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Abstract—As it is happening in many fields that need efficient
and effective classification of data, Machine Learning (ML) is
becoming increasingly popular in network management and
monitoring. We can say that ML algorithms are complex and,
therefore better suited for execution in the centralized control
plane of modern networks, but are also heavily reliant on data,
that are necessarily collected in the data plane. The inevitable
consequence is that the need to transfer lots of data from the data
plane to the control plane may arise, with the risk of causing con-
gestion on the control communication channel. Therefore it is of
paramount importance to design systems capable of minimizing
the interaction between data and control planes while ensuring
good monitoring performance. The most recent generation of
data plane programmable switches supporting the P4 language
can help mitigate this problem by preprocessing traffic data
at line rate. In this manuscript, we follow this approach and
propose P4RTHENON: an architecture to distill in the data
plane the relevant information to be mirrored to the control
plane, where complex analysis can be performed. P4RTHENON
leverages the P4-native support for runtime data plane pipeline
reconfiguration to minimize the interaction between data and
control planes while ensuring good monitoring performance. We
tested our scheme on the volumetric DDoS detection use case:
P4RTHENON reduces the volume of exchanged data by almost
75% compared to a pure control-plane-based solution, guarantees
low memory consumption in the data plane, and does not degrade
the overall DDoS detection capabilities.

Index Terms—Programmable Data Planes, P4, Network Mon-
itoring, Pipeline Reconfiguration, DDoS Detection

I. INTRODUCTION

Networks are becoming by the day more pervasive in the
processes of our daily lives, from work to leisure. This creates
unimaginable opportunities but also opens the floor to new
threats. For this reason, modern networks should promptly
respond to unexpected events to safeguard the running ser-
vices and avoid service disruption. Thus, to cope with legacy
network technologies, modern infrastructures require in-depth
and responsive network monitoring, management, and control.

Two key points, also relevant in the 5G world [1], are
(i) control and data plane separation (the so-called CUPS
approach) and (ii) network programmability. CUPS improves
flexibility and scalability by de-coupling the logic problems
from the pure data forwarding issues, while programmability
allows networks to react to unwanted situations [2]. This
envisions a closed-loop approach where the control plane col-
lects real-time information about the status of the underlying
network and reacts, by issuing suitable directives to the data
plane, to modify its behavior [3, 4].

In this manuscript we present P4RTHENON, a viable
approach to implement a closed-loop monitoring system,
which can intercept network behaviors and take real-time
actions. P4RTHENON stems from the idea of minimizing the
congestion of the control channel between data and control
planes [5], especially in the occurrence of abnormal behaviors.
We validate our solution by devising a volumetric Distributed
Denial of Service (DDoS) attack detection over P4RTHENON,
to showcase how we can minimize the impact on the control
channel and keep high detection rates. P4RTHENON follows
the Software Defined Networking (SDN) paradigm: the detec-
tion logic is split between a simple data plane logic and a more
complex control plane strategy. In this latter landscape, the
goal of our approach is to achieve the best possible trade-off
between monitoring performance, computational complexity,
and control channel utilization.

To this aim, P4RTHENON splits the monitoring task into
two phases called coarse-grained and fine-grained monitoring,
i.e., CGM and FGM, respectively. The peculiarity of our
approach is that FGM comes into place only when needed after
an appropriate runtime data plane pipeline reconfiguration.
For the sake of the proposed use case we implemented (i)
CGM DDoS strategy to detect the traffic portion suspected
to belong to a DDoS attack, and (ii) FGM DDoS strategy
to deeply analyze the suspect traffic in the control plane and
classify it in the right DDoS class if proven to be malicious.

We implemented CGM DDoS as a simple in-network P4-
based solution that calculates the degree of traffic asymmetry
between two end hosts A and B in the two directions (A → B
and B → A), assuming that traffic is strongly asymmetric
when a DDoS attack is in place, and flagging as suspect all the
flows characterized by a high asymmetry degree. This strategy,
based on a Count-min Sketch [6], over-estimates the number
of DDoS attack flows, leading to some false positives while
keeping the number of false negatives low.

Once suspect flows are identified by CGM DDoS,
P4RTHENON triggers FGM DDoS (i) to extract relevant
features from their packets in the data plane and (ii) to
mirror this data to the control plane in the form of P4
digests. The collected features are then given as input to a
trained Convolutional Neural Network (CNN), i.e., LUCID
[7], performing ML inference and classifying any suspect flow
as belonging to a DDoS attack class or as benign. According
to our results, FGM DDoS can substantially reduce false
positives with respect to CGM DDoS, thus achieving high
Precision while keeping the control channel utilization low.
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To summarize, the main contributions of this work are:
• A new architecture, i.e., P4RTHENON, to dynamically

reconfigure the data plane pipeline at runtime and re-
model the control plane accordingly, to minimize the
control channel utilization.

• A lightweight P4 strategy to early detect Volumet-
ric DDoS flows, i.e., Asymmetric Count-Min Sketch
(ACMS).

• A validation of P4RTHENON to detect volumetric DDoS
attacks, which analyzes the tradeoff between memory
consumption/control channel occupation and the detec-
tion performance, leveraging a state-of-the-art ML agent
[7] in the control plane.

The manuscript is organized as follows. We start by summariz-
ing the state of the art on existing P4-based (i.e., in-network)
and ML-based monitoring solutions (Section II), outlining
their limitations. Section III details the principles our proposal,
P4RTHENON, and its architectural components. Section IV
presents the DDoS detection use case, from the scenario to
the implementation of a testbed, and the performance of the
proposed solution is evaluated in Section V. Finally, we draw
our conclusions in Section VI.

II. RELATED WORK

In this Section, we analyze the state of the art regarding
SDN monitoring solutions. First, we sum up the existing
programmable data plane-based monitoring solutions. Then,
we investigate how ML-based monitoring is exploited in the
SDN control plane. We proceed to give an overview of
works that integrate data plane and ML-centered control plane
solutions for monitoring. In anticipation of our architectural
choice, we conclude the Section by analyzing the pipeline
reconfiguration methods proposed in the literature.

A. Monitoring solutions with programmable data planes

Offloading part of the control plane intelligence to the data
plane has become increasingly popular in SDN [8] thanks to
the rise of data plane programmability (DPP). DPP opened the
field to greater monitoring expressiveness on network devices
since it can be leveraged to describe arbitrary, albeit simple
packet manipulation strategies on top of regular forwarding.
In recent years, programmable data planes have proven to
be effective in supporting complex monitoring strategies by
coding part of them directly on the data plane [9], most
commonly exploiting the P4 language [10].

The most straightforward approach showing how DPP can
be exploited to support network monitoring is In-band Net-
work Telemetry (INT) [11], a framework proposed by some of
the biggest networking companies in conjunction with the P4
Working Group. INT allows gathering monitoring information
by transparently adding custom headers to users’ packets,
which are then extrapolated and forwarded to a centralized
collector. INT has been extensively used to support traffic
engineering [12], congestion control [13], and routing [14].

Another possibility to take advantage of DPP for network
monitoring consists in exploiting the stateful memory made
available by P4-based programmable data planes (i.e., P4 reg-
isters), to implement customized data structures (i.e., sketches
[15]) for advanced in-network monitoring [16]. Thanks to
these data structures, it is possible to support complex tasks,
such as intrusion or anomaly detection, by keeping track
of flows’ state and aggregate statistics directly in the data
plane. For instance, many strategies have been proposed to
detect heavy flows (or heavy hitters) [17], using different data
structures such as hash tables [18] or invertible sketches [19].

Recently, some works have also proposed to offload ML
inference to the data plane, meaning that the whole ML model
is made executable in the data plane pipeline in support of
widely different monitoring tasks. For example, pForest [21]
and BACKORDERS [22] have proposed to offload a random
forest (RF) [30] on the data plane for in-network inference.
These works either require a large amount of Match-Action
Tables (MAT) installed or use arbitrary F1Score thresholds to
rate the detection quality. A further step in this domain has
been made by Taurus [20], which offloads CNN [31], Deep
Neural Networks (DNN) [32], and Support Vector Machine
(SVM) [33] models to the data plane exploiting MapReduce
[34]. However, Taurus shows limitations already at model-
level accuracy, which is below 70% for the DNN, while
we could not find accuracy benchmarks for the other two
models. Other works, such as [23, 24, 25], offload different
ML models, among which Decision Trees (DT) and Binary
Neural Networks (BNN), to the data plane. Especially, DT
and BNN exhibit low inference performance. This is because
the DT can only have limited depths and BNN adopts simple
binary weights to overcome data plane operational limitations.
Razavi et al. [25] implement a DNN, but the authors encoded
weights’ floating point numbers with 8-bit integers, leading to
similar performance degradation as [23, 24]: this is a major
limitation that they also clearly highlight in the paper.

Table I provides a brief summary of the aforementioned
ML-based data plane solutions, all exploiting the P4 language
technology, outlining their limitations. To summarize, trying
to fit ML models to the programmable data plane is not
simple, requires nontrivial operations to optimize the code and
memory consumption, and high inference performance is hard
to achieve. These are the reasons why P4RTHENON relies
on simple sketch-based strategies in the data plane for CGM,
while a ML-based in-depth analysis, as that performed by
FGM (see Section II-B), leverages the more powerful control
plane computational capabilities.

