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No research without action, no action without research.

— Kurt Lewin

If we knew what we were doing, it would not be called research,
would it?

— Albert Einstein





A B S T R A C T

Near-infrared spectroscopy is a mature technique continuing to demon-
strate steady progress. This is thanks to cutting-edge developments of
new handheld spectrometers. These spectrometers can quickly gener-
ate a high volume of spectral data, requiring advanced methodologies
such as artificial intelligence, big data, and deep learning to decipher
the hidden content of the spectral data. This experimental research
focuses on a handheld spectrometer based on MEMS technology and
its application in various fields. We show that developing NIR mod-
els can be challenging upon application. We show the use case of this
technology in the healthcare area and the industry (food). Plants and
Fruits have been subjected to our research, such as Pothos and orange
fruit. Organic powders have also found an application in our research.
Furthermore, we extend our experimental research into animal well-
ness, particularly in dairy cow farms. We used advanced method-
ologies in specific use cases. We applied 1D-CNN when predicting
quantities of content in mixtures of organic powder where a high vol-
ume of data was collected or a VAE model to predict water conditions
as a health anomaly detection in the Pothos plant. We show spectra
analysis and preprocessing approaches to remove signal artifacts. We
implement different effective preprocessing methods: scaling meth-
ods, spectral derivatives, and the Savitsky Golay filter. We present the
results of different data scaling and transformation methods using a
convolutional neural network.
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We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [48]
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I N T R O D U C T I O N





1
I N T R O D U C T I O N

1.1 background

Conventional chemical analysis has long been the only reference pro-
cedure for the analytical determinations of specific macro and micro
markers of a particular product. Nowadays, several techniques have
been developed to be real-time but also non-invasive, non-ionizing,
portable, and low-cost, providing quantitative information quickly.
Near Infrared Spectroscopy (NIRS) presents these advantages and is
used in many fields. NIRS is a spectroscopic method that uses the
near-infrared region of the electromagnetic spectrum (from 700 nm
to 2500 nm). It is used in various fields, including chemistry, physics,
and engineering. NIRS is based on the principle that molecules ab-
sorb different wavelengths of light to different degrees. By measur-
ing light absorption at different wavelengths, it is possible to identify
the molecules present and determine their concentrations. NIRS is
a non-destructive and non-invasive technique that can measure the
concentrations of various molecules in various samples, including
liquids, gases, and solids. NIRS has several advantages over other
spectroscopic methods, including its ability to measure a wide range
of molecules, high sensitivity, and low cost. NIRS is used in vari-
ous applications, including food and beverage analysis, pharmaceuti-
cal analysis, and environmental monitoring (knowing how to design
chemical and chemical manufacturing processes with little or no risk
to human health or the environment) spectroscopy. NIRS is used in
various applications, including medical diagnosis, food analysis, and
industrial process control.

Medical applications of NIRS include the detection of cancer, the
monitoring of blood oxygenation, and the assessment of tissue viabil-
ity. It is a non-invasive optical imaging technique to monitor tissue
oxygen status [35]. This technique is low-cost and user-friendly com-
pared to other neuroimaging methodologies, so it is ideally suited for
this area.

The industrial applications of NIRS include monitoring process
variables such as temperature, pressure, and composition. According
to various literature studies, NIR spectroscopy can be used to deter-
mine the main components of milk, meat, fish, eggs, dairy products,
and more. It is also used to detect possible adulterations and food
fraud, discriminate products obtained in particular production areas,
and discriminate fish and mollusks raised or fished. One of the main
advantages of this technology is its ability to deliver results quickly
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and accurately. However, NIR technology requires an updated and
representative calibration based on usual laboratory analyses as a
secondary analytical system. The potential of this technology is truly
vast, many of which are still unexplored.

Food analysis applications of NIRS include the determination of
the moisture content of food, the analysis of fat and protein con-
tent, and the detection of adulterants. A recent study carried out by
a group of Italian researchers [7] illustrates and discusses the main
applications of this technology in the food sector.

Today, the main objective of sensor development is to develop in-
creasingly less bulky instruments (miniaturized, portable) equipped
with probes capable of analyzing a wide range of analytes and de-
signing instruments that can be easily incorporated into production
lines and processing machines.
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1.2 motivations

This thesis aims to bring to light the application of a MEMS-based
portable infrared spectrometer in the analytical field and, more par-
ticularly, organic chemistry by combining a portable handheld spec-
trometer and deep learning and machine learning methods. The elec-
tromagnetic spectrum is divided into three zones: shortwave infrared
(NIR), which spans from 700 to 2000 nm; medium wave infrared
(MIR), which spans from 2000 to 4000 nm (MIR); and long-wave in-
frared (FIR), which spans from 4000 to 10000000 nm. An infrared
emitter (light) spreads infrared energy to target surfaces that readily
absorb heat. Infrared irradiation involves direct heating. Therefore its
effectiveness depends on the source-target line of the light, which is
a tungsten filament sealed in a quartz envelope. It is important to
note that the thin filament, due to its small mass, is very reactive
to the voltage applied. Consequently, a high correlation between the
NIR heat output and the corresponding applied voltage and the in-
teraction of NIR consequently, the matter can be considered from the
classical mechanical model for a diatomic molecule. Spectrometers
that employ the NIR technology have long been expensive, compli-
cated, and extensive, but the availability of a new generation of micro-
electromechanical system (MEMS) based spectrometers changed the
game. These new sensors have lower costs and come in miniaturized
sizes. Now, it should not come as a surprise that the NIR technol-
ogy is used in a vast field of application. Many industries now use
NIR technology for qualitative and quantitative purposes in agricul-
tural products, industrial food products, precision agriculture, poly-
mer quality classification, fuel quality control, fuel production pro-
cess, petroleum characterization, environmental products, industrial
products, petroleum characterization, and polymer. This thesis aims
to offer an overview of works where we have employed our MEMS-
based NIR spectrometer. When available, we compared our use of the
spectrometer with other works in our field. Thus, one of the goals of
this thesis is to offer a comprehensive overview of the potential ap-
plication of our MEMS-based NIR sensory combined with machine
learning methods in agriculture, healthcare, and industry fields.

1.3 contributions

Miniaturized NIR spectrometers are now available at more afford-
able prices than conventional spectrometers, but their performances
have yet to be studied. The field of application on infrared sensors is
vast, as seen in the literature. Especially for analyzing organic mat-
ter, which can be food, human skin, or other items, the near-infrared
range offers substantial advantages, most of all, a suitable penetra-
tion depth and relevant spectral information. However, the spectrom-
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eters are usually very sophisticated and laboratory use only, unlike
the one used for this study, a portable miniaturized sensor with a
growing trend. The next generations of mobile phones will contain
spectral analyzers. Different concepts and system designs compete
in this ultra-high volume market. The present work explored the ap-
plicability of our MEMS-based NIR infrared spectrometer and spec-
tral data analysis and prediction models. This study concerns how
the NIR technology of MEMS bases sensors functions combined with
machine learning and deep learning techniques, how the measure-
ment system works, what can be achieved with it, and how the de-
velopment should be continued. The measurements are easy enough
to perform without the expertise of laboratory personnel, creating a
massive amount of data in a short time, making prediction models
a necessity in this industry. The study aimed to analyze the mea-
surement system’s performance from different points of view: data,
results, usability, and how the performance could be enhanced. The
study also presents a methodological approach and findings in the
industry and medical fields.

1.4 organization of this thesis

This thesis work is organized as follows. Chapter 2 provides a gen-
eral overview of the miniaturized spectrometer that is used to assess
the possible application of near-infrared in various fields. Chapter
3 introduces the field of spectroscopy, and the main characteristics
are described. Furthermore, it includes state-of-the-art near-infrared
spectroscopy applications. Chapter 4 presents approaches made in
the healthcare area, with a particular emphasis on issues analyzing
dynamic organic matters. It is shown the use case in plant leaf wa-
ter stress detections. Chapter 5 includes the application of the spec-
trometer in the industrial field, such as determining the composition
percentage of mixed powders using convolutional neural networks
(CNN). A Spectra processing pipeline is also introduced, which in-
cludes signal pre-processing and normalization. Each chapter pro-
vides a brief literature review of the topic-related works, describes
the proposed strategies, and reports some experimental results.
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2
I N T R O D U C T I O N

2.1 microelectromechanical systems (mems)

Microelectromechanical system (MEMS)-based sensors are essential
in many modern applications, from consumer electronics to the auto-
mobile sector. Technology enables the creation of movable structures
that may be employed as actuators and transducers. MEMS emerged
from the silicon-based microelectronics sector.

history Few imagined that Charles Smith’s 1954 Physical Review
publication on stress-sensitive phenomena in silicon and germanium
would launch a multi-billion dollar industry. After micro machining
and silicon processing technologies improved in the early 1970s, a
handful of forward-thinking, essentially American companies pro-
duced pressure sensors with non-planar diaphragms, the first actual
MEMS sensors. Since then, MEMS technology has produced a variety
of compact, durable, and often inexpensive, high-performance sen-
sors that respond to numerous physical variables (Table 1) and some
gases, chemical species, and biological quantities [9].

Variable Type of sensor

Pressure Piezoresistive and capacitive pressure sensors

Vibration, shock, motion Accelerometers

Position, rotation Gyroscopes, yaw-rate sensors

Inclination, an Inclinometers

Strain Semiconductor strain gauges

Infrared-radiation Microbolometers

Sound Microphones

Flow Thermal mass flow sensors

Table 1: MEMS Sensors for physical variables

Table 2 shows three waves of MEMS sensor commercialization [9],
which is an oversimplification. They are used in process, petrochem-
icals, building services, power generation, defense, aerospace, and
healthcare, as well as in computers, phones, digital cameras, game
consoles, and autos. This article describes contemporary MEMS sen-
sor applications for detecting physical variables and gases .

Most pressure sensors today are MEMS-based, unlike most other
physical variables, where many technologies coexist. This is due to
several factors:

9
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Dates User-industries/early products

Wave 1 1970s onwards
Low volume uses of high cost products in industry and aerospace

Pressure sensors, strain gauges, accelerometers

Wave 2 1980s onwards
High volume uses of low cost products by the automotive industry

Pressure sensors, accelerometers, yaw sensors, air flow sensors

Wave 3 Early 2000s onwards
Ultra-high volume uses of very low cost products in consumer electronics

Accelerometers, gyroscopes, microphones

Table 2: Commercialisation of MEMS sensors

• inherent technical features that allow outstanding performance
flexibility to accept a wide range of pressures by adjusting di-
aphragm diameters

• the high-volume batch fabrication that provides cheap unit prices,
as requested by several industries

MEMS pressure sensors had not profited from the consumer elec-
tronics sector’s sensor consumption expansion until Samsung’s use
of them in the Galaxy S4 [79] and other smartphone models and
Sony Mobile’s use in two 2012 models. In 2012, smartphones used
82 million MEMS pressure sensors. Robotic surgery and medical im-
plants demand even smaller sensors, although these sensors are based
on traditional MEMS technology. Singapore and South Korean re-
searchers developed a sensor that uses a combination of materials
to miniaturize silicon diaphragm devices.

MEMS microphones have also profited from consumer electronics.
These were once rare but are now found in smartphones, laptops,
tablets, video cameras, and other devices. Apple introduced MEMS
microphones in the iPod nano 5 and iPhone 4 in 2009. Smartphones
now have two MEMS microphones. Handset manufacturers are ex-
ploring using three or more microphones for noise reduction and
video audio recording. As cell phones have become more multifunc-
tional, being used for music, video, and other applications, the em-
phasis on crisper sound has increased. Handset manufacturers can
differentiate their phones with acoustics. Apple launched Siri voice
command with the iPhone 4S, which was later included in the iPhone
5 and other Apple products like the fifth-generation iPod touch and
the fourth-generation tablet.

Accelerometers have been used in MEMS sensor commercialization
since 1970, as seen in Table 2. Since the first iPhone made accelerom-
eters famous for auto-screen rotation and gesture-based command
capabilities, the consumer electronics industry has deployed millions
to activate airbags and signal stability control systems, among other
purposes. MEMS accelerometer technology has evolved as users want
smaller packages, lower power consumption, and more functionality.

MEMS has had a modest impact on gas sensors compared to physi-
cal sensing, and few basic gas sensing approaches have profited. Semi-
conducting metal oxide (MO) sensors used in millions of industrial
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applications are the most important use [44]. MEMS substrates with
a thin silicon nitride membrane support a sensing material film in the
latest design. This method produces miniaturized sensors with lower
power consumption, faster response times, and lower unit costs in
high volumes. Micro-hotplates often have a temperature sensor.

MOEMS gas sensing are micro engineered silicon emitters for NDIR
gas sensors are a growing market [106]. Most NDIR products use
miniaturized filament bulbs as optical sources, which are cheap but
limit output to 5 µm. Many essential molecules, such as ammonia,
alcohol vapor, refrigerants, nitrogen oxides, and sulfur dioxide, have
absorption peaks in the 6-14 µm region, limiting the gases that can
be detected. Cambridge CMOS Sensors, a UK company pioneering
MOEMS technology for this application, produces silicon mid IR
sources that operate over the wavelength range 2-14 µm and feature
integrated FET drivers to control heater temperature by adjusting the
gate or supply voltage, eliminating the need for an off-chip driver.
The company makes MO gas sensor MEMS micro-hotplates. MOEMS
IR technology can detect methane, as has conventional NDIR. Two
MEMS-based methane detection methods and a novel catalytic sens-
ing technology are now available. Since the 1960s, MEMS technol-
ogy has produced high-performance sensors for various physical vari-
ables at cheap unit prices, enabling high-volume applications in price-
sensitive markets. Automotive and consumer electronics applications
will grow. MEMS is progressing in gas sensing, but high-volume ap-
plications will likely spur its use.

2.2 spectrometers : definitions and classifications

Spectrometers are specialized laboratory equipment used by profes-
sional spectral analysts and researchers. However, many spectroscopic
applications, such as mineral exploration, safety screening, and drug
testing, can also benefit from field measurements that are taken out-
side of the laboratory. To accommodate this, compact and portable
spectrometers have been developed that are battery-powered and equipped
with light sources. These handheld spectrometers also have advanced
data processing capabilities that can assist users without spectroscopic
expertise to perform measurements and analyze relevant information
about the composition and content of materials.

Industrial and civilian applications often require high accuracy and
reliability, which allows manufacturers to sell their spectrometers at
high prices (typically ⩾ 1000$). However, applications such as food
quality and adulteration monitoring, anti-counterfeiting, and personal
health tracking require lower unit prices (⩽ 100$), smaller size, and
ease of use.

Spectrometers and hyperspectral imaging devices are a novel type
of sensor technology that have the potential to enable new appli-
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cations beyond the capabilities of traditional MEMS sensors. Spec-
troscopy involves analyzing emitted, transmitted, or reflected visible
and infrared light to determine the atomic and vibrational structures
of matter. This technique is widely used in the chemical industry for
quality control and in research laboratories where high spectral reso-
lution is required. However, these types of spectrometers can be large
and expensive.

The late century saw the development of miniaturized spectroscopic
devices [21]. However, during the last decade, research efforts have
increased significantly, intending to open new spectroscopic applica-
tions outside laboratories, where both size and cost rather than high-
end precision matter as shown in Figure 1.

