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Abstract: As the prevalence and sophistication of cyber threats continue to increase, the development
of robust vulnerability detection techniques becomes paramount in ensuring the security of computer
systems. Neural models have demonstrated significant potential in identifying vulnerabilities; how-
ever, they are not immune to adversarial attacks. This paper presents a set of evolutionary techniques
for generating adversarial instances to enhance the resilience of neural models used for vulnerability
detection. The proposed approaches leverage an evolution strategy (ES) algorithm that utilizes as the
fitness function the output of the neural network to deceive. By starting from existing instances, the
algorithm evolves individuals, represented by source code snippets, by applying semantic-preserving
transformations, while utilizing the fitness to invert their original classification. This iterative process
facilitates the generation of adversarial instances that can mislead the vulnerability detection models
while maintaining the original behavior of the source code. The significance of this research lies in
its contribution to the field of cybersecurity by addressing the need for enhanced resilience against
adversarial attacks in vulnerability detection models. The evolutionary approach provides a system-
atic framework for generating adversarial instances, allowing for the identification and mitigation of
weaknesses in AI classifiers.

Keywords: evolutionary algorithms; deep learning; adversarial examples; evolution strategies;
vulnerability detection; source code analysis

1. Introduction

When vulnerability assessment is AI-assisted, the trust in the system we use to classify
source code becomes critical. In this work, we focus on a method to evaluate the risks com-
ing from possible adversarial attacks, that is, on the possibility of adjusting input instances
to the system in a way that makes them wrongly classified by our checking system.

Moreover, we are not interested in just showing that adversarial instances do exist
and can be automatically generated, but we also try to find hints about what in the input
instances induces mistakes in the behavior of the neural network being used. Neural
models are mostly black box systems with respect to how their internal dynamics lead to
the eventual classification of an instance; therefore, our second goal is to help look for ways
to make the AI systems that are used more secure.

The overall approach for generating adversarial instances against a neural classifier is
well known and developed in domains where the input data consist of real-valued vectors.
In that setting, the enabling feature is that deceiving instances can be found by moving in
the input space along the gradient of the classification probability that the neural system
is outputting [1]. Our focus, instead, is on the task of checking source code snippets for
vulnerabilities, and therefore, a different way of exploring the discrete-valued input space
is in order. Our choice is an evolutionary optimization of the output of the network. For
instance, our system will try to minimize the output when it represents, according to the
attacked neural classifier, the probability of having a vulnerability in the input source code,
even when it is actually a malicious snippet.
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Moving more to a defending role, from the same process of generating adversarial
instances we will derive evidence of what could possibly have a role in deceiving the
classifier. Previous works [2], for example, pointed out how the natural elements that
occur in the source code have crucial effects in affecting the prediction of a neural network.
Therefore, the attack we propose manipulates code snippets by changing identifiers in it,
allowing us to extract statistics about which terms are more relevant in confusing the neural
network. Such data will point to biases affecting the classification process inside the neural
network, and this could finally suggest more robust ways of training it.

Along these research lines, we advance with the following novel contributions:

• Definition of an evolutionary-based method to look for adversarial modifications of
source code;

• Evaluation of the proposed deceiving method on a state-of-the-art neural model
trained on vulnerability detection;

• Investigation on which syntactical elements, related to identifiers in source code, are
most impacting the decisions of the classifier.

In the rest of the paper, Section 2 presents a brief literature review on artificial intel-
ligence for vulnerability detection and adversarial attacks, Section 3 describes the back-
ground and the threat model, Section 4 details the performed experiments, Section 5
discusses the results, and Section 6 concludes the work and outlines possible future
research directions.

2. Related Work

This section provides a summary of the scientific production related to the topics
involved in this study. We first present an overview of the state-of-the-art models for vul-
nerability detection, with a focus on models based on artificial intelligence. We then move
to an adversarial perspective, and discuss some relevant literature aimed at studying their
decision process, with the goal of producing adversarial examples able to deceive them.

