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Abstract: Non-perturbatively computing the hadronic vacuum polarization at large photon
virtualities and making contact with perturbation theory enables a precision determination
of the electromagnetic coupling at the Z pole, which enters global electroweak fits. In
order to achieve this goal ab initio using lattice QCD, one faces the challenge that, at the
short distances which dominate the observable, discretization errors are hard to control.
Here we address challenges of this type with the help of static screening correlators in the
high-temperature phase of QCD, yet without incurring any bias. The idea is motivated by
the observations that (a) the cost of high-temperature simulations is typically much lower
than their vacuum counterpart, and (b) at distances x3 far below the inverse temperature
1/T , the operator-product expansion guarantees the thermal correlator of two local currents
to deviate from the vacuum correlator by a relative amount that is power-suppressed in
(x3 T ). The method is first investigated in lattice perturbation theory, where we point
out the appearance of an O(a2 log(1/a)) lattice artifact in the vacuum polarization with
a prefactor that we calculate. It is then applied to non-perturbative lattice QCD data
with two dynamical flavors of quarks. Our lattice spacings range down to 0.049 fm for the
vacuum simulations and down to 0.033 fm for the simulations performed at a temperature
of 250MeV.
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1 Introduction

Many phenomenologically interesting observables are defined in terms of QCD vacuum
correlators involving two or more local fields integrated over their Euclidean positions.
For example, the hadronic vacuum polarization function Π̂(Q2), which determines the
leading hadronic contribution to the running of the electromagnetic coupling and the muon
anomalous magnetic moment (g− 2)µ, the π0 → γ∗γ∗ transition form factor of the pion and
the hadronic light-by-light contribution to (g − 2)µ are expressed in such a way. Thus in
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many cases, vacuum correlators represent crucial input for precision tests of the Standard
Model. Lattice QCD provides ab initio determinations of these vacuum correlators; see e.g.
refs. [1–4] for the applications above.

However, these integrated quantities contain contributions corresponding to the fields
being close together, a regime which can lead to large cutoff effects. The standard tool
to investigate the asymptotic approach to the continuum limit of correlation functions is
Symanzik’s effective field theory [5–7]. A complication for the aforementioned observables
is that the on-shell improvement programme is not in general sufficient to guarantee rapid
convergence toward the continuum limit. In this work, we propose to compute the short-
distance contribution to vacuum correlators by making use of static screening correlators
from QCD at finite temperature, which can significantly reduce the cost of obtaining a
robust continuum limit. As the short-distance contribution has little sensitivity to the
temperature, the bulk of this contribution can be computed using particularly small lattice
spacings in the high-temperature phase of QCD, where the cost of the simulations is much
reduced, and only a small remainder needs to be computed using the vacuum ensembles.
Just as importantly, the cutoff effects on the remainder can be arranged to be parametrically
smaller than those of the observable computed on thermal gauge ensembles. Furthermore,
we note that in certain cases, there is a logarithmic enhancement of the cutoff effects on
the short-distance contribution at leading order in perturbation theory, in contrast to the
modification of cutoff effects by logarithms affecting on-shell correlators, which only appears
beyond the free-field theory level [8]. The longer-distance contribution involves the currents
at physical separations, at which on-shell improvement can safely be applied directly to the
vacuum correlators.

The fact that the leading thermal effect on the correlator at short distances x3 is
suppressed by several powers of (x3 T ) allows for a strategy to compute correlators at
extremely high momentum scales |Q|. We make a fairly concrete proposal in this direction
in section 5 for how to compute the hadronic contribution to the running of the electroweak
coupling constants up to the Z-boson mass. The basic idea is to compute this contribution
by increasing the momentum scale by factors of two, always using thermal QCD ensembles
with |Q|/T sufficiently large that the thermal effects are small corrections computable
to a systematically improvable accuracy. The idea thus has common aspects with the
‘step-scaling’ idea introduced in the lattice field theory context in [9], and also with the
application in heavy-quark physics presented in ref. [10].

In the following section, we outline the strategy for computing short-distance observables
using auxiliary finite-temperature ensembles, and provide parametric estimates for the
optimal choice of lattice parameters. We examine in section 3 the case of the vector
current correlator in the free theory, which suggests that the thermal effects are guaranteed
to be small at sufficiently small separations of the currents. This is confirmed by the
operator product expansion, carried out at leading and next-to-leading order in appendix A.
In section 4, we test the strategy on vector current correlators with Nf = 2 Wilson
fermions with thermal ensembles with a temperature T = 250MeV, where we reach lattice
spacings of a ≈ 0.033fm. This provides a more controlled continuum limit of the short-
distance contribution to the vacuum polarization at a much reduced cost. Finally, section 5
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summarizes our findings and describes the idea to compute the running of electroweak
couplings to very high energy using sequences of ensembles of growing temperature. The
concrete setup suggested is tested in the free-theory context in appendix E. The other
appendices contain technical details of the analytic calculations.

2 Definitions & general idea

To be specific, in this study we concentrate on two observables which are defined in terms of
the integral over a Euclidean correlator weighted by a known kernel and are closely related
to the hadronic vacuum polarization function Π(Q2). The Adler function [11]

D(Q2) = 12π2Q2 dΠ
dQ2 =

∫ ∞
0

dx0 K(x0, Q
2)G(x0), (2.1)

K(x0, Q
2) = 12π2

Q2

[
2− 2 cos(Qx0)−Qx0 sin(Qx0)

]
, (2.2)

parametrizes the running of the hadronic contribution to the electromagnetic coupling at
spacelike q2 = −Q2 < 0, and its derivative at Q2 = 0

D′(0)
π2 =

∫ ∞
0

dx0 x
4
0G(x0), (2.3)

determines the anomalous magnetic moment of a lepton in the limit of vanishing lepton
mass, ml. Both of these quantities receive contributions from all non-zero time-separations
of the current correlator

G(x0) = −
∫

d3x 〈Jem
1 (x)Jem

1 (0)〉, (2.4)

where the (continuum) electromagnetic current is defined as

Jem
µ (x) =

∑
f

Qf ψ̄
f (x)γµψf (x), (2.5)

and Qf is the electric charge of quark flavour f = u, d, s, . . . and the matrices γµ satisfy the
Euclidean Dirac algebra {γµ, γν} = 2δµν . The kernels for both the Adler function and the
anomalous lepton magnetic moment (g − 2)µ in the time-momentum representation [11]
coincide with the fourth moment for small enough x0. In fact, in the case of (g − 2)µ, the
kernel agrees with the fourth moment at the percent level up to distances of about 0.5 fm.
Therefore, both the qualitative and quantitative results for the fourth moment are relevant
for the controlled determination of the short-distance contribution to the hadronic vacuum
polarization in the muon anomalous magnetic moment.

One may wonder whether lattice QCD estimates of these physical quantities suffer
from uncontrolled systematic effects arising from small separations between the currents,
even if this contribution itself is suppressed by the short-distance behaviour of the kernel.
Indeed, for a lattice estimator of the current correlator which has the expansion in the
lattice spacing a given by

G(x0, a) = G(x0) + aG1(x0, a) + a2G2(x0, a) + . . . , (2.6)
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power counting suggests that its cutoff effects become parametrically large as x0 becomes
small [12]

anGn(x0, a) = const.× (a/x0)nG(x0) + . . . , (2.7)

up to logarithmic corrections [8], and where we assume the continuum limit G(x0) exists
after proper renormalization, if required. Even if the bulk of the lattice artifacts does
not necessarily arise from the short-distance contribution, the breakdown of the Symanzik
expansion inevitably leads to scaling violations in the continuum limit which can be of
practical concern, especially given the subpercent precision aimed at in the context of (g−2)µ.

This situation is similar to the typical window-problem encountered in lattice QCD
where the appearance of an external scale, such as Q2, needs to be accommodated within
the ultra-violet and infra-red cutoffs imposed by the lattice spacing a and lattice size L,

a� Q−1 � L. (2.8)

In renormalization problems, one has the freedom to remove one of these restrictions by
linking the external scale to the physical volume, which eliminates one constraint of the
window and allows simulations to proceed with tractable problem sizes. For hadronic
observables, where the physical volume must remain large, we may however choose to
compute an observable, or part of it, in a simulation with different physical parameters
provided that we properly account for the correction.

In particular, our strategy proposes to use the static screening correlator at finite
temperature T ,

Gth(x3) = −
∫

dx0 dx1 dx2 〈Jem
1 (x)Jem

1 (0)〉T , (2.9)

which is a function of the spatial separation x3 of the currents and depends on the tempera-
ture T . We choose the latter to be on the order of the QCD scale, in the chirally-restored
phase. We define the contribution up to t to the integral appearing in eq. (2.3) for the
vacuum and thermal correlators,

I(t) =
∫ t

0
dx0 x

4
0G(x0), Ith(t) =

∫ t

0
dx3 x

4
3G

th(x3), (2.10)

together with lattice estimators I(t, a) and its thermal counterpart Ith(t, a) defined precisely
in the following subsection.

Our strategy is based on the idea that the quantities I(t) and Ith(t) are in some
sense very similar. The operator-product expansion (OPE), which is presented in detail in
appendix A, can be invoked to make this statement precise for tT � 1: the difference of the
two quantities is suppressed by (tT )3 relative to the quantities themselves. It is instructive to
compare the thermal and the vacuum correlators in a representative lattice QCD calculation.
The left panel of figure 1 depicts the integrand of eq. (2.10) with t = 0.2 fm for the vacuum
(open) and thermal (filled) squares at fixed lattice spacing a ≈ 0.05 fm, which illustrates
that the thermal effects are indeed suppressed for these distances in the Nf = 2 theory
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Figure 1. Left panel: integrand of the fourth moment of the correlator (red squares) and the Adler
function (green circles) at fixed lattice spacing. The vacuum and thermal observables are shown
with open and filled symbols, respectively. Right panel: corresponding integral as a function of the
lattice spacing is shown, which illustrates that the thermal contribution with T = 250MeV accounts
for most of the signal.

when T = 250MeV, corresponding to tT = 0.25. The analogous integrands for the Adler
function at the large virtuality of Q = 2.36 GeV are shown as well, which illustrate how it is
also dominated by the correlation function at short distances. The right-hand panel shows
the corresponding integrals as a function of the lattice spacing, which illustrates that more
than 95% of the signal is accounted for by the thermal observable. The benefit of using
Ith(t) as a proxy for I(t) is that, in the case illustrated in figure 1, the finite-temperature
ensemble has a factor eight fewer lattice sites than its vacuum counterpart due to its shorter
time extent, which naively allows a span of a factor of 81/4 ≈ 1.68 in the lattice spacing
to be achieved for the thermal observable before the cost of obtaining the latter becomes
comparable to the vacuum calculation.