Figure 1: Publication records from the Web of Science database, using the
search words NIR, portable or NIR, handheld or NIR, hand-held from
2000 to 2020 (Data accessed on 29 October 2020). Number of pub-
lications for the first ten Web of Science categories

[80]

The application of miniaturized spectrometers appears in popular
scientific journals and online PR articles. Except for a few exceptions,
these research devices are not mature enough for market entry, so
spectroscopy has yet to be commercialized for everyone. They need
to be small and affordable, to begin with, but most importantly, they
have to be able to get customers that need to be more professional
in this field. The most used NIR sensor that can be for this use case
is the MEMS-based Fabry-Pérot interferometers (FPIs) can be used as
tunable filters for single-channel detectors [91]. At least one of two
highly reflective mirrors can change the optical gap and filter trans-
mittance wavelength in such devices. FPI can address different wave-
length ranges by choosing nonabsorptive mirror materials and adjust-
ing device dimensions, in addition to its small size and low cost. In
the near-infrared (NIR) spectral range, for example, a filter resolution
below has already been demonstrated. This resolves fundamental vi-
brational mode overtones that govern material reflectance spectra [2],
and allows material classification.
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Figure 2: Market penetration rates for compact spectrometers [51].

These spectrometers are essential instruments in many industries,
such as chemical, medical, materials, etc... The projected market for
mini- and micro-spectrometers has gone up to about 900 million dol-
lars, which indicates there are efforts from academia and industry to
use these devices [53]. The predicted penetration rates and market val-
ues of compact spectrometers in different applications and segments
are shown in Figure 2.

Portable and handheld spectrometers provide the ability to make
informed decisions on the spot. The time saved in not having to send
samples back to a laboratory is precious, and rapidly delivering those
results at the point of need changes or transforms how the user gath-
ers information. Portable instruments are designed for non-scientists
in the field, which may be experts in other areas, such as emergency
response. Combined with algorithms and libraries for identification
and quantification, portability enables on-site analyses, followed by
informed decision-making. Economic, security factors and ease of
use have driven the historic growth of the commercial handheld spec-
troscopy market. These transportable instruments are typically pack-
aged in a small suitcase or mounted in some structure for stability
and brought to the point of interest. We can combine them with ma-
chine learning model for prediction and make them a dedicated field
analyzers that are configured to visualize answers as their primary
output, not spectra (e.g if a certain leaf has hydrated enough or not)
or to provide quantitative or semi-quantitative information to a pro-
cess controller (e.g can identify the quantity of a certain ingredient in
a mixture).
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2.3 miniaturization characteristics

Miniaturization has reduced costs, yet devices are still too expensive
and big for market acceptance. The low-cost devices which rely on
a static architecture are confined to the Si detector sensitivity range
below 1100 nm. Tunable spectrometers with single detectors are the
only affordable options for this spectral range. Tunable FPI spectrom-
eters offer various benefits:

• proven, scalable MEMS technology for production

• high potential for downsizing due to the incorporation of flat
FPI filter elements adjacent to the detector

• comparatively large SNR [114]

• expansion to HSI devices with the same imaging sensor filter
technology Tunable FPI-based spectrometers have a low SWR
compared to other approaches, which is a drawback.

Indeed, numerous handheld NIR spectrometers (Viavi LVF-,Texas
Instruments DLP-, Si-Ware MEMS FT-, and Spectral Engines FPI)
were tested for quantifying pharmaceutical formulation components[114].
In the investigation, the tiny SWR from 1550 nm to 1950 nm spanning
only the initial C-H overtone range and a few O-H pairings lowered
FPI prediction accuracy.

The potential advantages of miniaturized spectrometers can be es-
tablished by comparing them and analyzing the limitation of conven-
tional systems. The essential advantage is that they can be integrated
into consumer electronics goods with low power consumption. The
possibility of building a low-cost mobile NIR spectrometer (the total
hardware effort well below 100€ in addition to the spectrum sensor)
capable of fast distinguishing between different sorts of materials.

2.4 conclusions

A few years ago, commercial portable spectrometers were much larger,
heavier, and less powerful than the latest generation of these instru-
ments, which are now significantly more compact, lighter, more pow-
erful, and significantly more capable of performing qualitative and
quantitative analyses.

This field has seen rapid development in a self-perpetuating cir-
cular fashion: the desire to perform analyses in the field has driven
the development of portable instruments, while their availability has
driven the development of new applications. Specifically, the desire to
perform analyses in the field has driven the development of portable
instruments. As a result, more applications will go from the labora-
tory to the loading dock and then out into the field, providing an-
swers that can be implemented where needed.
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Spectrometers were predominantly limited to labs, tests, and metrol-
ogy, while they are now sharply penetrating the consumer market
in healthcare monitoring and food safety. Optical spectroscopy has
proven to be an efficient technique to non-invasively analyze com-
positions of chemical materials, gases, biological tissues, food, and
much more.
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I N T R O D U C T I O N

The Near-Infrared Reflectance Spectroscopy (NIRS) method enables
quick and direct measurements of materials with minimal or even
no sample preparation. This method typically produces complicated
spectra, which chemometric models can clearly comprehend. These
are developed with the use of samples that have been carefully cho-
sen. These samples are qualified by making use of analytical reference
standards. Consequently, NIRS is not typically utilized as a "primary"
method for chemometric analysis. NIRS procedures used in general
cases need to be developed and validated in conjunction with the ref-
erence methods. As NIRS procedures cannot be repeated easily by
official control laboratories, the reference methods and correspond-
ing specifications remain in the valuable specifications. Internet-of-
Things has promoted a wide variety of emerging applications that re-
quire compact, lightweight, and low-cost optical spectrometers. While
substantial progress has been made in the miniaturization of the spec-
trometer, most have a significant focus on the technical side but tend
to feature a lower technology readiness level for manufacturability
and interpretability. This thesis discusses the applicability of portable
spectroscopy and gives a general idea of this technology and how to
use it.

3.1 general requirements

Spectroscopic analysis has been crucial in developing some of the
most fundamental theories in physics. Spectroscopy studies the ab-
sorption and emission of light and other radiation by matter. The
definition has been expanded to include interactions between parti-
cles such as electrons, protons, and ions. Spectroscopic techniques
have been applied in virtually all science and technology technical
fields. Optical spectroscopes are used routinely to identify the chemi-
cal composition of matter. Radio-frequency spectroscopy of nuclei in
a magnetic field has been employed in MRI to visualize the body’s
internal soft tissue.

nir spectroscopy Infrared spectroscopy is used to investigate
the vibrational properties of a sample. Molecular vibration gives rise
to absorption bands generally located in the mid-infrared, where
they are the most intense and straightforward. Adjacent to the mid-
infrared, the NIR region covers the internal absorption bands corre-
sponding to overtones and a combination of fundamental vibrations.

19



20 introduction

Vibrational spectroscopy in the NIR region differs from that in the IR
region because NIR deals only with bands arising from overtones and
combination modes. At the same time, IR mainly involves bands due
to fundamentals. A schematic view of the absorption band is shown
in Figure 3

Infrared radiation absorbed by a molecule causes individual bonds
to vibrate in a manner similar to that of a diatomic oscillator [92]. The
absorption bands that characterize the NIR region are weak or very
weak due to the weak electric transition originating from vibrational.
The NIR region is valuable from the point of application because only
the NIR region offers a highly transmitting window to radiation [74].

The bands that are found in the NIR region are all due to over-
tones and combinations. Fundamental vibrational frequencies of a
molecule correspond to the transition from v = 0 to v = 1. For a
non-linear molecule, there will be 3N − 6 (where N is the number
of atoms) number of vibrations. Overtones occur when a vibrational
mode is excited from v = 0 to v = 2, which is called the first over-
tone, or v = 0 to v = 3, the second overtone. Combination bands are
observed when more than two or more fundamental vibrations are
excited simultaneously. Overlapping bands are also present in this
region.

Absorption of a molecule’s photon requires a molecule’s transition
from an initial state into an exciting final state to obey energy con-
versation. An overview of the NIR spectral region where there is an
interaction between the photons and bond is seen in Figure 3.

Figure 3: Selected overtones and combination absorption bands of func-
tional groups in the near infrared spectral range[41]. The end of
the sensitivity range for silicon and non-extended InGaAs detec-
tors is marked by dashed lines.

Since each overtone should include identical information, determin-
ing the NIR spectral range needed for a material classification is dif-
ficult.

3.2 applications

NIR radiation penetrates materials deep without altering the target,
which is why it can be a powerful non-destructive analysis method.



3.3 deep learning applied to spectroscopy 21

NIR measurements do not need extensive sample preparation to iden-
tify their biochemical composition, simplifying time and accuracy.
NIR spectrometers require modest resolution due to the small aspect,
the resolution is sufficient for many natural product tests, and mois-
ture detection can be done much lower [2]. Retrieving information
from NIR spectra is usually challenging to analyze due to the pres-
ence of profoundly convoluted and strongly overlapped peaks. This
characteristic makes NIRS suitable for qualitative and quantitative
analysis, thanks to chemometric data processing. Another major fac-
tor for poor spectra besides the device is how the acquisition setup
is done. A different setup scenario can bring different performances
among handheld spectrometers. For example, there is a substantial
difference when analyzing the protein and fat content of a sample, as
shown in Table 3 and 4; we can see that using the same devices but
different scenarios have the different performance of the spectrome-
ters.

Spectrometer Sample R2 RMSECV

NIRFlex N-500 Protein 0.952 0.365

SCiO Protein 0.876 0.601

Table 3: Millet analysis with PLS-R model for protein content [105].

Spectrometer Sample R2 RMSECV

NIRFlex N-500 Fat 0.9726 1.5711

SCiO Fat 0.9801 1.2466

Table 4: Cheese analysis with PLS-R model for protein content [108].

These results demonstrate the application of handheld spectrome-
ters that can estimate the variability of complex constituents of sam-
ples. These high performances given by handheld spectrometers gain
interest in many fields, such as the use of adulteration identification
[113] and even in the pharmaceutical formulation [115]. Quantitative
analysis can be very challenging; e.g., researchers are still working to
have clinically available non-invasive glucose-sensing spectrometers
that could benefit many people. Mainly because there is a trade-off
between the miniaturization of these devices against the performance
factor

3.3 deep learning applied to spectroscopy

By entering the terms NIRS, machine learning, and deep learning into
the Elsevier database, we can observe that there is a growing trend to-
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ward the study of near-infrared spectroscopy with cutting-edge tech-
niques. The growing trend can be seen in Figure 4.

Figure 4: The number of published articles in the field of NIRS and machine
learning.

Most often, the analysis of NIR spectra by classical methods re-
quires that the number of observations is higher or equal to the num-
ber of variables. The variables usually correspond to the reflectance
or absorbance values measures at each wavelength of the NIR region.
So, most of the time, the typical approach is to reduce the number of
variables limited to the assignment bands of the target and implement
linear and statistical models. Since it is rare to know which function
group a band arose to determine to classify or quantify a specific tar-
get, particularly when we have to distinguish between very similar
spectra, we have to use sophisticated models.

The most common method used to analyze the NIR spectra are
principal component analysis for classification and partial least-squares
regression for quantification. Since NIR spectroscopy is ideal for the
quick analysis of inhomogeneous samples without considerable sam-
ple preparation, it gives space for spectra analysis. Moreover, the pos-
sibility to make in-field analyses that miniature spectrometers gave
to industries contributes more to massive data generation. Therefore,
one of the industries that benefited is the agriculture and food busi-
ness (where the subjects studied are typically organic, thus containing
abundant C-H, N-H, and O-H bonds). NIR spectroscopy has been
used to measure milk fat, detect tea species, forecast nitrogen and
pH values in soil and fertilizer for precision agriculture, and detect
melamine in milk powder [87], [116]. NIR spectroscopy can detect
food adulteration in raw materials.

The high volume of data generated by NIR sensors in every as-
pect of our life can require more efficient analytical tools. Therefore,
chemometrics has often been employed to extract qualitative or quan-
titative information from the spectra. The significant models in mul-
tivariate analysis are partial least square regression (PLSR), principal
component analysis or regression (PCA/PCR) [[78], [43]]. However,
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recently there has been a growing trend in using neural networks,
AI, and machine learning for NIR spectra analysis. This is due to the
large amount of data generated by NIR sensors in various fields, e.g.,
in agriculture, where robots can equip NIR sensors, NIRS in hyper-
spectral imaging, NIRS in mobile phones, and NIRS, where a contin-
uous acquisition mode is required.

Deep learning models are increasingly exploited to facilitate infor-
mation extraction from large data collections [39]. These non-linear
models are suitable for the NIR dataset that contain a non-linear ef-
fect. Nevertheless, they come with a drawback: the ability to interpret
and practice these models (black box). These models are considered
mainly for NIR imaging fields where they can decode hyperspectral
images e.g., convolutional neural networks compared to the use of
PCA on deconvoluted images Mahesh et al. A contribution to the
use of deep learning in NIRS has been made by [24] that employed
1D-CNN to predict quantities of mixed organic powders. However,
the primary use of deep learning with NIR data is an industry with
continuous streams of data where these models can learn specific
patterns and detect anomalous sections of data [99]. Nevertheless, to
make a good prediction AI-model, we have to generate good-quality
spectra, which in many cases is difficult. In particular, the application
of handheld spectrometers out of the control room can generate many
unwanted characteristics in the spectra that can affect the model pre-
diction.

The use of deep learning methods comes in handy when we com-
bine NIR sensors data with signals coming from other analytical plat-
forms and metadata fusion [[11], [70]], this also can lead to prediction
improvement. For example, we can combine data of skin temperature
and skin spectra, respectively, from temperature and NIR sensors and
try to predict moisture of the skin [111].
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4
H E A L H C A R E A P P L I C AT I O N

This chapter describes the viability of applying our handheld near-
infrared sensor to determine a macro market in the health care of
plants and animals. Specifically, we have investigated the viability
of this field with our MEMS-based spectrometer. The data from the
spectrometer are then processed for prediction models suitable for
this kind of real-world application.

In particular, for the growing field of precision agriculture, we in-
vestigated our spectrometer on plants and fruits. Measurements per-
formed on the plant leaf and fruit external and/or sections, e.g., re-
garding fruit acquisition, were taken in at multiple locations around
the fruit equator, in the sunlight and with moderate temperature con-
trol; We also investigated the applications of our NIRS humans and
animals, and made a pilot study to detect biomarkers for diabetic sub-
jects. We assess the applicability of NIRS in these fields by comparing
literature found for our area of investigation and plots derived from
the comparison.

27



28 healhcare application

4.1 applications

4.1.1 Orange Fruit: pilot study

Each study that uses Vis-NIRS to evaluate fruit quality begins by col-
lecting reflectance spectra (R), which are usually transformed into the
appropriate absorbance log(1/R) spectra. The visible region, specifi-
cally the 400-750 nm range, contains most of the spectral variations
seen in a wide variety of fruits, and it is used to distinguish fruit at-
tributes [103]. The spectrum data on the pigments’ absorption range
may offer indirect supplemental correlations of the fruit’s internal at-
tributes (e.g., such as sweetness, bitterness), including hardness, as
seen in some fruits whose color changes from green to yellow/or-
ange/red throughout ripening [15]. Citrus fruit’s color shift, which
depends on the environment of the orchards’ location and does not
correspond to their age, makes this less pronounced [6]. Other than
that, the pattern of the NIR absorption spectra is very similar across
the range of fruit species. Even among citrus fruit kinds, the peaks’
location and size vary depending on the fruit [64]. The acquisition
mode also influences the magnitude and minima of the peaks. How-
ever, in general, the same characteristics are present, and the spectral
landscape among the same fruit is identical [104].

