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A B S T R A C T

Linking cellular-level phenomena to brain architecture and behavior is a holy grail for theoretical and compu-
tational neuroscience. Advances in neuroinformatics have recently allowed scientists to embed spiking neural 
networks of the cerebellum with realistic neuron models and multiple synaptic plasticity rules into sensorimotor 
controllers. By minimizing the distance (error) between the desired and the actual sensory state, and exploiting 
the sensory prediction, the cerebellar network acquires knowledge about the body-environment interaction and 
generates corrective signals. In doing so, the cerebellum implements a generalized computational algorithm, 
allowing it "to learn to predict the timing between correlated events" in a rich set of behavioral contexts. Plastic 
changes evolve trial by trial and are distributed over multiple synapses, regulating the timing of neuronal 
discharge and fine-tuning high-speed movements on the millisecond timescale. Thus, spiking cerebellar built-in 
controllers, among various computational approaches to studying cerebellar function, are helping to reveal the 
cellular-level substrates of network learning and signal coding, opening new frontiers for predictive computing 
and autonomous learning in robots.

1. Introduction

The brain is composed of multiple interconnected networks, each 
one playing a specific role and at the same time contributing to ensemble 
functions and dynamics (Parr et al., 2022). The cerebral cortex and the 
cerebellum are the main cortical brain structures, and although the 
cerebellum is volumetrically smaller than the cerebral cortex, it con-
tains, on average across species, 3.6 times more neurons because of its 
higher neuronal density (Herculano-Houzel, 2010). The two brain 
structures show remarkable functional differences, though. While the 
cerebral cortex is organized in multiple internal recurrent loops (Bellec 
et al., 2020), the cerebellar network features a predominantly forward 
architecture from the granular to molecular layer and then into deep 
cerebellar nuclei, with additional recurrent pathways including the 
nucleo-cortical loop and inhibitory circuits (Ghez & Fahn, 1985). 

Moreover, several synaptic and excitable mechanisms are ultrarapid (e. 
g., see Refs in D’Angelo and De Zeeuw (2009), De Zeeuw et al. (2011)), 
allowing faster network processing in the cerebellar than in the cerebral 
cortex. This makes the cerebellum suitable for controlling brain timing 
on the millisecond scale (Ivry et al., 2002). Moreover, while the cerebral 
cortex learns on the basis of unsupervised learning schemes, the cere-
bellum performs mostly supervised error-based learning and, more 
recently, it has also been recognized to control reinforcement learning in 
other brain circuits like the basal ganglia (Doya, 2000; Ros et al., 2006; 
Kostadinov & Häusser, 2022), contributing to the integration of learning 
across the main brain structures (super-learning hypothesis: (Caligiore 
et al., 2019)).

Historically, the cerebellum was the first (and probably is still the 
most advanced) brain region for which the structure-function-dynamics- 
behavior relationship has been clarified comprehensively. This 
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knowledge has been cast in solid theories guiding experiments and 
models, which brought into light the learning and timing properties of 
the cerebellum (Eccles et al., 1967; Marr, 1969; Albus, 1971; Ito et al., 
1982, 2006). This led J.C. Eccles to say that “…it could be optimistically 
predicted that the manner of operation of the cerebellum in movement and 
posture would soon be known in principle” (in Ito (1984)).

Starting from the ‘70 s, numerous models of the cerebellar circuit 
have been developed across multiple labs worldwide to explain behav-
ioral features in motor learning and control (Fujita, 1982; Kawato et al., 
1987; Kawato & Gomi, 1992; Tyrrell & Willshaw, 1992; Wolpert & 
Kawato, 1998; Wolpert et al., 1998; Dean et al., 2002; Ito, 2006, 2013). 
These models have evolved from relatively simple abstractions to 
increasingly complex implementations, including rate-based neural 
networks, mean-field models, point neuron networks, and detailed 
multicompartmental simulations. Nonetheless, in light of recent de-
velopments in neurophysiology, neuroimaging, and modeling, the 
mechanisms and role of the cerebellum need now to be considered 
further. The multiscale modeling, i.e., data-driven models using bio-
logical information at multiple scales to simulate brain activity (De 
Schutter et al., 2005; D’Angelo & Jirsa, 2022), has brought into the 
foreground the need to combine advanced neuroscientific theories and 
neuroinformatic approaches (Ascoli et al., 2003) with a large and 
diverse set of experimental observations (D’Angelo et al., 2016; D’An-
gelo & Jirsa, 2022). Within the broader landscape of cerebellar 
modeling, two complementary pathways have emerged: 

The development of biologically plausible computational models of 
the cerebellar microcircuits in terms of cellular and network prop-
erties focused on spiking neural networks. These models simulate the 
way neurons communicate through discrete electrical impulses (or 
"spikes") and capture both the cellular dynamics and the network 
properties of the cerebellum (Yamazaki & Tanaka 2007a; Yamazaki 
& Igarashi 2013; Lennon et al., 2014; De Schepper et al. 2022; 
Geminiani et al. 2024). 

The design and validation of cerebellar computational models 
applied to neurorobotic controllers, creating what we refer to as 
spiking cerebellar built-in controllers, in which the biologically 
inspired microcircuits have been used to control behavioral tasks in 
perception-action loops (Medina et al. 2000a; Medina & Mauk 2000; 
Honda et al. 2018; Antonietti et al. 2019; Fruzzetti et al. 2022).

Among the many cerebellar spiking network models developed in 
recent years, in this Review, we particularly focus on the design and 
performance of spiking cerebellar built-in controllers to link neural 
mechanisms with sensorimotor behavior. While acknowledging the 
broader landscape of computational cerebellar research, we have chosen 
to highlight this specific approach as it allows for direct testing of how 
cellular-level properties translate to functional outcomes in closed-loop 
systems. By embedding biologically plausible cerebellar spiking neural 
networks into sensorimotor loops, these controllers provide a unique 
window into the structure-function-dynamics relationship central to 
understanding cerebellar computation.

In parallel with the recognition of its central role in motor learning 
and control, the cerebellum is now recognized to play a critical role in 
cognition and emotion (Ito, 2008; De Zeeuw et al., 2021; Ciapponi et al., 
2023; Faris et al., 2024). Consistently, cerebellum dysfunction is 
emerging as a core element not just in ataxia, with which it has been 
associated early on, but also in other major neurological disorders 
affecting the sensorimotor domain (including dystonia, paroxysmal 
dyskinesia, Parkinson’s disease) (Morigaki et al., 2021; Ekmen et al., 
2022; Li et al., 2023), in neurodegenerative and inflammatory brain 
diseases (multiple sclerosis, dementia) (Parmar et al., 2018; Toniolo 
et al., 2023; Wenger et al., 2024), and psychiatric disorders (dyslexia, 
autism, depression, schizophrenia) (Ashburn et al., 2020; Brady et al., 
2019). As well as motor dysmetria is the manifestation of cerebellar 
alterations in the motor domain, cognitive dysmetria appears in various 

brain pathologies, causing the so-called cognitive-affective cerebellar 
syndrome (Schmahmann & Sherman, 1998; Andreasen et al., 1998; 
Schmahmann, 2004; Schmahmann & Caplan, 2006; Schmahmann, 
Weilburg, & Sherman, 2007; Ito, 2008; Argyropoulos et al., 2020).

1.1. The cerebellum in the predictive brain

The brain can be conceived as a predictive machine operating as an 
autonomous system modulated by senses (Llinas et al., 1997; Llinás & 
Roy, 2009) that generates inferences about the body/environment 
interaction (Parr et al., 2022). This operation is needed to move and 
behave, but it equally well applies to abstract/symbolic reasoning and 
cognition. The brain generates an internal representation of reality that 
allows us to interact with the world (Churchland & Sejnowski, 1992; 
Llinas et al., 1997) (Fig. 1). To our best understanding, the brain is a 
complex adaptive system that continuously generates, stores, and enacts 
a large set of behavioral schemes. The schemes may represent, e.g., the 
ability to speak, write, move, and reason. Thus, a scheme may be used to 
manipulate abstract symbols, semantic or not semantic, as much as a 
hand manipulates a physical object. Importantly, the scheme includes a 
representation of the sensory consequences of an action, and therefore, 
it is predictive. These predictive mechanisms are referred to as internal 
models—cognitive constructs that the brain develops to forecast the 
outcomes of actions and sensory inputs based on prior experience and 
current sensory information. Internal models enable the brain to antic-
ipate future states of the world, adjust behavior accordingly, and refine 
its predictions over time (Ito, 1970, 1972; Wolpert et al., 1995). Once a 
predictive scheme is enacted, it generates consequences on the world, 
which are sensed and brought back to the brain through afferent path-
ways (again, the same applies to immaterial symbols when the brain 
operates fully in its virtual space). At this point, the sensed and predicted 
schemes are compared, and differences are detected. This allows brain 
circuits to continuously correct errors, detect novelty, minimize un-
wanted consequences of upcoming stimuli, and eventually modify the 
schemes through learning if the differences occur repeatedly (Blakemore 
et al., 1998).

