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Abstract. In this article we study the problem of credal learning, a
general form of weakly supervised learning in which instances are
associated with credal sets (i.e., closed, convex sets of probabili-
ties), which are assumed to represent the partial knowledge of an
annotating agent about the true conditional label distribution. A va-
riety of algorithms have been proposed in this setting, chiefly among
them the generalized risk minimization method, a class of algorithms
that extend empirical risk minimization. Despite its popularity and
promising empirical results, however, the theoretical properties of
this algorithm (as well as of credal learning more in general) have not
been previously studied. In this article we address this gap by study-
ing the problem of credal learning from the learning-theoretic and
complexity-theoretic perspectives. We provide, in particular, three
main contributions: 1) we show that, under weak assumptions about
the accuracy of the annotating agent, credal learning is learnable in
the convex learning setting, providing effective risk bounds; 2) we
study the properties of generalized risk minimization and, in particu-
lar, identify the optimal instance of this approach, that we call trade-
off risk minimization; 3) we study the computational complexity of
generalized risk minimization, showing effective algorithms based
on gradient descent and providing sufficient and necessary condi-
tions for them being computationally efficient.

1 Introduction

Credal sets [1, 20], that are convex and closed set of probabili-
ties, are a general and widely applied model for uncertainty repre-
sentation and management. They have attracted interest in both the
theoretical and application-oriented literature due to their flexibil-
ity as well as for the rich connections with convex analysis [12],
optimization [2, 35] and statistics [37]. Also in the context of ma-
chine learning (ML), credal sets and related models have recently
attracted interest as a way to model weak supervision information
in a variety of learning settings, including self-supervised learning
[22, 21], learning from noisy data [23, 24], and learning from impre-
cise data [11, 15, 22], a general family of settings that encompasses,
among others, semi-supervised learning, superset learning [17, 26]
and fuzzy label learning [10, 32]. In all of these settings the idea is
to model the weak supervision by means of credal sets, that are as-
sumed to represent the partial or noisy information available to the
annotating agent that produced the data: this general framework for
studying weakly supervised learning is called credal learning.
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Several algorithms have been proposed to tackle the credal learn-
ing problem, chiefly among them the generalized risk minimization
(GRM) paradigm [15, 23]. The intuitive idea underlying GRM is to
lift the popular empirical risk minimization (ERM) approach [29]
(i.e., identifying the model within a given set of candidate ones that
minimizes the value of a specified loss function) to the setting of
credal set-valued labels by (implicitly) computing the value of any
loss function w.r.t. all probability distributions in any given credal
sets and then applying some aggregation operator to obtain a single
value: typically, the minimum and maximum operators are used to
this purpose, giving rise to the so-called optimistic and pessimistic
risk minimization algorithms [16]. Due to its conceptual simplicity,
and to the wide popularity of ERM in supervised learning, GRM has
been successfully employed in several applications [6, 22, 24], with
promising results. Nonetheless, the theoretical properties of this al-
gorithmic approach, as well as of the credal learning problem more
in general, have not been previously investigated. This gap regards
not only the learning-theoretic properties of the above mentioned ap-
proaches, for which the generalization capacity has not been previ-
ously characterized except in some limited settings [4, 25], but also
the complexity-theoretic one, in that the actual computational com-
plexity of GRM is not yet generally well-understood [22].

In this work1, we address this gap by studying the problem of
credal learning from the perspective of statistical learning theory and
theoretical computer science, focusing on the generalized risk min-
imization paradigm. To this aim, we show that: 1) the credal learn-
ing problem is learnable, i.e., we bound the generalization error for
the problem and show that, under weak assumptions, these bounds
can be estimated from finite samples; 2) we identify the worst-case
optimal instance of generalized risk minimization (i.e., the one that
achieves lowest generalization error), under general adversarial as-
sumptions, that we call trade–of risk minimization; 3) we show that
the above mentioned learnability guarantees can be met in com-
putationally efficient manner, by studying conditions under which
trade–off risk minimization can be efficiently computed, and show-
ing learning algorithms that can efficiently solve the credal learning
problem even when these assumptions do not hold.

2 Methods

We first provide an introduction to the theory of credal sets. Credal
sets represent a generalization of probability theory, whereas in-

1 For complete proofs, as well as additional material, we refer the reader to
the technical appendix available at https://zenodo.org/record/8191602.
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stead of quantifying the belief about a set of events (or proposi-
tions) in terms of a probability distribution, one can instead con-
sider sets of such distributions. Formally, given a set A, we de-
note with Δ(A) the collection of probability densities on A, i.e.
Δ(A) = {p : A → [0, 1] :

∫
A
p = 1}. A credal set [1] is

a convex, closed subset of Δ(A): that is, C ⊂ Δ(A) is a credal
set if it is convex and, furthermore, for each convergent sequence
{pi}i of densities in C it holds that limi→∞ pi ∈ C. In partic-
ular, a credal set is a lower coherent prevision2 if there is a func-
tion l : 2A → [0, 1] s.t. ∀S ⊆ A, l(S) = infp∈C p(S) and
C = {p ∈ Δ(A) : ∀S ⊆ A, p(S) ≥ l(S)}. Credal sets are a
very general framework for representing uncertainty. While this pro-
vides a large amount of flexibility, for practical applications it may
lead to intractable problems. For this reason, we also explicitly de-
fine some particularly relevant classes of credal sets (specifically, of
lower coherent previsions), that are particularly common in appli-
cations (and will appear in the theoretical development in Section
2.3). Let A = {1, . . . , k} be a finite set. We say that C ⊂ Δ(A)
is a probability interval [8] if, for each i ∈ A there exist two con-
stants li, ui, and C = {p ∈ Δ(A)|li ≤ pi ≤ ui}. We say that
C is a possibility distribution if, for each i ∈ A, there exists a con-
stant πi and C = {p ∈ Δ(A)|pi ≤ πi ∧ 1 − maxj �=i πj ≤ pi}.
We say that C is a comparative probability assessment [37] if there
exists a directed acyclic graph G = (A,EG) s.t. C = {p ∈
Δ(A)|∀i, j ∈ A, pi ≤ pj iff (i, j) ∈ EG}. Finally, we say that
C is a linear credal set if ∃f1, . . . , fk and ∃c1, . . . , ck ∈ �

k,
s.t. ∀r ∈ {1, . . . , k}, fr : Δ(A) → �, each fr is linear and
C = {p ∈ Δ(A)|∀r ∈ {1, . . . , k}, fr(p) ≤ cr}. Intuitively, if we
assume the credal sets represent the belief of an agent about some set
of events, then, the classes of credal sets defined above correspond to
constraints on the belief of the agent: the smaller the class of credal
sets is, the more constrained the belief of the agent. Furthermore, as
we show in Section 2.3, smaller classes of credal sets correspond to
easier learning problems [27, 28, 30].

The theoretical development in the next sections is based on
the convex learning paradigm [34], commonly adopted in statisti-
cal learning theory. To this aim, let X be a feature space and Y
be the target space: we assume that Y is finite and discrete, while
X is a convex set, i.e., ∀x1, x2 ∈ X,λ ∈ [0, 1] it holds that
λx1 + (1 − λ)x2 ∈ X). In the general setting of agnostic learn-
ing we assume that instances (x, y) ∈ X × Y are generated by
drawing from a data-generating distribution D ∈ Δ(X × Y ): the
value D(x, y) represents the probability (or density) of empirically
observing the instance (x, y). Note that D is not necessarily deter-
ministic: in particular, we denote with D(x) the conditional proba-
bility distribution D(x)(y) = D(y|x). LetH be a class of functions
h : X → Δ(Y ), that we call hypotheses: we assume H is a con-
vex set. Intuitively, an hypothesis h associates with each instance
x a probabilistic assessment h(x) ∈ Δ(Y ), which could be under-
stood as an approximation to the conditional distribution D(x). The
quality of such an approximation is evaluated by means of a loss
function l : X×Δ(Y )×H → � defined point-wise by (x, p, h) �→
g(p, h(x)), where g : Δ(Y ) ×Δ(Y ) → � is called the base func-
tion for l. We assume that l is B-bounded for some value B (i.e.,
∀x ∈ X, p ∈ Δ(Y ), h ∈ H it holds that l(x, p, h) ≤ B), is jointly
convex in its second and third arguments (i.e., it is convex in the pair
(p, h) ∈ Δ(Y )×H), g is L-Lipschitz in its first and second argument

2 Lower coherent previsions are of particular interest in the theory of impre-
cise probabilities as they represent the largest class of credal sets that can
be interpreted as expressing the imprecise belief of a rational agent having
a linear utility function [36].

w.r.t. to a given metric d (i.e. |g(p1, q)− g(p2, q)| ≤ Ld(p1, p2) and
|g(p, q1) − g(p, q2)| ≤ Ld(q1, q2)). We call d the Lipschitz metric
for loss l, and we assume it is convex in both its arguments. These
assumptions are needed to guarantee that the loss function is well-
behaved: indeed, Lipschitz-ness implies that the loss function does
not change too abruptly, boundedness implies that the function has
a finite range of values, while convexity in the pair of arguments
(p, h) is required to ensure that optimizing h w.r.t. the loss function
is a well-defined and computationally feasible problem. Though we
won’t focus on any specific loss function in the following, we need to
prove that such a loss function exists: the next two results show that
two of the most commonly used loss functions (i.e., the Kullback-
Leibler divergence and the l2 loss) satisfy the above assumptions.

Proposition 2.1. Let KLε be the Kullback-Leibler divergence de-
fined on the space Δ(Y )ε × Δ(Y )ε of distributions s.t. ∀y ∈
Y, p(y) ≥ ε. Let l be the loss function defined by l(x, p, h) =
KLε(p, h(x)). Then l is convex in its second and third argument
and KLε is log

(
1
ε

)
-Lipschitz w.r.t. to the l1 metric on probabil-

ity distributions. Furthermore, KLε is log
(
1
ε

)
-smooth and log

(
1
ε

)
-

bounded.

Proof. The KL divergence is convex in the pair (p, q), and when
qθ is a parametric distribution (with parameter θ) in the exponen-
tial family it is also convex w.r.t. the pair (p, θ). For Lipschitz-
ness, assume as in the statement that p1, p2, q ∈ Δ(Y )ε. Then, it
holds that KLε(p1, q)−KLε(p2, q) = p1 log(

p1
q
)− p2 log(

p2
q
) =

(p1 − p2) log( p1
q
) + p2 log(

p1
p2
) ≤ |p1 − p2| log

(
1
ε

)
. Similarly,

KLε can be shown to be log
(
1
ε

)
-Lipschitz also in its second argu-

ment. It is also easy to see that KLε is log
(
1
ε

)
-smooth by applying

the above reasoning to the derivative of KLε. Finally, it is easy to
show that KLε is log

(
1
ε

)
-bounded.

Proposition 2.2. Let l be the loss function defined by l(x, p, h) =
1
2

∑
y∈Y (p(y) − h(x)y)

2. Then, l is convexin its second and third
argument. Furthermore, assume that maxx∈X ||x|| ≤ R: then,
1
2

∑
y∈Y (p(y)− zy)

2 is 2R2-smooth and 2R2-Lipschitz w.r.t. to the
l2 metric. IfH is B-bounded (i.e., maxh∈H ||h|| ≤ B), then l is also
BR2-bounded.

Proof. The l2 loss is easily shown to be convex in the pair (p, q).
Indeed, considering the summands (p(y) − zy)

2, it holds that the
Hessian of each summand is semi-definite positive and, hence, the
summands are all convex functions: therefore, as the l2 is a sum of
convex function, it is also a convex function. For the parts on Lips-
chitzness, smoothness and boundedness, see e.g. [33].