2.1. AI-Based Software Vulnerability Detection

In recent years, in consequence of the success that machine learning has achieved
in a wide range of domains, systems based on deep learning are also becoming popular
for dealing with source code [3,4] and, more in general, with software [5]. This trend is
also becoming evident in the field of cybersecurity where, besides the standard analysis
techniques for detecting malware and vulnerabilities [6,7], techniques based on artificial
intelligence are also becoming widespread and successful.

In general, the detection of software vulnerabilities has a key role in the design of
secure computing systems. One of the aspects that contribute to the security of a system
is the quality of the underlying program source code. For this reason, many studies have
been devised to assess the reliability of the source code. Among the many examples that
can be mentioned, the embedding proposed in [8] is used to identify C functions that are
vulnerable to known weaknesses, while Fang et al. [9] propose a Long Short-Term Memory
network for detecting vulnerabilities in PHP programs, and VulDeePecker [10] and its
extension SySeVR [11] are intended to be complete deep learning-based frameworks for
identifying weaknesses in C programs.

Despite the growing interest in applying deep learning techniques for automated
vulnerability detection and the very good accuracy that such systems prove to have, recent
research indicates that their performance drastically drops when they are used in real-
world scenarios [12]. This failure is often related to the fact that state-of-the-art models, in
general, suffer from issues with the training data, such as data duplication and unrealistic
distribution of vulnerable classes. Other problems are related to some design choices, for
instance, the common token-based representations, that lead the models to learn features
that are not directly related to specific vulnerabilities, but to unrelated artifacts from the
dataset, such as identifiers of functions and variables.
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2.2. Classification Errors and Adversarial Attacks

Machine learning models, and artificial neural networks in particular, when trained
on classification tasks, generally classify instances through a non-linear mapping of input
features to output class probabilities [13]. The internal weights, which are learned during
the training phase, shape the mapping function, and classification errors occur when the
domain of this function, i.e., the input space, has some regions that lead to unexpected or
wrong outputs.

This point is of great interest in the literature since, depending on the context and
on the application domain, a wrong prediction can lead to critical consequences. Karimi
and Derr [14], for instance, present a study on the generation of input instances near the
decision boundaries, and also discuss how to move far from them, to explore how the
behavior of a network changes when moving through the input space. In general, the
problem of studying the shape of the learned function is often related to the search of
adversarial examples, namely, of input instances that are incorrectly classified by the model.
A key element in this setting is that adversarial instances are frequently slightly different
from instances which instead are correctly classified by the same model, meaning that,
in general, it is difficult to find, in the input space, regions in which all the instances are
correctly classified. This is particularly evident in the field of image processing: in [15],
for example, adversarial instances are sought in regions around positive instances, while
in [16] Su et al. present an evolutionary approach to perform the so-called one pixel attack,
showing that changes in a single pixel are sufficient (under certain conditions) to mislead
a model.

In classical settings such as that of images, where input instances are represented as
matrices of pixels, adversarial examples are usually found by examining the gradient of
the cost function of the given backpropagation network [17]. In the domain of source code
processing, however, gradient-based methods are usually not effective, since the objects to
analyze are points in a discrete space and thus need a transformation to be used as input
for a neural model. The main problem is that, in general, such transformation from the
object to a numeric input vector is not invertible, and thus operating directly on the input
features is not convenient. The solution is typically to perform some semantic-preserving
perturbations directly on the source code, so as to be able to explore the neighborhood of a
point, represented as a code snippet. There exist many possible approaches to enact this
kind of alteration, such as the introduction of unused variables or the renaming of some
identifiers [18,19], or even more sophisticated ones, e.g., by using different control flow
structures or by changing the API usage [20].

Finally, it is important to note that, in dealing with source code instances, evolutionary
algorithms are particularly suitable, since both allow the searching of the input space led
by an evolutionary pressure, and the use, as the fitness function, of the numerical output of
the model being examined. In this specific domain, this idea has been leveraged to attack
a vulnerability detection system [21], and also to determine the syntactic features [22] or
the high-level concepts [23,24] that mostly affect the decision process of neural source
code classifiers.