DDoS attack detection: As specified in the Introduction, in
this paper we focus on DDoS attack detection as a use case.
To address this problem, many solutions based on DPP have
been proposed [35]. ML-based methods in the data plane have
also been proposed, as BACKORDERS [22] already discussed
above. Other works, e.g. [36, 37], adopt a coarse-grained
strategy by definition, where the data plane is employed
as a valid support to roughly detect anomalies. Ding et al.
[38] propose INDDoS, a pragmatic way to detect victims
targeted by a DDoS attack using Direct Bitmap combined
with a Count-min Sketch. P4RTHENON’s DDoS detection
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Work ML model Limitation
Taurus [20] CNN, DNN, SVM Model accuracy for DNN below 70%
pForest [21] RF Detection quality evaluated using an arbitrary F1Score threshold

BACKORDERS [22] RF Requires a minimum of 63 MAT to work
Qin et al. [23] BNN Low Recall in certain datasets

Siracusano et al. [24] DT Low detection performance in certain datasets
Razavi et al [25] DNN 8-bit floating point arithmetic

TABLE I: Limitations of current P4-based ML data plane solutions.

Work ML model Dataset Number of True Positive Rate Training Time on GPU
features

Ghanbari et al. [26] CNN+SVM CAIDA [27] 60 87.35% N/A
DeepDefense [28] CNN+RNN UNB ISCX [29] 20 ∼98%, not clear if on unseen data N/A, [7] claims > 25 h

LUCID [7] CNN CAIDA [27],
UNB ISCX [29], and other 12 ∼99% for each dataset 4500 s

TABLE II: Comparison between ML-based control plane DDoS detection solutions.

implementation indeed relates to other P4-based solutions
mentioned in the AlSabeh et al. survey [35]. However, none
of the considered schemes provides an in-depth analysis of the
memory and control channel utilization when data and control
planes interact while ensuring acceptable DDoS detection
performance. Moreover, our P4 implementation of asymmetric
flow detection is a novel contribution. We argue that our
analysis not only validates the scalability of P4RTHENON,
but also demonstrates how it is possible to match the detec-
tion performance of state-of-the-art solutions while drastically
reducing the management overhead. In fact, our proposed
CGM DDoS strategy takes inspiration from the cited works,
but it simplifies the strategy even further at the expense of
increasing the false positive rate, which is then corrected by
FGM DDoS.

B. ML-based monitoring with SDN control planes

The effectiveness of ML-based solutions involving the SDN
centralized control plane for monitoring has been thoroughly
demonstrated [39]. The most important factors contributing to
their success are the following [40]: (i) a single ML model can
be deployed on top of the centralized controller to monitor
network-wide scenarios; (ii) centralizing data collection is
key for precise prediction; (iii) relevant data can be retrieved
in real-time by the controller. In the following, we will
specifically focus on monitoring tasks related to ML-based
DDoS attack detection, from which we took inspiration to
design FGM DDoS.

DDoS attack detection: A thorough high-level analysis of
ML techniques to detect DDoS attacks is proposed by He et al.
[41], which outlines detection performance differences when
selecting various features and models. This work also suggests
that classic ML approaches are usually highly dependent on
feature choice and datasets. To better generalize the model
and loosen the constraint of selecting a fixed set of features,
Deep Learning-based schemes have become extremely popular
in detecting DDoS attacks. Among them, Ghanbari et al.
[26] propose a solution that leverages a CNN, achieving high
detection rates on a very well-known dataset, i.e., UNB ISCX
intrusion detection evaluation dataset [29]. DeepDefense [28]
is another example that combines a CNN and a Recurrent

Neural Network (RNN), evaluated with good performance in
the CAIDA DDoS 2007 attack dataset [27]. However, both
solutions require a high number of features and do not suit
real-time scenarios given their complexity. LUCID, proposed
by Doriguzzi et al. [7], adopts similar concepts but in a way
that makes the trained ML model suitable for online scenarios.
LUCID is a lightweight CNN that classifies each traffic flow as
belonging to a known DDoS class or as benign. With a rather
fast training phase and a limited number of needed features,
LUCID is capable of high detection rates.

Table II reports a comparison summary of the three works
discussed above. LUCID ensures limited training time while
keeping detection performance high, and thus it is a suitable
solution to be adopted on top of an SDN control plane.
However, it needs to inspect all the network traffic to provide
good prediction rates. Mirroring packets to the control plane
during a volumetric attack could congest the control channel
[42, 43], in fact propagating it. Our proposed FGM DDoS
strategy exploits LUCID to classify network traffic, but it
adds a data plane data aggregation logic to relieve the control
channel, by delivering to the control plane, via P4 digests,
only features extracted from suspect traffic in the data plane.

C. Interaction between data and ML-based control planes

Some works in literature have proposed monitoring archi-
tectures envisioning a tight interaction between programmable
data and control planes in an SDN environment, with the
goal of implementing refined strategies to optimize such an
interaction: this is to some extent also the main objective of
P4RTHENON. It is important to note that all the previous
work on this topic focuses on anomaly/attack detection tasks.

Zhang et al. propose POSEIDON [44], a framework to map
attack countermeasures to the programmable data plane and to
servers. They propose a language for hardware abstraction and
a runtime environment to orchestrate the real-time reaction to
attacks. However, this solution requires multiple technologies
and components and is bound to the language proposed by
the authors, making it hardly replicable. A general solution
that jointly maps ML-assisted detection in a programmable
data plane and in a control plane is IIsy [45]. Two models are
proposed: a lighter one, fully deployed in the data plane, and
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a heavier one, in the control plane. They intensively tested
the deployment of different models in the data plane, but
do not consider the possibility of swapping between different
configurations at runtime.

ORACLE [46] and the work proposed by Musumeci et al.
[47] focus on two architectural approaches that envision a
collaboration between control and programmable data plane to
detect DDoS attacks. In both cases, aggregated statistics from
packets’ flows are computed by the programmable data plane
and forwarded to the control plane, where they are processed
by an ML engine to detect attacks through ML inference.
Although simple and effective, these solutions require intense
and constant communication between the data and the control
plane, even when the attack is not happening, as they require
the data plane to constantly send the aggregated statistics to the
control plane. While taking inspiration from these proposals,
our solution is the first attempt known to us to design a two-
phase system for the optimization of control channel usage:
in-network monitoring is autonomously performed by the
programmable data plane to detect suspect traffic, and a more
refined ML-based analysis takes place in the control plane.
Differently from [46, 47], the latter is performed on categorical
features extracted from packets belonging to suspect flows.
Extracting packets’ categorical features (e.g. IP flags) instead
of computing flows aggregated statistics is another peculiarity
of our proposal. Thanks to this, multi-class classification can
be better performed (e.g. to which type of DDoS attack the
packet belongs, if malicious) instead of only performing binary
classification (DDoS/benign) as done in [46, 47].

FlowLens [48] is another work that resembles our solution
regarding purpose and scope. Its authors propose an SDN
architecture that leverages programmable switches to effi-
ciently support multi-purpose ML-based security applications.
FlowLens collects features related to packets distribution at
line speed and classifies flows directly in the switches, using
their CPU. However, though highly flexible and reliable,
FlowLens cannot benefit from the network-wide view provided
by a centralized SDN control plane. In addition, it does not
envision any data plane pipeline reconfiguration at runtime,
as supported by P4RTHENON. Reconfiguring the data plane
pipeline makes it possible to install specialized pipelines,
instead of using a general-purpose one, and to optimize the
amount of data exchanged between data and control plane.

D. Programmable data planes pipeline reconfiguration

The potential advantages of runtime data plane pipeline
reconfiguration have already attracted the attention of the
research community. We argue that the work presented by
Xing et al. [49] is the most convincing attempt to (re)program
a switch at runtime. In this work, the authors propose an
extension of the P4 language that enables partial reconfig-
uration of the data plane with minimum resource overhead,
without service disruption, and guaranteeing consistent packet
processing. By allowing developers to load new features at
runtime on a reserved memory area, the authors propose a
solution to the notorious problems of repopulating all the
existing tables and of the introduced delay when a switch

firmware is replaced. This work does not consider any specific
application domain and it is not clear what the impact would
be if the whole pipeline had to be reconfigured. A similar
proposal was advanced by Feng et al. [50]. The authors
designed a specific real-time upgradable architecture called In-
situ Programmable Switch Architecture (IPSA). This approach
allows to implement reconfiguration in a more efficient way,
but at the cost of having to upgrade the whole network to adopt
switches whose architecture follows the IPSA one, which may
not be feasible in large-scale scenarios.

In contrast to the existing works, P4RTHENON leverages
the native feature made available by the P4Runtime spec-
ification [51] that allows a P4 pipeline reconfiguration at
runtime. We choose this approach because P4Runtime is a
well-established Application Programming Interface (API) for
controlling the data plane elements of a device whose behavior
is specified by a P4 program, and thus no architectural change
is needed as long as a P4-enabled device is adopted. To the
best of our knowledge, the few experiments that we were
able to find about partial or total pipeline reconfiguration have
never focused on the optimization of the burden on the control
channel. Conversely, P4RTHENON is specifically designed to
minimize the amount of data exchanged between the involved
planes, while ensuring high monitoring performance.

