Vertex transitive graphs G with $\chi_D(G) > \chi(G)$ and small automorphism group

Niranjan Balachandran^{*}, Sajith Padinhatteeri[†], and Pablo Spiga[‡]

Abstract

For a graph G and a positive integer k, a vertex labelling $f:V(G)\to\{1,2\ldots,k\}$ is said to be k-distinguishing if no non-trivial automorphism of G preserves the sets $f^{-1}(i)$ for each $i\in\{1,\ldots,k\}$. The distinguishing chromatic number of a graph G, denoted $\chi_D(G)$, is defined as the minimum k such that there is a k-distinguishing labelling of V(G) which is also a proper coloring of the vertices of G. In this paper, we prove the following theorem: Given $k\in\mathbb{N}$, there exists an infinite sequence of vertex-transitive graphs $G_i=(V_i,E_i)$ such that

- 1. $\chi_D(G_i) > \chi(G_i) > k$,
- 2. $|\operatorname{Aut}(G_i)| = O_k(|V_i|)$, where $\operatorname{Aut}(G_i)$ denotes the full automorphism group of G_i .

In particular, this answers a problem raised in [1].

Keywords: Distinguishing Chromatic Number, Vertex transitive graphs, Cayley Graphs.

2010 AMS Classification Code: 05C15, 05D40, 20B25, 05E18.

1 Introduction

Let G be a graph. An automorphism of G is a permutation φ of the vertex set V(G) of G such that, for any $x, y \in V(G)$, $\varphi(x), \varphi(y)$ are adjacent if and only x, y are adjacent. The automorphism group of a graph G, denoted by $\operatorname{Aut}(G)$, is the group of all automorphisms of G. A graph G is said to be vertex transitive if, for any $u, v \in V(G)$, there exists $\varphi \in \operatorname{Aut}(G)$ such that $\varphi(u) = v$.

Given a positive integer r, an r-coloring of G is a map $f:V(G) \to \{1,2,\ldots,r\}$ and the sets $f^{-1}(i)$, for $i \in \{1,2\ldots,r\}$, are the color classes of f. An automorphism $\varphi \in \operatorname{Aut}(G)$ is said to fix

^{*}Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India. email: ni-ranj@math.iitb.ac.in

[†]Department of Mathematics, Indian Institute of Technology Bombay, Mumbai, India. email: sajith@math.iitb.ac.in

[‡]Dipartimento Di Matematica E Applicazioni, University of Milano-Bicocca, Milano Italy, Email: pablo.spiga@unimib.it

a color class C of f if $\varphi(C) = C$, where $\varphi(C) = \{\varphi(v) : v \in C\}$. A coloring of G, with the property that no non-trivial automorphism of G fixes every color class, is called a distinguishing coloring of G.

Collins and Trenk in [5] introduced the notion of the distinguishing chromatic number of a graph G, which is defined as the minimum number of colors needed to color the vertices of G so that the coloring is both proper and distinguishing. Thus, the distinguishing chromatic number of G is the least integer r such that the vertex set can be partitioned into sets V_1, V_2, \ldots, V_r such that each V_i is independent in G, and for every non-trivial $\varphi \in \operatorname{Aut}(G)$ there exists some color class V_i with $\varphi(V_i) \neq V_i$. The distinguishing chromatic number of a graph G, denoted by $\chi_D(G)$, has been the topic of considerable interest recently (see for instance, [1, 2, 3, 4]).

One of the many questions of interest regarding the distinguishing chromatic number concerns the contrast between $\chi_D(G)$ and the cardinality of $\operatorname{Aut}(G)$. For instance, the Kneser graphs K(n,r) have very large automorphism groups and yet, $\chi_D(K(n,r)) = \chi(K(n,r))$ for $n \geq 2r+1$, and $r \geq 3$ (see [2]). The converse question is compelling: Are there infinitely many graphs G_n with 'small' automorphism groups and satisfying $\chi_D(G_n) > \chi(G_n)$?

