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Abstract

Understanding leading non-perturbative corrections, showing up as linear power corrections,
is crucial to properly describe observables both at lepton and hadron colliders. Using an
abelian model, we examine these effects for the transverse momentum distribution of a Z
boson produced in association with a jet in hadronic collisions, that is one of the cleanest
LHC observables, where the presence of leading non-perturbative corrections would spoil the
chance to reach the current experimental accuracy, even considering higher orders in the
perturbative expansion. As we did not find any such corrections exploiting semi-numerical
techniques, we looked for a rigorous field-theoretical derivation of them, and explain under
which circumstances linear power corrections can arise. We apply our theoretical understand-
ing to the study of event-shape observables in e+e− annihilation, focusing in particular on
C-parameter and thrust, and obtaining for them an estimate of non-perturbative corrections
in the three-jet region for the first time. We also derived a factorisation formula for non-
perturbative corrections, with a term describing the change of the shape variable when a
soft parton is emitted, and a constant universal factor, proportional to the so-called Milan
factor. These observables are routinely used to extract the strong coupling constant αs and
they constitute an environment to test perturbative QCD. It is then extremely important
to obtain reliable estimates of non-perturbative corrections in the whole kinematic region
relevant for the αs fits.
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Introduction

Despite the great success of the Large Hadron Collider (LHC) since its start up, culminated
with the discovery of the Higgs boson in 2012, no clear hint of physics beyond the Standard
Model (SM) has been yet detected. As an alternative strategy to investigate new physics
signals, one can then increase the accuracy of the measurements and of the theoretical com-
putations, in order to look for modest deviations of the production and decay properties of
the SM particles, that can signal the presence of new physics, either as the exchange of virtual
particles, or as signals of compositeness. Currently several processes have been computed at
the two-loops level in QCD [1–12], and very few at three loops [13–16].

When increasing the loop order one should start to worry about the growth of the size
of the coefficients of the perturbative expansion, which will eventually grow factorially. In
QCD this growth can manifest itself quite early in the perturbative expansion, due to the
large size of the coupling constant αs, so that the terms of the perturbative expansion will
reach a minimum value, and then will start growing. The minimum value thus becomes an
inherent limit to the precision of the calculation.

The work presented in this thesis has started with an investigation of the presence of
power corrections that are only linearly suppressed in the scale of the process, associated
with the factorial growth of the perturbative expansion, in the context of the transverse
momentum distribution of the Z boson produced at hadron colliders. This work was based
upon a semi-numerical investigation, that showed no evidence for linear power corrections in
the Z transverse momentum distribution, with or without rapidity cuts. Subsequently, we
looked and found an analytic proof of the absence of linear corrections for this distribution.
This analytic proof could also be applied to the production of hadrons in e+e− annihilation,
and we realized that it had profound implications for the computation of shape variables
distributions in this framework. This is the reason why the present work is divided into two
parts, one regarding the transverse momentum distribution of the Z boson, and the other
regarding shape variables.

In the first part we only illustrate the general framework that we adopt for these kind of
calculations, and illustrate our semi-numerical results.

In the second part we present the analytic argument for the computation of shape vari-
ables, but also illustrate how the same method can be used to demonstrate the absence of
linear corrections in the case of the Z transverse momentum distribution.
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Overview on Renormalons

We start by giving a brief introduction to the concept of infrared renormalons, with particular
focus on their relation with asymptotic series.

Asymptotic Series

It is well known that, for a generic renormalizable Quantum Field theory, a given observable
R can be expressed as a perturbative expansion in the renormalized coupling α

R =
∞∑
n=0

cnα
n+1. (1)

Unfortunately, this series is not convergent, and then, in order to assign a “sum” to it,
this needs to be an asymptotic series, i.e. such that, for any order N we can find a number
KN in a region C of the complex α−plane such that∣∣∣∣R− N−1∑

n=0

cnα
n+1

∣∣∣∣ < KNα
N+1. (2)

In particular, for a factorial growth of the coefficients

cn ' anΓ(1 + b+ n), (3)

with a and b real and integer numbers, we observe that the series decreases for lower orders,
and then it starts to increase, after reaching a minimum value in correspondence of an order
N? such that

|cN?−1α
N? | ' |cN?αN

?+1|, (4)

and the expression of N? assumes the form

N? =
1

|a|α
. (5)

Thus, in order to give a meaning to the sum of the series, we need to truncate it in
correspondence of its minimum value, introducing in such a way a truncation error which
exponentially decays

cN?αN
?+1 ∝ exp

(
− 1

|a|α

)
. (6)

An alternative and very valuable method in order to sum an asymptotic expansion (as the
one in eq. (1)) has been introduced by Borel, and consists in defining the Borel sum as [17]

B[R](t) =
∞∑
n=0

cn
tn

n!
, (7)
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which can be easily obtained by dividing each coefficient of eq. (1) by n!. If B[R](t) is regular
for t > 0 and does not increase too rapidly for t→∞, then it is safe to define its associated
Borel Integral :

R =

∫ ∞
0

dte−t/αB[R](t). (8)

The last equality stands in the sense that, as far as the integral on the right hand side of
eq. (8) converges, it reproduces term by term the perturbative expansion of the observable
R.

The Borel method for summing a series is quite valid for alternating sign series, as their
associated Borel integral does not contain poles within the integration range.

For what concerns a fixed sign series,the method instead fails. Let us consider a factorially
divergent series of the form

R =
∞∑
n=0

ann!αn+1, (9)

being a > 0; its Borel sum will assume the expression

B[R](t) =

∞∑
n=0

antn =
1

1− at
, (10)

such that the associated Borel integral will be

R =

∫ ∞
0

dte−t/α
1

1− at
. (11)

We can note immediately that, in this case, the Borel integral is not well defined, due to
the presence of the pole t = 1/a along the integration path. Nevertheless we can still evaluate
the right hand side of eq. (11) by properly specifying a prescription to avoid the pole, on
which the final result will depend. Fortunately the ambiguity introduced by this choice is
exponentially suppressed. Indeed, by defining

R± =

∫ ∞
0

dte−t/α
1

1− at± iη
, (12)

then the difference will be proportional to the residue evaluated at the pole t = 1/a

R+ −R− ∝ e−1/(aα). (13)

Thus we observed that for a given observable, the factorial growth of the coefficients of its
associated perturbative expansion in a generic QFT is related to poles in the Borel plane.
This type of divergence for a perturbative series is called a “renormalon”, as it is strictly
related to the renormalization group flow of the associated theory. In particular, there are
three known sources of factorial growth affecting the perturbative series of a generic QFT:
ultraviolet (UV) renormalons, infrared (IR) renormalons an instantons.

In the following we will only focus on IR renormalons in QCD, showing how, due to
the asymptotic freedom of the theory, QCD renormalons arising from IR regions are strictly
related to power corrections.

4



Asymptotic Series and QCD Renormalons

It is interesting to investigate the consequences of the argument exposed in the previous
section in the QCD case. Let us then consider an O(αs) correction to a generic observable,
assuming we have already subtracted the UV divergences thanks to the renormalization
procedure. Denoting with k the momentum flowing into the gluon propagator, for small k
the loop integral takes the form ∫ Q

dkpαs, (14)

being Q the scale that characterizes the process and p an integer, process-dependent
parameter. If we want to take into account all the perturbative orders, we need to replace

αs → αs(k) =
1

b0 ln (k2/Λ2
QCD)

=
αs(Q)

1− αs(Q)b0 ln(Q2/k2)
(15)

where

b0 =
11CA − 4TRnl

12π
(16)

is the first coefficient of the QCD β−function, with TR = 1/2, CA = N for SU(N) (3 for
SU(3)) and nl is the number of light flavors in the theory.

The last member of the chain of equalities in eq. (15) can be written as the sum of a
geometric series

αs(Q)

1− αs(Q)b0 ln(Q2/k2)
=
∞∑
n=0

bn0 lnn
(
Q2

k2

)
αn+1
s (Q), (17)

that can be replaced into eq. (14) to obtain

∞∑
n=0

(2b0)nαn+1
s (Q)

∫ Q

0
dkkp−1 lnn

(
k

Q

)

= pQp
∞∑
n=0

(2b0)nαn+1
s (Q)

∫ 1

0
dxxp−1 lnn x

∝
∞∑
n=0

(
2b0
p

)n
n!αn+1

s (Q), (18)

where, in the second member we implemented the change of variable k/Q→ x.
Thus, by considering higher orders contributions we have obtained a series that diverges

factorially. We dubbed this divergence a Infrared (IR) “Renormalon”, as it comes from the
renormalization group equation for the strong coupling constant αs, when integrating in the
infrared region.

As shown in the previous section, in order to sum the series in eq. (18) we need to truncate
it in correspondence of its minimum value nmin = p/(2b0αs(Q)), introducing in such a way a
truncation error scaling as

e−p/(2b0αs(Q)) = eln(Λ2
QCD/Q

2)pb0/2b0 =

(
ΛQCD

Q

)p
, (19)
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where p strictly depends upon the considered process.
Thus in QCD, due to asymptotic freedom property, the factorial growth of a perturbative

expansion leads to power corrections scaling as

(
ΛQCD

Q

)p
, and we talk about Infrared linear

renormalons for p = 1.
As we said some lines before, the factorial growth of a perturbative expansion can also

lead to UV renormalons, with the same form for nmin and p assuming negative integer values
starting with -2. In this case we can still use formula eq. (19), replacing p with |p|, and the
minimal term is, at worse, of order of Λ2/µ2. Furthermore, the perturbative expansion is
alternating in sign and then can be easily resummed exploiting the Borel techniques. For
what concerns the instantons, they lead to a much stronger power suppression, and then can
be safely neglected here.1

It is clear that IR linear renormalon can easily affect the theoretical expectations at the
percent level for hardness scales Q ∼ 100 GeV and then it becomes crucial to estimate them
in a proper and reliable way.

The Large-nf method

The full renormalon tower in QCD is not known, and there is not yet a solid theoretical
framework to estimate NP corrections for any process. In particular, general field theoretical
arguments demonstrate the absence of IR linear renormalons for specific quantities.

Indeed, for observables which do not admit an Operator Product Expansion (OPE), a
very valuable method to investigate the presence of IR QCD renormalons is the Large-nf
limit (see [24]), i.e. one takes the abelian limit of QCD, containing a large and negative
number of light flavors nf , keeping αsnf constant. With this approximation, the theory stays
asymptotic free, with the gluon self-coupling suppressed by a factor of nf , and the dominant
perturbative corrections are obtained by inserting an arbitrary number of fermionic bubbles
along the gluon propagator. The Large-nf limit then appears quite useful, since it is a fully
calculable model theory, where one can explicitly determine the IR renormalons.

The usual way to recover the non-abelian behaviour of the theory consists in restoring
the proper expression of b0 by hand. This method relies upon the argument that the fac-
torial behaviour is strictly related to the running of the coupling constant, and then all the
uncalculated diagrams would combine in order to reproduce this ad-hoc manipulation [25].
From a practical point of view, this method consists in replacing, at the end of the all-order
computation

nf → −
11CA
4TR

+ nl (20)

where nl is the real number of light flavors of the theory, implementing in such a way the
Large-b0 approximation.

1Renormalons have been first discussed in 1970s in references [18–20] and have received renewed attention
from a phenomenological perspective since 1992 in refs. [21–23]. A well-known review of this topic is given
in [24].
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Part I

Infrared Renormalons in the
transverse momentum of a Z boson

in hadronic collisions
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Introduction

The transverse momentum of a Z boson, produced in association with a jet in hadronic col-
lisions, is one of the cleanest and well measured LHC-observables, also providing a useful
background for Beyond Standard Model (BSM) research, and for constraining the strong
coupling constant αs and the PDFs at LHC (see for instance ref. [26]). The normalized
distributions are indeed measured with a sub-percent level precision, in the low-intermediate
values of the transverse momentum [27–30], whilst the uncertainties in theoretical computa-
tions are still at the percent level. In particular, the process of Z+jet production in hadronic
collisions has been computed at Next-to-Next-to Leading Order (NNLO) in QCD [31–33],
and the state of the art is NNLO+N3LL [34], where it is evident the effect of resummation
for small values of the transverse momentum of the Z boson, with Non-Perturbative (NP)
terms also playing a role [35–37]. The 13 TeV ATLAS measurements [30] show a good agree-
ment with the NNLO+N3LL results for pZT < 30 GeV, with some tension observed for larger
values of the transverse momentum, where the resummation effects are actually negligible.
This tension looks similar in size to the residual scale uncertainty and, furthermore, is not
observed in the 8 TeV measurements [38]. Given the high accuracy reached for this observ-
able, it is crucial to investigate whether it is affected by NP corrections arising as Infrared
(IR) linear renormalons.

Consider the transverse momentum distribution of the Z boson

dσ

dp2
T

,
d2σ

dp2
Tdy

, (21)

where pT and y are the transverse momentum and rapidity of the Z boson, respectively.
If these distributions were affected by linear NP corrections, their natural size would be

ΛQCD/pT , where ΛQCD is a typical hadronic scale. Thus this ratio could easily reach the
percent level, larger than the present experimental errors and the theoretical accuracy.

There are reasons to worry about the presence of linear power corrections in the transverse
momentum distribution of a Z boson. In fact, if the Z has a sizable transverse momentum,
we are essentially looking at a Z+jet event. Thus, unlike for the case of the inclusive Z cross
section of for its rapidity distribution, the associated radiation is not azimuthally symmetric
(see fig. 1). If we model non-perturbative corrections as due to the emission of a very soft
gluon, with transverse momentum of order ΛQCD, one can reasonably assume that it will also
affect the transverse momentum of the Z boson by recoil.

As we explained before, certain kinds of factorial growth of the perturbative expansion
in QCD, associated with the so called Infrared (IR) renormalons, lead to power corrections

8



Figure 1: Feynman diagram contributing to the transverse momentum distribution of a Z
boson, represented by a zigzag line. The soft-radiation pattern is represented by the dashed
line, and is associated with the color dipoles formed by the outgoing gluon (wavy line) and
the initial state quarks.

O(ΛQCD/Q)p. In the following we will be interested into the case p = 1, that we dub linear
renormalon in this work.

General field-theory arguments assure us that linear renormalons cannot arise for certain
quantities. This is the case for observables that admit an Operator Product Expansion
(OPE), and are such that there are no operators of dimension higher than one power with
respect to the leading contributions. Indeed IR renormalons in hard processes originate from
subgraphs with low momenta, and thus, if the process under consideration allows for an OPE,
then it will be possible to organize the involved Feynman diagrams in terms of expectation
values of local operators [23, 39]. Unfortunately, for processes that do not admit an OPE,
one needs to recur to assumptions and approximations in order to get some insight into the
problem.

An often used method is the large-b0 approximation (see [24] and references therein),
which consists in considering the Abelian limit of QCD with a large and negative number
of fermions nf . In this limit the terms of order (αsnf )k are fully calculable for each order k
and the theory develops IR and UV renormalons. At the end of the computation, in order
to restore the proper non-Abelian behaviour of the full theory, one needs to replace the b0
factor in the Abelian theory (proportional to −nf ) with the full QCD one.

In the first part of this work we will investigate the presence of IR linear renormalons in
the transverse momentum distribution of a vector boson working within the large-b0 approx-
imation. The interest in this process also stems from the fact that, as said previously, the
soft emission pattern in the production of a vector boson in association with a hard jet is
not azimuthally symmetric. Under these circumstances, it is reasonable to assume that soft
gluons may induce linear renormalon corrections to the transverse momentum distribution of
the vector boson, as they are not emitted according to an azimuthally symmetric pattern.2

2We also stress that, contrary to the common assumptions that leptonic observables should be less affected
by NP corrections than the hadronic ones, in ref. [40] we can observe that leptonic observables in top quark
production and decay are actually affected by linear renormalons.
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Figure 2: Born diagram for the production of a Z boson in photon-quark collision. The green
lines represent the incoming and outgoing quarks, while the photon and the Z are represented
by the wavy and zig zag line, respectively. This process has an asymmetric pattern for the
soft emission, and looks suitable for probing the presence of IR linear renormalons in the pT
distribution of the Z.

The first part of this thesis is structured as follows. In chapter 1 we investigate the
presence of IR linear renormalons in the transverse momentum distribution of a Z boson,
produced in association with a jet in hadronic collisions. Even though the realistic parton
level process would involve a gluon in the final state (see fig. 1), no Large-nf computation
for a process involving a gluon at the Born level has been ever carried out. Thus, in order
to overpass this issue, we consider the process represented in fig. 2 as a proxy for the one
represented in fig. 1, involving a photon in the initial state, with associated production of a
Z boson plus a quark.

By doing this we are able to perform an all-order computation working in the large-nf
limit, also preserving the azimuthal asymmetry of the soft emission pattern affecting the
realistic QCD process.

It is a well known result [24] that the presence of IR linear renormalons in a Large-nf
computation can be probed by simply evaluating the QCD radiative corrections to the process
of interest due to the emission or exchange of a massive gluon with mass λ, and looking
for linear terms in λ. As we will show later, there is a simple relation between IR linear
renormalons and a linear sensitivity with the mass λ of the gluon. Within this framework,
we simply evaluated the cross section for the production of a Z boson in association with a
jet at NLO in αs, in a theory in which the gluon has a non vanishing mass λ, and looked for
λ terms at the end of the computation.

In this chapter a description of the treatment of the initial state singularities affecting
our process, in the DIS scheme, is also given.

Finally in chapter 2 we present our results and in chapter 3 we give our conclusions.

10



Chapter 1

Details of the computation

In this chapter we are going to show how to practically investigate the presence of an IR
linear renormalon affecting the transverse momentum of a Z boson produced in association
with a jet in hadronic collisions.

1.1 On the low transverse momentum of a vector boson

The transverse momentum distribution of vector bosons in hadronic collisions has been the
subject of an intense theoretical study since the early days of perturbative QCD [35–37], up
to nowadays [38,41–46], also given the high accuracy reached by experimental collaborations
in the measure of such observables. Thus this observable can be expressed as a perturbative
expansion in QCD, starting with a δ2(pT ) at leading order, and receiving singular contribu-
tions at higher perturbative orders, due to soft and collinear gluon emissions. It is usual to
deal with it resumming the singular contributions to all order in the perturbative expansion.
It has been shown [36] that this approach yields (for very large masses) to finite results in
the limiting region of zero transverse momentum.

Nevertheless this approach needs a non-perturbative input, as the resummation of soft-
collinear gluons must be cut-off at transverse momenta of the order of typical hadronic scales.
Furthermore, it is intuitive to assume that the δ2(pT ) leading order behaviour (and the higher
orders singular terms) can be smeared to a transverse size of order of a Fermi, due to some
effects related to Fermi motion.1

If we consider the smearing due to Fermi motion, we can define with f(~qT )d2~qT the
primordial transverse momentum distribution of the quarks in a hadron. Assuming that
f(~qT ) is dominated by values of ~qT of the order of hadronic scales, then we can expand it in
moments

f(~qT ) = δ2(~qT ) + Λ2(~∂qT )2δ2(~qT ) + higher derivatives, (1.1)

being Λ a typical hadronic scale. By Fourier transforming eq. (1.1) we get the behaviour

1These effects are also well described thanks to Transverse Momentum Distributions (TMD) parton den-
sities [47].

11



Sec 1.2. Our computation

f̃(~b) =

∫
d2qT e

i~qT ·~bf(~qT ) = 1− Λ2b2 + higher orders in b. (1.2)

We can observe the absence of linear terms in ∂pT (or in b), as long as one does not take
into account spin structures in the distribution, and indeed the behaviour in eq. (1.2) has been
exposed as early in [36], where the expression f̃(b) = exp(−Λ2b2) has been proposed. This
exponential expression also appears in many subsequent works.2 If we convolute eq. (1.2)
with some perturbative mechanism which gives rise to the transverse momentum of the
vector boson, we will obtain in the end subleading corrections of order Λ2/p2

T . It is possible
as well to provide a more intuitive argument in order to explain the absence of leading
power corrections within this context. The primordial transverse momentum smearing gives
a transverse kick, of the order of typical hadronic scales, to the perturbative distribution.
Nevertheless, being azimuthally symmetric, this first-order effect cancels out, leaving only
quadratic corrections. One can also observe that these non-perturbative corrections are all
that is necessary in order to regularise the ill-behaved perturbative series in the small-pT
region. Nevertheless they cannot be the only non-perturbative corrections relevant for the
problem, as other arguments are needed when phase space regions, where QCD perturbative
expansion is well-behaved, are considered.

For what concerns our computation, we do not deal with the small transverse momentum
region, considering in this sense a process which has a well-behaved perturbative expansion in
αs. Furthermore we do not rely on any assumption concerning the arising (or eventually the
cancellation) of non-perturbative corrections, only performing the full all-order computation
recurring to the large-nf limit, and looking for renormalon effects in the final result. Our
main hypothesis deals with the assumption according to which such linear effects can only
arise when considering a process with a soft radiation which is not azimuthally symmetric,
and, in order to do that, we chose a process where this asymmetry is realized. Indeed we did
not consider a process involving two incoming partons that produce a Z boson plus a photon
with large transverse momentum. This process indeed does yield an azimuthally symmetric
pattern and thus we do not expect any linear renormalon in this case.

In conclusion we remark that the thrust of a jet actually receives linear power corrections
related to IR linear renormalons (as can be seen in eq. (5.56) in [24]). As for our study
we consider the Z recoiling against a jet, it seems reasonable to assume that such linear
corrections may also affect the Z transverse momentum distribution.

1.2 Our computation

A calculation in the large-b0 limit of a process like in fig. 1 is too demanding and indeed
no large-b0 computation for processes involving a gluon emission or exchange at Born level
has been ever carried out. Such a computation would in fact lead to consider dressed gluon
propagator joining into a three-gluon vertex, also including a vertex correction with a quark

2Exhaustive analysis of these NP corrections can be found in [48, 49]. Within the framework of the TMD
parton distributions, one can also explain the absence of linear power corrections by exploiting arguments
given by the OPE they obey.
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Sec 1.3. The method

(v) (r) (qq̄)

Figure 1.1: Sets of Feynman diagrams to be evaluated in order to compute QCD radiative
corrections to the process represented in fig. 2 in the large-b0 limit.

triangle graph, being such corrections of order gs(g
2
snf ), where gs is the gauge coupling for the

strong interaction. In order to overcome this problem, we will instead compute the process
depicted in fig. 2, involving the production of a Z boson in a photon-quark collision. In
particular we will assume that only a single quark flavor (that we will call for definiteness a
d quark) can couple to the photon, but there is a large number nf of light quark flavors q
that can couple to gluons. With this setup we can then perform the whole computation in
the large-nf limit, restoring the non-Abelian behaviour of the theory by taking the Large-b0
limit at the end of the computation. Furthermore, the color pattern for the soft emission for
the process in fig. 2 is still affected (as the realistic QCD one) by an azimuthal asymmetry.
Thus we can investigate whether IR linear renormalons affect the transverse momentum of
the Z boson, due to its recoil against a soft emission. In order to do that, we need to evaluate
the relevant radiative QCD corrections in the large-nf limit, considering for instance the
diagrams represented in fig. 1.1. The solid blobs along the gluon propagators stand for the
inclusion of the all orders corrections given by a fermion loop in the abelian QCD limit, as
shown by the recursive graphic equation

. (1.3)

The inclusion of all corrections embodied in eq. (1.3) amounts to consider αsnf to be of
order 1, and because of this it is also necessary to consider the contribution arising from the
gluon splitting into a quark-antiquark pair as this contributes, when squared, with a factor
αsnf .

In the following we will discuss in detail the method adopted to perform an all-order
computation for our process, borrowing the formalism exposed in [40] and also discussing the
method adopted in order to remove the initial state collinear singularity.

1.3 The method

Let us assume to compute a cross section for the process dγ → Zd with a given set of
kinematic cuts, expressed through the use of theta functions defined upon the phase space

13
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Θ(Φ), assuming the value 1 when the cuts are satisfied, and zero otherwise. Thus the cross
section can be written as (see [50] for more details upon the formalism)

σ =

∫
dΦB(B(ΦB) + V (ΦB))Θ(ΦB)

+

∫
dΦ⊕C⊕(Φ⊕)Θ(Φ⊕)

+

∫
dΦg
	C

g
	(Φg

	)Θ(Φg
	) +

∫
dΦqq̄
	C

qq̄
	 (Φqq̄

	 )Θ(Φqq̄
	 ) (1.4)

+

∫
dΦgRg(Φg)Θ(Φg)

+

∫
dΦqq̄Rqq̄(Φqq̄)Θ(Φqq̄),

where B stands for the Born term, V refers to the virtual correction, Rg refers to the
process involving dγ → Zdg, and Rqq̄ to the process dγ → Zdqq̄ (see the diagrams in
fig. 1.1). The term involving C⊕ stands for the counterterm to subtract the initial state
collinear singularities affecting both Rg and Rqq̄, arising when the gluon or the light qq̄ pair
get collinear with the incoming quark. The use of a single C⊕ contribution is justified by the
fact that both these singularities are associated with the same underlying Born configuration
dγ → Zd. The Cg	 and Cqq̄	 refer to the collinear counterterms associated with the collinear
singularities arising from the splitting of the initial state photon into a dd̄ pair, contained
both in the Rg and Rqq̄ contributions, respectively. The phase space elements are defined as
follows

dΦB = dx⊕dx	dΦB, (1.5)

dΦB =
d3~kZ

2k0
Z(2π)3

d3~kd
2k0

d(2π)3
(2π)4δ(4)(p⊕x⊕ + p	x	 − kZ − kd), (1.6)

where we labeled with p⊕ and p	 the momenta of the incoming positive and negative rapidity
hadrons respectively, and with x⊕, x	 the momentum fractions carried by the incoming d
quark and photon; kZ and kd stand for the momenta of the final state Z and d. Furthermore
we have

B(ΦB) = fd(x⊕)fγ(x	)B(p⊕x⊕, p	x	, kd, kZ), (1.7)

with B the Born squared amplitude for the partonic process, divided by the flux factor,
and fd (fγ) the parton distribution function related to the incoming d quark (photon). The
phase space elements dΦg and dΦqq̄, as well as dΦg, dΦqq̄ and Rg, Rqq̄ are defined along the
same lines of eqs. (1.5), (1.6) and (1.7).

