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ABSTRACT
Recently, global pulsar timing arrays have released results from searching for a nano-Hertz gravitational wave background signal.
Although there has not been any definite evidence of the presence of such a signal in residuals of pulsar timing data yet, with more
and improved data in future, a statistically significant detection is expected to be made. Stochastic algorithms are used to sample
a very large parameter space to infer results from data. In this paper, we attempt to rule out effects arising from the stochasticity
of the sampler in the inference process. We compare different configurations of nested samplers and the more commonly used
markov chain monte carlo method to sample the pulsar timing array parameter space and account for times taken by the different
samplers on same data. Although we obtain consistent results on parameters from different sampling algorithms, we propose
two different samplers for robustness checks on data in the future to account for cross-checks between sampling methods as well
as realistic run-times.
Key words: pulsars: general – methods: data analysis – gravitational waves

1 INTRODUCTION

Pulsars Timing Arrays (PTAs) (Detweiler (1979); Hellings &Downs
(1983)) aim to detect the stochastic Gravitational Wave Background
(GWB). AGWB signal is likely created by the superposition of gravi-
tational waves emitted by SuperMassive Black Hole Binaries (SMB-
HBs) (Rosado et al. (2015)), but there could be other sources like a
relic from inflation (Grishchuk (2005)) or cosmic strings (Vilenkin
(1981); Vilenkin & Shellard (2000)). While increasingly constrain-
ing upper limits have been placed on the amplitude of the GWB there
has been no detection of this signature yet. However all operational
PTAs are currently detecting a common but spatially uncorrelated
red noise process (Ferdman et al. (2010); Manchester et al. (2013);
Hobbs et al. (2010); Jenet et al. (2009)). This might indicate that the
GWB signal will be detected with statistical significance in the near
future. In this paper, we look at consistencies between a variety of
stochastic samplers used to sample a large parameter space, where
the latter is of paramount importance to inferring properties of the
GWB signal.

★ E-mail:anuradha.samajdar@uni-potsdam.de

The size of pulsar timing models necessitates the use of a hybrid
frequentist and Bayesian analysis, where the pulsar timing model
parameters are first obtained using iterative least square fitting with
tools such as TEMPO2 (Hobbs et al. (2006); Edwards et al. (2006);
Hobbs et al. (2009)) or PINT (Luo et al. (2021)) to obtain a set
of timing residuals. These timing residuals are then modelled to
remove excess delays due to red noise processes as well as fluctua-
tions from the variations in the ionised interstellar medium codified
as dispersion-measure models using Bayesian analysis, while ana-
lytically marginalising over the timing model parameters. This is
typically called single pulsar noise analysis (SPNA). Even with this
simplification, the estimation of the red noise and dispersion-measure
model parameters remains computationally expensive. Further, in the
final stage, when searching for the GWB, all pulsar models must be
simultaneously fitted for, along with a model for the correlated sig-
nal from the GWB as well as any other correlated or uncorrelated
common noise processes. Even when the search is optimised for the
smallest number of pulsars, this can lead to final dimensions of the
order of hundreds of parameters. Further, for the individual pulsar
models as well as the final GWB search, it is desirable to carry out
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2 A. Samajdar et al.

model selection (Jeffreys (1998); Raftery (1996)) – a method which
is particularly well suited for Bayesian analysis.
This mixed approach implies inherent uncertainties in the com-

parision of the algorithms themselves as well as any difference in
the obtained results. We attempt to address this issue by adapting
the most commonly used PTA analysis package, enterprise, to utlise
a number of nested sampling algorithms. We perform single pulsar
noise analyses for a set of six pulsars, first utlised for the recent limits
presented by the European Pulsar timing Array (EPTA) (Chen et al.
(2021)). Using the most performant nested sampling algorithm as
determined from the SPNA analysis, we then search for the GWB us-
ing both the pulsar dataset as well as the second International Pulsar
Timing Array (IPTA) second mock data challenge (MDC) (Hazboun
et al. (2018)).
In Sec. 2, we briefly summarise the data we have used for our

inference process. Section 3 serves as an introduction to Bayesian
inference with focus on noise models used in this paper and pulsar
timing data in general. Some technical details to algorithms we use
are also included. We give a summary of our results in Sec. 4 and
conclude in Sec. 5.