The brain’s predictive capabilities emerge from the coordinated ac-
tion of multiple neural systems. While the exact anatomical mapping is 
complex, three key brain regions make distinct contributions to this 
predictive framework. The cerebellum implements internal models that 
predict the sensory consequences of actions and refines these predictions 
through error-based learning. Beyond the classical view of error-driven 
supervised learning, the cerebellar circuit generates and tests pre-
dictions about movement, reward, and other non-motor operations 
(Hull, 2020). Its unique circuit architecture supports both motor and 
non-motor anticipatory responses, enabling rapid, automated prediction 
of temporal relationships between events (Narain et al., 2018). Basal 
ganglia evaluate and select different possible actions using reward sig-
nals to reinforce successful behaviors (Humphries et al., 2006). Through 
this process, it helps optimize behavior by favoring internal models that 
lead to better outcomes. This reward-based evaluation complements the 
cerebellum’s error-based learning, creating an integrated learning sys-
tem. The cerebral cortex processes complex sensory information through 
pattern recognition and feature extraction while maintaining attention 
and determining behavioral relevance. It makes high-level decisions and 
provides contextual information. These systems work together in a co-
ordinated manner: the cerebellum provides rapid predictions, the basal 
ganglia evaluate outcomes and selects actions, and the cortex provides 
high-level control and context. These functions that make the brain a 
complex adaptive system, mapped onto specific brain centers and op-
erations (Ito, 2008), suggest the design of a biomimetic controller 
(Fig. 2). Typically, a sensorimotor controller includes a motor planner, a 
motor commander and other centers connected to the cerebellum, which 
can thus take part in operations of both planning and execution (Inagaki 
et al., 2022).

In summary, the brain embeds three levels that successfully interplay 

E. D’Angelo et al.                                                                                                                                                                                                                               Neural Networks 188 (2025) 107538 

2 



to adapt schemes and optimize behavior: (1) closed loop circuits 
compensating for errors in real-time, (2) predictive circuits learning by 
trial and error and modulating schemes over time, and (3) rewarding 
processes to reinforce learning. Eventually, once a scheme is validated, 
behavior can move from controlled to automatic, accelerating brain 
processing and making it effortless (Ramnani, 2014). Interestingly, this 
process can be explained by circuits centered on the cerebellum, which 
is, therefore, supposed to play an essential role in the predictive brain.

1.2. The cerebellum as a generalized forward model

The cerebellum is made of several regions that are extensively 
interconnected with multiple brain areas, allowing it to take part not just 
in the motor but also in cognitive and emotional control (Schmahmann 
& Sherman, 1998; Andreasen et al., 1998; Schmahmann, 2004; 
Schmahmann & Caplan, 2006; Schmahmann et al., 2007; Ito, 2008; 
Argyropoulos et al., 2020). Nonetheless, this multiplicity of functions is 
based on a common microcircuit design, leading to the concepts of 
generalized computation algorithm and universal cerebellar transform 
(Schmahmann, 1996). This organization is best understood from a 
phylogenetic perspective, in which the cerebellum is already present in 
the lowest vertebrates and then co-evolves with the cerebral cortex 
(Magielse et al., 2023). Extensive rewiring allowed reusing the same 
cerebellar circuit module for different functional purposes in multiple 
cerebello-cerebrocortical loops (Ciapponi et al., 2023; Faris et al., 2024).

The main function attributed to the cerebellum is to learn to predict 
the precise timing of correlated events (Eccles, Ito & Szentágothai, 1967; 
Marr, 1969; Ivry et al., 2002). While this principle is elegantly demon-
strated in simple associative learning tasks like eyeblink conditioning, 
where the cerebellum learns to predict the timing between a neutral 
stimulus and an aversive one, it extends far beyond such basic para-
digms. The cerebellum applies this predictive timing capability across a 
spectrum of behaviors, from coordinating multi-joint movements by 

predicting the temporal relationships between motor commands and 
their sensory consequences, to regulating eye movements by predicting 
visual target trajectories, to anticipating the timing of sensory events in 
cognitive tasks. This ability to extract and learn temporal relationships 
between correlated events allows the cerebellum to compare predictions 
(or expectations) with the effect (or consequence) of their actuation 
across motor, sensory, and cognitive domains. The main fallout of this 
principle is that learning of timing sets the basis for motor coordination 
(Mauk et al., 2000; Medina et al., 2000b). It processes both short and 
long intervals while monitoring discrepancies between expected and 
actual timings to correct errors. As it develops these timing patterns, the 
cerebellum enhances its predictive capabilities, facilitating smoother 
and more coordinated responses. Through appropriate wiring, this 
computational paradigm would apply to cognitive control as well as to 
motor control. Therefore, the main hypothesis is that the cerebellum 
operates as a generalized forward model (Shadmehr & Krakauer, 2008).

1.3. The mechanisms of cerebellar functioning

The first attempt to reconnect when, what, and how of the cere-
bellum came in the 60s-80 s, when Marr-Albus-Ito developed the Motor 
Learning Theory, from which the Adaptive Filter Model derives (Marr, 
1969; Albus, 1971; Ito, 1984; Dean et al., 2010; Porrill et al., 2013). The 
Motor Learning Theory suggests that the cerebellum refines motor skills 
by adjusting neural pathways through error correction, with the Adap-
tive Filter Model extending this idea by conceptualizing the cerebellum 
as a dynamic system that continuously fine-tunes motor commands 
based on sensory feedback. Directly from this definition, the Adaptive 
Filter Model is understood as a forward model, predicting the sensory 
consequences of motor actions to optimize performance. In his foreword 
to (Ito, 1984), Eccles wrote: “For me, the most significant property of the 
cerebellar circuitry would be its plastic ability, whereby it can participate in 
motor learning, that is, the acquisition of skills. This immense neuronal 

Fig. 1. The brain as a predictive adaptive system. 
This functional scheme shows the brain as a system making predictions about the consequences of the interaction of the body with the world. These predictions are 
based on internal models (or schemes) that are learned and transformed into actions. The consequences are revealed by the senses and fed back to the brain. The 
general plant requires closed-loop control and learning deriving from errors generated by the comparison of predicted and actual sensory states. These functions, that 
make the brain a complex adaptive system, are remapped onto operations and specific brain centers in Fig. 2.
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machine with the double innervation of Purkinje cells begins to make sense if 
it plays a key role in motor learning”.

The Motor Learning Theory and Adaptive Filter Model brought about 
several fundamental predictions about the way the cerebellar network 
should work (Fig. 2A). Along the mossy fibers (mf) pathway, the gran-
ular layer would perform a sparse representation of input patterns 
generating combinatorial expansion, spatiotemporal re-coding and 
pattern separation. The Purkinje cells (PC) should act as a perceptron of 
granule cell patterns, while the synapses between parallel fibers (pf) and 
PCs should learn under control of the error signal conveyed through the 
climbing fibers (cf), which encodes temporal difference prediction error 
(Ohmae & Medina, 2015). The whole circuit would then operate as an 

adaptive filter (Dean et al., 2010; Porrill et al., 2013). In another 
interpretation, the functional roles of the granular layer and Purkinje 
cells are regarded as a liquid state generator and readout neurons, 
respectively, suggesting that the whole circuit would operate as a liquid 
state machine (Yamazaki & Tanaka, 2007b). However, recent experi-
mental and theoretical work reveals that granule cells encode a much 
richer representation of the system state. Beyond pure temporal coding, 
they integrate diverse contextual information including multimodal 
sensory inputs, motor commands, and feedback signals (Giovannucci 
et al., 2017; Wagner et al., 2017). Through their diverse synaptic 
properties, granule cells perform sophisticated pattern separation and 
combine multiple streams of information about the animal’s movement, 

Fig. 2. Architecture of cerebellar controllers. 
(A) The forward model receives an efference copy of the motor commands through mossy fibers, and predicts their sensory consequences (Shadmehr & Krakauer, 
2008).As such, this module provides a fast feedback that could be used: (i) by the controller (motor cortices M1) to quickly update the motor commands according to 
the desired motor plan, providing a stable control even if the actual sensory feedback is delayed; and (ii) by the planner (premotor cortices PMC) to define an 
appropriate motor plan given the desired movement intention even before movement initiation, when there is no sensory feedback. Learning in the forward model 
(brown) is guided by the error in predicting the sensory information (sensory prediction error), which is encoded in one section of the inferior olive (pink) to drive 
plasticity. The inverse model (red) receives the desired motor plan via mossy fibers and computes the corresponding motor commands in feedforward (Ito, 2013). As 
such, this mechanism allows to adjust motor commands computed by motor cortices even before obtaining the sensory information (whether predicted or actual). 
Learning in the inverse model is driven by the error in executing the desired plan, fed to the cerebellar microcircuit via another section of the inferior olive (purple). 
Predicted and actual sensory signals are integrated by the state estimator (somatosensory cortices S1 and S2, which process sensory signals). Using Bayesian 
integration, the state estimator computes a weighted average of the two sensory signals (predicted and actual) based on their estimated reliability (Körding & 
Wolpert, 2004). (B) The operations are mapped on brain regions considering current knowledge on brain connectivity. No-color blocks and connections are not yet 
mapped in the control scheme in A.
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sensory environment, and task context (Cayco-Gajic et al., 2017; Lanore 
et al., 2021). This expanded view suggests that granule cells create 
high-dimensional representations that capture both temporal relation-
ships and broader contextual states, enabling the cerebellum to generate 
predictions based on the full state of the system rather than just temporal 
sequences.