Given these premises, we investigated our NIR sensors output to
identify and distinguish some internal and external characteristics of
citrus fruit and compared our result to that described here [14]. In
Figure 5 it is shown

We were able to replicate the spectral information of [14]. Figure
6 shows our orange fruit’s vibrational bands and peaks of the O-H,
C-H, C-O, and C=O functional groups due to the stretching and bend-
ing of chemical bonds. All organic molecules include these functional
groups that can vary based on the internal attributes of the fruit [14].
When the absorption peaks are distinguishable, they can be used for
better quantification of vitamin C, citric acid, or sucrose that contain
specific compounds that correlate directly to peaks [10]. On the other
hand, the overtone bands relate to transitions to higher excited states,
with many falling in the NIR range. A general rule is that overtones
have higher frequencies and lower amplitudes than the fundamen-
tal. However, the overtones are within our instrumental range: 2v2v
at 1420 nm (first overtone, strong intensity band). The vibrations de-
pend on the chemical environment, resulting in a frequency spread
of the bands. The NIR spectra of fruit contain mainly overtones and
combination bands of stretching and bending vibrations of the main
functional organic groups of relevant organic compounds regarding
the fruit’s internal composition, such as O–H and C–H. The fruit tis-
sue is composed of many different organic molecules, so it is easy to
understand the spectral footprint [10]. A large number of possible vi-
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Figure 5: (a) Average reflectance spectra of a set of 255 ‘Valencia Late’ or-
anges and 239 ‘Rocha’ pears acquired in the Vis/NIR; (b) Average
absorbance spectra of the same set of fruit. The nominal positions
of the most important absorption bands are indicated in the curves.
The number is the order of the transition, ν stands for stretching
vibration, δ for bending vibrations, and the sum indicates combina-
tion bands (for example, 3ν+ δ(O–H) represents the combination
band of the second overtone of stretching with the fundamental
bending in O–H ); (c) Savitzky–Golay [90] filter of second deriva-
tive order applied to the absorbance. The bands are again indi-
cated; (d) to (f), same as in (a) to (c) but in the NIR range, with the
spectra acquired in reflectance mode. [14]

brations and corresponding bands originate a spectral landscape with
very broad and unspecific features, from which it is nevertheless pos-
sible to retrieve valuable information. For instance,[10] obtained bet-
ter prediction of fructose and reducing sugars when using NIRS than
MIRS.

In Figure 6, the fruit spectra show firm water absorption peaks
around 1450 and 1940 nm. However, the C-H bands may distort the
water peaks slightly, and this distortion can lead to more informa-
tion. The patterns associated with the OH and CH vibrations can be
used to retrieve information about sugars. Using the water absorption
bands are correlated to that of the sugars [[64], [15]]. Moreover, due
to a variety of reasons, the various peaks, even when they correspond
among different fruits, may have varying degrees of significance, as
indicated by their infrared intensities. This pilot study on citrus fruit
investigates if these broad peaks differ in different parts of the same
fruit and give us a better understanding of the deeper section of fruits.

4.1.1.1 methods

We used our mems-based spectrometer, within the range from 1350

nm to 2150 nm. The orange fruit used for this experiment is culti-
vated in Italy and bought from a grocery store. The spectra acquisi-
tion began with the whole orange placed on top of our spectrometer,



30 healhcare application

 

 

 

c 

2𝑣 + 2 𝛿(𝐶 − 𝐻) 

3𝑣 (𝐶 = 𝑂) 

𝑣 + 𝛿 (𝑂 − 𝐻) 
2𝑣 + 𝛿(𝐶 − 𝐻) 

2𝑣(𝑂 − 𝐻) 

𝑣 + 𝛿 (𝑂 − 𝐻) 3𝑣 (𝐶 = 𝑂) 

2𝑣 + 𝛿(𝐶 − 𝐻) 

2𝑣(𝑂 − 𝐻) 

2𝑣 + 2 𝛿(𝐶 − 𝐻) 

d 

2𝑣(𝑂 − 𝐻) 
2𝑣 + 𝛿(𝐶

− 𝐻) 

2𝑣 + 2 𝛿(𝐶 − 𝐻) 

3𝑣 (𝐶 = 𝑂) 
𝑣 + 𝛿 (𝑂 − 𝐻) 

a b 

c 

Figure 6: (a) Average reflectance spectra of whole-orange acquired in the
NIR region; (b) Average absorbance spectra of the same set of
spectra. The nominal positions of the most important absorption
bands are indicated in the curves. The number is the order of
the transition, ν stands for stretching vibration, δ for bending vi-
brations, and the sum indicates combination bands (for example,
3ν+ δ(O–H) represents the combination band of the second over-
tone of stretching with the fundamental bending in O–H ); (c) (d)
Savitzky–Golay [90] filter of first and second derivative order ap-
plied to the absorbance. The bands are again indicated;
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as shown in Figure 8 - (a), and NIR spectra are acquired from three
different points on the equatorial line of the fruit. Each spectrum rep-
resenting the point is acquired with different lamp power. The lamp
power values are integers, from 100 to 250, that correspond to the
light bulb intensity. In the next step, the orange has been peeled. Two
peels from the equatorial line of the orange and one from one of the
orange poles. We labeled orangeDown_whiteUP spectra corresponding
to acquisitions made by placing the orange part of the peel facing our
sensor, as shown in Figure 8 - (b). Subsequently, we separated the
white part of the peel from the orange part and made NIR acqui-
sition from the obtained sections, labeling them "white" and orange
peels.

We calibrated the spectrometer using Formula 2. We did not in-
clude the distance and temperature factor when calibrating. The ex-
perimental setup can be seen in Figure 7. Different colors represent
the different sections of the orange. Each line is the average spectrum
of 10 single acquisitions at a chosen lamp power. The dataset con-
tained 1920 total spectra. Each part of the fruit contained a total of
480 spectra.

 

Figure 7: (a) Average reflectance spectra of different parts of the same fruits
acquired in the NIR region; The orange is the exocarp part of the
fruit, "white" is the mesocarp part, orangeDOWN_whiteUP is the ex-
ocarp part facing the device and lastly the "whole_orange" which
is the whole orange placed on top of our acquisition device (b)
Average absorbance spectra of the same set of spectra.(c) (d) Sav-
itzky–Golay [90] filter of first and second derivative order applied
to the absorbance.

In this study, we use a Support Vector Machine (SVM), Random for-
est (RF) and K-nearest neighbor (KNN) models to classify the differ-
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Figure 8: Experimental setup for the acquisition of orange fruit spectra.(a)
whole orange acquisition setup. (b) orangeDown_whiteUp peel ac-
quisition.

Figure 9: Three different peels from the same orange fruit. Peel 1 & 2 are
carved from the equatorial line of the fruit white Peel 3 from the
bottom.

ent selected parts of the citrus fruit. Support Vector Machines (SVM)
is one of the most widely used non-linear models in Chemometrics.
This model seeks class boundaries in the dataset; it optimizes class
boundaries by maximizing neighbor sample distance margins. It can
use kernel tricks to transform data points into a mathematical space
with easier boundaries. SVMs are now used for regression as well as
classification (SVR). Many datasets have used SVR successfully, but
its optimization task is complex [17, 26, 52, 55]
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Figure 10: The exocarp (orange part) and mesocarp (white part) part of the
same peel.

Random Forests is another advanced method of machine learn-
ing. The classification is achieved by constructing an ensemble of
randomised classification and regression tress (CART) [12]. For a
given training dataset, A = (x1, y1), (x2, y2), ..., (xn, yn), where xi =

1, 2, ..., n, is a variable or vector and yi is its corresponding property
or class label.

Another powerful classification method is the K-nearest neighbor
(KNN), a popular and powerful classification method that uses a non-
parametric approach to categorize data into different classes. In the
context of spectral data, the goal of KNN is to group similar spectral
data into the same class.

The algorithm operates by identifying the k nearest neighbors from
the training data set that are closest to the target or unlabeled spectra
based on a selected distance measure. The most commonly used dis-
tance measure is the Euclidean distance, which calculates the straight-
line distance between two points in a multi-dimensional space.

Once the k nearest neighbors have been identified, the algorithm
assigns the target spectra to the class that is most commonly repre-
sented among these neighbors. This approach is considered simple
and effective, making KNN a widely used classification method for
spectral data.

We used the AUC, CA, F1, Precision, and Recall metrics to evalu-
ate the performance of our classifier for the classification of the near
infrared (NIR) spectra profiles.
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AUC (Area Under the ROC Curve) measures the overall perfor-
mance of a binary classifier by plotting the True Positive Rate (TPR)
against the False Positive Rate (FPR) at various classification thresh-
olds. AUC ranges from 0 to 1, with a value of 1 indicating perfect
performance, and a value of 0.5 indicating random performance. The
formula for AUC can be represented as follows:

AUC =

∫1
0

TPR(FPR)dFPR

CA (Confusion Matrix Accuracy) measures the overall accuracy of
a classifier by comparing the number of true positive and true nega-
tive predictions to the total number of predictions made. The formula
for CA can be represented as follows:

CA =
TP+ TN

TP+ TN+ FP+ FN

F1 (F1 Score) is the harmonic mean of precision and recall and
provides a balance between the two metrics. It can be considered as a
single metric that summarizes both precision and recall into a single
value. The formula for F1 can be represented as follows:

F1 = 2 · Precision · Recall
Precision+ Recall

Precision measures the number of true positive predictions among
all positive predictions made by the classifier. The formula for preci-
sion can be represented as follows:

Precision =
TP

TP+ FP

Recall (also known as Sensitivity or TPR) measures the number of
true positive predictions among all actual positive observations. The
formula for recall can be represented as follows:

Recall =
TP

TP+ FN

where TP (True Positives) represents the number of correctly clas-
sified positive samples, TN (True Negatives) represents the number
of correctly classified negative samples, FP (False Positives) repre-
sents the number of samples incorrectly classified as positive, and
FN (False Negatives) represents the number of samples incorrectly
classified as negative.

4.1.1.2 Result and Discussion

All NIR citrus spectra in Figure 12 of the different parts show similar
trends and are difficult to distinguish. After applying the 1st Savitzky-
Golay derivatives preprocessing method to the original spectra, sev-
eral peaks of spectra can be observed, which may be related to the
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main chemical constituents of sugar (sucrose, fructose, and glucose)
and water. These constituents may differ among the different parts of
the fruit that are chosen. The wavelength range used was 1350-2150

nm. The results of the acquisition of the NIRS spectra are then carried
out by the Principle Component Analysis (PCA).

 

Figure 11: The absorbance NIR spectra of the different parts of Citrus fruit.
a) The spectra from only the exocarp (the orange part of the peel)
placed on top of the spectrometer. b) The exocarp of the citrus
placed on top of the spectrometer with the mesocarp facing up-
wards c) The mesocarp of the fruit placed on top of the spectrom-
eter. d) The spectra from the whole orange placed on top of the
spectrometer.

Data preprocessing is done to improve the classification of the dif-
ferent spectra representing the different parts of the fruit. We used
the most common NIR data pretreatment method, which is the Savit-
sky Golay first derivative and second derivative. This method is able
to remove the background noises and increase the resolution of the
spectra, and can clarify the peaks and valleys of absorbance spec-
tra of NIRS data. We applied the Standard Normal Variate (SNV) to
eliminate multiplicative interference from scattering effects on spec-
tral data. The effect of SNV is on a vertical spectrum scale centered at
zero.

As an exploratory analysis, we used the Principal Component Anal-
ysis (PCA). The principle of PCA is to group data into new data that
are no longer correlated. This method is usually used in multivariable
analysis to avoid multicollinearity, and it allows us to classify by look-
ing at differences and similarities between the different parts of citrus
fruit. Figure 13 it is shown the explained variance by two components
of the PCA algorithm, and Figure 14 shows how the score plots of the
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Figure 12: The First derivative of the absorbance NIR spectra of the different
parts of Citrus fruit. a) The spectra from only the exocarp (the
orange part of the peel) placed on top of the spectrometer. b) The
exocarp of the citrus placed on top of the spectrometer with the
mesocarp facing upwards c) The mesocarp of the fruit placed on
top of the spectrometer. d) The spectra from the whole orange
placed on top of the spectrometer.

two principal components that separate our reflectance spectral data
into groups. We can see that when no pretreating is applied to our
spectral data, the score plot of the two principal components clusters
the data into two major groups that is the "white" part and the "or-
ange", "orangeDOWN_whiteUP" and "whole_orange" into one group.
This is because the spectra are acquired with the exocarp side facing
the spectrometer and thus contain mostly information from it. With
a further preprocessing step, we can distinguish each acquisition suf-
ficiently, as seen in Figure 14(b)(c). We can assume from these results
that each part of the citrus fruit has its unique spectra and that we
can separate the inner parts as well.

The result of our classification model are grouped into three modal-
ities: using data with no pretreatment, using the SNV scaler combined
with the first derivative, and using the SNV scaler with the second
derivative. We used the stratified 10-fold Cross validation strategy to
have robust results and applied a local outlier factor for the detection
of spectra that were not in line with the others.

The classification result using just the raw data (no pretreatment)
is shown in Table 5. We can see that the KNN and the Random For-
est models performed really adequately in classifying the different
spectra in their specific classes. Generally, the models performed sat-
isfactorily with not treated spectral data. Nevertheless, preprocessing
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Figure 13: The explained variance of our spectral data by two principal com-
ponents (vertical black line). (a) Reflectance data with no pretreat-
ment. (b) Reflectance data with Savitsky Golay first derivative. (c)
Reflectance data with Savitsky Golay second derivative.

Figure 14: The scatter plot of two principal components. (a) Reflectance data
with no pretreatment. (b) Reflectance data with Savitsky Golay
first Derivative. (c) Reflectance data with Savitsky Golay second
Derivative.

the data with SNV and the Savitsky Golay derivatives gives a more
robust classification and higher accuracy values as shown in Tables 6,
7.

Model AUC CA F1 Precision Recall

kNN 0.9993 0.9970 0.9970 0.9970 0.9970

SVM 0.9210 0.7787 0.7804 0.7828 0.7787

Random Forest 0.9989 0.9940 0.9940 0.9940 0.9940

Table 5: Classification models comparison using raw data (no pretreatment).

4.1.1.3 Conclusions

We investigated the application of our MEMS-based NIR Sensor for
detecting the internal and external characteristics of citrus fruit. This
will allow for future industrial applications in the detection of sev-
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Model AUC CA F1 Precision Recall

kNN 0.9993 0.9990 0.9990 0.9990 0.9990

SVM 0.9997 0.9840 0.9840 0.9841 0.9840

Random Forest 1.0000 0.9970 0.9970 0.9970 0.9970

Table 6: Classification models comparison using preprocessed data (SNV +
Savitsky Golay 1st derivative)

Model AUC CA F1 Precision Recall

kNN 0.9993 0.9952 0.9952 0.9952 0.9952

SVM 0.9962 0.9654 0.9654 0.9660 0.9654

Random Forest 0.9999 0.9962 0.9962 0.9962 0.9962

Table 7: Classification models comparison using preprocessed data (SNV +
Savitsky Golay 1st derivative)

eral citrus fruit classifications based on their internal features. We
compared our citrus spectra profile on our range or wavelength in
the literature to confirm the reliability of our sensor. Furthermore, we
show that we are able to distinguish different parts of citrus fruit with
regular classification models. Further work is needed to assess the dif-
ferent subsections of the citrus fruit just by decomposing the spectra
of the exocarp. However, several topics regarding this technology’s
full potential and limitations need attention and further research to
provide the consistency required by the citrus supply chain’s daily
routines when assessing fruit quality and ripening. Future work need
to be done to verify the robustness of our findings using multiple cit-
rus fruits.

4.1.2 Plant

The rising digitization of the agrifood market is driving an increased
need for innovative technology to facilitate the sector’s evolution to-
ward intelligent agriculture, a more environmentally friendly food
business, and practical greenhouses and crop breeding management.

In this experimental approach, we applied our NIR senor on the
reflectance spectra of pothos called Epipremnum aureum (Pothos)

Data from Pothos leaf was used to assess stressful circumstances in
plants (water stress ) using two cutting-edge technologies that show
great promise in terms of their potential to assist in early identifica-
tion.
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The reflectance spectra were obtained using our portable MEMS-
based near-infrared spectrometer covering a range from 1350 nm to
2150 nm. This spectrometer is used to acquire spectra from the leaf
of the plant and from the surface of the fruits.

