad clinical decisions in HCC 
treatment.88

Discussions and conclusions
This review has addressed the main tasks of the radiotherapy 
framework (Figure 1). Treatment selection and planning/ad
aptation of combined drug-radiation treatments have not 
been covered in this review. Preliminary works have tried to 
exploit AI even in these fields. On soft tissue sarcomas, where 
treatment selection strongly depends on tumour grading, 
MRI hand-crafted and DL radiomics have been proposed as 
non-invasive grading tools to replace biopsy.89 ML decision- 
making tools have been also proposed in HCC, to provide 
treatment recommendations for tumours undergoing transar
terial chemoembolization,90 and to properly select between 
photon and proton therapy to minimize liver toxicity.91 As to 
the planning/adaptation of combined drug-radiation treat
ments, AI-based strategies will certainly play a central role in 
the near future.92

Overall, it has been shown that AI tools are both rapidly 
emerging in anatomy-based radiotherapy tasks currently cov
ered by conventional methodologies and also opening up inno
vative biology-driven task that conventional methodologies 
cannot manage. As a matter of fact, in applications whose 

Table 3. The role of AI, including AI-based methodologies, for the different tasks within the personalized radiotherapy framework.

Conventional 
methodology

AI-based methodology

Tasks Role of  
conventional  
methodology

Methodology Clinically  
used

Biology-driven  
workflow

Personalized  
radiation treatment

— Definition of data- 
driven models based on 
large amounts of data; 
patient outcome 
improvement

— ML (ie, multivari
ate models for 
classification and 
regression) 
and DL

No

Anatomy-based  
workflow

Auto-segmentation Manual 
segmentation

Improvement of the 
workflow (automation, 
time reduction) and im
provement of the task 
(variability reduction)

For AI training DL (ie, U-nets and 
modified U-nets)

yes

Auto-planning Computer-aided 
but human-driven 
treatment 
planning

Improvement of the 
workflow (automation, 
time reduction) and im
provement of the task 
(variability reduction)

For AI training ML and DL (ie, 
Res-Net, DoseNet, 
modified U-net, 
GAN, reinforce
ment learn
ing, etc.)

yes

Pretreatment 
verification

Computer-based 
and human-super
vised deforma
tion models

Improvement of the 
workflow (automation, 
time reduction) and im
provement of the task 
(variability reduction)

Not used. The data- 
driven model over
comes the limitations 
of deforma
tion models

DL (ie, modified 
U-net, GAN, 
cycleGAN, condi
tional GAN)

No

Tumour tracking and 
motion compensation

Computer-based 
and human-super
vised correlation 
and deforma
tion models

Improvement of the 
workflow (automation, 
time reduction) and im
provement of the task 
(variability reduction)

Not used. The data- 
driven model over
comes the limitations 
of correlation and de
formation models

DL (ie, encoder- 
decoder 
architectures)

No

Transmission/ 
emission-based treat
ment verification

Computer-based Improvement of the 
workflow 
(time reduction)

For AI training DL (ie, U-net, 
modified U- 
net, GAN)

No

Abbreviations: AI ¼ artificial intelligence; DL ¼ deep learning; GAN ¼ generative adversarial networks.
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results are easily verifiable and correctable by expert operators 
(ie, auto-segmentation and auto-planning) AI tools have 
quickly entered the clinical practice in commercial solutions. 
Long-term verifiable applications, on the other hand, require 
extensive exploration before possible AI tools introduction 
into clinical routine.

Prior to the integration of radiomics (and dosiomics) into 
clinical practice for biology-driven tasks, it is imperative to 
address the acknowledged limitations of radiomics, an area 
where the scientific community is actively engaging.93-95

Upon overcoming these obstacles, AI is ready to revolutionize 
radiotherapy by offering a clear pathway towards a compre
hensive personalization.

Regardless of the scope, the ability to select relevant fea
tures for prediction is at the heart of AI’s potential. With ref
erence to this aspect, the importance of interpretability and 
explainability of the features themselves and of their role in 
the prediction represents the next commitment that the multi
disciplinary community of scientists must face.96,97

Interpretability is concerned with “understanding the pre
diction,” explainability with “understanding the path that 
takes to prediction.” Interpretability and explainability are 
fundamental elements to handle the ethical implications of AI 
in radiotherapy.98 Although the interpretability for most of 
the AI methodologies has been significantly developed, full 
explainability has not yet been achieved. In particular, there 
is generally a trade-off between accuracy and interpretability, 
that is the interpretability potential worsens with prediction 
accuracy improvement.99 Another important element regard
ing the reliability of the prediction, mostly concerned with 
the “understanding of what is not actually predicted,” is the 
quantification of model uncertainties (ie, epistemic uncertain
ties) and the stochastic uncertainties.100 To this purpose, the 
synergistic interaction between human knowledge, including 
the knowledge embedded in conventional methodologies 
(Table 3), and AI is envisioned as the way towards reliable AI 
applications in radiotherapy.101
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