In the following, we will generally denote a loss function with
l and the corresponding base function and Lipschitz metric as, re-
spectively, g and d. Note that we will always assume that the above
mentioned assumptions hold true for l, g and d.

2.1 Credal Learning

As described in the Introduction, credal learning arises as a general-
ization of standard supervised learning (as well as of other weakly
supervised learning tasks), in which we assume the data is sam-
pled from a data generating distributionD ∈ Δ(X,Y, C(Y )), where
C(Y ) ⊆ 2ΔY is the collection of credal sets over Y (i.e., the col-
lection of convex, closed sets of probability distributions over Y ).
Thus, an instance in credal learning is a triple (x, y, C): y represents
the true label associated with x and is typically assumed to be unob-
served; C instead represents the partial knowledge of the annotating
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agent about y, represented in the form of a credal set. Given x ∈ X ,
we denote with D(x) the conditional probability distribution of the
true label, i.e.,D(x) = ∫

C∈C(Y )
D(·, C|x)dD ∈ Δ(Y ). Intuitively,

an instance (x, y, C) in a credal learning problem represents the in-
formation that the human labeller has an imprecise belief aboutD(x)
which is represented as a credal set C: ideally, C will contain D(x)
and will be as small (i.e., as precise) as possible. Formally:

Definition 2.1. Let D ∈ Δ(X × Y × C(Y )) be a data-
generating distribution. The degree of ambiguity α of D is defined
as �(x,y,C(x))∼D [diamd(C(x))].

Thus, the degree of ambiguity α is defined as the expected size
(measured as the d-diameter) of the credal set-valued annotations
produced by the annotating agent: intuitively, the greater α the more
the uncertainty of the annotating agent. In the extreme case where
α = 1 it holds, with probability 1, that C(x) = Δ(Y ): hence, the an-
notating agent knows nothing about the true label y. In the other ex-
treme case where α = 0, it holds that, with probability 1, |C(x)| = 1
and hence the annotating agent always reports a single probability
measure px over labels for each instance x. As mentioned above,
while one desires the credal sets C to be as small as possible (i.e., α
to be as close to 0 as possible), this is not enough: one also desires
that C actually containsD(x) (that is, the imprecise belief of the hu-
man labeller is compatible with the actual truth) or, more generally,
that there exists p ∈ C which is as close as possible to D(x) (that is,
C is a good approximation to the actual truth). However, this assump-
tion may not hold true, and the annotating agent may make errors, in
the sense that the credal set C, for a given instance (x, y, C) may not
be compatible with the true conditional distribution of labels given x.
We formalize this requirement, for a general distribution D, through
the following definition:

Definition 2.2. The data generating distribution D is (1 − η)-
calibrated if �(x,y,C(x))∼D [d(D(x), E(x))] ≤ η, where E(x) is the
d-projection ofD(x) onto C(x), i.e. E(x) = minp∈C(x) d(D(x), p).

Intuitively, D is (1 − η)-calibrated if the annotations provided by
the annotator agent are sufficiently close to the true label distribu-
tion: if, in particular, it is assumed that what the annotator agent is
always compatible with the truth (i.e. D is 1-calibrated), then we
simply say that D is calibrated. Though the notion of calibration
may seem strong, we note that it is not. For example, calibration is
trivially satisfied by any vacuous data generating distribution having
α = 1. More generally, calibration is typically assumed in several
weakly supervised learning settings that arise as natural restrictions
of credal learning. To this aim, we note that supervised learning,
semi-supervised learning, superset learning, as well as noisy label
learning, that have been mentioned in the Introduction, can all be
formalized as special cases of credal learning:

• Supervised learning: ∀x, y it holds that D({py}|x, y) = 1, where
py is the probability measure s.t. py(y′) = �y=y′ ;

• Semi-supevised learning: ∀x, y it holds that D(A|x, y) > 0 iff
A = {py} or A = C(Y );

• Superset learning [15, 25]: ∀x, y it holds that D(A|x, y) > 0 iff
∃y1, . . . , yk ∈ Y s.t. y ∈ {y1, . . . , yk} and A = {∑i wipyi :
wi ∈ [0, 1],

∑
i wi = 1};

• Learning from fuzzy labels [4, 5, 15]: ∀x, y it holds that
D(C|x, y) > 0 iff C is a possibility distribution s.t. ∃y′ ∈
Y, πy′ = 1 and πy > 0;

• Noisy label learning: let D′ ∈ Δ(X,Y, Y ) s.t. for each x ∈ X ,
D′(y �= y′|x) ≤ η. Then, the problem of learning from D′ can

be equivalently formulated as the problem of learning from D ∈
Δ(X,Y, C(Y )) with D(A|x, y) > 0 iff d(A,D(x)) ≤ η.

More generally, different classes of credal sets (see Section 2) can
be used to formalize different non-standard learning problems as in-
stances of credal learning, as shown in the following examples.

Example 2.1. Differential diagnosis refers to the diagnostic ap-
proach by which information about a patient is used to exclude or
rank different diagnostic hypotheses about the patient. It is easy to
see that the problem of learning from differential diagnosis can be
formulated as a credal learning problem in which the features x
represent the information about the patients and the corresponding
credal sets C represent the belief of the doctor about the patients’
health status: these credal sets can be expressed as a comparative
probability assessment, in which the graph G is expressed over the
possible set of diseases and an arc (ci, cj) exists among two condi-
tions if ci is considered to be less likely than cj .

Example 2.2. An online betting site wants to quote the buying prices
for a collection of gambles G defined on a set of events E: each
gamble g pays 1$ if a specific event eg ∈ E occurs, otherwise it
pays 0$. Each of the situations in which the events in E could occur
can be described in terms of a feature vector x: to quote the buying
prices, the betting site draws a collection of such situations x and
asks an expert bettor to state, for each gamble g, its corresponding
highest buying price L(g) (i.e., the highest value v ∈ [0, 1] s.t. the
bettor would consider buying g a rational choice). If the expert bettor
is rational, then the function L : G → [0, 1] that assigns to each
gamble g the corresponding value L(g) is a coherent lower prevision
[36]. Therefore, the problem of learning from instances in the form
(x, L(g)) can be formulated as a credal learning problem, in which
the credal sets are constrained to be lower coherent previsions3.

