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Abstract
We prove a natural generalization of Szep’s conjecture. Given an almost simple groupG with
socle not isomorphic to an orthogonal group having Witt defect zero, we classify all possible
group elements x, y ∈ G\{1}withG = NG(〈x〉)NG(〈y〉), wherewe are denoting byNG(〈x〉)
and by NG(〈y〉) the normalizers of the cyclic subgroups 〈x〉 and 〈y〉. As a consequence of
this result, we classify all possible group elements x, y ∈ G \ {1} with G = CG(x)CG(y).

Keywords Szep’s conjecture · Almost simple · Group factorization

Mathematics Subject Classification (2000) 05A17 · 11P81

1 Introduction

Given a finite group G and x ∈ G, we denote by CG(x) the centralizer of x in G and by
NG(〈x〉) the normalizer of the cyclic subgroup 〈x〉 in G. It was conjectured by J. Szep [19],
that ifG = CG(x)CG(y)with x, y ∈ G \{1}, thenG is not a non-abelian simple group. Over
a long period, many authors investigated this conjecture and in 1987, using the Classification
of the Finite Simple Groups, E. Fisman and Z. Arad [19, Theorem 1] gave a positive answer
to this problem.
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More recently, R. Guralnick, G. Malle and P. Tiep have obtained another proof of Szep’s
conjecture [11] as a direct application of some results on the product of conjugacy classes in
algebraic groups. This new proof, for Lie type groups, actually proves more than the original
statement of Szep’s conjecture. Namely, it is shown that, if L is a non-abelian simple group
of Lie type and L � G ≤ Inndiag(L), then CG(x)CG(y) �= G, for every x, y ∈ G \ {1}.
Here Inndiag(L) denotes the group of inner-diagonal automorphisms of L , as defined in [9,
Chapter 2].

Moreover, recently Szep’s conjecture has played a crucial role in the investigation of the
finite primitive groups having two coprime subdegrees [6]. Indeed, the positive solution of
Szep’s conjecture is used in Theorems 1.5 and 1.6 of [6]. In order to simplify some of the
arguments in the proofs of these theorems, it would have been necessary to have Szep’s
conjecture available for the whole class of the finite almost simple groups.

The following is the main theorem of this paper.

Theorem 1.1 Let G be an almost simple group and let x, y be in G \ {1}. Suppose that
the socle of G is not isomorphic to an orthogonal group P�+

n (q), with n ≥ 8. If G =
NG(〈x〉)NG(〈y〉), then (replacing x by y if necessary) (G, x, y) is one of the triples in
Table 1. See Sections 1.1 and 1.2, for the notation in Table 1.

Moreover, G = CG(x)CG(y) if and only if in the 6th column of Table 1 appears the
symbol

√
.

In the course of the proof of Theorem 1.1, we show that every triple (G, x, y) in Table 1
gives rise to a genuine example of a factorization G = NG(〈x〉)NG(〈y〉).

An immediate application of Theorem 1.1 gives the following corollary.

Corollary 1.2 Let G be an almost simple transitive permutation group on� and letω be in�.
Suppose that the socle of G is not isomorphic to an orthogonal group P�+

n (q), with n ≥ 8.
If the point stabilizer Gω normalizes a non-identity cyclic subgroup 〈x〉 and if G contains an
element y �= 1 with NG(〈y〉) transitive on �, then (replacing x by y if necessary) the triple
(G, x, y) is in Table 1.

A similar investigation for almost simple groups having socle an orthogonal group
P�+

n (q), with n ≥ 8, seems difficult and, at the moment, we do have 12 different fam-
ilies of factorizations using normalizers. We intend to come back to this question in the
future.

It is worth mentioning that our strategy for proving Theorem 1.1 is considerably different
from the original proof of Szep’s conjecture [19]. Our main tool uses the classification of the
maximal factorizations of the almost simple groups obtained by M. Liebeck, C. Praeger and
J. Saxl in [16, 17].

Let G be an almost simple group with socle L . A factorization G = AB is said to be
maximal if A and B are both maximal subgroups of G, and is said to be core-free if A and
B are core-free in G (that is, L � A, B). All the core-free maximal factorizations of the
almost simple groups are classified in Tables 1–6 and Theorem D of [16]. In particular, if
G = NG(〈x〉)NG(〈y〉) (for some x, y ∈ G \ {1}) and NG(〈x〉) ≤ A, NG(〈y〉) ≤ B for some
core-free maximal subgroups A and B of G, then (G, A, B) is one of the triples classified
in [16]. In particular, this reduces the proof of Theorem 1.1 to a case-by-case analysis on
Tables 1–6 and on TheoremD of [16]. Moreover, for each of these triples (G, A, B), we have
NG(〈x〉) = NA(〈x〉) and NG(〈y〉) = NB(〈y〉) and so it suffices to investigate the order and
the structure of the normalizers of the non-trivial elements of A and B, respectively.

