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ABSTRACT 
Measles is a highly contagious disease that mainly affects children worldwide. Even though 
a reliable and effective vaccination is available, there were 140,000 measles deaths world-
wide in 2018, and most of them were children under the age five years. In this paper, we 
comprehensively investigate a novel fractional SVEIR (Susceptible-Vaccinated-Exposed- 
Infected-Recovered) model of the measles epidemic powered by nonlinear fractional differ-
ential equations to understand the epidemic’s dynamical behaviour. We use a non-singular 
Atangana-Baleanu fractional derivative to analyze the proposed model, taking advantage of 
non-locality. The existence, uniqueness, positivity and boundedness of the solutions are 
shown via concepts of fixed point theory, and we also perform the Ulam-Hyers stability of 
the considered model. The parameter sensitivity is discussed in the context of the variance 
with each parameter using 3-D graphics based on the basic reproduction number. 
Moreover, with the Atangana-Toufik numerical scheme, numerical findings are depicted for 
different fractional-order values. The presented approach produce results that are efficiently 
consistent and in excellent agreement with the theoretical results.
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1. Introduction

Measles is also named as morbilli or rubeola, is an 
infectious disease resulted by the Morbillivirus, a spe-
cies of the Paramyxoviridae family. It specifically tar-
gets children under five and has a significant fatality 
rate. The measles virus is vaccine-preventable, yet the 
World Health Organization (WHO) still considers this 
disease to be a public health issue (Budigan Ni et al., 
2023; Center of Disease Control and Prevention, n.d; 
Gambrell, Sundaram, & Bednarczyk, 2022). Disease 
reported the lives of over 110,000 persons in 2017 
especially young children (James Peter, Ojo, 
Viriyapong, & Abiodun Oguntolu, 2022). Table 1
presents the ten states that the disease outbreak has 
most profoundly influenced. The number of con-
firmed cases of measles in 2019 was, interestingly, the 
most in the previous two decades. Meantime, measles 
outbreaks have been highlighted in 2019 in many 
nations, including Angola, Cameroon, Sudan, Nigeria, 
Chad, Congo, Madagascar, and South Sudan in Africa, 

Kazakhstan in Central Asia, the Philippines and 
Thailand in Southeast Asia, and Ukraine in Eastern 
Europe (Callister, 2019). In 182 countries, there were 
364,811 cases reported in the first quarter of 2019, as 
stated in the WHO statistics. Moreover, massive 
increase in measles cases were seen in the Western 
Pacific, European and African zones (Jost, Luzi, 
Metzler, Miran, & Mutsch, 2015).

The first flu-like measles symptoms occur 7 to 
14 days after the first virus contacts the human host. 
Within two to five days of the initial symptoms, skin 
rashes and Koplik spots within the mouth of the 
influenced person happen, and the rashes then dif-
fuse to the rest of the body. This viral infection 
spreads with the signs of high fever, rash develop-
ment, cough, a runny nose, red and watery eyes. 
Approximately one-third of all diagnosed cases are 
expected to have significant consequences, such as 
pneumonia, acute encephalitis, and common prob-
lems like diarrhoea and skin infections (Battegay, Itin, 
& Itin, 2012; Gould, 2015). Furthermore, respiratory 

CONTACT Osman Tunç osmantunc89@gmail.com Department of Computer Programing, Baskale Vocational School, Van Yuzuncu Yil 
University, Van, Turkey  
� 2024 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group on behalf of the University of Bahrain. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow 
the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.

University of BahrainARAB JOURNAL OF BASIC AND APPLIED SCIENCES 
2024, VOL. 31, NO. 1, 265–281 
https://doi.org/10.1080/25765299.2024.2345424 

http://crossmark.crossref.org/dialog/?doi=10.1080/25765299.2024.2345424&domain=pdf&date_stamp=2024-05-06
http://orcid.org/0000-0003-2965-4561
http://creativecommons.org/licenses/by/4.0/
http://www.uob.edu.bh/en/
http://www.tandfonline.com
https://doi.org/10.1080/25765299.2024.2345424


droplets caused by sneezing and coughing, direct 
communication with contaminated noses or throat 
secretions and close physical contact spread the 
measles virus from person to person (Angelo et al., 
2019). Policies corresponding to vaccination play an 
essential role in preventing the human host from 
disease. Many vaccinations have been made to pro-
tect hosts from widespread infections in certain 
areas (Ilesanmi, Adeyinka, & Olakunde, 2022; Vojtek, 
Larson, Plotkin, & Van Damme, 2022). It is accurate 
to say that some of these vaccinations are expensive, 
some have adverse effects, and none are entirely 
adequate. It is also claimed that the development of 
a low-cost, beneficial, and safe vaccine, coupled with 
faster immunization programs has led to an 80% 
reduction in measles-related moralities, particularly 
in industrialized nations (Fisker et al., 2022).

To develop practical mitigation actions to eliminate 
and prevent measles, policymakers conducted a wide 
range of studies. Quantitative methodologies are 
required to assess the cost-effectiveness and effect of 
these activities in order to enhance them in the future 
(Ain & Wang, 2023; Pokharel, Adhikari, Gautam, Uprety, 
& Vaidya, 2022). Mathematical modelling has greatly 
aided in visualizing, studying, and comprehending the 
transmission mechanism of several diseases (Khan & 
Atangana, 2022; Raza, Arshed, Bakar, Shahzad, & Inc, 
2023). Moreover, these models enable efficient control 
policies for the determent of future infection. The 
mathematical analysis of these models provides vital 
findings of infection and estimates future consequen-
ces that are hard to quantify under other conditions 
(Abbasi, Zamani, Mehra, Shafieirad, & Ibeas, 2020; Khan, 
Ullah, Ali, & Zaman, 2019; Tyagi, Gupta, Abbas, Das, & 
Riadh, 2021). Numerous epidemic models have been 
constructed to better explain the biological mechanism 
of measles disease outbreak (Ochoche & Gweryina, 
2014; Sowole, Ibrahim, Sangare, & Lukman, 2020). It is 
also used to analyze the effectiveness of health care ini-
tiatives and indicate the ideal plan of action for fighting 
measles, including how to utilize the vaccination effi-
ciently. The literature (Liu, Ikram, Khan, & Din, 2022; 
Memon, Qureshi, & Memon, 2020) uses various measles 
models for real-world data to forecast disease transmis-
sion and control.