From the above definitions, it is easy to see that in supervised, semi-
supervised and superset learning the data generating distribution is
always assumed to be calibrated: hence, the annotating agent is as-
sumed to not commit any errors (but may have an arbitrary degree of
ambiguity α). Indeed, for any instance (x, y, C), the singleton distri-
bution py that assigns full probability to the ground truth label y is
always guaranteed to belong to the credal set C. While this assump-
tion is usually carried over also in the setting of credal learning, by
contrast, in this article we won’t make any such assumption, and in-
stead allow arbitrary errors in the credal set labels. In this sense, the
relaxed notion of (1− η)-calibration allows for some degree of error
in the annotations and hence relaxes the above mentioned settings.
Similarly, it is easy to see that in noisy label learning one gener-
ally considers a data generating distribution that is (1−η)-calibrated
(with η > 0) but with zero ambiguity: this problem can be equiva-
lently formulated as an instance of credal learning in which the data
generating distribution is calibrated but has non-zero ambiguity de-
gree α = η. This transformation has been exploited in the litera-
ture to solve noisy label learning problem using the GRM method
[9, 23, 24]. Thus, credal learning is a general learning setting that
bridges between noisy label learning (in which there may be errors
but no ambiguity) and imprecise label learning (where, conversely,

3 The learning problem described in Example 2.2 is extremely general. Let X
be any feature space, and Y be a target space. If we identify, the collection
of events E with Y , the betting site with a data-generating distribution
D ∈ Δ(X × Y ), and define for each (x, y) ∼ D the lower prevision
Lx : Y → [0, 1] as in Example 2.2, then any credal learning problem in
which the credal sets are constrained to be lower coherent previsions can
be formulated as an instance of the learning problem in Example 2.2.
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there may be some ambiguity but no labeling errors). Furthermore,
even though the above mentioned learning problems need not be for-
mulated as credal learning problems, we will show in Section 2.3 that
doing so entails several advantages.

The problem of credal learning amounts to the problem of, given
a class of hypothesesH, finding a h with small true error, i.e. s.t.:

LD(h) :=

∫
X×Y ×C(Y )

l(x, y, h)dD

is small, where, as above, l is a loss function over X ×Δ(Y ) ×H.
Obviously, since the data generating distributionD is not known, this
usually reduces to the problem of minimizing some approximation
of the true error based on a finite sample {(xi, Ci)}mi=1 drawn from
the marginal of D on X × C(Y ). Among such approaches, we fo-
cus, in particular, on the framework of generalized risk minimization
(GRM). This is a family of approaches that aim to extend empirical
risk minimization to the setting of weakly supervised learning: in the
context of credal learning, it has been proposed and studied in [22],
based on previous work in superset learning [7, 14, 15, 16].

Generalized risk minimization is based around the idea of using an
aggregation operator (see below) to extend empirical risk minimiza-
tion to more general settings. Formally, let C be the class of compact,
convex sets defined on�. A (generalized) aggregation operator [13]
is a monotonic function A : C → � satisfying:

1. ∀S ∈ C it holds that inf S ≤ A(S) ≤ supS;
2. ∀v ∈ �, A({v}) = v.

The aggregation operator A can be used to lift any given loss
function l : X × Δ(Y ) × H → � to a generalized loss function
lIPA : X × C(Y )×H → �, defined as

lIPA (x,C, h) := A({l(x, p, h)}p∈C).

The GRM algorithm, for hypothesis class H and a training set S =
{(xi, Ci)}mi=1 ∼ Dm is defined through the following minimization
problem:

GRMl,A(H, S) := arg min
h∈H

LA
S (h)

= arg min
h∈H

n∑
i=1

lIPA (xi, Ci, h), (1)

that is, we simply search the space of hypotheses in order to find one
that minimizes the imprecise empirical risk, LA

S .
In the following, we will require the technical condition that ∀C ∈

C(Y ), ∀A aggregation operator, it exists p∗ ∈ C s.t. lIPA (x,C, h) =
l(x, p∗, h), that is, the value of lIPA on a credal set is attained at (at
least) one point of the credal set itself. Under the weak assumption
that the credal sets C are compact and that A is an aggregation op-
erators A s.t. generalized loss function lIPA is convex the above con-
dition is always satisfied. Under the assumptions defined in the pre-
vious section, it is an easy consequence of basic facts from convex
analysis [2] that this holds in particular when A ∈ {min,max}4.
These two instances of the generalized risk minimization, in par-
ticular, have been widely studied in the literature under the names
of, respectively, optimistic [15] and pessimistic [14] risk minimiza-
tion (abbreviated, respectively, as ORM and PRM), and are the most
commonly adopted instances of the framework [16].

4 Indeed, max is generally convex. By contrast, even though min is not
generally convex in its domain, under the assumptions in Section 2 (i.e.,
l is convex in the pair (p, h)), minimization over the credal set C can be
interpreted as a convex projection operation.

Finally, we will also introduce the two following definitions, the
true empirical risk w.r.t. to the unknown ground truth:

LS(h) = arg min
h∈H

n∑
i=1

l(xi, yi, h),

and the annotator-relative empirical risk:

LE
S (h) = arg min

h∈H

n∑
i=1

l(xi, E(x), h),

where, as before, E(x) = argminp∈Ci d(D(x), p). Intuitively, the
true empirical risk LS represents the error that a given hypothesis
h makes w.r.t. the unknown, true label; by contrast, the annotator-
relative empirical risk LE

S represents the error that h makes in com-
parison with the probability distribution, compatible with the credal
set annotation C given by the annotator agent, that is closest to the
unknown, true one.