Although the original theories provide the guideline, now we know 
much more about the cerebellum, so a complex biological reality must 
be accounted for (Bower, 2002; D’Angelo, 2016). For example, the 
Motor Learning Theory did not consider (1) multiple forms of plasticity, 
(2) molecular complexity, (3) neuronal non-linear and time-dependent 
properties, (4) circuit geometry (only topology and statistics), (4) 
mesoscale and macroscale connectivity, (5) and cognitive and emotional 
control in addition to motor control. Nowadays, anatomo-physiological 
observations can be integrated into powerful computational models 
(D’Angelo & Jirsa, 2022). These models can be applied in neurorobotic 
systems to explore cerebellar physiology and pathology in closed-loop 
integrated systems, as well as to evaluate the validity of foundational 
theories, leading to the development of what we will refer to as cere-
bellar controllers.

A pivotal concept for understanding cerebellar physiology concerns 
the signals entering the circuit. The cf pathway is thought to convey the 
error (or novelty) with respect to a template. There has been a long (and 
not ended yet) discussion about whether the cfs convey such a teaching 
signal or rather a timing signal for movement initiation (Kitazawa et al., 
1998; Jacobson et al., 2008; De Zeeuw et al., 2011; Herzfeld et al., 
2020). Conversely, the mf pathway conveys contextual information 
consisting of both sensory information and the efference copy of cortical 
commands (Hesslow et al., 1999; Giovannucci et al., 2017). This bio-
logical insight informed the development of cerebellar controllers, even 
if most implementations focused on processing efference copy signals 
through the mf pathway, while using cf signals for error-based learning. 
Expanding these models to process both types of mf inputs (i.e., sensory 
information and efference copy of motor commands) remains an 
important direction for future work.

Another pivotal concept concerns the transformations operated by 
neurons and synapses of the cerebellar circuit on the incoming signals. 
Neurons and synapses express complex filtering properties that can 
regulate the gain, bandwidth, timing, and phase of the signals. More-
over, neurons and synapses express a complex set of short-term and 
long-term plasticity mechanisms that are thought to modulate signal 
transmission and store information in the cerebellar circuit at multiple 
sites (Masoli et al., 2022). By embedding specific constructive and 
functional mechanisms by design, we can investigate different hypoth-
eses about the wiring and computational impact of afferent signals, 
neurons, synapses, and learning rules. The cerebellar controllers have 
not yet fully exploited their complex networks and neuronal mecha-
nisms, whose impact on the network input-output relationship remains 
to be carefully investigated.

1.4. What the cerebellar circuit is physically doing

The cerebellar network is thought to extract, through learning, 
fundamental parameters about the body-environment (or body-object) 
interaction (Schweighofer et al., 2001). This configures an inverse 
mathematical problem. At the same time, a direct model predicts the 
effects knowing the causes, and an inverse model hints about the causes 
given the effects. More formally, if one knows the model F(p) along with 
its parameters p, one can directly predict the observable signals dobs=F 
(p). Inversely, one can determine p based on dobs: p = F− 1(dobs). This is 
the case that the cerebellum must face by inferring the hidden causes of 
the empirical sensory observation. Mathematically, the challenge is the 
non-invertibility of the problem, which is typically addressed by mini-
mizing some cost functions (D’Angelo & Jirsa, 2022). A cerebellar 
controller can cope with this problem naturally, converging toward an 
optimal solution. In a closed-loop motor controller, e.g., one including a 

cerebellar adaptive circuit, the problem of finding model parameters 
translates into that of adapting synaptic weights in the embedded 
cerebellar Spiking Neural Network (SNN). Now, synaptic weights, p, and 
properties of the external world, dobs, are free model parameters so that 
the controller works as the agent that extracts the parameter values, 
implementing an internal model of the world.

Let us examine how forward and inverse models operate in robotic 
control using examples from object manipulation under gravitational 
forces.

A forward model is exemplified in anticipatory grip force adjust-
ments during object manipulation. When moving an object, the cere-
bellum predicts the sensory consequences (object slip, changing loads, 
dobs) that will result from the motor actions (p). This prediction allows 
anticipatory adjustment of grip force before sensory feedback arrives, 
preventing object slip. Here, the cerebellum uses an internal model to 
transform motor commands into predicted sensory outcomes, solving 
the forward problem: d = F(p).

An inverse model is illustrated when a robot must lift an object of 
unknown mass. Here, the cerebellum must determine appropriate motor 
commands (forces, p) needed to achieve a desired outcome (stable object 
position, dobs). The controller implicitly solves the inverse problem of 
extracting p = F− 1 (dobs) (without requiring an artificial comparison with 
a template, as is the case with machine learning procedures). It should 
be noted that weight adaptation at circuit synapses generates an implicit 
and distributed representation of p. Through experience, the cerebellar 
SNN generates an internal model of the body-object system, learning the 
physical rules governing object manipulation and acquiring the physical 
rules governing kinematics and dynamics of masses in the gravitational 
field along with apparent (centrifugal and Coriolis) forces and frictions 
(Schweighofer et al., 2001).

Akin to the concept of a generalized computation algorithm (Doya, 
2000) and universal cerebellar transform (Schmahmann, 1996), this 
example may be generalized to many different cases extending from the 
sensorimotor to the cognitive domain Ito (2008).

2. Cerebellum models in robotic controllers

In computational models, the main issue is the multiscale problem, i. 
e., connecting cellular mechanisms to system functions. This means 
moving from structure to function to dynamics to behavior (Arbib et al., 
1997; Arbib & Érdi, 2000). The challenge can be faced by generating 
neurorobotic controllers. Nonetheless, data plays a critical role in model 
construction, as well as in the case of robotic controllers generating 
hybrid architectures that embed biological SNNs into task-driven ar-
chitectures (D’Angelo & Jirsa, 2022).

Robotic controllers are inspired by neural properties encompassing 
neurons, circuit architecture, and brain connectivity. Unlike more ab-
stract brain models that attempt to capture high-level cognitive pro-
cesses, these controllers focus on implementing specific sensorimotor 
functions with clear input-output relationships. Moreover, they can 
interact with the environment by exploiting feedback sensory loops and 
incorporate plasticity rules for learning and memory allowing them to 
generate adaptive behaviors through their interaction with the 
environment.