Thus for a suitable choice of t � 1/T , we expect the bulk of the short-distance
contribution to be given by the thermal component Ith(t), whose continuum limit can be
obtained accurately thanks to the smaller lattice spacings accessible at finite temperature.
This suggests an improved estimator for the vacuum observable

Î(t, a) = Ith(t) + [I(t, a)− Ith(t, a)], (2.11)

where the first term on the right-hand side is the continuum estimate of the thermal
observable, obtained using particularly fine lattice spacings available at high temperature.
Given that the difference G(t)−Gth(t) is finite in the limit t→ 0 (see appendix A) and that
the weight factor in the integrals of eq. (2.10) is t4, the remainder in brackets is small and
of the form const.× t5(1 + O(t)), where the constant is dominated by a momentum scale on
the order of temperature. It is worth recording the parametric size of the cutoff effects on
both terms. Let a be the smallest lattice spacing used for the vacuum ensembles and ath be
the smallest lattice spacing used for the thermal ensembles. To obtain the first term, the
lattice artifacts to be removed by extrapolation are of order a2

th, while for the remainder,
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they are of order a2(Tt)3 in the O(a)-improved theory.1 Indeed, since G(t)−Gth(t) starts
as a constant of order T 3 at small t, the numerical integral of this difference weighted by t4

generates an artifact of order a2(Tt)3. Thus, as long as the ratio ath/a does not become
as small as (tT )3/2, which is the regime we have in mind, the cutoff effects on Ith(t, a)
are parametrically larger than the effects on the remainder. The upshot is that if I(t)
is obtained as the continuum limit of Î(t, a), the dominant part of the systematic error
associated with cutoff effects comes from obtaining Ith(t), where one profits from being
able to reach lattice spacings below 0.05 fm in the chirally-restored phase at a moderate
computational cost.

A further aspect which is specific to Wilson fermions is that the on-shell improvement
of the vector current via the derivative of the tensor current [13] only contributes a term
of order amq in the chiral restored phase of QCD; such terms are of a size comparable to
the O(a2) terms for the lattice spacings employed in section 4. This represents a further
advantage of obtaining the bulk of Î(t, a) from the chiral restored phase.

Since the main focus is then on obtaining Ith(t), it is worth studying the approach to the
continuum for this short-distance quantity in lattice perturbation theory. The leading-order
calculation is presented in section 3. It turns out that a logarithmic enhancement of the
O(a2) cutoff effects arises, with a calculable coefficient which applies both to Ith(t) and
I(t). This enhancement appears with a positive (unit) power of the logarithm, unlike the
known logarithmic dependence on the lattice spacing due to the running coupling, which
appears first at one-loop level [8]. By contrast, the O(a2) cutoff effect enhanced by the
factor log(1/a) cancels out in the improved observable (2.11).

In order to fully control the short-distance thermal contribution, or to reach very high
momenta in the hadronic vacuum polarization, it may be necessary to iterate the procedure
of eq. (2.11) using a series of higher temperatures to compute short-distance contributions.
We return to this question in section 5. Although other options are certainly available, it
is particularly convenient to use the temperature as a control parameter to compute the
short-distance contribution, since we can use existing knowledge about high-temperature
correlators and apply well-understood theoretical tools like the operator product expansion.

2.1 Definitions of lattice observables

In order to set up the notation for the following sections, we define here the lattice observables
for the theory of Nf = 2 Wilson fermions. In this work we investigate the isovector vector
current correlator, which consists of a single Wick contraction. This correlator makes the
dominant contribution to the hadronic vacuum polarization in the muon g − 2. In the
vacuum case, we formulate the correlator at vanishing spatial momentum as a function of
Euclidean time,

Gµν(x0) = ZV(1 + amqbV)a3∑
x

〈Ṽµ(x)Vν(0)〉 , (2.12)

1In the unimproved theory, there are also cutoff effects of order aT 4t5, but none of order aT 3t4. The
former are still small compared to the cutoff effects on the first term, provided (Tt)5 � aT , which is certainly
the case in our numerical application of section 4.
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where the bare local vector current is defined as

Vµ(x) = Ψ̄(x) τ3√
2
γµΨ(x) (2.13)

with Ψ> = (u, d), and the exactly-conserved vector current is

Ṽµ (x) = 1
2

[
Ψ̄(x+aµ̂) τ3√

2
(1+γµ)U †µ(x)Ψ(x)−Ψ̄(x) τ3√

2
(1−γµ)Uµ(x)Ψ(x+aµ̂)

]
. (2.14)

In contrast, the static screening correlator at finite temperature is measured along a spatial
direction,

Gth
µν(x3) = ZV(1 + amqbV)a3∑

x0

∑
x1,x2

〈Ṽµ(x)Vν(0)〉T (2.15)

We investigate two observables which are related to the Adler function eq. (2.1), and the
short-distance part of the fourth moment of the correlator eq. (2.10), which is proportional to
the derivative of the vacuum polarization at zero virtuality. The short-distance contribution
up to t of the fourth moment is

I(t) = a
t−a∑
x0=a

x4
0 G(x0) + a

2 t
4 G(t), G ≡ −G11. (2.16)

We have used an integration rule consistent with the improvement of the theory, e.g. the
trapezoidal rule. For large Q2, the Adler function is dominated by the short-distance
contribution to the integral, and we define a lattice observable which is the integral up to
half the spatial extent L/2,

D(Q2) = a

L/2−a∑
x0=a

K(x0, Q
2)G(x0) + a

2K(L/2, Q2)G(L/2), (2.17)

where again we have implemented the trapezoidal rule, and K(x0, Q
2) is defined in eq. (2.2).

The thermal observables are defined analogously using the static screening correlator of
eq. (2.15). The improved estimators are then defined via eq. (2.11) where the first term on
the right-hand side is obtained by taking the continuum limit using thermal ensembles with
the available finer lattice spacings.

2.2 The role of O(a) cutoff effects in Wilson lattice QCD

In order to clarify the significance of the cutoff effects addressed in section 3, it is useful
to recall how O(a) effects contribute to the observables of interest. This point was first
discussed for the vacuum polarization in [14]. We begin by investigating the possible contact
terms. In order to contribute to I(t), a contact term in G(x0) requires exactly four temporal
derivatives acting on the Dirac distribution δ(x0). By power counting, the prefactor must
contain an O(a2) coefficient, so that the contact term takes the form a2(∂0)4 δ(x0). It thus
contributes to the O(a2) cutoff effects. In other words, there are no O(a) lattice artifacts in
the form of contact terms.
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Next, consider the correlator involved in the standard on-shell improvement term of
G(x0) via the antisymmetric tensor current [13],

h(x0) =
∫
d3x 〈∂0(Ψ̄(x)γ0γ3

τ3
√

2Ψ(x))V3(0)〉. (2.18)

Recall that h(x0) is multiplied by the explicit factor a cV in the improvement of the vector-
vector correlator G(x0). The key observation is that with the multiplicative renormalization
of the tensor current included, which in perturbation theory only contains logarithmic
corrections in the lattice spacing, this correlator would have a continuum limit. Furthermore,
by power counting the fourth moment

∫ t
0 dx0 x

4
0 h(x0) is also a finite quantity in the

continuum, which Wilson lattice QCD must reproduce, up to O(a) effects. This implies
that the integral over x0 yielding this quantity is dominated by physical time separations.
But from the on-shell improvement programme [15], we know that at such separations,
the correlator h(x0) is the only correction needed to remove O(a) effects in the vector
correlator G(x0). We conclude that the standard on-shell improvement of the vector currents
is sufficient to remove O(a) artifacts from I(t). One reaches the same conclusion based
on the spectral representation of h(x0) and G(x0), where the role of h(x0) is to correct
the O(a) artifacts in the matrix elements of the vector current between the vacuum and
physical states.

For contrast it is instructive to consider briefly the |x0|3 moment of G(x0), which is
also a physical quantity, expressable through the vector spectral function. In this case, the
corresponding moment of h(x0) would however not be finite by power counting; that moment
is finite in the continuum due to chiral symmetry, buts its straightforward implementation
in Wilson lattice QCD would not have the correct continuum limit. Hence it is clear that the
on-shell improvement of G(x0), followed by the calculation of its third moment, would not
lead to the removal of O(a) effects in that moment. This example illustrates the importance
of the convergence of the x0-moment of the improvement correlator h(x0) by power counting.
The third moment of G(x0) must thus be analyzed in the broader framework of off-shell
improvement [16]. The same conclusion applies to the second moment, which is commonly
used as an estimator for the vacuum polarisation in the limit of vanishing photon virtuality.

Returning to the quantity of interest I(t), we now choose t small compared to the QCD
confinement scale, set the quark mass to zero and discuss the perturbative treatment of this
quantity. In continuum perturbation theory, h(x0) vanishes in the massless limit, whereas
on the lattice this correlator is generically of order a/|x0|5 for |x0| a physical separation.
As a consequence, the improvement term makes an O(a2 log(1/a)) contribution to I(t).
This is of the same order as the artifacts we find in the unimproved correlator. Since the
improvement term does not parametrically improve the convergence to the continuum, we
have not included it in the lattice perturbation theory calculation of section 3. Anticipating
the explicit perturbative calculation, we find the latter to be consistent with the conclusions
of this subsection, since no O(a) effects are found in I(t) computed with unimproved vector
currents, even though the improvement coefficient cV for the conserved current is already
non-vanishing at tree-level.
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2.3 The Symanzik expansion and enhanced lattice artifacts

As discussed at the beginning of the section (see eqs. (2.6)–(2.7)), severe lattice artifacts
appear in the correlation function at short distances. Here, we demonstrate that integrating
over the correlation function with a kernel suppressing the short distances sufficiently so as
to yield a finite continuum limit can result in a parametric enhancement of lattice artifacts
even at leading order in the perturbative expansion.

The Symanzik continuum effective theory can be used to represent the correlation
function on the lattice for x0 > 0 by considering all irrelevant counterterms of the action
and local operators with the correct dimension and consistent with the symmetries of the
lattice theory. For example, the lattice artifacts of eq. (2.7) can be expressed as a sum over
the matrix elements containing the counterterms [8]

Gn(x0, a) =
∑
i

c̄i{2b0ḡ2( 1
a)}γ̂iCin(x0), γ̂i = γi0/b0, (2.19)

with coefficients which depend on the (scheme-independent) one-loop anomalous dimension
of the counterterm γi0 (b0 is the universal one-loop coefficient of the QCD beta function)
and c̄i is the matching coefficient between the Symanzik continuum effective theory and
the lattice theory. The matrix element Cin is renormalization-group invariant as the scale-
dependence of the counterterm has been factored out, which gives rise to a logarithmic
dependence on the lattice spacing through the running coupling.