2 DATA

We have used data recently utilised by the EPTA collaboration (Chen
et al. (2021)), and focussed on six pulsars – PSRs J0613-0200,
J1012+5307, J1600-3053, J1713+0747, J1744-1134 and J1909-
3744. The times of arrival (TOAs) of these pulsars are fitted using the
TEMPO2 software to pulsar timing models describing the pulsars as-
trometric, intrinsic and environmental properties, along with simple
polynomial models for the variations of ionised interstellar medium
(IISM) along the line of sight to these pulsars. The resulting ‘timing
residuals’ are shown in Fig. 1 where we highlight the large number of
observing systems used for each pulsar dataset by different colours.
We refer the interested reader to (Chen et al. (2021)) and forthcom-
ing EPTA publications for more details on the individual observing
systems but list the names here. the abbreviations correspond to the
Pulsar Machine (P1, P2 and PuMaI/II) instruments at the Wester-
bork Synthesis Radio Telescope (WSRT), the Reconfigurable Open
Architecture Computing Hardware (ROACH) and the Digital Filter
Bank (DFB) based devices at the Jodrell Bank Observatory (JBO),
the Berkeley-Orleans-Nançay (BON) and theNancayUltimate Pulsar
Processign Instrument (NUPPI) at the Nançay Radio Observatory,
and the PSRIX instrument (labelled P217, P200, S110 and asterix) at
the Effelsberg radio telescope. The residuals of Fig. 1 encode within
them the signatures of contributions from pulsar specific low and
high frequency processes as well as common astrophysical signals,
such as perturbations due to Solar system bodies (Champion et al.
(2010); Caballero et al. (2018)), time-variable delays due to density
fluctuations in the IISM along the line of sight to the pulsar or the
spatially-correlated GWB.
In addition to real data, to test different samplers, we have also

used simulated timing data, generated by the IPTA collaboration
(Verbiest et al. (2016)) and used in the second MDC (Hazboun et al.
(2018)). From the MDC, we choose a dataset containing a GWB
signal. The dataset consists of 33 pulsars, and in addition to the
GWB, each individual pulsar is characterised by its own spin noise
or red noise. The data also contains white noise characterising the
observing telescopes. The simulated dataset spans a timeline of 15
years, and is observed at a central frequency of 1440MHz. The times
of arrival (TOAs) are uniformly distributed with obsevations taken
every 30 days.
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Figure 1. Timing residuals for the 6 pulsars from Chen et al. (2021). Colors
denote the different data recording systems (or backends) used and the labels
are described in the text.

The extraction of the GWB signal is a complicated process due to
the need to transform radio pulsar observations into reference times at
which a group of photons from each pulsar in the PTA arrive at Earth
or Solar System Barycentre. While the observed data are the TOAs,
the data analysis is done on timing residuals. For this the TOAs are
first converted into residuals, obtained after subtracting the predicted
timingmodel from the observed TOAs. If the predicted model fits the
observations perfectly, the residuals will be identically 0. In addition
to the presence of a GWB, additional non-gravitational-wave related
noise sources may alter the TOAs, some of these noise models are
described in Sec. 3.