There is only one more case to consider in our analysis: every maximal subgroup of
G containing NG(〈x〉) (or NG(〈y〉)) contains the socle L of G. The almost simple groups

123



Szep’s Conjecture 327

Ta
bl
e
1

T
ri
pl
es

in
T
he
or
em

1.
1,

L
�=

P
�

+ n
(q

).
Se
e
Se
ct
io
ns

1.
1
an
d
1.
2
fo
r
no

ta
tio

n

L
in
e

G
ro
up

el
em

en
tx

el
em

en
t
y

R
em

ar
ks

1
Sy

m
(n

)
tr
an
sp
os
iti
on

n-
cy
cl
e

n
pr
im

e

2
Sy

m
(5

)
|x|

∈{
3,
6}

5-
cy
cl
e

3
PG

L
2
(r

)
|x|

=
r

y
ha
s
no

1-
di
m
.e
ig
en
sp
ac
e

4
PS

L
2
(r

)
|x|

=
r

y
ha
s
no

1-
di
m
.e
ig
en
sp
ac
e

r
≡

3
(m

od
4)

5
P
�
L
2
(1
6)

fie
ld

au
t.
of

or
de
r
2

|y|
=

17

6
PS

L
n
(q

)
�

G
gr
ap
h
au
t.
of

or
de
r
2

|y|
di
vi
de
s
q

−
1,

y
ha
s
an

n
≥

4
ev
en

√
C
PG

L
n
(q

)(
x)

∼ =
PG

Sp
n
(q

)
(n

−
1)
-d
im

.e
ig
en
sp
ac
e

G
co
nt
ai
ns

a
gr
ap
h
au
t.

7
PS

L
n
(4

)
�

G
|x|

=
5,

x
ha
s
no

ei
ge
nv
al
ue

|y|
=

3,
y
ha
s
an

n
≥

4
ev
en
,G

�
PG

L
n
(4

)〈τ
〉

in
F
q

(n
−

1)
-d
im

.e
ig
en
sp
ac
e

τ
in
ve
rs
e-
tr
an
sp
os
e
au
t.

8
PS

U
n
(4

)
�

G
|x|

=
3,

x
ha
s
no

|y|
=

5,
y
ha
s
an

(n
−

1)
-d
im

.
n
ev
en
,

ei
ge
nv
al
ue

in
F
q
2

ei
ge
ns
pa
ce

4
di
vi
de
s
|G

:L
|

9
PS

U
n
(q

)
�

G
|x|

=
2,

x
∈P

�
U
n
(q

)
\P

G
U
n
(q

)
|y|

|q
+

1,
x
ha
s
an

n
≥

4
ev
en

√
C
L
(x

)
∼ =

PS
p n

(q
)

(n
−

1)
-d
im

.e
ig
en
sp
ac
e

2
di
vi
de
s
|G

:L
|

10
PS

p n
(q

)
�

G
|x|

=
2,

x
∈P

G
Sp

n
(q

)
\P

Sp
n
(q

)
|y|

=
r,

y
tr
an
sv
ec
tio

n
q
od

d,
n/

2
ev
en

√

C
L
(x

)
∼ =

PS
p n

/
2
(q

2
).
2

PG
Sp

n
(q

)
≤

G

11
P
�

− n
(q

)
�

G
gr
ap
h
au
t.
of

or
de
r
2

|y|
di
vi
de
s
q

+
1,

y
ha
s
no

n/
2
od

d
√

C
L
(x

)
∼ =

�
n−

1
(q

)
if
q
od

d
ei
ge
nv
al
ue

in
F
q

G
co
nt
ai
ns

a
gr
ap
h
au
t.

C
L
(x

)
∼ =

Sp
n−

2
(q

)
if
q
ev
en

12
A
ut

(�
− n

(4
))

|x|
=

3,
x
ha
s
an

|y|
=

5,
y
ha
s
no

ei
ge
nv
al
ue

5
di
vi
de
s
n,

n/
2
od

d

(n
−

2)
-d
im

.e
ig
en
sp
ac
e

in
F
q

13
A
ut

(�
− n

(q
))

|x|
=

2,
x

∈S
O

− n
(q

)
\�

− n
(q

)
|y|

=
q
2

+
1,

y
ha
s
no

ei
ge
nv
al
ue

n
≡

4
(m

od
8)

C
�

− n
(q

)(
x)

∼ =
Sp

n−
2
(q

)
in

F
q
2
,C

�
− n

(q
)(
y)

∼ =
G
U
n/

4
(q

2
)

q
∈{

2,
4}

14
P
�
n
(q

)
�

G
|x|

=
2,

C
L
(x

)
∼ =

P
�

− n−
1
(q

).
2

|y|
=

r,
y
un

ip
ot
en
t

n
≡

1
(m

od
4)

√

x
∈S

O
n
(q

)
\�

n
(q

)
C
L
(y

)
∼ =

E
m

(m
−1

)/
2+

m
q

:S
p m

(q
)

SO
n
(q

)
≤

G

123



328 N. Gill et al.

admitting such factorizations are classified in [17, Table 1] and there is only a handful of
such examples.