For Φ⊕, Φ	 and C⊕, C	 we have

dΦ⊕ = dx⊕dx	
dz

z
dΦB, (1.8)
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Dg Dqq̄

Figure 1.2: Feynman diagrams for the qq̄ initiated subprocesses, entering in the factorization
formula for initial state collinear singularities, arising as the outgoing quark gets collinear to
the initial state photon, contributing respectively to the Dg and Dqq̄ amplitudes.

dΦg
	 = dx⊕dx	

dz

z
dΦg

D, (1.9)

dΦqq̄
	 = dx⊕dx	

dz

z
dΦqq̄

D , (1.10)

with

C⊕(Φ⊕) = fd

(
x⊕
z

)
fγ(x	)Cdd(z)B(p⊕x⊕, p	x	, kZ , kd), (1.11)

Cg	(Φg
	) = fd(x⊕)fγ

(
x	
z

)
Cdγ(z)Dg(p⊕x⊕, p	x	, kZ , kg), (1.12)

Cqq̄	 (Φqq̄
	 ) = fd(x⊕)fγ

(
x	
z

)
Cdγ(z)Dqq̄(p⊕x⊕, p	x	, kZ , kq, kq̄). (1.13)

The C	 collinear counterterms correspond to the diagrams (g) and (qq̄) depicted in fig. 1.1,
when the outgoing quark becomes collinear to the incoming photon. In particular, the Dg
and Dqq̄ squared amplitudes refer to the processes qq̄ → Zg and qq̄ → Zqq̄, respectively,
as depicted in fig. 1.2 and obviously Φg

D and Φqq̄
D are the corresponding phase spaces. Cdd

and Cdγ are the universal collinear divergent functions for the d → d + X and γ → d + X
splitting, respectively. Working in our approximation we do not have any interference from
the final state d quark connected to the incoming quark line and the final states quarks
arising from the gluon splitting, as this interference term would be suppressed by a factor
of nf . When evaluating the virtual corrections reported in fig. 1.1 we face both UV and IR
divergences, that we chose to regulate recurring to conventional dimensional regularization
(CDR), introducing a number of dimensions d = 4−2ε. Nevertheless, it turns out that all the
UV divergences cancel, being exclusively associated with vertex and propagator corrections
in an Abelian limit. For the C	 collinear counterterm, the divergent function Cdγ is given by

Cdγ(z) =
αC2

d

2π

1

ε
(z2 + (1− z)2), (1.14)
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Sec 1.3. The method

Figure 1.3: Relevant Feynman diagrams contributing to F2 in the Large-nf limit.

where α is the electromagnetic coupling and Cd is the electric charge of the d quark. According
to the MS prescription, the term in eq. (1.14) must also be accompanied by the replacement
µ2

F → µ2
Fexp(−γE)/(4π) where µF is the factorization scale and γE is the Euler-Mascheroni

constant. For what concerns the MS subtraction term for the collinear singularity associated
with the C⊕ counterterm, it is not straightforward to compute it, working in an Abelian
theory in the Large-nf limit. Indeed one must include all the O(αsnf ) corrections, i.e. all
the vacuum polarizations insertions along the emitted gluon line, also considering the gluon
splitting into a light qq̄ pair. Following the approach of ref. [25] we can avoid this problem,
performing our collinear subtraction in the DIS scheme. In order to do that we require that
the structure function F2 has the expression

F2(x,Q2) = x
∑
i

qi(x,Q
2)C2

i , (1.15)

(Ci is the electric charge of the species i, with i running over all quarks and antiquarks) at
all orders in perturbation theory.

With this approach we can simply evaluate F2(x,Q2) using the same approximation we
recurred for our process, i.e. including all fermion polarizations insertions along gluon prop-
agators, and expressing our cross section in terms of the qi in the DIS scheme. The relevant
Feynman diagrams involved in this computation are depicted in fig. 1.3. It is important to
stress that, when translating the DIS cross section into the MS scheme, no new linear renor-
malon arises. This can be easily explained observing that F2 obeys an OPE where power
corrections are controlled by the twist of the operator, with the dominant power corrections,
which correspond to twist 4, that are quadratic.

It can be shown that, considering a process that does not involve a gluon at leading order,
an all-order computation performed in the Large-nf limit can be handled by considering
the radiative corrections to the process due to the exchange or emission of a gluon with
a non-vanishing mass λ. More specifically, the cross section computed with an all-order
computation in an abelian limit takes the expression (borrowed from [40] , with the inclusion
of the collinear remnants, needed in order to subtract the collinear singularities due to the
initial state emission):

σ = σB −
1

b0αs

∫ ∞
0

dλ

π

dT (λ)

dλ
arctan

πb0αs

1 + b0αs ln2 λ2

µ2
C

(1.16)
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where αs = αs(µ), µC = µeC/2, C = 5
3 and b0 is the first coefficient of the QCD β-function

taken in the abelian limit nf → −∞, i.e. b0 = −TF
2π , where TF = nfTR.

Furthermore

σB =

∫
dΦBB(ΦB)Θ(ΦB), (1.17)

T (λ) = TV (λ) + T⊕(λ) + T	(λ) + T∆
	 (λ) + TR(λ) + T∆

R (λ), (1.18)

TV (λ) =

∫
dΦBV

(λ)(ΦB)Θ(ΦB), (1.19)

T⊕(λ) =

∫
dΦ⊕fd

(
x⊕
z

)
fγ(x	)C

(λ)
dd (z)B(p⊕x⊕, p	x	, kZ , kd)Θ(Φ⊕), (1.20)

T	(λ) =

∫
dΦg∗

	 fd(x⊕)fγ

(
x	
z

)
Cdγ(z)Dg∗(p⊕x⊕, p	x	, kZ , kg∗)Θ(Φg∗

	 ), (1.21)

T∆
	 (λ) =

∫
dΦqq̄
	 fd(x⊕)fγ

(
x	
z

)
Cdγ(z)Dqq̄(p⊕x⊕, p	x	, kZ , kq, kq̄)

× δ(λ2 − k2
qq̄)
[
Θ(Φqq̄

	 )−Θ(Φg∗

	 )
]
, (1.22)

TR(λ) =

∫
dΦg∗Rg∗(Φg∗)Θ(Φg∗), (1.23)

T∆
R (λ) =

3π

αsTF
λ2

∫
dΦqq̄δ(λ

2 − k2
qq̄)Rqq̄(Φqq̄) [Θ(Φqq̄)−Θ(Φg∗)] . (1.24)

Where g∗ denotes a gluon with mass λ, and with the superscript (λ) applied to previously
defined objects we mean that the same object has been evaluated considering a gluon with
mass λ. Within this framework, the virtual correction V (λ) stands for a usual one-loop
correction to the process, with the gluon propagator replaced by a massive gluon propagator
with mass λ. Along these lines Φg∗ labels the phase space for the process dγ → Zdg∗, and
so on. We also introduced the momentum kqq̄ = kq + kq̄ in eqs. (1.22) and (1.24).

Eq. (1.16) is a well-known result (see ref. [24]), as long as one considers the virtual
corrections and the inclusive real corrections, but we do not know a reference before [40]
where also the qq̄ splitting is cast in the same form.

Therefore the fact that a Large-nf limit computation can be expressed in terms of a
simple NLO calculation performed with a massive gluon has been used in [25] to compute
the Drell-Yan and DIS process in the Large-nf limit. The ∆ term has been introduced for
the first time in ref. [51], where it was shown to be necessary for quantities that are not fully
inclusive in the gluon splitting products. As the ∆ correction only involves kinematic cuts
related to the emission of a gluon that further splits into a qq̄ pair, it cannot contribute if
we only focus upon the kinematic of the colourless system, i.e. of the Z boson. Our cuts in
fact only involve the kinematics of the Z boson, and thus are insensitive to the replacement
of the qq̄ arising from the gluon splitting with an undecayed massive gluon with the mass
equal to the invariant mass of the pair. Within this configuration, the difference of the theta
functions in the square bracket of eq. (1.22) and eq. (1.24) are always zero and we can neglect
the ∆ term for our computation.
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The universal collinear divergent factor C
(λ)
dd (z) has been computed in eq. (3.10) of ref. [25]

and we have

C
(λ)
dd (z) = −f (1),real

(
z,
λ2

µ2

)
− δ(1− z)f (1),virtual

(
z,
λ2

µ2

)
, (1.25)

being µ the hard scale of the process. Denoting ξ = λ2/µ2 and x̄ = 1−x, we write f (1),real as

f (1),real(x, ξ) =
CFαs(µ)

2π

{[
−1 + x2 − 2ξx(1 + x− ξx)

x̄
− 6ξx2(2− 3ξx)

]
ln

ξx2

x̄(1− ξx)

+
x̄− ξx
ξx− 1

+
(x̄− ξx)2

2x̄3
− 2(1− ξ)xx̄− ξx

x̄2
+ 3x

(x̄− ξx)2

x̄2
(1.26)

− 12ξx2 x̄− ξx
x̄

+ 6ξxx̄(1− ξx)− 6ξ2x3

}
Θ(x̄− ξx),

while the virtual corrections are

f (1),virt(x, ξ) =
CFαs(µ)

2π
δ(1− z)

{
2(1− ξ)2

[
Li2(ξ)− 1

2
ln2 ξ + ln ξ ln (1− ξ)− π2

3

]
−3 ln ξ − 7

2
+ 2ξ ln ξ + 2ξ

}
. (1.27)

Furthermore the z variable in the real contribution is limited as

z < zmax ≡
1

1 + λ2

µ2

. (1.28)

From the Adler sum rule we have∫ 1

0
dzC

(λ)
dd (z) = −

∫ zmax

0
dzf (1),real

(
z,
λ2

µ2

)
− f (1),virt

(
λ2

µ2

)
. (1.29)

As we have said previously, eq. (1.16) relates an all-order computation performed in the
Large-nf limit to a NLO computation performed with a gluon with non-vanishing mass λ. In
particular, the integrand in eq. (1.16) is formally a power expansion in b0αs with factorially
growing coefficients. The function T (λ) is finite as λ→ 0 and it can be expanded in λ as

T (λ) = T (0) + T
′
(0)λ+O(λ2), (1.30)

where possible logarithmic enhancements in the quadratic remainder could be present.
The presence of a linear renormalon is strictly related to the linear coefficient in the above
equation. In fact if T

′
(0) 6= 0 then the perturbative expansion is affected by a linear renor-

malon, as it is explained in detail in appendix A.
The computation of the collinear subtraction associated with the collinear splitting of the

incoming photon is a standard NLO subtraction, and can be handled by the standard means
already coded in the POWHEG BOX package [52]. However we stress that no linear renormalon
correction to the Z boson transverse-momentum distribution is expected from this collinear
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Figure 1.4: Feynman diagrams contributing to the process dγ → Zd at the Born level. The
zigzag line represents the Z boson, while the wavy line represents the incoming photon.

Figure 1.5: Feynman diagram describing the collinear singularities due to the splitting of the
photon into a dd̄ pair, in the process dγ → Zdg process.

region. Indeed, as mentioned previously, the T∆
	 (λ) term does not contribute, and if the

final state quark gets collinear to the initial state photon, the transverse momentum of the
Z must be balanced by the massive gluon. Since we are only considering phase space regions
where the Z boson has a sizable transverse momentum, the massive gluon will have a large
transverse momentum as well, and thus the mass correction to the process turns out to be
quadratic in λ.

1.4 Implementation of the method

In the previous sections we have shown that, in order to probe the presence of IR linear
renormalon for a generic cross section, we can perform the same computation in an Abelian
limit with a massive gluon. In fig. 1.4 we have reported the Born diagrams contributing to
our process, where we have chosen, for sake of simplicity, a Z boson which is only vectorially
coupled and stable. The Born and Virtual amplitudes have been evaluated at fixed external
momenta; in particular, all the amplitudes have been analytically computed recurring to the
symbolic manipulation program MAXIMA [53]. The Virtual contribution has been dealt
with by first decomposing the amplitude in terms of a set of scalar integrals, thanks to the
Passarino-Veltman algorithm [54], and then evaluating them using the COLLIER library [55].
Due to the presence of a massive gluon, the virtual corrections are infrared finite, as the gluon
mass acts as an IR regulator. Nevertheless each contribution is affected by UV divergences,
that have been extracted by performing the whole computation in CDR (d = 4−2ε), in order
to preserve gauge invariance at each step. Summing up all the contributions we obtain a UV
finite result, and then one can safely take the ε→ 0 limit. For what concerns the integration
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over the external momenta, we will show that for the Born and the Virtual terms we need to
require a lower bound on the Z transverse momentum in order to get a finite result.

On the other hand the real corrections are not infrared finite even if one requires a finite
transverse momentum for the Z-boson, because of the colliner singularities arising from the
incoming photon splitting into two massless quarks, as we show in fig. 1.5. This singularity
also needs to be first regulated in CDR, and then subtracted in the MS scheme, as required
by the factorization formalism.

Furthermore, the singularities associated with the soft or collinear emitted gluon are
automatically regulated by the gluon mass. These configurations are illustrated in fig. 1.6
and correspond to an initial and a final state collinear singularity, associated with a soft one.
Thus the real contributions behave as ln2 λ in the λ→ 0 limit. An equal ln2 λ term also arises
from the virtual contributions, with the opposite sign, that cancels the one coming from the
real term. After this cancellation, a lnλ singularity remains, which will be canceled thanks
to an opposite contribution in the collinear counterterm (see eq. (1.20)). At this point, after
these cancellations, we get a finite result as λ→ 0: the cross section goes to a constant, and
our goal is to understand whether this constant is approached with a linear slope in λ.

We have described a computation involving massive cancellations among the various
terms, and then in order to get a reliable numeric evidence of the small λ behaviour, the
numerical integration must be performed using a proper importance sampling in the neigh-
bourhood of regions that are singular in the λ→ 0 limit. Furthermore, we also need a direct
calculation in the full theory, i.e. for λ = 0, in order to obtain a point with negligible er-
ror, that would be difficult to obtain considering small values of λ. In order to perform the
computation we chose to separate the real contribution into three terms

R = R(1) +R(2) +R(3), (1.31)

R(1) =

1
p2

T,d

1
p2

T,d
+ 1

m2
T,g

+
(Ed+Eg)2

EdEgm
2
d,g

R, (1.32)

R(2) =

1
m2

T,g

1
p2

T,d
+ 1

m2
T,g

+
(Ed+Eg)2

EdEgm
2
d,g

R, (1.33)

R(3) =

(Ed+Eg)2

EdEgm
2
d,g

1
p2

T,d
+ 1

m2
T,g

+
(Ed+Eg)2

EdEgm
2
d,g

R, (1.34)

where pT,d stands for the transverse momentum of the final-state d quark, mT,g is the
transverse mass of the final-state gluon, defined as

m2
T,g = p2

T,g + λ2, (1.35)

and mdg is the invariant mass of the quark-gluon final-state system, with Ed and Eg the
energies of the outgoing quark and gluon respectively, taken in the partonic center of mass
frame.
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Figure 1.6: On the left (right) the Feynman diagram contributing to the colliner initial (final)
state singularity, and to a soft singularity.

In eqs. (1.32), (1.33), (1.34) we introduced the superscripts (1), (2) and (3) to label the
three regions where each of the three contributions is singular. For instance region (1) is
singular when the final state quark gets collinear to the incoming photon; region (2) becomes
relevant when the gluon is collinear to the incoming quark, and region (3) contributes when
the emitted gluon gets collinear to the outgoing quark.

The contributions due to regions (2) and (3) have been computed independently, parame-
teresing the phase space in a proper way for each of them. For the region (2) the phase space
has been factorized as the product of the two-body phase space formed by the final state
gluon recoiling against the quark-Z system, and the two-body phase space for the quark-Z
system itself. In the case of the region (3) we factorized the phase space in terms of the two-
body phase space for the system comprising the Z, and the quark-gluon system which recoils
against it, with the quark-gluon system itself parameterized as a two-body phase space. It
is important to notice that Born, real and virtual contributions are also singular when the
transverse momentum of the Z boson goes to zero. Nevertheless, as we are interested into
the transverse momentum distribution of the Z for transverse momentum comparable to the
Z mass, in the integration stage we can safely suppress this region, introducing a suppression
factor proportional to the Z transverse momentum itself. Thus we introduce

Fsupp =
p4

T,Z

p4
T,Z + p4

T,cut

, (1.36)

with pT,cut a parameter chosen close to the transverse momentum cut that we want to apply
to our cross section. Thus the adaptive Monte Carlo integration is performed in a very
standard way, by multiplying the Born, virtual and real contributions by the suppression
factor in eq. (1.36), in order to get a finite result. Nevertheless, as we always require a
transverse momentum for the Z boson larger than a given cut, this suppression factor never
vanishes in the region of our interest and can be divided out at the analysis stage, when
computing the cross section with cuts.

1.5 Computation of the real contribution

In this section we are going to describe in detail how we did integrate the real contribution
reported in eq. (1.31), after separating it into three regions, as shown in eqs. (1.32), (1.33)
and (1.34).
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1.5.1 Region (1)

As this region is associated with the collinear splitting of the incoming photon into a dd̄ pair,
we can handle this singularity recurring to the POWHEG-BOX [52] framework, considering the
real process dγ → Zdg and the Born process dd̄ → Zg. The Born contribution by itself
is absent, as we only consider a quark-photon system in the initial state. Nevertheless it
enters in the collinear subtraction, automatically performed by the POWHEG-BOX, in order to
implement the factorization of collinear singularities, as well as in the collinear remnant, also
computed within the POWHEG-BOX framework. Actually we do not expect that an IR linear
renormalon could arise from region (1), as the phase space region dominated by soft and
collinear gluons is highly suppressed here. In fact, the collinear and soft-collinear regions
associated with an ISR gluon is suppressed by a m2

T,g factor (eq. (1.33)). In this limit, for

small λ, R(1) behaves like

dθg
θg

dEg
Eg

m2
T,g '

dθg
θg

dEg
Eg

θ2
gE

2
g ' dE2

gdθ2
g , (1.37)

where Eg is the gluon energy and θg is its angle with respect to the incoming (outgoing)
quark direction. As the gluon mass λ acts as a natural cutoff on the integrations over Eg and
θg, we can safely conclude that no linear term in λ can arise from eq. (1.37).

1.6 The T(λ) function

Here we are going to expose in detail all the steps for the complete evaluation of the T (λ)
function present in the integrand of eq. (1.16), also considering the case for λ = 0, which is
crucial in order to get a point with negligible error.

• The λ = 0 term can be computed working within the POWHEG BOX framework, comput-
ing the contributions of regions (2) and (3) together. These are affected by initial and
final state singularities, arising as the gluon gets soft or collinear to the initial or final
state quark. The subtraction of the initial state singularity has been performed, for
consistency, in the DIS scheme, and then one needs to take care of properly modifying
the POWHEG BOX code in order to comply with this request. We chose the factorization
scale, which is equal to the Q scale of the DIS subtraction scheme, equal to the mass
of the Z boson. Furthermore we also took into account the virtual corrections for the
process dγ → Zd process, directly computed for λ = 0 and working in dimensional
regularization. The infrared divergences associated with soft and collinear gluons are
automatically cancelled in the POWHEG BOX framework in a fully general way, and thus
no further work is required.

• The contribution coming from the regions (2) and (3) for λ 6= 0 cannot be implemented
within the POWHEG BOX framework, as this was not designed to handle sigularities reg-
ulated by a mass. For this reason we performed the computation using a dedicated
Fortran code, choosing a proper phase space parameterisation for the real term, that
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could be suitable to handle each region with an adequate importance sampling. Fur-
thermore, in order to manage the collinear subtraction, we made use of the relation
(1.29) to implement a local cancellation of the associated soft divergence, rather than
computing separately the virtual and real contributions of the collinear subtractions.

• For the region (1), either for λ = 0 or λ 6= 0 we performed the computation exploiting
the POWHEG BOX framework. The singular region is the one associated with the final
state quark getting collinear to the incoming photon. The underlying Born process
to deal with this singularity is the one involving dd̄ → Zg, with a gluon g with mass
λ. The collinear singularity is treated working in the MS scheme, and the collinear
remnant is automatically provided by the POWHEG BOX.
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Chapter 2

Results

In this chapter we will show the results we obtained for the transverse momentum distribution
of the Z boson, first applying cuts only over its transverse momentum and evaluating the
T (λ) function defined in eq. (1.18) for different values of the gluon mass λ. Then we will also
perform a more exclusive analysis, also applying kinematic cuts over the rapidity of the Z.
As our setup we have considered two colliding particles with a center-of-mass (CM) energy
equal to 300 GeV. We also considered the positive rapidity incoming particle (labelled as (1))
with a parton density consisting only of down quarks, whilst the negative rapidity particle
(labelled as (2)) with a parton density consisting only of photons, distributed as

f
(1)
d (x = x⊕) = f (2)

γ (x = x	) =
(1− x)3

x
. (2.1)

This totally arbitrary choice is only dictated by simplicity and is adequate for our pur-
poses. We computed the cross section for the production of a stable Z boson with mass
MZ = 91.188 GeV (only vectorially coupled). The couplings of both the Z and γ are equal to
g2
Z,γ = 4π and the down quark is taken to have an electric charge of -1/3.1 The color factor

has been taken into account for the Born diagrams (where it assumes the value 1), and for
the real and virtual as well, for which it is equal to CF = 4/3. In conclusion we have chosen
the factorization scale µF = MZ , while the renormalization scale is completely irrelevant for
T (λ). Indeed, by looking at eq. (1.16), we observe that the αs in the denominator in front of
the integral is simplified by the αs contained in T (λ) and thus the resummed result does not
depend on the renormalization scale.

2.1 Transverse momentum distribution of the Z boson

We first computed the full function T (λ) for different values of the gluon mass λ, taking a Z
boson with a transverse momentum larger than 20 GeV (see fig. 2.1 on the left) and 40 GeV
(see fig. 2.1 on the right). In order to extract the slope around λ = 0, responsible for the

1We stress that the actual values of the couplings are completely irrelevant for our purposes, and have the
only scope to give a well-defined meaning to our conclusions.
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Figure 2.1: T (λ) function (as defined in eq. (1.18)) as a function of the gluon mass λ for
the cross section of a Z boson with a transverse momentum pT,Z > pcT, with pcT = 20 GeV
(left) and pcT = 40 GeV (right). The green points have been obtained by computing T (λ) for
different values of λ. The curves for fit 1 and 2 have been derived from the fit function in
eq. (2.2), where for fit 1 we considered all the fit parameters, and in fit 2 we fixed the linear
coefficient b to 0. We did not consider the point λ = 5 GeV in the fitting procedure.

presence of linear renormalons (see eq. (1.30) and also appendix A) we fitted T (λ) with the
function

f(λ) = a

[
1 + b

(
λ

pcT

)
+ c

(
λ

pcT

)2

ln2

(
λ

pcT

)
+ d

(
λ

pcT

)2

ln

(
λ

pcT

)]
, (2.2)

where the presence of single and double logarithmic terms is motivated by the findings for
the Drell-Yan case [25, 56]. We did not take into account the point for λ = 5 GeV for
our fitting procedure, in order to increase the reliability of the fit in the neighbourhood of
λ = 0. The results of the fit are listed in table 2.1, where we reported the results obtained
including the linear coefficient b as a fit parameter, and then fixing it to 0, in order to assess
its actual impact on T (λ). We can observe that the linear coefficient has a negligible impact
on the fitting function, as its size is at least an order of magnitude smaller than the dominant
quadratic coefficient, and then its value is consistent with zero. Thus we can safely conclude
that we do not find any evidence of the presence of a IR linear renormalon affecting the
transverse momentum distribution of the Z boson, and furthermore we found that the size
of the corresponding coefficient is much smaller than the coefficients of the quadratic terms.

We also performed a more exclusive analysis, adding an additional cut over the rapidity
of the Z boson yZ , besides the one over the transverse momentum. The results are shown
in fig. 2.2 and in table 2.2. Once again we do not find any numerical evidence of a linear
sensitivity to λ, concluding that the doubly differential distribution in rapidity and transverse
momentum is free from linear renormalons.

By looking at the coefficients in tables 2.1 and 2.2 we observe that, when considering
pcT = 40 GeV instead of 20 GeV we face larger errors in the determination of the fit parameters
c and d, observing that they look less important as the cuts are increased.
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pcT = 20 GeV pcT = 40 GeV

fit 1 fit 2 fit 1 fit 2

a = 644.60± 0.02 a = 644.63± 0.02 a = 72.237± 0.005 a = 72.241± 0.004

b = 0.009± 0.004 b = 0 b = 0.024± 0.017 b = 0

c = −0.063± 0.008 c = −0.047± 0.004 c = −0.11± 0.06 c = −0.028± 0.021

d = 0.341± 0.005 d = 0.341± 0.007 d = 0.50± 0.08 d = 0.59± 0.05

χ2/ndf = 0.12 χ2/ndf = 0.23 χ2/ndf = 1.13 χ2/ndf = 1.36

Table 2.1: Results of the fit of the T (λ) function, defined in eq. (1.18) and illustrated in
fig. 2.1. The fit function is given in eq. (2.2). In the first fit, corresponding to the blue lines
in the figures, b is unconstrained, while in the second fit, corresponding to the red lines, b
has been set to 0. The last line corresponds to the associated reduced χ2.