We evaluated two distinct hydration circumstances for the Pothos
plant, which were referred to as normal and anomalous. After that,
we used a beta-variational autoencoder (beta-VAE) to recognize the
irregularities in the plant’s hydration over three months after the first
purchase. We can demonstrate that our suggested combination of
near-infrared spectrometry and the beta-VAE can correctly identify
abnormalities or detect stressed circumstances in plants. This was ac-
complished by demonstrating that the combination is feasible.

This part of the work contributes to the recent and promising ad-
vancements in smart agriculture by utilizing a new generation of high-
resolution, portable, and non-destructive near-infrared sensing tech-
nology and powerful machine learning data analytics.

introduction The knowledge of one’s surrounding environment
is an essential part of the remote sensing process, which, in turn,
makes for more effective digital administration and interaction within
a cyber-physical system. This makes it possible to improve the schedul-
ing of activities and interventions, as well as to harmonize them, and
to extract performance evaluations in a timely manner [6, 85, 93]. The
combination of technological progress and predictive model advance-
ment makes the interaction within a cyber-physical system more ben-
eficial. This interaction is especially pertinent for situations involving
smart agriculture, where monitoring for abnormalities and unfortu-
nate plant occurrences is essential for ensuring the long-term viability
of agriculture, the food business, and crop breeding. [28, 29, 83, 89,
119].

The word "anomalies" refers to dangerous conditions, strange oc-
currences, or failures that have the potential to harm the crop, influ-
ence it as an epidemic, or generally make greenhouse management
less effective, which can result in the waste of resources like light,
water, or electricity. As a result, it is necessary to recognize and in-
vestigate them in advance, not only to stop them from occurring but
also to determine the factors that may have contributed to their de-
velopment and the qualities they share. Several studies have reported
advancements in modern farming and smart agriculture, particularly
with the employment of new high-resolution optical sensors, i.e.,[63,
67, 83] implementing NIRS in conjunction with advanced real-time
predictive techniques based on machine learning. These kinds of ad-
vancements have been made possible, in large part, by the employ-
ment of new high-resolution optical sensors and machine learning
[117, 118]. The latter has, in recent times, been shown to be particu-
larly useful in solving challenges like classification, feature extraction,
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or clustering when applied to the agricultural setting. On the other
hand, the most cutting-edge inference techniques. [117, 118].

We employ a betavae, a deep learning model that has been shown
to offer good accuracy performances for a variety of anomaly detec-
tion applications. This allows us to fill in this gap that previously
existed [1, 75, 95].

We focus on an artificial anomaly detection problem regarding the
hydration state of the plants as a means of demonstrating the viability
of this technique in the context of this application situation.

To be more specific, we establish a normal state (that is, dry) and
an abnormal one (that is, wet, that is, following water delivery), and
then we train the suggested beta-VAE model on a collection of nor-
mal samples. Then, we use the trained model to identify new unseen
samples, and we show that it is able to successfully recognize anoma-
lous samples under the condition that smaller reconstruction errors
are associated with normal samples and larger reconstruction errors
are associated with anomalous samples. This is done so that we can
demonstrate that the model is able to successfully recognize anoma-
lous samples.

This work represents a feasibility study to prove the potentiality
of the beta-VAE model to identify anomalies in plants. We did this
by using a dataset that was generated by SeleTech Engineering Srl
(Milan, Italy) using the handheld spectrometer.

In further depth, the following is a list of the primary contributions
that we make:

1. deploy a novel method of NIRS that is portable, high-resolution,
and low-cost for smart agriculture

2. propose and effectively verify a new deep learning-model for
anomaly detection in plants. Both of these goals will be accom-
plished.

4.1.2.1 Material and Methods

The current development of portable spectrometers is a direct re-
sult of the tremendous advancements that have been made in the
miniaturization of processes[22]. They are in high demand in mobile
and on-site spectroscopy because of their multiple uses [67]. In this
study, the reflectance spectra of Pothos (Epipremnum aureum) were
obtained using a spectrometer constructed out of two NIR microelec-
tromechanical sensors (MEMS). The spectrometer was positioned and
secured under the leaf’s surface.

The experiment was conducted at Seletech Engineering Srl labo-
ratory based in Italy, Milan. One vase of plant Pothos was bought
at Effe garden (45.526456162639725, 9.310908391160392). The setting
was very carefully monitored during the process of spectra acquisi-
tion. The pothos plant was chosen because of its large leaves (that
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(a) First MEMS (1350, 1650)nm.

(b) Second MEMS (1750, 2150)nm.

Figure 15: Spectra of the normal (dry) period of acquisition. The solid line
represents the mean across all "dry" spectra; dashed lines repre-
sent mean±standard deviation.

is, leaves that are big enough in comparison to the sensor), its capac-
ity to adapt to its surroundings (that is, it does not require any par-
ticular treatments), and its growth characteristics (i.e., slow growth
compared to the acquisition duration). The entire experiment was
carried out using just a single leaf. We selected one leaf that is large,
and that is not young for this experiment. Under the selected leaf,
we placed a humidity and temperature sensor to capture these pa-
rameters around the spectra acquisition area. A MI-flora sensor was
inserted in the vase to control the moisture and conductivity of the
soil, and it also has an integrated temperature sensor. A webcam was
also used to detect leaf movements.

The spectrum was collected continuously day and night, every minute
for the whole period of acquisition. The acquisition was restarted only
seven times to validate data. The first data acquisition began on the
5th of august 2021 and continued through the 26th of November 2021.
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(a) First MEMS (1350, 1650)nm.

(b) Second MEMS (1750, 2150)nm.

Figure 16: Spectra of the anomalous (wet) period of acquisition. The solid
line represents the mean across all "wet" spectra; dashed lines
represent mean±standard deviation.

During the acquisition process of the spectra, water was added at
particular (but not regular) intervals, namely, whenever it was deter-
mined that the soil in the pot containing the pothos was dry. The
periods when water was made available are depicted in the figure re-
ferred to as 17. In addition, the quantity of water that was used varied
from time to time (it was somewhere between 50 and 150 ml). While
we were examining the efficacy of our suggested anomaly detection
model, this further presented us with a variable component to take
into account.

In literature, it is well known that certain regions are responsible
for water absorption, as shown in Figure 18. These are at 1400 nm and
1950 nm, which correspond to our sensor range. Making our MEMS
base sensor reliable in terms of the waveform that is output.

As a preliminary analysis, we conducted a water absorption trend
at specific wavelengths for spectra acquired after the 5th of October
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Figure 17: Time-course of water supply.
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Figure 18: Laboratory reflectance spectra of an oak leaf in the fresh (thick
line) and dry (thin line) states. The causes of major plant absorp-
tion features are indicated [50]

2021. In particular, we selected the wavelength peaks (1365 nm, 1468

nm, 1600 nm, 1780 nm, 1840 nm, 1860 nm, 1970 nm, and 2080 nm)
that correspond to peaks in our spectra. As shown in Figure 19 (water
trend), these peaks are influenced by water input and water absence.

Figure 19: Spectra and selected wavelength in time range from 5 Oct to 26

Nov. (a)(c), Spectra corresponding to the two memes of our sensor.
The first one from 1350 nm to 1650 nm and the second one from
1750 nm to 2150 nm). (b)(d), The trend of the selected wavelength
from both memes.

Also, the ratio of the values of the selected wavelength shows a
good correlation between the moments of water given to the plant
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and the moments where there was no water. In particular, in the range
of 1350-1650 nm, water absorption is dominant and shows a clear cor-
relation on the days water was given to the plant. In Figure 20 we can
see the upward and downward trends of the water in correspondence
with water input.

The weight difference between fresh and dried leaves is used today
as the basis for the traditional measurement of water content. It takes
a lot of time and is undoubtedly destructive. A primary objective of
field-based remote sensing is the detection of drought-related plant
water stress.

We defined a normal and an anomalous condition depending on the
hydration level of the pothos plant. Particularly, we labeled all spectra
in the time range between 1 hour and 5 hours after water supply
as anomalous, while all remaining spectra (when the plant is dry) as
normal.

vae The objective function of a VAE is a variational lower-bound
of the marginal likelihood of the data, since the computation of the
marginal likelihood is intractable [8]. In this way, the training consists
of the maximization w.r.t. parameters ffi and „ of

L(„, ffi; x) =qϕ(z|x)

(
log

pθ(x, z)
qϕ(z|x))

)
that provides an evidence lower bound (ELBO) for the (evidence)

probability p(x). The gap between p(x) and L(„, ffi; x) can be best
expressed by considering the Kullback-Leibler divergence (KL) be-
tween the variational qϕ(z|x) and the posterior pθ(z|x) distributions,
which turns out to be

KL[qϕ(z|x)||pθ(z|x)] = −L(„, ffi; x) + p(x)

Since KL[qϕ(z|x)||pθ(z|x)] ⩾ 0, one arrives at the lower bound L(„, ffi; x) ⩽
p(x). Similarly, the ELBO can be also formulated as

L(„, ffi; x) =q (pθ(x|z)) −KL[qϕ(z|x)||p(z)]

The first term, q(pθ(x|z)) gives the reconstruction error, which forces
the decoded samples to match the initial inputs. This makes VAEs
extremely suited for modelling normal behaviors in an anomaly de-
tection task. As introduced above, if the model comes across anoma-
lous samples, it will generate a reconstructed object X which is sig-
nificantly different from the distribution of the original data, thus
considerably increasing the reconstruction error. The second term,
KL[qϕ(z|x)||p(z)] acts as a regularizer, that is, it penalizes surrogate
distributions, qϕ(z|x) that are too far away from the predefined p(z).
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Figure 20: The ratio of the selected wavelength in time range from 5 Oct to
26 Nov, the dotted vertical lines correspond to the days of water
input. (a) The ratio of selected wavelengths from the first MEMS
(1350 - 1650 nm): 1375/1475, 1365/1468, 1600/1468. (b) The ratio
of selected wavelengths from the second MEMS (1750 - 2150 nm):
1780/1975, 1830/1975. (c) The ratio of selected wavelengths from
the first and second MEMS: 1475/1950.
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More specifically, we employed a β-VAE model [13], which slightly
differs from the standard VAE in that the loss function contains a
hyper-parameter β > 1 as follows

L(„, ffi; x) =q (pθ(x|z)) −β ·KL[qϕ(z|x)||p(z)] (1)

This choice has been made to further help the model regularizing
the latent space.

The β-VAE was implemented with two feed-forward neural net-
works, one for the encoder and the other for the decoder. For the
latent distribution, we empirically chose a Gaussian distribution with
dimension d = 2.

The encoder’s network is shown in Fig. 21(a). The network consists
of two separate branches, each processing the spectra acquired by one
of the MEMS sensors, separately. Their outputs are concatenated in a
vector and given as input to 3 additional layers. The encoder produces
4 outputs, where two of them are interpreted as mean values, and the
remaining two as variance values. For each pair of spectra acquired by
the two MEMS, i.e., spectra x1 and x2, a latent variable z is sampled
from the latent distribution. Then, z is fed to the decoder that aims to
reconstruct the spectra to match the distribution of the input samples.

The VAE decoder was implemented with the same architecture of
the encoder, by mirroring its layers, as displayed in Fig. 21(b). The
first layer consists of 2 neurons, only (the dimension of the Gaussian
distribution). The sample is passed through two feed-forward layers.
The output of the second layer is split in two and each part gives
input to two additional layers that reconstruct the original signal. It
is worth to note that corresponding layers in the encoder and in the
decoder share the same number of neurons, with the exception of the
last layer of the encoder and the first layer of the decoder (which have
4 and 2 neurons, respectively).

We trained the betavae with spectra belonging to the normal condi-
tion, only. The training was implemented using 50 epochs, AdamW
optimizer [62], a learning rate of 0.01 and a batch size of 32. The train-
ing set (normal or dry hydration condition) consists of 99982 spectra,
the validation set (normal or dry hydration condition) of 21424 and
the test set (anomalous or wet hydration condition) of 15607 spectra.

4.1.2.2 Results and Discussion

We used the proposed betavae model to identify spectra correspond-
ing to the periods of time when water was supplied. First, we con-
ducted a visual inspection analysis. As it can be seen from Figs.15 and
16, both MEMS sensors are able to show the well-established water-
related wavelength range, i.e., the pronounced troughs around 1450

nm (visible in the MEMS1’s spectrum) and around 1950 nm (visible in
the MEMS2’s spectrum). Second, we trained the betavae model and
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(a) VAE Encoder

(b) VAE Decoder

Figure 21: Our proposed VAE architecture. The numbers below each layer
represent the number of neurons for that specific layer.
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investigated its reconstruction ability, both in case of normal, previ-
ously unseen, spectra (i.e., in the validation set) and anomalous spectra
(i.e., in the test set). In Table 8, we report the average reconstruction
errors of the betavae model. The error made by the model in the case
of spectra belonging to the anomalous condition (i.e., the test set) is
significantly larger w.r.t to the error for the spectra in the normal con-
dition. More precisely, the error made in reconstructing a spectrum of
the anomalous condition is 67,2% larger w.r.t. the error in the training
phase. On the other hand, a previously unseen "dry" spectrum (be-
longing to the validation set) is reconstructed with an average error
of 0.6% w.r.t. to the training phase. Thus, we can conclude that the
proposed betavae model is able to recognize those spectra correspond-
ing to the times in which water has been supplied, while the plant
was in a water stress condition.

Reconstruction Error (Mean±std) Reconstruction Error (% Mean w.r.t.Training error)

Training (“Dry” spectra) (25.69± 4.96) · 10−4 -

Validation (unseen “Dry” spectra) (25.85± 4.99) · 10−4
0.6%

Test (“Wet” spectra) (42.96± 7.02) · 10−4
67.2%

Table 8: Reconstruction errors of the betavae model. The errors are reported
in terms of average and standard deviation (second column), as
well as as the average percentage w.r.t. the error made during the
training phase.

In this work, we face the challenge of identifying stressful events in
plants monitoring, with the perspective of advancing smart agricul-
ture. We took advantage from the promising ability, recently reported,
of dl-based inference methods to detect anomalies, and we proposed a
betavae model to identify them in the hydration level of a pothos plant,
in controlled laboratory settings. As a further novelty, we employed
a low-cost, portable, yet high-resolution NIR spectrometer, exploiting
MEMS technology, engineered by SeleTech Engineering Srl.The spec-
trometer was able to provide quantitative information in two broad
NIR ranges, i.e., (1350, 1650) nm and (1750, 2150) nm. To validate
the model, we exploited the well-known water-related effect on the
wavelength ranges around 1450 nm and 1950 nm, and we purposely
defined a normal (i.e., dry) and an anomalous (i.e., wet or water sup-
plied) hydration condition. Although preliminary, this work showed
the possibility for a betavae model to identify different conditions in
the hydration of the plant, i.e., when water was supplied by the ex-
perimenter. Thus, this work contributes to the recent and promising
advancements in smart and precision agriculture, made it possible
by new generations of high-resolution optical technologies and deep
learning -based data analytics. The work can be extended with further
investigations. For example, the data can be calibrated to allow for a
fair comparison with other studies, and a more precise quantification
of the amount of water supplied could be ensured by using the pro-
posed betavae architecture. Nevertheless, this study proves it feasible
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to use the proposed model, in conjunction with a portable NIR spec-
trometer, to identify different conditions in the hydration, i.e., water
stress, in plants. In the future, the same architecture could be tested
to assess its generalizability, i.e., to identify other (i.e., more relevant
and unknown) stress conditions. In that case, the trained model could
be also used to detect real-time anomalies (i.e., using the model as in
the test phase of our analysis) and provide an alert to domain experts
and on-field operators.