The question as posed above is not actually interesting for two reasons. First, for all even $n, \chi_D(C_n) > \chi(C_n) = 2$ and $|\operatorname{Aut}(C_n)| = 2n$, where C_n is the cycle of length n. Second, if one stipulates that G also has arbitrarily large chromatic number, then here is a construction for such a graph. Start with a rigid graph G with a leaf vertex x and having large chromatic number (one can obtain this by minor modifications to a random graph, for instance); then, blow up the leaf vertex x to a new disjoint set X whose neighbor in the new graph \widetilde{G} is the same as the neighbor of x in G. In fact one can arrange for $\chi_D(\widetilde{G}) - \chi(\widetilde{G})$ to be as large as one desires. Furthermore, since $|\operatorname{Aut}(\widetilde{G})| = |X|!$, this provides examples of graphs for which the automorphism groups are relatively 'small' in terms of the order of the graph.

In the example above, the fact that $\chi_D(G)$ is larger than $\chi(G)$ is accounted for by a 'local' reason, and that is what makes the problem stated above not very interesting. However, if one further stipulates that the graph is vertex-transitive, then the same question is highly non-trivial. In [1], the first and second authors constructed families of vertex-transitive graphs with $\chi_D(G) > \chi(G) > k$ and $\operatorname{Aut}(G) = O(|V(G)|^{3/2})$, for any given k. In this paper, we improve upon that result:

Theorem 1. Given $k \in \mathbb{N}$, there exists an infinite family of graphs $G_n = (V_n, E_n)$ satisfying:

- 1. $\chi_D(G_n) > \chi(G_n) > k$,
- 2. G_n is vertex transitive and $|\operatorname{Aut}(G_n)| < 2k|V_n|$.

Our family of graphs consists of Cayley graphs. To recall the definition, let A be a group and let S be an inverse-closed subset of A, i.e., $S = S^{-1}$, where $S^{-1} := \{s^{-1} : s \in S\}$. The Cayley graph $\operatorname{Cay}(A, S)$ is the graph with vertex set A and the vertices u and v are adjacent in $\operatorname{Cay}(A, S)$ if and only if $uv^{-1} \in S$.

We start with a brief description of the graphs of our construction. For q, an odd prime, let \mathbb{F}_q^n denote the n-dimensional vector space over \mathbb{F}_q . Our graphs shall be Cayley graphs $\operatorname{Cay}(\mathbb{F}_q^n, S)$ for

some suitable inverse-closed set $S \subset \mathbb{F}_q^n$ which is obtained by taking a union of a certain collection of lines in \mathbb{F}_q^n and then deleting the zero element of \mathbb{F}_q^n . More precisely, let $\mathcal{H}_0 := \{(x_1, x_2, \dots, x_{n-1}, 0) : x_i \in \mathbb{F}_q, 1 \le i \le n-1\}$ and let $\mathbf{0}$ denote the element $(0, \dots, 0) \in \mathbb{F}_q^n$. For each line (1-dimensional subspace of \mathbb{F}_q^n) $\ell \subset \mathbb{F}_q^n$ satisfying $\ell \cap \mathcal{H}_0 = \{\mathbf{0}\}$, pick ℓ independently with probability 1/2 to form the random set \widetilde{S} . Our connection set S for the Cayley graph $\operatorname{Cay}(\mathbb{F}_q^n, S)$ is defined by $S := \{v \in \mathbb{F}_q^n : v \in \ell \text{ for some } \ell \in \widetilde{S}\} \setminus \{\mathbf{0}\}$. Our main theorem states that with high probability, $G_{n,S} := \operatorname{Cay}(\mathbb{F}_q^n, S)$ satisfies the conditions of Theorem 1.

To show that these graphs have 'small' automorphism groups, we prove a stronger version of Theorem 4.3 of [6] in this particular context, which is also a result of independent interest.