In addition, however, the integral of the correlator from short-distances results in a
logarithmically-enhanced lattice artifact. In eq. (2.7), the matrix element of any one of the
leading O(a2) counterterms must have by power counting the short-distance singularity

Ci2(x0) = di(1/x0)5 + . . . . (2.20)

This is more singular than the leading continuum correlator, and gives rise to a logarithmic
enhancement of the O(a2) lattice artifacts in the x4

0 moment, in particular when inserted
in the summation of eq. (2.16), using the harmonic number formula. Thus, assuming the
correlator is O(a)-improved, the leading O(a2) lattice artifacts of the integrated quantity are
parametrically enhanced due to the logarithm appearing with the (positive) unit power. It
is also worth noting that all higher terms in the Symanzik expansion of G(x0, a) contribute
at O(a2) after summing over short distances. In particular, even if one improved the on-shell
correlator so that it contained no O(a2) artifacts, the quantity I(x0, a) would contain
remnant O(a2) lattice artifacts.

The full form of the lattice artifacts given by eq. (2.19) suggests that the coefficient of
the logarithmic term could be determined by computing all of the matching, or improvement,
coefficients while the most singular behaviour of the coefficient function is computable in
continuum perturbation theory, when x0Λ� 1. In the following section, the coefficient of the
logarithmically-enhanced term is computed at leading order in lattice perturbation theory.

3 Analysis in leading order of lattice perturbation theory

As a first test of the idea to use thermal gauge ensembles to better control the short-
distance behaviour of QCD correlators, we apply it in the framework of leading-order
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lattice perturbation theory, i.e. in the theory of non-interacting quarks. In the limit of
short distances, the QCD correlation functions are well approximated by their perturbative
values, and we therefore expect the free theory to provide valuable insight on the general
applicability of the method. Moreover, the continuum values being known in this context,
quantitative statements can be made about the accuracy of the continuum limit obtained
with the improved estimators in eq. (2.11) as compared to extrapolating directly the
vacuum observables.

One delicate point in the study of the integrated observables defined in section 2.1
is the presence, already at the level of the free theory, of cutoff effects which depend
logarithmically on the lattice spacing. In the method we propose, the understanding of
these effects is important in view of obtaining an accurate continuum extrapolation of the
thermal observables. On the other hand, the improved vacuum observables defined as in
eq. (2.11) are free of the logarithm predicted by the leading-order calculation, which cancel
out in the subtraction between thermal and vacuum quantities.

3.1 The vector correlators in the massless theory: lattice formulation

We consider the theory of non-interacting massless Wilson quarks, defined on a lattice
with infinite spatial volume. Following section 2.1, we denote the lattice vacuum and
thermal correlation functions by Gµν(x0) and Gth

µν(x3) (eqs. (2.12) and (2.15), recalling that
ZV = 1 in the non-interacting case). Explicit expressions of the free correlators are given in
appendix D for the theory with Nc colors. Here we fix Nc = 3, as appropriate for QCD.
We concentrate on the observables I(t) and D(Q2), as defined in eqs. (2.16) and (2.17).

The analysis is performed at a set of realistic lattice spacings which correspond to those
available in our non-perturbative study of Nf = 2 QCD (see table 4). In the free massless
Lagrangian there are no bare parameters to be tuned in order to approach the continuum on a
line of constant physics, given that the mass parameter is only multiplicatively renormalized
in this case. The fact that the non-interacting massless theory is scale invariant gives us
the freedom to assign to the temperature a value of our choice. In the thermal case, the
lattice spacing and the temperature are related by T = 1/(aNt), where Nt = L0/a is the
number of lattice points in the Euclidean-time direction. As in the case of the interacting
ensembles, we consider four finite-temperature lattices, with Nt = 12, 16, 20, 24, and we
assign to each of them the physical temperature T = 246.25MeV, which corresponds to
fixing the lattice extent in the compact direction to aNt = 1/T = 0.8 fm. This results in the
set of lattice spacings a ≈ {0.07, 0.05, 0.04, 0.03} fm. Vacuum equivalents of these thermal
systems are obtained by assigning the corresponding physical value of the lattice spacing to
a lattice with Nt =∞ (zero temperature). For simplicity, with an abuse of notation we will
sometimes identify the vacuum lattices by the value of Nt of their thermal counterpart (as
for example in figure 4). We analyze I(t) for t = 1/(4T ) = 0.2 fm and t = 1/(2T ) = 0.4 fm,
and for the Adler function we consider the two virtualities Q = 3πT = 2.32GeV and
Q = πT/2 = 387MeV. We are mostly interested in the more short-distance-dominated
cases t = 0.2 fm and Q = 2.32GeV, for which the method proposed in this paper proves to
be very effective. Similar values of t and Q are used in the analysis of the Nf = 2 QCD
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Figure 2. Integrand of the fourth-moment observable x4
µG(xµ) for four thermal lattices with

Nt = 12, 16, 20, 24 (filled symbols) and their vacuum equivalents (open symbols). The dotted lines
represent the continuum values of these quantities.

data presented in section 4. The more infrared scales t = 0.4 fm and Q = 387MeV are only
considered in the free-theory analysis, and they mostly serve as a comparison point.

Figure 2 shows the integrand of the fourth-moment observable x4
µG(xµ) for all thermal

lattices and their vacuum counterparts, up to distances of 0.4 fm. As expected, up to around
0.2 fm the difference between the vacuum and thermal cases is hardly noticeable. Also, at
these short distances the cutoff effects are more important than at larger separations, as
can be observed by comparing with the continuum values, also displayed in the plot. These
two features motivate the use of the improved observables defined as in eq. (2.11) in order
to achieve a better control at short distances with the aid of fine thermal lattices.

Before undertaking the analysis of the observables I(t) and D(Q2) with the method
proposed in this paper, we investigate the emergence of logarithmic cutoff effects and
compute their form explicitly.

3.2 A short-distance O(a2 log(1/a)) cutoff effect

Already at the free-theory level, cutoff effects of the form c̃ a2 log(1/a) are present in the
observables I(t) and D(Q2),

I(t) a→0∼ I(t) + c̃Ia
2 log(1/a) +O(a2) , (3.1)

D(Q2) a→0∼ D(Q2) + c̃Da
2 log(1/a) +O(a2) , (3.2)

and analogously in the corresponding thermal quantities Ith(t) and Dth(Q2). In the
following we compute the coefficients c̃I and c̃D for the specific discretization of the
correlation functions used in this work.
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To begin with, we focus on I(t) and we analyze it in the limit a→ 0. In the vacuum
and in infinite volume there is no difference between projecting to zero momentum in
the directions (x1, x2, x3), as in eq. (2.12), or in the directions (x0, x1, x2). Here, as in
appendix D, we choose the second option, as it makes the analogy with the thermal screening
correlator very clear. As a consequence, we will use the vector notation p ≡ (p0, p1, p2). The
thermal version of the following equations is obtained by replacing the integral over p0 with
a sum over fermionic Matsubara modes, as described in appendix D, and the coefficients
c̃I and c̃D are the same in the vacuum and in the thermal case. In the limit a → 0, the
observable I(t) can be expanded as follows,2

I(t) =
∫ t

0
dx3x

4
3

∫ π
a

−π
a

d3p

(2π)3 e
−2p|x3|

[
f̂0,0(p̂)+a2(p2f̂2,0(p̂)+|x3|p3f̂2,1(p̂)

)
+O(a4)

]
+O(a2) ,

(3.3)

where p ≡ |p| and f̂n,m(p̂) are dimensionless functions of the orientation of the vector p
(p̂ ≡ p/p). The expressions of f̂00, f̂2,0 and f̂2,1 can be found in appendix D. A generic
term of the expansion within square brackets in (3.3) can be expressed as

an|x3|mpn+mf̂n,m(p̂) , (3.4)

with n = 2, 4, . . . and m ≥ 0. The integration over x3 yields

∫ t

0
dx3 x

m+4
3 e−2px3 = (m+ 4)!

(2p)m+5 − e
−2pt

m+4∑
l=0

(m+ 4)!
(m+ 4− l)!

tm+4−l

(2p)l+1 . (3.5)

Upon integration over the Brillouin zone, the first term on the right-hand-side of eq. (3.5)
(not exponentially suppressed in p) can introduce a logarithmic dependence on a. In fact,
based on dimensional analysis, we observe that the term

I(t) ⊃ an (m+ 4)!
2m+5

∫ π
a

−π
a

d3p

(2π)3
f̂n,m(p̂)
p5−n (3.6)

is proportional to a2 log(1/a) for n = 2, and to a2 for any n > 2. As a consequence, the
O(a2) contribution to I(t) cannot be computed exactly by truncating the expansion in
square brackets in eq. (3.3) at a finite order. Having identified the sources of logarithmic
contributions, we can compute the coefficient c̃I by using the log-derivative

c̃I = 1
a

d
d(1/a)

∫ π
a

−π
a

d3p

(2π)3
1
p3

{ 4!
25 f̂2,0(p̂) + 5!

26 f̂2,1(p̂)
}∣∣∣∣
a=0

. (3.7)

The derivative of the triple integral can be computed by applying the following equation

d
dx

∫ x

0
d3p f(p0, p1, p2) =

∫ x

0
d2p

[
f(p0, p1, x) + f(p0, x, p1) + f(x, p0, p1)

]
. (3.8)

2The O(a2) corrections at the end of eq. (3.3) correspond to the difference between the integral and the
trapezoidal-rule based sum over x3.
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c0 + c2a2 + c4a4

continuum

Figure 3. Continuum limit of the thermal quantities Ith(t) (left) and Dth(Q2) (right). Four lattices
are considered, with Nt = 12, 16, 20, 24 and whose temperature is fixed to 246.25MeV. The coarsest
lattice with Nt = 12 is excluded from the fits. Polynomials of first and second degree in a2 are used
to fit the data. More accurate extrapolations are obtained by making use of the known coefficients
c̃I (3.9) and c̃D (3.11) to subtract the O(a2 log(1/a)) contribution from the lattice data. The relative
differences between the continuum estimates shown in this figure and the correct continuum values
are listed in table 2.