4.1.3 Diary Cow

The digital revolution is having a greater and greater impact on dairy
farming and leading to the third agricultural ’green’ revolution of the
mid-20th century. Precision livestock farming is a new technology
that is employed to address contemporary issues, including environ-
mental, economic, and social sustainability, supported by technolo-
gies that collect data useful for farm and supply chain performance
improvement, along with task automation and compliance. This has
been made feasible by the creation of numerous sensors that can be
used in the barn. Near-infrared spectroscopy (NIRS), which is adapt-
able and can be used online/inline to evaluate and regulate the cru-
cial stages of the production process, is undoubtedly the technology
that is having an impact on numerous elements of dairy cattle breed-
ing. NIRS can now collect data and keep an eye on the dairy cow’s
general health inside the barn. By removing the expense and analyti-
cal response waiting periods, all of this can be done quickly, improv-
ing livestock management. Numerous research supports the use of
NIRS as a trustworthy and prognostic tool. This evaluation empha-
sizes the value of our handheld NIR sensor in dairy farms.

4.1.3.1 Introduction

New technologies strongly influence farm management, reducing man-
ual labor, costs, and waste, consequently increasing income. Precision
agriculture has evolved in agriculture 4.0 through the collection, in-
tegration, and automatic analysis of data from the environment, sen-
sors, and any other third source [77].

Precision livestock farming (PLF) has concerned the whole sector:
from cattle to pigs to poultry, achieving the best results in cattle
farms, especially dairy farms. The adoption of PLF techniques allows
for safe food production with a reduced environmental impact [5].
Improving animal welfare is an effective tool to increase profits by re-
ducing costs related to poor animal health. Consumers are becoming
more focused on purchasing and spending more on animal products
obtained through the satisfaction of animal welfare and protection of
the environment [58].
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PLF aims to have increasingly automatic, precise, and accurate farm
management. The main technological innovations have to consider all
aspects of dairy farming. Currently, the challenge is to get the most
considerable amount of data automatically, quickly, and accurately by
employing machine learning and deep learning models.

Near-infrared spectroscopy (NIRS) could be used on the farm in
a PF system. It could be an economically viable system to provide
the right amount of daily nutrients with fewer metabolic alterations.
It can be used to get an insight into the physiological status of the
cow. Nutritional imbalances, dietary deficiencies, or improper man-
agement can generate a range of health disorders in dairy cows. These
stress disorders are generally categorized as metabolic diseases such
as ketosis, hepatic lipidosis, hypocalcemia, and hypomagnesemia [32].
NIRS can be defined as an innovative process/product analytical tech-
nology that can positively affect the production process.

Blood biochemistry is commonly used as part of a diagnostic eval-
uation to confirm the suspected disease, assess the prognosis, control
the progression of the disease, and appraise the effectiveness of treat-
ments. Infrared spectroscopy can be used as a non-invasive method to
detect the presence of specific chemical bonds that correspond to the
cause of stress in cows. We haven’t yet found articles that implement
the use of NIR spectroscopy to gauge the cow’s stress response in a
non-invasive manner. A short list of articles that use handheld spec-
trometers is shown in Table 9; this list intends to inform dairy pro-
cessors, researchers, technologists, and engineers about portable and
miniaturized NIR analyzers and their dairy industry applications.

This section investigates a preliminary study on the practical appli-
cation of our handheld sensor in a dairy farm. Our first objective is
to assess the feasibility of using NIR spectra acquired from specific
body parts of the cow to predict a broad set of blood parameters, such
as metabolites related to energy metabolism, liver function/hepatic
damage, oxidative stress, inflammation/innate immunity, and miner-
als in twelve dairy cows. Second, we explored a few prediction mod-
els for the NIR spectra predictions, identifying the one suitable for
our goal.



52 healhcare application

C
om

m
er

ci
al

N
am

e
W

av
el

en
gt

h
(n

m
)

M
ea

su
re

m
en

t
M

od
e

W
av

el
en

gt
h

Se
le

ct
or

W
ei

gh
t

an
d

Si
ze

D
ai

ry
A

pp
lic

at
io

ns
R

ef
er

en
ce

M
ic

ro
Ph

az
ir

1
6
0
0
–2

4
0
0

R
efl

ec
ta

nc
e,

Tr
an

sm
it

ta
nc

e
M

EM
S

W
ei

gh
t:

1
.2

kg
Li

qu
id

M
ilk

[1
1
0
]

M
ic

ro
N

IR
2
2
0
0

1
1
2
8
–2

1
6
2

R
efl

ec
ta

nc
e

LV
F

W
ei

gh
t:

<6
0

g
M

ilk
po

w
de

r
[1

2
3
]

M
ic

ro
N

IR
1
7
0
0
/1

7
0
0
ES

9
5
0
–1

6
5
0

R
efl

ec
ta

nc
e;

Tr
an

sm
it

ta
nc

e;
Tr

an
sfl

ec
ta

nc
e

LV
F

W
ei

gh
t:

6
4

g
Si

ze
:4

5
×

5
0

m
m

Li
qu

id
m

ilk
,C

he
es

e
[3

7
],[

5
9
],

[5
7
]

Ph
az

ir
1
6
2
4

1
6
0
0
–2

4
0
0

R
efl

ec
ta

nc
e

M
EM

S
W

ei
gh

t:
1
.7

kg
Li

qu
id

M
ilk

[2
7
]

N
IR

O
N

E
1
1
0
0
–2

5
0
0

Tr
an

sm
it

ta
nc

e
M

EM
S

W
ei

gh
t:

1
5

g;
Si

ze
:2

5
×

2
5

×
1
7
.5

m
m

Li
qu

id
m

ilk
[6

1
]

X
-N

IR
9
5
0
–1

8
0
0

R
efl

ec
ta

nc
e

W
ei

gh
t:

1
.6

kg
;

C
he

es
e

[1
0
1
]

N
eo

Sp
ec

tr
a

1
3
5
0
–2

5
0
0

R
efl

ec
ta

nc
e

M
EM

S
Sp

ec
tr

al
re

so
lu

ti
on

:1
6

nm
;W

ei
gh

t:
1
7

g;
Si

ze
:3

2
×

3
2

×
2
2

m
m

Li
qu

id
M

ilk
[6

6
]

N
IR

-S
-G

1
7
5
0
–1

7
0
0

R
efl

ec
ta

nc
e

D
LP

W
ei

gh
t:

8
7

g;
Si

ze
:7

6
×

8
2

×
2
7

m
m

M
ilk

po
w

de
r

[8
6
]

SC
iO

7
4
0
–1

0
7
0

R
efl

ec
ta

nc
e

-
W

ei
gh

t:
3
5

g;
Si

ze
:3

.1
5

×
9
.5

×
2
7
.5

m
m

C
he

es
e,

Li
qu

id
m

ilk
[1

2
2
],[

1
0
7
]

Ta
bl

e
9

:T
he

st
at

e
of

th
e

ar
t

of
th

e
ap

pl
ic

at
io

n
of

N
IR

sp
ec

tr
os

co
py

in
th

e
fie

ld
of

da
ir

y
co

w



4.1 applications 53

4.1.3.2 Material and Methods

The measurements took place in the Carlazzo area on a dairy farm.
For this pilot study, we selected 12 bovines, ten adult female bovines,
and two calves (one male and one female, respectively, aged 6 and 8

months). The four adult bovines were fasting for the spectra acquisi-
tion, and the other six had just returned from grazing. Figure 22 it is
shown the 12 subjects.

Figure 22: Bovine subjects used to test our NIR sensor.

We selected two major acquisition points on the bovine’s body: the
udder and the ear 23. A large amount of blood flows into the bovine
udder, enabling the mammary epithelial cells to synthesize and se-
crete milk or milk components [73]. In cows, more than 500 l of blood
flow is necessary to yield 1l of milk ([25]). Monitoring blood supply
and hemodynamics in the udder tissue would provide information
potentially helpful in interpreting the individual dairy cows’ stress
markers. The ear is another possible acquisition area due to its ease
of acquisition, as shown in Figure 24.

Figure 23: The selected acquisition points from the body: the ear and udder.

During the acquisition, a significant issue was holding steady the
bovines, which resulted in a different total number of spectra ac-
quired for each of them, as shown in Figure 25. Six hundred sixty-six
spectra were acquired: 468 from the ear and 198 from the udder area.
After inspecting the acquired spectra, some samples were removed
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Figure 24: Spectra acquisition from ear point. Spectrometer placed and hold
against the inside of the ear.

from the dataset. Their spectral waveforms were not in line with the
others because they were acquired while the subject was moving. For
the final analysis, only 82 good spectra from the udder and 264 from
the ear totaled 346 good spectra. In Figure 26, the spectra selected for
analysis for each subject are shown. The spectra were acquired using
our spectrometer’s different lamp intensities and other parameters.

Figure 25: Bar plot of the total number of spectra acquired from bovine body
parts. The straight line shows the total number of spectra.

In conjunction with the spectra acquisition, blood was drawn for
analysis in the laboratory. In Table 10, we can see the blood test re-
sults for each bovine. As all the cows involved in the study were
clinically healthy, the range of variability in the data is representa-
tive of a physiological condition, as shown in Table 11. We separated
them into the subjects in the fasting period, the subjects in regular
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Figure 26: Bar plot of the number of remaining spectra after eliminating the
bad spectra.

pasturing, and the two calves. We observed a significant variation
in cows’ total protein levels; most had elevated globulin levels. Al-
though the cows did not manifest clinical disease, the high variability
in some blood biomarkers means we cannot exclude the presence in
specific individuals of subclinical conditions, an expected finding in
a large population. Regarding urea concentration was found to be
steady among the subject. The blood urea level reflects the effects of
dietary intake of crude protein, its digestive utilization, milk protein
secretion, body protein turnover, and nitrogen (N) urinary excretion
[45]. High-producing dairy cattle are commonly fed diets with crude
protein levels exceeding 16% to ensure maximum milk output [20].

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

Reference values

(min-max)

Total proteins (g/l) 75.5 91.3 88.8 97.8 77.5 78.1 79.5 90.9 93.6 73.7 80.8 88.9 74 96

Albumine (g/l) 34.7 34.6 33.1 38.3 37.9 31.1 32.6 36.5 37 35.1 36.5 41.2 33 38

Globuline (g/l) 40.8 56.7 55.7 59.5 39.6 47 46.9 54.4 56.6 38.6 44.3 47.7 38 51

Urea (BUN) (mmol/l) 3.6 3.2 3.7 4.1 3 3.6 3.9 3.2 3.4 3.8 4.8 5.1 3.5 5.5

Creatinine (umol/l) 66 78 75 64 66 71 79 77 78 71 59 62 60 80

Glucose (mmol/l) 2.9 2.77 2.91 3.05 3.12 4.11 3.13 3 2.97 2.81 2.71 2.83 2.82 3.56

Alkaline phosphatase - ALP (UI/L) 97 101 92 88 112 133 146 107 98 141 141 137 83 138

Aspartate aminotransferase - AST (UI/L) 69 79 63 81 76 72 95 92 68 99 99 91 67 97

Alanine transaminase - ALT (UI/L) 43 38 33 31 29 41 45 27 31 30 25 36 29 47

Total Bilirubin (umol/l) 1.54 1.56 1.67 1.69 1.46 1.76 1.7 1.54 1.58 1.65 1.46 1.5 1.52 1.72

Table 10: Blood reference table of each bovine. In columns [b1-b12] represent
the twelve considered bovines. The reference values show the ideal
minimum and maximum values of the specific blood component.

The spectra acquired from the ear part of the subject where taken
by placing our spectrometer on top of a visible vein and part of the
ear were there is no vein. Interestingly, we are able to distinguish
visibly the these two spectra regions as shown in Figure 27. At the
moment we are not able to distinguish the primary factor that is the
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Fasting (m) Regular (m) b11 b12

Total proteins (g/l) 88.35 ± 8.11 82.21 ± 7.34 80.8 88.9

Albumine (g/l) 35.17 ± 1.91 35.03 ± 2.44 36.5 41.2

Globuline (g/l) 53.17 ± 7.28 47.18 ± 6.73 44.3 47.7

Urea (BUN) (mmol/l) 3.65 ± 0.32 3.48 ± 0.39 4.8 5.1

Creatinine (umol/l) 70.75 ± 5.89 73.66 ± 4.69 59 62

Glucose (mmol/l) 2.9075 ± 0.1 3.19 ± 0.42 2.71 2.83

Alkaline phosphatase - ALP (UI/L) 94.5 ± 4.92 122.83 ± 18.05 141 137

Aspartate aminotransferase - AST (UI/L) 73 ± 7.35 83.66 ± 12.06 99 91

Alanine transaminase - ALT (UI/L) 36.25 ± 4.66 33.83 ± 6.7 25 36

Total Bilirubin (umol/l) 1.615 ± 0.07 1.61 ± 0.10 1.46 1.5

Table 11: Mean and standard deviation of blood component grouped into
the fasting group and regular group of the bovines. Without in-
cluding the two calves.

cause of these separation due to various issues during the acquiring
further investigation is needed.

Figure 27: Bovine b8 spectra of the ear. The acquisitions from the vein area
are labelled with vein and they are aggregated together.

In this study we compare different models to predict the different
blood components.

• Linear regression model (LS) with L2 Ridge regularization

• Gradient boosting on decision trees,which produces a predic-
tion model in the form of an ensemble of weak prediction mod-
els, typically decision trees (for this test we used 100 trees). The
boosting method selected is the XGboost.

• Random Forest (RF). It is an ensemble learning method that
we used for regression. Random Forest builds a set of decision
trees. Each tree is developed from a bootstrap sample from the
training data. When developing individual trees, an arbitrary
subset of attributes is drawn (hence the term Random), from
which the best attribute for the split is selected. The final model
is based on the majority vote from individually developed trees
in the forest.
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• Partial Least Squares (PLS) is a regressor for data with numeric
target variable. It uses latent variables, which are also called
score vectors, to model the relationship between input and re-
sponse variables. In the case of regression problems, PLS first
generates the latent variables from the given data and uses them
as new predictor variables. Here, regularization is performed
with the choice of the components - the more components, the
lesser the effect of regularization.

• Stack, which is an ensemble method that computes a meta model
from several base models. With this method, we used as our ag-
gregating model the linear regression.

The spectral data is preprocessed using the Standard Normal Vari-
ate normalization method. After that we used the Savitsky Golay fil-
ter to produce the first and the second derivative as well as the raw
smoothed spectra.

4.1.3.3 Results and Discussion

We used machine learning techniques (random forest (RF), gradient
boosting (GB), linear regression, PLSR, and stack) in order to predict
blood parameters from NIR spectra captured from dairy cows using
our spectrometer. The stacking ensemble had the highest predictive
ability for the majority of the blood metabolite-related traits among
the various machine learning techniques tested, as demonstrated. The
result of the model predictions is shown in Table 12. Regarding the
performances of the machine learning models, the prediction accu-
racy is obtained through random 10-fold cross-validation.

The use of the first and second derivatives gave the most perform-
ing result among the models due to the ability of these methods to
emphasize regions of spectra that are relevant. Since there are no pre-
vious studies on the prediction of blood parameters from the spectra
acquired on top of a cow’s skin, this work gives a first look at the ap-
plication of handheld spectrometers that can be applied directly on a
cows body as a non-invasive tool to retrieve the status of the cow’s
health. For the first time, we showed the potential of a tailored NIR
sensor that can be used to check stress markers on a daily basis at the
farm level without the need for invasive approaches and lab testing.

