Vertex transitive graphs G with $\chi_{D}(G)>\chi(G)$ and small automorphism group

Niranjan Balachandran*, Sajith Padinhatteeri ${ }^{\dagger}$, and Pablo Spiga ${ }^{\ddagger}$

Abstract

For a graph G and a positive integer k, a vertex labelling $f: V(G) \rightarrow\{1,2 \ldots, k\}$ is said to be k-distinguishing if no non-trivial automorphism of G preserves the sets $f^{-1}(i)$ for each $i \in\{1, \ldots, k\}$. The distinguishing chromatic number of a graph G, denoted $\chi_{D}(G)$, is defined as the minimum k such that there is a k-distinguishing labelling of $V(G)$ which is also a proper coloring of the vertices of G. In this paper, we prove the following theorem: Given $k \in \mathbb{N}$, there exists an infinite sequence of vertex-transitive graphs $G_{i}=\left(V_{i}, E_{i}\right)$ such that 1. $\chi_{D}\left(G_{i}\right)>\chi\left(G_{i}\right)>k$, 2. $\left|\operatorname{Aut}\left(G_{i}\right)\right|=O_{k}\left(\left|V_{i}\right|\right)$, where $\operatorname{Aut}\left(G_{i}\right)$ denotes the full automorphism group of G_{i}.

In particular, this answers a problem raised in [1].

Keywords: Distinguishing Chromatic Number, Vertex transitive graphs, Cayley Graphs.

2010 AMS Classification Code: $05 \mathrm{C} 15,05 \mathrm{D} 40,20 \mathrm{~B} 25,05 \mathrm{E} 18$.

1 Introduction

Let G be a graph. An automorphism of G is a permutation φ of the vertex set $V(G)$ of G such that, for any $x, y \in V(G), \varphi(x), \varphi(y)$ are adjacent if and only x, y are adjacent. The automorphism group of a graph G, denoted by $\operatorname{Aut}(G)$, is the group of all automorphisms of G. A graph G is said to be vertex transitive if, for any $u, v \in V(G)$, there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi(u)=v$.

Given a positive integer r, an r-coloring of G is a map $f: V(G) \rightarrow\{1,2, \ldots, r\}$ and the sets $f^{-1}(i)$, for $i \in\{1,2 \ldots, r\}$, are the color classes of f. An automorphism $\varphi \in \operatorname{Aut}(G)$ is said to fix

[^0]a color class C of f if $\varphi(C)=C$, where $\varphi(C)=\{\varphi(v): v \in C\}$. A coloring of G, with the property that no non-trivial automorphism of G fixes every color class, is called a distinguishing coloring of G.

Collins and Trenk in 5 introduced the notion of the distinguishing chromatic number of a graph G, which is defined as the minimum number of colors needed to color the vertices of G so that the coloring is both proper and distinguishing. Thus, the distinguishing chromatic number of G is the least integer r such that the vertex set can be partitioned into sets $V_{1}, V_{2}, \ldots, V_{r}$ such that each V_{i} is independent in G, and for every non-trivial $\varphi \in \operatorname{Aut}(G)$ there exists some color class V_{i} with $\varphi\left(V_{i}\right) \neq V_{i}$. The distinguishing chromatic number of a graph G, denoted by $\chi_{D}(G)$, has been the topic of considerable interest recently (see for instance, [1, 2, 3, 4).

One of the many questions of interest regarding the distinguishing chromatic number concerns the contrast between $\chi_{D}(G)$ and the cardinality of $\operatorname{Aut}(G)$. For instance, the Kneser graphs $K(n, r)$ have very large automorphism groups and yet, $\chi_{D}(K(n, r))=\chi(K(n, r))$ for $n \geq 2 r+1$, and $r \geq 3$ (see [2]). The converse question is compelling: Are there infinitely many graphs G_{n} with 'small' automorphism groups and satisfying $\chi_{D}\left(G_{n}\right)>\chi\left(G_{n}\right)$?