3. Evolution Strategies for Adversarial Attacks

This study proposes to assess the robustness of a classification system by producing,
with evolutionary techniques, program instances that mislead a system trained in the
detection of software vulnerabilities. In other words, the goal is to synthesize vulnerable
programs that will be classified as safe by the system, or vice versa. A possible application
scenario is shown in Figure 1, in which many developers make commits in a shared
repository and one of them is malicious and wants to insert a backdoor. In an unsafe setting
(left), the backdoor can be easily placed. In the setting reported in the right image, instead,
a security check is installed, and the malicious code should be blocked. The goal of the
attacker is thus to deceive the check and to push malicious code that is not detected. Given
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the described context, we define the following threat model, which is compliant with the
approach presented by Papernot et al. [25]:

• The attacker can only act after the training phase;
• The attacker only knows the output of the classifier, expressed as a probability;
• The system is a black-box: the internal structure and the parameters are not visible;
• The system acts as an oracle for the attacker, i.e., the attacker can ask for the classifica-

tion of chosen instances;
• The attacker has the goal of letting the system accept vulnerable code as safe;
• The attacker can alter the input without affecting its original functionality.

Figure 1. Possible attack scenario.

The founding idea of this work is to design a method for adding some kind of noise to
C functions, without altering their original functionality, to produce instances able to lead
the network to a wrong classification decision. The input space is explored by means of
an evolution strategy (ES) algorithm, which is an evolutionary technique that uses only
mutations (and not crossover). We consider, as the fitness function, the numerical output
of the network, and this insight allows us to efficiently explore the behavior of a neural
classifier by leveraging an evolutionary pressure instead of randomly sampling its input
space. We finally show how the proposed approaches can be effectively applied to fool
a state-of-the-art network [26] for vulnerability detection. All the experimental details
that follow are given for C language, but the method and its light syntactical changes we
operate on source code can be easily ported to other programming languages.

4. Experimental Settings

In this section, we present an overview of the methodology employed and the experi-
mental setup. Specifically, we describe the model chosen, the evolutionary algorithm, and
the mutation operators.

NEURAL MODEL ARCHITECTURE

The model used as a benchmark to attack is a Convolutional Neural Network (CNN)
proposed by Russell et al. [26] for source code security assessment. The network architecture
consists of multiple layers starting with an embedding layer that maps a complex and
high-dimensional data structure into a simpler, lower-dimensional space that can be easily
processed by a machine learning algorithm. This is followed by a 1D-convolutional layer
which applies filters to capture local patterns in the input data; then, the pooling layer is
employed to reduce the spatial dimensions of the input volume while retaining its depth.
The model includes two fully connected hidden layers with dropout regularization and
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the output layer is the sigmoid activation function. An instance is classified as positive
(vulnerable) if the output value exceeds 0.5 and as negative (non-vulnerable) otherwise.

DATASET PREPROCESSING

The dataset used is VDISC (https://osf.io/d45bw/, accessed on July 2023) (Vulnera-
bility Detection in Source Code of C and C++ languages), forming 1.27 million functions
of source code extracted from open-source repositories. The dataset is divided into three
portions, following an 80/10/10 ratio for training, validation, and testing, respectively. The
network was trained using supervised learning to recognize vulnerabilities of type CWE-
119 (https://cwe.mitre.org/, accessed on July 2023), referring to the “Improper Restriction
of Operations within the Bounds of a Memory Buffer”. The final test set used for this work
consists of 1133 elements that are preprocessed to enable data parsing. During this pre-
processing phase, the test set is cleaned of partial functions and syntax errors. For parsing
the C language, the chosen parser is PycParser (https://github.com/eliben/pycparser,
accessed on July 2023), which supports the C99 language standard (ISO/IEC 9899), as well
as some features from C11 and a few GCC extensions.