In this study, we predicted blood metabolites from dairy cow skin
spectra overall and developed models that have moderate predictive
ability. NIR spectrometry uses light scattering principles to measure
particle size, which makes it challenging to capture the nonlinear dif-
fusive scattering produced by the skin and hair even if our spectrom-
eter has benefits, including rapidity of acquisition, cost-effectiveness,
and continuous recording. Another major issue is that near-infrared
spectra are highly influenced by the presence or absence of water,
and the status of the cow’s skin can influence the prediction of the
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blood parameters. Despite all this, we have managed to acquire spec-
tra from dairy cows as a preliminary study and, with this study, saw
that we can predict the blood components fairly. We can improve
these results by using more advanced methods that require the use of
a huge amount of data. For future work, we are hopeful of acquiring
more data to make robust prediction models that make it possible to
check the metabolic conditions of cows multiple times daily, allowing
for real-time intervention to improve health status. The availability
of real-time metabolic indicators is a significant advancement in the
management of subclinical diseases from a managerial standpoint.
Improvements to our prediction models and data acquisition could
be the answer to the problem of monitoring the health of individual
cows.
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4.2 glucose monitoring

In this section, we have shown the application of our MEMS-based
NIR spectrometer in the healthcare field for plants and animals. We
have also considered using our miniaturized spectrometer in the hu-
man wellness area to detect blood glucose levels as a non-invasive
method. Why? The glucose level in the blood is generally measured
by a skin-pricking tool that reaches the capillaries in the dermal sec-
tion of our skin tissue leading to the risk of infection [36]. People with
diabetes monitor their glucose levels on their own. Diabetes mellitus
has been steadily increasing in the recent decade. In the WHO Euro-
pean Region, nearly 62 million people live with diabetes. The preva-
lence of this disease is growing throughout the Region, reaching rates
of 10-14% in some states. This growth, partly due to the general aging
of the population, is mainly secondary to the diffusion of conditions
at risk, such as overweight and obesity, incorrect diet, physical inactiv-
ity, and socioeconomic inequalities (type 2 diabetes). In 2021, over 1.1
million deaths in Europe were caused by diabetes, the fourth leading
cause of death in the European Union.

According to ISTAT 2020 data, the prevalence of diagnosed dia-
betes in Italy is approximately 5.9% (5.9% in men, 5.9% in women),
equal to over 3.5 million people, with a trend in a slow increase in
recent years. The prevalence increases with age, up to 21% in people
75 years or older [88]. The development of a reliable method for non-
invasive blood glucose monitoring has a tremendous impact on the
wellness of diabetic people, and it is a growing topic. An overview
of the blood glucose monitoring method available is shown in Figure
28.

Figure 28: Overview of blood glucose monitoring methods. Adopted from
[33]

One of the non-invasive techniques for blood glucose monitoring is
the optical one, including near-infrared technology. Since NIR waves
can reach deep in the dermal part of the skin tissues where capillaries
are present. NIR sensors are able to detect glucose, thanks to the in-
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teraction of light with glucose molecules in the skin tissue, as shown
in Figure 29 from [71].

Figure 29: Light propagation through skin tissue. Adopted from [71]

Nevertheless, this technology suffers from scattering, making it
hard to estimate glucose levels [38], and the presence of water ab-
sorption in the NIR band makes it very challenging.

For instance, we made some basic skin spectra analyses. We car-
ried out some basic exploratory tests. For instance, we made mea-
surements with our spectrometer near the wrist area to try and dis-
tinguish areas with visible blood vessels and areas smooth areas, po-
sitioning the device accordingly. In Figure 30, we can see the visible
vessel blood area with the layout of our device pressure-marked on
the skin.

In Figure 31, the result of our test also wants to highlight the be-
haviors of spectra obtained when pointing the device in veins ad no
vein area of the wrist. We can see that from 1700 nm to 1850, there
is evidence of the spectra of the two main groups. Most probably, it
confirms that the NIR light has reached the dermis.

There are many studies that use advanced methods to predict glu-
cose levels in the blood [94] [76] [46] [81]. But it is a big challenge to
reach clinical-level accuracy to make these technologies available for
the market. This area of research is very challenging and open to be
exploited. With that being said, in the future, there will certainly be
safer and simpler methods for noninvasive blood glucose detection,
which will result in as accurate detection method as invasive methods
nowadays.
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Figure 30: Application of our spectrometer in wrist area to detect directly
blood vessels. Here is also show the mark on the skin where out-
lined by our spectrometer.

Figure 31: Difference of spectra between vein area and no-vein of a sin-
gle subject. Spectra measured from the internal wrist area. The
dashed are the case with no visible external veins; the continuous
line is the veins visible on the outside, while the dotted case is
an area where the external veins were slightly less dense than in
the previous cases. The VeinRetry5 case is also slightly ambiguous
and remains very much on the edge of the block.
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I N D U S T R I A L A P P L I C AT I O N

Since its discovery and application, Near-infrared (12,500–4,000 cm−1;
800–2,500 nm), commonly abbreviated as NIR, has distinguished it-
self as one of the most modern analytical techniques with solid prospects
for further expansion. It has been around for decades, and much re-
search has been done in this field [7, 72, 97, 100, 109]. Its univer-
sality, vast applicability, uncomplicated instrumentation, low time-to-
result, and low-cost factors are prominent advantages of qualitative
and quantitative analysis. Daily, spectroscopy is performing analyses
impossible by any other method. More common analyses are com-
pleted in a few minutes, which previously required hours. Numerous
applications of this methodology have been eminently successful and
have become familiar to many chemometricians.

NIR spectra of biological materials are signals composed of peaks
because of molecular vibrations of mostly O-H, C-H, and N-H groups
[18, 54] caused by their interaction with infrared light within the
NIR wavelength region. The spectral data measured in this region are
generally composed of high noises and overlapping peaks associated
with the sample’s chemical composition. In recent years, it has been
employed in many industries to analyze the chemical composition
of organic samples, drugs, food, and other compounds. In particular,
the food industry is used for the quantitative and qualitative analysis
of foods such as meat, fruit, grain, dairy products, and beverages [16,
40, 120].

However, a significant challenge with NIRS is the mixed physico-
chemical phenomena captured by the interaction of light with matter.
The interaction often results in both absorption and scattering of the
light. A mixture of materials can be analyzed quickly and accurately
so long as the components present in the mix are known. From a
study of the spectra of the known compounds, it is usually possible
to find a frequency at which only one component possesses strong ab-
sorption and thus find its quantity in a mixture. This rapid method,
combined suitably with deep learning methods, has shown a high
accuracy detecting the combination percentages of a pair of organic
mixtures [98]. The overall NIRS signal contains information related to
the two phenomena mixed. Therefore, when the data analysis aims
to predict chemical components, it is necessary to remove the scat-
tering effects from the spectra as much as possible. There are several
approaches to solving the prediction of chemical composition. Fig-
ure 32 shows a schematic view of our signal processing pipeline. The
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dataset containing all the spectra is treated with filtering, scaling, and
(or) data transformation method.

Figure 32: Pipeline of our processing steps

5.1 materials and methods

This section presents the data collection process and the neural net-
work model architecture used to predict the quantitative measure for
the mixed organic materials. The data collection is made of several
steps that include the sample preparation procedure of the six or-
ganic powders, the data acquisition that describes the mechanism of
acquiring the spectral data. Furthermore, we describe the 1D-CNN
architecture and its parameters. Furthermore, we describe the convo-
lutional neural network architecture and its parameters, the Savitsky
Golay filter, and the use of derivatives.

5.1.1 Sample Preparation

Each sample was prepared by carefully mixing a given fraction in
weight of two base materials and placing the mixture in a container of
the Petri dish type as described here [98]. This work it is also included
the new mixtures of three base materials, as also mentioned in [23].
However, because of the unique characteristics of the powders used,
such as grain size and tendency to form lumps, it is impossible to
guarantee that the mixture is homogeneous.

We made fifteen pairwise combinations using cocoa (Cocoa), ice
sugar (IceSugar), baby milk powder (BabyMilk), potato starch (Potato),
rice starch (Rice), and baking soda (NaHCO3). We added other pair
mixtures to the first dataset totaling 69 samples. Their composition
percentage is made up from set: P = {15, 25, 33, 35, 40, 45, 50, 65, 75, 85}.
The composition percentage of a given mixture of two materials adds
up to 100%, e.g., (A=15, B=85), where A and B are the mixed mate-
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rials. Moreover, we added six other mixtures using three materials in
different compositions, and their percentages were retrieved from set
P. Their composition adds up also to 100%.
E.g., (A=33, B=33, C=33) or (A=45, B=40, C=15), where A,B and C
are the three mixed materials.

Table 13: The pairwise mixtures overview. Value 1 indicates the presence of
a powder mixture, while 0 means that the powders are not mixed.
The diagonal values correspond to the base materials at 100%.

BabyMilk IceSugar NaHCO3 Cocoa Potato Rice

BabyMilk 1

IceSugar 1 1

NaHCO3 1 1 1

Cocoa 1 1 1 1

Potato 1 1 0 1 1

Rice 1 1 1 1 0 1

5.1.2 Data Acquisition

We took the measurements using an automatized mechanical setup.
Figure 33 illustrates the tools used to collect spectral profiles. We put
the NIR sensor and the Petri dish into a dark box to avoid external
interference. The data is then viewed using custom-made software
for the sensor.

Figure 33: The figure shows the tools used for collecting NIR spectrum data.
The setup comprises a Petri dish where the powders are mixed
and put inside, the sensor that collects NIR spectra, and an Eval-
uation kit (EVK) to transfer data from the sensor. Custom-made
PC software to visualize the spectrum.

5.1.2.1 Sensor Used

We calibrated the NIR sensor with SRS-99-020 Reflectance Standard
(a white diffuse reflectance sample) by collecting the spectra of the
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"white" reference at the minimum distance allowed by the scanner
and with the maximum level of light bulb ignition. We used a device
that captures two ranges of wavelength points: [1350− 1650]nm and
[1750− 2150]nm. The total number of wavelength points captured is
702.

5.1.2.2 Capture Mode

We set the Petri dish and the NIR sensor inside a box and inside a
dark room along with the automatic acquiring mechanical setup to
avoid any outside interference. The NIR sensor captured the spectra
of the samples at different sensor-sample distances, moving the verti-
cal axis of the scanner with 1mm pitch along the entire 20mm useful
range. The minimum distance between the outer surface of the Petri
dish window and the detector is 5mm. For each distance, we exam-
ined three different areas of the sample’s exposed surface. We have
acquired three spectra for each zone, hence there are nine spectra ac-
quired at the same distance from each sample. Assuming the sample
is homogeneous, the spectra of the same mixture should be the same
with each other, with minor differences due to measurement noise. In-
stead, we found that there are some differences, particularly between
zones. In isolated cases, we also found differences between spectra ac-
quired at the same location, probably because of measurement errors
related to electrical disturbances or mechanical vibrations. We mea-
sured all samples by varying the level of lamp intensity (parameter
varied between 200 and 250 with step 1).

5.1.2.3 Reflectance Values

The measured reflectance R of a generic sample is calculated by the
sensor at each wavelength as follows:

R =
IC − IF
ISRS − IF

RSRS (2)

where IC is the intensity of light received from the sample, ISRS
the intensity of light received from the reference SRS-99-020 placed
at a given distance during calibration, IF the intensity of background
light (cross-talk), measured during calibration with the lamp on but
without a target, and RSRS the reflectance of the reference SRS-99-
020. In practice, since cross-talk levels generally have small values,
the measured reflectance is proportional to the ratio of the light inten-
sity received by the sample in question to the one measured during
calibration using the SRS-99-020 reference. For this reason, although
reflectance is an intrinsic property of the sample, the reflectance mea-
sured using the same sample at different distances from that used
during calibration is different. A similar effect occurs if the measure-
ment uses a different light bulb ignition level than when calibrating.
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5.1.2.4 Dataset

We took the measurements using an automatized mechanical setup.
We put the NIR sensor and the Petri dish, filled with specific powder,
into a dark box to avoid external interference. Following the mate-
rial preparation and the acquisition of the NIR spectra, we collected
506160 samples1. Each material has 702 features corresponding to the
captured wavelengths, and for each composition percentage of a mix-
ture, we have ∼ 7000 samples. The target variable of each sample is
a percentage distribution over the six base materials describing the
quantity of that material in the spectral sample. Given that each spec-
tral sample represents only the mixture of two or three materials, only
two or three elements in the target vector contain the value of the in-
dividual materials described in the spectral sample. At the same time,
we set the remaining four base materials to 0. Whereas for the mix-
tures containing only one material, we set the five remaining target
variables to 0 and assigned the value 100% to the material represented
by the pure material spectra.s containing only one powder, we set the
five remaining target variables to 0 and assigned the value 100% to
the material represented by the spectra.

Figure 34: Reflectance values of each base material in the range of 1350 nm
to 2150 nm.

5.2 preprocessing

When analyzing near-infrared spectra, a fundamental step is its pre-
processing, which is integral to building a predictive model. The pur-
pose of preprocessing spectra is to remove unwanted physical phe-
nomena in their wavelength ranges to improve the subsequent multi-
variate regression, classification model, or exploratory analysis. The
most widely used preprocessing techniques can be divided into scal-
ing and data transformation methods. We compare current prepro-
cessing methods’ theoretical and algorithmic foundations and their
application’s qualitative and quantitative consequences.

1 The dataset is available upon request.
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Several preprocessing techniques are available to do this, but it is
often difficult to decide which one to choose. In this work, we present
the use of a recently developed preprocessing approach to improving
the predictive power of multivariate models based on NIR spectra of
food materials.

5.2.1 Savitzky Golay

One of chemometrics most commonly used and frequently cited fil-
ters is the Savitzky Golay smoothing, and differentiation filter [90].
The filter is often used to preprocess spectroscopy and signal process-
ing. The filter can reduce high-frequency noise in a signal due to its
smoothing properties and reduce low-frequency signal (e.g., due to
offsets and slopes) using differentiation. After a brief description of
the filter, we show the smoothing aspects of the filter and the differ-
entiation filtering.

Unlike simple digital filtering methods, the Savitzky-Golay filter
preserves higher-order moments around inflection points that a sim-
ple digital FIR filter cannot. It can better preserve features - like local
maxima and minima - through a least-squares polynomial fit around
each point. Also, unlike a moving average, in estimating the value of
the fit at a certain point, the Savitsky - Golay filter does not introduce
a bias at inflection points [3].

Many applications implemented the proposed polynomial smooth-
ing and differentiating functions by Savitzky and Golay, primarily as
smoothing filters [4] and performing numerical differentiation. Smooth-
ing and differentiation are essential in various fields, such as sig-
nal processing, imaging processing, analytical chemistry, and spec-
troscopic analysis. To accommodate these, Savitsky and Golay devel-
oped a digital filter.

For a given signal measured at N points and a width filter, w, sav-
gol, the method provided by scipy calculates a polynomial fit in each
filter window as the filter is moved across the signal. In Figure 35,
we can see a single spectrum of baby milk powder in grey and its
filtered signals with Savitsky-Golay, with a window size of 9 and 21,
respectively, in blue and green lines.

The polynomial fit of each window w is done using the Least of
Squares (LS) estimate between the X matrix and the y vector:

y = Xb (3)

where the matrix X is the so-called Vandermonde matrix. From the
equation above, we calculate the coefficients:

b = (XTX)−1XTy. (4)
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Figure 35: Effect of Savitsky Golay filter on Baby milk powder. The grey line
represents the raw spectra of the powders. The lines in color blue
and black are, respectively, the application of the Savitsky Golay
filter with a window size of 9 and 21 points.

Replacing the Equation 3 in Equation 4 we get the estimated values
of the polynomial fit:

ŷ = Xb = X(XTX)−1XTy = Hy (5)

The product H = X(XTX)−1XT is also called the hat matrix and is the
same for any y for a given polynomial. So it can be calculated once
and stored for a latter application. This is what Savitzky and Golay
have done for polynomials of various orders and pieces of different
lengths n. The (n + 1)th row of the H matrix gives the tabulated
coefficients for the Savitzky-Golay filters. We only use the estimate
for the middle point of the moving window for smoothing. The other
rows are used only for smoothing the signal’s endpoint when fewer
data points are left than the window size 2n+ 1.