III. P4RTHENON: MONITORING ARCHITECTURE

In this Section, we describe the main concepts behind
P4RTHENON, our general-purpose real-time solution to de-
scribe and implement monitoring policies. The main goal of
P4RTHENON is minimizing the amount of data exchanged
between data and control planes while achieving high perfor-
mance of monitoring engines running in the control plane that
require detailed features extracted from packets, such as ML-
based ones.

P4RTHENON executes monitoring tasks in two phases: (i)
in the first phase, an approximate traffic analysis is performed,
which identifies the flows that should be monitored more in
depth (i.e., Coarse-Grained Monitoring); (ii) in the second
phase, an accurate analysis is done on the flows selected
by CGM, with the aim of further discriminating what flows
meet the behavior specified by the monitoring policies (i.e.,
Fine-Grained Monitoring). Each phase is associated with a
specific strategy deployed by the control plane, which requires
a runtime reconfiguration of the data plane pipeline.

Specifically, CGM is meant to run completely in the data
plane, meaning that just a few data points need to be for-
warded to the control plane in this phase. Based on the
information gathered during CGM, when meeting some pre-
defined condition, the control plane triggers FGM, with a
consequent reconfiguration of the data plane pipeline. FGM
is data-intensive as it requires traffic features to be mirrored
from the data plane to the control plane. However, the features
mirrored during FGM are only those extracted from flows
selected by CGM: this significantly reduces the amount of
data to be forwarded and analyzed, enhancing Precision by
lowering the input detection noise and reducing the burden on
the control channel. Whenever some other pre-defined con-
dition is met (e.g. after a timeout expiration), P4RTHENON
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Fig. 1: P4RTHENON architecture with a focus on the DDoS detection use case (Section IV).

triggers the return to the execution of CGM and the pipeline
is reconfigured to the previous status accordingly. Figure 1
illustrates the architecture of the system, also showing the
specific strategies adopted in our DDoS detection use case,
whose design and implementation will be detailed in Section
IV. In the following we will provide further details on CGM
and FGM, on design principles, and on the main enabling
technologies.

A. Coarse-Grained Monitoring vs. Fine-Grained Monitoring

CGM is the default strategy installed in the data plane. It is
designed to be executed on top of the regular forwarding with
a low-added overhead. It relies on a very simple monitoring
strategy that (i) continuously monitors the traffic; (ii) identifies
the set of flows that meet some monitoring requirements.
CGM is fully executed by the programmable data plane, and
exchanges minimal data with the control plane. In fact, the data
plane occasionally sends management messages to the control
plane updating it with a summary of the current network status.
Then, the control plane inspects the collected data and, if a
condition is met, the execution of FGM is triggered.

FGM is instead deployed by the control plane whenever
some traffic needs to be inspected with higher Precision. CGM
is responsible for identifying the traffic flows worth being
monitored by FGM. Unlike CGM, FGM’s logic is evenly
split between data and control planes. In the data plane, FGM
extracts relevant features (e.g. IP flag, TCP ports, etc.) from
packets of selected flows and mirrors them to the control plane.
In the control plane, a specialized agent (e.g. a trained ML
model) takes as input the extracted features and performs a
deeper monitoring (e.g. flow classification).

B. Main design principles of P4RTHENON

CGM and FGM should be designed to ensure that CGM
is able to recognize all (ideally) the flows that may need
attention, but it could include in such a set also flows that
are wrongly selected as interesting. Instead, FGM should be
capable of further discriminating, from the set of flows selected
by CGM, the flows that are truly relevant. The use case
presented later in this manuscript (see Section IV), which
refers to DDoS detection, will show that CGM DDoS is
effective in identifying a superset of flows that belong to DDoS
attacks, hence finding all the true positives with a certain
degree of false positives, while FGM DDoS is very efficient
at trimming out all the false positives. As far as these design
principles are met, P4RTHENON could be adopted for widely
different monitoring tasks other than DDoS detection.

C. Programming and interaction of the architectural elements

The data plane pipeline’s behavior is specified by a program
written in the P4 language [10]. Each P4-programmable
pipeline consists of a set of processing blocks, which can
modify the packet headers and gather packet-related data (e.g.
the features required by FGM). As Southbound Interface (SBI)
we adopt the well-known P4Runtime [51], which is exploited
to (i) install match-action rules (enabling the selective per-flow
features’ mirroring in FGM) and (ii) send data to the control
plane (e.g. extracted features) by means of digest messages.

The digest is a type of message specified in the P4Runtime
specification [51] that can be adapted to send one-way data
recovered by the data plane to the control plane. As the
documentation explains, it differs from packet-in messages
[52] as it is optimized to only send some packet’s header fields
and metadata, while packet-in is generally used to also send
the payload. Multiple digests can be aggregated by P4Runtime
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Packet
exits the
pipeline

Packet
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Fig. 2: Asymmetric Count-min Sketch description. A detailed explanation can be found in Section IV-B1.

into larger messages to reduce their number. The control plane
retrieves the digest data as a JSON collection, where each
JSON encapsulates a digest associated with a packet. The
FGM specialized agent (see Fig. 1), which is implemented as
a Python script, is continuously fed by the JSON collection,
relying on a RESTful communication.

IV. P4RTHENON USE CASE: DDOS DETECTION

This Section illustrates the use case we chose to validate
our approach. The produced code has been open-sourced1.
We considered volumetric DDoS detection as an example to
showcase P4RTHENON peculiarities. We will refer to the
specialized versions of CGM and FGM as CGM DDoS and
FGM DDoS, respectively. A preliminary investigation on the
considered use case can be found in [53].

A. Asymmetric Count-min Sketch (ACMS)

To detect suspect DDoS attacks in the data plane, we
devised a simple sketch-based algorithm implemented in P4
called Asymmetric Count-min Sketch (ACMS, see Fig. 2).
ACMS was designed by observing the behavior of volumetric
DDoS attacks, which usually generate a large number of
packets toward the victim by means of a large number of com-
promised clients belonging to a botnet. In particular, ACMS is
designed to detect flows with an unexpected asymmetry rate.
In this condition, the traffic volume between the compromised
client and the victim is expected to be much larger than the
traffic volume in the opposite direction. Note however that
P4RTHENON could be configured to support different types
of attacks and multiple flavors of DDoS attacks, e.g. DDoS
attacks that target a specific destination (as analyzed in [38]).
ACMS incorporates two algorithms, i.e., Count-min Sketch and
asymmetric flow detection:

1https://github.com/UniboSecurityResearch/p4runtime-go-client/tree/cnn-
integration

1) Count-min Sketch (CMS) [6]: It exploits a probabilistic,
low-memory data structure (i.e., sketch) that can be used to
estimate flows’ packet count, i.e., the number of packets carried
by any network flow in a time window. It relies on two
operations carried out on the sketch: (i) Update, to keep the
count of incoming packets updated in the sketch; (ii) Query, to
estimate the number of counted packets for a given flow. CMS
relies on d different pairwise-independent hash functions, each
with an output size w. The data structure is composed of a
matrix of d ·w counters: the packet-count estimation accuracy
increases as the two dimensions increase, and vice versa, with
theoretical bounds that have been proven [6].

2) Asymmetric flow detection: It is a simple in-network
algorithm (proposed in P-SCOR [4]) that calculates whether
a flow is part of a potential DDoS attack. It uses a fixed
Threshold, a data structure called R that includes w counters,
and a hashing function h that returns a number between 0 and
w− 1. Every time a packet crosses the switch, k is calculated
as the hash of the s =< IPsrc, IPdst > string, i.e., h(s) = k.
The counter of R in the k-th position, i.e., R(k), is then
incremented (R(k) = R(k)+1). The algorithm then calculates
h(s′) = j, where s′ =< IPdst, IPsrc >, and the asymmetry
rate asym = |R(k)−R(j)|: if asym > Threshold, the flow
is marked as a potential DDoS attack, as the difference of the
traffic volume in the two directions is abnormal. The choice
of identifying and tracking network flows considering the
< IPsrc, IPdst > couple rather than the more typical 5-tuple
flow definition (< IPsrc, IPdst, portsrc, portdst, protocol >)
has been made to ensure a slim approach in the data plane. Dis-
tinguishing 5-tuple malicious flows within < IPsrc, IPdst >
is a duty left to the control plane.

B. Strategies Description

1) CGM DDoS: The strategy leverages ACMS as follows
(Fig. 2). When a packet enters the data plane pipeline, the
algorithm updates a CMS to increase the packets’ counter for
the considered flow. Then, the CMS is queried to retrieve the
packet count estimation for the flow in the forward direction
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Fig. 3: Flow diagram of transitions between CGM DDoS and FGM DDoS (top) and timeline (bottom).

represented by the key < IPsrc, IPdst >, i.e., srctodst. The
CMS is then queried again using the key < IPdst, IPsrc > to
retrieve the estimated packet count in the backward direction,
i.e., dsttosrc. The asymmetry rate is then computed as asym =
|srctodst−dsttosrc|: if asym is higher than a value Threshold
the flow is labeled as suspect, and an alert is sent to the control
plane in the form of a digest. The CMS is reset by the control
plane every time a fixed time window expires.