2.2 Learning-Theoretic Properties

Having cleared the definitions of credal learning and of the GRM ap-
proach, in this section we study the learning-theoretic properties of
GRM. In particular, we will be interested in quantifying the general-
ization error of GRM, that is, in bounding the quantity:

�S∼Dm

[
|LD(GRM(H, S))− LA

S (GRM(H, S))|
]

(2)

in terms of the sample size m, of some property of H, as well as of
the parameters α, ε of the data generating distribution D. Intuitively,
such a bound would provide an estimate of the excess risk of any
hypothesis h found by applying GRM and hence, having computed
LA

S (h), allows to upper bound the true risk of h.
Through the following result we provide two such generalization

bounds. We first present a generalization bound that is algorithm in-
dependent (hence, it applies to any learning algorithm, not only to
GRM), and characterizes the generalization error of a class of mod-
els for credal learning as a function of the degree of ambiguity α and
calibration 1 − η of the annotator. Then, we also provide a bound
that is specific for GRM and only depends on the calibration 1 − η
and the expected deviation between two different settings of the im-
precise empirical risk. In particular, we first present a bound on the
expected values, from which we derive a finite sample tail bound:

Theorem 2.1. Let H be a convex hypothesis space, l a convex, L-
Lipschitz loss function. LetR(H,m, l) be the expected Rademacher
complexity ofH w.r.t. the true empirical risk LS . Assume also thatD
is (1−η)- calibrated and has degree of ambiguity α. Then, uniformly
over h ∈ H, it jointly holds that �S∼Dm

[|LD(h)− LA
S (h)|

]
can

be upper bounded by:

2R(H,m, l) + L(η + α), (3)

2R(H,m, l) + Lη +�
[
|lIPA (x,C, h)− lIPA∗(x,C, h)|

]
, (4)

where A∗ is defined as

A∗ = arg sup
A′ aggregation operator

|lIPA (x,C, h)− lIPA′ (x,C, h)|.

Proof Sketch. The results follows from the fact that the ex-
pected generalization error �S∼Dm

[|LD(h)− LA
S (h)|

]
of

h can be upper bounded by the sum of three terms, namely
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�S∼Dm [|LD(h)− LS(h)|], �S∼Dm

[|LS(h)− LE
S (h)|

]
,

�S∼Dm

[|LE
S (h)− LA

S (h)|
]
, and then bounding the three terms

above. The first term can be bounded through expected Rademacher
complexity of H, while the second term can be bounded by noting
that the data-generating D is (1 − η)-calibrated. Then, for the
bound in Eq. 3, we can upper bound the third term by noting
that D has degree of ambiguity α. By contrast, for the bound in
Eq. 4 we note that the third term can be bounded by noting that
|LE

S (h)− LA
S (h)| ≤ |LA∗

S (h)− LA
S (h)|.

Corollary 2.1. Let ρA(x,C, h) = |lIPA (x,C, h)−lIPA∗(x,C, h)|. As-
sume that there exists η′ such that, for all η ≤ η′, the data-generating
distribution D is (1 − η)-calibrated. Then, under the same condi-
tions of Theorem 2.1, and further assuming that l is B-bounded (see
Section 2), with probability greater than 1 − δ over the sampling of
S ∼ Dm and uniformly over h ∈ H, it holds that LD(h) − LA

S (h)
can be jointly upper bounded by:

Ψδ,l(H, S) + L

⎛
⎝η′ +

1

m

∑
(x,C)∈S

diamd(C)

⎞
⎠ (5)

Ψδ,l(H, S) + Lη′ +
1

m

∑
(x,C)∈S

ρA(x,C, h), (6)

where Ψδ,l(H, S) = 2R(H, S, l) + 6B

√
2 log( 2

δ
)

2m
. In particular, let

h = GRMl,A(H, S), and let T be the aggregation operator s.t.
T = min+max

2
. Let h∗ = argminh′∈H LD(h′). Then:

• If A ≤ T 5, then ρA(x,C, h) = maxp∈C l(x, p, h)−lIPA (x, p, h);
• If A ≥ T then ρA(x,C, h) = lIPA (x, p, h)−minp∈C l(x, p, h);

Furthermore, with probability 1− δ, LD(h)−LD(h∗) can be upper
bounded by:

2R(H, S, l)+Lη′+
1

m

∑
(x,C)∈S

ρA(x,C, h)+7B

√
2 log( 2

δ
)

2m
(7)

Proof Sketch. The first three bounds follow from applying McDi-
armid’s inequality to Equations 3 and 4. The result on ρA directly
stems from its definition and the monotonicity of A.

We can make some observations about the previous results. First,
we note that, conditional on the calibration error η and ambiguity de-
gree α not being too large, Theorem 2.1 shows that the credal learn-
ing task is learnable: this implies that, if the information available is
sufficiently accurate (i.e., the data-generating distribution is close to
being calibrated) and sufficiently unambiguous (i.e., the ambiguity
degree is small), the hypothesis given as output by a learning algo-
rithm for solving the credal learning task would have a generalization
gap close to the one that could be obtained from completely super-
vised data. Obviously, in general, the generalization gap for a credal
learning task upper bounds the gap for the corresponding supervised
learning task: this is to be expected, as the lack of information that
is implicit in credal learning will in general make the learning prob-
lem harder. Also, we can observe that the upper bounds shown in
Theorem 2.1 are sharp, in the sense that there exist learning prob-
lems for which the generalization gap almost matches the mentioned
bounds: as an example, take the case where, given (x,D(x)) and an
aggregation operator A, an adversary explicitly constructs a credal