 272

 274

 276

 278

 280

 282

 283

 0  0.5  1  2  3  4  5

pT
c
 = 20 GeV, 0 < yZ < 0.6

T
(λ
)/
α
s
 
[p
b
]

λ [GeV]

data
ft 1 [b≠0]
ft 2 [b=0]

 32.8

 32.9

 33

 33.1

 33.2

 33.3

 33.4

 33.5

 33.6

 33.7

 0  0.5  1  2  3  4  5

pT
c
 = 40 GeV, 0 < yZ < 0.6

T
(λ
)/
α
s
 
[p
b
]

λ [GeV]

data
ft 1 [b≠0]
ft 2 [b=0]

Figure 2.2: The same as in fig. 2.1, with the further cut over the rapidity of the Z: 0 < yZ <
yc, where yc = 0.6.

pcT = 20 GeV pcT = 40 GeV

fit 1 fit 2 fit 1 fit 2

a = 281.68± 0.02 a = 281.68± 0.01 a = 33.595± 0.003 a = 33.596± 0.002

b = −0.001± 0.009 b = 0 b = 0.015± 0.025 b = 0

c = −0.026± 0.018 c = −0.028± 0.006 c = −0.11± 0.09 c = −0.06± 0.03

d = 0.35± 0.01 d = 0.35± 0.01 d = 0.49± 0.11 d = 0.54± 0.06

χ2/ndf = 0.39 χ2/ndf = 0.32 χ2/ndf = 0.89 χ2/ndf = 0.77

Table 2.2: Results of the fit of the T (λ) function defined in eq. (1.18) illustrated in fig. 2.2.
The fit function is given in eq. (2.2). The first fit corresponds to the blue lines, while in the
second fit the linear coefficient has been set to 0 and corresponds to the red lines. The last
line corresponds to the associated reduced χ2.
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Chapter 3

Conclusions

The high precision reached by LHC has pushed the theoretical efforts towards an unprece-
dented accuracy, beyond next-to-leading order and, in some cases, even beyond next-to-next-
to-leading order. With this level of precision, it is crucial to properly estimate contributions
arising from non-perturbative regime, which manifest as power corrections, suppressed by the
hard scale of the process and that can sometimes be comparable or even larger in size than
the current theoretical uncertainties. Nevertheless, we are not yet able to formulate a general
theory of even the most relevant non-perturbative corrections, unlike for other frameworks,
where the existence of an Operator Product Expansion constitutes a safe guideline in order
to classify and parameterise non-perturbative effects.

Renormalon effects have been estimated in the past recurring to an Abelian limit of QCD,
in the so called large-b0 approximation, that proved a way to explore the structure of non-
perturbative corrections affecting collider processes. These models have been used to probe
the presence of renormalons in Drell-Yan processes [25, 56] and have been also used recently
in order to get some insights on issues regarding precision top mass measurements [40]. The
presence of linear renormalon effects has also been studied using related methods, within the
context of jet physics (see [24] and references therein).

In the first part of this thesis we have shown how the large-b0 approximation is a useful
method in order to understand whether linear renormalon effects can yield linear power cor-
rections to the inclusive differential distribution for the production of a vector boson at LHC,
probing the phase space region where the transverse momentum is safely in the perturba-
tive region, and where resummation effects are safely negligible. This process is sufficiently
complex, as it involves the presence of gluon radiation either from initial or final state, and
develops single and double logarithmic singularities, which cancel out when combining real
and virtual contributions with the factorization of initial state collinear singularities. Fur-
thermore we have chosen a process that mimics the Z production in an Abelian model, but
with the preservation of an azimuthally asimmetry in the soft radiation pattern, as in the
full QCD case, which, on intuitive ground, may be associated with non-perturbative recoil
effects, linearly affecting the Z transverse momentum. We found no numerical evidence of
a linear renormalon, observing instead how the renormalon structure is well represented by
quadratic terms associated with some logarithmic enhancements.
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Chap 3. Conclusions

A numerical evidence gives a useful indication, but, by its own nature, cannot be con-
sidered as a solid proof for the absence of infrared renormalons. Nevertheless, as we found
that the linear coefficient is way much smaller than the quadratic one, we can conjecture that
these specific observables are free from linear renormalon effects. In the second part of this
thesis we prove that in fact this is the case in an analytic fashion.

Currently it seems that, in all collider processes considered so far that involve massless
flavours, no linear renormalon is present, from a large-b0 computation, for observables that
are fully inclusive with respect to production of colored particles. This assessment is no
longer valid when considering massive quarks, as reported in ref [40].
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Part II

Linear Power Corrections in Shape
Variables in the three-jet region
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Introduction

The study presented in the following chapters is based on a result which can be formulated as
follows: an observable which is inclusive with respect to soft QCD radiation does not exhibit
linear power corrections. Leaving a detailed explanation of this result in the next sections, we
emphasise that it has important implications for the computation of shape variables in e+e−

collisions. Indeed this result implies that no linear power corrections arise from the recoil of
hard partons due to the emission of a soft parton. Furthermore, this conclusion also provides
an analytic explanation on our findings described in part I, about the absence of IR linear
renormalons in the transverse momentum distribution of a massive gauge boson, produced in
association with a jet in hadronic collisions. We will elaborate more on this in section 4.1.2.

Shape variables in e+e− annihilation

The purpose of this part of the thesis is to investigate non-perturbative power-suppressed
corrections affecting shape variable distributions in e+e− annihilation into hadrons in the
three-jet region and beyond. This study is interesting for a twofold reason, as the three-jet
production in e+e− collision is sensitive to the strong coupling constant αs, and thus is a very
relevant process for its determination. Furthermore, even though other methods look more
promising for this purpose (see ref. [57]), studying three-jet production in e+e− collisions
still remains relevant from a theoretical perspective. Indeed it constitutes a very valuable
environment in order to explore the interplay between perturbative and non-perturbative
effects in jet-production processes in the simplest possible setting and, hopefully, understand
how to extend such studies to the more complex case of hadronic collisions.

Leading power-suppressed corrections to shape variables are usually linear, i.e. they are
of the order of ΛQCD/Q, where ΛQCD is a hadronic scale and Q is the hard scale of the process
under consideration. For typical e+e− collider energies, these corrections can reach even the
percent level, and thus it is crucial to properly include them in the analysis of shape variables
distributions. In the recent past power corrections have been estimated either using Monte
Carlo event generators [58–60] or recurring to analytic models [61–68]. Nevertheless, even if
more practical, the Monte Carlo approach has been widely criticized, as it is very difficult to
justify it theoretically in a convincing way. Analytic models are conceptually more appealing,
since they make contact with certain features that the full theory should have, such as infrared
renormalons. Unfortunately, analytic estimates of non-perturbative corrections are usually
performed in the two-jet region [51,69–83] and then extrapolated to the three-jet region. The
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estimates of the strong coupling constant obtained from the application of these methods
lead to values of αs that differ of several standard deviations from the world average value,
αs(MZ) = 0.1179(1) [57]. A possible explanation for this discrepancy can rely upon significant
ambiguities in the extraction of the leading power corrections from the two- to the three-jet
region [84].

In this work we will examine power corrections affecting shape variables in an Abelian
limit of QCD, due to the emission of a soft massive gluon, in order to obtain a fully analytic
expression for them in the three-jet region, also considering the g∗ → qq̄ splitting and using
the quark and anti-quark momenta to compute changes in the shape variable. The presence
of analytical results is very helpful for obtaining solid phenomenological predictions in a very
efficient way since they do not require a numerical extrapolations to small gluon masses, as
done in part I. Moreover, we will show that the analytic computation allows us to uncover
peculiar structures in our results, which can be interesting to examine in a field-theoretic
framework.

We start by computing the linear renormalon contributions to the C-parameter, consid-
ering the process γ∗ → qq̄γ + (g∗ → qq̄).1 Then we compute the linear power corrections to
the C-parameter by integrating over the soft gluon energy. This direct calculation is quite
complex, as it involves elliptic integrals, but the final result looks very simple, suggesting the
existence of an alternative and simpler way to compute it. In this sense we will explain how
to perform the computation in a more feasible way, in order to directly get a simple final
result. We show that linear power corrections affecting the C-parameter can be cast in a fac-
torised expression, where one factor depends on the properties of the shape variable and the
kinematics of soft partons, and the second factor turns to be a universal constant that only
depends on the radiation dynamics. The important point to subtle is that this factorisation
property also applies to a large class of shape variables, besides the C-parameter, with the
same constant term for all of them.

We formulate the conditions an observable must satisfy for this factorisation to happen,
and demonstrate its power and generality by computing linear power corrections to the thrust
distribution in the three-jet region, in addition to the C-parameter. These results can also be
extended to the more general case where N jets are produced in e+e− annihilation. Although
a study of C-parameter and thrust in the N -jet region for N > 3 has limited scope, they can
still be useful for phenomenological analyses [58,85,86].

Our method can also be applied to the computation of shape variables in the two-jet
region, and, doing so, we obtain the same result as in refs. [76,77], and find that the universal
constant factor that we identified within the context of the three-jet calculations is related
to the so called “Milan Factor” of refs. [76,77]. In the literature the constant “Milan factor”
has often been presented as a correction term to be applied to shape variables calculations
performed with massive gluons, but neglecting the gluon splitting into qq̄ pairs and also the
impact of the splitting on the observable itself. This way of describing it, though justified
by historical reasons, looks slightly misleading, as the computation of power corrections to
shape variables considering the emission or the exchange of a massive gluon leads to wrong

1As in the case of the Z transverse momentum, we cannot address directly the γ∗ → qq̄g+(g∗ → qq̄), since
the large nf calculation becomes too complex if applied to processes with a hard gluon.

31



answers. Indeed the weakness of this approach is also due to the fact that the final results
strictly depend upon ambiguities in the definition of shape variables when final state massive
partons are present.2 Nevertheless these ambiguities are not present if the universal factor is
attached to corrections to shape variables caused by an emission of a massless soft parton in
a particular kinematic, as we will see in the following.3

The remainder of this part is organized as follows. In chapter 4 we set up the notation we
are going to use, focusing on the real emission contribution for two different configurations
for the emitting dipole, namely the “final-final” and the “initial-final” ones. The main result
of this chapter is that, for observables that are fully inclusive with respect to QCD radiation,
no linear power corrections can arise.

In chapter 5 we study linear power corrections to the C-parameter in the three-jet region.
In section 5.1 we begin to compute these corrections by a direct analytic integration, with
a cut-off on the energy of the virtual gluon. This approach leads to the arising of elliptic
integrals and it is highly non-trivial, but in principle it can be performed exploiting the
formalism of elliptic polylogarithms [87–92]. It turns out, however, that the whole calculation
can be performed without resorting to this technology, as we will explain in the remaining
part of the chapter.

As we mentioned earlier, the computation of power-corrections affecting C-parameter in
the three-jet region is quite demanding, but its result is so simple that it needs a detailed
explanation, that can be found in section 5.2, where we show how linear power corrections
naturally factorise into a process-dependent part and a universal factor, that can be easily
computed.

In section 5.4 we formulate the general conditions that an observable must satisfy for this
factorisation to happen, and in section 5.5 we show in detail how they are satisfied in the
case of the C-parameter. In section 5.6 we discuss the differences between our approach and
the one of refs. [76, 77], where the Milan factor was originally introduced.

In chapter 6 we show that the factorisation property of power corrections valid for the C-
parameter also applies for a broader class of observables and compute linear power corrections
affecting the thrust distribution in the three-jet region.

Given the high relevance of this study for phenomenological purposes dealing with ex-
traction of αs, in chapter 7 we perform preliminary phenomenological studies of the power
corrections in the three-jet region, first validating the analytic results against the ones ob-
tained from a numerical computation. Then we conjecture how to generalise our results,
which are only valid for a qq̄γ final state, to the realistic QCD scenario. In section 7.4 we
present phenomenological predictions for the C-parameter and the thrust distributions in the
three-jet region, comparing our results for the C-parameter with the ones in ref. [84].

Finally, in chapter 8 we give our conclusions.

2 For a further analysis on this issue, see eq. (5.56) in ref. [24].
3We want to emphasize that the definition of the Milan factor for the two-jet and symmetric three-jet

limit given in ref. [77] is fully consistent with ours, as our claims only deal with the factorisation in a generic
three-jet configuration. In our treatment, the Milan factor rigorously arises in a computation performed within
the large-nf framework, where it is evident that a final state with a massive gluon cannot contribute to power
corrections.
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Chapter 4

Generalities on the method

In this chapter we will briefly introduce the notation and formalism we are going to use
in order to study non-perturbative corrections affecting a shape variable in e+e− collisions,
working in the large-nf limit.

4.1 Linear power corrections from real emission

In this section we want to demonstrate that if one considers an observable that is fully
inclusive with respect to soft QCD radiation, the real squared amplitude cannot contribute
any O(λ) correction, in an Abelian theory involving a gluon with non-zero mass λ.

Furthermore, by considering a process only involving massless particles, the one loop con-
tribution cannot provide power corrections. The main point is that the Passarino-Veltman
reduction, in conjunction with the formula for the evaluation of scalar integrals, makes it
obvious that the virtual corrections only admit an expansion in powers of λ2, with eventual
logarithmic enhancements. Furthermore, we observe that the Passarino-Veltman reduction
algorithm remains valid when considering more complex processes, only involving more com-
plicated scalar integrals.

We will consider two different cases for the QCD emitting dipole: the “final-final” con-
figuration, with both the partons in the final state, and the “initial-final” configuration. The
former is indeed suitable in order to investigate the presence of linear power corrections affect-
ing shape variables in e+e− annihilation. The latter instead suits for analytically explaining
the result obtained for the transverse momentum distribution of the Z-boson produced in
hadronic collisions.

4.1.1 Final-final dipole

Let us consider the contribution due to the real radiation. Specifically, we consider a generic
process I → F , being I and F short-hand notations for the collection of initial and final state
particles, respectively, and the real correction I → F + g, where g is a gluon with mass λ.
For sake of simplicity we imagine that there are two and only two massless QCD charged
partons. We do not consider cases when one of these partons is a gluon, and, on the other
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Sec 4.1. Linear power corrections from real emission

hand, we allow for an arbitrary number of (massless or massive) QCD-neutral particles. In
order to keep the contact with the kinematic configuration we will further describe in the
following sections, we will take both the QCD partons in the final state (“final-final” dipole).
For definiteness, the momenta of the partons forming the dipole will be denoted by p1 and
p2.

Let us consider a process where colorless particles with a total momentum pI produce
final state particles with momenta p1, p2, p3, . . . , pN

pI → p1 + p2 + p3 + · · ·+ pN , (4.1)

where the particles p1,2 have QCD charges and all other particles are colorless. For our
treatment we consider cases where the QCD dipole is formed by massless particles, p2

1 = p2
2 =

0, and, for ease of notation, in this section we will also assume that the colorless particles
satisfy the mass-shell condition p2

3,...,N = 0. In order to investigate the presence of linear
power corrections we consider the emission of a massive gluon with momentum k and mass
λ. From momentum conservation we have

pI → p1 + p2 + p3 + · · ·+ pN + k. (4.2)

With this situation, as there is only one gluon involved, we are insensitive to the non-Abelian
behaviour of the QCD, and the Ward identities are trivially satisfied.

In order to study soft-gluon emission it may be useful to introduce mappings of hard final
state particles

pi → p̃i = p̃i({pj}, k), i = 1, . . . , N, (4.3)

that preserve both the on-shell conditions p̃2
i = p2

i , i = 1, . . . , N and the momentum conser-
vation constraint. In the following we will refer to the p̃i momenta as the underlying Born
momenta, denoting with {p̃} the set {p̃1, p̃2, p̃3}. We will also use the notation {p} to denote
{p1, p2, p3}. From momentum conservation we get

pI =
N∑
i=1

p̃i =
N∑
i=1

pi + k. (4.4)

As we are interested only in linear power corrections, we only require these mappings to first
order in the gluon momentum k. Although for our purposes we need to determine a specific
mapping, we will take the discussion as general as possible, also to show the flexibility of our
conclusions. We first require that the mappings behave as

pµi = p̃µi +Rµi,ν({p̃})kν +O(k2
0), (4.5)

for small gluon momentum, where the tensors Rµi,ν depend on the momenta p̃i and the metric
tensor. Momentum conservation in eq. (4.4) implies∑

p̃i =
∑

pµi + kµ →
∑

Rµi,νk
ν = −kµ. (4.6)

We also require our mapping to satisfy the on-shell condition through the relation

p2
i = (1 + λi)p̃

2
i , (4.7)
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Sec 4.1. Linear power corrections from real emission

where we have introduced the analytic functions λi, depending upon the momenta. Using
eq. (4.5) we get

2p̃i,µK
µν
i kν = λip̃

2
i , (4.8)

with λi ∼ O(k).
At this point we are able to express the phase-space element for the final state particles

in terms of the underlying Born momenta p̃i. We write

dLips(pI ; p1, . . . , pN , k)

=

[ N∏
i=1

d4pi
(2π)3

δ+(p2
i )

]
[dk](2π)4δ(4)

(
pI −

N∑
i=1

pi − k
)

=

[ N∏
i=1

d4p̃i
(2π)3

δ+(p̃2
i (1 + λi))

]
[dk]

∂(p1, . . . , pN )

∂(p̃1, . . . , p̃N )
(2π)4δ(4)

(
pI −

N∑
i=1

p̃i

)
,

(4.9)

with [dk] = d4k/(2π)3δ+(k2 − λ2). Since we are interested to extract only the O(k) terms
from this expression, we recur to a relation between the determinant and the trace of a matrix
connected with the identity matrix, and to the fact that λi ∼ k, obtaining

dLips(pI ; p1, . . . , pN , k) ≈ dLips(pI ; p̃1, . . . , p̃N )
d4k

(2π)3
δ+(k2 − λ2)J (4.10)

where

J = 1−
N∑
i=1

λi +

N∑
i=1

∂Rµνi
∂p̃µi

kν . (4.11)

To proceed further we need to specify the mapping explicitly, and in order to do that, we
will focus on the so-called dipole-local mappings, i.e. those mappings such that the recoil
due to the emission is absorbed only by the particles forming the emitting dipole, with the
other particles left unchanged. By assumption, in our case the dipole is formed by the final
state particles with momenta p1,2 and thus we impose Ri = 0 for i = 3, . . . , N . Furthermore,
we want to construct the tensors Rµν1,2 using only p̃1,2 and the metric tensor. Under these
assumptions, the most general form for the tensors Rµν1,2 reads

Rµνi = (aip̃
µ
1 p̃

ν
1 + bip̃

µ
2 p̃

ν
2 + cip̃

µ
1 p̃

ν
2 + dip̃

µ
2 p̃

ν
1) + eig

µν . (4.12)

Using eq. (4.6), together with the fact that the coefficients in eq. (4.12) do not depend on k,
we can impose the following constraints equations

a1 + a2 = 0, b1 + b2 = 0, c1 + c2 = 0, d1 + d2 = 0, e1 + e2 = −1. (4.13)

Exploiting the fact that it must be p̃i,µR
µν
i kν ∝ p̃2

i , we yield the following set of equations
for the coefficients in eq. (4.12)

a1 p̃
2
1 + d1 (p̃1p̃2) + e1 ∝ p̃2

1, b1 (p̃1p̃2) + c1 p̃
2
1 ∝ p̃2

1,

b2 p̃
2
2 + c2 (p̃1p̃2) + e2 ∝ p̃2

2, a2 (p̃1p̃2) + d2 p̃
2
2 ∝ p̃2

2.
(4.14)
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We can see that eq. (4.13), in conjunction with eq. (4.14) provide a set of nine equations for
a total of ten unknowns ai, bi, ci, di, ei. Thus we can express our solution in terms of one of
them, say ei, obtaining

a1,2 = b1,2 = 0, c2 = −c1 =
1 + e1

(p̃1p̃2)
, d2 = −d1 =

e1

(p̃1p̃2)
, e2 = −1− e1. (4.15)

Renaming e1 = −α, we finally get the quite simple expressions

Rµν1 = −αgµν − (1− α)p̃µ1 p̃
ν
2 − αp̃

µ
2 p̃

ν
1

(p̃1p̃2)
,

Rµν2 = −(1− α)gµν +
(1− α)p̃µ1 p̃

ν
2 − αp̃

µ
2 p̃

ν
1

(p̃1p̃2)
.

(4.16)

Now it is straightforward to implement the phase space transformation, in such way

λ1 = −2(1− α)
(p̃2k)

(p̃1p̃2)
, λ2 = −2α

(p̃1k)

(p̃1p̃2)
,

∂Kµν
1

∂p̃µ1
= −(3− 4α)

p̃ν2
(p̃1p̃2)

,
∂Kµν

2

∂p̃µ2
= (1− 4α)

p̃ν1
(p̃1p̃2)

.

(4.17)

Thanks to these equations, we can easily rewrite the Jacobian of the transformation J in
eq. (4.11) in the more compact form

J = 1 + (1− 2α)
(p̃1k − p̃2k)

(p̃1p̃2)
. (4.18)

For sake of generality, in the rest of this section we will keep α to be fully arbitrary. Further-
more we observe that, writing q = p̃1 + p̃2, and using momentum conservation p1 +p2 = q−k,
we obtain an upper bound on the possible values of the gluon momentum k, from the con-
dition (q − k)2 > 0. We also want to emphasize that the mappings defined in eq. (4.16)
automatically satisfy nice infrared conditions. The soft limit is trivially satisfied, as for
k → 0 one gets pi = p̃i by construction. For what concerns the collinear limit, if we consider
k collinear to p1 for instance, we need to replace k = ηp1, finding p1 = (1− η)p̃1 and p2 = p̃2,
that is precisely what we expect from a collinear-safe mapping. An analogous result holds if
we consider k → ηp2 case.1

1Although for our purposes it is fully sufficient to consider mappings of the form eq. (4.16), we observe
that in principle we could have also employed mappings with a weaker smoothness condition. For instance,
let us assume that the tensors Rµν1,2 could be written as

Rµνi = Rµνi,‖ +Rµνi,⊥,

with Ri,‖ and Ri,⊥ satisfying the conditions

Rµνi,‖

(
gµα −

p̃1,µp̃2,α + p̃1,αp̃2,µ

(p̃1p̃2)

)
= 0, Rµνi,⊥p̃1,ν = Rµνi,⊥p̃2,ν = 0.

Even though the transverse term Rµνi,⊥ could depend in a non trivial way on (p̃1,2k), one can easily observe
that this term leads to an odd linear dependence upon the transverse momentum component of k, that cancels
out after azimuthal integration. By virtue of this it is possible to show that all the arguments exposed in this
section also apply to this more general case, with no significant modifications.
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Sec 4.1. Linear power corrections from real emission

At this point, after studying the phase-space transformation, we can move on to discuss
the matrix element and its integration as well. As we only have one QCD dipole, the squared
amplitude for the real emission, summed over quarks and gluon polarizations, reads as

|M|2({pi}, k) =
A({pi}, k)

(p1 + k)2(p2 + k)2
+
B1({pi}, k)

[(p1 + k)2]2
+
B2({pi}, k)

[(p2 + k)2]2
. (4.19)

Where the functions A,B1,2 are polynomials in k, and describe the interference term, the
emission from the first leg, and the emission from the second leg, respectively. The limiting
behaviour of A follows from the usual soft approximation, from which we obtain

A({pi}, k) = a0({pi}) + aµ1 ({pi})kµ +O(k2), (4.20)

where aµ1 ({pi}) is a four-vector depending, in principle, on all vectors pi. For what concerns
the B1,2 diagrams, as they can arise only from squares of diagrams involving a gluon that
is emitted and absorbed by the same fermion line, they can be expressed as (taking B1 as
example)

B1({pi}, k)

[(p1 + k)2]2
∝ −gµν 1

[(p1 + k)2]2
Tr

[
(/p1

+ /p2
)γµ/p1

γν(/p1
+ /k) . . .

]
, (4.21)

where we have used
∑
εµε
∗
ν = −gµν to sum over gluon polarizations.2 After some algebra

from eq. (4.21) we obtain (and analogously for B2)

B1({pi}, k) = λ2[b10({pi}) + bµ11({pi})kµ]− (p1 + k)2bµ11({pi})kµ. (4.22)

The terms proportional to (p1 + k)2 in eq. (4.22) remove the double pole in eq. (4.19).
Finally, from a power counting argument, we can show that the contributions of the form
λ2/[(pi+k)2]2 can be neglected, as, because of the λ2 suppression, the small-k region in these
integrals only provide O(λ2) terms.

At this point we need to integrate the squared amplitude, expanded at first order in
the gluon momentum k, over the gluon phase space, after performing the transformation
pi → p̃i. Eq. (4.19) is used to remap the matrix element squared, discarding the double poles
for the reasons explained before. By virtue of the mapping transformation we can rewrite
the propagators as

(p1,2 + k)2 = 2(p̃ik)± (1− 2α)λ2 ∓ 2(1− 2α)
(p̃1k)(p̃2k)

(p̃1p̃2)
, (4.23)

and, expanding them to next-to-leading order in k ∼ λ, we get

1

(p1,2 + k)2
=

1

(2p̃ik)

(
1∓ (1− 2α)

λ2

2(p̃ik)
± (1− 2α)

(p̃1k)(p̃2k)

(p̃ik)(p̃1p̃2)

)
. (4.24)

Now we consider the theoretical predictions for an IR-safe observable that is inclusive with
respect to QCD radiation. By virtue of this, it follows that

O(p1, p2, p3, . . . , pN ; k) = O(p̃1, p̃2, . . . , p̃N ). (4.25)

2In presence of massive gluons, the sum over polarizations leads to a term kµkν/k
2. Anyway this term can

be dropped by virtue of the Ward identity, which still stands in the (Abelian) problem.
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Sec 4.1. Linear power corrections from real emission

For this species of observable one can write its expectation value as∫
dσO(p1, . . . , pN ; k)

=

∫
dLips(p̃1, . . . , p̃N )O(p̃1, . . . , p̃N )g2

sCF |Mo({p̃i})|2
∫

d4k

(2π)3
δ+(k2 − λ2)θ[(q − k)2]

× 2(p̃1p̃2)

(p̃1k)(p̃2k)

[
1 + vµkµ − (1− 2α)

(
λ2

2(p̃1k)
− λ2

2(p̃2k)

)]
, (4.26)

where the vector vµ is a function of the momenta p̃i, whose exact form is completely irrelevant
for our purposes. We also note that an upper bound on the k integration follows from the
presence of the constraint θ[(q− k)2]. In principle, as the expression in eq. (4.26) refers to an
expansion performed around the soft region k ∼ λ, we could have restricted the integration
over k accordingly. Nevertheless, as our aim is to investigate the presence of O(λ) terms
arising in the differential cross section, we can safely extend the integration path to the full
phase space for k, since the regions where k is hard cannot contribute linear O(λ) terms. In
appendix B we give a discussion on the integrals appearing in eq. (4.26), also showing that
they can be written as a power series in λ2.