It must be noted that setting the most appropriate
Threshold is not trivial and could affect the detection per-
formance in both CGM DDoS and FGM DDoS. In Section
V we will report the results of a sensitivity analysis aimed at
determining what Threshold best suits our scenario.

2) FGM DDoS: It comes into place, through a data plane
pipeline reconfiguration, following an alert that is sent to the
control plane during CGM DDoS. It includes both a data
plane and a control plane logic.

The data plane logic in the P4-programmable pipeline
combines two sub-strategies, namely (i) ACMS and (ii) op-
timized mirroring. ACMS is the same as that deployed in
CGM DDoS, and it is needed to keep monitoring any new
suspect flow once the data plane pipeline has been recon-
figured. Optimized mirroring is instead deployed to extract
relevant features from packets and forward them to the control
plane through digests. We call it optimized mirroring because
it is meant to minimize the amount of data flowing on
the control channel. It only mirrors features from packets
belonging to flows deemed suspect by ACMS, both the ones
marked as such during CGM DDoS and, if any, those detected
during FGM DDoS. To further reduce the burden on the
control channel, it also employs packet sampling, meaning that
features from only 1 out of N (i.e., sampling rate of 1/N )
suspect packets, flowing through the pipeline, are forwarded.
N is a parameter that needs to be carefully set to strike the best
balance between detection performance and control channel
utilization, as we will show in Section V.

The control plane collects and stores the features extracted

from the network traffic that are mirrored through the control
channel. This data is then fed to a specialized online ML
algorithm based on a pre-trained CNN model, i.e., LUCID
[7], which pre-process it and performs a classification task to
determine what suspect flows truly belong to a DDoS attack
and what are instead benign. LUCID enriches CGM DDoS
analysis on < IPsrc, IPdst > to further discriminate the 5-
tuple malicious flows between source and destination.

C. Transition between CGM DDoS and FGM DDoS

The time is slotted in time windows, which starts at integer
time reference ts = t̄ and lasts until te = t̄ + 1. At the
beginning of each time window, it is possible to switch from
CGM DDoS to FGM DDoS or vice-versa. Figure 3 shows
an example of how the transition between the two strategies
occurs. The top part of the figure reports a flow diagram
showing state transitions in the face of a DDoS attack, while
the bottom part focuses on a time perspective. Let’s assume,
as shown in the bottom part of the figure, that a DDoS attack
starts during the second time window (in between ts = 1 and
te = 2) and expires in the sixth time window (in between
ts = 5 and te = 6). No other DDoS attack is in place in our
time horizon, meaning that at the beginning of the first time
window, CGM DDoS is installed for coarse-grained traffic
analysis.

During the first time window, nothing is detected by ACMS
and no interaction between data and control plane occurs.
During the second time window, as soon as the DDoS attack
begins, CGM DDoS starts sending alerts to the control plane
every time a flow is considered to be suspect, as its asymmetry
rate computed by ACMS overcomes the pre-defined threshold.
After being notified of a possible attack, the control plane
waits until the end of the current time window and then
switches to FGM DDoS, which requires a data plane pipeline
reconfiguration: this happens at the beginning of the third time
window, i.e., at ts = 2. The reconfigured data plane starts
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Algorithm 1 Asymmetric Count-min Sketch
Required: packet,H,CMS, Threshold
Optional output: sendAlert

src← packet.ipsrc
dst← packet.ipsrc
CMS ← updateCMS(CMS,H, src, dst)
minfwd ← queryCMS(CMS,H, src, dst)
minbwd ← queryCMS(CMS,H, dst, src)
asym← |minfwd −minbwd|
if asym > Threshold then

if < src, dst > /∈ suspectflows then
suspectflows ← < src, dst >
sendAlert(src, dst)

end if
end if
return

function UPDATECMS(CMS,H, src, dst)
i← 0
for all hash ∈ H do

h← hash(src, dst)
CMSi[h]← CMSi[h] + 1 // row i
i← i+ 1

end for
return CMS

end function

function QUERYCMS(CMS,H, src, dst)
i← 0
min←∞
for all hash ∈ H do

h← hash(src, dst)
if CMSi[h] < min then // row i

min← CMSi[h]
end if
i← i+ 1

end for
return min

end function

extracting and mirroring features from (sampled) packets of
the suspect flows identified by ACMS during CGM DDoS,
and at the same time monitors the rest of the traffic for
potential new suspect flows. In the meantime, the control plane
feeds the ML-based agent with packets’ extracted features to
identify malicious flows with high confidence. This condition
holds until the DDoS attack ends, in this case during the
sixth time window. As soon as this happens, the asymmetry
rate of all flows falls behind the specified threshold, and at
the beginning of the seventh time windows, CGM DDoS can
replace FGM DDoS again.

D. Implementation

1) CGM DDoS: To develop CGM DDoS, we wrote ∼250
lines of P4 code. Our implementation of Asymmetric Count-
min Sketch is summarized in Algorithm 1, including a de-
scription of the developed functions in P4. The P4 program
specifies a CMS data structure as an array of P4 registers,
which is used to summarize the number of packets per flow
(i.e., packet count) in any direction. CMS is updated and
queried leveraging a set of CRC32 hash functions (H), and
the asymmetry Threshold used to evaluate abnormal packet
count differences in forward and backward flow directions is

hard-coded in the program. Every time a packet enters the P4
pipeline, the following operations are sequentially performed:

• updateCMS: the CMS is updated. The packet count
for the < ipsrc, ipdst > flow is increased by one unit.
This is done by accessing, for each row i of the data
structure, the cell with index equivalent to the hash value
of < ipsrc, ipdst >, obtained by considering the i-th
hash function from the set H , and increasing its value
accordingly (see [6]).

• queryCMS: the operation is similar to the one illustrated
in updateCMS but, instead of updating the value from
the cell in each row i, the minimum among the stored
values in the cells are kept to estimate the packet count for
the corresponding flow (see [6]). queryCMS is executed
twice, first to estimate the packet count for the forward
flow < ipsrc, ipdst >, and then for the backward flow
< ipdst, ipsrc >. Those values are called minfwd and
minbwd respectively.

• The asymmetry rate (asym) is finally computed as
asym = |minfwd −minbwd| and if it exceeds the value
Threshold, the < ipsrc, ipdst > flow is considered sus-
pect of belonging to a DDoS attack. When this happens,
an alert is sent to the control plane in the form of a
digest, which wraps 64 bits containing ipsrc and ipdst of
the flow. To reduce the burden on the control channel,
such an alert is generated only once per time window,
at the first time that < ipsrc, ipdst > leads to an asym
value greater than the Threshold.

Every ∆t (time window size; in this paper we consider a
∆t = 30 s) the switch sends a digest notifying the expiration
of the window, which can result in two different outcomes: (i)
if no flow is deemed suspect during the time slot, no action
is required apart from resetting the counters of CMS; (ii) if
at least one alert has been sent to the control plane during the
window, the controller triggers FGM DDoS.

2) FGM DDoS: The P4-based data plane logic of
FGM DDoS is a superset of the logic of CGM DDoS. In fact
it includes ACMS (see Alg. 1) in its whole, with in addition:

1) A feature extraction logic to retrieve relevant features
from packets flowing through the pipeline;

2) A feature forwarding logic to forward to the control
plane only features (i) extracted from packets pertaining
to suspect flows through ACMS and (ii) meeting the
sampling requirements.

Together, 1) and 2) define the optimized mirroring strategy
as described in Section IV-B. The feature extraction logic
is detailed in Alg. 2, while the feature forwarding logic
encapsulates the extracted metadata in a digest with a total
size of 281 bits, which is sent to the control plane through
the control channel using P4Runtime [51]. The procedure is
shown in Alg. 3. The control plane then decodes the digest’s
data and saves the features in a JSON list.

The control plane exploits LUCID [7] for a finer-grained
detection of DDoS attacks. LUCID includes a trained ML
model (i.e., CNN) and a preprocessing algorithm, needed to
reorganize retrieved features as required by the ML model (i.e.,
on a per-flow basis).
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Feature Description Collected in Protocol
ipsrc Source IP address of the packet Parser IPv4
ipdst Destination IP address of the packet Parser IPv4
ipflags IP flags used for fragmentation of the packet Parser IPv4

ipprotocol Higher-layer protocol header encapsulated in the packet Parser IPv4
iptotalLength Size of the entire IP packet in bytes Parser IPv4
icmptype ICMP type of the ICMP packet Parser ICMP
udplen Length of the UDP segment in byte Parser UDP
tcplen Length of the TCP segment in byte Parser TCP
tcpack Acknowledgement number of the TCP segment Parser TCP
tcpflags TCP flags of the segment (URG, ACK, PSH, RST, SYN, FIN) Parser TCP

tcpsrcPort Source port number of the TCP connection Parser TCP
tcpdstPort Destination port number of the TCP connection Parser TCP
tcpwinSize Window size of the TCP connection in bytes Parser TCP

ingresstimestamp Timestamp of when packet is received in the ingress queue Ingress Control Block -

TABLE III: Packet features encapsulated in the digest sent to the control plane by optimized mirroring. The features in red are used by
LUCID [7] in the preprocessing stage, but not for detection.