The fact that fractional order models (FOMs) provide 
more proficient, in-depth, reliable, and valuable informa-
tion concerning the dynamics of many diseases than trad-
itional models is evident. Its hereditary features and 

memory characterization make it special to traditional 
models (Ain, Khan, Abdeljawad, G�omez-Aguilar, & Riaz, 
2024; Ain et al., 2022; Alzahrani & Khan, 2020; Baishya, 
Achar, Veeresha, & Prakasha, 2021; Raza, Bakar, Khan, & 
Tunç, 2022; Singh, Kumar, Hammouch, & Atangana, 2018; 
Tao, Anjum, & Yang, 2023). FOMs make it easier to investi-
gate and illustrate the dynamics between two non-local 
locations. Several concepts and theories have been pre-
sented and established regarding fractional order deriva-
tives (Uchaikin, 2013; Yang, 2019). In Ref. (Samko, Kilbas, & 
Marichev, 1993) the essential concept and principle of the 
fractional calculus are presented. Fractional derivatives 
have been proven to be an excellent tool for simulating 
real-world issues in various fields, including engineering, 
physics, economics, and biology. FOMs offer more reli-
able, accurate, and consistent insights into the dynamics 
of disease resulting from a biological system (Anjum, Ain, 
& Li, 2021; Anjum, He, & He, 2021; Butt, Ahmad, Rafiq, & 
Baleanu, 2022; Conlan, Rohani, Lloyd, Keeling, & Grenfell, 
2010; Farman, Saleem, Ahmad, & Ahmad, 2018; Qureshi & 
Jan, 2021). The researchers in Ref. (Butt, Ahmad Saqib, 
Alshomrani, Bakar, & Inc, 2024) discuss the dynamic char-
acteristics of the fractional cervical cancer system, along 
with the sensitivity of the basic reproduction number. To 
compare the outcomes of the suggested model with the 
integer-order model, Abboubakkar et al. Abboubakar, 
Fandio, Sofack, and Ekobena Fouda, (2022) designed a 
mathematical model for measles employing the Caputo 
derivative. The study in Ref. (Nabti & Ghanbari, 2021) 
examines an SVEIR measles fractional framework, demon-
strating the existence and uniqueness of the measles frac-
tional model while dividing the population into five 
subcategories. Ahmad et al. (2024) have utilized vaccin-
ation impact as a control strategy for the dynamics of 
COVID-19. In their work to prevent Hepatitis disease, Ain 
and Chu (2004) studied the impact of vaccines in the 
Hepatitis model.

Furthermore,  for  some recent and interesting 
results related to nonlinear fractional boundary value 
problems, fractional  integro-differential equations, 
tuberculosis model using different fractional deriva-
tives, etc.  see (Batool, Talib, Riaz & Tunç, 2022; 
Bohner, Tunç & Tunç, 2021; Graef, Tunç & Şevli 2021; 
Tunç, Tunç &Yao, 2021; Tunç & Tunç, 2023; Zafar, 
Zaib, Hussain, Tunç & Javeed,  2022).

In this study, we employ a fractional system to eluci-
date the dynamics of measles transmission in the pres-
ence of vaccination, serving as the conceptual 
foundation for the preceding discussion. We also eval-
uated and assessed the effect of different parameters 
of this model on the results of the basic reproduction 
number in order to identify the most important aspects 
of disease control and prevention. Also noteworthy is 
that the measles model presented here is a newly 
developed model that has been examined for the first 
time in the context of the current research using the 

Table 1. List of top five nations with worldwide measles 
outbreaks (7).
Country Rank Number of cases

India 1 12,271
Yemen 2 7,538
Somalia 3 6,261
Zimbabwe 4 4,623
Pakistan 5 2,586
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ABC fractional operator. Moreover, some new research 
studies either overlook the significance of sensitivity 
analysis of RM

0 or do so by analyzing local forward sen-
sitivity indices to figure out the critical epidemiological 
model parameters that affect RM

0 : For the numerical 
solution, we use the Atangana-Toufik method (ATM) 
from the literature (Toufik & Atangana, 2017).

The remaining article is further structured into the 
following sections: Section 2 presented some funda-
mental results after developing a dynamical system for 
measles spread within the environment of both trad-
itional and fractional derivatives. In Section 3, we inves-
tigated the suggested model for the qualitative 
analysis, including the existence, uniqueness, and posi-
tivity of the solution for the proposed model. The 
dynamical aspect of the presented model, such as sta-
bility analysis, and the fundamental reproduction num-
ber RM

0 is examined and computed. In Section 4, a 
sensitivity analysis of RM

0 is performed. To understand 
the dynamics of the suggested model with the ABC 
derivative operator, a numerical approach with illustra-
tions is introduced in Section 5. Section 6 summarizes 
the stated research work and offers future prospects.

2. Measles model with the ABC derivative

We consider a mathematical model with five catego-
ries for the spread of measles disease in a particular 
region based primarily on individuals status. 
Following are the epidemiological classes into which 
the compartments are classified. Susceptible humans 
SðtÞ who are at risk or susceptible to acquiring mea-
sles, vaccinated humans VðtÞ who have received a 
measles vaccination, exposed humans EðtÞ who have 
been revealed symptoms of measles, infected 
humans IðtÞ who have measles and are transmittable, 
and recovered humans RðtÞ who have measles and 
have been naturally healed. For those in this class, 
the body’s immunity becomes permanently resilient 
to the ailment after the cure, preventing further infec-
tion and recurrence. It is also assumed that there is 
no infection after the recovery and the total popula-
tion will remain constant at any time. Figure 1 pro-
vide a pictorial illustration of the model.

Therefore, the following system describes the 
dynamics of measles transmission in the human 
population can be expressed as:

S:ðtÞ ¼ K − a1SIþ r1V − ðl1 þ r2ÞS,

V:ðtÞ ¼ r2S − ðl1 þ r1ÞV,

E:ðtÞ ¼ a1SI − ða2 þ jþ l1ÞE,

I:ðtÞ ¼ a2E − ðl2 þ a3 þ l1ÞI,
R:ðtÞ ¼ jEþ a3I − l1R:

8
>>>>>><

>>>>>>:

(1) 

The system described in (1) has already been 
studied in Ref. (Peter, Qureshi, Ojo, Viriyapong, & 
Soomro, 2022). Besides that, this model does not 
account for the memory effects, which are found in 
several biological models. To expedite the reduction 
of measles prevalence, this methodology aims to 
enhance both diagnosis and therapy for individuals 
exposed to the disease. Therefore, we modify the 
framework by replacing the traditional derivative with 
the recently proposed ABC fractional derivative, per-
mitting the model to account for memory characteris-
tics. Let us first construct the fractional illustration of 
the considered system by using the ABC operator:

ABC
0 D#

t SðtÞ ¼ K − a1SIþ r1V − ðl1 þ r2ÞS,
ABC
0 D#

t VðtÞ ¼ r2S − ðl1 þ r1ÞV,
ABC
0 D#

t EðtÞ ¼ a1SI − ða2 þ jþ l1ÞE,
ABC
0 D#

t IðtÞ ¼ a2E − ðl2 þ a3 þ l1ÞI,
ABC
0 D#

t RðtÞ ¼ jEþ a3I − l1R,

8
>>>>>>><

>>>>>>>:

(2) 

with the following initial constraints

Sð0Þ � 0,Vð0Þ � 0,Eð0Þ � 0, Ið0Þ � 0,Rð0Þ � 0, 

where 0 < t < T and ABC
0 D#

t signifies the ABC deriva-
tive of order # 2 ð0, 1Þ:

2.1. Fundamental results

In this section of the study, we will present some 
fundamental concepts that will be useful for our 
computations in the remaining sections.