3 BAYESIAN ANALYSIS AND PARAMETER ESTIMATION
SETUP

We perform Bayesian inference on the pulsar timing data and sam-
ple over parameters corresponding to noise models describing the
variations in the residuals as described below. We sample over single
pulsars (henceforth, SPNA analysis) as well as the full pulsar tim-
ing array (henceforth, PTA analysis) and use different samplers to
test the consistency of the inferred noise models. Although nested
sampling would appear to be naturally desirable for PTA analysis,
analyses such as those from the Parkes PTA (PPTA) or NANOGRAV
typically utilise the Parallel Tempering Markov Chain Monte Carlo
(PTMCMC) (Ellis & van Haasteren (2017)) method due to the lower
computational cost. Since PTMCMC does provide direct access to
themarginal likelihoods, methods such as the Savage-Dickey approx-
imation and hypermodel sampling are employed for model compari-
son. Even though the EPTA and IPTA results have been presented in
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Robust parameter estimation from pulsar timing data 3

the literature which utilise efficient multi-ellipsoidal nested sampling
algorithms such as MultiNest and Polychord for SPNA, the final
search for the GWB still utilises PTMCMC or similar Markov Chain
Monte Carlo (MCMC) based methods.

3.1 Bayesian inference

We provide a very brief summary of Bayesian inference to make
our study self-contained. We point the reader to detailed resources
like (Sivia & Skilling (2006); Gregory (2005)) for further reading.
Bayesian analysis estimates parameters from probability distribution
functions (PDFs). The posterior PDF is obtained by providing the
initial prior PDF and using that in combination with the likelihood,
containing information about the data. The Bayes’ theorem can be
written down as

𝑃( ®\ |𝑑) = 𝑃(𝑑 | ®\)𝑃(\)
𝑃(𝑑) . (1)

where ®\ refers to a multidimensional parameter set, 𝑑 is the data and
the notation 𝑃( ®\ |𝑑) refers to information on \ given 𝑑. Deatils of
the likelihood calculation in case of analysis of pulsar timing data
may be found in (Arzoumanian et al. (2015)) and references therein.
In addition to estimating parameters by using prior knowledge as
well as knowledge from observed data, Bayesian analysis allows us
to perform model selection. With the data remaining the same, this
means performing an analysis each time with a different model. In
that case, Eqn. 1 may be rewritten as

𝑃(H |𝑑) = 𝑃(𝑑 |H)𝑃(H)
𝑃(𝑑) . (2)

H represents a hypothesis and in case of pulsar analysis,H may be
assuming that the timing data contains a GWB signal,HGWB or only
a common red noise signal (CRN), HCRN but not a GWB. From
Eqn. 2, if we then compute the ratio of probabilities 𝑃(HGWB) and
𝑃(HCRN) we get a quantitative measure of which model is more
preferred by the data.

3.2 Noise models

When analysing single pulsar data, we focus only on individual pul-
sars’ intrinsic red noise (RN), the noise from disperson measure
arising from the interstellar medium (DM), and white noise (WN),
inherent to the observing telescopes. In addition, when sampling
over the parameter space of a PTA analysis, we include a CRN.
When the common process includes spatial correlations, we search
for a common GWB. We briefly describe each of the noise processes
below:

3.2.1 White Noise

The white noise itself can be divided into two parts: (i) a multi-
plicative factor of the estimated error bar on the observed TOAs, the
EFAC and (ii) an additional noise adding in quadrature to the error
bars, the EQUAD. Both these components vary across the different
observing telescopes even if they all observe the same pulsar. The
total error on a TOA, 𝜎 can be written as

𝜎 =

√︃
(𝜎EFAC)2 + EQUAD2. (3)

EFAC represents possible uncertainty on the TOA error estimation
during the cross-correlation of the pulsar profile with the stndard
template (Taylor (1992)), and EFAC may arise from physical effects

like pulsar jitter noise and give rise to additional scatter of the TOAs
(EKERS & MOFFET (1968)).

3.2.2 Red Noise

Red noise is intrinsic to each pulsar, and also commonly referred to
as spin-noise. This arises primarily as a result of irregularilities in
pulsar-spin (Cordes & Downs (1985); D’Alessandro et al. (1995)).
The imprint on the pulsar residuals from the intrinsic noise is also a
red process, like the GWB, and the power spectrummay be described
as a powerlaw

𝜙RN =
𝐴2RN
12𝜋2

(
1
1 yr

)−3
𝑓 −𝛾RN

𝑇
, (4)

where 𝐴RN and 𝛾RN are the amplitude and spectral index of the red
noise process respectively, and 𝑇 is the total timespan between latest
and earliest TOA.