Theorem 2. Let q be a prime power, let n be a positive integer with $n \geq 2$ and let G be the additive group of the n-dimensional vector space \mathbb{F}_q^n over the finite field \mathbb{F}_q of cardinality q, and let $\mathbb{F}_q^* := \mathbb{F}_q \setminus \{0\}$ be the multiplicative group of the field \mathbb{F}_q with its natural group action on G by scalar multiplication, and write $K := \mathbb{F}_q^n \rtimes \mathbb{F}_q^*$. If S is a subset of G with $K \leq \operatorname{Aut}(\operatorname{Cay}(G,S))$, then either

- (i) $\operatorname{Aut}(\operatorname{Cay}(G,S)) = K$, or
- (ii) there exists $\varphi \in \operatorname{Aut}(\operatorname{Cay}(G,S)) \setminus K$ with φ normalizing G.

The rest of the paper is organized as follows. We start with some preliminaries in Section 2 and then include the proofs of Theorems 1 and 2 in the next section. We conclude with some remarks and some open questions.

2 Preliminaries

We begin with a few definitions from finite geometry. For more details, one may see [13, 14]. By PG(n,q) we mean the Desarguesian projective space obtained from the affine space AG(n+1,q).

Definition 3. A cone with vertex $A \subset PG(k,q)$ and base $B \subset PG(n-k-1,q)$, where $PG(k,q) \cap PG(n-k-1,q) = \emptyset$, is the set of points lying on the lines connecting points of A and B.

Definition 4. Let V be an (n+1)-dimensional vector space over a finite field \mathbb{F} . A subset S of PG(V) is called an \mathbb{F}_q -linear set if there exists a subset U of V that forms an \mathbb{F}_q -vector space, for some $\mathbb{F}_q \subset \mathbb{F}$, such that $S = \mathcal{B}(U)$, where

$$\mathcal{B}(U) := \{ \langle u \rangle_{\mathbb{F}} : u \in U \setminus \{\mathbf{0}\} \}$$

and where $\langle u \rangle_{\mathbb{F}}$ denotes the projective point of PG(V), corresponding to the vector u of $U \subset V$.

Further details about \mathbb{F}_q -linear sets can be found in [14], for instance.

The projective space PG(n,q) can be partitioned into an affine space AG(n,q) and a hyperplane at infinity, denoted by H_{∞} .

Definition 5. Following [13], we say that a set of points $U \subset AG(n,q)$ determines the direction $d \in H_{\infty}$, if there is an affine line through d meeting U in at least two points.

We now state the main theorem of [13] which will be relevant in our setting.

Theorem 6. Let $U \subset AG(n, \mathbb{F}_q)$, $n \geq 3$, $|U| = q^k$. Suppose that U determines at most $\frac{q+3}{2}q^{k-1} + q^{k-2} + \cdots + q^2 + q$ directions and suppose that U is an \mathbb{F}_p -linear set of points, where $q = p^h$, p > 3 prime. If $n - 1 \geq (n - k)h$, then U is a cone with an (n - 1 - h(n - k))-dimensional vertex at H_{∞} and with base a \mathbb{F}_q -linear point set $U_{(n-k)h}$ of size $q^{(n-k)(h-1)}$, contained in some affine (n - k)h-dimensional subspace of AG(n, q).

We end this section by recalling another result that appears in [6] as Theorem 4.2.

Theorem 7. Let G be a permutation group on Ω with a proper self-normalizing abelian regular subgroup. Then $|\Omega|$ is not a prime power.

3 Proofs of the Theorems

In this section we prove Theorems 1 and 2 starting with the proof of Theorem 2. We believe that this result is only the tip of an iceberg: its current statement has been tailored to the context of our setting, and uses some ideas that appear in [6, Section 3] and [9].

Proof of Theorem 2. We suppose that (i) does not hold, that is, K is a proper subgroup of Aut(Cay(G, S)); we show that (ii) holds. Write $\Gamma := \text{Cay}(G, S)$.