Definition 1. The following expression (Butt et al., 
2024) defines the fractional derivative of Riemann- 
Liouville with order # and n − 1 < # � n as:

RLD#
0 UðtÞ ¼

1
Cðn − #Þ

dn

dtn

ðt

0
UðxÞðt − xÞ

n−#−1dx: (3) 

Definition 2. The Caputo fractional derivative of 
order # and n − 1 < # � n is stated in the following 
way (Butt et al., 2024):

CD#
0 UðtÞ ¼

1
Cðn − #Þ

ðt

0
ðt − xÞ

n−#−1 dn

dtn
UðxÞdx: (4) 

Definition 3. (Butt et al., 2022) A mapping UðtÞ with 
the constraint that UðtÞ 2 H1½0, T �, then the ABC 

Figure 1. Schematic illustration of the measles transmission 
in the population.

ARAB JOURNAL OF BASIC AND APPLIED SCIENCES 267



derivative of order # 2 ½0, 1� is defined as following:

ABC
a D#

t UðtÞ ¼
Mð#Þ

1 − #

ðt

a

_UðxÞE# −#
ðt − xÞ

#

1 − #

� �

dx, (5) 

where Mð#Þ, is a normalization constant with the 
property that Mð0Þ ¼ 1 ¼Mð1Þ, and E# is a ML 
operator, and defined by

E#ðnÞ ¼
X1

k¼0

nk

Cðk#þ 1Þ
:

Definition 4. (Din, Li, Khan, Khan, & Liu, 2022) The 
non-integer integration of a mapping UðtÞ, taking 
0 < U � T in the sense of ABC derivative is defined 
as:

ABCI#þ0UðtÞ ¼
1 − #

Mð#Þ
UðtÞ

þ
#

Mð#ÞCð#Þ

ðt

0
UðxÞðt − xÞ

#−1dx: (6) 

Definition 5. (Butt et al., 2022) The Laplace trans-
form (LT) in the ABC sense for a mapping UðtÞ can 
be stated as:

Lf
ABCD#

0 UðtÞgðsÞ

¼
s#LfUðtÞgðsÞ − s#−1Uð0Þ

s#ð1 − #Þ þ #

" #

�Mð#Þ: (7) 

Theorem 1. (Din et al., 2022) The following fractional 
order problem

ABCD#
þ0UðtÞ ¼ Uðt, UðtÞÞ, for all t 2 0, T½ �,

Uð0Þ ¼ U0,

(

(8) 

has a unique solution

UðtÞ ¼ Uð0Þ þ
1 − #

Mð#Þ
UðtÞ

þ
#

Mð#ÞCð#Þ

ðt

0
UðxÞðt − xÞ

#−1dx: (9) 

Theorem 2. (Zafar et al., 2022) Consider a convex 
subset U of Xb and also assume that W1, W2 with

1. W1UþW2U 2 Xb, for all U 2 Xb,
2. W1 is contraction,
3. W2 is a continuous and compact set,

with the operator equation W1UþW2U ¼ U, has one 
or more solutions.

3. Qualitative analysis

In this part, we employed Banach fixed point theo-
rems to establish the existence and uniqueness of 
the given system, in addition to the Ulam-Hyers sta-
bility of the analyzed model under the ABC deriva-
tive. Also, we compute the equilibrium states and 
fundamental reproduction number for the suggested 
system.

3.1. Existence and uniqueness of solutions for 
the measles model

In order to examine the existence of the solution of 
the non-integer model (2), let us consider the model 
in the below form:  

ABC
0 D#

t SðtÞ ¼ G1ðt, S,V,E, I,RÞ,
ABC
0 D#

t VðtÞ ¼ G2ðt, S,V,E, I,RÞ,
ABC
0 D#

t EðtÞ ¼ G3ðt, S,V,E, I,RÞ,
ABC
0 D#

t IðtÞ ¼ G4ðt, S,V,E, I,RÞ,
ABC
0 D#

t RðtÞ ¼ G5ðt, S,V,E, I,RÞ,

8
>>>>>>><

>>>>>>>:

(10) 

where

G1ðt, S,V,E, I,RÞ ¼ K − a1SIþ r1V − ðl1 þ r2ÞS,

G2ðt, S,V,E, I,RÞ ¼ r2S − ðl1 þ r1ÞV,

G3ðt, S,V,E, I,RÞ ¼ a1SI − ða2 þ jþ l1ÞE,

G4ðt, S,V,E, I,RÞ ¼ a2E − ðl2 þ a3 þ l1ÞI,
G5ðt, S,V,E, I,RÞ ¼ jEþ a3I − l1R:

8
>>>>>><

>>>>>>:

(11) 

The following model will be used for the commu-
nication of (2) as:

ABC
0 D#

t ZðtÞ ¼ Uðt, ZðtÞÞ,

Zð0Þ ¼ Z0:

(

(12) 

Using Equation (5), the above system becomes

ZðtÞ ¼ Z0ðtÞ þ fUðt, ZðtÞÞ − U0ðtÞg
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq, (13) 

where

ZðtÞ ¼

SðtÞ
VðtÞ
EðtÞ
IðtÞ
RðtÞ

, Z0ðtÞ ¼

S0ðtÞ

V0ðtÞ

E0ðtÞ

I0ðtÞ
R0ðtÞ

,

8
>>>>>><

>>>>>>:

8
>>>>>><

>>>>>>:

(14) 
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and

Uðt, ZðtÞÞ ¼

G1ðt, S,V,E, I,RÞ
G2ðt, S,V,E, I,RÞ
G3ðt, S,V,E, I,RÞ
G4ðt, S,V,E, I,RÞ
G5ðt, S,V,E, I,RÞ

,

8
>>>>>><

>>>>>>:

U0ðtÞ ¼

G1ðt0, S0,V0,E0, I0,R0Þ

G2ðt0, S0,V0,E0, I0,R0Þ

G3ðt0, S0,V0,E0, I0,R0Þ

G4ðt0, S0,V0,E0, I0,R0Þ

G5ðt0, S0,V0,E0, I0,R0Þ

:

8
>>>>>><

>>>>>>:

(15) 

Now, for the qualitative inspection, the following 
assumptions C1 and C2 must be fulfilled:

� (C1): U is continuous mapping from J� F to R 
and there exists two constants kU, pU > 0 such 
that

jUðt, ZðtÞÞj � kU þ pUjZðtÞj, (16) 

for Z 2 F and t 2 J:

� (C2): there exists a number KU > 0 such that

jUðt, ZðtÞÞ − Uðt, Z1ðtÞÞj � KUjZðtÞ − Z1ðtÞj, (17) 

for Z 2 F and t 2 J:

Theorem 3. (Din et al., 2022) Assuming that ðC1Þ and 
ðC2Þ are true, then the proposed model (2) has a solu-
tion, given that

1 − #

Mð#Þ
KU − 1 < 0: (18) 

Proof. We transform (12) into a fixed point problem, 
that is Z ¼ WZ, Z 2 F, using the operator W : F! F 
expressed as:

ðWZÞðtÞ ¼ Z0 þ
1 − #

Mð#Þ
Uðt, ZðtÞÞ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq:

(19) 
Let

Xb ¼ fZ 2 F : jjZjj � bg, (20) 

is a close, convex, bounded subset with

b ¼
p1

1 − p2
, 

where

p1 ¼ jZ0j þ
1 − #

Mð#Þ
þ

T#

Mð#ÞCð#Þ

" #

kU,

p2 ¼
1 − #

Mð#Þ
þ

T#

Mð#ÞCð#Þ

" #

pU:

8
>>>>><

>>>>>:

(21) 

Define the operators W1, W2 such that 
W ¼ W1 þW2 :

W1ZðtÞ ¼ Z0 þ
1 − #

Mð#Þ
Uðt, ZðtÞÞ, (22) 

W2ZðtÞ ¼
#

Uð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq:

(23) 

We now divide the proof in the way described 
below:

Step (1): W1ZðtÞ þW2ZðtÞ 2 Xb for all Z, Z� 2 Xb: In 
fact, we have

jjW1ZðtÞ þW2Z�ðtÞjj ¼ max
t2J

(

jZ0j þ
1 − #

Mð#Þ
jUðt, ZðtÞÞj

þ
#

Mð#ÞCð#Þ

ðt

0
jUðq, Z�ðqÞÞjðt − qÞ

#−1dq

)

,

� jZ0j þ
1 − #

Mð#Þ
kU þ pUjjZjj½ �

þ
#

Mð#ÞCð#Þ

ðt

0
kU þ pUjjZ�jj½ �ðt − qÞ

#−1dq,

� jZ0j þ
1 − #

Mð#Þ
þ

T#

Mð#ÞCð#Þ

" #

kU

þ
1 − #

Mð#Þ
þ

T#

Mð#ÞCð#Þ

" #

pUb,

� p1 þ p2b � b:

(24) 

Therefore, we have

W1ZðtÞ þW2Z�ðtÞ 2 Xb: (25) 

Step (2): W1 is contraction. Let Z1ðtÞ, Z2ðtÞ 2 Xb:

Then via (C2), we get

jW1Z1ðtÞ − W1Z2ðtÞj ¼ maxt2J
1 − #

Mð#Þ
jUðt, Z1ðtÞÞ − Uðt, Z2ðtÞÞj,

� maxt2J
1 − #

Mð#Þ
KUjZ1ðtÞ − Z2ðtÞj,

�
1 − #

Mð#Þ
KUjjZ1 − Z2jj:

(26) 

Step (3): W2 is relatively compact.
Case 1: W2 is a continuous function. Since ZðtÞ is 

continuous, then W2ZðtÞ is also continuous.
Case 2: W2 is uniformly bounded on Xb: Consider 

ZðtÞ 2 Xb, then, we get

jjW2ZðtÞjj ¼ maxt2J
#

Mð#ÞCð#Þ

ðt

0
jUðq, ZðqÞÞjðt − qÞ

#−1dq,

�
#

MðT#ÞCð#Þ
fkU þ pUjjZjjg:

(27) 

Therefore W2 is uniformly bounded on Xb:

Case 3: W2 is equicontinuous. Suppose that Z 2 Xb 

and 0 < t1 < t2 < T: Then
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From Equation (28), it follows that

jjW2Zðt2Þ þW2Zðt1Þjj ! 0, as t1 ! t2: (29) 

According to the theorem of Arzela-Ascoli, we 
reveal that /2 is entirely continuous. Since, the sys-
tem (12) possesses at least one solution, then the 
suggested system has a unique solution.              �

Theorem 4. (Din et al., 2022) Given that assumption 
(C2) is true, the system (12) has a unique solution, 
implying that (2) also has a unique solution if

ð1 − #ÞKU

Mð#Þ
þ

T#KU

Mð#ÞCð#Þ

" #

< 1:

Proof. Suppose that W be an operator defined W :

F! F by

WZðtÞ ¼ Z0ðtÞ þ fUðt, ZðtÞÞ − U0ðtÞg
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq:

(30) 

Let Z1, Z2 2 F, then

jjWZ1ðtÞ − WZ2ðtÞjj �
1 − #

Mð#Þ
max

t2J
jUðt, Z1ðtÞÞ − Uðt, Z2ðtÞÞj

þ
#

Mð#ÞCð#Þ
max

t2J

ðt

0

Uðq, Z1ðqÞÞ

ðt − qÞ
1−# dq

�
�
�
�
�

−
Ð t

0

Uðq, Z2ðqÞÞ

ðt − qÞ
1−# dq

�
�
�
�
�
,

�
ð1 − #ÞKU

Mð#Þ
þ

T#KU

Mð#ÞCð#Þ

" #

jjZ1 − Z2jj,

� HjjZ1 − Z2jj,

(31) 

where

H ¼
ð1 − #ÞKU

Mð#Þ
þ

T#KU

Mð#ÞCð#Þ
< 1:

The operator W is the contraction from Equation 
(31). As a result, Equation (12) has a unique solution 

which inferred that the investigated model (2) also 
has a unique solution.                                      �

3.2. Ulam-Hyers stability

To discuss the stability of the suggested system by 
performing a slight variation - 2 C½0, T � and only sat-
isfying, #ð0Þ ¼ 0, thus

i. j-ðtÞj � p, for p > 0,
ii. ABC

0 D#
t ZðtÞ ¼ Uðt, ZðtÞÞ þ -ðtÞ, for all t 2 ½0, T�:

Lemma 1. (Zafar et al., 2022) The following trans-
formed problem’s   

ABC
0 D#

t ZðtÞ ¼ Uðt, ZðtÞÞ þ -ðtÞ, for all t 2 0, T½ �,

Zð0Þ ¼ Z0,

(

(32) 

solution satisfies  

�
�
�
�ZðtÞ −

�

Z0ðtÞ þ Uðt, ZðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq

��
�
�
� � Lp,

(33) 

where

L ¼
Cð#Þð1 − #Þ þ T#

Mð#ÞCð#Þ
: (34) 

Proof. The proof of the Lemma 1 is straightforward, 
so we omit it.                                                 �

Theorem 5. (Zafar et al., 2022) The analytical solution 
for the proposed system is UH stable if H < 1, and 
consequently the solution of the system (12) is UH sta-
ble with the assumption (C2) and Equation (32).

Proof. Suppose that Z and Z1 2 Z0, denote the 
unique solutions of (12), then

jjW2Zðt2Þ − W2Zðt1Þjj

¼ max
t2J

#

Mð#ÞCð#Þ

ðt2

0
Uðq, ZðqÞÞðt2 − qÞ

#−1dq

−
#

Mð#ÞCð#Þ

ðt1

0
Uðq, ZðqÞÞðt1 − qÞ

#−1dqj,

�
#

Mð#ÞCð#Þ

ðt2

0
ðt2 − qÞ

#−1dq −
ðt1

0
ðt1 − qÞ

#−1dq

" #

jUðq, ZðqÞÞj,

�
t#2 − t#1
Mð#ÞCð#Þ

fkU þ pUbg:

�
�
�
�
�
�
�
�
�
�
�
�
�

(28) 
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jZðtÞ − Z1ðtÞj ¼ jZðtÞ − ðZ0ðtÞ þ Uðt, Z1ðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, Z1ðqÞÞðt − qÞ

#−1dq Þj,    

�

�
�
�
�
�
ZðtÞ −

 

Z0ðtÞ þ Uðt, ZðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq

!�
�
�
�
�

þ

�
�
�
�
�

 

Z0ðtÞ þ Uðt, ZðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq

!