The fitted polynomial coefficients can be used to calculate smoothed
first and second derivatives of the signal. In Figure 36 it is shown first
derivative of one spectra for each base materials, and in Figure 37 the
second derivative of the same spectra.

In the field of spectra preprocessing, derivatives play a valuable
part. Using them can increase the performance of discrimination tasks,
enhance significant spectra peaks, and have a detrending effect on the
spectra [84].

5.2.1.1 Scaling Methods

Scaling data is frequently used to compensate for differences in the
sample surface optical characteristics, such as density, scatter, or vary-
ing smoothness/roughness. While looking at the differences between
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Figure 36: First Derivative of one spectra for each base material.

Figure 37: Second Derivative of one spectra for each base material.

the spectra of the different organic pure powders, we can see how the
different scaling methods affect and help to differentiate each spec-
trum, as shown in Figure 39. The different scaling methods proposed
each affect the signal in a particular way that can benefit the predic-
tion model, as shown in Figure 38.

5.2.2 Multiplicative scatter correction (MSC)

Multiplicative scatter correction (MSC) is a signal processing algo-
rithm that is particularly useful for reducing the non-linear scatter
present in both transmission and reflectance spectra. MSC performs
a linear transformation of each spectrum to best match each signal to
the mean of all the spectra in the data set. This method is often used
for spectra measured in diffuse reflection and is considered the best
technique for removing scatter signals from the chemical absorbance.
In our case, the data is reasonably well-behaved, which allows us to
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Figure 38: The different scaling methods applied on BabyMilk powder.

Figure 39: The different scaling methods applied on each powder show a
visual representation of spectra difference.

take the average spectrum so that it can be a close approximation to
the ideal spectrum we are after. The particle size of the powder mix-
tures and path length effects should vary randomly from sample to
sample. Therefore the average should reasonably reduce these effects,
at least in the approximations that these effects are genuinely random.
This is the primary assumption behind MSC.

Mathematically, if we call Xm the mean spectrum, the multiplica-
tive scatter correction is done in two steps. We first regress each spec-
trum Xi against the mean spectrum. This is done by ordinary least
squares: Xi ≈ ai + biXmX. Then, We calculate the corrected spec-
trum Xmsc

i = (Xi−ai)/bi. All these spectra generally have a non-zero
mean, so we can optionally mean-center the spectra beforehand.
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5.2.3 SNV

Light scattering due to the interactions between IR radiation and
sample particles often creates a shift of absorbance levels that could
make spectral interpretation and linear calibration of NIR diffuse re-
flectance spectra more difficult. Light scattering results in path-length
variations that lead to a background signal level that varies with the
wavelength producing baseline shift and curvature, which may vary
significantly within and among samples [49]. The SNV transforma-
tion was introduced by Barnes et al.22 to reduce the multiplicative
effects of scattering and particle size and also to reduce differences in
the global intensities of the signals. Normalizes a spectrum by calcu-
lating the average intensity value and subsequently subtracting this
value from each spectrum. Then, the sum of the squared intensities
is calculated, and the spectrum is divided by the square root of this
sum (the standard deviation). SNV correction is done on each spec-
trum, and a reference spectrum is not required.

Mean center each spectrum Xi by taking away it’s mean X̄i. Then
Divide each mean-centered spectrum by its standard deviation:

Xsnv
i =

(Xi − X̄i)

σi
(6)

Mathematically, it is identical to autoscaling (i.e., normalization) of
the rows instead of the columns of the matrix. The scattering is re-
moved by normalizing each spectrum with the standard deviation of
the responses across the entire spectral range [31]. The benefit of SNV
is that the normalization scheme is based on a sample spectrum alone.
On the other hand, SNV is often influenced by a low signal-to-noise
ratio to enhance unwanted spectral features arising from noise or in-
terference in samples because of the standard deviation in Equation
6.

5.2.4 Min Max normalization

Min–Max normalization is by far the most simple normalization method.
In Min–Max normalization, spectra are first offset-corrected by set-
ting the minimum intensity of the whole spectrum or a defined spec-
tral region to zero. Spectra are then scaled with the maximum inten-
sity value equaling one.

x ′ =
x− min(x)

max(x) − min(x)
(7)
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5.2.5 Mean Centering

Mean-centering is one of the most common pre-treatment procedures
involving subtracting the variable averages from the data. Since mul-
tivariate data is typically handled in table format (i.e., matrix) with
columns as variables and rows as samples, we can consider mean-
centering row centering. The outcome of this method is the transfor-
mation of each row so that the resulting spectra will have a zero mean.
The generic equation for mean centering is:

Xc = X−X (8)

5.3 model

The spectral information extracted from these broad peaks for the
quantitative determination of the chemical composition is often anal-
ysed using chemometry and other linear based methods (i.e. partial
least square, multivariate regression) to capture the various possible
infrared spectra patterns of a single material.

There are many applications in the field of NIR spectroscopy and
mixture analysis. However, this work focuses on their use in the food
analysis industry. Initial works in this field used Multivariate Anal-
ysis (MVA) like Principal Component Analysis (PCA), Partial Least
Square (PLS), and Support Vector Machine (SVM). For instance, [112]
used the least squares support vector machine (LS - VM) to analyze
milk powder’s NIR spectra and determine fat, protein, and carbohy-
drate contents. [109] and [82] assessed the potential of NIR to deter-
mine the quality of rice using respectively PLS and a multi-linear
regression (MLR). [102] used rapid methods, like NIR technology
combined with multivariate analysis (PCA and partial least squares
discriminant analysis (PLS-DA)), to detect fraud of cocoa powder.

Other methods improved the multivariate analysis by using kernel-
based methods like Support Vector Machines (SVM): [96] investigated
the feasibility of NIR spectroscopy combined with kernel PLS regres-
sion algorithm for the quantitative determination of reducing sugar
content in potato flours.

Further improvements are revealed by models that use machine
learning. Machine learning approaches for spectral profiles analysis
[galli2016support, 30, 42], and in particular, Convolutional Neural
Networks (CNN) for spectroscopy signal classification have reported
promising results in the literature. [121] proposed a one-dimensional
CNN (1D-CNN) to classify the origin of tobacco using their NIR spec-
trum and concluded that the performance of 1D-CNN and 2D-CNN
was better than traditional PLS models. Similarly, [69] use a 1D-CNN
to perform a regression task, instead of a classification task as [121],
to find the amount of nitrogen in the Masson pine seedling leaves
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using NIR spectrum. We can view a summary of works that use the
NIR spectrum with their relative task and methods in Table 14.
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5.3.1 Convolutional Neural Network (CNN)

In this work, we propose a modified version of the 1D-CNN model
proposed by [68]. Compared to our model, [69] performs regression
on a single variable (the nitrogen content). Their model is used on
data coming from the visible/near-infrared, mid-infrared, and a com-
bination of both, while ours uses information only on NIR data. More-
over, they do not perform experiments with unseen combinations and
unseen percentages.

We proposed a 1D-CNN network with some modifications that was
used in [19]. The 1D-CNN in Figure 40 model proposed is mainly
inspired by the philosophy of 1D-CNN [47]. It consists of seven train-
able layers - five convolutional layers and two fully connected lay-
ers. Our model’s primary objective in implementing a grid search
approach is hyperparameter optimization. Hyperparameter optimiza-
tion is applied to find the optimal values of the kernel and filter size
from a discrete set. These are values that can control the learning pro-
cess, and tuning them ensures that the model can optimally solve a
problem by minimizing the loss function used and giving accurate
results. The input of the 1D-CNN is a one-dimensional spectral vec-
tor containing values of the 702 wavelength points, and the target
is also a one-dimensional vector containing the percentage distribu-
tions of the six materials. Every convolutional layer is there to capture
patterns. For example, the first layer captures patterns like edges, cor-
ners, dots, etc. Subsequent layers combine those patterns to make
more extensive patterns (like combining edges to make squares, cir-
cles, etc.). Now, the deeper the network gets, the more complex the
patterns become; hence, we applied hyperparameter optimization to
capture as many combinations as possible. The output of our model is
a percentage distribution of the six materials that represents precisely
the content amount of the materials in the spectra.

Figure 40: 1D-CNN architecture. Boxes with dashes represent whether a
hyper-parameter search of filter size is made.
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5.4 evaluation indices

Training, validation, and testing sets were created to assess the model’s
predictive qualities. Model training was performed based on 56% of
the total spectra. Model validation and testing to value the perfor-
mance of the pre-processing procedures and our 1d-CNN model were
evaluated by evaluating the differences between observed and pre-
dicted values after fitting the model using respectively 18% and 25%
of the entire data set. The applied indices were the coefficient of deter-
mination (R2), the root means square error (RMSE), the mean square
error (MSE), and the mean absolute error (MAE). R2 (the coefficient
of determination) is a commonly used measure for the goodness of
fit. The RMSE is also commonly used to measure differences between
the calculated and observed values from the measured model and
indicates the accuracy of the calculation.

R2 =

∑n
i=1(ŷ1 − y1)

2∑n
i=1(ŷi − y1)2

(9)

RMSE =

√∑n
i=t(ŷi − yi)2

n
(10)

.

5.5 results scaling and data transformation methods

The results are grouped into two. First, we present the results ob-
tained from the different scaling (normalization) methods adopted
and how these compare with the use of the Savitsky Golay filter. Sec-
ondly, we show for each normalization method the result of applying
data transformation. The data transformation is done by applying the
Savitsky Golay filter to obtain the derivative of each spectral data. As
mentioned before, these techniques were divided into the data treat-
ments of data scaling and transformation.

5.5.1 Scaling

Pre-processing techniques were used to improve the spectral char-
acteristics and optimize the relationships with the intrinsic spectra
properties and the distribution of percentages contained in the spec-
tra. Table 15 shows the result of the normalization methods adopted
and their relative parameter used for the model. For each scaling
method, a hyperparameter optimization process was applied to ob-
tain the optimal parameter for the specific scaling method.

For each scaling method used in Table 15, we compared the results
with the use of the Savitsky Golay filter. Conducting a grid search on
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Scaling Num of Filters Kernel Size Dense Layers Units MAE - Train MAE - Validation MAE - Test

Mean Centering 64 9 256 0.0062 0.0064 0.0055

SNV 64 9 128 0.0067 0.0067 0.0070

MSC 64 7 256 0.0083 0.0086 0.0096

None 16 9 256 0.0098 0.0090 0.0086

MinMax 16 3 256 0.0098 0.0098 0.0093

Detrend 64 3 256 0.0098 0.0107 0.0109

MSC + DET 64 3 128 0.0107 0.0108 0.0104

SNV + DET 64 7 256 0.0103 0.0109 0.0100

Table 15: Result of hyperparameter tuning performed on the different scal-
ing methods, ordered by the smallest mean absolute error on the
test set.

the window size of the filter and its polynomial degree. The results
are seen in Table 16

Normalization Polynomial Order Window Size MAE - Train MAE - Validation MAE - Test

Mean Centering 3 15 0.0055 0.0050 0.0046

SNV 2 11 0.0069 0.0073 0.0061

MSC 3 9 0.0073 0.0068 0.0065

MinMax 3 9 0.0097 0.0097 0.0087

None 2 11 0.0101 0.0100 0.0090

SNV + DET 3 9 0.0091 0.0090 0.0093

MSC + DET 2 9 0.0111 0.0114 0.0107

Table 16: Results of grid search on the polynomial order and window size
of the Savitsky Golay Filter. Applied on each scaling method.

5.5.2 Data Transformation

Baseline shift is a very common effect in spectroscopy that is caused
either from the instrument (lamp or detector instabilities) or sample
handling (cuvette repositioning) effects. Because the first derivative of
a constant absorbance offset is zero, using the first derivative spectra
always eliminates such baseline shifts and improves the accuracy of
quantification. In Table 17 is shows the result of applying derivatives
on our spectral data and combining them with the relative raw data.
This is done for each scaling method.

5.6 results : scenario based

The quantitative analysis of the NIR spectra based on the multi-modal
1D-CNN is studied in three scenarios. The first scenario, Whole Pre-
diction (WP), where we test the model ability to predict the same
composition percentages of mixtures seen in the training set. In this
scenario, given two materials A, B, and their combination (A, B), the
model sees the spectral profiles with the same percentage and combi-
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D1 D2 D1 ∥ D2 Raw ∥ D1 Raw ∥ D2 Raw ∥ D1 ∥ D2

Mean Centering 0.0084 0.0213 0.0082 0.0064 0.0066 0.0070

SNV 0.0080 0.0159 0.0084 0.0073 0.0080 0.0058

MinMax 0.0135 0.0212 0.0140 0.0084 0.0081 0.0084

MSC 0.0082 0.0229 0.0084 0.0073 0.0078 0.0087

SNV + DET 0.0193 0.0281 0.0196 0.0101 0.0102 0.0114

MSC + DET 0.0230 0.0322 0.0198 0.0107 0.0108 0.0117

Table 17: Result of the application of derivatives on spectral data and its
combination with the relative raw data. The results are ordered by
the smallest mean square error on the test set.

nation (A=25, B=75)2 in training and in testing set. The WP is used
as a baseline for the other scenarios.

We used the second scenario, Unseen Percentages (UP), to test the
model’s ability to predict the unseen composition percentage of the
same mixtures. In this scenario, the model sees the same mixtures of
materials in the training set, but with different composition percent-
ages. For example, with the combination set {(A=15, B=85),(A=35,

B=65), (C=85, D=15)} in training set, the model is tested using {(A=25,

B=75),(A=50, B=50), (C=75, D=25)}.
The last scenario, Unseen Percentage and Mixture (UPM), used to

test the model’s ability to predict the unseen composition percentage
of unseen mixtures. UPM is similar to UP, but here the primary goal is
to train and test the model with different composition percentage and
mixtures. This means that the model will see the following pairs and
percentages in the training set {(A=25, B=75),(A=50, B=50), (C=75,

D=25)}, and in the testing set it will only see {(A=15, C=85), (A=35,

D=65), (B=85, C=15)}.
For each scenario is reported a table that summarises the model’s

overall performance for each material, this is done by filtering the
model’s output for each of the six materials for the corresponding
scenario. The full output of each mixture for each scenario can be
retrieved from the GitHub repository here or upon request 3 4.

5.6.1 Whole Prediction (WP)

The first scenario (WP) we used all the composition percentages of
all mixtures. We use this scenario as a baseline result for the next
experiments, as this one shows the ideal case where both the mixtures
and the percentages have been seen during training.

Given the 454896 samples, we split them into train, validation, and
test set, respectively with the ratio of 45%, 22%, and 33% which is a

2 The mixture of two materials A and B, where A is at 25% of the total composition and
B at 75%.

3 https://github.com/dtegegn/CNN-NIR-Spectra

4 https://www.seletech.com

https://github.com/dtegegn/CNN-NIR-Spectra
https://www.seletech.com
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good amount of data to train and test the model’s performance. All
the three dataset have the same type and balanced number of the
62 different composition percentage of all mixtures including the six
base materials of 100%. In Table 18 we report the metrics of the overall
performance of our model for this experiment. We can see that most
of the materials have good performances except for Babymilk, which
has a higher Mean Absolute Error (MAE).

Table 18: The overall performance for the WP scenario.