The question as posed above is not actually interesting for two reasons. First, for all even $n, \chi_{D}\left(C_{n}\right)>\chi\left(C_{n}\right)=2$ and $\left|\operatorname{Aut}\left(C_{n}\right)\right|=2 n$, where C_{n} is the cycle of length n. Second, if one stipulates that G also has arbitrarily large chromatic number, then here is a construction for such a graph. Start with a rigid graph G with a leaf vertex x and having large chromatic number (one can obtain this by minor modifications to a random graph, for instance); then, blow up the leaf vertex x to a new disjoint set X whose neighbor in the new graph \widetilde{G} is the same as the neighbor of x in G. In fact one can arrange for $\chi_{D}(\widetilde{G})-\chi(\widetilde{G})$ to be as large as one desires. Furthermore, since $|\operatorname{Aut}(\widetilde{G})|=|X|$!, this provides examples of graphs for which the automorphism groups are relatively 'small' in terms of the order of the graph.

In the example above, the fact that $\chi_{D}(G)$ is larger than $\chi(G)$ is accounted for by a 'local' reason, and that is what makes the problem stated above not very interesting. However, if one further stipulates that the graph is vertex-transitive, then the same question is highly non-trivial. In [1], the first and second authors constructed families of vertex-transitive graphs with $\chi_{D}(G)>$ $\chi(G)>k$ and $\operatorname{Aut}(G) \mid=O\left(|V(G)|^{3 / 2}\right)$, for any given k. In this paper, we improve upon that result:

Theorem 1. Given $k \in \mathbb{N}$, there exists an infinite family of graphs $G_{n}=\left(V_{n}, E_{n}\right)$ satisfying:

1. $\chi_{D}\left(G_{n}\right)>\chi\left(G_{n}\right)>k$,
2. G_{n} is vertex transitive and $\left|\operatorname{Aut}\left(G_{n}\right)\right|<2 k\left|V_{n}\right|$.

Our family of graphs consists of Cayley graphs. To recall the definition, let A be a group and let S be an inverse-closed subset of A, i.e., $S=S^{-1}$, where $S^{-1}:=\left\{s^{-1}: s \in S\right\}$. The Cayley graph Cay (A, S) is the graph with vertex set A and the vertices u and v are adjacent in $\operatorname{Cay}(A, S)$ if and only if $u v^{-1} \in S$.

We start with a brief description of the graphs of our construction. For q, an odd prime, let \mathbb{F}_{q}^{n} denote the n-dimensional vector space over \mathbb{F}_{q}. Our graphs shall be Cayley graphs Cay $\left(\mathbb{F}_{q}^{n}, S\right)$ for
some suitable inverse-closed set $S \subset \mathbb{F}_{q}^{n}$ which is obtained by taking a union of a certain collection of lines in \mathbb{F}_{q}^{n} and then deleting the zero element of \mathbb{F}_{q}^{n}. More precisely, let $\mathcal{H}_{0}:=\left\{\left(x_{1}, x_{2}, \ldots, x_{n-1}, 0\right)\right.$: $\left.x_{i} \in \mathbb{F}_{q}, 1 \leq i \leq n-1\right\}$ and let $\mathbf{0}$ denote the element $(0, \ldots, 0) \in \mathbb{F}_{q}^{n}$. For each line (1-dimensional subspace of $\left.\mathbb{F}_{q}^{n}\right) \ell \subset \mathbb{F}_{q}^{n}$ satisfying $\ell \cap \mathcal{H}_{0}=\{\mathbf{0}\}$, pick ℓ independently with probability $1 / 2$ to form the random set \widetilde{S}. Our connection set S for the Cayley graph Cay $\left(\mathbb{F}_{q}^{n}, S\right)$ is defined by $S:=\left\{v \in \mathbb{F}_{q}^{n}: v \in \ell\right.$ for some $\left.\ell \in \widetilde{S}\right\} \backslash\{\mathbf{0}\}$. Our main theorem states that with high probability, $G_{n, S}:=\operatorname{Cay}\left(\mathbb{F}_{q}^{n}, S\right)$ satisfies the conditions of Theorem [1

To show that these graphs have 'small' automorphism groups, we prove a stronger version of Theorem 4.3 of [6] in this particular context, which is also a result of independent interest.