Let B be a subgroup of $\operatorname{Aut}(\Gamma)$ with K < B and with K maximal in B. Suppose that $K \triangleleft B$. As G is characteristic in K, we get $G \triangleleft B$. In particular, every element φ in $B \setminus K$ satisfies (ii).

Suppose then that K is not normal in B. Since K is maximal in B and $G \triangleleft K$, we have $\mathbf{N}_B(G) = K$. Suppose that there exists $b \in B \setminus K$ such that $L := \langle G, G^b \rangle$ (the smallest subgroup of B containing G and G^b) satisfies $L \cap K = G$. We claim that we are now in the position to apply [6, Theorem 4.2] (and implicitly some ideas from [9]). Indeed, as $\mathbf{N}_L(G) = \mathbf{N}_B(G) \cap L = K \cap L = G$, L is a transitive permutation group on the vertices of Γ with a proper regular self-normalizing abelian subgroup G. (Observe that G is a proper subgroup of L because $b \notin \mathbf{N}_B(G) = K$.) From [6, Theorem 4.2], |G| is not a prime power, which is a contradiction because $|G| = q^n$, see also Theorem 7. This proves that, for every $b \in B \setminus K$, we have $\langle G, G^b \rangle \cap K > G$.

Fix $b \in B \setminus K$. Now, G and G^b are abelian and hence $G \cap G^b$ is centralized by $\langle G, G^b \rangle$. From the preceding paragraph, there exists $k \in \langle G, G^b \rangle \cap K$ with $k \notin G$. Observe now that $K = \mathbb{F}_q^n \rtimes \mathbb{F}_q^*$ is a Frobenius group with kernel $G = \mathbb{F}_q^n$ and complement \mathbb{F}_q^* . Therefore, k acts by conjugation fixed-point-freely on $G \setminus \{\mathbf{0}\}$. As k centralizes $G \cap G^b$, we deduce $|G \cap G^b| = 1$.

Let $C := \bigcap_{x \in B} K^x$ be the core of K in B. As $G \cap G^b = 1$, $K \cap K^b$ has no non-identity q-elements. Therefore $C \cap G = 1$. As $C \triangleleft B$ and $C \leq K$, C is a normal subgroup of the Frobenius group K intersecting its kernel on the identity. This yields C = 1.

Let Ω be the set of right cosets of K in B. From the paragraph above, B acts faithfully on Ω . Moreover, as K is maximal in B, the action of B on Ω is primitive. Therefore B is a finite primitive group with a solvable point stabilizer K. In [11], Li and Zhang have explicitly determined such primitive groups: these are classified in [11, Theorem 1.1] and [11, Tables I–VII]. Now, using the terminology in [11], a careful (but not very difficult) case-by-case analysis on the tables in [11] shows that B is a primitive group of affine type, that is, B contains an elementary abelian normal r-subgroup V, for some prime r. For this analysis it is important to keep in mind that the stabilizer K is a Frobenius group with kernel the elementary abelian group $G \cong \mathbb{F}_q^n$ and n > 1.

Let $|V| = r^t$. Now, the action of B on Ω is permutation equivalent to the natural action of $B = V \rtimes K$ on V, with V acting via its regular representation and with K acting by conjugation. Observe that $q \neq r$, because K acts faithfully and irreducibly as a linear group on V and hence K contains no non-identity normal r-subgroups. Observe further that $|B| = |V||K| = r^t \cdot q^n \cdot (q-1)$.

We are finally ready to reach a contradiction and to do so, we go back studying the action of B on the vertices of Γ . Observe that B is solvable because V is solvable and so is $B/V \cong K$. We write B_0 for the stabilizer in B of the vertex $\mathbf{0}$ of Γ . As G acts regularly on the vertices of Γ , we obtain $B = B_0G$ and $B_0 \cap G = 1$. In particular, $|B_0| = r^t \cdot (q-1)$. Observe that B_0 is a Hall Π -subgroup of the solvable group B, where Π is the set of all the prime divisors of q-1 together with the prime r. As V is a Π -subgroup, from the theory of Hall subgroups (see for instance [7], Theorem 3.3), V has a conjugate contained in B_0 . Since $V \triangleleft B$, we have $V \leq B_0$. This is clearly a contradiction because V is normal in B, but B_0 is core-free in B being the stabilizer of a point in a transitive permutation group.