Using the expressions of f̂2,0 and f̂2,1 given in appendix D, we find

c̃I = 7Nc

60π2
Nc=3= 7

20π2 . (3.9)

Moving now to the Adler function D(Q2), we observe that in the short-distance limit
its integrand is proportional to that of I(t)

K(x3, Q
2)G(x3) x3→0∼ π2Q2 x4

3 G(x3) . (3.10)

As we saw in the above computation, the logarithmic cutoff effect comes from the contribution
around x3 = 0 to the integral over x3 (see eq. (3.5)), from which we conclude that

c̃D = π2Q2 c̃I = 7NcQ
2

60
Nc=3= 7Q2

20 . (3.11)

The values of c̃I and c̃D given in eqs. (3.9) and (3.11) can be compared to what is
obtained via fits to the lattice data. With this goal in mind, we consider a set of lattices with
Nt = 16, 20, 24, 48, 60, 120, whose temperature is fixed to T = 246.25MeV. These include
“realistic” lattices with Nt = 16, 20, 24, whose lattice spacings are very close to those of the
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Free massless quarks

t [fm] Ith(t) [10−3fm2] c̃I c0 [10−3fm2] c̃ c2 c3 [fm−1] c4 [fm−2]

0.2 1.025 0.0355 1.026 0.0251 −0.112 — — (a)
1.025 0.0466 −0.197 0.522 — (b)
1.025 0.0377 −0.156 — 3.70 (c)
1.025 0.0292 −0.116 −0.488 7.13 (d)

0.4 3.603 0.0355 3.603 0.0332 −0.123 — — (a)
3.603 0.0373 −0.139 0.0992 — (b)
3.603 0.0356 −0.132 — 0.703 (c)
3.603 0.0352 −0.130 −0.0231 0.866 (d)

Q [GeV] Dth(Q2) c̃D[fm−2] c0 c̃ [fm−2] c2 [fm−2] c3 [fm−3] c4 [fm−4]

2.32 2.695 48.6 2.697 30.8 −138 — — (a)
2.695 56.7 −241 639 — (b)
2.695 45.8 −190 — 4518 (c)
2.695 52.1 −219 369 1916 (d)

0.387 0.2927 1.349 0.2927 1.320 −2.57 — — (a)
0.2927 1.368 −2.76 1.19 — (b)
0.2927 1.348 −2.67 — 8.46 (c)
0.2927 1.350 −2.67 0.108 7.70 (d)

Table 1. Parameters of the continuum extrapolation of Ith(t) and Dth(Q2) with the functional
forms (a), (b), (c), (d) of eq. (3.12). The known continuum values Ith(t) and Dth(Q2) are also
reported, together with the prefactors of the logarithmic term c̃I (eq. (3.9)) and c̃D (eq. (3.11)).
For this analysis an extended set of thermal lattices is used, with Nt = 16, 20, 24, 48, 60, 120 and
whose temperature is fixed to T = 246.25MeV. For all fit forms, c0 is in good agreement with the
corresponding continuum value. In the more infrared cases t = 0.4 fm and Q = 387MeV the ansatz
(a) provides a good estimate of c̃, and the value of this coefficient is quite stable with respect to
introducing higher powers of a in the fit ansatz. Instead for t = 0.2 fm and Q = 2.32GeV the role
of higher-order discretization effects is important to obtain a relatively accurate estimate of c̃. In
particular, among the fit forms analyzed here, the ansatz (c) provides the most accurate value.

ensembles presented in section 4, and three extremely fine lattices with Nt = 48, 60, 120. We
include the latter in order to have a better control on the continuum extrapolation and more
flexibility with respect to the number of fit parameters. We consider the functional forms

(a) c0 + a2[c2 + c̃ log(1/(Ta))]
(b) c0 + a2[c2 + c̃ log(1/(Ta))] + c3a

3

(c) c0 + a2[c2 + c̃ log(1/(Ta))] + c4a
4

(d) c0 + a2[c2 + c̃ log(1/(Ta))] + c3a
3 + c4a

4

(3.12)

and observe that the case (c) leads to the best agreement with the expected value of c̃.
In all cases, the agreement between c0 and the known continuum value is very good. All
results are reported in table 1.
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Free massless quarks

t [fm]
∣∣∣c0 − Ith(t)

∣∣∣/Ith(t) ansatz

0.2 2% 0.9% c0 + c2a
2

2% 0.2 % c0 + c2a
2 + c4a

4

0.4 0.8% 0.06 % c0 + c2a
2

0.4% < 0.01% c0 + c2a
2 + c4a

4

plain subtr.

Q [GeV]
∣∣∣c0 −Dth(Q2)

∣∣∣/Dth(Q2) ansatz

2.32 0.9% 0.6% c0 + c2a
2

0.7% 0.06 % c0 + c2a
2 + c4a

4

0.387 0.4% < 0.01% c0 + c2a
2

0.2% < 0.01% c0 + c2a
2 + c4a

4

plain subtr.

Table 2. Accuracy of the continuum limit of Ith(t) (left) and Dth(Q2) (right) expressed in terms of
the relative difference between the continuum estimate c0 and the known continuum value. Three
thermal lattices are used for the extrapolation, with Nt = 16, 20, 24 and whose temperature is set to
T = 246.25MeV. The label ‘plain’ refers to a continuum estimate obtained by fitting the plain lattice
observables Ith(t) and Dth(Q2), while in the case ‘subtr.’ the logarithmic cutoff effects are subtracted
prior to performing the fit as follows, Ith(t)− c̃Ia2 log(1/(Ta)), Dth(Q2)− c̃Da2 log(1/(Ta)). The
analytic values of the coefficients c̃I and c̃D are given in eqs. (3.9) and (3.11) respectively. The
lattice data and the fit curves are shown in figure 3.

3.3 Continuum limit of the thermal observables

As a first step toward improved vacuum observables defined as in eq. (2.11), we compute
continuum estimates of the thermal quantities Ith(t) and Dth(Q2). We consider a set of
four lattices with Nt = 12, 16, 20, 24, whose temperature is set to 246.25MeV and whose
lattice spacings are very similar to the ones of the Nf = 2 thermal ensembles, as discussed
in section 3.1. In all practical cases, we find it expedient to exclude the coarser lattice with
Nt = 12 from the continuum extrapolation.

We observe that a careful treatment of the logarithmic cutoff effects can significantly
improve the accuracy of the continuum limit. In order to illustrate this point, we compare
the outcome of two different approaches. The first is to simply ignore the presence of
logarithmic cutoff effects and to fit the lattice data with polynomials in a2. The second is
to subtract the logarithmic contributions, making use of the known prefactors c̃I and c̃D
(see section 3.2) before fitting polynomially in a2. The outcome of these two approaches
is presented in table 2. This second approach proves to be very effective, however it is
somewhat specific to the free theory. In the interacting case, it remains to be seen whether
the a2 log(1/a) term receives significant, non-analytic in a corrections. Since the main
goal in this subsection is to test the reliability of various continuum extrapolations in
reproducing the known continuum results from realistic lattice spacings, we allow fits to
have as many fit parameters as there are data points (namely three) in the case of the
quadratic-polynomial fits. Another possible strategy is to fit the lattice data with the
ansatz c0 + c2a

2 + c̃a2 log(1/(Ta)). In this case we find that the accuracy of the continuum
estimates is comparable with the results of table 2 obtained by subtracting the logarithmic
term and then fitting linearly in a2.

In the left panel of figure 3 two sets of lattice data are shown, one corresponds to the plain
thermal observable Ith(t) (open symbols) and the other represents Ith(t)− c̃Ia2 log(1/(Ta))
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Figure 4. Continuum extrapolation of the vacuum lattice observables I(t) (left) and D(Q2) (right)
and of their improved versions Î(t) and D̂(Q2). The observables are evaluated on two lattices whose
lattice spacings a ≈ {0.07, 0.05} fm are equal to those of the Nt = 12, 16 thermal lattices. The fit
ansatz is linear in a2. The accuracy of the resulting continuum estimates is reported in table 3.

(filled symbols). The value of the coefficient c̃I is given in eq. (3.9). Four different continuum
estimates are obtained by fitting these data sets with two polynomial forms, one linear in
a2 and one quadratic in the same variable. The discrepancy between these estimates and
the known continuum value is reported on the left-hand side of table 2. The accuracy of the
continuum limit is significantly improved by the subtraction of the logarithmic term and
the inclusion of the O(a4) term also plays an important role. For example, for t = 0.2 fm
a naive polynomial fit of the lattice data gives a discrepancy with the correct continuum
value of around 2%, which is reduced to 0.2% by subtracting the logarithmic cutoff effects
and fitting the resulting lattice points with a second-degree polynomial in a2. As final
continuum estimates we choose the most accurate results

Ith
extrap.(t = 0.2 fm) = 1.027× 10−3 fm2 , Ith

extrap.(t = 0.4 fm) = 3.603× 10−3 fm2 . (3.13)

A similar analysis of the thermal Adler function Dth(Q2) can be found on the right
panel of figure 3 and on the right-hand side of table 2. Also for this observable the gain
in accuracy due to subtracting the logarithmic cutoff effects is considerable. For example,
for Q = 2.32GeV the continuum estimate obtained by fitting Dth(Q2) with a second-
degree polynomial in a2 differs from the correct continuum value by 0.7%, while fitting
Dth(Q2)− c̃Da2 log(1/(Ta)) with the same ansatz reduces the discrepancy to 0.06%. The
value of c̃D is given in eq. (3.11). As final continuum estimates of the thermal Adler function
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Free massless quarks

t [fm] |c0 − I(t)|/I(t)

0.2 2% 0.2%
0.4 1% 0.04 %

I Î

Q [GeV]
∣∣c0 −D(Q2)

∣∣/D(Q2)

2.32 1% 0.03%
0.387 0.1% < 0.01%

D D̂

Table 3. Accuracy of the continuum estimates obtained by fitting with the ansatz c0 + c2a
2 the

lattice observables I(t), D(Q2) and their improved versions Î(t), D̂(Q2) defined in eqs. (3.15)
and (3.16). The accuracy is expressed in terms of the relative difference with the known continuum
values I(t) and D(Q2). The lattice data and the fit curves are shown in figure 4.

we choose the most accurate values

Dth
extrap.(Q = 2.32 GeV) = 2.694 , Dth

extrap.(Q = 387 MeV) = 0.2927 . (3.14)

3.4 Continuum limit of the improved vacuum observables

With the continuum estimates of eqs. (3.13) and (3.14), we build the improved vacuum
observables

Î(t) = Ith
extrap.(t) + [I(t)− Ith(t)] , (3.15)

D̂(Q2) = Dth
extrap.(Q2) + [D(Q2)−Dth(Q2)] . (3.16)

As in the case of the Nf = 2 QCD ensembles, we evaluate the observables on two zero-
temperature lattices, whose lattice spacings a ≈ {0.07, 0.05} fm are the same as those of the
Nt = 12, 16 thermal lattices. We obtain continuum estimates by fitting linearly in a2 the
lattice observables I(t), D(Q2) and their improved versions defined in eqs. (3.15) and (3.16).
The lattice data and the fit curves are shown in figure 4, while the accuracy of the resulting
continuum estimates, given in terms of the relative difference with the correct continuum
value, is reported in table 3. For the case of I(t = 0.2 fm), one order of magnitude in
accuracy is gained by using the improved lattice observables introduced in this paper.