3.2.3 Dispersion Measure Noise

As the pulses from a pulsar travel through the interstellar medium,
the imprint of the interstellar medium is also encoded on the TOAs.
Dispersion measure is time-varying and defined as the integrated
column density of free electrons in the pulsar’s line of sight (You et al.
(2007)).Unlike intrinsisc red noise, this noise is frequency-dependent
and follows a a−2 dependence, a being the radio frequency. This
source maybe further described by an additional powerlaw spectrum
of the form

𝜙DM = 𝐴2DM

(
1
1 yr

)−3
𝑓 −𝛾DM

𝑇

(
1400 MHz

a

)2
, (5)

where 𝐴DM and 𝛾DM are the amplitude and spectral index of the
dispersion noise respectively.

3.3 Samplers

As described above, the parameter space of even a single pulsar
is multidimensional and we use techniques of stochastic sampling
to infer the noise properties of pulsars. To compare among differ-
ent samplers, we use nested sampling (Skilling (2006)) as well as
MCMCmethods, where the latter is also conventionally used in infer-
ence from pulsar timing data (Ellis & vanHaasteren (2017)).We have
made use of themodular nature of the analysis code Enterprise and
incorporated different nested samplers to be used with the Likelihood
function available within the code. We also use the native PTMCMC
sampler, both with and without message-passing-interface (MPI)
(Message Passing Interface Forum (2021)), making a thorough study
of performances fromdifferent kinds of samplers.We briefly describe
the individual samplers used in this paper below.

3.3.1 PTMCMC

Markov Chain Monte Carlo (MCMC) (Raftery (1996); Gamerman
& Lopes (2006)) is one of the commonest methods to stochasti-
cally sample a parameter space. Furthermore, Parallel Tempering
(Swendsen & Wang (1986); Geyer (1991)) is incorporated to ex-
plore the parameter space at different temperatures, thereby enabling
a denser sampling. PTMCMC is natively used in the pulsar timing
software Enterprise. MCMC directly samples the posterior dis-
tribution and after the intial stage, called burn-in, gathers samples
which are the representative posterior samples. In this paper, we have
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4 A. Samajdar et al.

used in addition to PTMCMC, also its MPI-enabled version (hence-
forth, PTMCMC-MPI) and we notice a speedup of around a factor
of two in most cases.

3.3.2 PyMultiNest

Conventionally, the nested sampling method samples the prior by
distributing live points and exploring the parameter space by find-
ing higher regions of likelihood. Each live point forms a contour
on the likelihood surface which gets updated as live points corre-
sponding to lower likelihood values get replaced by ones associated
with higher likelihood values. Ref. Feroz et al. (2009) updated this
method by forming regions on the likelihood surface and associat-
ing them to multiple multidimensional ellipsoids. Furthermore, this
has been made more user-friendly by introducing a Python interface
in Buchner et al. (2014) called PyMultinest. In this paper, we use
the parallelised version of the same by interfacing it with the MPI
protocol.

3.3.3 Dynesty

The nested sampling method described above is known as Static
Nested Sampling. In addition, the Dynesty sampler (Speagle (2020))
also includes Dynamic Nested Sampling. Throughout our paper, we
have however used the Static sampler from within Dynesty. The
configuration we have when using Dynesty relies on constructing the
ellipsoids as implemented in MultiNest and as such differs only
in the use of the paralleslisation through MPI as we now parallelise
sampling the prior. In addition, the decision of when to contruct
multiple bounds differs inDynesty as opposed toMultiNest. Further
information may be found also in Speagle (dyn). Our implementation
follows the call to Dynesty as in Smith et al. (2020) and we have
adopted the approach of parallelisation as in the pubicly available
pBilby code.