For the next lemma, recall that $\mathcal{H}_0 := \{(x_1, \dots, x_{n-1}, 0) : x_i \in \mathbb{F}_q \text{ for each } i \in \{1, \dots, n-1\}\}.$ In what follows, $G_{n,S}$ will denote the Cayley graph $\operatorname{Cay}(\mathbb{F}_q^n, S)$ and $S = \widetilde{S} \setminus \{\mathbf{0}\}$ for some set $\widetilde{S} = \bigcup_{\ell \in \mathcal{L}} \ell$, where \mathcal{L} is a collection of lines in \mathbb{F}_q^n with each $\ell \in \mathcal{L}$ satisfying $\ell \cap \mathcal{H}_0 = \{\mathbf{0}\}.$

Lemma 8. $\chi(G_{n,S}) = q$.

Proof. Observe that each line that belongs to the set S gives rise to a clique of size q in the graph $G_{n,S}$. Therefore $\chi(G_{n,S}) \geq q$. On the other hand, for a fixed $v \in S$, the partition $(C_{\lambda})_{\lambda \in \mathbb{F}_q}$, where $C_{\lambda} := \{w + \lambda v : w \in \mathcal{H}_0\}$, of the vertex set \mathbb{F}_q^n is a proper coloring of the graph $G_{n,S}$. Indeed, for any $u, v \in C_{\lambda}$, we have $u - v = w \notin S$, so the sets C_{λ} are independent in $G_{n,S}$ for each $\lambda \in \mathbb{F}_q$. \square

Lemma 9. Assume that q is prime. Let \widetilde{S} be the random set corresponding to a union of lines ℓ in \mathbb{F}_q^n with $\ell \cap \mathcal{H}_0 = \{\mathbf{0}\}$ and where each $\ell \in \mathbb{F}_q^n$ is chosen independently with probability $\frac{1}{2}$; and let $S = \widetilde{S} \setminus \{\mathbf{0}\}$. Then

$$\mathbb{P}\left(\chi_D(G_{n,S}) > q\right) \ge 1 - \exp\left(-\frac{q^{n-3}}{4}\right).$$

Proof. First, note that $\mathbb{E}(|S|) = \frac{q^{n-1}}{2}$, so taking $\delta = \frac{1}{q}$ and $\mu = \mathbb{E}(|S|)$ in the Chernoff bound (see (2.6) on page 26 of [10]) we obtain

$$\mathbb{P}\left(|S| < \frac{q^{n-1} - q^{n-2}}{2}\right) \le \exp\left(-\frac{q^{n-3}}{4}\right).$$

In particular, with probability at least $1 - \exp(-q^{n-3}/4)$, we have $|S| > \frac{q^{n-1}-q^{n-2}}{2}$. We may thus assume $|S| > \frac{q^{n-1}-q^{n-2}}{2}$ in what follows.

We claim that every color class in a proper q-coloring of $G_{n,S}$ is an affine hyperplane of \mathbb{F}_q^n . To see why, let C_1, \ldots, C_q be independent sets in $G_{n,S}$ witnessing a proper q-coloring of $G_{n,S}$. Fix $v \in S$ and consider the line $\ell_v := \{\lambda v : \lambda \in \mathbb{F}_q\}$ along with its translates $\ell_v + w := \{\lambda v + w : \lambda \in \mathbb{F}_q\}$, for $w \in \mathcal{H}_0$. Each set $\ell_v + w$ is a clique of size q in $G_{n,S}$, and these cliques partition the vertex set of $G_{n,S}$, so in particular each C_i contains at most one vertex from each of these translates $\ell_v + w$. Consequently, $|C_i| \leq q^{n-1}$ for all $i \in \{1, \ldots, q\}$. By size considerations, it follows that $|C_i| = q^{n-1}$ for each $i \in \{1, \ldots, q\}$.