4.1. Evolution Strategy

An Evolution Strategy (ES) algorithm, specifically, the (µ, λ) variant [27], is employed.
µ represents the number of parents selected in each iteration and λ is the number of children
generated by the parents. (µ, λ) is the version of ES where children replace parents, i.e.,
where the best µ individuals of a population are mutated λ/µ times for composing the
new generation. The fitness value during the evolution of individuals is measured as the
output of the model to deceive and, dealing with binary classifiers, it is represented as
a value that ranges from 0 to 1, where the values greater than 0.5 refer to the positive
class, namely, to the instances that are classified as vulnerable. The goal is to invert the
prediction of vulnerable functions and thus to let them be classified as safe, after having
applied semantic-preserving mutations. This turns into lowering the probability below the
threshold of 0.5. Further, to ensure the attainment of significantly low probabilities, namely,
probabilities that are far from the decision boundary, a stronger threshold of 0.1 is set to be
reached. By applying the mutation operators and the selection mechanisms that will be
detailed in Section 4.2, the algorithm aims to optimize the fitness values of the individuals
and reach the desired classification outcome.

The genome refers to the complete set of genes that encode an individual’s traits
or characteristics. In this context, the genome, shown in Figure 2, is developed as a
tuple where each slot contains an identifier of the analyzed individual. It provides a
representation of the function (i.e., individual) to which mutations can be applied. By
manipulating the genome, the ES algorithm can introduce random mutations and generate
new variations of the original function. From any genome, the corresponding phenotype,
that is, the corresponding source code individual, can be built from the original function
identified by the unique name in the first element of the genome, by substituting in it all
the identifiers according to the current name table described by the genome. To create a
coherent initial population of individuals starting from a single individual of the dataset,
each individual (i.e., function) with known ground truth (vulnerable) is parsed individually.
For each individual of the dataset, a duplication strategy is employed, the individual
(i.e., function) is duplicated, and the duplicate is given a different name identifier. By
changing the name of the duplicated function, the population is enriched with variations
while still retaining the original behavior of the function. The duplication, the renaming
process, and the subsequent evolution and optimization through the ES algorithm add
diversity to the population and enhance its representativeness. This step is repeated for
each individual within the dataset, as shown in Algorithm 1. It details the phase of “create
initial population”, and it is called by the ES algorithm, Algorithm 2.

https://osf.io/d45bw/
https://cwe.mitre.org/
https://github.com/eliben/pycparser
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Figure 2. Genome structure. The first position refers to the function name, while the others (ID1,
ID2, . . . , IDn) are the identifiers, that is, the names assigned to entities such as variables, functions,
and structures.

Algorithm 1 Create First Population

1: input : D = LOADDATASET() . i.e., individuals
2: output : P = {ip1, ..., ipn} . ipi: initial population of each individual

3: P← {} . initialize empty array
4: for all p ∈ D do
5: pop← {}
6: p′ ← COPY(p) . duplicate individual
7: Change the function identifier of p′

8: Append p′ to pop . population of the individual p
9: Append pop to P . set of populations, one for each individual

10: end for
11: return P

Algorithm 2 Evolution Strategy (µ, λ)

1: µ← number of functions selected . parents
2: λ← number of functions generated . children

3: P← pop ∈ CREATEFIRSTPOPULATION() . see Algorithm 1
4: Best← � . initialize with a default value
5: repeat
6: for all pi ∈ P do
7: if Best = � or FITNESS(pi) ≤ FITNESS(Best) then
8: Best← pi
9: end if

10: end for
11: Q← the µ individuals in P with best fitness
12: P← {} . Join in (µ, λ)
13: for all qj ∈ Q do
14: for γ/µ times do
15: P← P

⋃
MUTATE(COPY(qj)) . mutation operator M1 or M2

16: end for
17: end for
18: until stopping criteria . Section 4.1
19: return Best