Cerebellar SNNs have been effectively embedded into sensorimotor 
controllers to create spiking cerebellar built-in controllers. The archi-
tecture is composed of (1) a planner, (2) a motor commander, (3) body 
actuators, (4) sensory feedback, (5) error calculation modules, (6) 
cerebellar SNNs connected as an inverse model and as a forward model, 
(7) a state estimator (Fig. 2A). The state estimator weights the sensory 
feedback and the predictive sensory consequence; if sensory feedback is 
unavailable (e.g. in ballistic movement), the state is estimated using 
only the predictions generated by the cerebellum (delay higher than 
movement duration). Overall, the cerebellar predictions stabilize the 
controller, otherwise unstable due to the delay in the sensory feedback.
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2.1. Spiking neural networks in cerebellar controllers

To account for the multiscale modeling issue, a cerebellar SNN has 
been developed, derived from a data-driven reconstruction and valida-
tion process at multiple scales so that biological features are effectively 
brought into the artificial system (Solinas et al., 2010; De Schepper et al., 
2022). Following anatomical constraints, these SNNs usually contain the 
cerebellar cortex, deep cerebellar nuclei (DCN), and inferior olive (IO) 
modules, with ~104–105 neurons as a whole (Vijayan & Diwakar, 2022). 
The cerebellar cortex module contains the main cerebellar neuronal 
populations, i.e., Purkinje cells (PC), Golgi cells (GoC), granule cells 
(GrC), basket cells (BC), and stellate cells (SC) collectively called mo-
lecular layer interneurons (MLI), mfs, cfs, and pfs wired as in Fig. 3. 
Granule cell layer processing is expected to promote spatial group se-
lection of granule cell activity as a function of timing of mossy fiber 
input (Berends et al., 2004; Sudhakar et al., 2017), therefore the cere-
bellar spiking granular layer represents the passage-of-time (Yamazaki 
et al., 2007a). Recent experimental work has further validated this 
concept through simultaneous recordings of GrC and cfs, demonstrating 
how these cells learn to track temporal intervals in behaviorally relevant 
tasks (Garcia-Garcia et al., 2024). While the main signal flow is forward 
through these components, there is also an important recurrent 
nucleo-cortical pathway from DCN back to the granular layer. This 
pathway provides predictive feedback signals about ongoing movements 
to granule cells, either through direct excitation via nuclear collaterals 
or through disinhibition via nuclear projections to Golgi cells 
(Giovannucci et al., 2017). Such recurrent signaling allows the cere-
bellum to participate in closed feedback loops that can regulate and 
adjust ongoing predictive responses in real time, effectively imple-
menting forward models that overcome delays in sensory feedback. This 
pathway has been recently implemented in the cerebellar models to 

investigate its role in learning calibration and multiple timescales of 
plasticity. At the level of single neurons, leaky integrate-and-fire (LIF) is, 
in general, the most common neuron model for SNN, representing 
neuron membrane dynamics as a "leaky" capacitor and the firing 
behavior as a threshold-based mechanism. While the first versions of 
cerebellar SNN employed LIF neurons, more recent implementations use 
more complex models, such as extended-generalized LIF (E-GLIF), to 
account for the diverse electroresponsive phenotypes of cerebellar 
neurons. E-GLIF models for the different neuronal populations are 
parametrized based on the biological data of the corresponding neuron 
type and reproduce non-linear neuronal dynamics (De Schepper et al., 
2022). With these advanced neuron models, for example, the 
burst-pause effect typical of PC emerges, improving the control of spike 
timing at the output. (Fig. 3 and Box 1). To model the transient increase 
of synaptic conductance following a pre-synaptic spike, in most of the 
cerebellar SNNs the synapses are conductance-based and their dynamics 
is modeled as an alpha function. Long-term synaptic plasticity rules have 
been progressively updated to include spike-timing dependent plasticity 
(STDP) at pf-PC synapses, PC-DCN synapses, mf-DCN synapses, IO-DCN 
synapses, and pf-MLI synapses. Initially, learning in the cerebellar SNNs 
was driven by pf-PC bidirectional plasticity only, following the Motor 
Learning Theory (Tang et al., 2021; Welniarz et al., 2021). Then, the 
original pf-PC plasticity rule (Mauk & Donegan, 1997) was refined based 
on more recent experimental observations (Yamazaki & Tanaka, 2007a). 
Following experimental (Ohyama et al., 2006) and theoretical studies 
suggesting that bidirectional synaptic plasticity also occurs in the cere-
bellar nuclei and plays a crucial role in learning and consolidation, 
mf-DCN learning rules have been introduced in cerebellar SNNs and 
complemented with PC-DCN plasticity rules (Zheng & Raman, 2010; 
Nagao, 2021). To model learning stabilization and convergence, IO-DCN 
synaptic plasticity was also introduced. More recently, additional 

Fig. 3. From the cerebellar circuit to an SNN integrated into a sensorimotor controller. 
The cerebellar microcircuit is shown with its fundamental elements. The gray labels reflect the terminology adopted in the Motor Learning Theory (Marr, 1969; Ito, 
2006). According to the Motor Learning Theory and the subsequent Adaptive Filter Model, the GrL performs spatiotemporal recoding, pattern separation, and 
combinatorial expansion of mf signals, which convey information on context and plans. The PC operates as a perceptron. The pf-PC synapses are one of the main sites 
of learning. The cf conveys teaching error-related signals. The cerebellar microcircuit is then transformed into an SNN and wired into a sensorimotor controller. The 
spike-to-analog and the analog-to-spike conversions are governed by encoding/decoding rules in appropriate interfaces (Mathis et al., 2024). It should be noted that 
cerebellar SNNs are made of point neurons and allow fast mesoscale simulations exploiting spike timing and synaptic plasticity. The plots on the right show an 
example of spike frequency modulation (using Spike Density Function, SDF) in PC and DCN cells during a robotic simulation of eye-blink classical conditioning 
(EBCC). Note that, after learning PCs learn to pause, and DCN cells learn to fire at a specific time (x-axis) with millisecond precision. Model simulations of EBCC yield 
a learning curve of conditioned responses (%CR) superimposed to the experimental one recorded in mice. Adapted from Eccles et al. (1967), D’Angelo and Jirsa 
(2022), Geminiani et al. (2024). PC, Purkinje cell; GoC, Golgi cell; GrC, granule cell; BC, basket cell; SC, stellate cell; DCN, deep cerebellar nucleus; MF, mossy fiber, 
CF, climbing fiber; MoL, molecular layer; GcL, granular cell layer. CS, Conditioned Stimulus; US, Unconditioned Stimulus.

E. D’Angelo et al.                                                                                                                                                                                                                               Neural Networks 188 (2025) 107538 

6 



plasticity sites in the cerebellar cortex have been considered in the 
molecular and granular layer. Based on in vitro experimental observa-
tion, a pf-MLI bidirectional plasticity model was proposed (Lennon et al., 
2015) and based on experimental observations in mice during classical 
eyeblink conditioning (ten Brinke et al., 2015), a version for SNN sim-
ulations of in vivo tasks was implemented and used to investigate the 
contribution of different plasticities in the cerebellar cortex, at pf-PC and 
MLI, during eyeblink conditioning (Geminiani et al., 2024). In the 
granular layer, a frequency-dependent STDP learning rule has been 
implemented to reproduce the theta-band specific synaptic plasticity at 
mf-GrC connections that is supposedly responsible for filtering and 
amplifying cerebellar input signals.

These forms of plasticity have been modeled taking into account 
different induction and expression rules and different time constants, as 
revealed by biological experiments. The elevated number of types and 
the distributed nature of cerebellar plasticity embedded in the cerebellar 
SNN has allowed us to demonstrate a series of biological properties, 
including (1) double acquisition time constant, (2) self-rescaling over a 
large range of inputs, (3) learning acceleration toward biological rates. 
Following the different plasticity rules, the synaptic weights change 
progressively during learning, transferring memory from the cerebellar 
regions that acquire information more rapidly, e.g., the cerebellar cor-
tex, to the slower ones (consolidation), e.g., the cerebellar nuclei. Then, 
the weight is redistributed due to sensory and internal feedback. A 
synapse can change its plasticity several times during a learning cycle, 
and several combinations of weights on different synapses may be 
equally effective (Bhasin et al., 2024).

Some synaptic properties remain to be embedded into the cerebellar 
SNN, including (1) short-term synaptic plasticity to improve local circuit 
dynamics (D’Angelo et al., 2016; Masoli et al., 2022), (2) postsynaptic 
receptors with specific properties, like the NMDA receptor, (3) neuro-
modulation to gate the learning process and to avoid destructive inter-
ference (Schweighofer et al., 2001), (4) memory transfer and 
consolidation across brain regions (Kellett et al., 2010). The accumula-
tion of multiple patterns remains to be tested.