Algorithm 2 Optimized mirroring: Feature extraction
Required: packet
Output: metadata

control block PARSER
if packet is IPv4 then

metadata.ip(src,dst,flags,protocol,totalLength) ←
packet.ip(src,dst,flags,protocol,totalLength)

end if
if packet is ICMP then

metadata.icmptype ← packet.icmptype
end if
if packet is UDP then

metadata.udplen ← packet.udplen
end if
if packet is TCP then

metadata.tcp(len,ack,flags,srcPort,dstPort,winSize) ←
packet.tcp(len,ack,flags,srcPort,dstPort,winSize)

end if
return metadata

end control block

control block INGRESS
metadata.timestamp← ingresstimestamp

return metadata
end control block

Algorithm 3 Optimized mirroring: Feature forwarding
Required: metadata,Nsampling, suspectflows

Output: sendDigest
counter ← 0
if < metadata.ipsrc,metadata.ipdst > ∈ suspectflows then

counter ← counter + 1
if counter == Nsampling then

sendDigest(metadata)
counter ← 0

end if
end if

For an online detection (i.e., classification) of malicious
flows, the JSON list including the features is continuously
sent to LUCID via RESTful communication. LUCID then
aggregates and splits the traffic into flows, marking them as
malicious or as benign by means of ML inference. The JSON
list is emptied every ∆t seconds, i.e., every time window
expiration. This is done to reduce the amount of data stored in
the control plane and to keep it updated on the current shape

of the underlying traffic. If LUCID is fed with the most recent
traffic, it is possible to spot whether a flow previously deemed
as malicious starts behaving legitimately. In this case, the flow
can be ruled out from the list of malicious flows.

V. PERFORMANCE EVALUATION

This Section presents a performance evaluation of
P4RTHENON, with respect to the considered use case of
DDoS detection, both from a resource consumption and de-
tection capability point of view.

A. Evaluation metrics and methodology

The tests here presented are based on a labeled PCAP
dataset (details in Section V-B), containing both true pos-
itives (TP , i.e., flows that belong to DDoS classes) and
true negatives (TN , i.e., flows of benign traffic). The total
number of flows is T = TP + TN . In each experiment, we
obtain both false positives (FP , i.e., all the flows wrongly
deemed belonging to a DDoS attack) and false negatives (FN ,
i.e., all those flows wrongly deemed benign). The detection
performance is thus analysed by means of three metrics:

• Precision = TP
TP+FP . It measures how many of the

positive predictions are correct. The higher the value, the
lower the noise from false positives.

• Recall = TP
TP+FN . It measures how many positive

cases are recognized. The higher the value, the lower the
number of attacks escaping detection.

• F1Score = 2·Precision·Recall
Precision+Recall . It is computed as the

harmonic mean of Precision and Recall, indicating an
overall quality of the detection.

We also measure the average Control Channel Utilization
(CCU), which is defined as the amount of data transmitted on
the control channel, which we call collectedDatasize, in an
observation time window ∆t, i.e., CCU = collectedDatasize

∆t .
The higher CCU , the less efficient the strategy in terms of
data-control plane interaction.

We divided our evaluation into four parts:
• CGM DDoS evaluation, which presents a performance

evaluation of our solution if only in-network data plane
detection is performed. We compare it to an effective
state-of-the-art in-network solution.
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• FGM DDoS evaluation, which analyses and validates our
solution when ML-based control plane logic is installed.
We evaluate the effectiveness and efficiency of the strat-
egy over multiple combinations of ACMS thresholds and
sampling rates.

• Overall evaluation, which summarises the results of
CGM DDoS and FGM DDoS when combined, clearily
pointing out the benefits of P4RTHENON with respect
to other approaches.

• Data plane pipeline reconfiguration evaluation, which
reports a brief discussion on the time needed by
P4RTHENON to reconfigure the data plane pipeline
while swapping between CGM DDoS and FGM DDoS.

Before delving into the obtained results, in the following,
we give a concise description of the testbed and its settings.

B. Description of the testbed environment and parameters

Our experiments were carried out on in a virtual environ-
ment that consists of:

• An emulated single-switch network running on Mininet
[54] with bmv2 [55] as P4 virtual switch target;

• A controller, developed in Go [56], responsible of (i)
the information exchange with the data plane and (ii)
reconfiguring the pipeline using the P4Runtime APIs.

• A process running LUCID, interacting with the controller
via RESTful communication. LUCID was pre-trained
using a dataset provided in its official repository2, and
model hyperparameters were set as the default ones
specified in the paper [7]. For further details on LUCID’s
configuration the reader should refer to [7].

• A process simulating the DDoS attack by means of
tcpreplay [57], which replays network traffic at 50 Mbps
speed for a 6-minute long attack. We generated a PCAP
sample dataset containing roughly 2 Gb of traffic. It
is composed of 10% of benign traffic (taken from the
CIC-IDS2017 dataset [58]) and 90% of DDoS traffic
(generated with the hping3 [59] Linux utility). The attack
speed is designed to saturate the switch, while the 6-
minute duration allows replaying the dataset ∼ 2 times.
We generated traffic datasets with different numbers of
malicious < IPsrc, IPdst > flows (from 30 to 120) to
stress the CMS with various traffic volumes: this aspect
will be analyzed later in this Section.

All the components were executed on an Ubuntu 20.04 LTS
Server with 14GB of RAM and 3 CPU cores KVM machine.

The in-network P4-based ACMS strategy uses a (d = 2)×
(w = 1024) CMS, where every 48 bits are allocated to each
cell, resulting in 2 · 1024 · 48 ∼ 9.8Kb memory occupation.
The two adopted hash functions are available by default in the
bmv2’s v1model.p43, i.e., crc16 and crc32.

C. CGM DDoS evaluation

1) Sensitivity analysis of ACMS: To choose the right values
d and w for CMS we conducted a detailed sensitivity analysis.

2https://github.com/doriguzzi/lucid-ddos/tree/master/sample-dataset
3https://github.com/p4lang/p4c/blob/main/p4include/v1model.p4

Table IV shows a comparison between different values of d for
w = 1024. It reports how the F1Score improves for d = 2 with
respect to d = 1, and does not significantly improve further
for d = 3 or more, meaning that d = 2 is a valid compromise
between good detection performance and acceptable memory
consumption. Figure 4 shows the orthogonal analysis, for fixed
d = 2. Here, the Precision, Recall, and F1Score are collected
over a variable number of malicious flows, with fixed w (Figure
4a) and fixed ACMS thresholds (Figure 4b). This analysis
suggests that for w = 1024, the F1Score is significantly
higher for any number of malicious flows compared with
w = 512, and almost matches w = 2048. On the other hand,
for Threshold = 750, the F1Score outperforms every other
configuration. The threshold analysis anticipates the result we
will further discuss in Section V-D. This investigation suggests
that the best parameters for CGM DDoS, given our settings,
should be d = 2 and w = 1024. Moreover, in all the following
experiments we will focus on a number of malicious flows
equal to 60.

2) Comparison with the state of the art: We compare
CGM DDoS with an open-source4, state-of-the-art solution
called INDDoS [38]. As CGM DDoS, INDDoS is an in-
network P4-based solution that detects hosts targeted by
volumetric DDoS attacks. It is threshold-based, like ACMS,
i.e., the core strategy of CGM DDoS: it estimates the per-
destination flow cardinality (number of sources contacting a
specific destination) and, if it is above a threshold value,
the destination is considered under attack. To estimate it,
BACON sketch is used: a data structure that combines a
CMS and a Bitmap to Update and Query the per-destination
flow cardinality once a packet enters the P4 pipeline. When
the queried value crosses the specified threshold, a digest
wrapping the IP destination of the victim is sent to the control
plane.

The main difference between INDDoS and ACMS is that
they focus on two different properties of volumetric DDoS
attacks to detect them: the former on per-destination flow
cardinality (which is expected to be high for destinations
under attack), the latter on flows’ asymmetry rate (which
is expected to be high for malicious flows). We want to
stress that INDDoS could replace ACMS as the core in-
network algorithm of CGM DDoS. However, if we look at
Table V, some aspects can be highlighted. We decided to test
CGM DDoS and INDDoS considering their best configuration
in terms of detection performance (F1Score) which are:

• INDDoS: Threshold = 60, BACON sketch of size (d =
3)× (w = 1024)× (m = 1024) [38].