Material MAE MSE RMSE R2

BabyMilk 0.0161 0.0009 0.0298 0.9910

IceSugar 0.0065 0.0002 0.0143 0.9976

NaHCO3 0.0046 0.0001 0.0114 0.9983

Cocoa 0.0089 0.0005 0.0228 0.9941

Potato 0.0060 0.0003 0.0167 0.9961

Rice 0.0073 0.0004 0.0189 0.9958

5.6.2 Unseen Percentage (UP)

The WP experiment settled the baseline result for the prediction for
all the mixtures and their quantities, and we use it to see the best case
scenario for our model. Therefore, we created specific subsets from
the whole dataset used in WP, by filtering specific set of composition
percentage of the mixtures, therefore we can test the model’s perfor-
mance on predicting unseen composition percentage of the same mix-
ture and compare it with the baseline scenario. Thus, in the second
experiment UP we created two subsets of P = {15, 25, 35, 50, 65, 75, 85}:
P1 = {15, 35, 65, 85} and P2 = P − P1 = {25, 50, 75}, then defined the
set MP1 as the mixtures of materials belonging in set P1 and used it
to train the model. We also defined the set MP2 that comprises of the
mixtures of materials belonging to set P2 and the six base materials
at 100%, and used it for testing. We use 33% of the training set MP1

for the validation set, totaling 118380 samples for the training, 58308
for the validation and 278208 for the testing sets.

Table 19: The overall performance for the UP scenario.

Material MAE MSE RMSE R2

BabyMilk 0.166 0.013 0.115 0.865

IceSugar 0.060 0.003 0.052 0.969

NaHCO3 0.046 0.001 0.031 0.989

Cocoa 0.069 0.003 0.058 0.950

Potato 0.041 0.002 0.046 0.969

Rice 0.062 0.004 0.063 0.941
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With the UP experiment, the number of mixtures in the training
(13 mixtures) set outnumbered the ones in the test set (6 mixtures),
therefore, the set of mixtures in the training set is a subset of the mix-
tures in the test set but in different quantities. This setup allows us to
test the model’s predicting ability only on the composition percent-
age. We can see from Table 19 the model’s overall performance for
each material.

5.6.3 Unseen Percentage and Mixture (UPM)

The goal of the UPM experiment is to evaluate the model perfor-
mance on predicting the unseen composition percentage of the un-
seen mixtures, thus the model’s ability to extract from the mixture
spectral data the single component’s features and its ability to use
these to generalize on the unseen percentage with unseen mixtures.

The experiment UP had already two sets for the training and test-
ing, MP1 and MP2 respectively. In the UP experiment, the set MP1

contained a greater number of different mixtures than those found
in MP2. While in the UPM experiment, we used the MP2 set as the
training set and the MP1 set as the testing set. Consequently, this
procedure had the number of mixtures for the test set outnumbering
the ones found in the training set, unlike for the UP experiment. This
allowed us to test the different portions of the test set, as we created
subsets of the testing set. For the first testing subset (MP1S1), we used
mixtures that are found also in the training set, while for the second
testing subset (MP1S2), we used the mixtures that are not found in
the training set. Reminding that the composition percentage of the
mixtures in the training and test sets are totally different.

Finally, we obtained three results, the whole test set for this scenar-
ios (MP1), the first subset (MP1S1), and the second subset (MP1S2).
The subset MP1S1 contained all mixtures that are also included in
the training set except the base materials at 100%. The MP1S2 sub-
set contained all mixtures that not found in the training set, which is
the experiment for the UPM scores. The total test set MP1 contained
MP1S1 and MP1S2. Our focus here is to see the model prediction on
the subset MP1S2 for the composition percentage of unseen mixtures,
and we can see the model’s performance for each material in Table 22.
In Table 20 and 21 we can see the overall performance of the model
for each material respectively using the whole testing set MP1 and
the subset MP1S1.

5.7 DISCUSSION

The results achieved from the WP experiment are encouraging. The
1D-CNN predicted all the composition percentages of the mixtures
with a very low error as seen from Table 18, with an average of
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Table 20: The overall performance for the UPM scenario. The results are for
the whole test set (MP1) of the UPM scenario

MAE MSE RMSE R2

BabyMilk 0.123 0.0426 0.2063 0.5135

IceSugar 0.0566 0.0136 0.1165 0.8361

NaHCO3 0.0434 0.0146 0.1209 0.791

Cocoa 0.0703 0.0201 0.1419 0.7933

Potato 0.0425 0.0168 0.1297 0.7765

Rice 0.0593 0.0175 0.1322 0.813

Table 21: The overall performance for the UPM scenario. The table shows
the results for the MP1S1 subset.

MAE MSE RMSE R2

BabyMilk 0.0489 0.0048 0.0696 0.9535

IceSugar 0.0115 0.0007 0.0257 0.991

NaHCO3 0.014 0.0011 0.0336 0.9883

Cocoa 0.0135 0.0017 0.0411 0.97

Potato 0.0078 0.0006 0.0236 0.9901

Rice 0.0144 0.0016 0.0396 0.9723

R2 = 0.99. This result is promising since the model is able to extract
the features of the specific composition percentages of mixtures. The
outcome of the WP experiment encouraged us for the much harder
tasks that are the UP an the UPM experiments.

The UP experiment is created to see how well we can predict the
unseen composition percentages by training the model with the same
mixtures as in the testing set but different composition percentage
of the same mixtures. Training the model with MP1 and testing it
with MP2 gave good results in terms of the determination coefficient,
R2 = 0.9471, with a 5% decrease in respect to the WP average R2

score.
The UPM experiment have fewer variation of mixtures and quan-

tities in the training set than in the test set and scored an average of
R2 = 0.7539 using all the test set MP1, with 25% decrease in respect
to WP average R2 score. Using the MP1S1 subset led to better result
since the model had to predict only the unseen composition percent-
age but same mixture, just as the UP experiment, the average deter-
mination coefficient for this testing subset is R2 = 0.9775 with less
that 2% decrease in respect to the WP experiment. The results for the
MP1S1 set can be compared also to the UP experiment: the MP1S1
results showed a 3% improvement in respect to UP experiment. This
is because the UPM training set contained uniformly distributed com-
position percentage of each material that are in {25, 50, 75} and the six
base materials at 100%, while the UPM missed the mixtures that con-
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Table 22: The overall performance for the UPM scenario. The table shows the
main results for the UPM experiment using MP1S2 testing subset.

MAE MSE RMSE R2

IceSugar 0.0972 0.0252 0.1587 0.718

NaHCO3 0.0699 0.0267 0.1635 0.3653

Cocoa 0.1213 0.0367 0.1916 0.6769

Potato 0.0737 0.0314 0.1773 0.6486

Rice 0.0996 0.0318 0.1783 0.7266

tains 65% of one material and 35% of the other leading to unevenly
distributed composition percentage for one mixture.

While using the MP1S2 subset as the test set, we have an average
determination coefficient of R2 = 0.627, with a significant 36% loss in
respect the average R2 of the WP experiment. This experiment is set
up to to see if the model learned the representation of the single ma-
terials in different compositions so that it can predict unseen compo-
sition percentage of unseen mixtures. We must take into account also
the fact that the materials quantities are prepared by weight rather
than volume, this mean that we can have powders like BabyMilk that
have a greater volume for a small amount. This characteristic can
affect the spectral acquisition since the material with higher volumes
tend to occupy most of the Petri dish causing little signal for the other
materials mixed with them. In this specific test case scenario of UPM

the model is trained with mixtures containing only BabyMilk mixed
with the other 5 materials in different compositions and one other
mixture of IceSugar and NaHCO3, in particular the subset MP1S2 of
the test set for this experiment doesn’t contain any combination of
BabyMilk, but it is trained with mixtures that contain BabyMilk. The
worst results in terms of the R2 score NaHCO3 gave the worst results
because we have only two combination of this materials in the test
set, with Cocoa and Rice, while in the training set there is no such
mixture, adding also the fact that the NaHCO3 have higher density
in terms of g/cm3 in respect to Cocoa and Rice. Therefore, the spec-
tra of of NaHCO3 mixed with Cocoa and then with Rice can be very
difficult to interpolate without being trained.

In WP experiment the model was able to overcome the errors dur-
ing mixtures and the weight-volume ratio and gave good result this
is thanks to the huge amount of sample it is trained on. In the UP and
especially the UPM experiments the errors due to the preparation of
the materials and the the models ability to overcome them became
very clear.

The objective of selecting the data preprocessing method is to al-
ter the spectra such that our model can improve on predicting the
content percentage of the powder mixtures, and this is done by es-
tablishing a good correlation between spectra and concentration data.
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The mean-centering method, which is mainly used to eliminate the
linear baseline shifts and results as the best scaling method for our
spectra data and model in every experiment block as shown in Tables
15, 16

Also, the SNV scaling method was very robust in various experi-
mental blocks. It performed -20% less than the mean-centering meth-
ods in Table 15 and 24% less when using the Savitsky Golay filter....

The MSC method is often used for measurements in diffuse reflec-
tion, performed -42% worse than the mean-centering method from
Table 15 and -30% worse when using the Savitsky Golay filter.

In the case of the min-max, the normalization method that is mainly
used to eliminate the influence of different optical path lengths, showed
-40% performance on the test set compared with the mean-centering
method from Table 15 and -40% when using the Savitsky Golay filter
from Table 16.

As for the first derivative method, signals with steep edges empha-
size more than relatively flat bands by calculating the first derivative.
In the second derivative, even the highly flat structures can be evalu-
ated. The results achieved by comparing the normalization methods
show that mean centering. The 1D-CNN predicted all the composi-
tion percentages of the mixtures with a deficient error, as seen from
Table 15, with an MAE on the test set of MAE = 0.0055. This result
is promising since the model can extract the features of the specific
composition percentages of mixtures. The outcome of the normaliza-
tion methods was also compared against the Savitsky Golay filter.
Applying this filter improved most of the results shown in Table 15

that were obtained without using the filter. In table 23 we can see the
improvement in percentage for each normalization method.

MAE - Train MAE - Validation MAE - Test

Mean Centering 13% 28% 20%

SNV -3% -8% 15%

MSC 14% 26% 48%

None -3% -10% -4%

MinMax 1% 1% 7%

Detrend 14% 10% 17%

MSC + DET -4% -5% -3%

SNV + DET 13% 21% 8%

Table 23: Improvement of Savitsky Golay on spectral data for every normal-
ization method used

In regard with the data transformation process we can see that con-
catenating the derivative information to the various normalization
methods we can see that concatenating the first derivative informa-
tion to raw spectra generally gives the best performance on our test
set. whilst using the SNV normalization method with the concatena-
tion of the derivatives gives the best performance. Thus, when con-
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sidering using the derivative information is best to use the following
modalities: Raw ∥D1, Raw ∥D2, Raw ∥D1 ∥D2.

We must take into account also the fact that the materials quantities
are prepared by weight rather than volume, this mean that we can
have powders like BabyMilk that have a greater volume for a small
amount. This characteristic can affect the spectral acquisition since
the material with higher volumes tend to occupy most of the Petri
dish causing little signal for the other materials mixed with them.
Nevertheless the prediction for baby milk with MC scaling and with
Savitsky Golay filter, are better than those presented in [98]. These
improvements are shown in table 24

Material MAE MSE RMSE R2

BabyMilk 0.0073 (54.47%) 0.0003 (67.09%) 0.0172 (42.25%) 0.996 (0.5%)

IceSugar 0.0045 (31.53%) 0.0002 (17.66%) 0.0128 (10.26%) 0.998 (0.04%)

NaHCO3 0.0027 (40.66%) 0 (58.56%) 0.0064 (43.53%) 0.9995 (0.12%)

Cocoa 0.0031 (64.61%) 0.0001 (85.53%) 0.0085 (62.7%) 0.9992 (0.51%)

Potato 0.0049 (17.6%) 0.0002 (26.46%) 0.0149 (11.06%) 0.9973 (0.12%)

Rice 0.0053 (27.76%) 0.0002 (40.85%) 0.0154 (18.62%) 0.9973 (0.15%)

Table 24: Result for MC scaling method with the Savitsky Golay filter and
their improvement in percentage compared to the result presented
in [98]. The percentage in parenthesis shows the amount of im-
provement.

In table 25,is shown the performance of prediction of each percent-
age that is a given material is mixed with.

BabyMilk IceSugar NaHCO3 Cocoa Potato Rice

0% 0.09% (0.0089) 0.02% (0.0021) 0% (0.0005) 0% (0.0003) 0.02% (0.0032) 0.03% (0.0041)

15% 15.26% (0.0237) 14.22% (0.0274) 14.89% (0.0091) 15.26% (0.0103) 14.15% (0.0308) 14.23% (0.0208)

25% 23.93% (0.0304) 25.88% (0.0154) 25.03% (0.01) 25.37% (0.0099) 25.33% (0.0183) 24.03% (0.0244)

33% 32.9% (0.0217) 32.77% (0.0167) 33.75% (0.0146) 34.38% (0.0176) 33.33% (0.0266) 32.72% (0.0207)

35% 34.37% (0.0232) 35.26% (0.0302) 35.37% (0.0127) 35.83% (0.0141) 33.61% (0.0332)

40% - - - 41.5% (0.0122) - -

45% 44.32% (0.0157) - - - -

50% 48.65% (0.0284) 50.83% (0.0206) 49.76% (0.0119) 49.8% (0.0319) 51.36% (0.0225) 51.16% (0.025)

65% 64.25% (0.0114) 64.8% (0.0163) - 65.85% (0.0091) 64.77% (0.0227) 65.09% (0.031)

75% 74.4% (0.0137) 73.33% (0.0236) 75.71% (0.0145) 75.72% (0.0062) 77.75% (0.0236) 76.34% (0.0415)

85% 84.61% (0.0098) 85.2% (0.0239) 85.17% (0.0099) 85.44% (0.0071) 85.27% (0.0251) 85.18% (0.0301)

100% 100% (0.0001) 99.92% (0.007) 99.98% (0.0028) 100% (0.0001) 99.99% (0.001) 99.65% (0.0125)

Table 25: Performance of prediction of various percentages for each material
using the Mean-centering scaling method combined with Savitsky
Golay filter

5.8 conclusion

In this work, we analysed the problem of predicting composition per-
centage of organic material mixtures. The NIR spectra of organic ma-
terials holds intrinsic information on the analyte, including its quan-
tity. To uncover these intrinsic characteristics of the 1D-CNN showed
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great performance, in the WP experiment, by extracting directly rele-
vant wavelength (feature) from the NIR spectrum that described the
quantity of the analyte. This led to better performance of the model
avoiding the accumulation of errors caused by manual wavelength
selection.

The NIR spectra of the mixtures are most probably affected by the
density, in terms of g/cm3, of each material in the mixture. Thus,
affecting the result of each experiment especially in the UPM experi-
ment.

The research leads to future developments of this work. The re-
sults of the UPM using the MP1S2 testing subset can be improved
by taking into account the weight-volume ratio and by modeling new
1D-CNN architecture for the unseen composition of unseen mixtures.
It also interesting to extend the WP experiment’s model by testing
it on different composition percentage of more than two mixtures to
see if the model is acquire a good generalizing ability.

The NIR spectra of organic materials hold intrinsic properties of
the composition, including their quantity. A specific preprocessing
method can add another characteristic to the spectra, making them
easy to analyze. In this work, we evaluated different scaling and trans-
formation methods in the context of spectra preprocessing when pre-
dicting the composition percentage of organic material mixtures.

The filtering method introduced by Savitzky Golay has long been
used in the absorption spectroscopy community for its ability to si-
multaneously smooth and differentiate absorption spectra. In this in-
vestigation, the Savitzky Golay method applied to our near-infrared
range (1350nm - 2150nm) significantly improved the material content
percentage prediction in a mixture. Combining the scaled NIR spectra
of a material or mixtures with their relative derivatives can uncover
further information and result in a classification or regression task,
making the model robust.

Our dataset also contained the pure powders spectra and their mix-
tures of up to three different powders. We saw a growing trend in
the complexity of preparing such mixtures and their analysis when
combining more than three powders since we cannot guarantee the
homogeneity of the mixture.

Additional work is needed to tackle the high number of attributes
when concatenating the derivative data to the original spectra. So,
models that reduce the dimensionality of the single sample without
losing too much information are good starting points to improve the
overall performance of near-infrared spectra analysis.
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