The main conclusion of this section is that arbitrary differential cross sections that are
inclusive with respect to QCD radiation are free from linear power corrections, related to IR
linear renormalons. On the other hand, linear sensitivity on λ can arise when one considers
observables that are sensitive to gluon momenta.

4.1.2 Initial-final dipole

At this point we are able to generalize the arguments exposed in section 4.1.1, considering a
configuration where one of the radiating partons is in the initial state, and the other one is
in the final state. As we said previously, this scenario is relevant in order to better describe
the production of a vector boson with a non-vanishing transverse momentum, in hadronic
collisions. Thus, keeping the same notation as in section 4.1.1 for the emitting QCD dipole
momenta, we consider at the Born level

p1 + p3 → p2 + pF (4.27)

where pF stands for the momenta of the colorless particles. Since we are not able to perform
a large-nf computation for a process involving a gluon at the Born level, we use the same
strategy as in part I, considering a quark-photon collision

q(p1) + γ(p3)→ q(p2) +X(pF ), (4.28)

where X stands for a genericl colorless system.
At this point we need to construct a local dipole mapping, involving the partons p1 and

p2, and that could be used to probe linear power corrections in this process. At variance
with the case described in section 4.1.1, when constructing the mapping for the initial-state
parton we impose that the direction of its momentum stays unchanged. Then, writing the
p1 transformation as

pµ1 = p̃µ1 + (κ1k)p̃µ1 , (4.29)
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Sec 4.1. Linear power corrections from real emission

and using momentum conservation

p1 − p2 − k = p̃1 − p̃2, (4.30)

we obtain the transformation law for p2

pµ2 = p̃µ2 + (κ1k)p̃µ1 − k
µ. (4.31)

In this case also we require that the on-shell conditions are not affected by the mapping. This
is obvious for eq. (4.29), that implies

p2
1 = (1 + 2(κ1k) +O(k2))p̃2

1, (4.32)

for a generic κ1. The equation for p2
2 gives more information. Indeed we write

p2
2 = p̃2

2 + 2(p̃1p̃2)(κ1k)− 2(p̃2k) +O(k2). (4.33)

Hence, to satisfy the condition p2
2 ∝ p̃2

2, we require

2[(p̃1p̃2)κµ1 − p̃
µ
2 ]kµ = 0. (4.34)

Since κ1 does not depend on the gluon momentum k, it follows that

κµ1 =
p̃µ2

(p̃1p̃2)
. (4.35)

In conclusion, the final form of the mapping for an initial-final dipole is

pµ1 =

(
1 +

(p̃2k)

(p̃1p̃2)

)
p̃µ1 , pµ2 = p̃µ2 +

(p̃2k)

(p̃1p̃2)
p̃µ1 − k

µ. (4.36)

In this case as well it is easy to check that the mapping implemented in eq. (4.36) is well-
behaved in the soft and collinear limits. In fact, in the soft limit k → 0 one has, by con-
struction, pi → p̃i. For k getting collinear to p1 for instance, we need to replace k with ηp1,
obtaining p1 = (1 + η)p̃1, p2 = p̃2. Similarly, for k = ηp2, we get p1 = p̃1 and p2 = (1− η)p̃2.

At this point we need to study the phase space transformation, proceeding exactly in the
same way as done in section 4.1.1 for a final-final dipole, except that for the current case we
only need to integrate over p2. The parameter λ2 introduced in the previous section can be
set to zero, since p2

2 = p̃2
2. Furthermore, exploiting the result for the Jacobian

∂p2

∂p̃2
= 1 +

(p̃1k)

(p̃1p̃2)
, (4.37)

and the momentum conservation, we obtain

dLips(p1, p3; p2, pF , k) = dLips(p̃1, p̃3; p̃2, p̃F )
d4k

(2π)3
δ+(k2 − λ2)

(
1 +

(p̃1k)

(p̃1p̃2)

)
, (4.38)
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Sec 4.1. Linear power corrections from real emission

where p3 = p̃3, as we are considering a dipole local mapping. Furthermore, in eq. (4.38)
the integral over the gluon momentum is assumed to be constrained by the requirement
(q − k)2 < 0, being q = p̃1 − p̃2.

As we are considering a parton in the initial state, in order to compute the cross section,
we must convolute the partonic phase space and the squared matrix element with parton
distribution functions. Thus we have

dσR =

∫
dx1dx3fq(x1)fγ(x3)

× dLips(x1P1, x3P3; p2, pF , k)
|M(x1P1, x3P3, p2, . . . , k)|2

2shadrx1x3
,

(4.39)

where P1,3 are the momenta of the incoming hadrons, shadr = 2(P1P3) is the hadronic center-
of-mass energy squared and fq,γ are the quark and photon parton distribution functions,
respectively. We observe that eq. (4.36) can also be interpreted as a transormation rule for
x1. Indeed, given that p1 = x1P1 and p̃1 = x̃1P1 we find, through linear order in k

x1 = x̃1 +
(p̃2k)

(p̃2P1)
= x̃1 + ξ(k, p̃2). (4.40)

Thanks to the phase space transformation we can easily rewrite eq. (4.39) as

dσR =

∫
dx̃1dx3fq(x̃1 + ξ(k, p̃2))fγ(x3)dLips(x̃1P1, x3P3; p̃2, pF )

× d4k

(2π)4
δ+(k2 − λ2)

(
1 +

(P1k)

(P1p̃2)

)
|M((x̃1 + ξ)P1, x3P3; p̃2, . . . , k)|2

2shadr(x̃1 + ξ(k, p̃2))x3
.

(4.41)

Assuming x1 is a regular point, we can expand the above equation in ξ; since ξ also appears
in the argument of the quark distribution function fq, we write

fq(x̃1 + ξ) = fq(x̃1) + f ′q(x̃1)ξ +O(k2). (4.42)

Along the same lines of section 4.1.1 we can also expand the real squared amplitude up to
next-to-eikonal term, taking care of the different forms of the two singular propagators, that
now read

1

(p1 − k)2
= − 1

2(p̃1k)

(
1− (p̃2k)

(p̃1p̃2)
+

λ2

2(p1k)

)
+O(λ),

1

(p2 + k)2
=

1

2(p̃2k)

(
1− (p̃1k)

(p̃1p̃2)
+

λ2

2(p̃2k)

)
+O(λ).

(4.43)

Combining these results we find that we need to consider integrals of the same species as
the ones for the final-final case. All these integrals are discussed in appendix B where we
show that they admit an expansion in powers of λ2. Thus we can conclude that also in
this case there are no linear power corrections affecting kinematic distributions of final-state
QCD-neutral particles.

This result provides a solid analytic proof of the numerical evidence found in part I of
this thesis, concerning the transverse momentum distribution of a Z boson in hadronic colli-
sions. Here in fact we proved that this observable cannot manifest leading non-perturbative
corrections, even if rapidity cuts are applied, at least in our simplified “hadron-photon”setup.
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Sec 4.2. Linear power corrections to shape variables

4.2 Linear power corrections to shape variables

As we have already mentioned in part I of this thesis, the large-nf prediction for a generic
observable (in a process that does not involve a gluon at leading order) can be rigorously
computed by considering the NLO QCD corrections to its expectation value, considering the
exchange and emission of a gluon with mass λ, and looking for O(λ) corrections. For our
purposes we are interested in linear power corrections affecting the cumulative distribution
Σ for a generic shape variable V in e+e− collisions in the three-jet region, considering the
process γ∗ → q + q̄ + γ + (g∗ → q + q̄). We define the cumulant as

Σ(v) =
∑
F

∫
dσF θ(V (ΦF )− v), (4.44)

where F stands for a particular final state, ΦF denotes the phase-space point of the state F
and V (ΦF ) is the value of the shape variable V evaluated at the point ΦF . In our treatment
we always assume that the shape variable is defined such that it vanishes in the two-jet limit.3

We observe that in eq. (4.44) we have defined the cumulant as the cross section for producing
a final state with the value of the shape variable V larger than a constant value v, while it is
common in literature to define it as the cross section for V < v. Our choice is motivated by
the fact that the total cross section is free from IR renormalons, and, doing so, we can avoid
contributions from the two-jet region, as we are only interested in the three-jet region.

Following the notation introduced in section 1.3 and based on ref. [40], power corrections
to eq. (4.44) are obtained by computing

Σ(v;λ) =

∫
dΦb

[
dσb(Φb)

dΦb
+

dσv(Φb)

dΦb

]
θ(V (Φb)− v) +

∫
dΦg∗

dσg
∗
(Φλ

g∗)

dΦλ
g∗

θ(V (Φλ
g∗)− v)

− λ2

b0,fαs

∫
dΦqq̄

dσqq̄(Φqq̄)

dσqq̄
δ(m2

qq̄ − λ2)
[
θ(V (Φqq̄)− v)− θ(V (Φλ

g∗)− v)
]
, (4.45)

where Φb is the Born phase space (i.e. the qq̄γ phase space for our case), and σb is the
corresponding cross section. σv describes the correction to the cross section due to the
exchange of a virtual massive gluon with mass λ; Φλ

g∗ stands for the phase space for the

emission of such a gluon, with σg
∗

the corresponding cross section. Finally, Φqq̄ is the phase
space element that contains a qq̄ pair with invariant mass mqq̄, and σqq̄ the corresponding
cross section. In eq. (4.45) we have also defined the QCD beta function in the large-nf limit

b0,f = −
nfTR

3π
. (4.46)

We will label by p1, p2, p3 the momenta of the primary quarks and of the photon, respectively,
and by l, l̄ the momenta of the qq̄ pair arising from the splitting of the gluon g∗, such that
l + l̄ = k, being k the gluon momentum.

3 For the C-parameter this feature follows from its definition. For the thrust T we need to consider T̄ = 1−T
in order to ensure it.
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Sec 4.2. Linear power corrections to shape variables

Introducing the more compact notation for the invariant phase space element

[dp] =
d3p

2p0(2π)3
, (4.47)

we can define the phase space elements in eq. (4.45) as follows

dΦb = [dp1] [dp2] [dp3] (2π)4δ(4)(p1 + p2 + p3 − q), (4.48)

dΦλ
g∗ = [dp1] [dp2] [dp3] [dk] (2π)4δ(4)(p1 + p2 + p3 + k − q), (4.49)

dΦqq̄ = [dp1] [dp2] [dp3] [dl]
[
dl̄
]

(2π)4δ(4)(p1 + p2 + p3 + l + l̄ − q), (4.50)

where q is the total momentum of the e+e− pair, and all the momenta are light-like except
for k, for which we have k2 = λ2. The normalisation factor in the third term on the right
hand side of eq. (4.45) is such that

− λ2

b0,fαs

∫
[dl]

[
dl̄
] dσqq̄(Φqq̄)

dΦqq̄
(2π)4δ(4)(l + l̄ − k) = 2π

dσg
∗
(Φλ

g∗)

dΦg∗
. (4.51)

We know that linear terms in λ arising from eq. (4.45) are associated with infrared renor-
malons and thus lead to linear power corrections O(ΛQCD/Q). Furthermore, looking at
eq. (4.51) we observe that the contribution proportional to θ(V (Φλ

g∗)−v) cancels in eq. (4.45)
among the second and third terms. Thus we can assume that linear contributions in λ can
only be generated by the terms proportional to θ(V (Φλ

qq̄) − v), and, as we have seen in
section 4.1, for a certain class of observables that are inclusive with respect to soft QCD
radiation, these power corrections can be extracted by studying the emission of a soft qq̄
pair.

In section 4.1 we have shown in details how to construct a suitable mapping from the full
phase space to the underlying Born phase space, also showing that it is possible to realize
different mappings, all ensuring the condition in eq. (4.5), as well as soft and collinear-safety.
We stress that we choose to work with this class of mappings because they significantly
simplify the investigation of linear power corrections.

In order to extract linear power corrections in λ, we introduce an operator Tλ, that
extracts the O(λ) contributions from the expression it acts upon. Then by defining

|M({p}, l, l̄)|2 ≡ − λ2

2πb0,fαs

dσqq̄(Φqq̄)

dΦqq̄
, (4.52)

we get

Tλ[Σ(v;λ)] = Tλ
[∫

dΦqq̄2πδ(m
2
qq̄ − λ2)|M({p}, l, l̄)|2θ(V ({p}, l, l̄)− v)

]
. (4.53)

In the soft limit we can expand the θ function around V ({p}, l, l̄) = V ({p̃}) (being {p̃} the
underlying Born momenta), obtaining

Tλ[Σ(v;λ)] = Tλ
[∫

dΦqq̄2πδ(m
2
qq̄ − λ2)|M({p}, l, l̄)|2θ(V ({p̃})− v)

]
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+

[∫
dΦqq̄2πδ(m

2
qq̄ − λ2)|M({p}, l, l̄)|2δ(V ({p̃})− v)[V ({p}, l, l̄)− V ({p̃})]

]
.

(4.54)

In section 4.1 we also demonstrated that if the mapping in eq. (4.3) satisfies the condition in
eq. (4.5), no O(λ) terms can arise from an inclusive integration performed at fixed underlying
Born momenta. This implies that the first term in eq. (4.54) cannot contribute a linear term
in λ, and thus the Tλ operator projects this term to zero. As the second term in the right-hand
side of eq. (4.54) does not involve an inclusive integration over the radiation phase space, it
can, in principle, provide leading terms in λ. Furthermore we can observe that this term also
contains a factor V ({p}, l, l̄)− V ({p̃}), that vanishes in the collinear and soft limit as long as
V is IR-safe. By virtue of this behaviour, one can take into account the infrared-singular part
of |M |2 in order to probe the presence of linear terms in λ. Thus we are allowed to consider
the leading soft approximation, replacing

|M({p}, l, l̄)|2 → N dσb(Φ̃b)

dΦ̃b

JµJν

λ2
Tr
[
/lγµ/̄lγν

]
, (4.55)

where we have introduced the underlying Born phase space dΦ̃b

dΦ̃b = [dp̃1][dp̃2][dp̃3](2π)4δ(4)(p̃1 + p̃2 + p̃3 − q), (4.56)

and Jµ is the eikonal current for the emission of a soft gluon with momentum k

Jµ =
p̃µ1

(p̃1k)
− p̃µ2

(p̃2k)
, (4.57)

and the trace arises from the inclusion of the gluon splitting into a quark-antiquark pair. The
normalisation factor N in eq. (4.55) reads as

N =

[
− 1

2b0,fαs

]
× g2

sCF × g2
sTRnf = 24π2αsCF . (4.58)

At this point we can factorize the phase-space in the soft limit, obtaining

Tλ[Σ(v;λ)] =

∫
dΦ̃b

dσb(Φ̃b)

dΦ̃b

δ(V ({p̃})− v)× Tλ
[
N
∫

[dk]
JµJν

λ2
θ

(
ωmax −

kq√
q2

)
×
∫

[dl][dl̄](2π)4δ(4)(k − l − l̄)Tr[/lγµ/̄lγν ][V ({p}, l, l̄)− V ({p̃})]
]
. (4.59)

In eq. (4.59) we have implicitly defined a cut-off ωmax on the energy of the intermediate gluon,
in the rest frame of q, in order to regularise the UV divergences of the eikonal integral, and
make eq. (4.59) finite. Linear power corrections will not depend on ωmax. In order to further
simplify eq. (4.59), we observe that it is possible to separately study the change of the shape
variable due to the emission of two soft partons and to recoil effects, as follows

V ({p}, l, l̄)− V ({p̃}) = [V ({p̃}, l, l̄)− V ({p̃})] + [V ({p})− V ({p̃})] +O(k2
0). (4.60)
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In the next sections we will elaborate more in details on this point; for this moment we just
observe that both the C-parameter and the Thrust satisfy this condition. If the separation
as in eq. (4.60) is allowed, one can make use of eq. (4.5) to expand the second term on
the r.h.s. in k. In section 4.1 we demonstrated how linear power corrections cannot arise
from an integration performed at fixed underlying Born kinematics, even if we multiply the
cross section by an expression that is linear in λ. Thus, inserting eq. (4.60) into eq. (4.59),
the second term cannot lead to any linear power correction, and eq. (4.59) can be further
simplified as follows

V ({p}, l, l̄)− V ({p̃})→ V ({p̃}, l, l̄)− V ({p̃}). (4.61)

Thus we obtain

Tλ[Σ(v;λ)] =

∫
dσb(Φ̃b)δ(V ({p̃})− v)×

[
NTλ[IV ({p̃}, λ)]

]
, (4.62)

where we have introduced

IV ({p̃}, λ) =

∫
[dk]

JµJν

λ2
θ

(
ωmax −

(kq)√
q2

)∫
[dl][dl̄](2π)4δ(4)(k − l − l̄)

× Tr[/lγµ/̄lγν ][V ({p̃}, l, l̄)− V ({p̃})]. (4.63)

The two eqs. (4.62, 4.63) constitute the starting point in order to perform the analytic inves-
tigations reported in the next chapters.
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Chapter 5

Power corrections to the
C-parameter in the three-jet region

In this chapter we show how to obtain an analytic result for linear power corrections affecting
the C-parameter in the three-jet region, considering the process

γ∗(q)→ q(p1) + q̄(p2) + γ(p3), (5.1)

with all final-state particles resolved. If we consider a process involving N massless final-state
particles with momenta p1, . . . , pN , then the C-parameter is defined as

C = 3− 3
∑
j<i

(pipj)
2

(piq)(pjq)
, (5.2)

where q = ΣN
i=1pi is the momentum of the decaying virtual photon. We want to apply eq. (5.2)

to the case N = 5, labelling p4 = l and p5 = l̄, being l and l̄ the momenta of the qq̄ pair
produced by the splitting of the gluon. Looking at eq. (5.2) we can immediately conclude
that the C-parameter satisfies the condition shown in eq. (4.60). Thus, in order to compute
linear power corrections to the cumulant, we can use eqs. (4.62, 4.63).

As we mentioned in the introduction, we can implement the computation in two ways.
Indeed we can directly integrate eq. (4.62), also obtaining a robust benchmark for the fol-
lowing investigations. The direct integration technique of eq. (4.62) is quite interesting from
a technical point of view, as it involves elliptic structures and it is highly non trivial, though
leading to very simple results. Indeed it turns out that the complexity of the computation
strictly depends on the regularization procedure of the integral over virtual-gluon energy (cf.
eq. (4.62)). In the following we will see how the use of the ωmax regulator in eq. (4.62) is
not optimal. We will also show that it is possible to perform the whole calculation in a fully
factorised approach, that strongly simplifies it and also allows us to generalise our results to
a wide class of observables. Furthermore, in the following we will study this factorisation
in detail, and also comment on the connection between our results and the ones obtained
within the Milan factor approach [76, 77], for computations performed in the two-jet and in
the symmetric three-jet limits.
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Sec 5.1. Direct integration with an explicit energy cut-off

5.1 Direct integration with an explicit energy cut-off

We want to analytically integrate the function IV ({p̃}, λ), introduced in eq. (4.63), for V = C.
For ease of notation, from now on we will replace p̃i → pi in all the expressions, as the pi
momenta (i = 1, 2, 3) do not appear in the following calculation.

First we consider the integration over the phase space of the emitted quarks, keeping the
gluon momentum k and q fixed. For sake of convenience we perform this integration in the
rest frame of the decaying gluon. Then we integrate over the direction of the vector ~k in the
rest frame of q, keeping p1,2,3 fixed and leaving the integration over the gluon energy at the
end. We observe that, since the gluon mass acts as a cut-off for both the soft and collinear
divergences, the angular integrations become straightforward. Thus we can directly write

IC(p1, p2, p3, λ) = − 3λ

4π3q

5∑
i=1

Ii(x, y, λ), (5.3)

where

Ii(x, y, λ) =

∫ βmax

0
dβ Gi(β, x, y). (5.4)

In eq. (5.3) we have q =
√
q2, β is the velocity of the massive gluon in the q rest frame, and

βmax =
√

1− λ2/ω2
max; the two variables x and y parameterise the kinematics of the three-jet

configuration. They allow us to express the scalar products qpi, i = 1, 2, 3 as follows

qpi =
q2

2
(1− zi), (5.5)

such that
∑3

i=1 zi = 1. Thus we can parameterise z1,2,3 as z1 = xy, z2 = x(1− y), z3 = 1−x.
The explicit expressions for the Gi functions are rather lenghty, and we chose to report them
in appendix E. By looking at these functions we can observe that their integration is not
straightforward. Indeed, when taken separately, the Gi functions exhibit strong singularities
for β = 0 and moderately strong singularities for β = 1. The first ones, for β = 0 are
unphysical, and cancel in the sum. The β = 1 singularities instead are physical and are due
to the fact that the integral in eq. (4.63) diverges for large values of gluon energy (this is
the reason for the presence of the cut-off ωmax or βmax). Furthermore, the integrand exhibits
an elliptic structure. Indeed, a glance at G3,5 shows the arising of square roots of a degree-
four polynomial,

√
(1− β2)(1− c2

12β
2), being c2

12 = 1 − s2
12 = cos2 (θ12/2) and θ12 is the

angle between the three-momenta ~p1 and ~p2 in the q rest frame. It is a well known result
that the integration of square roots of degree-four polynomials leads to elliptic integrals.
Although it is possible to integrate over β systematically, a similar integration would involve
the presence of both generalised and elliptic polylogarithms, making the whole computation
very complicated.

It turns out, however, that one can integrate over β bypassing entirely the arising of
elliptic polylogarithms, and we can illustrate this point by considering the G5 function for
sake of example, that also allows us to expose all the key features of the method, keeping the
discussion relatively short.
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Sec 5.1. Direct integration with an explicit energy cut-off

The explicit expression of G5 reads

G5 =

√
1− β2 ln

(
1+β
1−β

)
ln

(√
1−β2c212+βs12√
1−β2c212−βs12

)
64β8s12x(x(y − 1) + 1)(xy − 1)

√
1− β2c2

12

×
(
β6x[x2(y − 1)y + x(−4y2 + 4y − 5) + 5] + β4[x2(54y2 − 54y − 17) (5.6)

− 21x3(y − 1)y + 55x− 38] + 5β2[x2(−24y2 + 24y + 5)

+ 11x3(y − 1)y − 17x+ 12]− 35(x− 2)(x2(y − 1)y + x− 1)

)
.

We observe that G5 is integrable at β = 1 but not at β = 0. Thus we set βmax = 1 in I5, but
we need to define the following integral

Ireg
5 =

∫ 1

βmin

dβ G5(β, x, y). (5.7)

In the following we will drop the superscript “reg”.
The G5 function contains two logarithms of β, two β-dependent square roots and a ra-

tional function of β. In order to integrate over β it is convenient to consider an integral
representation of the two logarithms contained in eq. (5.6). Thus we write

ln
1 + β

1− β
= 2β

∫ 1

0

dr

1− r2β2
,

ln

(√
1− β2c2

12 + βs12√
1− β2c2

12 − βs12

)
= 2βs12

√
1− β2c2

12

∫ 1

0

dξ

1− β2∆2
,

(5.8)

where ∆ is a function of ξ, ∆ =
√
c2

12 + s2
12ξ

2. After this substitution, eq. (5.7) takes the
form

I5 =

∫ 1

0
dr dξ

∫ 1

βmin

dβ
√

1− β2R(β2, r2, ξ2), (5.9)

being R(β2, r2, ξ2) a rational function of its arguments, whose dependence on x and y has been
suppressed. Thanks to the integral representations in eq. (5.8), one of the two β-dependent
square roots has disappeared from the integrand in eq. (5.9). At this point in order to also
remove the second root, we change variables β = sinϕ, obtaining

I5 =

∫ 1

0
dr dξ

∫ π/2

ϕmin

dϕ cos2(ϕ)R(sin2(ϕ), r2, ξ2), (5.10)

where ϕmin = arcsin(βmin).
At this point, noting that the integral depends on squares of cosϕ and sinϕ, it is

convenient to change variables once again, writing ϕ = ϕ1/2, such that 0 < ϕ1 < π,
cos2(ϕ1/2) = (1 + cosϕ1)/2, sin2(ϕ1/2) = (1− cosϕ1)/2. Thus we get

I5 =
1

2

∫ 1

0
dr dξ

∫ π

2ϕmin

dϕ1R1(cosϕ1, r
2, ξ2), (5.11)
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where R1 is another rational function of it arguments. To proceed further we perform a
partial frationing of R1 with respect to cosϕ1, obtaining

R1 =
−1∑
i=−3

Pi(r
2, ξ2)

(1− cosϕ1)i
+

1

∆2 − r2

[
P∆(r2, ξ2)

(2−∆2 + ∆2 cosϕ1)
+

Pr(r
2, ξ2)

(2− r2 + r2 cosϕ1)

]
, (5.12)

where P−3,−2,−1(r2, ξ2) and P∆,r(r
2, ξ2) are polynomials in r2 and ξ2. As it can be seen in

eq. (5.12), these polynomials only contain even powers of r and ξ, and this property will be
exploited in the following.

It is straightforward to integrate over ϕ1 for all of the five terms in eq. (5.12); in particular,
for what concerns the first three terms, we can perform a trivial integration over ϕ1, and then
expand in βmin. The resulting expressions can then be integrated over ξ and r very easily.
As the treatment of the first three terms in eq. (5.12) is very straightforward, we prefer to
focus on the last two terms, studying

I45
5 =

1

2

∫ 1

0
dr dξ

∫ π

2ϕmin

dϕ1

∆2 − r2

[
P∆(r2, ξ2)

2−∆2 + ∆2 cosϕ1
+

Pr(r
2, ξ2)

2− r2 + r2 cosϕ1

]
. (5.13)

As both the terms in eq. (5.13) are integrable at ϕ = 0, corresponding to β = 0, we can safely
set ϕmin → 0. Using the identity∫ π

0

dϕ

a− b cosϕ
=

π√
a2 − b2

, (5.14)

we obtain the following result

I45
5 =

π

4

∫ 1

0

dr dξ

∆2 − r2

[
P∆(r2, ξ2)√

1−∆2
+
Pr(r

2, ξ2)√
1− r2

]
. (5.15)

Looking at eq. (5.15) we note the presence of a singularity at ∆ = r. Nevertheless, using
the explicit form of the two polynomials P∆(r2, ξ2) and Pr(r

2, ξ2) one can check that the
expression in the square brackets in eq. (5.15) vanishes when ∆ = r.