• CGM DDoS: Threshold = 750, CMS of size (d = 2)×
(w = 1024) (as shown in the previous subsection);

From Table V it can be seen that much more memory is used
by INDDoS with respect to CGM DDoS. In fact, the memory
occupied by BACON sketch, considering that 1 bit is allocated
to each cell [38], is 3 ·1024 ·1024 = 3145.7Kb, which is more
than 300 times higher than the memory occupied by the CMS
adopted by CGM DDoS (i.e., 9.8Kb). However, INDDoS
outperforms CGM DDoS in terms of Precision, Recall, and

4https://github.com/DINGDAMU/INDDoS
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Depth Precision Recall F1Score Memory in switch (Kb)
d = 1 0.54 0.95 0.69 4.9
d = 2 0.69 0.97 0.81 9.8
d = 3 0.71 0.97 0.82 14.7

TABLE IV: Detection comparison of ACMS while varying d (with w = 1024 fixed).
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Fig. 4: CGM DDoS: Detection performance for different ACMS widths (with d = 2 and Threshold = 750) and thresholds (with d = 2
and w = 1024 ) while varying the number of malicious flows.

Strategy Precision Recall F1Score CCU (Kbps) Memory in switch (Kb)
InDDoS [38] 0.86 1 0.93 0.001 3145.7

CGM DDoS (ACMS) 0.80 0.97 0.88 0.03 9.8

TABLE V: Detection comparison between an in-network state-of-the-art strategy [38] and CGM DDoS.
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Fig. 5: FGM DDoS vs. Mirror All: Detection performance and Control Channel Utilization for different thresholds (sampling rate fixed).
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Fig. 6: FGM DDoS vs. Mirror All: Detection performance for different sampling rates (threshold fixed). M.A. = Mirror All, Prec. =
Precision, Rec. = Recall, F1Sc. = F1Score.
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Fig. 7: FGM DDoS vs. Mirror All: Control Channel Utilization for
different sampling rates (threshold fixed).

F1Score. This is explained by the higher complexity (and
required memory) of INDDoS compared with CGM DDoS,
which makes it a more performing stand-alone solution.
However, Recall of both solutions is high (1 or close to 1),
while Precision of both is just decent, with slightly worse
performance for CGM DDoS.

In addition, CCU of CGM DDoS, although only in the
order of tens of bps, is higher than CCU of INDDoS. This
happens for two reasons: (i) the higher frequency of sent
alerts, as CGM DDoS sends an alert every time it spots a
suspect flow, while INDDoS groups alerts by destination; (ii)
the higher size of the digests payload, as CGM DDoS sends
8-bytes alerts (IP source and IP destination of the flow), while
INDDoS sends only 4-bytes alerts (IP address of the victim).
In our testbed, the size of a CGM DDoS alert is around
100 bits after being encapsulated in a JSON structure, while
the size of an INDDoS alert is around 50 bits.

To summarize, INDDoS provides a superior detection per-
formance compared to CGM DDoS. However, as specified in
Section III-B, P4RTHENON requires a low number of false
negatives for CGM, which is guaranteed by both strategies
(high Recall), while it is tolerant to false positives, which can
be filtered out by FGM. So, although CGM DDoS Precision
is slightly lower and CGM DDoS CCU higher (but still low in
absolute terms), its adoption in the place of INDDoS is fully
justified by its much lower memory usage.

D. FGM DDoS evaluation

In this Section, we analyze the benefits of FGM DDoS.
We provide an overview of the configurations we tested in
the environment described in Section V-B, setting different
ACMS thresholds and different sampling rates. The goal is to

explore the existing trade-offs between detection performance
(in terms of Recall, Precision, F1Score) and Control Channel
Utilization, as these two configuration parameters are the
most impactful on the above-mentioned metrics. Furthermore,
we compare these results with a naı̈ve strategy that we call
Mirror All and is inspired by [43]: it does not provide ACMS-
aided optimized mirroring, but it simply performs features
extraction and forwarding from any packet, regardless of that
it belongs to a suspect flow or not. In other words, it does not
embed any ACMS logic and discriminating between benign
and malicious flows is fully enforced by the control plane.
As for FGM DDoS, it is possible to reduce the burden on
the control channel through sampling, i.e., by only forwarding
features extracted from one packet out of N .

We tested different combinations of ACMS thresholds and
sampling rates: in the following we report only the most signif-
icant combinations for the sake of conciseness. Figures 5 and
6 report the results for our tests, where for each configuration
Precision, Recall, F1Score and CCU are reported. With respect
to CCU reported values, we want to stress that in FGM DDoS
the size of a digest, including the packet’s features, is around
2Kb, i.e., 20 times the size of the CGM DDoS one. Moreover,
in CGM DDoS a much lower number of digests is sent to the
control plane, as only one digest per suspect flow, in any time
window, is forwarded to the control plane. This is the reason
why CCU for FGM DDoS is several orders of magnitude
higher than for CGM DDoS (as reported in Table V).

Figure 5 reports the detection performance and CCU under
four chosen sampling rates, namely, 1, 1/50, 1/75, 1/100,
and varying the ACMS threshold. Note that Mirror All is
insensitive to the threshold as ACMS is not adopted, and
thus in the left-hand-side subfigures its Precision, Recall and
F1Score values are reported as single points. We can see that
by increasing the threshold a negative impact on Recall is
experienced, as the number of false negatives significantly
increases. In fact, only flows with very high asymmetry rates
are deemed suspect by ACMS and thus some malicious flows,
with lower asymmetry rate, are neglected by ACMS. On the
other hand, choosing a higher threshold has a very good impact
on CCU, as features extracted by packets belonging to fewer
flows (i.e., only those suspect) need to be forwarded to the
control plane. Instead, Precision is not strongly affected and
is always high, meaning that LUCID has a very good ability
to filter out false positives.
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Figure 5 also shows that lowering the sampling rate from 1
to 1/50 is beneficial for both detection performance and Con-
trol Channel Utilization for high thresholds. CCU is lowered
by one order of magnitude, while the detection performance
(in terms of F1Score) increases. This phenomenon may seem
counter-intuitive, however, by lowering the amount of data
sent to the control plane, congestion on the control channel is
reduced with consequent benefits on detection performance. In
fact, congestion causes uncontrolled digests’ discard, meaning
that lower congestion reduces the amount of noise (in terms of
flows’ patterns alteration) given as input to LUCID. By further
decreasing the sampling rate, e.g. 1/75 and 1/100, the number
of packets’ features sent to the control plane decreases up to
a point that LUCID has not enough data to perform a proper
classification. CCU is low but Precision, Recall, and F1Score
are also low regardless of the threshold value.

The same trend is confirmed by looking at Figs. 6 and 7,
which report the detection performance (Fig. 6) and CCU (Fig.
7) under four chosen value of the ACMS threshold, namely
750, 850, 950, 1450, and while varying the sampling rate. Fig.
6 shows that the detection performance peeks for sampling
rates higher than 1/50. However, the most important trend is
clearly highlighted in Fig. 7: whenever sampling is performed,
CCU for both Mirror All and FGM DDoS drops significantly.
For very low sampling rates (< 1/75) the same considerations
as those done for Fig. 5, with respect to high thresholds,
apply: in these cases, the amount of informative data sent
to the control plane is too limited to ensure robust detection
performance. Also the case for threshold values of 750 and
850 is interesting. With respect to detection performance (Fig.
6) they behave the same for any sampling rate, but CCU (Fig.
7) is reduced by 30% in the case of a threshold of 850.

By comparing FGM DDoS with Mirror All, we can see
that Mirror All performs best for sampling rates of 1/50 and
1/75. Its counter-intuitive worse detection performance with
a sampling rate of 1 is due to the high congestion on the
control channel. However, in all the cases, Mirror All leads
to a much higher CCU than FGM DDoS. Specifically, the
same detection performance of Mirror All can be obtained by
FGM DDoS with a sampling rate 1/50 and threshold of 750,
while reducing CCU by around three times.

In summary, our results show that by choosing the most
appropriate sampling rate and ACMS threshold our strategy
makes it possible to find a good balance between detection
performance and amount of traffic on the control channel.

E. Overall evaluation

Table VI summarizes the results obtained in Sections V-C
and V-D, with respect to the following strategies and related
configuration parameters:

• CGM DDoS: Threshold = 750, CMS of size (d = 2)×
(w = 1024);

• INDDoS: Threshold = 60, BACON Sketch of size (d =
3)× (w = 1024)× (m = 1024) [38].

• FGM DDoS: Threshold = 750, Sampling rate =
1/50, CMS of size (d = 2)× (w = 1024).

• Mirror All: Sampling rate = 1/75.

0 100 200 300 400 500
Time (s)

0

20

40

60

80

100

CC
U 

(K
bp

s)

Attack lifetime

Mirror All
P4RTHENON

Fig. 8: Control Channel Utilization over time between P4RTHENON
and Mirror All in their best configurations.

• P4RTHENON: Threshold = 750, Sampling rate =
1/50, CMS of size (d = 2)× (w = 1024).

P4RTHENON combines CGM DDoS and FGM DDoS via
data plane pipeline reconfiguration, as specified in Sections
III and IV. The parameters of each strategy has been chosen
to maximize the detection performance (in terms of F1Score)
as first objective and, in the case of multiple settings with the
same detection performance, the one that minimizes CCU.