3.3.4 UltraNest

UltraNest (Buchner (2021)) is a newly introduced nested sampling
algorithm. It is designed to ensure accurate sampling of the parameter
space, especially in the cases of widely separated minima or tightly
correlated parameter density distribution for which multi-ellipsoidal
algorithms such as MultiNest have been shown to fail. UltraN-
est utlises the Radfriends (Buchner (2016)) algorithm along with
flexible penalisation schemes which are dynamically reconfigured to
allow resampling of previously sampled regions.We have utilised the
Reactive nested sampling algorithm of UltraNest for our test, as we
found no discernible benefits from using the static version in our ini-
tial testing. It should be noted that the hybrid frequentist andBayesian
approach of standard PTA analysis means this article presents a re-
strictive comparision for UltraNest as this algorithm is expected to
perform better with very large numbers of model parameters.

4 RESULTS

We present the results from the SPNA analyses on the 6 pulsars
from the EPTA and present results from the full PTA analyses from
the simulated dataset. For the SPNA analyses, we have recorded
the time taken by each sampler. For the PTA analysis, we focus
only on the fastest of the nested samplers and use PTMCMC for
comparison between two types of samplers. The intrinsic parameters
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Figure 2. Posterior PDFs across different samplers representing inferred red
noise models from SPNA on each of the 6 pulsars from EPTA-DR2. We do
not show the results from PyMultiNest on J1713+0747 and J1012+5307 and
UltraNest results on J1744-1134 and J1012+5307. These did not finish after
several months.

Parameter Prior range
log 𝐴RN [-18, -10]
𝛾RN [0,7]

log 𝐴DM [-18, -10]
𝛾DM [0,7]

log 𝐴GWB [-18, -10]
𝛾GWB [0,7]

Table 1. Prior ranges used; for SPNA runs, the RN and DM related param-
eters are being varied for each pulsar whereas the additional GWB-related
parameters are varied in case of the PTA analysis.

being sampled over and their respective prior ranges are given in
Tab. 1.

4.1 SPNA

We present results only on RN and DM as these directly affect the
TOAs and are intrinsic to the pulsars. Fig. 2 shows the amplitude and
spectral index of the RN noise models inferred from the respective
6 EPTA pulsars. The models are presented in the form of posterior
Probability Density Functions (PDFs). Fig. 3 shows the same for
the DM noise models. In each case, we show results obtained from
different samplers; we show results from PTMCMC, PTMCMC-
MPI, PyMultiNest, Dynesty and UltraNest. In case of the nested
samplers, we have used 4096 live points and have used 2 × 106
posterior samples for the PTMCMC-based runs for each pulsar. Since
we have used the samplers each time in combination with the generic
package Enterprise the likelihood model therefore remains the
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Figure 3. Posterior PDFs across different samplers representing inferred
dispersion measure noise models from SPNA on each of the 6 pulsars from
EPTA-DR2. We do not show the results from PyMultiNest on J1713+0747
and J1012+5307 andUltraNest results on J1744-1134 and J1012+5307. These
did not finish after several months.

same and the results show the robustness of the sampling as the PDFs
are very consistent with each other. We quantify the differences in
PDFs by giving the values of Kolmogorov-Smirnov (KS) statistic
(Kolmogorov (1933); Smirnov (1948)) in Table. 2. If the cumulative
distributions corresponding to two posterior distributions 𝑝1 (𝑥) and
𝑝2 (𝑥) are 𝑃1 (𝑥) and 𝑃2 (𝑥) respectively, the KS statistic is the largest
difference:

KS = sup𝑥 |𝑃1 (𝑥) − 𝑃2 (𝑥) |. (6)