In all cases considered here, the advantage of using the improved observables Î(t),
D̂(Q2) is rather clear as far as the accuracy of the resulting continuum estimates is concerned.
For the more ultraviolet scales t = 0.2 fm and Q = 2.32GeV there is the further benefit
of a significant reduction of the cutoff effects at finite lattice spacing, as compared to the
plain lattice observables I(t), D(Q2). As a final remark, we repeat that the logarithmic
discretization effects proportional to a2 log(1/a) cancel in Î(t) and D̂(Q2), due to the
subtraction between the vacuum and thermal lattice observables.

4 Non-perturbative test in Nf = 2 QCD

In this section, we perform a non-perturbative numerical study of the same observables
investigated in the free theory in the previous section, namely the (truncated) fourth
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T (MeV) L0/a a (fm) 6/g2
0 κ csw Nconf Nsrc

F7 ∼ 0 96 0.0658 5.3 0.136 38 1.909 52 482 16
250 12 311 32

O7 ∼ 0 128 0.049 5.5 0.136 71 1.751 50 305 16
250 16 148 16

W7 250 20 0.039 5.685 727 0.136 684 1.648 32 1566 16

X7 250 24 0.033 5.827 16 0.136 544 1.587 82 511 16

Table 4. Simulation parameters for the investigation with Nf = 2 non-perturbatively O(a)-improved
Wilson fermions. For the ensembles W7 and X7, the tuning to the line of constant physics defined
by the temperature and the quark mass was performed in ref. [22] using the Schrödinger functional
coupling computed in ref. [23].

moment of the current correlator and the Adler function at large virtuality. We make use of
the vacuum CLS ensembles with Nf = 2 non-perturbatively O(a)-improved Wilson fermions
and the Wilson gauge action with two lattice spacings of a ≈ 0.049 fm and a = 0.0658 fm.
Our study is performed at a fixed, common mass of the up and down quarks. For the
(zero-temperature) pion mass, we quote the values 268(3)MeV and 269(3)MeV respectively
for ensembles F7 and O7 [17]. The improved estimators were computed using ensembles on
the same line of constant physics set by the physical volume L and quark mass mq with a
temperature of T = 250MeV.

The aspect ratio for the finite-temperature ensembles was set to L0/L = 1/4, and for
the vacuum ensembles to L0/L = 2. The thermal ensembles were recently used in a study
of the photon emissivity of the quark-gluon plasma [18]. Two of them have common bare
parameters with the vacuum ensembles, while two additional ensembles with lattice spacings
down to a ' 0.033 fm allow the continuum limit of the thermal observable to be obtained
with reduced uncertainty. Further details on the ensembles are collected in table 4.3 The
scale was set for the F7 ensemble taking the lattice spacing from ref. [19], and assuming
a perfect line of constant physics with a ratio of lattice spacings of 3/4 between O7 and
F7. The assumed ratio of lattice spacings is consistent at the one-sigma level with the
values of the lattice spacings given in [19], as well as with those of ref. [17], in which they
are quoted with a 0.9% precision. Note that in contrast to the free massless theory, in the
present case the current is not fully O(a)-improved as the improvement coefficients are
not known non-perturbatively. Nevertheless, at high temperature, the O(a) discretization
effects due to the missing current improvement terms should be proportional to the quark
mass O(amq), owing to the restoration of chiral symmetry in the massless theory [20, 21].

The integrands for the two observables considered here are displayed in figure 1 for
the vacuum and thermal O7 ensembles. For both observables O = I,D, we employ linear
or quadratic fit ansätze and, for the thermal observable, additionally an ansatz where the

3It is worth recording that the configurations of the 24 × 963 X7 ensemble could be generated at the
cost of 1.9 million core hours on a compute cluster equipped with Intel Skylake processors and a 50GBit/s
Omnipath network.
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observable L0/a ansatz c0 (10−3fm2) c1 (10−3fm) c2

I {96, 128} L 1.263(7) −7.0(1) —
I {96, 128} Q 1.066(4) — −0.061(1)

I − Ith {12, 16, 96, 128} L 0.01(1) −0.4(2) —
I − Ith {12, 16, 96, 128} Q −0.006(6) — −0.004(1)
Ith {12, 16} Q 1.071(3) — −0.057(1)
Ith {16, 20, 24} Q + log 1.053(2) — −0.148(1)
I̊th {16, 20, 24} Q 1.035(2) — −0.010(1)

c0 c1 (fm−1) c2 (fm−2)

D {96, 128} L 3.57(3) −10.5(5) —
D {96, 128} Q 3.27(2) — −92(5)

D −Dth {12, 16, 96, 128} L 0.20(4) −1.7(6) —
D −Dth {12, 16, 96, 128} Q 0.15(2) — −15(6)
Dth {12, 16} Q 3.12(1) — −76(3)
Dth {16, 20, 24} Q + log 3.045(3) – −183(5)
D̊th {16, 20, 24} Q 3.062(8) – 2(5)

Table 5. Fit ansätze and results for the Nf = 2 observables for the truncated fourth moment of the
correlation function with t = 0.1974 fm, as well as for the Adler function at Q = 2.36GeV.

logarithm is included using the coefficient determined at leading order in the previous section

(L) c0 + c1a, (4.1)
(Q) c0 + c2a

2, (4.2)
(Q + log) c0 + a2[c2 + c̃O log(L0/a)]. (4.3)

For the thermal observables we also use the leading-order result of the previous section to
implement an additive perturbative improvement according to

O̊th(t, a) = Oth(t, a)−
[
Oth(t, a)−Oth(t)

]
LO
. (4.4)

Thus in all cases we perform two-parameter fits. We remark that whenever the vacuum
data is involved, we only have two lattice spacings in the present study, so that no χ2/d.o.f.
can be defined. This means that the validity of the fit ansatz cannot be tested; our goal is
rather to investigate the sensitivity of the final result to the ansatz used. We now discuss
these two observables in turn.

4.1 The short-distance contribution to Π′(Q2 = 0)

First we examine the estimate of the continuum limit of the truncated fourth moment of
the thermal correlator eq. (2.10), which is required to compute the improved estimator
eq. (2.11). In the left panel of figure 5, the integral up to t = L0/4 = 0.1974 fm is shown
as a function of the lattice spacing, for the thermal observable. While the (Q+log) fit
provides a satisfactory description of the data when the coarsest lattice spacing is omitted,
the perturbatively-improved observable has a much flatter behaviour toward the continuum.
The fit results are given in table 5.
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5-loop QCD

Figure 5. Left: continuum limit for the truncated fourth moment of the thermal correlator,
Ith(t = 0.1974 fm). The open symbols represent the uncorrected observable, the corresponding curve
showing the (Q+log) fit to the data points at the three finest lattice spacings. The filled symbols,
the three leftmost of which are fitted linearly in a2, represent the leading-order improved observable.
Right: continuum limit for the truncated fourth moment of the vacuum correlator, I(t = 0.1974 fm).
The open symbols represent the straightforward estimator I(t, a), while the filled ones represent
the estimator Î(t, a) of eq. (2.11). Both data sets are fitted linearly either in a or in a2. We also
estimated the observable I(t) using the perturbative five-loop vacuum spectral function, following
refs. [24, 25], depicted with the red point.

The continuum estimate from the leading-order improved extrapolation is used to
define the improved estimator of eq. (2.11), which is shown in the right panel of figure 5.
The original data are displayed as open symbols; they exhibit a large cutoff effect. For
illustration, two fit ansätze are employed, purely linear or purely quadratic in the lattice
spacing. The latter may seem more plausible here, given the short-distance nature of the
observable. Nevertheless, the severity of the cutoff effect leads to an unsatisfactory control
of the continuum limit using only vacuum correlators with the available state-of-the-art
lattice spacings. On the other hand, the thermal-improved estimator depicted with filled
symbols shows an almost flat continuum limit, which suggests the subtraction of the thermal
contribution also removes a significant amount of the cutoff effects, as expected. In this
case, the continuum result is much less sensitive to the choice of fit ansatz for taking the
continuum limit.

In order to quote a continuum estimate for the thermal-improved observable for
illustration, we choose to use the continuum estimate of the thermal observable obtained
with the LO-improvement, and for the correction the mean of the continuum estimates
obtained with the linear and quadratic fits to arrive at

I(t) = 1.035(9)stat(19)cont × 10−3 fm2, t = 0.1974 fm. (4.5)

The second, systematic error associated with taking the continuum limit is estimated as
the quadrature sum of (a) the difference between the (Q+log) extrapolation of Ith and
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Figure 6. Continuum limit for the ‘thermal’ Adler function Dth(Q2) (left) and the corresponding
vacuum observable D(Q2) (right) for a large virtuality Q = 2.36GeV. The various data symbols
and curves are entirely analogous to those in figure 5.

the (Q) extrapolation of I̊th, and (b) half the difference between the linear and quadratic
continuum fits of the correction term.

Finally, we compute the same observable in Nf = 2 massless perturbation theory based
on the spectral representation [11]

I(t) =
∫ ∞

2mπ
dω ω2 ρ(ω2) d4

dω4

(
1− e−ωt

ω

)
, (4.6)

where for ρ(ω2) we use the five-loop massless vacuum spectral function4 [24, 25]. We use
the renormalization scale µ = 2.4GeV and take Λ(2)

MS from the FLAG report [26]. The result
obtained is Ipert(t = 0.1974fm) = 1.059(−6)(1)× 10−3fm2, which is depicted with the filled
red point to the left in figure 5. The errors are estimated using the asymmetric uncertainty
in Λ(2)

MS. We find reasonable agreement between our final estimate and perturbation theory,
even though we have not investigated the systematic effects associated with finite quark
masses and residual non-perturbative effects, which might become relevant at the quoted
level of precision. Also, we have not included the scale-setting uncertainty in eq. (4.5); the
relative scale-setting uncertainty of I(t) is mainly that of t2/fm2, i.e. about 2%, whereas
I(t)/t2 only depends weakly on t around t = 0.2 fm.