Theorem 2. Let q be a prime power, let n be a positive integer with $n \geq 2$ and let G be the additive group of the n-dimensional vector space \mathbb{F}_{q}^{n} over the finite field \mathbb{F}_{q} of cardinality q, and let $\mathbb{F}_{q}^{*}:=\mathbb{F}_{q} \backslash\{\mathbf{0}\}$ be the multiplicative group of the field \mathbb{F}_{q} with its natural group action on G by scalar multiplication, and write $K:=\mathbb{F}_{q}^{n} \rtimes \mathbb{F}_{q}^{*}$. If S is a subset of G with $K \leq \operatorname{Aut}(\operatorname{Cay}(G, S))$, then either
(i) $\operatorname{Aut}(\operatorname{Cay}(G, S))=K$, or
(ii) there exists $\varphi \in \operatorname{Aut}(\operatorname{Cay}(G, S)) \backslash K$ with φ normalizing G.

The rest of the paper is organized as follows. We start with some preliminaries in Section 2 and then include the proofs of Theorems \square and 2 in the next section. We conclude with some remarks and some open questions.

2 Preliminaries

We begin with a few definitions from finite geometry. For more details, one may see [13, 14]. By $P G(n, q)$ we mean the Desarguesian projective space obtained from the affine space $A G(n+1, q)$.

Definition 3. A cone with vertex $A \subset P G(k, q)$ and base $B \subset P G(n-k-1, q)$, where $P G(k, q) \cap$ $P G(n-k-1, q)=\emptyset$, is the set of points lying on the lines connecting points of A and B.

Definition 4. Let V be an $(n+1)$-dimensional vector space over a finite field \mathbb{F}. A subset S of $P G(V)$ is called an \mathbb{F}_{q}-linear set if there exists a subset U of V that forms an \mathbb{F}_{q}-vector space, for some $\mathbb{F}_{q} \subset \mathbb{F}$, such that $S=\mathcal{B}(U)$, where

$$
\mathcal{B}(U):=\left\{\langle u\rangle_{\mathbb{F}}: u \in U \backslash\{\mathbf{0}\}\right\}
$$

and where $\langle u\rangle_{\mathbb{F}}$ denotes the projective point of $P G(V)$, corresponding to the vector u of $U \subset V$.

Further details about \mathbb{F}_{q}-linear sets can be found in [14], for instance.
The projective space $P G(n, q)$ can be partitioned into an affine space $A G(n, q)$ and a hyperplane at infinity, denoted by H_{∞}.

Definition 5. Following [13], we say that a set of points $U \subset A G(n, q)$ determines the direction $d \in H_{\infty}$, if there is an affine line through d meeting U in at least two points.

We now state the main theorem of 13 which will be relevant in our setting.
Theorem 6. Let $U \subset A G\left(n, \mathbb{F}_{q}\right), n \geq 3,|U|=q^{k}$. Suppose that U determines at most $\frac{q+3}{2} q^{k-1}+$ $q^{k-2}+\cdots+q^{2}+q$ directions and suppose that U is an \mathbb{F}_{p}-linear set of points, where $q=p^{h}, p>3$ prime. If $n-1 \geq(n-k) h$, then U is a cone with an $(n-1-h(n-k))$-dimensional vertex at H_{∞} and with base a \mathbb{F}_{q}-linear point set $U_{(n-k) h}$ of size $q^{(n-k)(h-1)}$, contained in some affine $(n-k) h$-dimensional subspace of $A G(n, q)$.

We end this section by recalling another result that appears in [6] as Theorem 4.2.
Theorem 7. Let G be a permutation group on Ω with a proper self-normalizing abelian regular subgroup. Then $|\Omega|$ is not a prime power.

3 Proofs of the Theorems

In this section we prove Theorems 1 and 2 starting with the proof of Theorem 2 We believe that this result is only the tip of an iceberg: its current statement has been tailored to the context of our setting, and uses some ideas that appear in [6, Section 3] and (9].

Proof of Theorem 2. We suppose that (i) does not hold, that is, K is a proper subgroup of $\operatorname{Aut}(\operatorname{Cay}(G, S))$; we show that (ii) holds. Write $\Gamma:=\operatorname{Cay}(G, S)$.

Let B be a subgroup of $\operatorname{Aut}(\Gamma)$ with $K<B$ and with K maximal in B. Suppose that $K \triangleleft B$. As G is characteristic in K, we get $G \triangleleft B$. In particular, every element φ in $B \backslash K$ satisfies (ii).