From the above definition, the KS value always lies between 0 and
1. If we find the values to be closer to 0, we may consider the under-
lying PDFs 𝑝1 (𝑥) and 𝑝2 (𝑥) to be very close to each other. A source
of differences in PDFs is however the stochasticity of the algorithm
itself; this is in addition to inherent differences between the PDFs
being compared. To quantify for this and establish a threshold from
the stochasticity itself, for each parameter of each pulsar and for each
sampler, we generated 20 sets of resampled posterior samples and
computed the KS statistic values between all combinations of these
20 data sets. The maximum KS statistic arising from this study for
all parameters and sampler for each pulsar is always ∼ 10−3, the
highest values overall being for J1744-1134, and the log 𝐴DM pa-
rameter, ∼ 0.007. So, from Tab. 2, we take values > 10−3 to signify
a difference in the PDF arising inherently. From Tab. 2, the highest
KS value is ∼ 0.3 between PTMCMC and PyMultiNest for J0613-
0200 as well as J1744-1134. We can conclude that from these values,
the PDFs among different samplers are indeed quite close to each
other as is also visually noted from Fig. 2 and Fig. 3. This leads us
to conclude that the parameter estimates obtained from the data are
indeed indicative of a physical process and not an artifact of sam-

pling. We notice PTMCMC combined with MPI gives a speedup in
all cases, and while that is a significant gain in runtimes, we note
that the algorithm, when coupled with MPI, is different from the
native PTMCMC. PTMCMC, when used in a single core, does not
do parallel tempering (the name is a misnomer in this case). It is only
when coupled with MPI, that there is a single temperature per thread
and the parallel tempering kicks in1 Moreover, from Figs. 2 and 3,
we note that PTMCMC-MPI results are closer to those obtained with
parallel nested samplers. This is likely because the multiple chains
running with different temperatures in case of PTMCMC-MPI, allow
a more exhaustive exploration of the parameter space, making the fi-
nal posterior PDFs closer to those obtained using nested samplers.
We also note that, among nested samplers, UltraNest and Dynesty
show excellent agreement, whereas PyMultiNest distributions tend
to be slightly different. While all the nested samplers that we have
used in this work rely on the underlying algorithm MultiNest, there
are subtle differences among PyMultiNest, Dynesty and UltraNest.
UltraNest and Dynesty have slight improvements over MultiNest
(and therefore PyMultiNest) and our results suggest that MultiNest
in itself is probably not good enough to sample the complex and high
dimensional parameter space of the pulsars except in the simplest
cases. It may be worth trying to do PyMultiNest analyses with finer
settings, however that would not be a one-to-one comparison amongst
samplers as is our goal here. In this analysis, we have only changed
the sampler. A robust check of the likelihood function would be to
keep the sampler the same and change the likelihood definition. The
existing software TempoNest (Lentati et al. (2014)) is independent
of Enterprise and defines the likelihood function independently.
It inherently uses the MultiNest sampler, a check of the likeli-
hood function may be to repeat an analysis with TempoNest and
Enterprise coupled with PyMultiNest. This will be studied in a
future publication. Finally, in Tab. 3 we note the walltime in hours
taken by each sampler on the same data. We also note the number
of dimensions, Ndim, and number of TOAs, NTOAs for each pulsar.
We have used the same machine for all SPNA runs to have a fair
comparison of walltimes. A reason for Dynesty’s speedup is also
the parllelisation of the prior-sampling, as mentioned in Smith et al.
(2020). Specifically, for the pulsars J1713+0747 and J1012+5307,
we were unable to get the sampler to converge after these runs took
at least 80 days and we do not present their results. From Tab. 3,
we note that PyMultiNest becomes unusable for most pulsars; while
this is mostly likely due to the increased dimensionality; indeed the
missing pulsars for PyMultiNest haveNdim = 56 andNdim = 58, this
is likely also a combination of the high Ndim and the large NTOAs.
In Fig. 2 and Fig. 3, all nested samplers and PTMCMC-MPI were
run in parallel in one compute node using 47 sockets, where each
compute node has the specification of Intel(R) Xeon(R) Gold
6252N CPU @ 2.30GHz 35.75 MB with 192GB memory and 48
sockets in total. PTMCMC in itself was run using a single socket in
a compute node.