4.2 The Adler function at large Q2

The continuum limit of the thermal Adler function for a large value of the virtuality
Q = 3πT = 2.36GeV is shown in figure 6, with corresponding fit results given in table 5.
As in the previous case, the leading-order improved observable shows better scaling to
the continuum limit, when the coarsest lattice spacing is not included. The original and

4Our convention for the normalization of the spectral functions is such that for the electromagnetic
current correlator, ρ(s) = R(s)/(12π2), with R(s) the ratio of cross-sections for e+e− → hadrons over
e+e− → µ+µ−.
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thermal-improved estimator are shown in the right-hand panel of figure 6, which likewise
strongly suggests the suppression of lattice artifacts in the difference. Once again, the
difficulty of performing a controlled continuum limit purely based on the vacuum correlators
at large virtualities is apparent even with fine lattice spacings available. For illustration, we
quote an estimate for the improved observable where the central value and systematic error
are determined in the same way as in the subsection before

D(Q2) = 3.24(4)stat(3)cont, Q = 2.36 GeV. (4.7)

For the five-loop perturbative result, using

D(Q2) = 12π2Q2
∫ ∞

4m2
π

dω2 ρ(ω2)
(ω2 +Q2)2 (4.8)

and the renormalization scale µ = Q, we found Dpert(Q2) = 3.24(−3)(1). Clearly, the
perturbative prediction is in good agreement with our non-perturbative estimate obtained
with the help of thermal correlators computed at very fine lattice spacings.

5 Summary and outlook

We have shown that a better control over the continuum limit for short-distance dominated
integrals over the vector correlator can be achieved by using thermal screening correlators
at particularly fine lattice spacings, and then correcting for the difference. For the Adler
function at a momentum Q = 2.36 GeV, we estimate that we achieved a reduction of the
systematic error due to the continuum limit by a factor of four, relative to the continuum
limit based on the available vacuum correlators only. This is significant, since taking the
continuum limit is responsible for one of the leading systematic errors on this quantity. The
cost of generating the thermal ensembles at small lattice spacings is modest in comparison to
the cost of the vacuum ensembles. The method can also be applied to the charm contribution,
which is even more short-range and therefore more susceptible to large cutoff effects.

For the anomalous magnetic moment of the muon, we find that, in the time-momentum
representation, performing a ‘naive’ linear extrapolation of the t ≤ 0.2 fm contribution
using lattice spacings down to 0.049 fm leads to an overestimate of about three percent
as compared to our best estimate based on lattice spacings down to 0.033 fm. Since the
muon (g− 2) is an observable which is much more infrared-weighted, the slightly inaccurate
continuum extrapolation of the short-distance contribution in the (u, d, s) quark sector only
amounts to a difference of about 0.4×10−10 on this quantity, which is an order of magnitude
smaller than the precision of the current most precise estimates [4, 27]. Nevertheless, we
have seen clear evidence that performing additively tree-level improvement reduces the
lattice artifacts in this short-distance regime and we thus recommend its use in future
calculations of the leading hadronic contribution to (g − 2)µ.

One may wonder, is it possible to calculate the hadronic contribution to the running
of the QED coupling up to the Z-boson mass in lattice QCD with controlled errors? The
methods and tests presented in this paper strongly suggest that it is indeed possible, and
we now sketch a promising strategy. Let ∆2Π(Q) ≡ Π(Q2) − Π(Q2/4) be the difference
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of vacuum polarisations corresponding to the running of α over the momentum interval
Q/2 to Q. Such an observable is very similar to the Adler function D(Q2), in that it is
dominated by Euclidean distances of order 1/Q. What we have seen above leads us to
conclude that ∆2Π(Q2) for a large Q� 1GeV can be computed at the one-percent level
at a temperature T ≈ Q/(8π) in terms of the screening vector correlator; we may write
this quantity ∆th

2 Π(Q;T ). The difference ∆th
2 Π(Q;T/2)−∆th

2 Π(Q;T ) can be evaluated by
performing simulations at temperatures differing by a factor of two with common lattice
spacing. See appendix E for an encouraging study at leading order in perturbation theory.
Parametrically, the difference between ∆2Π(Q) and ∆th

2 Π(Q;T ) is of order (πT/Q)4, and
thus ∆th

2 Π(Q;T/2) − ∆th
2 Π(Q;T ) already provides a sufficiently good estimate for that

difference. The latter can also be estimated using perturbation theory, since a high value of
Q is tied to a high value of T . Thus by varying the temperature by factors of two, we can
map out the running of α by factors of two in Q up to the Z-boson mass. Such a program
can be carried out on existing computing platforms, albeit at a significant investment, since
realizing the double hierarchy πT � Q� π/a typically requires the use of lattices of size
48 × 1923. If one resorts to such fine lattices, it is probably mandatory to address the
freezing of the topological charge, for instance by using open boundary conditions in the
x3-direction [28, 29].
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A Derivation of the OPE for the vector correlator

In this appendix we use the operator-product expansion (OPE) as a tool to study the static
screening correlator at short distance. To leading order in the expansion, the vacuum and
thermal correlation functions are identical. The following term, linear in the distance |x3|,
is in general non-vanishing for the thermal correlator. Here we ask ourselves if a suitable
linear combination can be made such that this contribution cancels out. We will show that
this is the case for the sum Gth

00(x3) +Gth
11(x3). However, this does not necessarily lead to a

better agreement between the vacuum and thermal correlation functions at short distance,
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due to the presence of constant terms which are not captured in the OPE picture. This
point will be illustrated in the following.

As we discussed in some detail the OPE-based expansion of the electromagnetic-current
correlator in a recent publication ([30]), we largely refer to that for setting the notation
and for the introduction of the main observables. More specifically, we make reference to
the first few paragraphs of section 3 for the definition of the Wilson coefficients and of
the tower of local twist-two operators, and to the beginning of section 3.1 for the operator
mixing in the dimension-four sector. Moreover, we refer to appendix B for the operator
expectation values in the theory of free quarks.

A.1 Leading-order Wilson coefficients

We start by considering the expansion of the electromagnetic-current correlator in momentum
space5

i

∫
d4x eiq·x 〈T{Jem

µ (x)Jem
ν (0)}〉 LO∼

∑
n=2,4,...

∑
f

cf ;µνµ1...µn(q) 〈Oµ1...µn
nf 〉 . (A.1)

To leading order in the gauge coupling, only the fermionic operators Oµ1...µn
nf (eq. (3.2) in

ref. [30]) contribute, and they are accompanied by the Wilson coefficients

cf ;µνµ1...µn (q) = 2Q2
f

(
−gµν + qµqν

q2

)
2n qµ1 . . . qµn

(Q2)n

+ 2Q2
f

(
gµµ1 −

qµqµ1

q2

)(
gνµ2 −

qνqµ2

q2

)
2n qµ3 . . . qµn

(Q2)n−1 ,
(A.2)

where Qf is the electric charge of the quark flavor f and Q2 = −q2. The contribution of
the dimension-four operator with flavor f is of the form

cf ;µνµ1µ2(q)〈Oµ1µ2
2f 〉 , (A.3)

where
Oµ1µ2

2f = i

4

(
ψ̄fγ

{µ1←→D µ2}ψf −
1
4g

µ1µ2ψ̄f
←→
D/ ψf

)
. (A.4)

Focusing now on the thermal correlation function, we express the tensor structure of the
operator expectation value as in ref. [30]

〈Oµ1µ2
2f 〉T = T 2

[
uµ1uµ2 − 1

4g
µ1µ2

]
〈O2f 〉T , (A.5)

where u is the four-velocity of the thermal medium. We fix q0 = q1 = q2 = 0, as appropriate
for the static screening correlator, and we choose the reference frame in which the thermal
medium is at rest by setting u = (1,0). Concentrating on the choices of indices µ = ν = 0, 1,
we obtain

cf ;00µ1µ2(0, 0, 0, q3)〈Oµ1µ2
2f 〉T = cf ;11µ1µ2(0, 0, 0, q3)〈Oµ1µ2

2f 〉T =
4Q2

fT
2

q2
3
〈O2f 〉T . (A.6)

5This derivation is made with Minkowskian signature. Only in the end we will make the connection to
Euclidean correlation functions.
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Fourier-transforming with respect to the variable q3 by using eq. (B1) in ref. [31], whose
infrared regularization results in the q3-independent term being zero,

∫ ∞
−∞

dq3
2π

e−iq3x3

q2
3

= Γ(−1/2)√
4π Γ(1)

(
x2

3
4

)1/2
= −|x3|

2 , (A.7)

we find for the coordinate-space version of eq. (A.6)∑
f

cf ;00µ1µ2(x3)〈Oµ1µ2
2f 〉T =

∑
f

cf ;11µ1µ2(x3)〈Oµ1µ2
2f 〉T = −2|x3|

(∑
f

Q2
f

)
T 2〈O2f 〉T . (A.8)

Finally, to get to the isovector vector-current correlators in Euclidean space-time we drop
the factor

∑
f Q

2
f and multiply by −1 the contribution to the correlator with two spatial

indices. We obtain the OPE prediction to leading order in the gauge coupling

Gth
00(x3) x3→0∼ G00(x3)− 2|x3|T 2〈O2f 〉T +O(|x3|3) (A.9)

Gth
11(x3) x3→0∼ G11(x3) + 2|x3|T 2〈O2f 〉T +O(|x3|3) . (A.10)

In appendix B we verify the correctness of the O(|x3|) term in the theory of free quarks.
We observe that the term linear in |x3| cancels out in the sum Gth

00(x3) + Gth
11(x3). This

fact is not sufficient to conclude that taking this combination improves the short-distance
agreement with the vacuum correlation function G00(x3) = G11(x3), because the OPE is not
able to capture constant terms in the small-x3 expansion, as those are not of short-distance
origin. The free-theory correlators provide a concrete example of this situation, as shown in
figure 7. The figure shows the difference between the thermal correlation functions Gth

00(x3),
Gth

11(x3) and their vacuum counterparts as a function of x3, between x3 = 0 and x3 ' 0.4/T .
The leading OPE term, as explicitly computed in appendix B, is also reported. Contrary to
the OPE prediction, the difference between the thermal and vacuum correlators starts from
a nonzero value in x3 = 0. However, once we subtract ∆G0 ≡ [Gth −G]x3=0, we find that
the truncated OPE provides indeed a good description of (Gth −G−∆G0) at small x3.

A.2 Next-to-leading-order Wilson coefficients

To higher order in perturbation theory, the mixing under renormalization with the gluonic
twist-two operators Oµ1...µn

ng (eq. (3.3) in ref. [30]) must be taken into account. To write
explicitly the contribution from the dimension-four operators to NLO precision, we follow
closely the sections 3 and 3.1 of ref. [30] and refer to those for any unexplained notation.
Going back to eq. (A.6), its NLO equivalent is obtained by making the substitution

〈O2f 〉T −→
1
2

1
16/3 +Nf

e+ p

T 2

+ 1
Nf (16/3 +Nf )

( log
(
q2

3/Λ2)
log(µ̃2/Λ2)

)γ(16
3
∑
f ′

〈O2f ′〉T −Nf 〈O2g〉T
)
,

(A.11)

where e and p are the energy density and the pressure of the thermal medium and µ̃

and Λ represent two energy scales, respectively the one at which the local operators are
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Figure 7. Difference between the thermal and vacuum correlation functions Gth
µµ(x3) −Gµµ(x3)

for µ = 0 (left) and µ = 1 (right) at small x3 in the free theory. The black dashed line represents
the OPE prediction for this quantity truncated at leading order in x3, and the red dotted line is
obtained by subtracting [Gth

µµ −Gµµ]x3=0 from the red curve.

renormalized and the one at which the one-loop renormalized coupling diverges. The power
γ is one of the eigenvalues of the anomalous-dimension matrix,

γ = −4
3

(16
3 +Nf

) 1
2b0

Nf=2
= −0.51 , (A.12)

where b0 = 11− 2
3Nf is the coefficient of the one-loop contribution to the beta function.