−

 

Z0ðtÞ þ Uðt, Z1ðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, Z1ðqÞÞðt − qÞ

#−1dq

!�
�
�
�
�
,    

� Lpþ
ð1 − #ÞKU

Mð#Þ
jjZ − Z1jj

þ
T#KU

Mð#ÞCð#Þ
jjZ − Z1jj,    

� LpþHjjZ − Z1jj: (35) 

From Equation (35), we get

jjZ − Z1jj �
Lp

1 − H
: (36) 

Thus, we deduced that the solution of Equation 
(12) is UH stable and hence generalized UH stable uti-
lizing UZðpÞ ¼ Lp, UZð0Þ ¼ 0, implying that the pre-
sented initial value problem solution is Ulam-Hyers 
stable and also generalized Ulam-Hyers stable.           �

Assume that the following assumptions

i. j-ðtÞj � !ðtÞp, for p > 0,
ii. ABC

0 D#
t ZðtÞ ¼ Uðt, ZðtÞÞ þ -ðtÞ, for all t 2 ½0, T �:

Lemma 2. (Zafar et al.,2022) The following equation 
will satisfy Equation (32) as:
�
�
�
�
�
ZðtÞ −

 

Z0ðtÞ þ Uðt, ZðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dq

!�
�
�
�
�
� !ðtÞLp,

(37) 

Proof. The proof of the Lemma 2 is straightforward, 
so we omit it.                                                 �

Theorem 6. (Zafar et al., 2022) According to Lemma 2, 
the solution for the suggested system is Ulam-Hyers- 
Rassias (UHR) stable, and as a result, generalized UHR 
stable.

Proof. Suppose that Z and Z1 2 Z0, denote the 
unique solutions of (12), then

jZðtÞ − Z1ðtÞj ¼ jZðtÞ −

 

Z0ðtÞ þ Uðt, Z1ðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, Z1ðqÞÞðt − qÞ

#−1dqÞj,

� jZðtÞ − Z0ðtÞ þ ½Uðt, ZðtÞÞ − U0ðtÞð �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dqÞj

þ jðZ0ðtÞ þ Uðt, ZðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Uðq, ZðqÞÞðt − qÞ

#−1dqÞ

− ðZ0ðtÞ þ Uðt, Z1ðtÞÞ − U0ðtÞ½ �
1 − #

Mð#Þ

þ
#

Mð#ÞCð#Þ

ðt

0
Zðq, Z1ðqÞÞðt − qÞ

#−1dqÞj,

� Lpþ
ð1 − #ÞKU

Mð#Þ
jjZ − Z1jj þ

T#KU

Mð#ÞCð#Þ
jjZ − Z1jj,

� !ðtÞLpþHjjZ − Z1jj:

(38) 

From Equation (38), we yield

jjZ − Z1jj �
YðtÞLp
1 − H

: (39) 

Hence the solution of Equation (12) is UHR stable 
and consequently generalized UHR stable.            �

3.3. Positivity of the solution

Theorem 7. (Peter et al., 2022) The closed set

X ¼

�

ðS,V,E, I,RÞ 2 R5
þ : 0 � Sþ Vþ Eþ Iþ R �

K

l1

�

,

(40) 

is positively invariant with respect to the model (2).

Proof. Combining each of the governing equations 
of the system (2) yields

ABC
0 D#

t N ¼ K − l1ðSþ Vþ Eþ Iþ RÞ − l2I, 

which can be written as:
ABC
0 D#

t N � K − l1ðSþ Vþ Eþ Iþ RÞ: (41) 

Using the Laplace transform on (41), we get

NðtÞ �
Mð#Þ

Mð#Þ þ ð1 − #Þl1
Nð0Þ þ

Kð1 − #Þ

Mð#Þ þ ð1 − #Þl1

� �

E#, 1 −
#l1

Mð#Þ þ ð1 − #Þl1
t#

� �

(42) 

þ
#K

Mð#Þ þ ð1 − #Þl1
E#,#þ1 −

#l1

Mð#Þ þ ð1 − #Þl1
t#

� �

:
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The nature of the Mittag-Leffler function Ep, q is 
asymptotic (Jost et al., 2015). Therefore, we have 
N � K

l1 
as t ! þ1: Consequently, the system (2) has 

the solution in X: Thus the system is positively 
invariant.                                                       �

3.4. Equilibrium points and reproduction number 
of the system

The suggested fractional model (2) admits two equi-
librium states: measles-free and measles-endemic 
equilibrium states. The measles-free equilibrium is 
shown by F̂ MFE ¼ ðŜ0, V̂0, Ê0, Î0, R̂0Þ, which exists only 
when there is no disease in the host population. For 
this point, every measles suffered class will be zero. 
Therefore, the measles-free equilibrium state F̂ MFE is 
given by:

F̂ MFE

¼
Kðr2 þ l1Þ

ðr2 þ l1Þðr1 þ l1Þ − r2r1
,

Kr1

ðr2 þ l1Þðr1 þ l1Þ − r2r1
, 0, 0, 0

� �

:

(43) 

Measles-endemic equilibrium state is represented 
by F�MEE ¼ ðS

�,V�,E�, I�,R�Þ exists only when the dis-
ease is still present in the population. Using the fol-
lowing system of equations:

K − a1SIþ r1V − ðl1 þ r2ÞS ¼ 0,

r2S − ðl1 þ r1ÞV ¼ 0,

a1SI − ða2 þ jþ l1ÞE ¼ 0,

a2E − ðl2 þ a3 þ l1ÞI ¼ 0,

jEþ a3I − l1R ¼ 0,

8
>>>>>><

>>>>>>:

(44) 

the measles-endemic equilibrium point F�MEE ¼

ðS�,V�,E�, I�,R�Þ is obtained, where

S� ¼
ða2 þ jþ l1Þðl1 þ l2 þ a3Þ

a1a2
,

V� ¼
r1ða2 þ jþ l1Þðl1 þ l2 þ a3Þ

a1a2ðr2 þ l1Þ
,

E� ¼
ðl1 þ l2 þ a3ÞI�

a2
,

I� ¼
Kþ r2V� − ðl1 þ r1ÞS�

a1S�
,

R� ¼
1
l1

a3 þ
jðl1 þ l2 þ a3Þ

a2

� �

I�:

For the basic reproduction number (RM
0 ), the con-

cept of the next-generation matrix method is applied 

(Ahmad et al., 2024; Butt et al., 2023; 2024). Therefore, 
the computed value of the threshold parameter for 
the proposed fractional model is given by:

RM
0 ¼

a1a2ðl1 þ r2ÞK

l1ða1 þ jþ l1Þðl1 þ l2 þ a3Þðl1 þ r2 þ r1Þ
:

(45) 

4. Sensitivity analysis of RM
0

Making decisions about effectively managing a dis-
ease necessitates careful consideration of the sensi-
tivity analysis concept. The sensitivity analysis 
enables us to examine how variables fluctuate when 
the parameters in RM

0 are altered. It highlights the 
model’s most sensitive and impactful parameters 
and their effects on RM

0 :

Definition 6. (Zafar et al., 2022) The normalized for-
ward sensitivity index (Cn) of the basic reproduction 
number RM