The ES algorithm is applied by using two different mutation operators, M1 and M2,
which will be defined in Section 4.2, and four different mutation probabilities, namely, 0.01,
0.10, 0.15, and 0.25. These mutation probabilities determine the probability of introduc-
ing changes in the individuals during each iteration of the ES algorithm, as detailed in
Algorithm 2. Each experiment is repeated three times to guarantee the consistency of the
data between runs. A total of 200 generations is chosen as the number of iterations for the
ES algorithm relative to M1, and 100 for M2. Specifically, there is a disparity in the number
of generations between M1 and M2. In the case of M2, employing 200 generations would
lead to high computational time. Additionally, the set to be explored in M2 is not extensive.
This selection guarantees a sufficiently broad range of iterations to adapt to the smallest
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mutation probability of 0.01 and allows it to eventually converge on the chosen threshold
of 0.1.

All the experiments are conducted on two Microsoft Azure virtual machines of the
second generation. The first presents an x64 architecture, size standard F4s v2, vCPUs4,
and RAM 8 GB. The second presents an x64 architecture, size standard D4ads v5, vCPUs4,
and RAM 16 GB.

4.2. Mutation Operators

The proposed mutation operators are designed to introduce semantic-preserving
modifications to existing functions, so as to alter the code of a program without altering
its semantics, that is, the behavior of the program in terms of relation between input
and output. In general, there exist many possible semantic-preserving transformations.
Here, we consider two of them, one that is based on a consistent renaming of the variable
identifiers, and the other one that relies on the introduction of dead code in the functions.

FIRST OPERATOR

The M1 mutation operator consists of modifying the identifiers within the source
code of the functions so that, in each function F, each occurrence of the identifier IDi
is consistently replaced with the same new identifier IDi′. To this end, two different
vocabularies of words are used, and the algorithm can generate new variable names during
the mutation process by selecting words from these vocabularies. They are meant to follow
two different policies:

1. The first vocabulary is composed by ≈ 450K generic English words (https://github.
com/dwyl/english-words, accessed on July 2023). It is used with the underlying idea
of not bringing any domain-specific bias into the pool of possible identifiers. We will
refer to this configuration as ME

1 .
2. The second, smaller, vocabulary is instead composed of≈30 words or expressions that

are somehow related to known vulnerabilities, shown in Table A1 (in Appendix A).
We denote this experimental configuration with MS

1 .

Algorithm 3 shows the functioning of the first mutation operator M1.

Algorithm 3 First mutation operator M1

1: input: individual p, genome gp . original genome
2: output: individual p, genome gp . mutated genome

3: for all id ∈ gp do
4: with probability mProb do . mutation probability chosen
5: newId← IDFROMVOCAB() . random identifier
6: if newId 6∈ gp then . check for consistency behavior
7: gp[i]← newId . update genome with new identifier
8: else
9: while newId ∈ gp do

10: newId← IDFROMVOCAB()
11: end while
12: gp[i]← newId
13: end if
14: UPDATEINDIV1(p, gp)
15: done
16: end for
17: return p, gp

In the ME
1 experiment, each run took approximately 21 h to complete. This indicates

the time required for the ES algorithm to iterate through the specified number of genera-

https://github.com/dwyl/english-words
https://github.com/dwyl/english-words
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tions, perform the fitness evaluations, and apply the mutations to the individuals in the
population. For the MS

1 experiment, instead, each run took approximately 10 h to complete.
With regard to the domain-specific set of words (MS

1 ), in the context of black box
attacks where explicit knowledge of the neural model is limited, an attempt is made to
deceive the neural network using a limited vocabulary. This method aims to explore the
possibility of influencing the model’s predictions by replacing words (identifiers) with
others having different semantics. This choice comes because the model might misclassify
code snippets containing trigger words that might recall vulnerability names. A simplified
example of input and output is shown in Figures 3 and 4.

1 void function(){
2

3 int x = 0;
4 int y = 0;
5 int z = 0;
6

7 x = 10;
8 y = x;
9 z = y;

10 }

1 void dog(){
2

3 int home = 0;
4 int water = 0;
5 int z = 0;
6

7 home = 10;
8 water = home;
9 z = water;

10 }

Figure 3. Application of the ME
1 mutation operator. The code on the left represents the original

function, while the code on the right represents the same code after the mutation, where some of the
identifiers have been changed to random English words.