Suppose then that K is not normal in B. Since K is maximal in B and $G \triangleleft K$, we have $\mathbf{N}_{B}(G)=K$. Suppose that there exists $b \in B \backslash K$ such that $L:=\left\langle G, G^{b}\right\rangle$ (the smallest subgroup of B containing G and G^{b}) satisfies $L \cap K=G$. We claim that we are now in the position to apply 6, Theorem 4.2] (and implicitly some ideas from [9]). Indeed, as $\mathbf{N}_{L}(G)=\mathbf{N}_{B}(G) \cap L=K \cap L=G$, L is a transitive permutation group on the vertices of Γ with a proper regular self-normalizing abelian subgroup G. (Observe that G is a proper subgroup of L because $b \notin \mathbf{N}_{B}(G)=K$.) From [6, Theorem 4.2], $|G|$ is not a prime power, which is a contradiction because $|G|=q^{n}$, see also Theorem 7. This proves that, for every $b \in B \backslash K$, we have $\left\langle G, G^{b}\right\rangle \cap K>G$.

Fix $b \in B \backslash K$. Now, G and G^{b} are abelian and hence $G \cap G^{b}$ is centralized by $\left\langle G, G^{b}\right\rangle$. From the preceding paragraph, there exists $k \in\left\langle G, G^{b}\right\rangle \cap K$ with $k \notin G$. Observe now that $K=\mathbb{F}_{q}^{n} \rtimes \mathbb{F}_{q}^{*}$ is a Frobenius group with kernel $G=\mathbb{F}_{q}^{n}$ and complement \mathbb{F}_{q}^{*}. Therefore, k acts by conjugation fixed-point-freely on $G \backslash\{\mathbf{0}\}$. As k centralizes $G \cap G^{b}$, we deduce $\left|G \cap G^{b}\right|=1$.

Let $C:=\bigcap_{x \in B} K^{x}$ be the core of K in B. As $G \cap G^{b}=1, K \cap K^{b}$ has no non-identity q-elements. Therefore $C \cap G=1$. As $C \triangleleft B$ and $C \leq K, C$ is a normal subgroup of the Frobenius group K intersecting its kernel on the identity. This yields $C=1$.

Let Ω be the set of right cosets of K in B. From the paragraph above, B acts faithfully on Ω. Moreover, as K is maximal in B, the action of B on Ω is primitive. Therefore B is a finite primitive group with a solvable point stabilizer K. In [11], Li and Zhang have explicitly determined such primitive groups: these are classified in [11, Theorem 1.1] and [11, Tables I-VII]. Now, using the terminology in [11, a careful (but not very difficult) case-by-case analysis on the tables in [11] shows that B is a primitive group of affine type, that is, B contains an elementary abelian normal r-subgroup V, for some prime r. For this analysis it is important to keep in mind that the stabilizer K is a Frobenius group with kernel the elementary abelian group $G \cong \mathbb{F}_{q}^{n}$ and $n>1$.

Let $|V|=r^{t}$. Now, the action of B on Ω is permutation equivalent to the natural action of $B=V \rtimes K$ on V, with V acting via its regular representation and with K acting by conjugation. Observe that $q \neq r$, because K acts faithfully and irreducibly as a linear group on V and hence K contains no non-identity normal r-subgroups. Observe further that $|B|=|V||K|=r^{t} \cdot q^{n} \cdot(q-1)$.

We are finally ready to reach a contradiction and to do so, we go back studying the action of B on the vertices of Γ. Observe that B is solvable because V is solvable and so is $B / V \cong K$. We write B_{0} for the stabilizer in B of the vertex $\mathbf{0}$ of Γ. As G acts regularly on the vertices of Γ, we obtain $B=B_{0} G$ and $B_{0} \cap G=1$. In particular, $\left|B_{0}\right|=r^{t} \cdot(q-1)$. Observe that B_{0} is a Hall Π-subgroup of the solvable group B, where Π is the set of all the prime divisors of $q-1$ together with the prime r. As V is a Π-subgroup, from the theory of Hall subgroups (see for instance [7], Theorem 3.3), V has a conjugate contained in $B_{\mathbf{0}}$. Since $V \triangleleft B$, we have $V \leq B_{\mathbf{0}}$. This is clearly a contradiction because V is normal in B, but B_{0} is core-free in B being the stabilizer of a point in a transitive permutation group.