Even though the singularity at ∆ = r and the way we regulated it in eq. (5.15) seem
to suggest that the two terms in eq. (5.15) must be integrated at once, it turns out to
be convenient to integrate them separately. In order to do this we need to introduce a
regulator, by moving the pole at ∆ = r away from the real axis, i.e. we take 1/(∆2 − r2)→
1/(∆2 − r2 + i0). At this point one can deal with the two terms in eq. (5.15) separately. Let
us consider the first term, changing variables ξ = th(u), r = th(w), we obtain∫ 1

0

dr dξ

∆2 − r2 + i0

P∆(r2, ξ2)√
1−∆2

=
1

s12

∫ ∞
0

du dw ch(u)P∆(th2(u), th2(w))

ch2(u)− s2
12ch2(w) + i0

, (5.16)

where the integrand in the above equation is an even function of u. Thus we can extend
the u-integration to the whole real axis and, changing variable u → z = sh(u) we get an
integral that can be evaluated using Cauchy’s residue theorem. Now we are left with a one-
dimensional integral in w. For the second term in eq. (5.15) we can proceed in a similar
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Sec 5.1. Direct integration with an explicit energy cut-off

way, by first integrating over w using the residue theorem, and then facing a one-dimensional
integral in u.

Thus we map the integration ranges of the two remaining one-dimensional integrals in the
interval [s12, 1], introducing the change of variable t = 1/ch(w) for the first term of eq. (5.15)
and t = 1/ch(u) for the second one. By combining the two terms we arrive at the following
result for I45

5

I45
5 =

∫ 1

s12

dt t2√
1− t2

√
t2 − s2

12

[α(x, y) + β(x, y)t2 + γ(x, y)t4 + δ(x, y)t6], (5.17)

where we have restored the dependence on x and y, to subtle that I45
5 depends non-trivially

on the underlying Born kinematics. A straightforward integration over t in eq. (5.17) leads
to a result that can be expressed through the two complete elliptic integrals

K(z) =

∫ 1

0

dt√
(1− t2)(1− zt2)

, E(z) =

∫ 1

0

dt
√

1− zt2√
1− t2

. (5.18)

To summarise, we were able to get this relatively simple result by a) introducing an integral
representation for the logarithms in eq. (5.8), that also removes one of the square roots; b)
choosing a proper change of variables to linearise the square root in eq. (5.8); c) using a
different integration strategy for the two terms in eq. (5.15), that required the presence of a
regulator at intermediate stages.

So far we only considered the I5 contribution, as all the other Ii terms of eq. (5.4) can be
obtained along similar lines. Furthermore, we observe that elliptic integrals only arise in I5.
When we put all the different contributions together, we get a rather cumbersome result for
IC , depending on the underlying Born kinematics and on βmax. We find that, for a generic
three-jet configuration, we are left only with the terms that contain elliptic integrals, and the
result takes the remarkably simple form

Tλ[IC ] =
15

128π

s3
12

1− z3

(
λ

q

)[
(1 + z3)

2
K(c2

12)− (1− z1z2)E(c2
12)

]
, (5.19)

where we switched back to the zi variables defined in eq. (5.5), and used

s2
12 =

z3

(1− z1)(1− z2)
. (5.20)

Turning back to eq. (4.62) we can immediately translate this result into the expression for
the non-perturbative shift in the cumulative distribution for a generic three-jet configuration,
for the C-parameter

Tλ[Σ(c;λ)] =

∫
dσb(Φb)δ(C(Φb)− c)×

αsCF
45π

16

s3
12

1− z3

[
(1 + z3)

2
K(c2

12)− (1− z1z2)E(c2
12)

](
λ

q

)
. (5.21)
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At this point we can study the behaviour of eq. (5.21) in the two- and three-jet symmetric
points, in order to compare our results with the ones reported in the literature. In the two-jet
limit we take c12 = 0, z2 → 0 and z1 + z3 → 1 (or, equivalently z1 → 0 and z2 + z3 → 1), and
we obtain the well-known result of refs [93,94]

Tλ[Σ(0;λ)]

dσ/dC|c=0
= −15

16
π2

(
λ

q

)
αs. (5.22)

In correspondence of the three-jet symmetric point, the three jet share all the same energy
fraction, with zi = 1/3 for each i and c12 = 1/2. Thus we obtain

Tλ[Σ(3/4;λ)]

dσ/dC|c=3/4
=

15

32

√
3π[3K(1/4)− 4E(1/4)]

(
λ

q

)
αs, (5.23)

in agreement with the results of ref. [84], that we adapted to our process γ∗ → q + q̄ + γ,
corrected for the nf →∞ limit. In the above equations we also made use of the relation∫

dσδ(V − v) =
dσ

dV
. (5.24)

We conclude this section by observing that in ref. [84] the whole computation has been carried
out in the so-called Milan factor approach, consisting in multiplying the result of a simplified
computation only involving the emission of a single massless gluon by a universal factor, in
order to correct for the gluon splitting. The approach we described along this section cannot
show neither the simplicity of the final result, nor its relation to the Milan factor approach. In
order to clarify these issues, it is necessary to change the way of approaching the integration
of eq. (4.62), and we discuss about this in what follows.

5.2 Factorised form of linear power corrections affecting the
C-parameter

In order to get a simple and factorised form of power corrections for the C-parameter we
start from eq. (4.63), taking V = C. As for this approach we do not need to introduce a cut
off on the gluon energy, we remove the θ-function that implements this constraint. Thus we
simply consider

Iunreg
C ({p̃}, λ) =

∫
[dk]

JµJν

λ2

∫
[dl][dl̄](2π)4δ(4)(k − l − l̄)

× Tr[/lγµ/̄lγν ][C({p̃}, l, l̄)− C({p̃})]. (5.25)

In the following we will replace p̃i → pi as there is no room for any ambiguity. Furthermore,
after removing the gluon energy cut-off, the integral in eq. (5.25) is ill-defined; thus we need
to introduce a proper regularisation in order to get a finite integral, and that also allows for
its straightforward computation.
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However, we start by first simplifying eq. (5.25), by computing the trace in the square
bracket, and inserting the definition of the C-parameter. Thus we get

Iunreg
C = −24

∫
[dk]

JµJν
λ2

∫
[dl][dl̄](2π)4δ(4)(k − l − l̄)C̃αβ

lαlβ
(lq)

[
−2lµlν − gµν λ

2

2

]
, (5.26)

where the arguments of Iunreg
C have been dropped only for sake of notations, and the relation

l̄ = k − l has been used, in conjunction with kµJ
µ = 0, to discard terms proportional to k,

that originate from the trace. We have also introduced the rank-two tensor C̃αβ, defined as

C̃αβ =

3∑
i=1

pαi p
β
i

(piq)
, (5.27)

accounting for the fact that the quark and the antiquark contribute in the same way to the
C-parameter.

To proceed further we choose to use the p1,2 vectors as a basis, in order to employ the
Sudakov parametrisation for l as

lµ = lte
η p

µ
1√
s

+ lte
−η p

µ
2√
s

+ lµ⊥, [dl] =
dη d2~l⊥
2(2π)3

, (5.28)

where s = 2(p1p2), lt = |l⊥| and η is the rapidity of the quark l. Thanks to these variables,
we can rewrite the quark-antiquark phase space as

[dl][dl̄](2π)4δ(4)(k − l − l̄) = 2π[dl]δ+((k − l)2) =
1

8π2
dηltdltdϕδ(λ

2 − 2(kl)), (5.29)

with ϕ the azimuthal angle of ~l⊥. As an integration over the absolute value of the quark trans-
verse momentum lt is straightforward, we can easily remove the δ-function from eq. (5.29).
With this goal we introduce the rescaled vector

l̃µ =
lµ

lt
=

pµ1√
s
eη +

pµ2√
s
e−η + nµ, (5.30)

where nµ = lµ⊥/lt, and find

[dl][dl̄](2π)4δ(4)(k − l − l̄) =
1

8π2
dηdϕ

λ2

(2kl̃)2
, lt =

λ2

2(kl̃)
. (5.31)

Thanks to eq. (5.31) we can write the function IC in eq. (5.26) as

Iunreg
C = WC × λF (p1, p2, l̃), (5.32)

with

WC = −3

∫
dη dϕ

2(2π)3
C̃αβ

l̃α l̃β

(l̃q)
, (5.33)
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and

F (p1, p2, l̃) = 16π

∫
[dk]

JµJν
λ3

{
−2l̃µ l̃ν

λ8

(2kl̃)5
− gµνλ6

2(2kl̃)3

}
. (5.34)

Thus the function IC can be factorised in the product of two terms: one term, namely F does
not depend on the observable, and only involves an integration over the gluon momentum k;
the second term instead involves an integration over the rapidity and azimuthal angle of the
emitted quark with momentum l and also contains the dependence on the observable. In the
next sections we will show how, even though eq. (5.34) can depend upon p1, p2 and l̃, it is
actually a constant.

Furthermore, we would like to stress that eqs. (5.32, 5.34) are ill-defined. Nevertheless, as
we will show below, it is possible to exploit a regularisation scheme that allows us to evaluate
both F and IC in a quite simple way. We will also show that the observable-independent
constant term F can be easily related to the Milan factor of refs. [76, 77].

5.3 The observable-independent function F

In this section we will compute explicitly the function F defined in eq. (5.34). We start by
introducing a Sudakov parameterisation for the gluon momentum k

kµ = mte
ηk
pµ1√
s

+mte
−ηk p

µ
2√
s

+ kµ⊥, (5.35)

where, as done for the quark momentum in eq. (5.30) we have introduced kt = |k⊥| and also
mt =

√
k2
t + λ2. Recurring to eqs. (5.30) and eq. (5.35) it is easy to obtain

kµ l̃
µ = mt ch(ηkl)− kt cos(ϕkl),

JµJ
µ = − 2(p1p2)

(p1k)(p2k)
= − 4

m2
t

, (Jµ l̃
µ)2 =

4 sh2(ηkl)

m2
t

,
(5.36)

where we have introduced ηkl = ηk − η, ϕkl = ϕk − ϕ. Recurring to these relations we can
write the function F defined in eq. (5.34) as follows

F =
λ3

4π2

∫
dktktIM ,

IM =

∫
dηkdϕk
m2
t

{
− λ2sh2(ηkl)

[mtch(ηkl)− kt cos (ϕkl)]5
+

1

[mtch(ηkl)− kt cos (ϕkl)]3

}
. (5.37)

In order to proceed in the computation of F we need to regularise it. A good choice consists
in multiplying the integrand by the factor k2ε

t , writing

F =
λ3

4π2

∫ ∞
0

dktk
1+2ε
t IM . (5.38)

For now we just assume that this choice does regulate all the divergences present in eq. (5.37),
and at the end of this section we will also explain why one can choose this regularisation.
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Furthermore we note that the integrand in eq. (5.37) only depends on the difference of two
azimuthal angles ϕkl and on the difference of two rapidities ηkl. By virtue of this, since
we integrate over all possible gluon rapidities and over all azimuthal angles, F must be
independent on l̃. Hence, as pointed out previously, F must be a constant.

When computing F we perform the change variables ηk → ηkl = x and ϕk → ϕkl, such
that the azimuthal integration over ϕkl becomes straightforward. Thus it is convenient recur
to the intergal in eq. (5.14) and compute an appropriate number of derivatives with respect
to a, to obtain an expression for the integrals of 1/(a − b cosϕ)5 and 1/(a − b cosϕ)3. Thus
we find the following result

F =
λ2ε

128π

∫ ∞
−∞

dx

∫ ∞
0

dξ
ξεf(ξ, x)

(ξ + 1)[(ξ + 1)ch2x− ξ]9/2
(5.39)

where ξ = k2
t /λ

2 and the function f(ξ, x) reads

f(ξ, x) = ξ(ξ + 1)2ch(6x) + 4(1− 2ξ)(ξ + 1)ch(4x)

− (9ξ3 + 8ξ2 − 23ξ − 16)ch(2x) + 2(4ξ3 + 7ξ2 + 14ξ + 6). (5.40)

In order to integrate over ξ, we change variables ξ → r, with ξ = [r − ch2(x)]/[ch2(x) − 1],
finding

F =
λ2ε

256π

∫ ∞
−∞

dx

sh2+2ε(x)

∫ ∞
ch2(x)

dr
(r − ch2(x))εf̃(x, r)

(r − 1)r9/2
, (5.41)

where

f̃(x, r) = (−8r2 + 40r − 35)ch(4x) + 4(8r3 − 44r2 + 70r − 35)ch(2x)

+ 64r3 − 192r2 + 240r − 105. (5.42)

At this point the integration over r can be performed in a straightforward way, and one can
express the result in terms of hypergeometric functions. Thus we get

F =
λ2ε

1890π3/2
Γ

(
3

2
− ε
)

Γ(ε+ 1)

∫ ∞
0

dx

sh2+2ε(x)ch5−2ε(x)

{
630ch2(x)(ch(2x) + 2)F21

(
1,

3

2
− ε, 5

2
;

1

ch2(x)

)
+

63

8
(2ε− 3)

[
(16ε2 + 8(2ε+ 3)ch(2x) + 3ch(4x) + 21)F21

(
1,

5

2
− ε; 7

2
,

1

ch2(x)

)
+4sh2(x)(4ε+ ch(2x) + 3)F21

(
2,

5

2
− ε; 7

2
,

1

ch2(x)

)]}
, (5.43)

where we exploit the symmetry of the integrand with respect to x = 0 to restrict the inte-
gration region to the positive real axis.

The residual integral in eq. (5.43) has a quadratic singularity in correspondence of x = 0,
that needs to be extracted before integrating over x. In order to do this we consider a suitable
limiting form of the integrand in the x→ 0 limit, computed for finite ε, that will be subtracted
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from the integrand, and then added back. In such a way the difference gets integrable and an
expansion in ε can be performed, while the subtracted term is simple enough to be integrated
for arbitrary ε. Thus along these lines we can write F as the sum of two contributions

F = F (a) + F (b). (5.44)

F (a) is the subtraction term, which can be obtained by taking the ch(x)→ 1 limit in eq. (5.41),
keeping the 1/sh2+2ε(x) term as it is, and finding

F (a) ≡ λ2ε

256π

∫ ∞
−∞

dx

sh2+2ε(x)

∫ ∞
1

dr
(r − 1)ε−1f̃(0, r)

r9/2

=
λ2εΓ(1 + ε)Γ(3

2 − ε)
6π3/2

[3− ε(1− 2ε)]

∫ ∞
0

dx

sh2+2ε(x)
. (5.45)

The regular piece F (b) is given by the difference between F in eq. (5.43) and F (a). As
the difference is integrable at x = 0, we can expand it in ε. Furthermore, we change the
integration variables from x to t = ex, 1 < t <∞. We get

F (b) =
1

π

∫ ∞
1

dt

[
−(3 + t2)(1 + 3t2)

32t3
ln
t+ 1

t− 1
+

(3 + 6t+ 14t2 + 6t3 + 3t4)

16t2(1 + t)2

]
=

1

π

(
−5π2

64
+

1

4

)
. (5.46)

Now it remains to compute F (a). In order to do that we perform the change of variables
x = ln t, and find∫ ∞

0

dx

sh2+2ε(x)
= 22+2ε

∫ ∞
1

dtt1+2ε

(t2 − 1)2+2ε
= 21+2εΓ(−1− 2ε)Γ(1 + ε)

Γ(−ε)
. (5.47)

We observe that, although the original integral is ill-defined for ε = 0, this result has a smooth
ε → 0 limit. Thus we use eq. (5.47) in the expression for F (a) given in eq. (5.45), take the
ε→ 0 limit and obtain

F (a) = − 1

4π
. (5.48)

By combining the result for F (a) and F (b) in eq. (5.46) and eq. (5.48) we obtain the final
result for the universal factor F

F = −5π

64
. (5.49)

5.3.1 An alternative way to compute F

Now we will expose an alternative procedure to evaluate F , that, besides showing that F is
actually a constant, allows us to express it in terms of a convergent integral, amenable to a
direct numerical integration, that we carry out as a further check of the analytic result in
eq. (5.49).
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Sec 5.3. The observable-independent function F

Looking at IM in eq. (5.34) we can observe that for small values of λ the two terms in
the square bracket diverge as ηkl and ϕkl get small at the same time. This singularity is in
fact due to the collinear divergence arising when the quark and the gluon momenta become
parallel to each other, in the small λ limit.

Assuming ηkl ≈ 0 the following equation holds

1

mtch(ηkl)− kt cosϕkl
=

2

mt
×

1 +O(η2
kl, ϕ

2
kl)

2(mt−kt)
mt

+ kt
mt
ϕ2
kl + η2

kl

. (5.50)

As the integral in eq. (5.34) is dominated by the region where both ηkl and ϕkl are of order
λ/mt, for large kt we can safely substitute in the integrand

1

mtch(ηkl)− kt cosϕkl
→
(

2

kt

)
× 1

λ2/k2
t + ϕ2

kl + η2
kl

, (5.51)

with the neglecting terms that can only lead to O(λ2/k2
t ) contributions. With eq. (5.51) and

using a polar coordinate system {ηkl, ϕkl} → {rηϕ cos θηϕ, rηϕ sin θηϕ}, we can write

IM ≈
∫

drηϕdθηϕrηϕ

[
−32

(
λ2

k7
t

)
r2
ηϕ cos2 θηϕ

(λ2/k2
t + r2

ηϕ)5
+

8/k5
t

(λ2/k2
t + r2

ηϕ)3

]
=

8π

3λ4
× 1

kt
+O(λ2/k2

t ).

(5.52)
Thus the expression

F reg =
λ3

4π2

∫ ∞
0

dkt

(
ktIM −

8π

3λ4

)
, (5.53)

yields a convergent kt-integration. In fact the integral in eq. (5.53) can be computed recurring
to numerical techniques, verifying the analytic result in eq. (5.49).

Now we can provide an argument to justify the use of a regulator in the evaluation of
eq. (5.38). In fact, as the integral in F reg is convergent, we can safely introduce a regulator
k2ε
t in the integrand of eq. (5.53) treating the two terms separately. The subtraction term

goes to zero thanks to the properties of the analytic regulator∫ ∞
0

dktk
1+2ε
t = 0, (5.54)

and the first term in eq. (5.53) leads to an analytically-regulated expression, as in eq. (5.38),
that has been used in this section in order to evaluate the constant universal factor F .

To proceed further, we need to compute the observable-dependent part WC defined in
eq. (5.32). It is possible to perform the computation by introducing a proper regulator to
the integrand in WC and proceeding along the same lines as for the computation of the
constant F . Nevertheless, in the next section we will perform the computation using a more
general approach, also identifying the properties an observable must obey for this factorisation
approach to be applicable.
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5.4 The observable dependent factor: a general approach

In section 5.2 we have focused exclusively on the C-parameter case, but it is obvious that the
arguments we are going to expose in this section are applicable to a wider class of observables.
In what follows we will identify the main properties a shape variable must satisfy in order to
factorise the non-perturbative contribution as in eq. (5.32).

We will show as well that this general approach bears striking similarities to the Milan
factor approach of refs. [76, 77], that has been succesfully applied to study non-perturbative
corrections near singular kinematic configurations. In order to check our results, we will
explore the connections between our formalism and the one used in refs [76,77].

We start by studying in more detail the contribution due to the recoil effects on shape
variables. As shown in section 4.2, we can compute linear power corrections to a generic
IR-safe observable V by considering the difference V ({p}, l, l̄)−V ({p̃}), that we now examine
including the recoil effects. Following the arguments exposed in section 4.2, we find, in the
small-k limit

V ({p}, l, l̄)− V ({p̃}) = V ({p̃}, l, l̄)− V ({p̃}) +
∂V ({p̃})
∂p̃µi

Rµi,ν({p̃})kν

+

{
∂V ({p̃}, l, l̄)

∂p̃µi
− ∂V ({p̃})

∂p̃µi

}
Rµi,ν({p̃})kν +O(k2

0), (5.55)

where we assume summation over repeated indices. The term in the curly bracket on the
right-hand side of eq. (5.55) is suppressed in the soft limit and, being multiplied by kν , can
be dropped. For observables that are linear with respect to soft emissions we have1

V ({p̃}, l, l̄)− V ({p̃}) = V ({p̃}, l, l̄)− V ({p̃}, l) + V ({p̃}, l)− V ({p̃})
≈ V ({p̃}, l̄)− V ({p̃}) + V ({p̃}, l)− V ({p̃}), (5.56)

leading to

V ({p}, l, l̄)− V ({p̃}) ≈ V ({p̃}, l)− V ({p̃}) +
∂V ({p̃})
∂p̃µi

Rµi,ν({p̃})lν

+ V ({p̃}, l̄)− V ({p̃}) +
∂V ({p̃})
∂p̃µi

Rµi,ν({p̃})l̄ν , (5.57)

where we have used k = l+ l̄, and we have neglected terms of higher order in l. As long as the
observable V and the mapping satisfy the linearity condition of eq. (5.57), the effect of the
emission of two soft massless partons (arising from the decay of a virtual gluon) can be written
as the sum of two equivalent contributions, each contributing with a soft massless parton,
and each recoil effect is computed as if only one parton was emitted. For our treatment
we assume that our observable V satisfies these requirements, and this strongly simplifies
the computation, as it allows us to focus on modifications of the shape variables due to
the emission of a single massless parton. We label by l the momentum of the emitted soft
massless parton, with ϕ, η, l⊥ its azimuthal angle, rapidity and transverse momentum, taken

1The definition on linearity means that V ({p̃}, l, l̄) = V ({p}) + V µ2 ({p}, l)lµ + V µ3 ({p}, l̄)l̄µ.
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Sec 5.4. The observable dependent factor: a general approach

in the dipole rest frame, respectively. We expect that the shape variable modification can be
described by the following equation at small lt = |l⊥|

V ({p}, l)− V ({p̃}) =
lt
q
hV (η, ϕ), (5.58)

that obviously vanishes in the soft limit. In order for it to vanish also in the collinear limit,
we need the function hV to be bounded for large η and arbitrary ϕ. This because, being the
rapidity limited by a logarithm of Q/lt, an exponential behaviour in η would lead to powers
of Q/lt (where Q is the hard scale of the process), canceling the lt suppression. Nevertheless,
this requirement is not enough for our purposes. Indeed we work under the assumption that
hard-collinear regions cannot contribute to linear power corrections. For this reason hV must
also be suppressed for large η.2 For an emission from a qq̄ dipole, the collinear divergence
does not depend upon the azimuth of the emitted parton, such that we can rely on the
weaker condition that

∫
dϕhV (η, ϕ) vanishes for large η. When we generalise our result to

the realistic QCD scenario of an emission from a qg (q̄g) dipole, we may have to worry also
about the azimuthal-dependent collinear divergences, arising from terms proportional to lµ⊥l

ν
⊥

in the splitting function. However these terms are even in ϕ, i.e. they are invariant under
the parity transformation ϕ→ π−ϕ. Thus we require that hV (η, ϕ)− hV (η, π−ϕ) must be
integrable for −∞ < η < ∞. Thus we can obtain an expression for linear power corrections
similar to eq. (5.32). We write

Iunreg
V = WV × λF, (5.59)

where

WV =

∫
dη dϕ

2(2π)3

hV (η, ϕ)

q
, (5.60)

with hV defined in eq. (5.58). In section 5.3 we have shown that the singularities in F can be
handled either introducing an analytic regulator or by subtraction. Under the assumptions
listed above, the integral in WV of eq. (5.60) is automathically convergent and no further
regularisation is needed. Using eq. (4.62) we get our final formula for the linear power
corrections affecting the cumulant

Tλ[Σ(v;λ)] =

∫
dσb(Φ̃b)δ(V (Φ̃b)− v)

λ

q
[NF (qWV )]

=

∫
dσb(Φ̃b)δ(V (Φ̃b)− v)

λ

q

[
−15

64
αsπCF

∫
dη

dϕ

2π
hV (η, ϕ)

]
. (5.61)

Now we note that rather than using the full expression for the shape variable, also including
recoil effects, we can simply consider

V ({p̃}, l)− V ({p̃}) ≡ lt
q
ĥ(η, ϕ). (5.62)

We know indeed that ltĥ must differ from lth by terms linear in the components of l, i.e. we
must have

ĥ(η, ϕ)− h(η, ϕ) = Aeη +Be−η + C cosϕ+D sinϕ, (5.63)

2We subtle that not all shape variables satisfy this requirement. The jet-broadening, for instance, does not.
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Sec 5.5. The case of the C-parameter

where A and B are the same for all acceptable mappings, and C and D do not contribute.
Now we can move to complete the computation of the shape variable contribution by replacing

ĥ(η, ϕ)→ 1

2

[
ĥ(η, ϕ) + ĥ(η, π − ϕ)−Aeη −Be−η

]
, (5.64)

with A and B chosen in order to remove the η → ∞ and η → −∞ behaviour of the first
term.

We want to conclude this section by observing that underlying Born mappings that do
not satisfy the condition in eq. (4.5), and that are such that the non-linear term has the
form k⊥g(η) (e.g. the Catani-Seymour dipole scheme [95]), still have the same feature as
linear schemes, as far the absence of linear power corrections is concerned. Nevertheless
these schemes do not satisfy the linearity condition in eq. (5.57) and thus cannot be used for
a fully analytic treatment. Therefore this does not imply that such schemes are pathological
in any sense, and in fact we used them for our numerical checks.