2.2. Control circuits and simulated behaviors

Cerebellar SNNs have been embedded into different control loops to 
cope with specific behaviors, of different complexities, derived from 
biological experiments and clinical tests, including eye-blink classical 
conditioning (EBCC), vestibulo-ocular reflex (VOR), saccadic eye 
movements, whisking, arm reaching tasks, and force field compensation 
(Casellato et al., 2014; Luque et al., 2016; Honda et al., 2018; Xu et al., 
2018; Antonietti et al., 2019; Fruzzetti et al., 2022; Liu et al., 2023; 
Shinji et al., 2024). While EBCC was traditionally viewed as a simple 
associative task, recent work has shown it involves coordinated motor 
synergies across multiple degrees of freedom, including precisely 
orchestrated movements of the eyelid, surrounding facial muscles, and 
deeper protective structures (Heiney et al., 2021). Similarly, 
arm-reaching movements require coordination across multiple joints in 
3D space. Both tasks involve learning temporal relationships between 
sensory cues and motor outputs but differ in their spatial complexity and 
the number of muscles and joints that need to be coordinated. The 
cerebellar network architecture remains consistent across these tasks, 
supporting the concept of a universal computational algorithm. This can 
happen by exploiting a common learning strategy: the teaching signal 
provided by the IO drives synaptic weight adaptation at pf-PC synapses, 
as predicted by the Motor Learning Theory. These computational models 
thus provide critical support to the Motor Learning Theory and allow the 
connection of cerebellar circuit mechanisms to behavior through spe-
cific brain architectures and error-driven learning. While these cere-
bellar models have successfully reproduced various motor learning tasks 
using a similar circuit architecture, it’s important to note that these tasks 
(EBCC, VOR, reaching movements) all involve sensorimotor learning 
and adaptation. The cerebellum’s role extends far beyond motor control 

to cognitive and emotional functions (Van Overwalle, 2024; Schmah-
mann, 2019; De Zeeuw et al., 2021), and whether the same computa-
tional principles apply to these broader domains remains an open 
question. Testing if this framework generalizes to non-motor functions, 
such as cognitive prediction, language processing, or emotional regu-
lation, represents an important challenge for future computational work 
(Ohmae & Ohmae, 2024).

EBCC proves quite useful since it is supported by extended experi-
mental evidence that can be used for model construction, tuning, and 
validation. EBCC is well understood in its neuronal mechanisms and is, 
therefore, the workbench for any further cerebellar physiological 
investigation (Fig. 3). For example, a cerebellar SNN has been extended 
to include up-bound and down-bound microzones, and this new archi-
tecture has been tested in EBCC simulations (Geminiani et al., 2024); 
EBCC has also been used as the reference task to investigate in silico the 
impact of cerebellar circuit lesions associated to several 
cerebellar-related pathologies (Radell & Mercado, 2014; Geminiani 
et al., 2018; Trimarco et al., 2021).

2.3. Simulation of pathological states

The simulation of pathological states with spiking cerebellar built-in 
controllers involves understanding how various neurological diseases 
impact the cerebellum. The cerebellum can exhibit resistance to certain 
neurodegenerative mechanisms, yet it can also be highly vulnerable in 
cases of accelerated neurodegeneration (Liang & Carlson, 2020) and 
cerebellar degeneration significantly contributes to symptoms like 
impaired motor skills and ataxia (Rüb et al., 2013).

To understand diseases such as ataxia, Parkinson’s disease, and 
dystonia, researchers have utilized computational models focusing on 
the cerebellum and its interactions with other brain regions like the 
basal ganglia and thalamocortical circuits (Geminiani et al., 2018, 2022
Shaheen & Melnik, 2022; Kumar & Ma, 2023; Gambosi et al., 2024). 
These models aim to elucidate the impact of changes in the cerebellar 
controller (e.g., dopamine depletion, altered connection strengths, and 
changes in neural activity) on disease progression and motor symptom 
manifestation.

The cerebellum’s role in Parkinson’s disease is highlighted by PCs’ 
cellular apoptosis and reduced cerebellar activity in animal models of 
Parkinsonism, suggesting its involvement in the disease process, his-
torically more studied for the basal ganglia disruption. Additionally, the 
cerebellum is implicated in reinforcing aberrant neural activity through 
the cerebello-thalamocortical loop in Parkinson’s disease, affecting 
motor learning and performance (Gambosi et al., 2024). Spiking cere-
bellar built-in controllers have been enhanced with simulated dopamine 
depletion mechanisms to study their effects on cerebellar function. 
These models capture the shifts in cellular and network properties 
associated with changes in brain rhythms, providing insights into the 
pathophysiology of Parkinson’s disease.

Other studies have explored the impact of cerebellar pathologies on 
neural network dynamics using spiking controllers to predict how 
changes at the neuronal level, such as loss of PCs, lesions to mfs, and 
damages to synaptic plasticity, affect motor learning processes 
(Geminiani et al., 2018). Different olivocerebellar lesions were corre-
lated to different dystonic EBCC phenotypes in simulations (Geminiani 
et al., 2022). By applying region-specific lesions in a full-scale cerebellar 
model, it will be possible to explore the contribution of different cere-
bellar lobules to various forms of dystonia. EBCC was also used to 
investigate abnormal learning in autism spectrum disorder, highlighting 
the role of cortico-cerebellar hyper-connections and reduced PC in 
explaining the neural mechanisms underlying atypical behaviors in this 
disorder (Trimarco et al., 2021). (Solouki et al., 2022) focused on 
localizing long-term synaptic plasticity defects to study deficits in 
optokinetic reflexes.

These studies collectively underscore the significance of spiking 
controllers in elucidating the pathophysiology of various cerebellar- 
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related diseases, providing a platform to explore neural mechanisms, 
circuit alterations, and potential therapeutic interventions.

2.4. Knowledge gained and open issues

The development and simulation of spiking cerebellar built-in con-
trollers unveil the nature of the internal models of the cerebellum and 
the underpinnings of learning at the microcircuit level, providing 
important cues to understand the mechanisms of cerebellar functioning ( 
Wolpert et al., 1998). These models, embedded into 
cortico-cerebellar-spinal loops, perform well in inverse and forward 
mode, confirming previous Motor Learning Theory-based theoretical 
predictions (Kawato et al., 1987; Kawato & Gomi, 1992; Jordan, 1992; 
Wolpert & Kawato, 1998; Wolpert & Ghahramani, 2000). Is the cere-
bellum crucial for learning to associate motor commands with novel 
sensory consequences (forward model) or is the cerebellum important 
for learning to associate sensory goals with novel motor commands 
(inverse model) (Izawa et al., 2012)? The inverse and forward models 
can also work in tandem (Honda et al., 2018; Wolpert & Kawato, 1998; 
Kawato, 1999), an issue that needs further development and investiga-
tion in spiking systems. This dual cerebellar controller brings about the 
issue of the operations carried out by the IO and its subsections, which 
should decode multiple error types.

The cerebellar SNN learns about the body-environment or body- 
object interaction and emits signals able to minimize errors between 
planning and execution. Simulations performed with a variety of tasks 
support the concept that the cerebellum implements a generalized 
computational algorithm, allowing it to learn the timing between 
correlated events independent of the task being performed. The spiking 
cerebellar built-in controllers, in principle, are implementing a universal 
cerebellar transform applicable to multiple sensorimotor domains 
(Schmahmann, 1996). The extension to cognitive domains and variants 
to circuit architecture and function (Ciapponi et al., 2023) remains to be 
investigated.

According to Motor Learning Theory, the error signal is part of the 
design in spiking cerebellar built-in controllers and proves essential to 
allow error-based predictive learning. No other ways to control cere-
bellar learning have been investigated so far. State-dependent neuro-
modulation may gate the learning process in specific behavioral contexts 
(like attention or sleep) under the control of neuromodulators (like 
dopamine, serotonin, acetylcholine, and noradrenaline) (Schweighofer 
et al., 2001). There are indeed indications that the cerebellum may also 
take part in reward-based learning in close interaction with the ventral 
tegmental area and the striatum (Carta et al., 2019; Kostadinov & 
Häusser, 2022). Recent work by Hoang et al. (2025) has further 
demonstrated how climbing fiber inputs encoding predictive 
reward-prediction errors can integrate modular reinforcement learning 
with supervised learning in the cerebellum, providing a mechanism for 
context-specific motor commands during discrimination tasks. The 
investigation of this double error-based and reward-based learning 
scheme may benefit large-scale multi-area spiking models, including the 
cerebellum and basal ganglia, that are currently under development 
(Kuniyoshi et al., 2023; Gambosi et al., 2024).

Beyond Motor Learning Theory, there are multiple mechanisms of 
timing and plasticity in the cerebellar circuit (D’Angelo & De Zeeuw, 
2009) that await to be correlated with phenomenological aspects of 
sensorimotor learning. A critical observation is that motor learning oc-
curs on two main, fast and slow, time scales (Smith, Ghazizadeh & 
Shadmehr, 2006; Herzfeld et al., 2014). Indeed, the cerebellum may 
hold at least two separate Smith Predictors responsible for different 
learning time scales (Miall et al., 1993). Spiking cerebellar built-in 
controllers have substantially contributed to understanding how 
distributed circuit plasticity supports the mechanisms of cerebellar 
learning. Indeed, pf-PC plasticity turns out to allow fast acquisition of 
information, while DCN plasticity operates on a slower timescale. 
Moreover, simulations have revealed that learning is dynamically 

redistributed over multiple synapses. Learning in the cerebellar circuit 
involves two major input pathways processing different types of infor-
mation (Garcia-Garcia et al., 2024): 

• The cf pathway carries sensory error signals that reflect the differ-
ence between predicted or desired and actual sensory states. These 
error signals evolve across learning trials as performance improves 
and predictions become more accurate.