0 that depends on a parameter n is pro-
vided below as:

Cn ¼
n

RM
0

oRM
0

on
: (46) 

In order to investigate the sensitivity of RM
0 , we 

compute its derivatives as follows:

oRM
0

oa1
¼

a2ðl1 þ r2ÞK

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ
,

oRM
0

oa2
¼

a1ðl1 þ r2ÞKðjþ l1Þ

l1ða2 þ jþ l1Þ
2
ðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ

,

oRM
0

ol2
¼ −

a1a2ðl1 þ r2ÞK

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þ
2
ðl1 þ r1 þ r2Þ

,

oRM
0

oj
¼ −

a1a2ðl1 þ r2ÞK

l1ða2 þ jþ l1Þ
2
ðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ

,

oRM
0

oK
¼

a1a2ðl1 þ r2Þ

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ
,

oRM
0

or1
¼ −

a1a2ðl1 þ r2ÞK

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ
2 ,

oRM
0

or2
¼

a1a2Kr1

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ
2 ,

oRM
0

oa3
¼ −

a1a2ðl1 þ r2ÞK

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þ
2
ðl1 þ r1 þ r2Þ

,

oRM
0

ol1
¼ −

a1a2ðl1 þ r2ÞK
r2ða2þjþ2l1Þþl2

1
l1ðl1þr2Þða2þjþl1Þ

þ
2l1þr1þr2þl2þa3

ðl2þa3þl1Þðl1þr1þr2Þ

h i

l1ða2 þ jþ l1Þðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ
:

The normalized sensitivity indices of the involved 
parameters are obtained as:

272 M. B. RIAZ ET AL.



Ca1 ¼
a1

RM
0

oRM
0

oa1
¼ 1,

CK ¼
K

RM
0

oRM
0

K
¼ 1,

Ca2 ¼
a2

RM
0

RM
0

oa2
¼

jþ l1

ða2 þ jþ l1Þ
,

Cl2
¼

l2

RM
0

oRM
0

ol2
¼ −

l2

ðl2 þ a3 þ l1Þ
,

Cj ¼
j

RM
0

oRM
0

j
¼ −

j

ða2 þ jþ l1Þ
,

Cr1 ¼
r1

RM
0

oRM
0

r1
¼ −

r1

ðl1 þ r1 þ r2Þ
,

Cr2 ¼
r2

RM
0

oRM
0

r2
¼

r1r2

ðl1 þ r2Þðl1 þ r1 þ r2Þ
,

Ca3 ¼
a3

RM
0

oRM
0

a3
¼ −

a3

ðl2 þ a3 þ l1Þ
,

Cl1
¼

l1

RM
0

oRM
0

l1
¼ −

r2ða2 þ jþ 2l1Þ þ l2
1

ðl1 þ r2Þða2 þ jþ l1Þ

"

þ
l1ð2l1 þ r1 þ r2 þ l2 þ a3Þ

ðl2 þ a3 þ l1Þðl1 þ r1 þ r2Þ

#

:

Table 3 and Figure 2 illustrate the positive impact 
of K, a1, a2, and r2 on the threshold parameter 
RM

0 , presenting that an increase in the parameter 
values would lead to a rise in RM

0 : It is clear from 
the calculated sensitivity indices that a 10% rise in 
the natality rate, effective contact rate, rate at which 
exposed humans become infected, and vaccine 
wane rate occurs to raise the value of RM

0 by 10%, 
10%, 10%, and 4.8%, correspondingly, and can 
ultimately leading to a disease outbreak. Across the 
other perspective, natural recovery rate, natural 
death rate, death rate of infected humans due to 
measles, rate of vaccination of susceptible humans, 
and rate of exposed humans who have gone 
through screening and treatment suggests that rais-
ing their values by 10% will bring down the value of 

RM
0 by 4.3%, 10%, 5.6%, 4.8%, and 9.9%, 

respectively.
Figures (3–5) present the dynamics of reproduc-

tion numbers across various biological factors using 
2D and 3D graphics. In Figure 3a, RM

0 is calculated 
as a1 and a2 increase, while all other parameters 
remain constant. Figure 3b shows a 2D contour plot 
of a1 versus a2, indicating that an increase in a1 

results in an increase in a2: In Figure 3c, RM
0 is com-

puted with a1 and r2 increasing. The 2D contour 
diagram of a1 versus r2 in Figure 3d illustrates that 
an increase in a1 leads to an increase in r2:

Figure 3e calculates RM
0 assuming a2 and K are 

increasing, while the 2D contour graph of a2 versus 
K in Figure 3f shows that an increase in a2 results in 
an increase in K:

In the scenario where r1 decreases or K 

increases, Figure 4a computes RM
0 : In Figure 4b, 2D

contour maps of r1 versus K confirm that a 
decrease in K leads to an increase in r1: Figure 4c
calculates RM

0 assuming a1 is increasing and l2 is 
decreasing. The 2D contour figure of a1 versus l2 in 
Figure 4d shows that an increase in a1 causes a 
reduction in l2: Figure 4e computes RM

0 assuming 
r2 and K are increasing, while the 2D contour plot 
of a2 versus K in Figure 4f illustrates how an 
increase in r2 leads to an increase in K:

Finally, when j decreases or l1 increases, Figure 
5a determines RM

0 : Figure 5b calculates RM
0 with a3 

and l2 increasing, and Figure 5c displays similar per-
formance trends.

5. Numerical analysis

This section introduces the Atangana-Toufik 
approach, a productive approximation method for 
the simulations of the considered system (2). 
Remember that this strategy has previously been 
studied for fractional models (Butt et al., 2022; Toufik 
& Atangana, 2017). To apply this algorithm to system 
(2) in the sense of ABC derivative, let us assume a 
uniform mesh on the interval [0, T] with the nodes 
marked 0, 1, 2, ., Nh, where Nh is a positive integer 
and h ¼ T−0

Nh is the temporal step size. We now imple-
ment the Theorem 1 to each equation of the system 
(2) to get the numerical solutions of the proposed 
system, we obtain the following results:

Table 3. Sensitivity indices of RM
0 against the parameters.

Sensitivity index Value Sensitivity index Value

CK þ1:0000 Cl2
−0:5615

Ca1 þ1:0000 Cr1 −0:4819
Ca2 þ1:0000 Cr2 þ0:4818
Ca3 −0:4383 Cj −0:9999
Cl1

−1:0001 – –

Table 2. Interpretation of involved symbols and their numeric values (47).
Symbol Description Value

K Recruitment or natality rate of the population 7.27892�101

a1 Rate of effective contact of susceptible people 0.001
a2 Rate at which exposed humans become infected 2.83562�10−5

a3 Rate of natural recovery from infection 0.096
j Rate at which exposed humans who have gone through screening and treatment 1.45362
l1 Natural death rate of the population 1

ð365�57:6Þ
l2 Death rate of infected humans due to measles 0.123
r1 Rate of vaccination of susceptible humans 0.169
r2 Rate of vaccine wane of the susceptible people 1.81656�10−1
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Figure 3. The behaviours of RM
0 under different biological parameters.