For the next lemma, recall that $\mathcal{H}_{0}:=\left\{\left(x_{1}, \ldots, x_{n-1}, 0\right): x_{i} \in \mathbb{F}_{q}\right.$ for each $\left.i \in\{1, \ldots, n-1\}\right\}$. In what follows, $G_{n, S}$ will denote the Cayley graph $\operatorname{Cay}\left(\mathbb{F}_{q}^{n}, S\right)$ and $S=\widetilde{S} \backslash\{\mathbf{0}\}$ for some set $\widetilde{S}=\bigcup_{\ell \in \mathcal{L}} \ell$, where \mathcal{L} is a collection of lines in \mathbb{F}_{q}^{n} with each $\ell \in \mathcal{L}$ satisfying $\ell \cap \mathcal{H}_{0}=\{\mathbf{0}\}$.
Lemma 8. $\chi\left(G_{n, S}\right)=q$.

Proof. Observe that each line that belongs to the set S gives rise to a clique of size q in the graph $G_{n, S}$. Therefore $\chi\left(G_{n, S}\right) \geq q$. On the other hand, for a fixed $v \in S$, the partition $\left(C_{\lambda}\right)_{\lambda \in \mathbb{F}_{q}}$, where $C_{\lambda}:=\left\{w+\lambda v: w \in \mathcal{H}_{0}\right\}$, of the vertex set \mathbb{F}_{q}^{n} is a proper coloring of the graph $G_{n, S}$. Indeed, for any $u, v \in C_{\lambda}$, we have $u-v=w \notin S$, so the sets C_{λ} are independent in $G_{n, S}$ for each $\lambda \in \mathbb{F}_{q}$.

Lemma 9. Assume that q is prime. Let \widetilde{S} be the random set corresponding to a union of lines ℓ in \mathbb{F}_{q}^{n} with $\ell \cap \mathcal{H}_{0}=\{\mathbf{0}\}$ and where each $\ell \in \mathbb{F}_{q}^{n}$ is chosen independently with probability $\frac{1}{2}$; and let $S=\widetilde{S} \backslash\{\mathbf{0}\}$. Then

$$
\mathbb{P}\left(\chi_{D}\left(G_{n, S}\right)>q\right) \geq 1-\exp \left(-\frac{q^{n-3}}{4}\right) .
$$

Proof. First, note that $\mathbb{E}(|S|)=\frac{q^{n-1}}{2}$, so taking $\delta=\frac{1}{q}$ and $\mu=\mathbb{E}(|S|)$ in the Chernoff bound (see (2.6) on page 26 of [10]) we obtain

$$
\mathbb{P}\left(|S|<\frac{q^{n-1}-q^{n-2}}{2}\right) \leq \exp \left(-\frac{q^{n-3}}{4}\right) .
$$

In particular, with probability at least $1-\exp \left(-q^{n-3} / 4\right)$, we have $|S|>\frac{q^{n-1}-q^{n-2}}{2}$. We may thus assume $|S|>\frac{q^{n-1}-q^{n-2}}{2}$ in what follows.

We claim that every color class in a proper q-coloring of $G_{n, S}$ is an affine hyperplane of \mathbb{F}_{q}^{n}. To see why, let C_{1}, \ldots, C_{q} be independent sets in $G_{n, S}$ witnessing a proper q-coloring of $G_{n, S}$. Fix $v \in S$ and consider the line $\ell_{v}:=\left\{\lambda v: \lambda \in \mathbb{F}_{q}\right\}$ along with its translates $\ell_{v}+w:=\left\{\lambda v+w: \lambda \in \mathbb{F}_{q}\right\}$, for $w \in \mathcal{H}_{0}$. Each set $\ell_{v}+w$ is a clique of size q in $G_{n, S}$, and these cliques partition the vertex set of $G_{n, S}$, so in particular each C_{i} contains at most one vertex from each of these translates $\ell_{v}+w$. Consequently, $\left|C_{i}\right| \leq q^{n-1}$ for all $i \in\{1, \ldots, q\}$. By size considerations, it follows that $\left|C_{i}\right|=q^{n-1}$ for each $i \in\{1, \ldots, q\}$.