Consider a color class C. Suppose C determines at least $\frac{q+3}{2}q^{n-2}+q^{n-3}+\cdots+q^2+q+1$ directions. Then if $\langle C \rangle$ denotes the set of all affine lines intersecting at least two points in C, we have $|\langle C \rangle| + |S| > 1 + q + \cdots + q^{n-1}$, so $\langle C \rangle \cap S \neq \emptyset$. However, this contradicts the assumption that C is an independent set in $G_{n,S}$. Therefore C determines at most $\frac{q+3}{2}q^{n-2}+q^{n-3}+\cdots+q^2+q$ directions. Since q is prime, by Corollary 10 in [13], it follows that C is an \mathbb{F}_q -linear set. Hence, by Theorem 6, the color class C is a cone with an n-2 (projective) dimensional vertex \mathcal{V} at H_{∞} and an affine point u_1 as base. In particular, the affine plane corresponding to the \mathbb{F}_q -subspace spanned by \mathcal{V} passing through the affine point u_1 is contained in C. Since $|C| = q^{n-1}$, it follows that C is this affine hyperplane, and this proves the claim.

To complete the proof, observe that for each $\lambda \in \mathbb{F}_q^* \setminus \{1\}$, the map $\varphi_{\lambda}(x) = \lambda x$, $x \in \mathbb{F}_q^n$ fixes each color class. Moreover, φ_{λ} fixes the set S and $\varphi_{\lambda}(u) - \varphi_{\lambda}(v) = \varphi_{\lambda}(u - v)$, so φ_{λ} is a non-trivial automorphism which fixes each color class. Therefore $\chi_D(G_{n,S}) > q$.

Lemma 10. If $n \geq 5$ and $q \geq 5$ is prime, then $\operatorname{Aut}(G_{n,S}) \cong \mathbb{F}_q^n \rtimes \mathbb{F}_q^*$ with probability at least $1 - 2^{\left(-\frac{q^{n-1}}{3}\right)}$.

Proof. Since $G_{n,S}$ is a Cayley graph on the additive group $G = \mathbb{F}_q^n$, by Theorem 2, either $\operatorname{Aut}(G_{n,S}) = K \cong \mathbb{F}_q^n \rtimes \mathbb{F}_q^*$ or there exists $\varphi \in \operatorname{Aut}(G_{n,S}) \setminus K$ with φ normalizing $G = \mathbb{F}_q^n$. We show that with probability at least $1 - 2^{\left(-\frac{q^{n-1}}{3}\right)}$, there is no φ satisfying the latter condition.

Suppose $\varphi \in \operatorname{Aut}(G_{n,S})$ normalizes \mathbb{F}_q^n . If $a = \varphi(\mathbf{0})$ and $\lambda_a : \mathbb{F}_q^n \to \mathbb{F}_q^n$ is the right translation via a, then $\lambda_a^{-1}\varphi$ is an automorphism of $G_{n,S}$ normalizing \mathbb{F}_q^n and with $(\lambda_a^{-1}\varphi)(\mathbf{0}) = (\lambda_a^{-1})(\varphi(\mathbf{0})) = (\lambda_a^{-1})(a) = a - a = \mathbf{0}$. Therefore, without loss of generality, we may assume that $\varphi(\mathbf{0}) = \mathbf{0}$. Since S is the neighbourhood of $\mathbf{0}$ in $G_{n,S}$, we get $\varphi(S) = S$. Moreveor, since φ acts as a group automorphism on \mathbb{F}_q^n , we have $\varphi \in \operatorname{GL}_n(q)$.