5 Let A1, A2 ∈ A. A1 ≤ A2 if A1(I) ≤ A2(I) ∀I ∈ �B .

set Cx s.t. d(E(x),D(x)) = η and such that infh∈H |l(x, E(x), h)−
lIPA (x,Cx, h)| = infh∈H |lIPA∗(x,Cx, h)−lIPA (x,Cx, h)| = α. As a
second point, we note that, even though Theorem 2.1 refers to some
parameters of the data-generating distribution D (namely, the cali-
bration error η and the ambiguity α), the bounds in Corollary 2.1
only refer to a fixed constant η′ and on quantities that can (in princi-
ple) be computed based only on the given finite sample of data S: this
implies that, if one knows an upper bound η′ on the calibration error
η, the bounds given in Theorem 2.1 provide a way to upper bound
the true error LD(GRMl,A(H, S)) of hA

S = GRMl,A(H, S) as:

LA
S (h

A
S ) +

1

|S|
∑

(x,C)∈S

ρA(x,C, h
A
S ) + Lη′ +Ψδ,l(H, S) (8)

From a practical point of view, we note, however, that the above
bound requires that the Rademacher complexity R(H, S, L), as
well as the quantity ρA, can be computed efficiently. Unfortunately,
it is believed that, for general hypotheses classes, computing the
Rademacher complexity (or even approximating it) is an NP-HARD
problem [19]. By contrast, in the next section we will study the com-
plexity of computing ρA and show conditions under which this quan-
tity can be computed efficiently. Before getting to the complexity-
theoretic analysis of GRM, however, we conclude with a final ob-
servation about the previous results. One key issue in the implemen-
tation of GRM is the specification of the aggregation operator A to
be used for evaluating hypotheses in H: indeed, multiple such ag-
gregation rules have been proposed in the literature and, as a simple
consequence of Corollary 2.1, the selection of A may strongly in-
fluence the generalization error of GRM. Since Eq. (8) provides an
upper bound for the true error of GRM, a sensible choice is to se-
lect A so as to minimize this bound. The following result identifies
such an instantation of GRM and, surprisingly, shows that this opti-
mal instantiation of GRM differs from those commonly adopted in
the weakly supervised learning literature (namely, ORM and PRM).

Theorem 2.2. Let ρA(x,C, h) and T be defined as in Corollary
2.1. Let U(h,A) = LA

S (h) +
1
|S|

∑
(x,C)∈S ρA(x,C, h). LetAT =

{A aggregation operator |A = T ∨ A ≥ T ∨ A ≤ T}. Then

T ∈ argminA∈A ρA(x,C, h) and U(h, T ) =
Lmin

S (h)+Lmax
S (h)

2
.

Furthermore:

• If A ≤ T , then U(h,A) = Lmax
S (h) ≥ U(h, T );

• If A > T , then U(h,A) = 2LA
S (h) − Lmin

S (h) ≥ Lmax
S (h) ≥

U(h, T ).

Thus, T ∈ argminA∈A U(h,A).

Proof Sketch. The results is a consequence of Corollary 2.1.

If we denote the instantiation of GRM based on the aggregation
operator T as trade-off risk minimization (TRM), then Theorem 2.2
states that for all fixed hypotheses in H, TRM minimizes the up-
per bound on the true risk given by U(h,A), across a large class
of aggregation operators and uniformly over H. We remark, how-
ever, that the Theorem does not imply that U(GRMl,T (H, S)) ∈
argminA∈A U(GRMl,A(H, S)): indeed, in general there may be
a complex interplay among the optimization process (implicit in
the definition of GRM) and the value of the upper bound U . No-
tably, however, TRM still offers two remarkable advantages. First,
as mentioned above, TRM is guaranteed to minimize the upper
bound U uniformly across all hypotheses: as the aggregation op-
erator for GRM has to be selected a-priori (to enable optimization
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of the empirical risk), uniform minimization provides a useful cri-
terion for this selection. Second, and most relevant, we note that
LT

S (h) = U(h, T ), and T is the only aggregation operator in A for
which this property holds: this means that TRM is the only instan-
tiation of GRM for which minimizing the empirical risk LT

S jointly
minimizes also the upper bound on the true risk given by U(h, T ).

2.3 Complexity-Theoretic Properties

Based on the results obtained for GRM in the previous section, in
this section we study the computational complexity of GRM. Our
results, in particular, show that GRM is not only of theoretical, but
also practical interest, as it provides computationally efficient algo-
rithms to solve large classes of credal learning problems. In the rest
of this section we will require an additional assumption on the hy-
pothesis space H, namely, that it is a convex set in a Reproduc-
ing Kernel Hilbert Space (RKHS) of functions. This assumption is
not too strong: indeed, many standard ML approaches (e.g., kernel
methods) satisfy the above mentioned assumption. We denote with
KH : X ×X → �

Y the kernel function associated withH.
First of all, since the TRM algorithm can be expressed as

argminh∈H
Lmax

S (h)+Lmin
S (h)

2
, we note that the TRM problem can

be reduced to ORM and PRM problems6. Thus, we study the com-
plexity of these two latter approaches. In particular, we will focus
on learning algorithms that are based on the stochastic (sub)gradient
descent approach, due to their popularity in modern machine learn-
ing.We note that, since the loss function l is jointly convex in its
second and third arguments, then its subgradient set is non-empty:
we denote the subgradient set of l as ∂l, and with ∂pl, ∂hl the sub-
gradient sets w.r.t. to its second (resp., third) argument.

For the case of ORM, the following result shows that a simple7

stochastic coordinate descent algorithm (see Algorithm 1) is able to
approximately compute the GRM hypothesis:

Theorem 2.3. Let H be a convex subset of a vector-valued Repro-
ducing Hilbert Kernel Space (RKHS). Let l be a loss function satisfy-
ing the assumptions stated in Section 2. Assume that maxh∈H ||h|| ≤
B. Then, for any S ∼ Dm, if Algorithm 1 is executed for T steps, re-
turning hypothesis h =

∑m
i=1 αiKH(·, xi), it holds that, with prob-

ability greater than 1− δ over the randomization in the Algorithm:

Lmin
S (h)− LA

S (GRMl,min(H, S)) ≤ 4B2L

δ
√
T

. (9)

Thus, if TG denotes the time required to evaluate a subgradient
of l, and TP (|Y |) denotes the time required to compute the d-
projection at line 8 of Algorithm 1, then the ORM problem can be
ε-approximated (with probability of error smaller than δ) within time
complexity O

(
B4L2

δ2ε2
[TG + TP (|Y |)]

)
. In particular, if, with prob-

ability 1 over (x, y, C) ∼ D it holds that C is a probability in-
terval (resp., a possibility distribution, a comparative probability, a
linear credal set), then the ORM problem can be ε-approximated
(with probability of error smaller than δ) within time complexity
O
(
poly( 1

ε
, 1
δ
, |Y |)).