Consider a color class C. Suppose C determines at least $\frac{q+3}{2} q^{n-2}+q^{n-3}+\cdots+q^{2}+q+1$ directions. Then if $\langle C\rangle$ denotes the set of all affine lines intersecting at least two points in C, we have $|\langle C\rangle|+|S|>1+q+\cdots+q^{n-1}$, so $\langle C\rangle \cap S \neq \emptyset$. However, this contradicts the assumption that C is an independent set in $G_{n, S}$. Therefore C determines at most $\frac{q+3}{2} q^{n-2}+q^{n-3}+\cdots+q^{2}+q$ directions. Since q is prime, by Corollary 10 in [13, it follows that C is an \mathbb{F}_{q}-linear set. Hence, by Theorem 6, the color class C is a cone with an $n-2$ (projective) dimensional vertex \mathcal{V} at H_{∞} and an affine point u_{1} as base. In particular, the affine plane corresponding to the \mathbb{F}_{q}-subspace spanned by \mathcal{V} passing through the affine point u_{1} is contained in C. Since $|C|=q^{n-1}$, it follows that C is this affine hyperplane, and this proves the claim.

To complete the proof, observe that for each $\lambda \in \mathbb{F}_{q}^{*} \backslash\{1\}$, the map $\varphi_{\lambda}(x)=\lambda x, x \in \mathbb{F}_{q}^{n}$ fixes each color class. Moreover, φ_{λ} fixes the set S and $\varphi_{\lambda}(u)-\varphi_{\lambda}(v)=\varphi_{\lambda}(u-v)$, so φ_{λ} is a non-trivial automorphism which fixes each color class. Therefore $\chi_{D}\left(G_{n, S}\right)>q$.

Lemma 10. If $n \geq 5$ and $q \geq 5$ is prime, then $\operatorname{Aut}\left(G_{n, S}\right) \cong \mathbb{F}_{q}^{n} \rtimes \mathbb{F}_{q}^{*}$ with probability at least $1-2^{\left(-\frac{q^{n-1}}{3}\right)}$.

Proof. Since $G_{n, S}$ is a Cayley graph on the additive group $G=\mathbb{F}_{q}^{n}$, by Theorem2, either Aut $\left(G_{n, S}\right)=$ $K \cong \mathbb{F}_{q}^{n} \rtimes \mathbb{F}_{q}^{*}$ or there exists $\varphi \in \operatorname{Aut}\left(G_{n, S}\right) \backslash K$ with φ normalizing $G=\mathbb{F}_{q}^{n}$. We show that with probability at least $1-2^{\left(-\frac{q^{n-1}}{3}\right)}$, there is no φ satisfying the latter condition.

Suppose $\varphi \in \operatorname{Aut}\left(G_{n, S}\right)$ normalizes \mathbb{F}_{q}^{n}. If $a=\varphi(\mathbf{0})$ and $\lambda_{a}: \mathbb{F}_{q}^{n} \rightarrow \mathbb{F}_{q}^{n}$ is the right translation via a, then $\lambda_{a}^{-1} \varphi$ is an automorphism of $G_{n, S}$ normalizing \mathbb{F}_{q}^{n} and with $\left(\lambda_{a}^{-1} \varphi\right)(\mathbf{0})=\left(\lambda_{a}^{-1}\right)(\varphi(\mathbf{0}))=$ $\left(\lambda_{a}^{-1}\right)(a)=a-a=\mathbf{0}$. Therefore, without loss of generality, we may assume that $\varphi(\mathbf{0})=\mathbf{0}$. Since S is the neighbourhood of $\mathbf{0}$ in $G_{n, S}$, we get $\varphi(S)=S$. Moreveor, since φ acts as a group automorphism on \mathbb{F}_{q}^{n}, we have $\varphi \in \mathrm{GL}_{n}(q)$.