Now, for $\varphi \in GL_n(q)$, let E_{φ} denote the event $\varphi(S) = S$. Let \mathcal{L} denote the set of all lines ℓ with $\ell \cap \mathcal{H}_0 = \emptyset$. Also, let $Orb_{\varphi}(\ell) = {\ell, \varphi(\ell), \varphi^2(\ell), \dots, \varphi^k(\ell)}$ where $\varphi^{k+1}(\ell) = \ell$. Then

$$\mathbb{P}(E_{\varphi}) \le \prod_{i=1}^{N_{\varphi}} 2^{1-|\operatorname{Orb}_{\varphi}(\ell_i)|} = 2^{N_{\varphi}-|\mathcal{L}|},$$

where N_{φ} denotes the number of distinct orbits of φ in \mathcal{L} . Setting $\mathcal{G} = GL(n,q) \setminus \{\lambda I : \lambda \in \mathbb{F}_q^*\},$

we have

$$\mathbb{P}\left(\bigcup_{\varphi\in\mathcal{G}} E_{\varphi}\right) \leq \sum_{\varphi\in\mathcal{G}} \mathbb{P}(E_{\varphi}) \leq 2^{-|\mathcal{L}|} \sum_{\varphi\in\mathcal{G}} 2^{N_{\varphi}}. \tag{1}$$

Let $F_{\varphi} := |\{\ell \in \mathcal{L} : \varphi(\ell) = \ell\}|$ and $F := \max_{\varphi \in \mathcal{G}} F_{\varphi}$. Now $N_{\varphi} \leq F + \frac{|\mathcal{L}| - F}{2} = \frac{F + |\mathcal{L}|}{2}$. Thus, it suffices to give a suitable upper bound for F. Towards that end, we note that, if $F_{\varphi} = F$ for $\varphi \in \mathcal{G}$, then every line ℓ fixed by φ corresponds to an eigenvector of φ . If $\mathcal{E}_1, \mathcal{E}_2, \dots, \mathcal{E}_k$ denote the eigenspaces of φ for some distinct eigenvalues $\lambda_1, \dots, \lambda_k$, then

$$F_{\varphi} \leq \sum_{i=1}^{k} \left(\binom{\dim \mathcal{E}_i}{1}_q - \binom{\dim(\mathcal{E}_i \cap \mathcal{H}_0)}{1}_q \right) \leq q^{n-2} + 1.$$

Similarly, we have $|\mathcal{L}| = \binom{n}{1}_q - \binom{n-1}{1}_q = q^{n-1}$, and so by (1), we have

$$\mathbb{P}\left(\bigcup_{\varphi \in \mathcal{G}} E_{\varphi}\right) \le |\mathcal{G}| 2^{\frac{F - |\mathcal{L}|}{2}} < q^{n^2} 2^{-(\frac{q^{n-1} - q^{n-2} - 1}{2})} < 2^{-(\frac{q^{n-1}}{3})},$$

for $q \geq 5$, $n \geq 6$.

Computations and estimates similar to the ones presented in the proof of Lemma 10 have been proved useful in a variety of problems, see for instance [1], [8] and [12, Section 6.4].

Proof of Theorem 1. Given $k \in \mathbb{N}$ with $k \geq 4$, pick a prime number q with k < q < 2k. Consider the random graph $G_{n,S}$ of the group \mathbb{F}_q^n as constructed above. By Lemmas 9 and 10, with positive probability, the graph $G_{n,S}$ satisfies the statements of both lemmas, and hence satisfies the conclusions of Theorem 1.