5.5 The case of the C-parameter

We are going to show an application of the arguments exposed before to the case of the
C-parameter, explicitly computing the hV function (for V = C). The variation in the C-
parameter due to the emission of a single soft massless parton is given by

δC = −3
3∑

i>j=1

(pipj)
2

(piq)(pjq)
+ 3

3∑
i>j=1

(p̃ip̃j)
2

(p̃iq)(p̃jq)
− 3

3∑
j=1

(p̃jl)
2

(p̃jq)(lq)
+O(l20), (5.65)

where we introduced δC = C({p}, l) − C({p̃}). We chose a dipole-local mapping, that, for
small l, acts as

p1 = p̃1 −
(p̃2l)

(p̃1p̃2)
p̃1 −

1

2
l⊥,

p2 = p̃2 −
(p̃1l)

(p̃1p̃2)
p̃2 −

1

2
l⊥, (5.66)

p3 = p̃3.

We observe that the mapping in eq. (5.66), besides being accurate up to terms of order l20,
is also accurate in the hard collinear region, up to terms of order l2t . It fully satisfies the
momentum conservation, as well as the on-shell conditions for p1 and p2, up to terms of order
l2t . Now let us define

xi =
2(p̃iq)

q2
,

r3 =
|p̃3,⊥|√
q2

=

√
(1− x1)(1− x2)

1− x3
,

l = lt
p̃1√
s
α+ lt

p̃2√
s
β + l⊥,
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Sec 5.6. Connection with the Milan Factor approach

with α = exp(η), β = exp(−η) and s = 2(p̃1p̃2); a straightforward but long computation
leads to the following expression for δC:

δC =
lt
q
hC(η, ϕ),

hC(η, ϕ) =
6

x3x2
1x

2
2

{
−2r2

3

(1− x3)
5
2 (x1 + x2 − x1x2) cos2 ϕ

βx2 + αx1 + 2 cosϕr3
√

1− x3

+ r3
(x1 − x2)(1− x3)2(βx2 − αx1) cosϕ

βx2 + αx1 + 2 cosϕr3
√

1− x3

+
x1x2(1− x3)

3
2 (x1 + x2 − 2x1x2)

βx2 + αx1 + 2 cosϕ
√

1− x3

}
, (5.67)

that has the same form as eq. (5.58). The first and the third term in the curly bracket
decay exponentially for large |η|, but this does not hold for the second term. Nevertheless
hC(η, ϕ) +hC(η, π−ϕ) is suppressed for large η, such that our convergence requirements are
fully satisfied, and eq. (5.67) can safely be inserted in eq. (5.59), yielding a finite integral,
that can be performed with numeric techniques.

It is also interesting to evaluate separately the recoil contribution to hC . i.e. the contri-
bution coming from the first two terms of eq. (5.65). It reads

hrec
C (η, ϕ) =

3

x2
1x

2
2x3

{
2r3(1− x1)(1− x2)[3x1x2 − x1(1− x1)− x2(1− x2)] cosϕ

+
x1x2√

1− x3[βx1(1− x1)2 + αx2(1− x2)2 + x3(1− x3)2(α+ β)]

}
. (5.68)

Even though this contribution does not give linear power corrections, it is actually not sup-
pressed in the hard collinear region, at large rapidities. Thus, if we neglect recoil terms when
computing shape variable modifications, we will have hnorec

C = hC − hrec
C that is ill-behaved

at large η. Nevertheless, the terms proportional to cosϕ in eq. (5.68) are removed by an
azimuthal integration, and we can get rid of the terms growing with η recurring to eq. (5.63),
with the coefficients A and B tuned to exactly cancel the large η behaviour. Alternatively,
we can also regulate the rapidity integral by introducing an analytic regulator

dη → dηe−ε|η−ηq |, (5.69)

being ηq the rapidity of q in the emitting-dipole rest frame. It is easy to check that with the
use of this regulator, the contribution of the recoil in eq. (5.68) vanishes.

5.6 Connection with the Milan Factor approach

Now we analyse in detail the connection between our approach and the one exposed in
refs. [76, 77], namely the Milan Factor approach.

In the past years it was a common thought that, in order to estimate the linear power
corrections affecting shape variables, it was sufficient to consider the corrections due to the
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Sec 5.6. Connection with the Milan Factor approach

emission of a massive gluon, neglecting its further splitting into a qq̄ pair [68,70,96,97]. This
approach has been proven to be incorrect in [51], and in [76] it was shown how to properly
include the effects of gluon splitting. The result was expressed in a factorised form, with
the correction factor, dubbed Milan factor, to be applied to previous calculations where the
splitting was ignored. This procedure was also proven to be universal [77], and an analytic
form of the Milan factor has been extracted from explicit computations of the C-parameter
in the two-jet limit in refs. [93, 94]. Until recently, the Milan factor approach has only been
used to perform non-perturbative corrections near the two-jet limit. In a recent work [84]
the authors applied it to investigate non-perturbative corrections affecting the C-parameter
in the symmetric three-jet region c = 3/4.

In order to make a connection between the Milan factor approach and our formalism,
now we briefly summarise the main points of the former. Following refs. [76, 77], linear
power corrections to the cumulative distribution of an observable V can be obtained by first
computing its modifications due to the emission of a soft massless gluon, dubbed “gluer”,

δΣ = −
∫

dσbδ(V (Φb)− v)

∫
dlt
lt

[
4
αs(lt)CF

2π

]
lt
q

∫
dη

dϕ

2π
hV (η, ϕ), (5.70)

where lt is the transverse momentum of the gluer in the emitting-dipole rest frame.3 If one
considers the splitting of the gluon, one then applies a “correction” factor to eq. (5.70), by
multiplying it by the Milan factor M that in the large-nf limit takes the form [93,94]

M =
15π2

128
. (5.71)

In [76,77] it was argued that this method is sufficient to compute linear power corrections in
phase space regions where the recoil effects are strongly suppressed, i.e. where different recoil
prescriptions only lead to modifications of the observable that are at least quadratic in the
gluer momentum. The consequence of this argument is that the Milan factor approach cannot
be applied in a generic three-jet configuration, as in the non-degenerate three-jet region the
recoil effects induce a linear dependence on the gluer momentum.

At this point we can compare the Milan factor formalism to our technique for obtain-
ing linear power corrections. Taking an observable that satisfies the requirements listed in
section 5.4, the expression for linear power corrections is reported in eq. (5.61), that can be
written as

Tλ[Σ(v;λ)] = −
∫

dσbδ(V (Φb)− v)

[
M× 4

αsCF
2π

λ

q

∫
dη

dϕ

2π
hV (η, ϕ)

]
. (5.72)

We note that, in the context of the large-nf formalism, we can obtain the same result as in
eq. (5.72) by replacing λ with the integral of an effective coupling (see eq. (3.83) in ref. [24]).
Also in the Milan factor approach the non-perturbative correction is expressed in terms of an
integral over an effective coupling, and then we see that, in the two-jet and in the symmetric
three-jet limit our result is formally equivalent to the one of the Milan factor approach.

3The same arguments follow if there is more than one emitting dipole. Indeed in that case the contributions
are summed up.
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Nevertheless, our approach is valid in the full three-jet region, at least in the large-nf limit
and for observables of the species described in section 5.4. Thus it follows that our large-nf
derivation both confirms and generalises the Milan factor formalism.

However, we would like to emphasize that the formulation of our result is quite different
from the one of refs. [76,77]. First, we observe that the consolidated view on the Milan-factor
approach was to interpret it as a correction to a naive soft gluon result. This argument, though
justified from an historical perspective, is slightly misleading, and did cause misunderstanding
in the past. In fact, although it is clear from ref. [77] that the Milan factor needs to be applied
to the computation of the non-perturbative effect caused by the emission of a massless gluon,
it has been sometimes interpreted as the correction factor to be attached to the computation
performed using a massive gluon. From our computation, it is apparent that there are no
contributions to power corrections arising from the emission of a massive gluon. Furthermore,
the effect induced by a massive gluon emission also depends on ambiguities arising when
extending the definition of the shape variable to the case of a massive partons in the final
state, see footnote 2. The power correction is only determined by the behaviour of the shape
variable under the emission of a soft massless parton. This happens because for the shape
variable of the kind described in section 5.4, the variation of the observable under the emission
of two soft massless partons splits into two contributions, one for each emission, that can be
computed in terms of a differential distribution of just one of the two partons arising from
gluon splitting. This distribution is invariant (in the radiating dipole rest frame) under boosts
along the dipole direction, and even under the azimuthal angle of the emitted parton. This is
enough to guarantee that the result needs to have the same form as if the parton was just a
soft massless gluon emitting by the radiating dipole. Therefore, working with our approach,
there is no specific reason to express the result as a correction factor to be applied to the
effect computed with the emission of a massless gluon.
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Chapter 6

Applications of the factorised
approach

In this chapter we will compute linear power corrections to observables other than the C-
parameter in the three-jet region, exploiting the formalism we described in chapter 5. Specif-
ically, in section 6.1 we will study the thrust distribution in the three-jet region, due to its
great phenomenological interest.

6.1 Linear power corrections to thrust in the three-jet region

Let us consider linear power corrections affecting thrust distribution. Considering all final-
state particles as massless, we can define the thrust shape variable T as

T = max
~n

∑
i

|~n · ~pi|
q

(6.1)

where ~n is a unit vector, i runs over all final-state particles, and pi is the momentum of
the i-th particle. For ease of notation we will use ~nm to denote the vector that maximises
eq. (6.1), namely the thrust axis. Following eq. (6.1) it follows that in the two-jet limit T = 1.
Since we are not interested in the two-jet region, it is more convenient to define T = 1− T ,
and studying ints distribution. Then we consider the cumulant

Σ(t̄;λ) =
∑
F

∫
dσF θ(T (ΦF )− t̄), (6.2)

along the lines of eq. (4.44).
It is easy to demonstrate that the thrust satisfies all the requirements listed in section 5.4.

Following eq. (5.61), we can write the linear power corrections affecting the cumulative dis-
tribution of the thrust as

Tλ[Σ(t̄;λ)] =

∫
dσbδ(T (Φ̃b)− t̄)λ

q

[
15

8
αsCFπ

3qWT

]
, (6.3)
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where

WT =
1

q

∫
dηdϕ

2(2π)3

∣∣∣∣~nm · ~̃l
∣∣∣∣, (6.4)

As done in section 5.4, l denotes the momentum of a massless soft parton, whilst η, ϕ, lt denote
its rapidity, azimuthal angle and absolute value of transverse momentum in the emitting
dipole rest frame. We also have l̃ = l/lt. We observe the absence of an overall minus sign in
front of eq. (6.3); this is because we are considering the distribution T = 1− T . In eq. (6.4)
it is implicitly assumed the presence of the analytic regulator of eq. (5.69).

To make easier the evaluation of eq. (6.4) we use a Sudakov parameterisation for the
four-vector nm = (0, ~nm), writing

nm = αp1 + βp2 + nm,⊥, (6.5)

where (p1,2nm,⊥) = 0. As nm is a space-like vector in the rest frame of q, in an arbitrary
frame we have n2 = −1. This leads to

nm,t = |nm,⊥| =

√
1 +

(2p1t)(2p2t)

(2p1p2)
. (6.6)

The scalar product between nm and l̃ can be written in terms of the Sudakov variables α and
β as follows

− 2(~nm · ~̃l) = 2(nm l̃) =
√
se−η

(
α+ βe2η − 2nm,t√

s
eη cosϕln

)
, (6.7)

where s = 2(p1p2) and ϕln = ϕ− ϕnm . Replacing ω = eη, we can rewrite eq. (6.7) as

2(nm l̃) =

√
s

ω
P (ω), with P (ω) = β(ω − ω+)(ω − ω−), (6.8)

and

ω± =
nm,t cosϕln ±

√
1− n2

m,t sin2 ϕln
√
sβ

, (6.9)

where we have used the mass-shell relation n2
m = αβs−n2

m,t = −1 in deriving this expression.
To proceed further we observe that the analytically-regulated integration volume, intro-

duced in eq. (5.69), can be rewritten in terms of ω as

dηe−ε|η−ηq | =
dωreg

ω
, dωreg = dω

[(
ω

ωq

)−ε
θ(ω − ωq) +

(
ω

ωq

)ε
θ(ωq − ω)

]
, (6.10)

being ωq = eηq . Using eqs. (6.7, 6.8, 6.10), we get the following result for WT , defined in
eq. (6.4)

WT =

√
s

32π3q

∫
dωregdϕω−2|P (ω)|. (6.11)
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Looking at eq. (6.9), it is clear that, in order to explicitly write |P (ω)|, we need to consider
two different cases: case A, when nm,t < 1 and case B when nm,t > 1. In case A, the roots
of P (ω) are real-valued for all values of ϕln. Furthermore, in this case it holds√

1− n2
m,t sin2 ϕln > |nm,t cosϕln|, (6.12)

such that ω+ > 0 and ω− < 0 for generic values of ϕln. On the other hand, when case B
holds, the two roots assume real values only for | sinϕln| < 1/nm,t. Also√

1− n2
m,t sin2 ϕln < |nm,t cosϕln|, (6.13)

as far as a real-valued root exists. Eq. (6.13) implies that, if cosϕln is negative, both roots
ω± are negative and if cosϕln is positive, both roots are positive.

At this point we can write eq. (6.11) as

WT =

√
s

32π3q

∫
dϕXT , with XT =

∫ ∞
0

dωregω
−2|P (ω)|, (6.14)

and then study cases A and B separately.
For case A we write

XA
T =

∫ ∞
ω+

dωregω
−2P (ω)−

∫ ω+

0
dω−2

regP (ω), (6.15)

or, equivalently,

XA
T = 2

∫ ∞
ω+

dωregω
−2P (ω)−

∫ ∞
0

dω−2
regP (ω)

= −2

∫ ω+

0
dωregω

−2P (ω) +

∫ ∞
0

dωregω
−2P (ω). (6.16)

For case B instead we obtain

XB
T =

∫ ∞
0

dωregω
−2P (ω), cosϕln < 0,

XB
T = −2

∫ ω+

ω−

dωregω
−2P (ω) +

∫ ∞
0

dωregω
−2P (ω) cosϕln > 0 (6.17)

A straightforward computation leads to∫ ∞
0

dωregω
−2P (ω) = −2β(ω+ + ω−)

ε
+O(ε), (6.18)

where the O(ε) term vanishes upon azimuthal integration, as ω+ − ω− ∝ cosϕln. Hence
we can drop all the terms from eqs. (6.16,6.17), where the ω integration is unrestricted.
Consequently, for case B we only need no consider the condition cosϕln > 0.
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Sec 6.1. Linear power corrections to thrust in the three-jet region

For what concerns case A, we need to distinguish the case ωq < ω+ from the ωq > ω+

one. In the former case we can use the representation in the first line of eq. (6.16), whilst, in
the latter we can use instead the second line. Therefore, in either case, after integrating over
ω and expanding in ε, we get

XA
T = −2β

[
ω+ − ω− ±

ω+ + ω−
ε

− (ω+ + ω−) ln
ω+

ωq

]
, (6.19)

where ± refers to ωq < ω+ and ωq > ω+, respectively. Dropping out the terms that vanish
upon azimuthal integration, we can readjust eq. (6.19) as

XA
T → −2β[ω+ − ω− − (ω+ + ω−) lnω+]→

− 4√
s

[√
1− n2

m,t sin2 ϕln − nm,t cosϕln ln

(
nm,t cosϕln +

√
1− n2

m,t sin2 ϕln

)]
. (6.20)

Inserting eq. (6.20) into eq. (6.14), changing variables from ϕ to ϕln and performing an
azimuthal integration, we arrive at this expression for WT in the case A

WT |case A =

√
s

32π3q

∫ 2π

0
dϕlnX

A
T = − 1

2π3q
[2E(n2

m,t)−K(n2
m,t)]. (6.21)

To proceed with case B we only need to study the situation with cosϕln > 0, i.e. the second
line of eq. (6.17). As for case A, we drop the terms that vanish after azimuthal integration,
and note that the integral is convergent in the ε → 0 limit. Thus, after performing the ω
integration, we obtain

XB
T = −2β

[
2(ω+ − ω−)− (ω+ + ω−) ln

ω+

ω−

]
=

− 4√
s

2
√

1− n2
m,t sin2 ϕln − nm,t cosϕln ln

nm,t cosϕln +
√

1− n2
m,t sin2 ϕln

nm,t cosϕln +
√

1− n2
m,t sin2 ϕln

 (6.22)

Inserting XB
T into eq. (6.14), changing variable ϕ → ϕln and using the reality condition

| sinϕln < 1/nm,t|, we obtain

WT |case B =

√
s

32π3q

∫ ϕmax

ϕmax

dϕlnX
B
T =

√
s

16π3q

∫ ϕmax

0
dϕlnX

B
T , (6.23)

where ϕmax = arcsin (1/nm,t). Performing an azimuthal integration we get

WT |case B = −nm,t
π3q

[
E

(
1

n2
m,t

)
−

2n2
m,t − 1

2n2
m,t

K

(
1

n2
m,t

)]
. (6.24)

In order to understand whether the results obtained for cases A and B are actually applicable,
we observe that, in a three-jet event, the thrust axis in the q rest frame is aligned with the
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Sec 6.1. Linear power corrections to thrust in the three-jet region

three-momentum of the most energetic particle. If nm is aligned with the momentum of
either p1 or p2, then min(z1, z2, z3) 6= z3, being zi the variables defined as

qpi =
q2

2
(1− zi), i = 1, 2, 3 (6.25)

such that
∑3

i=1 zi = 1, and thus

n2
m,t =

z1z2

z3
< max(z1, z2) < 1. (6.26)

This result implies that, if ~nm ∝ ~p1, or ~nm ∝ ~p2, then case A applies. On the other hand, if
~nm ∝ ~p3, then min(z1, z2, z3) = z3 and

n2
m,t =

z1z2(1 + z3)2

z3(1− z3)2
>
z2

3(1 + z3)2

z3(1− z3)2
> 1, (6.27)

so case B applies.
Furthermore we observe that in the three-jet case nm,t 6= 1. Indeed, nm,t = 1 only if

~nm,t is orthogonal to either vecp1 or ~p2, as can be seen in eq. (6.6). Therefore, as in the
three-jet case the thrust axis is aligned with the direction of the most energetic particle, from
momentum conservation it follows that none of the two remaining particles can be orthogonal
to it. Thus, summarising our results, we write

T [Σ(t̄;λ)] =

∫
dσbδ(T (Φb)− t̄)×

αsCFλ
15π3

8
×

{
WT |case A, if min(z1, z2, z3) 6= z3

WT |case B, if min(z1, z2, z3) = z3.
(6.28)

Now we can check the correctness of our results by studying the two limiting regions t̄ = 0, 1/3,
corresponding to the two-jet limit and the three-jet symmetric point. In the two-jet limit we
have min(z1, z2, z3) = z1 = 0 and z2 + z3 = 1. This yields to the well-known result

T [Σ(0;λ)]

dσ/dT |t̄=0

= −5π

8

(
λ

q

)
αs. (6.29)

In the three-jet symmetric point one has z1 = z2 = z3 = 1/3, such that the thrust axis is
not unambiguously defined. In this configuration the result is obtained by averaging over the
three possible alignments of the thrust axis, i.e.

T [Σ(1/3;λ)]

dσ/dT |t̄=1/3

= αsCFλ
15π3

8
×
(

2

3
WT |case A +

1

3
WT |case B

)
=

[
5

6
K

(
1

3

)
− 5

3
E

(
1

3

)
+

25

24
√

3
K

(
3

4

)
− 5

3
√

3
E

(
3

4

)](
λ

q

)
αs. (6.30)
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Chapter 7

Phenomenological predictions in
the three-jet region

In this chapter we will apply the formalism developed in the previous sections in order to
study linear power corrections affecting the cumulant distribution of the C-parameter and
the Thrust, in a generic three-jet configuration.

We start by extracting the leading power corrections that affect the differential distri-
butions of C-parameter and Thrust in the three-jet region, recurring to a simplified semi-
analytical method, and comparing the results with the full Large-nf computation, described
in details in appendix C.

In the final part of the chapter we compared the results obtained with a fully analytic com-
putation of the non-perturbative corrections affecting C-parameter and Thrust cumulative
distributions, with the ones obtained with the method described in section 7.1.

7.1 A semi-analytic method for extracting leading power cor-
rections

In this section we will expose a simple procedure to determine O(λ) terms only. Indeed in
order to do so, all that is needed is the amplitude of the Born process (γ∗ → qq̄γ in our case),
the eikonal current for the emission of an off-shell massive gluon, and the matrix element for
its splitting into a quark-antiquark pair.

First of all we observe that, as done in the previous sections, the 5-body phase space for
the final state qq̄γ(g∗ → qq̄) can be factorized into the product of a 4-body phase space for the
production of a virtual gluon associated with a qq̄γ final state times the 2-body phase space
for its decay into a qq̄ pair. For sake of simplicity, in this section we will use the following
notation

dΦ3+2δ(λ
2 − (l + l̄)2) =

1

2π
dΦ̃3 × dΦg∗ × dΦsplit, (7.1)

where Φ̃3 is the underlying Born phase space for the final state qq̄γ, Φg∗ is the radiation
phase space for the emitted gluon, and Φsplit is the phase space for the qq̄ pair arising from
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Sec 7.1. A semi-analytic method for extracting leading power corrections

the gluon splitting.1

Thus, given a generic IR-safe observable O, its expectation value at O(αs), due to the
emission or exchange of a gluon with mass λ, can be written as〈

O〉(1)
λ = TV (λ) + TR(λ) + T∆

R (λ), (7.2)

with, as shown in section 1.3 and reported in ref. [40]

TV (λ) = N
∫

dΦ3V
(λ)(Φ3)O3, (7.3)

TR(λ) = N
∫

dΦ3+1R
(λ)
g∗ (Φ3+1)O3+1, (7.4)

T∆
R (λ) = N 3π

αsTF
λ2

∫
dΦ3+2δ(λ

2 − (l + l̄)2)Rqq̄(Φ3+2)[O3+2 −O3+(2)], (7.5)

where N is a normalization constant, Φ3+1 is the real emission phase space and Φ3+2 is the
phase space for the qq̄γ (g∗ → qq̄) final state, with Rqq̄ the associated squared amplitude

Rqq̄(Φ3+2) = |M(p1, p2, p3, l, l̄)|2. (7.6)

Furthermore, O3+2 denotes the observable computed with the momenta of the qq̄γqq̄ final
state, while O3+(2) is the observable evaluated with the kinematic of the real configuration,
with the final qq̄ pair clustered together. In particular, in our example we have O3+2 =
θ[C(p1, p2, p3, l, l̄) − c] and O3+(2) = θ[C(p1, p2, p3, l + l̄) − c]. However, in general O can be
any (infrared-safe) function of the final-state kinematics. We only require that it vanishes in
the two-jet limit, where the three-jet calculation diverges.

Using the notation introduced above and putting Φ̃b = Φ̃3, we can write 〈O〉(1)
λ in eq. (7.2)

as follows

〈O〉(1)
λ =

1

σ

∫
dΦ̃b

{
VλO3 +

∫
dΦg∗Mµν(k, λ)

∫
dΦsplitP

µν
splitO3+2

}
, (7.7)

where Mµν is the squared amplitude for the production of the qq̄γg∗ final state, where the
polarization vectors of the virtual gluon g∗ have been stripped off. Thus we have∑

λ

Mµνε∗,λµ ελν = −Mµνgµν = R
(λ)
g∗ (Φ3+1). (7.8)

The factor Pµνsplit in eq. (7.7) is proportional to the squared matrix element for the decay of

the virtual gluon with mass λ into a light qq̄ pair carrying momenta l and l̄, respectively. To
be more precise, we define

Pµνsplit =
6π

λ2
Tr(/lγµ/̄lγν), (7.9)

1As explained in section 4.1, in order to factorize the phase space for the final state qq̄γg∗ into the product
of an underlying Born phase space, times the radiation phase space, we implemented a smooth mapping in
the gluon momentum k in the small k limit, that is also soft and collinear safe.
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such that the following normalisation holds∫
dΦsplitP

µν
split = −gµν +

kµkν

λ2
. (7.10)

Furthermore, as we have
4παsTF
λ4

MµνTr(/lγµ/̄lγν) = R
(λ)
qq̄ , (7.11)

it also follows that
3πλ2

αsTF
R

(λ)
qq̄ = (2π)MµνP

µν
split. (7.12)

Combining this equation with the normalization condition of Pµνsplit defined in eq. (7.10), it
gets clear that the terms proportional to O3+1 and O3+(2) in eqs (7.4) and (7.5) cancel out,
and disappear from eq. (7.7).

To proceed further we can manipulate eq. (7.7) as

〈O〉(1)
λ =

1

σ

∫
dΦ3

{∫
dΦradMµν(k, λ)

[∫
dΦsplitP

µν
splitO3+2 +O3g

µν

]}
+

1

σ

∫
dΦ3

{
dΦradMµν(k, λ)(−gµν) + Vλ

}
O3. (7.13)

From the previous arguments it is clear that no linear power corrections can arise from
the second line of the above equation, as this involves the virtual corrections and the real
emission contribution integrated over the radiation phase space. Therefore only the first line
of eq. (7.13) can contribute to O(λ) contributions. Thus we can write

Tλ〈O〉
(1)
λ = Tλσ−1

∫
dΦ3

{∫
dΦradMµν(k, λ)

[∫
dΦsplitP

µν
splitO3+2 +O3g

µν

]}
(7.14)

where Tλ is the operator defined in section 4.2, that extracts O(λ) terms from the expression
it acts upon. We can immediately observe that the second line in eq. (7.13) has a finite λ→ 0
limit, as virtual and integrated real cross sections are combined there. Thus, since the result
is infrared finite, the first line in eq. (7.13) also must have a finite λ→ 0 limit. This implies
that Tλ in eq. (7.14) acts upon a quantity that starts at O(λ0) and contains higher-order
terms in the λ-expansion.