4.2 PTA

In this Section, we choose the two fastest samplers from Tab. 3. In ad-
dition to being the fastest, we also use one nested sampler (Dynesty)
and one MCMC sampler (PTMCMC) for consistency checks be-
tween two different methods of sampling. Since we do an analysis
on all 33 pulsars together which form the pulsar timing array in the
IPTA-MDC2, we fix the WN parameters to their TEMPO2 fit values

1 We thank Michael Keith for pointing this out to us.
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PTMCMC vs.
PTMCMC-MPI

PTMCMCvs. Py-
MultiNest

PTMCMC vs.
Dynesty

PTMCMC vs. Ul-
traNest

Pulsar Parameter Red Noise DM Noise Red Noise DM Noise Red Noise DM Noise Red Noise DM Noise
J0613 − 0200 𝛾 0.154 0.141 0.172 0.291 0.119 0.13 0.132 0.145

logA 0.151 0.137 0.173 0.291 0.116 0.127 0.129 0.137
J1909 − 3744 𝛾 0.01 0.009 0.094 0.117 0.023 0.041 0.012 0.016

logA 0.009 0.006 0.074 0.120 0.020 0.043 0.012 0.018
J1600 − 3053 𝛾 0.079 0.038 0.196 0.185 0.062 0.035 0.086 0.037

logA 0.074 0.03 0.251 0.119 0.055 0.017 0.08 0.026
J1012 + 5307 𝛾 0.042 0.042 - - 0.042 0.050 - -

logA 0.017 0.037 - - 0.034 0.042 - -
J1713 + 0747 𝛾 0.073 0.095 - - 0.062 0.077 0.072 0.088

logA 0.073 0.057 - - 0.064 0.036 0.072 0.049
J1744 − 1134 𝛾 0.129 0.114 0.291 0.153 0.154 0.154 - -

logA 0.113 0.112 0.295 0.166 0.136 0.150 - -

Table 2. Results on KS statistics on 6 pulsars from SPNA results from different samplers. The runs which ended up being unfinished after months do not have
KS statistics’ values associated with them and are given as ’-’. The values are shown differently for the red noise and dispersion measure models, and for the two
parameters, the amplitude and spectral index separately.

Pulsar Sampler
Name Ndim NTOAs PTMCMC PTMCMC-MPI PyMultiNest Dynesty UltraNest

J0613 − 0200 50 3022 9.91 8.82 745.69 6.83 42.25
J1909 − 3744 18 2817 13.61 5.60 3.40 1.68 2.11
J1600 − 3053 30 3345 19.06 7.16 16.27 3.5 220
J1012 + 5307 56 5837 28.80 13.94 - 11.92 -
J1713 + 0747 58 5052 29.11 14.82 - 15.95 141.32
J1744 − 1134 38 1980 19.66 6.49 321 4.5 -

Table 3. Walltime in hours for the SPNA runs with each sampler, for each pulsar the number of dimensions and number of TOAs are also given as Ndim and
NTOAs respectively. The unfinished runs’ times are shown as ‘-’. From this table, we note that only PTMCMC and Dynesty are expected to finish within a feasible
timescale. Furthermore, when used with MPI, runtimes with PTMCMC can be scaled up. For some pulsars, the speedup obtained is up to a factor of 2.

18.0 17.5 17.0 16.5 16.0 15.5 15.0 14.5
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-15.858 -14.771

Dynesty
PTMCMC

Figure 4. Posterior PDF of the log of GWB amplitude from analysing
MDC2 data; the injected value is shown with the red vertical line and is
log 𝐴GWB = −14.89. The dashed vertical lines refer to the 5% and 95%
quantiles respectively, we note the injected value always falls within this
limit. The spectral index 𝛾 is kept fixed to 4.33 and for comparison two sam-
plers PTMCMC (orange) and Dynesty (blue) are being run, showing good
agreement. For each sampler, the respective values of quantiles (shown in
orange for PTMCMC and in blue for Dynesty) also lie very close to each
other.

to make the analysis computationally feasible. We analyse simulated
data where a GWB has been injected as mentioned in Sec. 2. The
injected value of the GWB amplitude is picked up by the resulting
PDFs of the GWB amplitude by both samplers as shown in Fig. 4.
The figure shows the results when the analysis is done by keeping
the spectral index of the GWB power spectrum fixed to 4.33. In addi-

tion, we repeated the analysis by varying both the spectral index and
the GWB amplitude.This is shown in Fig. 5. The upper panel shows
the results of the GWB amplitude when 𝛾 is varied and kept fixed.
In the lower panel the amplitude for the varying 𝛾 case is plotted
by choosing the amplitude values corresponding to those of 𝛾 lying
between 4.3 and 4.4 and the resulting PDF looks very similar to the
case when 𝛾 is kept fixed to 4.33.