Figure 4. Genome of the function presented in Figure 3. The model takes a function as its input; the
corresponding genome is obtained through AST manipulation.

SECOND OPERATOR

The second mutation operator M2 consists of injecting non-executable code into
functions as part of the mutation process. The purpose of this mutation is to simulate
potential vulnerabilities and generate new variations of the functions for analysis. By
injecting non-executable code, this mutation introduces a certain level of unpredictability
and randomness into the model. By analyzing its behavior on the mutated functions, the
algorithm can reveal potential weaknesses and evaluate their impact on the vulnerability
detection process.

The addition of dead code is performed before the closing bracket of the function,
with conditional statements whose conditions always result in a negative outcome, and
thus whose content is never executed. This kind of modification ensures that the behavior
of the function remains unchanged. This approach is taken to prevent any unintended
modifications to the function’s functionality. The primary objective involves incorporating
code that somehow deceives the classifier. These instructions or instruction sequences
are designed to introduce noise in the classifier, which consequently can be confusing
during its decision-making process. This kind of mutation operator is tested in two
experimental variants:

1. Injection of generic sequences of instruction that are not supposed to be related to any
vulnerability. This variant is referred to as MN

2 .
2. Injection of sequences of instructions that if executed would introduce a flaw. We will

refer to this variant as MV
2 .
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Algorithm 4 shows the functioning of the second mutation operator M2. Notice that
all the algorithms presented in this section make use of some auxiliary functions that are
summarised and defined in Algorithm 5.

Algorithm 4 Second mutation operator M2

1: input: individual p, genome gp . original genome
2: output: individual p, genome gp . mutated genome

3: with probability mProb do . mutation probability chosen
4: c← DEADCODEFROMVOCAB() . extract dead code
5: Append c to gp . update genome
6: UPDATEINDIV2(p, c)
7: done
8: return p, gp

Algorithm 5 Auxiliary functions

1: procedure COPY(p)
2: p′ ← p
3: return p′

4: end procedure
5:
6: procedure DEADCODEFROMVOCAB()
7: return a random item from a library of dead code snippets
8: end procedure
9:

10: procedure FITNESS(p)
11: return as fitness the classifier’s output value with input p
12: end procedure
13:
14: procedure IDFROMVOCAB()
15: return a random identifier from a vocabulary
16: end procedure
17:
18: procedure LOADDATASET()
19: Load a set D of C-language functions
20: return D
21: end procedure
22:
23: procedure UPDATEINDIV1(p, gp)
24: Modify the source code p according to the identifiers in the genome gp
25: end procedure
26:
27: procedure UPDATEINDIV2(p, c)
28: Add the code block c to the original code p before the last curly bracket
29: end procedure

For both MN
2 and MV

2 , each run took approximately 22 h to complete. The first
experiment of this second mutation MN

2 refers to the injection of non-vulnerable code
samples to try to force the classifier to reverse the prediction from true to false. In order to
further assess the robustness of the neural model classification system, a decision was made
to conduct additional testing (MV

2 ) involving the injection of non-executable “vulnerable
code”. The objective of this test was to determine if some non-executable block code
containing vulnerable code could still deceive the model. Code that is inside a loop or
conditional statement that is never executed is referred to as “dead code” with no effect
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at run time because it is unreachable. Figure 5 shows examples of C code that will never
be executed.

1 while (1==2){
2 // body
3 }

1 for(int i=10; i<0; i--){
2 // body
3 }

Figure 5. Dead code examples. Both the bodies inside the while (left) and for blocks (right) cannot be
executed, since the conditions are never satisfied.