Now, for $\varphi \in \operatorname{GL}_{n}(q)$, let E_{φ} denote the event $\varphi(S)=S$. Let \mathcal{L} denote the set of all lines ℓ with $\ell \cap \mathcal{H}_{0}=\emptyset$. Also, let $\operatorname{Orb}_{\varphi}(\ell)=\left\{\ell, \varphi(\ell), \varphi^{2}(\ell), \ldots, \varphi^{k}(\ell)\right\}$ where $\varphi^{k+1}(\ell)=\ell$. Then

$$
\mathbb{P}\left(E_{\varphi}\right) \leq \prod_{i=1}^{N_{\varphi}} 2^{1-\left|\operatorname{Orb}_{\varphi}\left(\ell_{i}\right)\right|}=2^{N_{\varphi}-|\mathcal{L}|}
$$

where N_{φ} denotes the number of distinct orbits of φ in \mathcal{L}. Setting $\mathcal{G}=G L(n, q) \backslash\left\{\lambda I: \lambda \in \mathbb{F}_{q}^{*}\right\}$,
we have

$$
\begin{equation*}
\mathbb{P}\left(\bigcup_{\varphi \in \mathcal{G}} E_{\varphi}\right) \leq \sum_{\varphi \in \mathcal{G}} \mathbb{P}\left(E_{\varphi}\right) \leq 2^{-|\mathcal{L}|} \sum_{\varphi \in \mathcal{G}} 2^{N_{\varphi}} . \tag{1}
\end{equation*}
$$

Let $F_{\varphi}:=|\{\ell \in \mathcal{L}: \varphi(\ell)=\ell\}|$ and $F:=\max _{\varphi \in \mathcal{G}} F_{\varphi}$. Now $N_{\varphi} \leq F+\frac{|\mathcal{L}|-F}{2}=\frac{F+|\mathcal{L}|}{2}$. Thus, it suffices to give a suitable upper bound for F. Towards that end, we note that, if $F_{\varphi}=F$ for $\varphi \in \mathcal{G}$, then every line ℓ fixed by φ corresponds to an eigenvector of φ. If $\mathcal{E}_{1}, \mathcal{E}_{2} \ldots, \mathcal{E}_{k}$ denote the eigenspaces of φ for some distinct eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, then

$$
F_{\varphi} \leq \sum_{i=1}^{k}\left(\binom{\operatorname{dim} \mathcal{E}_{i}}{1}_{q}-\binom{\operatorname{dim}\left(\mathcal{E}_{i} \cap \mathcal{H}_{0}\right)}{1}_{q}\right) \leq q^{n-2}+1
$$

Similarly, we have $|\mathcal{L}|=\binom{n}{1}_{q}-\binom{n-1}{1}_{q}=q^{n-1}$, and so by (1), we have

$$
\mathbb{P}\left(\bigcup_{\varphi \in \mathcal{G}} E_{\varphi}\right) \leq|\mathcal{G}| 2^{\frac{F-|\mathcal{L}|}{2}}<q^{n^{2}} 2^{-\left(\frac{q^{n-1}-q^{n-2}-1}{2}\right)}<2^{-\left(\frac{q^{n-1}}{3}\right)}
$$

for $q \geq 5, n \geq 6$.

Computations and estimates similar to the ones presented in the proof of Lemma 10 have been proved useful in a variety of problems, see for instance [1], [8] and [12, Section 6.4].

Proof of Theorem [1. Given $k \in \mathbb{N}$ with $k \geq 4$, pick a prime number q with $k<q<2 k$. Consider the random graph $G_{n, S}$ of the group \mathbb{F}_{q}^{n} as constructed above. By Lemmas 9 and 10 , with positive probability, the graph $G_{n, S}$ satisfies the statements of both lemmas, and hence satisfies the conclusions of Theorem 1 .