4 Concluding Remarks

• We observe that, for S chosen randomly as in the proof of our result, the distinguishing chromatic number of $G_{n,S}$ is q+1 with high probability. Indeed, consider the q-coloring C described in Lemma 8. Re-color the vertex $\mathbf{0}$ using an additional color. Then the coloring described by the partition $C' = C \cup \{\mathbf{0}\}$ is a proper, distinguishing coloring of $G_{n,S}$ with q+1 colors. In fact, C' is clearly proper, and to show that it is distinguishing, consider $\varphi \in \operatorname{Aut}(G_{n,S}) = \mathbb{F}_q^n \times \mathbb{F}_q^*$ (by Lemma 10) that fixes every color class. Write $\varphi(x) = \lambda x + b$ with $\lambda \in \mathbb{F}_q^*$, $b \in \mathbb{F}_q^n$. Since φ fixes the color class containing $\mathbf{0}$, we have $b = \mathbf{0}$. Also, x and λx cannot be in same color class unless $\lambda = 1$. Therefore φ is the identity automorphism. It is interesting to determine if one can obtain families of vertex-transitive graphs with $\chi_D(G) > \chi(G) + 1$, with 'small' automorphism groups and with $\chi(G)$ being arbitrarily large. In fact, for $k \in \mathbb{N}$, there is no known family of vertex-transitive graphs for which $\chi_D(G) > \chi(G) + 1 > k$ and $|\operatorname{Aut}(G)| = O(|V(G)|^{O(1)})$. It is plausible that Cayley graphs over certain groups may provide the correct constructions.

• Theorem 1 establishes, for any fixed k, the existence of vertex-transitive graphs $G_n = (V_n, E_n)$ with $\chi_D(G_n) > \chi(G_n) > k$ and with $|\operatorname{Aut}(G_n)| < 2k|V_n|$. It would be interesting to obtain a similar family of graphs that satisfy with $\chi_D(G_n) > \chi(G_n) > k$ and with $|\operatorname{Aut}(G_n)| \le C|V_n|$, for some absolute constant C.

Acknowledgments

The first and second authors would like to thank Ted Dobson for useful discussions.

References

- [1] N. Balachandran and S. Padinhatteeri. $\chi_D(G)$, |Aut(G)| and a variant of the motion lemma. Ars Math. Contemp., 12(1), 2016.
- [2] Z. Che and K. L. Collins. The Distinguishing Chromatic Number of Kneser Graphs. *Electron. J. Combin.*, 20(1), 2013.
- [3] J. Choi, S. G. Hartke, and H. Kaul. Distinguishing chromatic number of cartesian products of graphs. SIAM J. Discrete Math., 24(1):82–100, 2010.
- [4] K. L. Collins, M. Hovey, and A. N. Trenk. Bounds on the distinguishing chromatic number. *Electron. J. Combin*, 16, 2009.
- [5] K. L. Collins and A. N. Trenk. The distinguishing chromatic number. *Electron. J. Combin*, 13, 2006.
- [6] E. Dobson, P. Spiga, and G. Verret. Cayley graphs on abelian groups. *Combinatorica*, 4:1–23, 2015.
- [7] K. Doerk and T. O. Hawkes. *Finite Soluble Groups*. De Gruyter Expositions in Mathematics 4, 1992.
- [8] S. Guest and P. Spiga. Finite primitive groups and regular orbits of group elements. *Trans. Amer. Math. Soc.*, 369(2):997–1024, 2017.
- [9] E. Jabara and P. Spiga. Abelian carter subgroups in finite permutation groups. *Arch. Math.* (Basel), 101:301–307, 2013.
- [10] S. Janson, T. Łuczak, and A. Ruciński. *Random Graphs*. John Wiley & Sons, Inc., New York, 2000.
- [11] C. H. Li and H. Zhang. The finite primitive groups with soluble stabilizers, and the edge-primitive s-arc transitive graphs. *Proc. Lond. Math.Soc.*, 103:441–472, 2011.
- [12] P. Potočnik, P. Spiga, and G. Verret. Asymptotic enumeration of vertex-transitive graphs of fixed valency. *J. Combin. Theory Ser. B*, 122:221–240, 2017.
- [13] L. Strome and P. Sziklai. Linear point sets and Rédei type k-blocking sets PG(n, q). J. Algebraic Combin., 14:221–228, 2001.

[14] G. V. Voorde. Blocking sets in finite projective spaces and coding theory. PhD thesis, Ghent University, 2010.