Proof Sketch. The main result follows from an analysis of the block-
coordinate descent strategy adopted in Algorithm 1. Indeed, since

6 Indeed, since the loss function for TRM is defined as the average of those
for ORM and PRM, it follows that a subgradient for the former can directly
be obtained from subgradients for the latter.

7 Algorithm 1 can be easily implemented using any numerical computing
library (e.g., TensorFlow), as it only involves standard convex optimization
routines such as the computation of sub-gradients or convex projections.

l is convex in the pair (p, h) ∈ Δ(Y ) × H, then the functions
f, g defined pointwise by fC(h) = minp∈C l(x, p, h), gh(p) =
minh∈H l(x, p, h) are both convex: hence, the alternating minimiza-
tion of gh and fC will converge to the optimal solution for lIPmin [39].
The other results follow by noting that the running time of Algorithm
1 scales linearly in the number of iterations, and each iteration takes
time TG + TP (|Y |), whereas TP (|Y |) is polynomial in Y [3].

Algorithm 1 Stochastic Gradient Descent procedure for Optimistic
Risk Minimization

1: procedure SGD-OPTIMISTIC-GRM(μ: learning rate, T : number of iterations,
S: training set)

2: α(1) ← 0 ∈ �|S|

3: P (1) ← 0 ∈ �|S|×|Y |
4: for t = 1, . . . , T do
5: Select (xi, Ci) uniformly from S

6: h(t) ←∑|S|
j=1 α

(t)
j KH(·, xj)

7: Let v(t)
p ∈ ∂pg(P

(t)[i, :], h(t)(xi))

8: P (t+1
2
)[i, :]← P (t)[i, :]− μv(t)

p

9: P (t+1)[i, :]← argminp∈Ci
d(P (t+1

2
)[i, :], p)

10: Let v(t)
h ∈ ∂hl(xi, P

(t+1)[i, :], h(t))

11: α(t+1) ← α(t) − μv
(t)
h

12: end for
13: return 1

T

∑T
t=1 α(t)

14: end procedure

Thus, the previous theorem shows that, if one adopts the ORM
algorithm, the credal learning problem is not only (conditionally)
learnable, but also efficiently so: this holds, in particular, when the
class of possible credal sets is restricted to one of the classes defined
in Section 2. Interestingly, most practical applications of the ORM
algorithm [6, 15, 22] have indeed considered such restricted classes
of credal sets (in particular, we refer to the problem of learning from
fuzzy labels and the superset learning problem, see Section 2): thus,
the above result applies, as a special case, to the above mentioned
applications, showing that the problems therein studied, when refor-
mulated as credal learning problems, can be solved efficiently. This
results is also of practical interest. Indeed, while it is known that
ORM for the former learning problems is NP-HARD [5], Theorem
2.3, by contrast, shows if we relax the above mentioned problems as
credal learning problems, then these latter can be solved efficiently
(see also Corollary A.1 in the Appendix).

Next, we study the complexity of PRM (i.e., GRM with A =
max). Through the following result, we show that, in general, the
PRM problem cannot be solved efficiently: nonetheless, we propose
a SGD-style algorithm, and provide conditions for its efficient con-
vergence.

Theorem 2.4. Let H, l,KH be as in Theorem 2.3. Then, for any
S ∼ Dm, if Algorithm 1 is executed for T steps, returning hypothesis
h =

∑m
i=1 αiKH(·, xi), it holds that, with probability greater than

1− δ over the randomization in the Algorithm:

Lmax
S (h)− Lmax

S (GRMl,max(H, S)) ≤ BL

δ
√
T
. (10)

In particular, the problem of solving PRM cannot be solved efficiently
for arbitrary credal sets.

Proof Sketch. The proof for the first statement can be derived simi-
larly to the proof of Theorem 2.3, as any convex maximization prob-
lem can be reduced to extrema enumeration on the supporting convex
set [31]. For the second statement, it suffices to note that the prob-
lem of maximizing a convex function (i.e., the problem of computing

A. Campagner / Credal Learning: Weakly Supervised Learning from Credal Sets332



lIPmax(x,C, h), for fixed h) cannot be solved efficiently for arbitrary
convex sets C, in particular it is NP-HARD [40].

Corollary 2.2. Let m ∈ � be a training set size and S ∼ Dm.
Define YS = {y ∈ Y : (x, y, C) ∈ S}. Assume that there ex-
ists c ∈ � s.t., with probability 1 over the sampling of a training
set S, |YS |! ≤ O (|S|c). Assume that there exists a polynomial de-
lay [18] algorithm for enumerating the extreme points of C, where
(x, y, C) ∼ D. Assume, further, that, with probability 1 over the
sampling of (x, y, C) ∼ D, C is a lower coherent prevision. Then
Algorithm 2 ε-approximates PRM (with probability of error smaller
than δ) within time complexity O

(
poly( 1

ε
, 1
δ
, |S||Y |).

Proof. We first note that an arbitrary lower coherent prevision8 C
over Y has at most |Y |! extreme points [38]. Therefore, if it exists
a polynomial delay algorithm for enumerating the extreme points of
C, the maximum time complexity of the main for loop in Algorithm
2 is O (poly(|S||Y |)). The result follows, since at most poly( 1

ε
, 1
δ
)

iterations are needed to ε-approximate PRM.