• The mf pathway carries both efference copy (internal copy of motor 
commands) and sensory feedback signals. However, current 
computational implementations have primarily focused on the 
efference copy component, limiting their ability to fully capture the 
richness of cerebellar processing.

The dynamic redistribution of synaptic weights during learning re-
flects how these error signals, conveyed by cfs, gradually shape network 
connectivity to improve performance. Future models incorporating both 
efference copy and sensory feedback through the mf pathway could 
provide a more complete picture of how the cerebellum integrates 
different information streams during learning. Multiple synapses and 
recurrent loops (e.g., IO-PC-DCN-IO) allow to accelerate learning to 
biological speed and to self-rescale learning, avoiding saturation when 
the size of the input signals change. The persistence of plasticity is still 
an open issue, as it would require structural and genomic changes in the 
cerebellar SNN (e.g., (Gao et al., 2016)) that have not been modeled yet.

Spiking cerebellar built-in controllers embed realistic cerebellar 
SNNs, allowing an almost direct comparison of simulated neural activity 
with experimental data. The effects of discontinuous computing with 
spikes have been considered elsewhere and include enhanced timing 
capabilities, the possibility of implementing digital logic, and to 
generate energy-efficient codes (Mo & Wang, 2021; Yamazaki et al., 
2022). In spiking cerebellar built-in controllers, the use of SNNs bears 
specific implications. First, spikes can be generated using E-GLIF models 
(Geminiani et al., 2018) that can bring non-linearity in the system. 
Secondly, spikes instantiate timing on the millisecond scale, akin to the 
predicted role of the cerebellum as a timing device. Thirdly, spikes are 
used to implement learning rules based on spike-timing dependent 
plasticity (STDP), which is indeed present at several (if not all) cere-
bellar synapses. Finally, spike coding can be implemented using look-up 
tables generating event-driven schemes that allow accelerated 
computing to real-time and driving real physical robots (Antonietti 
et al., 2019).

While spiking cerebellar controllers have emphasized the molecular 
layer sub-circuit, they have not resolved the granular layer sub-circuit 
(mostly the mossy fiber-GrC-GoC system) yet. This is at odds with the 
extensive knowledge that has been recently gained about the granular 
layer of the cerebellum. Cerebellar granule cells acquire a widespread 
predictive feedback signal during motor learning (Giovannucci et al., 
2017) and can adaptively regulate the bandpass, gain, and phase of 
signal transmission along the mf-GrC pathway. mfs convey contextual 
information from multimodal sensory, cognitive, and emotional systems 
so that the granular layer would be required to multiplex and decorre-
late signal components conveyed by numerous and diverse input path-
ways (Cayco-Gajic et al., 2017; Lanore et al., 2021; Xie et al., 2023). The 
GoC circuits are fundamental for inhibition-mediated adaptive gain 
control and spatiotemporal patterning of the downstream GrCs (Gurnani 
& Silver, 2021). However, in their current configuration, spiking cere-
bellar built-in controllers are dealing with simple tasks so that the 
elaboration of contextual information in the granular layer may not be 
critical. Therefore, addressing the issue would involve not just extending 
the wiring of the cerebellar network but also increasing the dimen-
sionality of the task. A main issue concerning the granular layer is 
synaptic plasticity. Initially, it was represented as a gating process 
controlled by neuromodulators (Schweighofer et al., 2001). Although 
gating is relevant to control the induction of plasticity, different mech-
anisms have recently been reported, including STDP at mf-GrC and mf- 
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GoC (Masoli et al., 2022; Sgritta et al., 2017). A preliminary imple-
mentation of STDP has not been integrated into the full cerebellar SNN 
and has not been tested in task simulations yet. It should be noted that 
mf-GoC STDP is induced under pf guidance and could, in turn, impact 
mf-GrC STDP, generating a complex process regulating information flow 
through the cerebellar input stage and engaging multiple cerebellar 
modules and intermodular communication. Since now spiking cere-
bellar built-in controllers are made of a single module, they should be 
expanded to multidimensional modules. Therefore, implementing 
granular layer functionalities would imply a profound restructuring of 
the controller and its SNNs.

An expansion of the spiking cerebellar built-in controllers in this 
direction would eventually instantiate an Adaptive Filter Model (Dean 
et al., 2010; Porrill et al., 2013), with differential filtering of mf signals 
on the GrC lines that should be able to instantiate the spatio-temporal 
reconfiguration of the input predicted by Sudhakar et al. (2017). This 
would not be very useful with simple tasks like EBCC, but it would 
become a key factor in handling complex behaviors in a multiparametric 
parameter space.

Finally, considering the granular layer would bring about large-scale 
network dynamics based on theta-frequency oscillations and resonance 
(D’Angelo & De Zeeuw, 2009; Solinas et al., 2010), which are not 
currently considered since the rest of the controller does not have 
intrinsic oscillatory dynamics. This consideration leads to contemplating 
the confluence of spiking controllers into virtual brain models that are 
indeed capable of generating intrinsic space-time dynamics (D’Angelo & 
Jirsa, 2022).

2.5. Challenges and conclusions

By implementing a reverse engineering approach, robotic controllers 
can help face issues about cerebellar functioning that can be coarsely 
divided into those concerning theory, architecture, and circuit 
mechanisms.

The recognition that the cerebellum is not just sensorimotor but also 
cognitive (De Zeeuw et al., 2021) requires an extension of its wiring 
inside the controller loops. Future research needs, therefore, to address 
these core issues that are intimately bound together, i.e., modeling and 
simulating a dual spiking cerebellar built-in controller (inverse and 
forward) connected not just with motor but also with cognitive brain 
centers, to shed light on the neural basis of cognitive processing and 
mental experience (Nichols & Newsome, 1999) and how the conserved 
circuit architecture of the cerebellum contributes to more abstract brain 
functions (Carey, 2024). This would imply wiring the cerebellar SNNs 
with cognitive layers resorting to artificial intelligence, since an implicit 
coding (e.g., with a spiking neural network) of mental representations is 
still impractical (Nichols & Newsome, 1999).

In front of experimental progress in characterizing cerebellar func-
tioning, circuit mechanisms should be extended along several lines. 
First, while learning is now based on cf error signals, reward mecha-
nisms and gating signals (e.g., state-dependent neuromodulation that 
can enhance or suppress cerebellar learning based on behavioral 
context) should also be considered. Secondly, while the cerebellum has 
evolved to cope with complex multidimensional tasks, it is now often 
being tested with a limited number of dimensional tasks (e.g., 1 in EBCC 
or 3 in arm movement tasks). Thirdly, while the cerebellum is multi- 
modular, it is now modeled with a single module. As a whole, these is-
sues challenge the functions of the granular layer, which are currently 
underrepresented, along with sensory signals conveying contextual in-
formation developed across multiple modules intercommunicating 
through pfs.

Some technical challenges also emerge about the development and 
use of spiking cerebellar built-in controllers. First, learning requires very 
long-term simulations, bringing about intensive computations and high- 
performance computing (HPC). There are indeed examples of very large- 
scale simulations using cerebellar SNN running on HPC, making use of 

GPUs (Kuriyama et al., 2021; Yamazaki et al., 2021). Secondly, the 
embodiment in physical robots requires that computations are acceler-
ated to quasi-real-time. HPC could be best obtained using neuromorphic 
cerebellar models, e.g. on SpiNNaker (Bogdan et al., 2021). Real-time 
has been achieved with event-driven look-up table technology 
(EDLUT: (Ros et al., 2006; Antonietti et al., 2019)), but translating SNNs 
into this format is laborious and not all the relevant biological properties 
can be maintained, and the system efficiency is limited by network size, 
synapse density and firing rates. Alternatively, the embodiment can be 
tested in silico, such as by using the Virtual Neurorobotic Platform 
(Falotico et al., 2017).

The spiking cerebellar built-in controllers, by recreating the funda-
mental components of a biological system by reverse engineering, are 
helping us understanding what the role of the cerebellum in the brain is 
and, at the same time, clarifying the neural architecture supporting 
predictive brain capabilities. These investigations are opening new 
perspectives for the generation of autonomous robots.

BOX 1 – Technology of cerebellar robotic controllers

Interface with the environment and spikes/analog 
interconversions

One significant challenge in implementing controllers that inte-
grate spiking (cerebellar) models is the communication between 
the spiking controller and the environment, e.g., in the sensori-
motor controller scheme outlined in Fig. 2.