4 Concluding Remarks

- We observe that, for S chosen randomly as in the proof of our result, the distinguishing chromatic number of $G_{n, S}$ is $q+1$ with high probability. Indeed, consider the q-coloring C described in Lemma 8, Re-color the vertex $\mathbf{0}$ using an additional color. Then the coloring described by the partition $C^{\prime}=C \cup\{\mathbf{0}\}$ is a proper, distinguishing coloring of $G_{n, S}$ with $q+1$ colors. In fact, C^{\prime} is clearly proper, and to show that it is distinguishing, consider $\varphi \in \operatorname{Aut}\left(G_{n, S}\right)=\mathbb{F}_{q}^{n} \rtimes \mathbb{F}_{q}^{*}$ (by Lemma (10) that fixes every color class. Write $\varphi(x)=\lambda x+b$ with $\lambda \in \mathbb{F}_{q}^{*}, b \in \mathbb{F}_{q}^{n}$. Since φ fixes the color class containing $\mathbf{0}$, we have $b=\mathbf{0}$. Also, x and λx cannot be in same color class unless $\lambda=1$. Therefore φ is the identity automorphism.
It is interesting to determine if one can obtain families of vertex-transitive graphs with $\chi_{D}(G)>\chi(G)+1$, with 'small' automorphism groups and with $\chi(G)$ being arbitrarily large. In fact, for $k \in \mathbb{N}$, there is no known family of vertex-transitive graphs for which $\chi_{D}(G)>\chi(G)+1>k$ and $|\operatorname{Aut}(G)|=O\left(|V(G)|^{O(1)}\right)$. It is plausible that Cayley graphs over certain groups may provide the correct constructions.
- Theorem 1 establishes, for any fixed k, the existence of vertex-transitive graphs $G_{n}=\left(V_{n}, E_{n}\right)$ with $\chi_{D}\left(G_{n}\right)>\chi\left(G_{n}\right)>k$ and with $\left|\operatorname{Aut}\left(G_{n}\right)\right|<2 k\left|V_{n}\right|$. It would be interesting to obtain a similar family of graphs that satisfy with $\chi_{D}\left(G_{n}\right)>\chi\left(G_{n}\right)>k$ and with $\left|\operatorname{Aut}\left(G_{n}\right)\right| \leq C\left|V_{n}\right|$, for some absolute constant C.

Acknowledgments

The first and second authors would like to thank Ted Dobson for useful discussions.

References

[1] N. Balachandran and S. Padinhatteeri. $\chi_{D}(G),|A u t(G)|$ and a variant of the motion lemma. Ars Math. Contemp., 12(1), 2016.
[2] Z. Che and K. L. Collins. The Distinguishing Chromatic Number of Kneser Graphs. Electron. J. Combin., 20(1), 2013.
[3] J. Choi, S. G. Hartke, and H. Kaul. Distinguishing chromatic number of cartesian products of graphs. SIAM J. Discrete Math., 24(1):82-100, 2010.
[4] K. L. Collins, M. Hovey, and A. N. Trenk. Bounds on the distinguishing chromatic number. Electron. J. Combin, 16, 2009.
[5] K. L. Collins and A. N. Trenk. The distinguishing chromatic number. Electron. J. Combin, 13, 2006.
[6] E. Dobson, P. Spiga, and G. Verret. Cayley graphs on abelian groups. Combinatorica, 4:1-23, 2015.
[7] K. Doerk and T. O. Hawkes. Finite Soluble Groups. De Gruyter Expositions in Mathematics 4, 1992.
[8] S. Guest and P. Spiga. Finite primitive groups and regular orbits of group elements. Trans. Amer. Math. Soc., 369(2):997-1024, 2017.
[9] E. Jabara and P. Spiga. Abelian carter subgroups in finite permutation groups. Arch. Math. (Basel), 101:301-307, 2013.
[10] S. Janson, T. Łuczak, and A. Ruciński. Random Graphs. John Wiley \& Sons, Inc.,New York, 2000.
[11] C. H. Li and H. Zhang. The finite primitive groups with soluble stabilizers, and the edgeprimitive s-arc transitive graphs. Proc. Lond. Math.Soc., 103:441-472, 2011.
[12] P. Potočnik, P. Spiga, and G. Verret. Asymptotic enumeration of vertex-transitive graphs of fixed valency. J. Combin. Theory Ser. B, 122:221-240, 2017.
[13] L. Strome and P. Sziklai. Linear point sets and Rédei type k-blocking sets $P G(n, q)$. J. Algebraic Combin., 14:221-228, 2001.
[14] G. V. Voorde. Blocking sets in finite projective spaces and coding theory. PhD thesis, Ghent University, 2010.

[^0]: *Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India. email: niranj@math.iitb.ac.in
 ${ }^{\dagger}$ Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India. email: sajith@math.iitb.ac.in
 ${ }^{\ddagger}$ Dipartimento Di Matematica E Applicazioni, University of Milano-Bicocca, Milano Italy, Email: pablo.spiga@unimib.it