In addition, we perform model selection between a GWB and a
CRN, using both samplers. With PTMCMC, we use the hypermodel
approach, available within Enterprise to extract a Bayes’ factor
in favour of one of the two models. The model selection remains
inconclusive from the values of Bayes’ factors obtained with either
sampler. Recently Ref. Chalumeau et al. (2021) also used these two
samplers to get model selection results. The values obtained from
both samplers are given in Tab. 4. This shows that we are unable to
assign a model to the data even when the data is ideally simulated,
contains no DM noise and contains a GWB signal of considerable
amplitude 𝐴GWB = 1.3 × 10−15. This problem of model selection
will therefore become even more important in real data which will
additionally contain unmodelled noise. Further, we note the uncer-
tainties in Tab. 4 and the slightly higher uncertainty values associated
with the Dynesty runs. While for hypermodel sampling, one run suf-
fices to assign a value of Bayes’ factor to a model, with the nested
sampling approach, we have to resort to separate runs for each model
to get a Bayes’ factor. The error is therefore added in quadrature and
adds up in the case of the runs done with Dynesty. In Sec. 5, we
suggest a method to be able to assign a threshold value of Bayes’
factor to claim a detection from real data.
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Figure 5. Comparison between varying and fixing the spectral index 𝛾. The
top panel shows the 1D posterior PDFs of the log of the GWB amplitude,
log 𝐴GWB. The three posteriors correspond to when the spectral index, 𝛾 is
varying in the sampling (black), when the spectral index is fixed to 13/3 in
the run (dashed, red) and when the log 𝐴GWB is restricted to the indices of 𝛾
corresponding to a narrow range of [4.3, 4.4] (blue) in the varying-𝛾 run. The
injected value of log 𝐴GWB = −14.89 is hown as a green vertical line. The
bottom panel shows the two-dimensional plot of 𝛾 versus log 𝐴GWB when 𝛾
is being varied in the inference run; the 𝛾 range of [4.3, 4.4] corresponding
to the blue PDF in the upper panel is shown in blue horizontal lines. We show
only the results from Dynesty here as Fig. 4 already shows good agreement
between PTMCMC and Dynesty.

𝐵GWBCRN 𝐵
Fix 𝛾

Vary 𝛾

Dynesty 0.534 ± 1.148 0.945 ± 1.147
PTMCMC 1.279 ± 0.018 0.955 ± 0.011

Table 4. Model selection results: Bayes’ factors between models GWB and
CRN compared with samplers PTMCMC and Dynesty.

5 CONCLUSIONS

We have compared different algorithms to sample the parameter
space of the pulsar likelihood.We have used samplers to infer models
from six single pulsars as well as a PTA comprised of thirty three
pulsars. In each case, we note good agreement between different
sampling algorithms and from estimates of run-time as well as to
maintain a balance between different ways of sampling, propose
the use of PTMCMC and Dynesty as preferred methods for future
inference from pulsar timing data.
In future we will generate data with randomized sky positions for

the pulsars, commonly referred to as sky-scrambling (Taylor et al.
(2017)), to resemble a realistic realisation of measured data and will
construct a distribution of Bayes’ factors to build a ‘background’.
Furthermore, we will inject GWB signals and infer their properties
and compare the resulting Bayes’ factors distribution. This will likely
give us an idea of the threshold Bayes’ factor to claim a detection
of a GWB, if present in data. This work is in progress and will be
published separately.
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