We can further simplify the expression in eq. (7.14) by observing that the term in the
square brackets vanishes when the gluon momentum k gets collinear to the primary quarks,
as long as the observable O is infrared and collinear safe. In fact, in this limit O3+2 goes into
O3, and the integral of Pµνsplit becomes equal to −gµν . Furthermore, it is reasonable to assume
that in the hard collinear limit the left-over of the collinear cancellation does not contribute
terms linear in λ. This can be easily verified for the thrust, where a hard collinear splitting
changes the momentum of the splitting parton by an amount proportional to the square of
the splitting angle, and the sum of the projections of the momenta of the pair onto the thrust
axis is equal to the projection of the total. On the other hand we should be worry that this
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behaviour does not hold for all the shape variables. Indeed, a generic shape variable may
give rise to terms ∫

d2~k⊥
~k2
⊥ + λ2

|~k⊥|f(ϕ), (7.15)

where ~k⊥ is the transverse momentum of the splitting, ϕ is its azimuthal angle, and f(ϕ) is a
function that does not vanish under azimuthal integration. As we mentioned in section 5.4,
in this case hard collinear regions may produce O(λ) terms. In our treatment we assume
that the shape variable is such that it cannot give rise to these contributions, i.e. that if any
term linear in the absolute value of the transverse momentum does arise, it vanishes upon
azimuthal integration.

Thus, after these clarifications about admissible shape variables, we can conclude that for
them linear power corrections can only arise if a soft massive gluon is emitted. Therefore,
as we said previously, the expression in the square bracket in eq. (7.14) vanishes in the soft
limit so that the full integral does not yield O(lnλ) terms. It follows then that linear terms
can only arise from the leading soft-singular part of the real squared amplitude Mµν . Thus
we can safely substitute

Mµν(k, λ)→ B(Φ3)P soft
µν (Φ3+1), (7.16)

where B stands for the Born matrix element, and P soft
µν is the soft factor that arises from the

product of the eikonal currents describing the emission of a soft massive gluon in the above
process. Thus eq. (7.14) can be rewritten as

Tλ〈O〉
(1)
λ = Tλσ−1

∫
dΦ3B(Φ3)

×
∫

dΦradP
(soft)
µν (Φ3+1)

[∫
dΦsplitP

µν
splitO3+2 + gµνO3

]
. (7.17)

As the term in the square bracket does not contribute in the soft limit, in principle it is not
necessary to use an exact phase space to compute O(λ) terms in eq. (7.17). Nevertheless,
performing a numeric computation, it may be convenient to integrate over the exact phase
space, even though, in this case, unwanted singularities may develop from the soft factor
Pµνsoft, as we now explain. Indeed, we can express Pµνsoft in terms of the momenta of the real
kinematics

Pµνsoft(k) = 4g2
sCF

(
pµ1

(p1 + k)2
− pµ2

(p2 + k)2

)(
pν1

(p1 + k)2
− pν2

(p2 + k)2

)
(7.18)

or in terms of the underlying Born momenta

P̃µνsoft(k) = 4g2
sCF

(
p̃µ1

(p̃1k)
− p̃µ2

(p̃2k)

)(
p̃ν1

(p̃1k)
− p̃ν2

(p̃2k)

)
. (7.19)

The two equations are equivalent, as long as one performs the integration over k in the region
where momenta are soft. On the other hand, if one uses the soft approximation outside its
range of validity, spurious divergences may arise. For instance, let us consider the case where
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p1 becomes soft so that in the rest frame of p̃1 + p̃2 (i.e. of the p1 + p2 + k) the gluon recoils
against p2 and gets collinear to p̃1. Although this is not a singular configuration of the full
process, eq. (7.19) develops a collinear p̃1 ‖ k divergence, even if the original p1 and k are
not collinear to each other. This kind of singularity in eq. (7.19) is spurious, and would be
removed by considering next-to-leading soft terms in the mapping, that we are neglecting. In
order to avoid this situation, we can simply restrict the integration over the radiation phase
space, to exclude the regions where either p1 or p2 are soft. We can do this by introducing a
proper θ-function attached to dΦrad in eq. (7.17)

dΦrad → dΦradθ

(
η − (p̃1k) + (p̃2k)

(p̃1p̃2)

)
, (7.20)

with 0 < η < 1.2 In what follows we will not show this θ-function, but it is always assumed
to be present in dΦrad.

Similarly, we also need to take care of the kinematic regions where emitted photon is
either soft or collinear to one of the primary quarks, associated with a hard gluon. This region
contributes to the three-jet region as well, and gives a divergent contribution. Nevertheless,
as in this case the gluon must be hard, no linear terms in λ can arise from this kinematic
configuration.3 Thus we chose to suppress this region multiplying the amplitude by the factor

1

(p̃1 + k)2(p̃2 + k)2
×
[

1

(p̃1 + p̃3)2(p̃2 + p̃3)2
+

1

(p̃1 + k)2(p̃2 + k)2

]−1

, (7.21)

that dampens the photon-(anti)quark collinear singularity and approaches one if the gluon is
unresolved, so that it does not affect O(λ) terms.

Finally, as the integration over k in eq. (7.17) is not restricted to the soft region, we can,
in principle, observe the arising of terms associated with hard gluons, and contributing at
O(λ0). Thus, in order to remove them, we consider

Tλ〈O〉
(1)
λ = Tλσ−1

∫
dΦ3B(Φ3)

{[∫
dΦradP

(soft)
µν

[∫
dΦsplitP

µν
splitO3+2 + gµνO3

]]
−
[∫

dΦradP
(soft)
µν

[∫
dΦsplitP

µν
splitO3+2 + gµνO3

]]λ=0}
. (7.22)

Eq. (7.22) allows us to extract the leading power corrections affecting a shape variable, by
only considering the matrix element of the Born process and eikonal factors describing the
soft emission of a massive gluon and its further splitting into a qq̄ pair.

After evaluating eq. (7.22) recurring to numerical techniques, we are able to compare the
results with the ones obtaining from a full large-nf computation, described in appendix C,
also comparing the two alternative formulae for the soft eikonal factors eqs. (7.18), (7.19),
finding no significant differences.

2In our numerical implementation we chose η = 1/2.
3Of course this divergence can be cancelled by also considering virtual QED corrections. But again, this

would involve a hard gluon, without leading to O(λ) corrections.
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Figure 7.1: Non-perturbative shift in the differential distributions for the C-parameter (left)
and the thrust (right), obtained from eq. (7.22) (A), and from a full calculation in the large-
nf limit (B). Results are shown for the process γ∗ → dd̄γ, with Q = 100 GeV and λ = 0.5
GeV, λ = 1 GeV.

7.1.1 Comparison with the full large-nf computation

As a preliminary test of our approach, we compute O(λ) terms for various observables,
recurring to eq. (7.22) and compare them with the results of a full numerical calculation
performed in the large-nf approximation. This comparison is reported in figure 7.1 for the
differential distributions of the C-parameter and the thrust. For both cases we perform the
computation for λ = 0.5 GeV and λ = 1 GeV. Furthermore, for the numerical approach based
on eq. (7.22) we use eq. (7.19) for the soft amplitude. Further details of the full large-nf
calculation can be found in appendix C.

As the results shown in figure 7.1 are divided by the gluon mass λ, the agreement between
the two curves for λ = 0.5 GeV and λ = 1 GeV cases indicates that the dependence of the
observable on λ is indeed linear and that eq. (7.22) captures the correct λ-dependence. We
can also observe that for values of the C-parameter c . 0.15 and the thrust t . 0.07, the
results of the exact calculation performed for two values of λ deviate from each other and
from the result obtained through the use of eq. (7.22). This suggests that in these regions
higher powers of λ get important and, in order to enable the extraction of λ terms from the
large-nf computation smaller values of the gluon mass λ are needed. However, apart of this
caveat, figure 7.1 gives a strong evidence that eq. (7.22) can be used to compute linear power
corrections affecting generic shape variables.
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Sec 7.2. Non-perturbative correction as a shift in the shape variable

7.2 Non-perturbative correction as a shift in the shape vari-
able

Before showing the results obtained evaluating non-perturbative corrections affecting the C-
parameter and the Thrust in the three-jet region, we will briefly summarise the history of
such computations.

Non-perturbative corrections to shape variables in the two-jet limit have been extensively
considered in refs. [51, 69–72, 74–77, 96] (see ref. [24] for a review). These non-perturbative
corrections are usually employed in conjunction with the perturbative ones, as well as with
resummations, in order to extract reliable values of the strong coupling constant αs from
data on e+e− annihilation into hadrons [64, 65, 67, 98, 99]. Non-perturbative corrections are
usually fitted in the two-jet region and then extrapolated to the three-jet region, where the
αs fits are performed. This approach relies upon the assumption that the non-perturbative
corrections in the two- and the three-jet regions are equal.

Nevertheless, in a recent paper [84], the authors tried to deeply investigate the behaviour
of these power corrections away from the two-jet limit, studying the C-parameter distribution
that, besides the Sudakov region at c = 0, has a second Sudakov region in correspondence of
the symmetric three-jets configuration, c = 3/4. The presence of this second region allows for
a calculation of non-perturbative corrections with exactly the same tecnhiques as the ones
used for the two-jet region. It was found actually [84] that there is a significant difference
between power corrections in the two Sudakov regions. Furthermore, the authors of ref. [84]
also showed that power corrections in the region where αs is fitted strongly depend on the
model chosen in order to interpolate between the two Sudakov regions. Clearly these results
require to deeply investigate the dependence of non-perturbative corrections in a generic
three-jet kinematic configuration.

In the previous sections we have shown how to compute linear power corrections in the
three-jet region with a fully analytic approach. Now we are able to compare the results
obtained with this approach with the ones obtained with the numeric techniques described
in section 7.1. Furthermore we are also in the position to compare our findings with the
approximated results of ref. [84]. Conversely, we should be able to reproduce the ratio of non-
perturbative corrections in the three-jet symmetric point to the non-perturbative corrections
in the two-jet limit obtained in ref. [84].

Non-perturbative corrections are often presented as a shift with respect to the perturbative
result [75]. More precisely, one can write the full, “hadronic” cumulant for a generic shape
variable V as [75]

Σ̃had(v) = Σ̃(v − δNP(v)) ≈ Σ̃(v)− 1

σ

dσ

dV
δNP(v), (7.23)

where we define the perturbative cumulant as

Σ̃(v) =
1

σ

∫ c

0
dV

dσ

dV
. (7.24)

Recalling the definition of Σ given in eq. (4.44), and the fact that the total cross section σ is
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Sec 7.3. Including radiation from the quark-gluon dipole

free from linear power corrections, we get

δNP(v) =
Tλ[Σ(v;λ)]

dσ/dV
. (7.25)

As we are mostly interested in studying the dependence of non-perturbative corrections on
kinematics, we need to parameterise δNP as

δNP(v) = hζ(v), h ≡ δNP(0), (7.26)

from that it follows that ζ(0) = 1. In what follows we will only discuss the behaviour of the
function ζ(v).

We start by considering the process γ∗(q) → q(p1) + q̄(p2) + γ(p3), with only the qq̄
emitting dipole. Thus we write

δqq̄γNP = hζqq̄(v), (7.27)

with ζqq̄(0) = 1. We observe that, since for v = 0 the qq̄γ configuration approaches a two-
parton qq̄ configuration, h must correspond to the non-perturbative shift computed in the
literature for the two-jet case. Thus, for the C-parameter we have h = −(λ/q)αs × 15π2/16,
while for the thrust h = −(λ/q)αs × 5π/8, as can be seen in eqs. (5.22) and (6.29).

In fig. 7.2 we show the analytic results compared to the ones obtained through the method
described in section 7.1, for ζqq̄, for both the C-parameter and the thrust, taking q = 100
GeV. For the numerical results we consider three different values of the gluon mass λ =
1, 0.5, 0.1 GeV, and observe that the numerical results converge to the analytic one, to
a good approximation. Nevertheless, it is evident from fig. 7.2 that the agreement is not
actually perfect, and that even smaller values of λ should be chosen in order to improve
the situation. Unfortunately, as the numerical results involve extra quadratic terms in λ
(eventually enhanced by powers of lnλ), it is not trivial to involve very small values of λ. We
also note that the analytic and numerical results tend to depart from each other at small v,
for both the C-parameter and the thrust. This happens because, in this region, the effective
hard scale is reduced and then the expansion parameter for power corrections is no longer
λ/q, but rather λ divided by the reduced scale. On the other hand, the analytic calculation
only contains linear power corrections, and it is not affected by these numerical issues.

Furthermore, looking at fig. 7.2 we observe that, for small values of V , ζqq̄ approaches
unity. This can be easily explained by the fact that soft emissions factorize independently.
So, in the dominant region where both the photon and the gluon are soft, the gluon behaves
as if it was radiated by a qq̄ dipole (see appendix D).

7.3 Including radiation from the quark-gluon dipole

The results shown in fig. 7.2 have been obtained considering the simplified process γ∗ →
q + q̄ + γ and not the much more interesting case of γ∗ → q + q̄ + g. As we explained in
the introduction, this is a very well-known limitation of the large-nf formalism, as processes
containing gluons at the Born level have never been computed using this approach.

Nevertheless, even though we do not currently know how to overcome this limitation
from a theoretical point of view, the structure of the results that we obtained allows us to
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Figure 7.2: The function ζqq̄(v) for the C-parameter (left panel) and the thrust T = 1 − T
(right panel), evaluated numerically using q = 100 GeV and λ = 0.1, 0.5, 1 GeV, compared
to the analytic computation (solid line). In the lower panels we reported the ratio plot of
each numerical curve with respect to the analytic one.
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Figure 7.3: Same as fig. 7.2 but for the qg dipole.
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speculate that it could be straightforward to do so. Our result, indeed, shows that linear
power corrections affecting shape variables are entirely captured by the leading soft limit of
the squared amplitude of the γ∗ → q + q̄ + γ + g process. For the cases considered so
far, the soft approximation originates from a color dipole formed by the qq̄ pair. Thus it is
tempting to speculate that, for the real three-jet production process γ∗ → q + q̄ + g, one
can probe the presence of linear power corrections by simply considering the emission of an
additional soft massive gluon off all the QCD dipoles, namely qq̄, qg, q̄g, that are present
in this case, accounting for the relevant color factors. Once again, we stress that we are not
in the condition of justifying this statement with a solid theoretical argument, but we are
confident that this provides a reasonable conjecture.

Since the contributions of the three dipoles are additive, we can write

ζ(v) = ζqq̄(v)
CF − CA/2

CF
+ ζqg(v)

CA
CF

, (7.28)

where we have exploited the fact that the qg and q̄g dipoles contribute equally. The function
ζqg(v) is defined in the same way as ζqq̄(v), except that we now are assuming that the radiating
dipole is qg (or q̄g). However, we keep the same color factor and the same normalization h
used for the qq̄ case; hence the 1/CF factor in eq. (7.28).

We immediately observe that in both cases the ζqg function must approach the value 1/2
in the two-jet limit. This can be easily explained observing that in this limit ζ in eq. (7.28)
must be one by angular ordering arguments and, since ζqq̄ approaches one, it follows that
ζqg approaches 1/2 (see appendix D). Furthermore, in the three-jet limit, ζqg approaches the
same value as ζqq̄. This stands because, in the symmetric limit the qq̄ and qg dipoles are
geometrically equivalent and, once color factors are removed, they must give the same results.

In order to obtain a more realistic prediction, the value of the constant h should be cor-
rected to include also the effects due to the gluon splitting into two gluons, as it is commonly
done in the dispersive model [76, 77, 94], but this is irrelevant for us, since we only report
results for the ζ function.

In fig. 7.3 we compare analytic and numeric results, as done in fig. 7.2 for the qq̄ dipole
only. We observe that also in this case the numerical result converges towards the analytic
one and that all the features discussed in connection with fig. 7.2 are also present for the case
of a qg (q̄g) dipole. From figure 7.3 we also note the numerical results for the qg dipole is less
stable than the results for the qq̄ one (and it is worse for the thrust than for the C-parameter),
making in this way highly useful the availability of an analytic computation.

The inferior stability of the numerical result for the qg dipole with respet to the qq̄ case
may be related to the fact that the hard emitting gluon is generally softer than the emitting
quarks. Thus the effective Q of the emission is smaller in the qg case, leading to larger non-
perturbative effects, being they proportional to λ/Q. For what concerns the thrust, we recall
that it vanishes in the symmetric three-jet configuration at Born level. This is different for
the C-parameter, that approaches a constant there.
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Figure 7.4: Same as fig. 7.2, but for the sum of all the QCD dipoles, with each contribution
supplemented with its own color factor, according to eq. (7.28). The grey shading areas show
the regions that are usually excluded from the αs fits [84].

7.4 Results for the C-parameter and the thrust in the three-
jet region and comparison with existing literature

After validating the analytic results against the numerical ones obtained thanks to the method
described in section 7.1, we can compare our predictions to the results in the literature. In
figure 7.4 we show our prediction for the function ζqq̄g for both the C-parameter (left) and
the thrust (right) cumulative distributions, according to eq. (7.28). In those plots the grey
shaded areas represent the kinematic regions that are usually neglected from high precision
αs fits [84]. We also observe that for both the C-parameter and the thrust the shape of
the non-perturbative corrections in the bulk of the three-jet region is non-trivial. Now we
want to compare our results for the C-parameter with the predictions of ref. [84]. Exploiting
eqs. (5.22, 5.23) it is straightforward to check the agreement between our results and the
ones of ref. [84] for the endpoints c = 0, 3/4.4 Nevertheless, the formalism of ref. [84] does
not allow to give an unambiguous prediction in the bulk of the three-jet region. Instead,
the authors of ref. [84] recurred an agnostic approach, obtaining different results, depending
on the assumption they made in treating the recoil momentum due to the emission of a
soft massless gluon (see their fig. 3). Furthermore it is interesting to note that most of the
recoil schemes adopted in ref. [84] (Catani-Seymour [95], PanLocal (antenna variant) and
PanGlobal [100]) give the same result. It turns out that this result is also compatible with
our prediction based on eq. (7.28). 5 On the other hand, the FHP (Forshaw-Holguin-Plätzer)
scheme of ref. [101] leads to a quite different prediction.

We can provide a clear explanation of why this is the case, recurring to our formalism.
Indeed, the Catani-Seymour, PanLocal and PanGlobal schemes all satisfy the smoothness

4We subtle that our definition of ζqq̄g and ζ in ref. [84] differ for a factor of 3π.
5We kindly acknowledge the authors of ref. [84] for providing us the input data of their fig. 3.
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requirement in the soft limit in order not to obtain linear power corrections arising from recoil
terms. Thus, if one uses these schemes, then a naive soft analysis leads to the correct result
for the estimate of linear power corrections affecting the C-parameter, without additional
contributions. Adopting the FHP scheme this does not hold anymore, as this recoil scheme
does not satisfy our smoothness requirements.6 In the follows we will elaborate further on
this point.

Let us first consider the PanLocal (antenna) mapping. This is dipole-local, that means
that it preserves the four-momentum of the radiating dipole. It is defined as

p1 = α1p̃1 + β1p̃2 − fl⊥, p2 = α2p̃1 + β2p̃2 − (1− f)l⊥, (7.29)

being l the momentum of the radiated soft gluon and αi and βi (i = 1, 2) specified by the
momentum conservation and on-shell requirements

p1 + p2 + l = p̃1 + p̃2, p2
1/2 = 2αiβi(p1p2) +O(l2⊥) = 0. (7.30)

Eqs. (7.30) can be satisfied only if either β1 = α2 = 0 or β2 = α1 = 0, up to terms of order
l2⊥. Assuming the first assignment holds, eq. (7.29) yields

α1 = 1− (lp̃2)

(p̃1p̃2)
, β2 = 1− (lp̃1)

(p̃1p̃2)
, (7.31)

such that, in the soft limit, the PanLocal scheme takes the form

p1 =

(
1− (lp̃2)

(p̃1p̃2)

)
p̃1 − fl⊥, p2 =

(
1− (lp̃1)

(p̃1p̃2)

)
p̃2 − (1− f)l⊥. (7.32)

The PanLocal choice for f is

f =
e2η̄k

1 + e2η̄k
, (7.33)

where η̄k is a rapidity-like variable, defined as

η̄l =
1

2
ln

(lp̃1)(p̃1q)

(lp̃1)(p̃2q)
. (7.34)

Thus the PanLocal mapping is clearly non-linear in the soft limit. Nevertheless, the non
linear term is proportional to lµ⊥, with an azimuthally-independent coefficient. Thus, when
evaluating recoil effects using this mapping, the non-linear term always cancels after az-
imuthal integration, and the PanLocal mapping satisfies the smoothness criteria. Similarly,
the Catani-Seymour mapping is also non-linear, but, again, the non-linear term vanishes after
azimuthal integration.

The PanGlobal mapping, instead, is defined by first introducing the following intermediate
variables

p̄1 =

(
1− (lp̃2)

(p̃1p̃2)

)
p̃1, p̄2 =

(
1− (lp̃1)

(p̃1p̃2)

)
p̃2. (7.35)

6However we stress that this feature does not affect the logarithmic accuracy of the dipole showers based
upon such a recoil scheme.
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Then one needs to find a boost B followed by a rescaling R, to be applied to p̄1, p̄2 and p3,
such that

p1/2 = RBp̄1/2, p3 = RBp̃3, l′ = RBl. (7.36)

It is quite easy to check that, in the small-l limit, this yields the mapping

p1 ≈ p̃1 −
(p̃2l)

(p̃1p̃2)
p̃1 −

(p̃1q)

q2
l⊥ −

(l⊥q)

q2
p̃1,

p2 ≈ p̃2 −
(p̃1l)

(p̃1p̃2)
p̃2 −

(p̃2q)

q2
l⊥ −

(l⊥q)

q2
p̃2, (7.37)

p3 ≈ p̃3 −
(p̃3l)

q2
l⊥ +

(p̃3l⊥)

q2
q − (l⊥q)

q2
p̃3.

This mapping is fully linear, and satisfies the smoothness requirements of section 4.1. As we
have mentioned previously, this implies that with these recoil schemes, linear power correc-
tions are completely captured by a naive soft analysis.

The FHP mapping is very similar to the PanGlobal one, with the difference that only
one side of the dipole gets rescaled. From a practical point of view, one parameterises the
intermediate barred momenta

p̄1 =

(
1− (lp̃2)

(p̃1p̃2)

)
p̃1, p̄2 = p̃2, (7.38)

with probability f(η̄l), where f and η̄l are given in eqs. (7.33) and (7.34) and coincide with
the PanLocal/PanGlobal ones. The parameterisation

p̄1 = p̃1, p̄2 =

(
1− (lp̃1)

(p̃1p̃2)

)
p̃2, (7.39)

is instead selected with probability 1− f(η̄l). Then the kinematic reconstruction proceeds as
in PanGlobal, where all the momenta are rescaled in order to preserve the mass of the total
system, and then boosted in the original event frame. Thus it is clear that the soft limit
is non-linear in the longitudinal components of the radiated parton and, therefore, it does
not satisfy the smoothness conditions of section 4.1. As a consequence, an analysis of soft
emissions is not sufficient to evaluate linear power corrections recurring to this recoil scheme.
This is exactly what is reported in fig. 3 of ref. [84]. We conclude this section by stressing
the fact that, in correspondence of the endpoints c = 0, c = 3/4, all the recoil schemes yield
the same result. This is expected, as in these regions the sensitivity of the shape variable to
recoil effects is strongly suppressed [84].
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Conclusions

In the second part of this work we performed an explicit and analytic computation of linear
power corrections affecting the C-parameter and the thrust distributions, showing that our
arguments also apply to a larger class of shape variables.

The main result of our work can be summarised in a simple statement: for a shape
observable that is sensitive to the presence of colored particles in the final state, linear power
corrections affecting the cumulant distribution in the three-jet region can be written as the
product of a universal, constant factor times the behaviour of the shape variable under the
emission of a single soft massless parton. Our findings also apply to the two-jet region, where
an equivalent result has been formulated long ago [77].

We performed the computation working wihtin the large-nf model of QCD, considering
a qq̄γ final state, rather than a qq̄g. In this framework we are perfectly able to estimate
the linear renormalon contribution affecting the shape observable, associated with the power
corrections arising from the emission of a soft virtual gluon which can either eventually
fluctuate into virtual qq̄ pairs or, eventually, decay into one of them.

Furthermore, since renormalons can be studied considering soft emissions, we can elab-
orate that, when considering the realistic case of a qq̄g final state, linear power corrections
can be obtained by summing up the soft emissions off all the three colour dipoles, namely
qq̄, qg and q̄g, each weighted for its own color factor. In such a way we obtain a theoretical
prediction that can be confronted with data.

Our assumptions are essentially the same that underly the so called dispersive model of
power corrections [76, 77]. This model is indeed fully consistent with the large-nf limit of
QCD, and it has been recently applied for computing power corrections to the C-parameter
in the three-jet symmetric point [84].

At this point it is convenient to summarise the motivations that allow for a computation
of power corrections in the two-jet region, in the three-jet symmetric point [84], and in the
generic three-jet configuration, as done in this work. Let us start by considering the cumulant
of a generic shape variable V

Σ(v) =

∫
dσ({p̃})θ(V ({p̃})− v) +

∫
dσ({p, k})θ(V ({p, k})− v), (8.1)

where with {p̃} we denote the hard final state momenta with no soft particles emitted, {p}
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denote the hard final state momenta of the kinematic configuration in that a soft gluon has
been emitted, and with k we label generically the sum of the momenta of the final state
particles arising from the radiated soft gluon. Furthermore, we assume that σ({p̃}) also
contains the virtual soft gluon corrections, such that the left-hand side of eq. (8.1) contains
all the relevant corrections to the cumulant. As in the previous sections, V ({p̃}) and V ({p}, l)
stand for the values of the shape variable computed with the hard final state partons (without
soft gluon emission) and for the final state including the gluon emission and its decay products.