The signal from the cortical system serving as the movement target 
is analog and requires digitization, processing into trajectory 
commands, and conversion into spikes to be fed to the cerebellar 
controller. Similarly, the error calculation module, responsible for 
comparing sensory feedback obtained from the movement effector 
following the motor commands with the cerebellar prediction, 
must handle spikes and transmit them to the cerebellar module. 
Lastly, the opposite transformation is performed to interface with 
the effector. Indeed, it receives spikes encoding a command, 
which represent torques or muscle strength to be applied, neces-
sitating decoding into analog signals for each degree of freedom 
(DoF).

Specific interfaces are needed to convert analog signals into 
spikes. These conversions can be accomplished through encoding 
mechanisms based on population rate coding, which involves 
creating two pools of spiking neuronal populations (one for the 
positive (“agonist”) and one for the negative (“antagonist”) part of 
the signal) (Herzfeld et al., 2018; Ito, 2013). These populations 
encode the time course of the analog signal within their popula-
tion rate. To perform the opposite transformations, the decoding 
of a spike into an analog signal, the average population rate of 
these two pools is calculated, and two signals (positive and 
negative ones) are extracted and combined through a simple 
summation. In this context, the cerebellar controllers can be useful 
to tackle issues that have been difficult to study experimentally, 
such as the neural coding of the DCN.

Testing protocols

Cerebellar controllers can be challenged across a range of senso-
rimotor tasks to assess their functionality and efficiency, 
comparing their performance with biological and behavioral data. 
These tasks encompass diverse paradigms such as associative 
Pavlovian tasks, which involve learning a timing association be-
tween stimuli, vestibulo-ocular tasks focusing on maintaining vi-
sual stability during head movements, and perturbed arm 
reaching tasks designed to evaluate motor adaptation and coor-
dination in response to external disturbances. These testing pro-
tocols have different degrees of complexity, ranging from simple 
timing association to multi-DoF control of a limb, and therefore 
allow researchers to comprehensively examine the performance 
and adaptability of cerebellar controllers, testing also different 
hypotheses of cerebellar functioning.

E. D’Angelo et al.                                                                                                                                                                                                                               Neural Networks 188 (2025) 107538 

9 



Robotic embodiment

To execute these tasks effectively, a robotic embodiment of the 
controller becomes essential. A critical component of the 
embodiment is the movement effector, tasked with translating 
movement commands into actions, executing the desired move-
ments, and generating sensory feedback. This effector can mani-
fest as either a physical robot or its virtual avatar, depending on 
the specific experimental setup and requirements. If the cerebellar 
controller simulates slowly because of the high complexity of the 
model, real-time control of the robot becomes unfeasible, 
prompting the preference for a simulated robotic environment 
such as PyBullet (https://pybullet.org/) or the NeuroRobotics 
Platform (Falotico et al., 2017). Conversely, if the simulation is 
accelerated, e.g., by reducing spiking components, utilizing 
lookup tables to minimize solving differential equations, or 
leveraging neuromorphic architectures, a real physical robot may 
be the choice (Zahra et al., 2021, 2022; Yang et al., 2022; Mompó 
Alepuz, Papageorgiou, & Tolu, 2024). Simulations offer controlled 
testing but cannot replicate real-world complexity, even if intro-
ducing noise can prove robustness. Real robots face uncertainties, 
providing the ultimate test. Therefore, since the cerebellum’s role 
in noise rejection is crucial, a mix of simulations and real-robot 
experiments is likely to be necessary: simulations are used for 
initial development and testing, and real robots are used for final 
validation and refinement.

Another crucial aspect is the complexity of the movement to be 
simulated, directly linked to the number of DoFs one intends to 
control in the robot and, consequently, the number of neurons 
required in the simulations. This consideration also prompts 
another decision: while the simplest approach involves treating 
each DoF independently and scaling up the entire controller for 
the number of DoFs, it is important to acknowledge that the cer-
ebellum and other brain regions do not function in this isolated 
manner. Instead, they operate with interconnected and synergistic 
modules, necessitating thoughtful decisions in this regard. Multi- 
area models encompassing not only the cerebellum but also the 
sensorimotor cerebral cortex, basal ganglia, thalamus, brainstem, 
and spinal cord are needed to have a holistic model of sensori-
motor control and learning.

Cerebellar neurons and circuits

While cerebellar neuronal populations have been quite well 
characterized, their role in behavior has not been clarified yet. 
Therefore, cerebellar SNNs need to embed realistic properties of 
neuron physiology to resolve the link between neuronal dynamics 
and behavior through simulations. Neurons can be modeled as 
point neurons to allow limited computational load while keeping 
biological plausibility (Izhikevich, 2004). Specifically, models 
from the Leaky Integrate and Fire (LIF) family have been used, 
with additional state variabl es to reproduce more complex 
spiking properties like adaptation or bursting. The Izhikevich 
model, for example, represents neuron dynamics through a 
two-dimensional system that can simulate various patterns of 
cortical and thalamic neurons based on parameter value combi-
nations (Izhikevich, 2003). The Adaptive Exponential 
Integrate-and-Fire (AdEx) model introduces an exponential term 
and adaptive current to represent realistic spike initiation and 
adaptation (Brette & Gerstner, 2005). Finally, Generalized LIF 
(GLIF) models extend LIF by adding multiple dimensions and 
features like dynamic spike threshold and spike-triggered cur-
rents, to capture fast and slow subcellular properties, while 
keeping the system linear (Pozzorini et al., 2015; Teeter et al., 
2018). For cerebellar SNNs, LIF, AdEx, and GLIF models have been 
applied (Lennon et al., 2014; Marín et al., 2020). For instance, the 
E-GLIF model has been developed and tuned to reproduce the 
main electroresponsive properties, e.g., spike-frequency adapta-
tion, bursting, rebound, sub-threshold oscillations, and resonance, 
different for each neuronal population in the cerebellum. This is 
achieved through 3 state variables: the membrane potential and 
two intrinsic currents, one accounting for fast depolarization 
mechanisms like bursting, and the other, coupled with the 

membrane potential, accounting for slower hyperpolarization 
mechanisms like spike-frequency adaptation (Geminiani et al., 
2018). Each neural population parameter model is tuned to obtain 
cell-specific electroresponsive phenotypes.

Thanks to the modular and stereotyped architecture of the cere-
bellar microcircuit, the topology of cerebellar SNNs can be derived 
from anatomical data. In the biological-grounded cerebellar SNNs, 
the main cerebellar neuronal populations (see Fig. 3 and the cor-
responding paragraphs in the text) are connected following 
morphology intersection connectivity rules or statistical rules 
based on connection-specific convergence/divergence values (De 
Schepper et al., 2022).

Recently, the nucleo-cortical recurrent loop has been introduced, 
since it plays a demonstrated role in cerebellar predictive func-
tions and learning. Studies have shown its importance in ampli-
fying associative learning signals (Gao et al., 2016), modulating 
the timing and amplitude of learned responses (Ohmae, Ohmae, 
Heiney, Subramanian, & Medina, 2021), and contributing to 
prediction-error computations (Xiao et al., 2023). While these 
behavioral links are established, their computational imple-
mentation in spiking cerebellar built-in controllers offers oppor-
tunities to further investigate the mechanisms underlying these 
functions.

Cerebellar learning rules

To assess learning capabilities, the synapses within the cerebellar 
controller require plasticity. One approach is to represent them as 
conductance-based alpha functions. Over time, long-term synaptic 
plasticity rules have evolved to incorporate spike-timing depen-
dent plasticity (STDP) at various synapses, including pf-PC syn-
apses, pf-MLI synapses, PC-DCN synapses, mossy fibre-DCN 
synapses, IO-DCN synapses.

The general rule for the changes in synaptic strength can be 
defined as follows: 

W(t+1) = W(t) + ΔW(t)

Where (t) is the synaptic weight at time t and ΔW(t) is the 
weight change. It can be defined as the combination of two 
different processes: a strengthening of the synapse (LTP) and a 
weakening of the synapse (LTD). 

ΔW(t) = LTP(t) − LTD(t)

Each synapse follows a specific rule for the weight change. At 
the pf-PC synapses, the predominant type of LTD is induced het-
erosynaptically by cf (from IO) activity, through induced complex 
spikes in PCs. Conversely, the primary form of LTP does not rely on 
cf activity and is instead associated with the simple spikes pro-
duced by pf activity. This is based on the observation that a co- 
activation of a cf and a pf induces LTD in the corresponding pf- 
PC synapse, whereas pf activation without cf synchronous activity 
results in LTP as shown in Coesmans et al. (2004). The latter is 
weaker and slower than the former, as demonstrated by in vivo 
experiments (Yang & Lisberger, 2014).