To get the final expression in position space, we are faced with the problem of computing
the Fourier transform

1
2π

∫ ∞
−∞

dq3 e
−iq3x3 log

(
q2

3/Λ2)γ
q2

3
. (A.13)

As in the case of eq. (A.7), the Fourier integral is divergent and a regularization procedure
is needed to correctly extract the asymptotic dependence on x3. We discuss this point in
detail in appendix C and report here the final result

log
(
q2

3/Λ2)γ
q2

3

coord. space−→ −|x3|
2 log

(
1/(x3Λ)2

)γ
. (A.14)

The OPE prediction to NLO in the gauge coupling reads

Gth
µµ(x3)−Gµµ(x3) NLO∼ sµ2|x3|T 2

{1
2

1
16/3+Nf

e+p

T 2

+ 1
Nf (16/3+Nf )

( log
(
1/(x3Λ)2)

log(µ̃2/Λ2)

)γ(16
3
∑
f ′

〈O2f ′〉T −Nf 〈O2g〉T
)}

+O(|x3|3) , (A.15)

where µ 6= 3 and sµ is a sign factor evaluating to 1 for µ = 1, 2 and to −1 for µ = 0. While
we did not discuss explicitly the case µ = 2 so far, we point out that the symmetries of the
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screening correlator constrain it to be equal to the case µ = 1. In the extreme x3 → 0 limit
the logarithmic contribution is subleading, and we find[

Gth
µµ(x3)−Gµµ(x3)

]
NLO

x3→0∼ sµ|x3|
e+ p

16/3 +Nf
, µ 6= 3 . (A.16)

As already pointed out in ref. [30] relative to the structure functions of the quark-gluon
plasma, the free-theory prediction of eqs. (A.9), (A.10) is not recovered in the short-distance
limit x3 → 0, contrary to the intuition coming from the property of asymptotic freedom.
As a consequence of the mixing between operators under renormalization, the free theory
represents here an extreme case which is not connected to the real interacting theory by an
expansion in powers of the QCD coupling.

B Test of the leading OPE prediction in the free theory

The expressions (A.9), (A.10) can be verified in the theory of free quarks. In this case, the
expectation value of the dimension-four operator reads (see appendix B of ref. [30])

〈O2f 〉free
T = 7π2T 2Nc

90 , (B.1)

where Nc is the number of colors. We can verify the OPE prediction by expanding the free
correlation function in powers of |x3|. To do this, we make use of eqs. (3.5) and (3.6) in
ref. [32], which give the free thermal vector correlator projected to Matsubara frequency
kn as a function of the spatial coordinates r = (x1, x2, x3). After identifying the relevant
terms in the expansion in powers of r, we project to zero momentum in the directions x1
and x2 to obtain the corresponding contribution to the screening correlator. In the static
sector kn = 0, we have

G
(kn=0)
00 (r) = −NcT

3

r2

( cosh r̄
r̄ sinh2 r̄

+ 1
r̄2 sinh r̄

)
, (B.2)

and

G
(kn=0)
11 (r) = NcT

3

r2

{
x2

1
r2

[ cosh r̄
r̄ sinh2 r̄

+ 1
r̄2 sinh r̄

]
−
(

1− x2
1
r2

)[ cosh r̄
r̄ sinh2 r̄

+ 1
r̄2 sinh r̄ + 1

2 sinh r̄ + 1
sinh3 r̄

]}
,

(B.3)

where r̄ ≡ 2πTr and r ≡ |r|. We start by expanding eq. (B.2) in powers of the spatial
coordinates. In the OPE picture, we expect a contribution from the dimension-four operator
of the form

c̃µ1µ2〈O
µ1µ2
2f 〉

r
, (B.4)

where c̃µ1µ2 is a dimensionless coefficient. Therefore we are interested in the term propor-
tional to 1/r in the expansion

G
(kn=0)
00 (r) = −NcT

4

r

2π
r̄4

(
2− 7

180 r̄
4 +O(r̄6)

)
, (B.5)
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which is
7πNcT

4

90
1
r
. (B.6)

To project to zero momentum in the directions x1 and x2, we make use of the following
equation∫ ∞

−∞

dx1dx2
r

= 2π lim
L→∞

∫ L

0

ρ dρ√
ρ2 + x2

3

= 2π lim
L→∞

(
−|x3|+

√
L2 + x2

3

)
= −2π|x3|+ proportional to spatial extent, independent of x3 .

(B.7)

To conclude, the linear term in the expansion of the correlator Gth
00 (x3) in powers of |x3| is

given by

− 7π2NcT
4

45 |x3| , (B.8)

and it is in agreement with the OPE prediction −2|x3|T 2〈O2f 〉free
T .

We now repeat the same procedure for the correlator (B.3). In this case, the contribution
from the dimension-four operator is of the form(

c̃µ1µ2

r
+ x2

1
r3 d̃µ1µ2

)
〈Oµ1µ2

2f 〉 , (B.9)

where c̃µ1µ2 and d̃µ1µ2 are dimensionless coefficients. From the expansion

G
(kn=0)
11 (r) = NcT

3
{
x2

1
r3

2πT
r̄4

[
2− 7

180 r̄
4 +O(r̄6)

]
−
(1
r
− x2

1
r3

)2πT
r̄4

[
3 + 7

360 r̄
4 +O(r̄6)

]}
,

(B.10)

we see that the terms proportional to 1/r and x2
1/r

3 are given by

− 7πNcT
4

180

(1
r

+ x2
1
r3

)
. (B.11)

We project to zero momentum in the directions x1 and x2 by applying the following
procedure∫ ∞
−∞

dx1dx2

(1
r

+ x2
1
r3

)
= 2π lim

L→∞

(∫ L

0
dρ ρ√

ρ2 + x2
3

+ 1
2

∫ L

0
dρ ρ3

(ρ2 + x2
3)

3
2

)

= 2π lim
L→∞

(
−|x3|+

√
L2 + x2

3 + 1
2
L2 + 2x2

3 − 2|x3|
√
L2 + x2

3√
L2 + x2

3

)
= −4π|x3|+ proportional to spatial extent, independent of x3 .

(B.12)

To conclude, the linear term in the expansion of Gth
11(x3) in powers of |x3| is

7π2NcT
4

45 |x3| (B.13)

and it agrees with the OPE prediction 2|x3|T 2〈O2f 〉free
T .
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C Fourier transform of log(q2/Λ2)γ/q2

The authors of ref. [33] study the asymptotic behaviour for q →∞ of the one-sided Fourier
transform

F (q) =
∫ ∞

0
dx eiqxf(x) (C.1)

of a function that has logarithmic singularities for x→ 0+

f(x) ∼
∞∑
m=0

cmx
αm−1(− log x)βm , (C.2)

where αm → +∞ as m → ∞ with Reαm+1 ≥ Reαm, and the βm are arbitrary complex
numbers. The main result is that for q →∞ holds

F (q) =
M−1∑
m=0

cmJ(αm, βm, q) + o(q−n) (C.3)

where M is a positive integer such that ReαM−1 ≤ n < ReαM and

J(α, β, q) =
∫ ∞eiθ

0
dx eiqxxα−1(− log x)β ∼ eαπi/2

qα

∞∑
r=0

cr(α, β)(log q)β−r, (C.4)

with the cr(α, β) given by

cr(α, β) = (−1)r
(
β

r

)
r∑

k=0

(
r

k

)
Γ(k)(α)

(
πi

2

)r−k
. (C.5)

Setting M = 1, α0 = 2 and β0 = γ, and using c0(2, γ) = 1 we obtain

f(x) x→0+
∼ x(− log x)γ ⇒ F (q) q→∞∼ −(log q)γ

q2

[
1 +

∞∑
r=1

cr(2, γ)(log q)−r
]

+ o(q−2).

(C.6)
An arbitrary number of subleading (log q)r terms in the asymptotic behaviour of F (q) can
be removed with appropriately chosen αm and βm. In particular, we found that setting
αm = α, βm = γ −m and

dm(α, γ) = (−1)r
(
γ

m

)
m∑
k=0

(
m

k

)
Γ(α) dk

dαk
1

Γ(α)

(
π

2i

)m−k
(C.7)

we obtain

f(x) x→0+
∼

∞∑
m=0

dm(α, γ)xα−1(− log x)γ−m ⇒ F (q) q→∞∼ eαπi/2

qα
(log q)γ+o(q−α), (C.8)

or, in the α = 2 case,

f(x) x→0+
∼

∞∑
m=0

dm(2, γ)x(− log x)γ−m ⇒ F (q) q→∞∼ −(log q)γ

q2 + o(q−2). (C.9)
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From this it is easy to show that for γ ∈ R a function with the asymptotic behaviour

(log q2/Λ2)γ

q2 for q →∞ (C.10)

is the two-sided Fourier transform of a function that goes like

− |x|2

(
log 1

(|x|Λ)2

)γ [
1 +

∞∑
m=1

Re dm(2, γ)
(1

2 log 1
(|x|Λ)2

)−m]
for x→ 0. (C.11)

The first coefficients in the sum in the r.h.s. evaluates to

Re d1(2, γ) = 2(1− γE)γ ≈ 0.422 784γ, (C.12)
Re d2(2, γ) ≈ −1.466 79γ(γ − 1), (C.13)
Re d3(2, γ) ≈ −0.712 68γ(γ − 1)(γ − 2), (C.14)
Re d3(2, γ) ≈ 0.516 685γ(γ − 1)(γ − 2)(γ − 3). (C.15)

D Details on the lattice free-theory computation

In this appendix we collect some details on the free-theory computation. In the theory
of non-interacting massless Wilson quarks, defined on a spatially-infinite lattice, the zero-
temperature quark propagator can be expressed as

〈ψf (x) ψ̄f (y)〉 =
∫ π

a

−π
a

d3p

(2π)3
e−ωp|x3−y3|+ip·(x−y)

D (p) ×(
sgn (x3 − y3) 1

a
sinh (aωp) γ3 − iγ · p̊+ C (p) + δx3,y3

1
a

sinh (aωp)
)
,

(D.1)

where

p̊µ = 1
a

sin (apµ) , p̂µ = 2
a

sin
(
apµ
2

)
, (D.2)