Table VI shows how P4RTHENON, FGM DDoS and Mir-
ror All outperform in terms of F1Score the in-network strate-
gies that are fully executed in the data plane (i.e., CGM DDoS
and INDDoS). However, Recall is always high, meaning that
all strategies, also those fully executed in the data plane, are
good at effectively identifying true positives (i.e., the malicious
traffic). It follows that the strategies relying on LUCID as an
ML engine in the control plane (i.e., FGM DDoS, Mirror All
and P4RTHENON) have a much higher Precision, meaning
that by deeply analyzing in the control plane the traffic
features extracted from packets is very effective it to keep
the number of false positives low. In the case of FGM DDoS
and P4RTHENON this property can be effectively exploited
to filter out in the control plane the flows that are identified
as suspect by ACMS in the data plane, which instead are
benign. Aside from detection quality considerations, resource
allocation and utilization are the aspects that make our pro-
posed solution stands out. If we analyze CCU we can see that
the in-network strategies lead to minimal usage of the control
channel, while the others, for which feature extraction and for-
warding to the control plane is needed, pay the price of a much
higher average channel occupation. However, FGM DDoS and
especially P4RTHENON have a reduced CCU with respect
to Mirror All, of around 40% and 75% respectively, as they
benefit from the presence of ACMS to only forward features
from suspect flows. P4RTHENON reduces CCU even further
by having almost no interaction between control and data
plane when CGM DDoS is installed and attacks are not under
stricter scrutiny.

Moreover, by looking at the occupied memory in the switch,
we can stress again how INDDoS allocates a much higher
amount of memory (3145.7Kb) than ACMS (9.8Kb), which
is used in CGM DDoS, FGM DDoS and P4RTHENON.
Instead, Mirror All does not require any data structure in the
data plane, so it does not consume memory. This, however,
comes at the expense of a significantly higher CCU.

Finally, a comprehensive look at Table VI shows how
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Strategy Precision Recall F1Score Control Channel Utilization (Kbps) Memory in switch (Kb)
CGM DDoS (ACMS) 0.80 0.97 0.88 0.03 9.8

InDDoS [38] 0.86 1 0.93 0.001 3145.7
FGM DDoS (ACMS + Optimized Mirroring) 1 0.98 0.99 55.3 9.8

Mirror All 1 1 1 92.7 0
P4RTHENON (CGM DDoS + FGM DDoS) 1 0.98 0.99 22.7 9.8

TABLE VI: Overall comparison between the different strategies.

P4RTHENON, thanks to its peculiarities, strikes the best
balance between detection performance, CCU, and memory
occupation with respect to the other strategies. Figure 8
confirms the speculation we drew from Table VI and reports a
comparison between the two strategies with the best detection
performance, i.e., Mirror All and P4RTHENON, in terms of
CCU overtime during an attack, which is marked by a red area.
The attack starts at t̄ = 30s: for P4RTHENON, CGM DDoS
is in place before this time instant, and a negligible amount
of data is sent on the control channel. After t̄, CGM DDoS
starts identifying suspect flows and after another ∆t, at
t′ = 60s, FGM DDoS is installed and optimized mirroring
starts (correspondingly, CCU increases). Then, the attack ends
at t′′ = 420s and, in the next time window, CGM DDoS is
restored and CCU drops to almost zero. By looking instead at
Mirror All, we can see an almost constant CCU of around
90 Kbps as the features are extracted and forwarded from
any packet, also when no attack is happening. Moreover,
when the attack is in place, the data plane logic adopted by
P4RTHENON (i.e., ACMS) makes it possible to save much
control channel bandwidth by only forwarding features from
suspect flows.

F. Data plane pipeline reconfiguration evaluation

We performed some experiments to evaluate the system
downtime when a real-time P4 pipeline reconfiguration is
performed to swap between CGM DDoS and FGM DDoS. It
is important to stress that such an evaluation is strongly depen-
dent on the adopted emulated environment and software switch
target, and further tests will be performed as future work on
hardware testbeds to confirm our findings. In our experiment
we swapped between CGM DDoS and FGM DDoS 100 times
and we measured the downtime during each transition, then
calculating mean and variance. The computed mean is 263.4
ms, with a very low variance (0.6). Reconfiguring the pipeline,
at least on Mininet with bmv2, is quick and stable.

VI. CONCLUSION

Minimizing data exchanged on the control channel for data-
driven monitoring tasks is pivotal in complex networks. In fact,
introducing a new feature or service should not be detrimental
to the system. P4RTHENON is a scheme that supports the
employment of lightweight and precise monitoring tasks to
meet these requirements. It leverages P4-assisted real-time re-
configuration of programmable network devices, with minimal
overhead and traffic loss.

We demonstrate the validity of our scheme by formulating
a P4RTHENON-assisted solution to detect volumetric DDoS
attacks. This strategy leverages two phases: (i) a pre-filtering

stage to select the important portions of suspect traffic to
analyze, and (ii) a fine-grained strategy that leverages opti-
mized packet features’ mirroring from the data plane towards
the control plane, where a ML-based specialized agent attests
what portion of suspect traffic is indeed malicious. This use
case shows how P4RTHENON can reduce the cross-plane
communication overhead by almost 80% while keeping high
DDoS detection rates.

Being the use case is of practical significance, we foresee to
proceed in its improvement by investigating its performance
on a hardware testbed and by automating parameters’ opti-
mization (i.e., ACMS threshold and sampling rate) according
to the traffic shape. In addition, we believe that the presented
approach could be applied with profit to other, more complex
network monitoring scenarios; our line of research will be
correspondingly widened to encompass other use cases for a
broader validation of P4RTHENON.

ACKNOWLEDGMENT

The research leading to these results has been partially
funded by the Italian Ministry of University and Research
(MUR) under the PRIN 2022 PNRR framework (EU Contri-
bution – NextGenerationEU – M. 4,C. 2, I. 1.1), SHIELDED
project, ID P2022ZWS82.

REFERENCES

[1] Architecture Working Group. View on 5G Architecture.
Tech. rep. Available on-line at https://5g-ppp.eu/wp-
content/uploads/2014/02/5G-PPP-5G-Architecture-WP-July-
2016.pdf. 5G PPP, 2016.

[2] F. Callegati et al. “SDN for dynamic NFV deployment”. In:
IEEE Communications Magazine 54.10 (2016), pp. 89–95.
DOI: 10.1109/MCOM.2016.7588275.

[3] Davide Borsatti et al. “Mission Critical Communications Sup-
port With 5G and Network Slicing”. In: IEEE Transactions on
Network and Service Management 20.1 (2023), pp. 595–607.
DOI: 10.1109/TNSM.2022.3208657.

[4] Andrea Melis et al. “P-SCOR: Integration of constraint pro-
gramming orchestration and programmable data plane”. In:
IEEE Transactions on Network and Service Management 18.1
(2020), pp. 402–414.

[5] Menghao Zhang et al. “Control plane reflection attacks in
SDNs: New attacks and countermeasures”. In: Research in
Attacks, Intrusions, and Defenses: 21st International Sympo-
sium, RAID 2018, Heraklion, Crete, Greece, September 10-12,
2018, Proceedings 21. Springer. 2018, pp. 161–183.

[6] Graham Cormode and S. Muthukrishnan. “An improved data
stream summary: the count-min sketch and its applications”.
In: Journal of Algorithms 55.1 (2005), pp. 58–75. ISSN: 0196-
6774. DOI: https://doi.org/10.1016/j.jalgor.2003.12.001.

[7] R. Doriguzzi-Corin et al. “Lucid: A Practical, Lightweight
Deep Learning Solution for DDoS Attack Detection”. In:
IEEE Transactions on Network and Service Management 17.2
(2020), pp. 876–889. DOI: 10.1109/TNSM.2020.2971776.

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3377538

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 15

[8] Athanasios Liatifis et al. “Advancing sdn from openflow to p4:
A survey”. In: ACM Computing Surveys 55.9 (2023), pp. 1–37.

[9] Damu Ding et al. “Design and Development of Network Mon-
itoring Strategies in P4-enabled Programmable Switches”.
In: NOMS 2022-2022 IEEE/IFIP Network Operations and
Management Symposium. 2022.

[10] Pat Bosshart et al. “P4: Programming Protocol-Independent
Packet Processors”. In: 44.3 (July 2014), pp. 87–95. ISSN:
0146-4833. DOI: 10.1145/2656877.2656890. URL: https://doi.
org/10.1145/2656877.2656890.

[11] Lizhuang Tan et al. “In-band network telemetry: A survey”.
In: Computer Networks 186 (2021), p. 107763.

[12] Vimalkumar Jeyakumar et al. “Millions of little minions:
Using packets for low latency network programming and
visibility”. In: ACM SIGCOMM Computer Communication
Review 44.4 (2014), pp. 3–14.

[13] Yuliang Li et al. “HPCC: High precision congestion control”.
In: Proceedings of the ACM Special Interest Group on Data
Communication. 2019, pp. 44–58.

[14] Naga Katta et al. “Clove: Congestion-aware load balancing at
the virtual edge”. In: Proceedings of the 13th International
Conference on emerging Networking EXperiments and Tech-
nologies. 2017, pp. 323–335.