Each mutation is applied with a given probability. To introduce the injected code,
two libraries are used: one containing vulnerable code options and the other containing
non-vulnerable code options. The code for injection is already inserted in “dead blocks”.
From these lists, a code snippet is randomly selected for injection. This selection process
adds an element of randomness to the mutation, allowing for the exploration of different
code variations that can simulate potential vulnerabilities or non-vulnerable scenarios. A
simplified example of input and output is shown in Figure 6. The genome structure is
correspondingly expanded, so that trailing genes encode the blocks to be injected in the
phenotype, as can be seen in Figure 7.

1 void function (){
2 int x = 0;
3 int y = 0;
4 x = 10;
5 y = x;
6

7 }

1 void function (){
2 int x = 0;
3 int y = 0;
4 x = 10;
5 y = x;
6

7 if(0){
8 do_smth_evil ()
9 }

10 }

Figure 6. Application of the M2 mutation operator. The code on the left represents the original
function, while the code on the right represents the same code after the mutation, where the code is
expanded with the injection.

Figure 7. Genome of the function presented in Figure 6. After the mutation, the injected code remains
unchanged and represents an immutable part of the genome; this is because since blocks of code are
not executable, it is possible to insert multiple equal blocks without affecting the functionality or
execution of the code.

5. Results

This section analyzes and shows the obtained results. For compactness, only the results
of the lowest and highest tested mutation probabilities are included. Notice however that
the other tested probabilities exhibit similar trends.

As an initial step in the analysis of the results, word analysis on M1 experiments was
conducted to determine if any specific patterns could potentially deceive the model.

Figure 8 shows the most frequent words for ME
1 and MS

1 experiment. The most
frequent words represent a count that is determined by analyzing the genome of each
individual which succeeded in deceiving the classifier. We remark that each genome is
created in such a way that contains the structure of an individual uniquely referring to the
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identifiers, as shown in Figure 2. Therefore, in cases where an identifier appears multiple
times within an individual, it is counted as a single occurrence.

Figure 8. Frequency of top 20 words for ME
1 and MS

1 experiment that have successfully deceived the
network. The plots report the mean and standard deviation across 3 runs for the lowest 0.01 and the
highest 0.25 mutation probabilities.

The results of ME
1 , show a significant variation across the three runs. One can observe

that with an increase in the mutation probability, there is a slight decrease in variation as
indicated by the standard deviations depicted in the graphs. Analyzing the data in Figure 8,
there is a great divergence of standard deviation between the different runs; this should
be for the large size of the vocabulary E in combination with the individuals mutating
with a very low probability. Due to this, the ES might not have explored the entire set of
words comprehensively. Despite the challenge posed by the large set of words, the ES
algorithm was still able to discover names that effectively deceive the model. We see in
Figure 8 that vocabulary E, used in the ME

1 configuration, also uses composite identifiers
formed by combining two separate words already present in the generic English vocabulary
we adopted.

For MS
1 , this simple experiment shows how easy the possibility of misleading the

neural network is even with a restricted set of words, thereby highlighting the model’s
high sensitivity to even minor variations. The results demonstrate no substantial variations
across the three runs for each mutation probability. In particular, the words out_of_bounds
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and out_of_bound_write always have the highest frequencies, together with three other
words highlighted in bold in the figure.

When examining the comparison between individuals with the lowest probability
of 0.01 and the highest probability of 0.25, in both experimental conditions denoted as
M1 and M2 in Figures 9 and 10, a notable decrease in the number of generations needed
for convergence is observed. Approximately 100 and 11 generations were needed for
experiments in M1 to reach the chosen convergence threshold of 0.1, considering a mutation
probability of 0.01. In particular, it only requires two generations in MS

1 and 9 in ME
1 for

individuals with a probability of 0.25. This indicates a much faster convergence rate with
higher mutation probabilities especially in the restricted set of words; this represents an
expected result. A similar trend occurs in the experiments M2, where about 65 generations
in MN

2 and 75 in MV
2 are required for the lowest mutation probability, and about 13 for the

highest mutation probability.