A (p) = 1 + 1
2a

2p̂ 2 , B(p) = p̂ 2 + 1
2a

2∑
k<l

p̂2
kp̂

2
l , C(p) = a

2

(
p̂ 2 − B(p)

A(p)

)
, (D.3)

D(p) =
√
B(p)

(
4A(p) + a2B(p)

)
= 2
a
A(p) sinh(aωp) . (D.4)

The sign function in eq. (D.1) evaluates to zero when its argument is zero, and the vector p
has three components denoted by (p0, p1, p2). Similarly, γ = (γ0, γ1, γ2) and x = (x0, x1, x2).
At finite temperature T , the thermal propagator 〈ψf (x)ψ̄f (y)〉T can be obtained from
eq. (D.1) by assigning to p0 discrete values corresponding to the fermionic Matsubara
frequencies p0 = (2n+ 1)πT , and by making the substitution

∫ π
a

−π
a

dp0
2π → T

Nt−1∑
n=0

, (D.5)
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where Nt = 1/(aT ) is the number of lattice points in the Euclidean-time direction. With the
propagators at hand, we have all the elements to compute the correlation functions (2.12)
and (2.15) in the massless free theory. In the vacuum, and for µ = ν 6= 3, we have

Gµµ(x3) µ 6=3= 4Nc

∫ π
a

−π
a

d3p

(2π)3
e−2ωp|x3|

D(p)2

[
2p̊µ sin(apµ)

(
C(p) + δx3,0

1
a

sinh(aωp)
)

− cos(apµ)
(

sgn(x3)2 1
a2 sinh2(aωp)− 2p̊2

µ + p̊2

+
(
C(p) + δx3,0

1
a

sinh(aωp)
)2)]

,

(D.6)

where Nc represents the number of colors. In the vacuum and in infinite volume there is no
difference between projecting to zero momentum in the directions (x1, x2, x3) or (x0, x1, x2).
In this appendix we choose the second option, in order to keep a closer analogy with the
thermal screening correlator. The thermal correlation function Gth

µµ(x3), with µ 6= 3, can
be obtained starting from eq. (D.6) and exchanging the integral over p0 with a sum over
fermionic Matsubara modes, as in eq. (D.5).

We consider the fourth-moment observable I(t) as defined in eq. (2.16). In the limit
a→ 0 its integrand reads

x4
3 G(x3) = x4

3

∫ π
a

−π
a

d3p

(2π)3 e
−2p|x3|

[
f̂0,0(p̂) + a2(p2f̂2,0(p̂) + |x3|p3f̂2,1(p̂)

)
+O(a4)

]
, (D.7)

where

f̂0,0(p̂) = 2Nc

(
1− p2

1
p2

)
, (D.8)

f̂2,0(p̂) = −2Nc

[
1− 1

2
p2

1
p2

(
1− 2

3
p4

0 + p4
1 + p4

2
p4 + 5

3
p2

1
p2

)]
, (D.9)

f̂2,1(p̂) = Nc
2
3

(
1− p2

1
p2

)(
1 + p4

0 + p4
1 + p4

2
p4

)
. (D.10)

As before we have p = (p0, p1, p2), and we introduced the notation p ≡ |p|. We observe that
a generic term of the expansion within square brackets in eq. (D.7) can be expressed as

an|x3|mpn+mf̂n,m(p̂) , (D.11)

with n = 2, 4, . . . , m ≥ 0 and where the dimensionless function f̂n,m(p̂) contains the
dependence on the orientation of the vector p (p̂ ≡ p/p).

E Analysis of ∆2Π(Q2) in the theory of free quarks

As an outlook towards future applications, a strategy to compute the hadronic contribution
to the running of the electromagnetic coupling up to the Z mass is outlined in section 5. In
this appendix, we test the core of this strategy in the theory of massless free quarks, whose
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lattice formulation is described in detail in section 3.1 and in appendix D. The observable
under analysis is

∆2Π(Q2) ≡ Π(Q2)−Π(Q2/4)

=
∫ ∞

0
dx3G(x3) 4

Q2

[
4 sin2

(
Qx3

4

)
− sin2

(
Qx3

2

)]
,

(E.1)

where Π(Q2) is the hadronic vacuum polarization and the correlation function G(x3) is
defined in eq. (2.4). The thermal equivalents at two different temperatures ∆th

2 Π(Q2;T ),
∆th

2 Π(Q2;T/2) are also considered. The temperature is fixed to T = Q/(8π). In view of
computing this observable on the lattice, an upper cut xcut

3 = 2/T is set in the integral of
eq. (E.1). The lattice observables are denoted by ∆2Π(Q2), ∆th

2 Π(Q2;T ). As in the analysis
presented in section 3, we fix the physical value of the temperature to T = 246.25MeV,
which is close to the temperature of the QCD ensembles considered in this study, and
which assigns to the lattice Euclidean-time direction the physical extent 1/T = 0.8 fm. As
a consequence, Q = 8πT ' 6.2GeV.

The first step consists in obtaining a continuum estimate of the thermal observable
∆2Π(Q2;T ). With this goal, we consider four lattices with temperature T and with
Nt = 24, 32, 40, 48 lattice sites in the Euclidean-time direction. The temperature and the
lattice spacing are related by T = 1/(aNt). With this setup, and making good use of the
knowledge about the logarithmic lattice artifacts (see section 3.2), we obtain a continuum
estimate differing from the correct continuum value by only 0.1%. The lattice data and the
fit curves are shown in the left panel of figure 8 together with the correct continuum value,
the accuracy of the resulting continuum estimates is reported in table 6. The prefactor of
the O(a2 log(1/a)) cutoff effect, which we denote by c̃∆2Π, can be computed by observing
that the short-distance limit of the integration kernel is

4
Q2

[
4 sin2

(
Qx3

4

)
− sin2

(
Qx3

2

)]
x3→0∼ Q2

16 x
4
3 , (E.2)

which implies

c̃∆2Π = Q2

16 c̃I = 7Q2

320π2 . (E.3)

The value of c̃I is given in eq. (3.9).
The difference between the thermal observable ∆th

2 Π(Q2;T ) and its vacuum counterpart
is of about one percent. To correct for this bias, we add a continuum estimate of the
difference ∆th

2 Π(Q2;T/2) − ∆th
2 Π(Q2;T ). Within the desired precision, this is a good-

enough approximation of the difference between the vacuum observable and ∆th
2 Π(Q2;T ),

and it has the advantage of being cheaper to compute at equal lattice spacing. Quantitatively,
the continuum values ∆2Π(Q2) and ∆th

2 Π(Q2;T/2) differ by only one permille. We consider
two lattices with temperature T and Nt = 20, 24 points in the Euclidean-time direction
and their equivalents with temperature T/2, same lattice spacing and double the points in
the compact direction. Extrapolating linearly in a2 we obtain a 0.2%-precise estimate of
the continuum value ∆th

2 Π(Q2;T/2)−∆th
2 Π(Q2;T ). Considering only the finest available

lattice spacing, corresponding to Nt = 24 for the lattice with temperature T and N (T/2)
t =
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∣∣∣c0 −∆th
2 Π

∣∣∣/∆th
2 Π c̃ [fm−2] ansatz

0.8% 0.9% — c0 + c2a
2

0.7% 0.1 % — c0 + c2a
2 + c4a

4

0.6% — 0.29 c0 + a2[c2 + c̃ log(1/(Ta))]
0.1% — 1.6 c0 + a2[c2 + c̃ log(1/(Ta))] + c4a

4

plain subtr.

Table 6. Accuracy of the continuum extrapolation of the thermal quantity ∆th
2 Π(Q2;T ),

measured against the correct continuum value. The label “plain” refers to fitting the plain
lattice observable, while for the case “subtr.” the logarithmic lattice artifact is subtracted
as ∆th

2 Π(Q2;T ) − c̃∆2Πa
2 log(1/(Ta)). For the choice of scales made here T = 246.25MeV,

Q = 8πT ' 6.2GeV, we have c̃∆2Π ' 2.2 fm−2 (see eq. (E.3)). The lattice data and the fit
curves are shown in figure 8, left panel.

24324048
Nt

0.0002 0.0004 0.0006 0.0008 0.0010
a2 [fm2]

0.024

0.026

0.028

0.030

0.032

0.034

Free massless quarks

2 th(Q2; T)
2 th(Q2; T) c 2 a2log(1/(Ta))

c0 + c2a2

c0 + c2a2 + c4a4

c0 + a2[c2 + clog(1/(Ta))]
c0 + a2[c2 + clog(1/(Ta))] + c4a4

continuum

2024
Nt

0.00020 0.00055 0.00090 0.00125 0.00160
a2 [fm2]

4.15

4.20

4.25

4.30

4.35

4.40

4.45

4.50

4.55

Free massless quarks

continuum
[ th

2 (Q2; T/2) th
2 (Q2; T)] × 104

Figure 8. Left: continuum extrapolation of the thermal observable ∆th
2 Π(Q2;T ), with T =

246.25MeV and Q = 8πT ' 6.2GeV. The O(a2 log(1/a)) lattice artifact is either included in the
fit ansatz or explicitly subtracted by using the known prefactor c̃∆2Π (E.3). The accuracy of the
resulting continuum estimates is reported in table 6. Right: continuum extrapolation of the bias
correction [∆th

2 Π(Q2;T/2)−∆th
2 Π(Q2;T )], together with its known continuum value. The fit ansatz

is linear in a2.

2Nt = 48 for the temperature-T/2 one, the difference between the lattice observable
∆th

2 Π(Q2;T/2)−∆th
2 Π(Q2;T ) and its continuum value is of about 7%. The lattice data,

the fit curve and the continuum value of the observable are shown in the right panel
of figure 8.

To conclude, the free-theory analysis indicates that the strategy outlined in section 5
to compute the hadronic contribution to the running of αem up to large energy scales
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(compared to the hadronic scales easily accessible on the lattice) is feasible with the setup
and lattice sizes suggested there. The idea is to study the difference of hadronic vacuum
polarizations ∆2Π(Q2) between the scales Q and Q/2 making use of thermal lattices with
temperatures T ≈ Q/(8π) and T/2. Having fixed T = 246.25MeV and Q = 8πT ' 6.2GeV,
and having considered lattices with at the most 48 points in the Euclidean-time direction, we
obtained a 0.1%-precise estimate of the thermal quantity ∆th

2 Π(Q2;T ). The bias correction
∆th

2 Π(Q2;T/2)−∆th
2 Π(Q2;T ) has been obtained with a precision of 0.2% by extrapolating

two lattice points and of 7% with a single lattice spacing.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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