Figure 2. PRCC statistics regarding the significance of factors associated with RM
0 :
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SðtÞ − Sð0Þ ¼
1 − #

Mð#Þ
G1 t, SðtÞð Þ

þ
#

Mð#ÞCð#Þ

ðt

0
G1ðq,SðqÞÞðt − qÞ

#−1dq:

(47) 

At a given point t ¼ tjþ1, j ¼ 0, 1, 2 . . . , then the 
Equation (47) becomes

Sðtjþ1Þ − Sð0Þ ¼
1 − #

Mð#Þ
G1 tj, SðtjÞ
� �

þ
#

Mð#ÞCð#Þ
ðtnþ1

tn

G1ðq, SðqÞÞðtjþ1 − qÞ
#−1dq:

The above equation can written as:

Sðtjþ1Þ − Sð0Þ ¼
1 − #

Mð#Þ
G1 tj , SðtjÞ
� �

þ
#

Mð#ÞCð#Þ

Xj

n¼0
ðtnþ1

tn

G1ðq, SðqÞÞðtjþ1 − qÞ
#−1dq:

(48) 

Applying two-step Lagrange polynomial interpol-
ation on the function G1ðq, SðqÞÞ in the interval 
½tj, tjþ1�: Therefore, we obtain

Sjþ1 ¼ S0 þ
1 − #

Mð#Þ
G1 tj,Sjð Þ þ

#

Mð#ÞCð#Þ

Xj

n¼0

G1ðtn,SðtnÞÞ

h 

Figure 4. The behaviours of RM
0 under different biological parameters.
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ðtnþ1

tn

ðq − tn−1Þðtjþ1 − qÞ
#−1dq    

−
G1ðtn−1,Sðtn−1ÞÞ

h

ðtnþ1

tn

ðq − tnÞðtjþ1 − qÞ
#−1dq, (49) 

where

Pn−1 ¼
Ð tnþ1

tn
ðq − tn−1Þðtjþ1 − qÞ

#−1dq,

¼
h#þ1

#ð#þ 1Þ
½ j þ 1 − nð Þ

# j − nþ 2þ #ð Þ

− j − nð Þ
# j − nþ 2þ 2#ð Þ�, 

and

Pn ¼
Ð tnþ1

tn
ðq − tnÞðtjþ1 − qÞ

#−1dq,

¼
h#þ1

#ð#þ 1Þ
j þ 1 − nð Þ

#þ1 − j − nð Þ
# j − nþ 1þ #ð Þ

h i

:

The above integrals substituted into the Equation 
(49), then we have the solution SðtÞ as follows:

Sjþ1 ¼ S0 þ
1 − #

Mð#Þ
G1 tj, Sjð Þ þ

#

Mð#ÞCð#Þ

Xj

n¼0

"
h#G1ðtn, SnÞ

Cð#þ 2Þ
ð j þ 1 − nð Þ

# j − nþ 2þ #ð Þ

− j − nð Þ
# j − nþ 2þ 2#ð ÞÞ −

h#G1ðtn−1, Sn−1Þ

Cð#þ 2Þ

j þ 1 − nð Þ
#þ1 − j − nð Þ

# j − nþ 1þ #ð Þ

� �

�: (50) 

Similarly, for the other state variables, we evaluate 
the following schemes:

Vjþ1 ¼ V0 þ
1 − #

Mð#Þ
G2 tj ,Vjð Þ þ

#

Mð#ÞCð#Þ

Xj

n¼0

"
h#G2ðtn,VnÞ

Cð#þ 2Þ
ð j þ 1 − nð Þ

# j − nþ 2þ #ð Þ

− j − nð Þ
# j − nþ 2þ 2#ð ÞÞ −

h#G2ðtn−1,Vn−1Þ

Cð#þ 2Þ

j þ 1 − nð Þ
#þ1 − j − nð Þ

# j − nþ 1þ #ð Þ

� �

�, (51) 

Ejþ1 ¼ E0 þ
1 − #

Mð#Þ
G3 tj,Ejð Þ þ

#

Mð#ÞCð#Þ

Figure 5. The behaviours of RM
0 under different biological parameters.
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Xj

n¼0

h#G3ðtn,EnÞ

Cð#þ 2Þ
ð j þ 1 − nð Þ

# j − nþ 2þ #ð Þ

"

− j − nð Þ
# j − nþ 2þ 2#ð ÞÞ −

h#G3ðtn−1,En−1Þ

Cð#þ 2Þ

j þ 1 − nð Þ
#þ1 − j − nð Þ

# j − nþ 1þ #ð Þ

� �
#

, (52) 

Ijþ1 ¼ I0 þ
1 − #

Mð#Þ
G4 tj , Ijð Þ þ

#

Mð#ÞCð#Þ

Xj

n¼0

h#G4ðtn, InÞ
Cð#þ 2Þ

ð j þ 1 − nð Þ
# j − nþ 2þ #ð Þ

"

− j − nð Þ
# j − nþ 2þ 2#ð ÞÞ −

h#G4ðtn−1, In−1Þ

Cð#þ 2Þ

j þ 1 − nð Þ
#þ1 − j − nð Þ

# j − nþ 1þ #ð Þ

� �
#

, (53) 

Rjþ1 ¼ R0 þ
1 − #

Mð#Þ
G5 tj ,Rjð Þ þ

#

Mð#ÞCð#Þ

Figure 6. Population behaviour of the measles fractional model at the different fractional parameter values.
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Xj

n¼0

h#G5ðtn,RnÞ

Cð#þ 2Þ
ð j þ 1 − nð Þ

# j − nþ 2þ #ð Þ

"

− j − nð Þ
# j − nþ 2þ 2#ð ÞÞ −

h#G5ðtn−1,Rn−1Þ

Cð#þ 2Þ

j þ 1 − nð Þ
#þ1 − j − nð Þ

# j − nþ 1þ #ð Þ

� �
#

: (54) 

We perform some numerical simulations for the 
system (2) employing the values of the parameters 
from Table 2 as in a biologically feasible aspect to 
interpret our acquired results. The initial population 

of SðtÞ, VðtÞ, EðtÞ, IðtÞ, and RðtÞ, are picked as 

60309980, 0, 0, 76, and 0, respectively. The time 

varies between 0 and 25 months for the simulations. 

Population behaviour of the fractional measles 

model at the different fractional parameter values is 

depicted in Figure 6. Effect of fractional order values 

# ¼ 0:80, 0:84, 0:88, 0:92, 0:96, 1:00, on the solution 

behaviour of SðtÞ, VðtÞ, EðtÞ, IðtÞ, and RðtÞ is 

described in Figure 7. It is remarkable that when # is 

equal to 1, then the dynamics of the proposed 

model achieved its integer order case. To assess the 

impact of varying fractional parameters on reducing 

measles prevalence in the general population, we 

Figure 7. Simulations for the suggested model (2) using Atangan-Toufik scheme for the different values of fractional order #:
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analyze the effects of these parameters on individual 

subpopulations, as depicted in Figure 6. The results 

of the measles fractional model under various scen-

arios of fractional parameters are shown in Figure 

6(a)-(f). Over time, the fractional parameter values 

increase, leading to a decrease in the subpopulations 

of susceptible, vaccinated, exposed, and infected 

individuals. Conversely, an increase in the fractional 

parameter values over time results in an increase in 

the number of recovered individuals. These response 

curves illustrate the stability and asymptotic behav-

iour of the measles fractional system.
It seems that a larger fractional value leads to an 

improved outcome, as evidenced by the dynamics of 
the system approaching equilibrium in Figure 7(a)-(f)
when the fractional order is reduced from 1 to 0.80 
or even lower. Significant responses are observed in 
the compartments of the integrated model. Our 
numerical technique produces results as the time 
increment approaches a stable point, which repre-
sents the actual solution to the framework being 
studied. Each solution has a steady-state boundary. 
These graphs demonstrate how the model responds 
to decreasing fractional values, indicating that 
increasing the fractional value may enhance the sol-
ution’s accuracy.