Figure 9. Average fitness obtained across 3 runs for the lowest 0.01 and the highest 0.25 mutation
probabilities of the M1 experiments. Vertical bars represent the standard deviation and the orange
curves represent the average fitness of the population at each generation, while the blue curves
represent the fitness of the best individual at each generation. The x-axis is truncated at the point the
algorithm achieves convergence.

Table 1 reports the results of the classifier; specifically, the outcomes across the three
runs are nearly similar, with minimal standard deviation across three runs, so we decided
to report the count from the run that achieved the worst results. In both experiments
M1 and M2, the model was consistently deceived with a high probability ranging from
90% to 100%. We remark that the goal is to reverse the classification (from True to False).
Specifically, in the first mutation, the true positive rates reach zero at the highest percentage
value of 25% for ME

1 and at the lowest percentage value of 1% for MS
1 . This indicates that

all labels have been reversed in these cases. In the second mutation operation, M2, the
model demonstrates improved performance at higher levels of mutation probability. Upon
analyzing the results, we observed that as the mutation rate increases from 10% to 25%,
there is a reduction in the number of true positives and only a minimal change in the
number of false negatives. In the case of the lowest mutation probability of 1%, the results
show that the model was deceived in more than 90% of the cases, even in the worst run.
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Figure 10. Average fitness obtained across 3 runs for the lowest 0.01 and the highest 0.25 mutation
probabilities of the M2 experiments. Vertical bars represent the standard deviation, the orange curves
represent the average fitness of the population at each generation, and the blue curves represent
the fitness of the best individual at each generation. The x-axis is truncated at the point where the
algorithm achieves convergence.

Table 1. Final results of the worst run for each experimental configuration.

Experiment Mutation Probability Not Inverted Inverted % Success

ME
1

0.01 44 1089 96.1%
0.1 2 1131 99.8%
0.15 1 1132 99.9%
0.25 0 1133 100%

MS
1

0.01 0 1133 100%
0.1 3 1130 99.7%
0.15 1 1132 99.9%
0.25 1 1132 99.9%

MN
2

0.01 113 1020 90%
0.1 6 1127 99.4%
0.15 5 1128 99.5%
0.25 5 1128 99.5%

MV
2

0.01 113 1020 90%
0.1 7 1126 99.3%
0.15 6 1127 99.4%
0.25 4 1129 99.6%

6. Conclusions and Further Directions

This work shows how a state-of-the-art neural classifier trained to look for vulner-
abilities in source code can be deceived by automatically changing any given malicious
input code while still preserving its semantics. The method maps the input source code
to a genome representation and the genome is evolved according to a process that consis-
tently mutates the identifiers and injects code without affecting the original behavior of
the snippet.

The method has been successfully applied by operating on the test part of the same
dataset which was used to train the classifier. This is particularly relevant since it means
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that the system has been confused without moving the input to a completely new and
possibly misunderstood space, but staying close to the original test space, where during its
development the classifier showed good accuracy.

By examining which identifiers were successful in our attack, we discovered that
among a restricted set of words (in MS

1 ), composed by mixing words semantically related
to software security topics and words unrelated to them, the system was shown to be par-
ticularly sensitive to security-related terms. This could point to undesired biases developed
during the training phase, possibly due to a strong presence of these words in specific
subclasses of the dataset’s instances.

Future steps could be mainly devoted to two goals. First, different source code
mutation operators could be used during the evolutionary search for adversarial variations
of input instances. Secondly, a stronger and finer assessment of the biases of the classifier
emerging from the statistics gathered during the evolution of adversarial examples should
be developed. This would be key in understanding and improving how the trained
classifiers operate internally.
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Appendix A

Table A1. The table reports the vocabulary used in the MS
1 experiment.

allocate get_size_buffer software_vulnerability
analysis get_value stack
break_point hello_world stack_memory
buffer index strcpyy
buffer_copy index_buffer strcatt
buffer_kernel index_memory while_false
buffer_overflow kernel while_true
dynamic memory write
dynamic_analysis out_of_bounds x
flag out_of_bounds_write y
get_name set_write z
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