Algorithm 2 Stochastic Gradient Descent procedure for Pessimistic
Risk Minimization

1: procedure SGD-PESSIMISTIC-GRM(μ: learning rate, T : number of iterations,
S: training set)

2: α(1) ← 0 ∈ �|S|

3: P (1) ← 0 ∈ �|S|×|Y |
4: for t = 1, . . . , T do
5: Select (xi, Ci) uniformly from S

6: h(t) ←∑|S|
j=1 α

(t)
j KH(·, xj)

7: Let p1, . . . , pr be the extremes of Ci

8: k ← argmaxj∈{1,...,r} g(pj , h
(t)(xi))

9: Let v(t)
h ∈ ∂hl(xi, pk, h

(t))

10: α(t+1) ← α(t) − μv
(t)
h

11: end for
12: return 1

T

∑T
t=1 α(t)

13: end procedure

Theorem 2.4 and Corollary 2.2 (see also the Appendix for ad-
ditional results that apply to specific classes of credal sets) show
that, even if in general the problem of approximating PRM is NP-
HARD, in several relevant cases it can be solved efficiently through
Algorithm 2, which is a simple variant9 of stochastic (sub)gradient
descent combined with an explicit extrema enumeration algorithm.
By combining Algorithms 1 and 2 it is easy to illustrate a general
algorithm for TRM, as shown in Algorithm 3: it is similarly easy
to see that such an algorithm has the same computational complexity
(asymptotically) as Algorithm 2 and that Corollary 2.2 applies equiv-
alently also for TRM. Thus, even though in Section 2.2 we showed
that TRM enjoys favorable generalization bounds as compared with
other approaches based on GRM (such as ORM and PRM), by con-
trast, it may be computationally harder to train a ML model through
TRM, in general cases. Indeed, while Algorithm 3 is guaranteed to
efficiently ε-approximate the theoretical optimal hypothesis found by
TRM for several relevant classes of credal sets, in general its running
time may be exponential. By contrast, ORM can always be approxi-
mated in polynomial time, an insight that may explain the popularity
of ORM in practical applications [22, 24]. In light of this computa-
tional advantage of ORM in comparison with TRM, it is of theoret-
ical and practical interest to understand better the behaviour of the

8 We note that the mentioned property also holds for other specific classes of
credal sets not considered in this paper, e.g. for belief functions [30].

9 Indeed, Algorithm 2 combines a vertex enumeration step (for which ef-
ficient implementations exists, see e.g. https://pypi.org/project/pypoman/)
with a standard application of stochastic gradient descent.

former approach, especially as it regards its possible use as an ap-
proximation to TRM (as, intuitively, TRM can be expressed as the
combination of ORM and PRM): we leave this question as future
work. Nonetheless, as a consequence of Corollary 2.2, it is easy to
note that TRM can be applied to efficiently solve the credal learning
problem whenever the size of the target space Y is not too large and
the credal sets are constrained to lower coherent previsions, while en-
joying the theoretical guarantees on the generalization error studied
in Section 2.2.

Algorithm 3 Stochastic Gradient Descent procedure for Trade-Off
Risk Minimization

1: procedure SGD-TRADEOFF-GRM(μ: learning rate, T : number of iterations,
S: training set, ε: tolerance)

2: α(1) ← 0 ∈ �|S|

3: P (1) ← 0 ∈ �|S|×|Y |
4: for t = 1, . . . , T do
5: Select (xi, Ci) uniformly from S

6: h(t) ←∑|S|
j=1 α

(t)
j KH(·, xj)

7: Let p∗ s.t. l(xi, p∗, h(t))−minp∈Ci
l(xi, p, h

(t)) ≤ ε

8: Let v(t)
min ∈ ∂hl(xi, p∗, h(t))

9: Let p1, . . . , pr be the extremes of Ci

10: k ← argmaxj∈{1,...,r} g(pj , h
(t)(xi))

11: Let v(t)
max ∈ ∂hl(xi, pk, h

(t))

12: α(t+1) ← α(t) − μ
v
(t)
min

+v
(t)
max

2

13: end for
14: return 1

T

∑T
t=1 α(t)

15: end procedure

3 Conclusion

In this article we studied the problem of credal learning, a flex-
ible and increasingly popular weakly supervised paradigm.We fo-
cused, in particular, on analyzing the theoretical properties of one
of the most commonly adopted algorithmic methods in this setting,
namely GRM.After providing generalization bounds for credal learn-
ing (and GRM in particular), we proposed a novel approach based on
the GRM paradigm called trade-off risk minimization (TRM), and
showed its desirable properties from the learning-theoretic point of
view. We then proposed stochastic gradient descent algorithms for
TRM and the two most common varieties of GRM proposed in the
literature (namely, ORM and PRM) and showed that, despite the
above mentioned positive results, solving the TRM problem is in
general computationally hard, while we showed that, by contrast,
ORM (the most popular algorithm based on GRM) can be solved
efficiently. We also highlighted the advantage of credal learning in
comparison with alternative weakly supervised learning paradigms
[5, 15]. In light of the flexibility and rising popularity of credal learn-
ing, we believe that our work could pave the way for further explo-
ration of this setting, from both the theoretical and practical point of
views. In particular, we believe the following open problems to be
of particular interest: 1) In Section 2.2 we provided upper bounds on
the generalization error for credal learning: finding matching lower
bounds could be useful to characterize the intrinstic complexity and
resource-bounds for this problem; 2) In Section 2.3 we showed that,
despite its intuitively appealing learning-theoretic properties, learn-
ing through TRM is in general NP-HARD, while, by contrast, ORM
is computationally easy: it would be interesting to better character-
ize the properties of this latter approach, in particular in regards to its
ability to approximate TRM; 3) In this article we focused on the theo-
retical side of credal learning, future work should analyze the empir-
ical effectiveness of algorithms for this setting, focusing in particular
on comparing TRM with other variants of GRM.
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