This research illustrates that the long-lasting 
memory effect of the model can be effectively repre-
sented by fractional derivatives, which decrease as 
the fractional order # approaches 1. The fractional 
differential operator captures an inherent effect, add-
ing realism and accuracy to the proposed measles 
epidemic model. This framework considers long-term 
interdependencies, non-local consequences, durabil-
ity, and recurrence, providing insights into measles 
transmission dynamics and guiding public health 
measures to prevent its spread. Decision-makers can 
utilize data relevant to the changing conditions of 
infected patients, as demonstrated by simulations. 
This analysis offers recommendations for practical 
measures to halt the spread of measles and antici-
pates advancements in this field.

6. Conclusion

The importance of epidemiological models in simu-
lating disease transmission dynamics, fitting them to 
actual data, and recommending more effective con-
trol measures based on analysis cannot be over-
stated. To investigate the significance of memory in 
the system with the measles spread phenomenon, 
we have formulated an epidemiological framework 
for the spread of measles transmission with vaccin-
ation in a fractional context employing the ABC 
derivative. The primitive characteristics of the system, 

such as existence, uniqueness, boundedness, and 
positivity of the solution to the suggested fractional 
model, have been demonstrated using fundamental 
fractional calculus and fixed point theory. We have 
evaluated the system for equilibrium points and 
have used a next-generation matrix approach to 
obtain the threshold parameter for the considered 
model. To analyze the significance of various input 
components in RM

0 , we have conducted an analysis 
of the sensitivity of RM

0 using the partial rank correl-
ation coefficient (PRCC) methodology. This analysis 
reveals that K, a1, a2, and r2 are the most sensitive 
factors. To control the spread of measles, we recom-
mend minimizing or controlling these rates. 
Furthermore, a numerical approach for the stated 
fractional operator has been provided to depict the 
solution behaviour of the model. We have found 
that the complicated behaviour of the measles 
model can be addressed more accurately and effect-
ively by the fractional-order model. The numerical 
results indicate that increasing the fractional param-
eter from 0.80 to 1 leads to an increase in the sus-
ceptibility and recovery of the measles population, 
while the infection rate in the population decreases 
over time. With these findings, we intend to actively 
engage with public health officials and clinicians to 
contribute to more beneficial epidemiological studies 
aimed at combating the epidemic. Future research 
will explore the transmission behaviour of measles 
using a newly designed fractal-fractional operator.
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Bohner, M., Tunç, O., & Tunç, C. (2021). Qualitative analysis 
of caputo fractional ıntegro-differential equations with 
constant delays. Computational and Applied 
Mathematics, 40(6), 2021–2214. doi:10.1007/s40314-021- 
01595-3

Budigan Ni, H., de Broucker, G., Patenaude, B. N., Dudley, 
M. Z., Hampton, L. M., & Salmon, D. A. (2023). Economic 
impact of vaccine safety incident in Ukraine: The eco-
nomic case for safety system investment. Vaccine, 41(1), 
219–225.

Butt, A. R., Ahmad Saqib, A., Alshomrani, A. S., Bakar, A., & 
Inc, M. (2024). Dynamical analysis of a nonlinear frac-
tional cervical cancer epidemic model with the nonstan-
dard finite difference method. Ain Shams Engineering 
Journal, 15(3), 102479. doi:10.1016/j.asej.2023.102479

Butt, A. I. K., Ahmad, W., Rafiq, M., & Baleanu, D. (2022). 
Numerical analysis of Atangana-Baleanu fractional model 
to understand the propagation of a novel corona virus 
pandemic. Alexandria Engineering Journal, 61(9), 7007– 
7027. doi:10.1016/j.aej.2021.12.042

Butt, A. R., Saqib, A. A., Bakar, A., Ozsahin, D. U., Ahmad, 
H., & Almohsen, B. (2023). Investigating the fractional 
dynamics and sensitivity of an epidemic model with 
nonlinear convex rate. Results in Physics, 54, 107089. doi: 
10.1016/j.rinp.2023.107089

Callister, L. C. (2019). Global Measles Outbreak. MCN. The 
American Journal of Maternal Child Nursing, 44(4), 237. 
doi:10.1097/NMC.0000000000000542

Center of Disease Control and Prevention. (2023). Global 
Measles Outbreaks. Available online: https://www.cdc. 
gov/globalhealth/ measles/data/global-measles-out-
breaks.html. (accessed on 19 January 2023).

Center of Disease Control and Prevention. (n.d.). Global 
Measles Outbreaks. Available online: https://www.cdc. 
gov/measles/cases-outbreaks.

Conlan, A. J. K., Rohani, P., Lloyd, A. L., Keeling, M., & 
Grenfell, B. T. (2010). Resolving the impact of waiting 
time distributions on the persistence of measles. Journal 
of the Royal Society, Interface, 7(45), 623–640. doi:10. 
1098/rsif.2009.0284

Din, A., Li, Y., Khan, F. M., Khan, Z. U., & Liu, P. (2022). On 
Analysis of fractional order mathematical model of 
Hepatitis B using Atangana-Baleanu Caputo (ABC) 
derivative. Fractals, 30(01), 2240017. doi:10.1142/ 
S0218348X22400175

Farman, M., Saleem, M. U., Ahmad, A., & Ahmad, M. O. 
(2018). Analysis and numerical solution of SEIR epidemic 
model of measles with non-integer time fractional deriv-
atives by using Laplace Adomian Decomposition 
Method. Ain Shams Engineering Journal, 9(4), 3391–3397. 
doi:10.1016/j.asej.2017.11.010

Fisker, A. B., Martins, J. S. D., Jensen, A. M., Martins, C., 
Aaby, P., & Thysen, S. M. (2022). Health effects of utilis-
ing hospital contacts to provide measles vaccination to 
children 9-59 months-a randomised controlled trial in 
Guinea-Bissau. Trials, 23(1), 349. doi:10.1186/s13063-022- 
06291-z

Gambrell, A., Sundaram, M., & Bednarczyk, R. A. (2022). 
Estimating the number of US children susceptible to 
measles resulting from COVID-19-related vaccination 
coverage declines. Vaccine, 40(32), 4574–4579. doi:10. 
1016/j.vaccine.2022.06.033

Gould, D. (2015). Measles: Symptoms, diagnosis, manage-
ment and prevention. Primary Health Care, 25(1), 34–40. 
doi:10.7748/phc.25.1.34.e908
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