[15] Hui Han et al. “Applications of sketches in network traffic
measurement: A survey”. In: Information Fusion 82 (2022),
pp. 58–85.

[16] Tooska Dargahi et al. “A survey on the security of stateful
SDN data planes”. In: IEEE Communications Surveys &
Tutorials 19.3 (2017), pp. 1701–1725.

[17] Ran Ben-Basat et al. “Heavy hitters in streams and slid-
ing windows”. In: IEEE INFOCOM 2016-The 35th Annual
IEEE International Conference on Computer Communica-
tions. IEEE. 2016, pp. 1–9.

[18] Ran Ben-Basat et al. “Efficient measurement on pro-
grammable switches using probabilistic recirculation”. In:
2018 IEEE 26th International Conference on Network Pro-
tocols (ICNP). IEEE. 2018, pp. 313–323.

[19] Lu Tang, Qun Huang, and Patrick PC Lee. “A fast and
compact invertible sketch for network-wide heavy flow detec-
tion”. In: IEEE/ACM Transactions on Networking 28.5 (2020),
pp. 2350–2363.

[20] Tushar Swamy et al. “Taurus: a data plane architecture for
per-packet ML”. In: Proceedings of the 27th ACM Interna-
tional Conference on Architectural Support for Programming
Languages and Operating Systems. 2022, pp. 1099–1114.

[21] Coralie Busse-Grawitz et al. “pforest: In-network inference
with random forests”. In: arXiv preprint arXiv:1909.05680
(2019).

[22] Bruno Coelho and Alberto Schaeffer-Filho. “BACKORDERS:
using random forests to detect DDoS attacks in programmable
data planes”. In: Proceedings of the 5th International Work-
shop on P4 in Europe. 2022, pp. 1–7.

[23] Qiaofeng Qin et al. “Line-speed and scalable intrusion detec-
tion at the network edge via federated learning”. In: 2020 IFIP
Networking Conference (Networking). IEEE. 2020, pp. 352–
360.

[24] Giuseppe Siracusano et al. “Re-architecting traffic analysis
with neural network interface cards”. In: 19th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI 22). 2022, pp. 513–533.

[25] Kamran Razavi et al. “Distributed DNN serving in the net-
work data plane”. In: Proceedings of the 5th International
Workshop on P4 in Europe. 2022, pp. 67–70.

[26] Maryam Ghanbari and Witold Kinsner. “Extracting features
from both the input and the output of a convolutional neural
network to detect distributed denial of service attacks”. In:
2018 IEEE 17th International Conference on Cognitive In-
formatics & Cognitive Computing (ICCI* CC). IEEE. 2018,
pp. 138–144.

[27] DDoS 2007 attack. https : / /catalog.caida .org/dataset /ddos
attack 2007. Accessed: 2023-6-15. DOI: https://catalog.caida.
org/dataset/ddos attack 2007.

[28] Xiaoyong Yuan, Chuanhuang Li, and Xiaolin Li. “DeepDe-
fense: identifying DDoS attack via deep learning”. In: 2017
IEEE international conference on smart computing (SMART-
COMP). IEEE. 2017, pp. 1–8.

[29] Ali Shiravi et al. “Toward developing a systematic approach
to generate benchmark datasets for intrusion detection”. In:
computers & security 31.3 (2012), pp. 357–374.

[30] Leo Breiman. “Random forests”. In: Machine learning 45
(2001), pp. 5–32.

[31] Keiron O’Shea and Ryan Nash. “An introduction to convolu-
tional neural networks”. In: arXiv preprint arXiv:1511.08458
(2015).

[32] Wojciech Samek et al. “Explaining deep neural networks
and beyond: A review of methods and applications”. In:
Proceedings of the IEEE 109.3 (2021), pp. 247–278.

[33] Shan Suthaharan and Shan Suthaharan. “Support vector ma-
chine”. In: Machine learning models and algorithms for
big data classification: thinking with examples for effective
learning (2016), pp. 207–235.

[34] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters”. In: Commun. ACM 51.1
(Jan. 2008), pp. 107–113.

[35] Ali AlSabeh et al. “A survey on security applications of P4
programmable switches and a STRIDE-based vulnerability
assessment”. In: Computer Networks 207 (2022), p. 108800.

[36] Damu Ding, Marco Savi, and Domenico Siracusa. “Tracking
normalized network traffic entropy to detect DDoS attacks
in P4”. In: IEEE Transactions on Dependable and Secure
Computing 19.6 (2021), pp. 4019–4031.

[37] Alexandre da Silveira Ilha et al. “Euclid: A fully in-network,
P4-based approach for real-time DDoS attack detection and
mitigation”. In: IEEE Transactions on Network and Service
Management 18.3 (2020), pp. 3121–3139.

[38] Damu Ding et al. “In-network volumetric DDoS victim
identification using programmable commodity switches”. In:
IEEE Transactions on Network and Service Management 18.2
(2021), pp. 1191–1202.

[39] Yanling Zhao et al. “A survey of networking applications
applying the software defined networking concept based on
machine learning”. In: IEEE Access 7 (2019), pp. 95397–
95417.

[40] Junfeng Xie et al. “A survey of machine learning techniques
applied to software defined networking (SDN): Research
issues and challenges”. In: IEEE Communications Surveys &
Tutorials 21.1 (2018), pp. 393–430.

[41] Zecheng He, Tianwei Zhang, and Ruby B Lee. “Machine
learning based DDoS attack detection from source side in
cloud”. In: 2017 IEEE 4th International Conference on Cy-
ber Security and Cloud Computing (CSCloud). IEEE. 2017,
pp. 114–120.

[42] Seungbeom Song et al. “A congestion avoidance algorithm
in SDN environment”. In: 2016 International Conference on
Information Networking (ICOIN). IEEE. 2016, pp. 420–423.

[43] Roberto Doriguzzi-Corin et al. “Introducing packet-level
analysis in programmable data planes to advance Network
Intrusion Detection”. In: Computer Networks 239 (2024),
p. 110162.

[44] Menghao Zhang et al. “Poseidon: Mitigating volumetric ddos
attacks with programmable switches”. In: the 27th Network
and Distributed System Security Symposium (NDSS 2020).
2020.

[45] Changgang Zheng et al. “IIsy: Practical in-network classifica-
tion”. In: arXiv preprint arXiv:2205.08243 (2022).

[46] Sebastian Gomez Macias, Luciano Paschoal Gaspary, and
Juan Felipe Botero. “Oracle: An architecture for collaboration
of data and control planes to detect ddos attacks”. In: 2021

This article has been accepted for publication in IEEE Transactions on Network and Service Management. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2024.3377538

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED TO IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 16

IFIP/IEEE International Symposium on Integrated Network
Management (IM). IEEE. 2021, pp. 962–967.

[47] Francesco Musumeci et al. “Machine-learning-enabled DDoS
attacks detection in P4 programmable networks”. In: Journal
of Network and Systems Management 30 (2022), pp. 1–27.

[48] Diogo Barradas et al. “FlowLens: Enabling Efficient Flow
Classification for ML-based Network Security Applications.”
In: NDSS. 2021.

[49] Jiarong Xing et al. “Runtime programmable switches”. In:
19th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 22). 2022, pp. 651–665.

[50] Yong Feng et al. “In-Situ Programmable Switching Using
RP4: Towards Runtime Data Plane Programmability”. In:
Proceedings of the Twentieth ACM Workshop on Hot Topics in
Networks. HotNets ’21. Virtual Event, United Kingdom: As-
sociation for Computing Machinery, 2021, pp. 69–76. ISBN:
9781450390873. DOI: 10.1145/3484266.3487367. URL: https:
//doi.org/10.1145/3484266.3487367.

[51] The P4 Language Consortium. P4Runtime Specification. 2020.
URL: https://p4.org/p4- spec/p4runtime/v1.3.0/P4Runtime-
Spec.pdf.

[52] OpenFlow Switch Specification, Version 1.5.1 ( Protocol ver-
sion 0x06 ). Mar. 2015. URL: https://opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

[53] Amir Al Sadi et al. “Real-time Pipeline Reconfiguration of
P4 Programmable Switches to Efficiently Detect and Mitigate
DDoS Attacks”. In: 2023 26th Conference on Innovation in
Clouds, Internet and Networks and Workshops (ICIN). 2023.

[54] Karamjeet Kaur, Japinder Singh, and Navtej Singh Ghumman.
“Mininet as software defined networking testing platform”.
In: International conference on communication, computing &
systems (ICCCS). 2014, pp. 139–42.

[55] P4 Language Consortium et al. p4lang/behavioral-model.
2019.

[56] Google. The Go programming language. 2023.
[57] Linux foundation. tcpreplay. https : / / linux . die . net / man / 1 /

tcpreplay. 2023.
[58] “CICIDS2017 Dataset”. In:

https://www.unb.ca/cic/datasets/ids-2017.html ().
[59] Linux foundation. hping3. http://wiki.hping.org/. 2023.

Amir Al Sadi is a Ph.D. Student of Computer
Science and Engineering at Alma Mater Studiorum
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