The pf-MLI plasticity was constructed following the same principle 
of pf-PC plasticity but with reversed effects. When a specific signal 
(teaching signal) is received from the IO, it strengthens connec-
tions (LTP). The amount of strengthening depends on how 
frequently these pathways were active before receiving the 
teaching signal. The LTP process is based on experimental data 
about the timing of neuron activity change during learning, as 
measured in (ten Brinke et al., 2015). If a pathway is active 
without receiving the teaching signal, it weakens instead (LTD) 
(Geminiani et al., 2024).

For the cerebellar nuclei, experimental findings provide evidence 
of synaptic and intrinsic plasticity during learning (Ohyama, 
Nores & Mauk, 2003; Ohyama et al., 2006; Uusisaari & de 
Schutter, 2011). This occurs at a slower time scale than in the 
cerebellar cortex, consistent with the hypothesis that nuclear 
plasticity may be under PC control (Zheng & Raman, 2010). In 
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cerebellar SNNs, for mf-DCN plasticity, LTP happens when the 
driving inhibition from PCs decreases in strength. Conversely, LTD 
occurs when PCs are strongly active, so that it potentiates the 
silencing of DCN. For PC-DCN synapses, a standard unsupervised 
STDP learning is used, depending only on the difference between 
the pre- and post-synaptic firing times (Caporale & Dan, 2008). 
Furthermore, another plasticity site at DCN level has been intro-
duced in some cerebellar models, the IO-DCN plasticity, which 
adjusts the strength of connections based on the current error 
signal from cfs; this mechanism would allow for quick adaptation 
to changes in the environment and would ensure that adjustments 
are made promptly but can also be forgotten when they are no 
longer necessary. The biological validation of IO-DCN plasticity is 
still missing (Uusisaari & Knöpfel, 2011).
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Kostadinov, D., & Häusser, M. (2022). Reward signals in the cerebellum: Origins, targets, 
and functional implications. Neuron, 110(8).

Kumar, G., & Ma, C. H. E. (2023). Toward a Cerebello-Thalamo-cortical computational 
model of spinocerebellar Ataxia. Neural Networks : The Official Journal of the 
International Neural Network Society, 162, 541–556. https://doi.org/10.1016/J. 
NEUNET.2023.01.045

Kuniyoshi, Y., Kuriyama, R., Omura, S., Gutierrez, C. E., Sun, Z., Feldotto, B., 
Albanese, U., Knoll, AC., Yamada, T., Hirayama, T., Morin, FO., Igarashi, J., 
Doya, K., & Yamazaki, T. (2023). Embodied bidirectional simulation of a spiking 
cortico-basal ganglia-cerebellar-thalamic brain model and a mouse musculoskeletal 
body model distributed across computers including the supercomputer Fugaku. 
Frontiers in Neurorobotics, 17, Article 1269848. https://doi.org/10.3389/ 
fnbot.2023.1269848

Kuriyama, R., Casellato, C., D’Angelo, E., & Yamazaki, T. (2021). Real-time simulation of 
a cerebellar scaffold model on graphics processing units. Frontiers in Cellular 
Neuroscience, 15, Article 623552. https://doi.org/10.3389/fncel.2021.623552

Lanore, F., Cayco-Gajic, N. A, Gurnani, H., Coyle, D., & Silver, R. A (2021). Cerebellar 
granule cell axons support high dimensional representations. Nature Neuroscience, 24 
(8), 1142. https://doi.org/10.1038/S41593-021-00873-X

Lennon, W., Hecht-Nielsen, R., & Yamazaki, T. (2014). A spiking network model of 
cerebellar purkinje cells and molecular layer interneurons exhibiting irregular firing. 
Frontiers in Computational Neuroscience, 8(DEC), Article 118480. https://doi.org/ 
10.3389/FNCOM.2014.00157/ABSTRACT

Lennon, W., Yamazaki, T., & Hecht-Nielsen, R. (2015). A model of in vitro plasticity at 
the parallel Fiber—Molecular layer interneuron synapses. Frontiers in Computational 
Neuroscience, 9(DEC). https://doi.org/10.3389/fncom.2015.00150

Li, T., Le, W., & Jankovic, J. (2023). Linking the cerebellum to Parkinson Disease: An 
update. Nature Reviews Neurology, 19(11), 645–654. https://doi.org/10.1038/ 
s41582-023-00874-3, 2023 19:11.

Liang, KJ., & Carlson, ES. (2020). Resistance, vulnerability and resilience: A review of the 
cognitive cerebellum in aging and neurodegenerative diseases. Neurobiology of 
Learning and Memory, 170. https://doi.org/10.1016/j.nlm.2019.01.004

Liu, Y., Liu, R., Wang, J., Chen, W., Wang, Y., & Sun, C. (2023). A cerebellum-inspired 
spiking neural model with adapting rate neurons. IEEE Transactions on Cognitive and 
Developmental Systems, 15(3). https://doi.org/10.1109/TCDS.2023.3237776

Llinas, R., Churchland, PS., & Gaffan, D. (1997). The mind-brain continuum. Trends in 
Cognitive Sciences, 1(5). https://doi.org/10.1007/978-3-031-10059-8

Llinás, RR., & Roy, S. (2009). The ‘prediction imperative’ as the basis for self-awareness. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1521). 
https://doi.org/10.1098/rstb.2008.0309

Luque, NR., A.Garrido, J., Naveros, F., Carrillo, RR., D’Angelo, E., & Ros, E. (2016). 
Distributed cerebellar motor learning: A spike-timing-dependent plasticity model. 
Frontiers in Computational Neuroscience, 10(MAR). https://doi.org/10.3389/ 
fncom.2016.00017

Magielse, N., Heuer, K., Toro, R., Schutter, DJ. L. G., & Valk, SL. (2023). A comparative 
perspective on the cerebello-cerebral system and its link to cognition. Cerebellum 
(London, England), 22(6).

Marín, M., José Sáez-Lara, M., Ros, E., & Garrido, JA. (2020). Optimization of efficient 
neuron models with realistic firing dynamics. The case of the cerebellar granule cell. 
Frontiers in Cellular Neuroscience, 14. https://doi.org/10.3389/fncel.2020.00161

Marr, D. (1969). A theory of cerebellar cortex. The Journal of Physiology, 202(2). https:// 
doi.org/10.1113/jphysiol.1969.sp008820

Masoli, S., Rizza, M. F., Tognolina, M., Prestori, F., & D’Angelo, E. (2022). Computational 
models of neurotransmission at cerebellar synapses unveil the impact on network 
computation. Frontiers in Computational Neuroscience, 16.

Mathis, M. W., Rotondo, A. P., Chang, EF., Tolias, AS., & Mathis, A. (2024). Decoding the 
brain: From neural representations to mechanistic models. Cell, 187(21), 5814–5832. 
https://doi.org/10.1016/j.cell.2024.08.051

Mauk, MD., & Donegan, NH. (1997). A model of pavlovian eyelid conditioning based on 
the synaptic organization of the cerebellum. Learning and Memory, 4(1). https://doi. 
org/10.1101/lm.4.1.130

Mauk, MD., Medina, JF., Nores, WL., & Ohyama, T. (2000). Cerebellar function: 
Coordination, learning or timing? Current Biology, 10(14). https://doi.org/10.1016/ 
S0960-9822(00)00584-4

Medina, JF., Garcia, KS., Nores, WL., Taylor, NM., & Mauk, MD. (2000b). Timing 
mechanisms in the cerebellum: Testing predictions of a large- scale computer 
simulation. Journal of Neuroscience, 20(14). https://doi.org/10.1523/jneurosci.20- 
14-05516.2000

Medina, JF., & Mauk, MD. (2000). Computer simulation of cerebellar information 
processing. Nature Neuroscience, 3(11s), 1205–1211. https://doi.org/10.1038/81486

Medina, JF., Nores, WL., Ohyama, T., & Mauk, MD. (2000a). Mechanisms of cerebellar 
learning suggested by eyelid conditioning. Current Opinion in Neurobiology, 10(6), 
717–724. https://doi.org/10.1016/S0959-4388(00)00154-9

Miall, R. C., Weir, D. J., Wolpert, D. M., & Stein, J. F. (1993). Is the cerebellum a Smith 
predictor? Journal of Motor Behavior, 25(3), 203–216. https://doi.org/10.1080/ 
00222895.1993.9942050

Mo, L., & Wang, M. (2021). Logicsnn: A unified spiking neural networks logical operation 
paradigm. Electronics (Switzerland), 10(17). https://doi.org/10.3390/ 
electronics10172123
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