In the two-jet region v → 0, we have a final state with two back-to-back partons. Thus
V ({p̃}) takes a constant value, and we can rewrite eq. (8.1) as follows

Σ(v) =

[∫
dσ({p̃}) +

∫
dσ({p, k})

]
θ(V ({p̃})− v)

+

∫
dσ({p, k})

[
θ(V ({p, k})− v)− θ(V ({p̃})− v)

]
. (8.2)

The first line of eq. (8.2) is proportional to the total cross section, and then it is free from
infrared linear renormalons. For what concerns the second term, we observe that the term in
the square bracket vanishes in the soft limit, and then we only need to work within the soft
approximation to dσ({p, k}), along the lines of [76,77].

Not let us move to the C-parameter near the three-jet symmetric point, where the con-
tribution to the observable from the hard partons is given by [84]

Chard =
3

4
− 81

16
(ε2q + εqεq̄ + ε2q̄) +O(ε3), (8.3)

where εq(q̄) = 2Eq(q̄) − 2/3. Applying eq. (8.1) for c close to 3/4, the momenta {p̃} will
be forced to approach the symmetric limit, where C({p̃}) takes a constant value. Thus we
can act as for eq. (8.2), taking V = C. Also in this case the first term is proportional to
a cross section that is inclusive in the radiation of a soft gluon and thus will not provide
linear renormalons. Because of eq. (8.3) we can replace C({p(p̃, k)} − c) → C({p̃, k} − c) in
the square bracket, and, because of the ensuing soft suppression, we can again resort to the
leading soft approximation in order to perform the computation, as it was done in ref. [84].
Thus the computation in both the two-jet and the three-jet symmetric point relies on the
fact that recoil effects are strongly suppressed. Thus it does not seem straightforward how
to generalise these arguments to a generic three-jet configuration.

In this work we provide a method to solve this issue as generally as possible. For sake
of simplicity, we assume that the soft emission originates from a single dipole, and thus we
introduce a mapping p(p̃, k) that, for small k is linear in k and that is collinear-safe as the
gluon gets collinear to the partons that form the emitting dipole. Then, for a generic shape
variable and for a generic kinematic configuration we can write eq. (8.3) as

Σ(v) =

∫
[dσ({p̃}) + dσ({p(p̃, k), k})]θ(V ({p̃})− v)

+

∫
dσ({p(p̃, k), k})[θ(V ({p(p̃, k), k})− v)− θ(V ({p̃})− v)]. (8.4)
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We observe that the first term involves an inclusive integration of the cross section at fixed
underlying Born momenta, with the underlying Born defined by a mapping that is linear in
k for small k. In appendix B we demonstrate that these species of integrals cannot yield
linear power corrections. Hence we can neglect the first line of eq. (8.4), considering only the
second one, that again can be evaluated in the soft approximation.
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Conclusions

This thesis work deals with the investigation of linear power corrections, associated with IR
linear renormalons, in observables relevant to collider physics. As there is not a solid theo-
retical background for a complete formulation of non-perturbative effects when considering
processes which do not admit an OPE, we need to resort to assumptions and approximations
in order to get an insight into the problem. A valuable method for performing renormalon
calculations is the large-b0 approximation, that consists in performing the full computation in
the Abelian limit of QCD, with a large and negative number of light flavors nf , replacing the
Abelian beta function with the non-Abelian one at the end of the computation. For processes
that do not involve gluons at leading order, an all-order large-nf computation can be related
to the calculation of a NLO correction to the process, due to the emission and exchange of a
gluon with non vanishing mass. A linear dependence on the gluon mass for small masses is
related to the presence of a linear renormalon.

The large-b0 approximation has been widely used in literature [24]. In ref. [25], it was
shown that the Drell-Yan total cross section does not contain linear renormalons. This
conclusion has been used to argue that, contrary to previous claims, soft gluons resummation
does not give a solid evidence of the presence of linear renormalons in the Drell-Yan cross
section. Furthermore, in ref. [56] it was shown that, under certain assumptions, the rapidity
distribution of Drell-Yan pairs is free from linear power corrections. This result leads to
conclude that also in the large-b0 approximation there are no linear renormalons affecting the
rapidity distribution of Drell-Yan pairs.

In the first part of this work we make use of the large-nf limit to probe the presence of
infrared linear renormalons in the transverse momentum distribution of a Z boson produced
in hadronic collisions. This work was motivated by the fact that this distribution has been
measured with high precision by the experimental collaborations and the presence of a linear
renormalon would affect in a sensible way the theoretical error in the corresponding calcu-
lation. Our approach for this study is semi numeric and it is analogous to the calculation
performed in ref. [40]. The results obtained from this study are reported in section 2.1, and
do not show any numerical evidence of an infrared linear renormalon affecting the transverse
momentum distribution of the Z boson.

In the second part of the thesis we look for (and find) a solid theoretical explanation about
the presence or absence of linear power corrections associated with infrared linear renormalons
for generic collider processes. Our main finding can be summarized as follows: for observables
that are fully inclusive in the soft gluon radiation, no linear power corrections can arise. This
assessment can be easily applied to the results obtained in the part I, concerning the absence
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of infrared linear renormalons in the transverse momentum distribution of the Z boson, as
this observable is actually inclusive in the soft gluon distribution in the final state. This result
also applies to the Drell-Yan total cross section and rapidity distribution, thus confirming
the conclusions of [25,56].

We considered the implications of our main finding for the study of shape variables in
e+e− collisions in the three-jet region. Traditionally these studies have been used to test
perturbative QCD and to measure the strong coupling constant αs. In the past it was common
practice to estimate NP corrections affecting shape variables in the two-jet limit (two back-
to-back jets) and then extrapolate them in the full three-jet region, where αs fits are usually
performed. This approach relies upon the assumption that the NP corrections are equal in
the whole phase space. In a recent work [84] it is demonstrated that this is not the case,
showing that the NP correction affecting the C-parameter in the three-jet symmetric limit is
lower than the one evaluated in the two-jet limit, thus hinting at a possible explanation of the
disagreement between the αs estimates from shape variables distributions and the nominal
PDG value [102,103].

As a consequence of our main finding (that for observables that are fully inclusive in
the soft gluon radiation no linear power correction can arise) we were able to show that
recoil effects, under certain conditions, do not give rise to linear renormalons since they affect
the radiation in an inclusive way. Thanks to this finding we were able to perform a fully
analytic computation of the leading NP corrections affecting the C-parameter and thrust in
the generic three-jet region for the first time, obtaining agreement with the literature in the
limit of the two-jet region [93,94] and of the three-jet symmetric point [84].

We also found that for a certain class of shape variables it is possible to cast the leading
NP correction in a fully factorised form, with one factor depending upon the change of the
observable due to the emission of a soft massless parton, and a constant universal factor, only
depending on the kinematic of the emission, strictly connected to the Milan factor [76,77].

These results open new prospects to the study of shape variables in e+e− annihilation.
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Appendix A

Renormalons structure

In sec. 1.3 we stated that the presence of a linear renormalon in the cross section of a generic
process which does not involve a gluon at LO is strictly related to the function T (λ) in
eq. (1.16). If this function is analytic in λ, a non vanishing linear term T

′
(0) leads to the

arising of a linear renormalon.
As long as one considers the region λ < µC , which is relevant for IR renormalons, a linear

term in T (λ) leads to the contribution (see eq. (1.16))

− 1

b0αs

dT (λ)

dλ

∣∣∣∣
λ=0

∫ µC

0

dλ

π
arctan

πb0αs

1 + b0αs log λ2

µ2
C

. (A.1)

In order to ease the notation we define

a ≡ b0αs, (A.2)

such that the integral in eq. (A.1) leads to the following expression

∫ 1

0

dl

πa
arctan

πa

1 + a log l2
=

1

πa
arctan (πa) +

∫ 1

0
dz
πaz cos (πz/2)− sinπz/2

1 + (πza)2

+
1

πa
P

∫ ∞
0

dt
exp (− t

2a)

1− t
− 1

a
exp

(
− 1

2a

)
, (A.3)

where with P we mean that the integral must be taken with the principal value pre-
scription. Furthermore we observe that the first two terms in eq. (A.3) are analytic in a
neighbourhood of a = 0. The third term looks like a Borel representation of a fixed sign
power expansion with factorially growing coefficients, resummed with a principal value pre-
scription for handling the pole on the real axis. If we handled instead the pole by moving the
integration path by a tiny amount above or below the real axis, then the absolute value of
the imaginary part of the resulting integral would be equal to the last term in the equation.
At the end of the computation, replacing a = b0αs = 1/ log (µ2

C/Λ
2) it leads to a power

correction
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exp

(
− 1

2a

)
=

Λ

µC
. (A.4)

Thus the presence of a linear behaviour in the function T (λ) of eq. (1.16) is related to the
arising of IR linear renormalon, which, due to the asymptotic freedom of QCD, shows up as
linear power corrections.

Furthermore we observe that the integral on the left-hand side of eq. (A.1) cannot be
cast in the form of a Borel sum with a principal value prescription, because of the last term,
whose presence is due to the discontinuity of the arctangent in the left-hand side integral,
arising when λ = λL, with

λL = µC exp

(
− 1

2a

)
. (A.5)

In ref. [104] it is shown an alternative method in order to make the arctangent continuous,
when one is interested to the resummed expansion with a principal value prescription.
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Appendix B

Soft integrals

In this appendix we are going to give a discussion around the soft integrals arising from the
integration of the real squared amplitude for the final emission of massive gluon with mass λ
off a QCD dipole, introduced in section 4.1. Thus we consider integrals of the form

~I(v, p̃1,2) =

∫
[dk]θ

[
(k − q)2

] p̃1p̃2

(p̃1k)(p̃2k)

{
1,
kv

q2
,

λ2

(kp1,2)

}
, (B.1)

with [dk] = d4kδ+(k2 − λ2)/(2π)3 and v is a generic vector, q = p̃1 + p̃2 and p̃2
i = 0, with

i = 1, 2. In order to evaluate the integrals in eq. (B.1) regardless the types of dipoles involved,
it is useful to introduce a Sudakov decomposition. The discussion deals with the computation
of the final-final configuration, but the whole calculation can be repeated for initial-final and
initial-initial ones, with the required modifications. We write

k = αp̃1 + βp̃2 + k⊥. (B.2)

Since 2(p̃1p̃2) = q2 we obtain

d4kδ+(k2 − λ2)θ[(q − k)2] =
q2

2
dαdβd2~k⊥δ(q

2αβ − ~k2
⊥ − λ2)θ[q2 − q2(α+ β) + λ2], (B.3)

and
2(p̃1k) = q2β, 2(p̃2k) = q2α. (B.4)

Applying a Sudakov decomposition to all the integrals in eq. (B.1), we get

(vk) = (p̃1v)α+ (p̃2v)β + (vk⊥). (B.5)

As this is the only dependence on the k⊥-direction in the integrals, the last terms in eq. (B.5)
vanishes upon azimuthal integration, and thus it is safe to apply the following replacement
in eq. (B.1)

(vk)→ (p̃1k)α+ (p̃2v)β. (B.6)

Thus it follows that to compute eq. (B.1) we need to evaluate the following integrals

1

16π2

∫
dαdβθ(q2αβ − λ2)θ[q2(1− α− β) + λ2]

1

αβ

{
1, α,

λ2

α
,
λ2β

α
,
λ2β2

α
,
λ4β

α2

}
. (B.7)
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In order to proceed further, we need to know the integration boundaries, which can be found
from the two θ-functions in eq. (B.7). If we first integrate over β, we have

λ2

q2α
< β < 1− α+

λ2

q2
. (B.8)

The boundaries for the subsequent α integration can be deduced from the condition

λ2

q2α
< 1− α+

λ2

q2
, (B.9)

which can be rewritten in the more compact form

(α− 1)

(
α− λ2

q2

)
< 0. (B.10)

Thus the integration range for α is
λ2

q2
< α < 1. (B.11)

Then it is straightforward to verify that the integrals reported in eq. (B.1) can be written in
terms of the following ones∫ 1

λ2/q2

dα

α

∫ 1−α+λ2/q2

λ2/(q2α)

dβ

β

{
1, α,

λ2

α
,
λ2β

α
,
λ2β2

α
,
λ4β

α2

}
. (B.12)

From eq. (B.12) it is obvious that the integrals in eq. (B.1) are actually functions of λ2.
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Appendix C

Full calculation of the shape
variables in the large-nf limit

In this appendix we are going to describe the computation of QCD corrections to the process
γ∗ → qq̄ + γ, working in the large-nf limit. As we have done in part I of this work, we
assume that the final state photon γ only couples to the primary quarks, that, for simplicity,
are assumed to be of defined flavor d. We know [40] that the exact result of a large-nf
computation can be written as in eq. (1.16).

Thus for the process of our interest we need to compute the T (λ) function defined in
eq. (1.18). All the required amplitudes have been analytically computed thanks to the sym-
bolic manipulation software MAXIMA [53]. The scalar integrals arising from the computation
of the virtual corrections have been calculated by the COLLIER library [55]. The virtual term
is infrared finite as the gluon mass acts as an infrared regulator. The ultraviolet divergences
have been regulated working in dimensional regularization.

The integration over the external momenta for the process γ∗ → dd̄γ diverges in the
two-jet limit; thus in order to ensure that the numerical computations are restricted to a
three-jet region, we introduced a suppression factor

Fsupp = C2, (C.1)

where C is the C-parameter, which by construction vanishes in the two-jet limit, regulating
the integral. This factor is then divided out when computing distributions and cross sections
with cuts. In such a way, we are able to obtain a correct result as long as we do not consider
observables which are sensitive to the two-jet region.

The real contribution to T (λ) has been computed along the lines of sec. 1.4, adding the
emission of a massive gluon in all the possible ways to the Born diagram. Integrating over
its momentum, the real emission corrections are affected by collinear divergences, arising
when the photon becomes collinear to one of the primary quarks. These configurations can
contribute to the three-jet region, when the radiated gluon is hard and not collinear. These
divergences are dealt with routinely by the POWHEG BOX framework [52], that we use for our
calculation.
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Appendix C. Full calculation of the shape variables in the large-nf limit

We also have singularities associated with soft or collinear gluons, which are regulated
by the gluon mass λ, and manifest themselves as terms proportional to lnλ raised to first or
second power. The same logarithmic contributions, but with opposite sign, arise from the
virtual corrections, such that the sum of real and virtual corrections is free of lnλ terms.

In order to properly cancel the singularities mentioned above, a carefully-constructed
importance sampling near the singular regions is needed, to reliably estimate the λ → 0
behaviour. Thus the real contribution is divided into three regions

R = R(1) +R(2) +R(3), (C.2)

where

R(1) =
f2
dγ + f2

d̄γ

f2
dγ + f2

d̄γ
+ f2

dg + f2
d̄g

R, (C.3)

R(2) =
f2
dg

f2
dγ + f2

d̄γ
+ f2

dg + f2
d̄g

R, (C.4)

R(3) =
f2
d̄g

f2
dγ + f2

d̄γ
+ f2

dg + f2
d̄g

R, (C.5)

and

fij =
Ei + Ej

(ki + kj)2
. (C.6)

Here ki and Ei denote the four-momentum and energy of the i-th particle, respectively,
and R is a short-hand notation for the Rg∗ function introduced in eq. (1.23). The various
contributions R(i) in eq. (C.2) correspond to different kinematic configurations of the dd̄γg
final state. For instance R(1) corresponds to the region where the final state photon becomes
collinear to either the d or the d̄ quark, whilst R(2) and R(3) project on regions where the
emitted gluon is collinear to d or d̄, respectively.

The contribution arising from region (1) is handled within the POWHEG BOX [52], which
implements the required subtractions of IR singularities associated with configurations con-
taining a soft or a collinear photon. The two other regions are finite, but still require a
dedicated importance sampling of the regions that become singular in the λ→ 0 limit.

Finally, we also compute the amplitude for the process γ∗ → dd̄γ + (g∗ → qq̄). This
contribution is IR finite when the λ→ 0 limit is taken, but is affected by the QED singularity
associated with the final state photon. Thus we proceed as for the region (1), by evaluating
it within the POWHEG BOX framework. Furthermore we computed the NLO corrections to the
process γ∗ → dd̄γ with a massless gluon and subtracted its result from the λ-dependent one,
in order to isolate the O(λ) term.

The shape variable distributions are obtained in a standard way, by computing each
contribution to sufficient accuracy, so that after the cancellation of ln2 λ, lnλ and λ0 terms
one can extract the λ dependence with enough precision.
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Appendix D

On the two-jet limit of C

In this appendix we will elaborate more on the two-jet limit of the cumulant of shape variables
within our framework. For sake of simplicity we will only focus on the case of the C-parameter.

We start by considering the process γ∗(q)→ q(p1)+ q̄(p2)+γ(p3). Extending the notation
introduced above, we can define the “double underlying” Born momenta p̂1 and p̂2 as follows:

• If p̃3 becomes collinear to p̃1, then p̂1 ≈ p̃1 + p̃3 and p̂2 ≈ p̃2;

• If p̃3 becomes collinear to p̃2, then p̂2 ≈ p̃2 + p̃3 and p̂1 ≈ p̃1;

• If p̃3 becomes soft, then p̂2 ≈ p̃2 and p̂1 ≈ p̃1.

At this point we want to show that, in the two-jet limit, the non-perturbative correction to the
cumulant of C becomes proportional to the non-perturbative correction to the expectation
value of C in the γ∗ → qq̄ process. In order to prove this we need to make three observations:

• As c approaches to zero, the Born cross section manifests two collinear-singular regions,
arising when the photon becomes collinear to either primary quark; a soft singular re-
gion, when the photon is soft and two soft-collinear regions, when the photon is both
collinear and soft;

• The correction to the C-parameter due to the emission of a soft gluon with momentum
k can be written as

Ck(p1, p2, p3, k; q) = −3

3∑
i=1

(kpi)
2

(kq)(piq)
; (D.1)

eq. (D.1) has a smooth limit if any pair of the 1, 2 and 3 particles becomes collinear,
as well as if one of them becomes soft. In particular, if p̃3 becomes soft or collinear to
either p̃1 or p̃2, we can write

Ck(Φ3, k) = −3

3∑
i=1

(kp̃i)
2

(kq)(p̃iq)
→ −3

3∑
i=1

(kp̂i)
2

(kq)(p̂iq)
= Ck(Φ2, k), (D.2)
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where we have used the compact notation {p̃1, p̃2, p̃3} = Φ3 and {p̂1, p̂2} = Φ2;

• The eikonal factor for the emission of a soft massive gluon only depends upon the
direction of the radiating partons, and not upon the absolute value of their momenta.

Considering the qq̄γ final state, we only need to consider the emission from the quark-
antiquark dipole. Thus our result for the non-perturbative correction can be concisely written
as

δNP ≡ −
TλΣ(c)

dσ/dC
= −αs

2π
CF ×

∫
dΦ3δ(C(Φ3)− c)|M(Φ3)|2TλIc(Φ3)∫

dΦ3δ(C(Φ3)− c)|M(Φ3)|2)
, (D.3)

where

Ic(Φ3; q;λ) = 8π2

∫
d4k

(2π)3
δ+(k2 − λ2)θ[(q − k)2]

2(p̃1p̃2)

(p̃1k)(p̃2k)
Ck(Φ3, k), (D.4)

and Tλ is the operator introduced in section 4.2. For both the collinear and soft limits of the
Born configuration, the integrand in eq. (D.4) takes the form

(p̃1p̃2)

(p̃1k)(p̃2k)
Ck(Φ3, k)→ (p̂1p̂2)

(p̂1k)(p̂2k)
Ck(Φ2, k). (D.5)

Thus, in these limits, we can also write

Ic(Φ3; q;λ)→ Ic(Φ2; q;λ), (D.6)

that can be taken outside the integral in eq. (D.3), yielding

δNP ≈
c→0
−αs

2π
CF × TλIc(Φ2; q;λ). (D.7)

Eq. (D.7) stands for the non-perturbative correction to the average value of C in the two-jet
case. We stress that the limit c → 0 does not imply that p̃3 is either soft or collinear. We
could also have p̃1 or p̃2 soft, or collinear to each other. What is important is that for all the
dominant singular contributions in the amplitude, the function Ic can be taken out of the
integral.

We can now move on to consider the γ∗ → qq̄g process, and use the the conjecture on
non-perturbative corrections that we described in the text. For this process we need to also
consider the qg (q̄g) dipoles, apart from the qq̄ dipole. For the q(p1)g(p3) dipole, the eikonal
factor in eq. (D.5) becomes

(p̃1p̃3)

(p̃1k)(p̃3k)
Ck(Φ3, k). (D.8)

Furthermore, when p̃2 gets collinear to p̃3, it reduces to

(p̃1p̃3)

(p̃1k)(p̃3k)
Ck(Φ3, k) ≈

p2‖p3

(p̂1p̂2)

(p̂1k)(p̂2k)
Ck(Φ2, k), (D.9)

as before. Therefore, as p̃1 gets collinear to p̃3 it becomes zero. Thus in this case we have

δNP ≈
c→0
−1

2
× αs

2π
CF × TλIc(Φ2; q;λ). (D.10)

92



Appendix D. On the two-jet limit of C

This comes from the fact that the most enhanced regions when c → 0 are the soft-collinear
ones, but only one of the two contributes, hence the factor of one half.

We further remark that the soft-collinear approximation is enough to take these results,
that can be considered as direct consequences of angular ordering. In the quark-antiquark
dipole case, the result directly follows from the full soft factorization which applies in abelian
theories. In this case we expect that the limit is reached earlier. This does not hold for
the (anti)quark-gluon case, since the Born level gluon and the gluon emitted by the qg (q̄g)
dipole do not factorize simultaneously in the soft limit.
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The Gi functions

The functions G1,..,5 were introduced in eq. (5.4). They read

G1 =

(
1− β2

)−3/2

48β6(x(y − 1) + 1)2(xy − 1)2

[
β6

(
2x3y

(
−42y3 + 84y2 − 421y + 379

)
+ 29x4(y − 1)2y2 + x2

(
1706y2 − 1706y − 271

)
+ x

(
−948y2 + 948y + 542

)
− 271

)

+ β4

(
− 159x4(y − 1)2y2 + 2x3y

(
187y3 − 374y2 + 1203y − 1016

)
+ x2

(
−4542y2 + 4542y + 749

)
+ 2x

(
1255y2 − 1255y − 749

)
+ 749

)
(E.1)

+ 5β2

(
47x4(y − 1)2y2 + 2x3y

(
−50y3 + 100y2 − 271y + 221

)
+ 165x2

(
6y2 − 6y − 1

)
+ x

(
−548y2 + 548y + 330

)
− 165

)

− 105

(
x4(y − 1)2y2 − 2x3y

(
y3 − 2y2 + 5y − 4

)
+ 3x2

(
6y2 − 6y − 1

)
+ x

(
−10y2 + 10y + 6

)
− 3

)]
,

G2 =

√
1− β2(x− 1) ln2

(
1+β
1−β

)
32β8x(x(y − 1) + 1)2(xy − 1)2

×

[
β4
(
x2
(
−117y2 + 117y + 34

)
+ 83x3(y − 1)y − 53x+ 19

)
(E.2)

− 10β2
(
x2
(
−29y2 + 29y + 8

)
+ 21x3(y − 1)y − 11x+ 3

)
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+ 35
(
x2
(
−7y2 + 7y + 2

)
+ 5x3(y − 1)y − 3x+ 1

) ]
,

G3 =

ln

(√
1−β2c212+βs12√
1−β2c212−βs12

)
96β7 (1− β2)3/2 s12x

√
1− β2c2

12(x(y − 1) + 1)(xy − 1)

×

[
β8x

(
29x2(y − 1)y + x

(
−84y2 + 84y + 15

)
− 15

)
− 2β6

(
x2
(
−229y2 + 229y + 51

)
+ 94x3(y − 1)y − 186x+ 135

)
(E.3)

+ β4
(
x2
(
−874y2 + 874y + 232

)
+ 394x3(y − 1)y − 758x+ 526

)
− 10β2

(
x2
(
−71y2 + 71y + 25

)
+ 34x3(y − 1)y − 78x+ 53

)
+ 105(x− 2)

(
x2(y − 1)y + x− 1

) ]
,

G4 =
ln
(

1+β
1−β

)
96β7 (1− β2)3/2 x(x(y − 1) + 1)2(xy − 1)2

[
β8x

(
3x4(y − 1)2y2

− 6x3y
(
2y3 − 4y2 + 57y − 55

)
+ x2

(
758y2 − 758y − 113

)
+ x

(
−428y2 + 428y + 226

)
− 113

)
− 6β6

(
11x5(y − 1)2y2

+ x4y
(
−29y3 + 58y2 − 479y + 450

)
+ x3

(
1046y2 − 1046y − 171

)
(E.4)

+ x2
(
−596y2 + 596y + 387

)
− 261x+ 45

)
+ 2β4

(
114x5(y − 1)2y2

+ x4y
(
−261y3 + 522y2 − 3187y + 2926

)
+ 8x3

(
848y2 − 848y − 139

)
+ x2

(
−3858y2 + 3858y + 2487

)
− 1638x+ 263

)
− 10β2

(
27x5(y − 1)2y2

+ x4y
(
−57y3 + 114y2 − 607y + 550

)
+ x3

(
1278y2 − 1278y − 211

)
+ x2

(
−728y2 + 728y + 475

)
− 317x+ 53

)
+ 105

(
x5(y − 1)2y2

− 2x4y
(
y3 − 2y2 + 10y − 9

)
+ 7x3

(
6y2 − 6y − 1

)
− 8x2

(
3y2 − 3y − 2

)
− 11x+ 2

)]
,

G5 =

√
1− β2 ln

(
1+β
1−β

)
ln

(√
1−β2c212+βs12√
1−β2c212−βs12

)
64β8s12x(x(y − 1) + 1)(xy − 1)

√
1− β2c2

12

×

[
β6x

(
x2(y − 1)y + x

(
−4y2 + 4y − 5

)
+ 5
)

+ β4

(
x2
(
54y2 − 54y − 17

)
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− 21x3(y − 1)y + 55x− 38

)
+ 5β2

(
x2
(
−24y2 + 24y + 5

)
(E.5)

+ 11x3(y − 1)y − 17x+ 12

)
− 35(x− 2)

(
x2(y − 1)y + x− 1

) ]
.
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