In the process of proving Theorem 1.1 using the work in [16, 17], we have realized that
there is one configuration omitted in the proof of Liebeck, Praeger and Saxl [16, 17] classi-
fying the maximal factorizations of the almost simple groups with socle P�+

8 (2 f ). Although
this missing configuration is of no concern to us here because we are excluding almost simple
groups having socle P�+

8 (2 f ) in our main results, we discuss this configuration in Section 2
andwe show that this configuration does give rise to two extramaximal factorizations omitted
in the work of Liebeck, Praeger and Saxl. In Section 2, we comment how these extra fac-
torizations influence other work relying on the classification in [16, 17]. The factorizations
in [16] have been extensively used. For instance, recently, this was used in [14] to give a
characterization of the factorizations of almost simple groups with a solvable factor, which
was then applied to study s-arc-transitive Cayley graphs of solvable groups, leading to a
striking corollary that, except for cycles, a non-bipartite connected 3-arc-transitive Cayley
graph of a finite solvable group is necessarily a normal cover of the Petersen graph or the
Hoffman-Singleton graph. However, Zhou [20] improved this and obtained a remarkable
refinement, that is, every non-bipartite connected Cayley graph of a finite solvable group is
at most 2-arc-transitive.

1.1 Notation

We use the notation from [9, Chapter 4] and [4] for conjugacy classes of elements in groups
of Lie type and, in general, we use the notation from [12] for the subgroups of the classical
groups.

Given an almost simple group G, we denote by L the socle of G. Suppose that L is a
simple classical group defined over the finite field of size q . For twisted groups our notation
for q is such that PSUn(q) and P�−

n (q) are the twisted groups contained in PSLn(q2) and
P�+

n (q2), respectively. We write q = r f , for some prime r and some f ≥ 1, and we define

q0 :=
{
q2 if G is unitary,
q otherwise.

We let V be the natural module defined over the field Fq0 of size q0 for the covering group
of L , and we let n be the dimension of V over Fq0 .

We consider the following classical groups L̃:

– SLn(q) with n ≥ 1,
– SUn(q) with n ≥ 1,
– Spn(q) with n even and n ≥ 2,
– �n(q) with qn odd and n ≥ 1, and
– �±

n (q) with n even and n ≥ 2.

For some of our proofs, we need to deal with arbitrary classical groups as defined above
and hence with no restrictions on n. However, for proving our main results, we take into
account the various isomorphisms among classical groups, see [12, Section 2.9]. For instance,
SL2(q) ∼= SU2(q) ∼= Sp2(q) ∼= �3(q) and �5(q) ∼= Sp4(q). In particular, in Table 1 and in
proving Theorem 1.1, we may suppose n ≥ 2 for linear groups, n ≥ 3 for unitary groups,
n ≥ 4 for symplectic groups, n ≥ 7 for odd dimensional orthogonal groups and n ≥ 8 for
even dimensional orthogonal groups.
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Szep’s Conjecture 329

The corresponding simple classical groups L := L̃/Z(L̃) are

PSLn(q), PSUn(q), PSpn(q), P�n(q), and P�±
n (q).

With the restrictions on n as above, these are indeed non-abelian simple groups, except for
PSL2(2), PSL2(3), PSU3(2) and PSp4(2).

We denote by π : L̃ → L the natural projection of L̃ onto L . By abuse of notation, we
refer to the action of L̃ on V simply as the action L on V . We adopt a similar convention for
every G with L �G ≤ Aut(L) ∩ PGL(V ). For example, for a subgroup H of L , we say that
H acts irreducibly on V when this is true of π−1(H).

Given an integer κ and a prime number p, we write κp for the largest power of p dividing
κ . Given two integers κ and κ ′, we denote by gcd(κ, κ ′) the greatest common divisor of κ

and κ ′.
Given a prime power q and an integer n ≥ 2, a prime t is called a primitive prime divisor

of qn − 1 if t divides qn − 1 and t does not divide qi − 1, for each i ∈ {1, . . . , t − 1}. From
a celebrated theorem of Zsigmondy [21], the following hold

– for n ≥ 3, primitive prime divisors exist with the only exception of (n, q) = (6, 2),
– for n = 2, primitive prime divisors exist with the only exception of q being a Mersenne
prime, that is, q is prime and q = 2� − 1 for some � ∈ N.

Note that, if t is a primitive prime divisor of qn − 1, then q has order n modulo t and thus
n divides t − 1.

1.2 Notation for Table 1

In reading Table 1, we take into account the notation we have established in Section 1.1 and
some isomorphisms among classical groups.

When L = PSLn(q), we suppose n ≥ 2 and, when

(n, q) ∈ {(2, 4), (2, 5), (2, 9), (4, 2)},
we refer to Lines 1 and 2 of Table 1, because PSL2(4) ∼= PSL2(5) ∼= Alt(5), PSL2(9) ∼=
Alt(6) and PSL4(2) ∼= Alt(8). Moreover, when (n, q) = (3, 2), we refer to Lines 3 and 4,
because PSL3(2) ∼= PSL2(7).

When L = PSUn(q), we suppose n ≥ 3; when L = PSpn(q), we suppose n ≥ 4; when
L = P�n(q) = �n(q) with n odd, we suppose n ≥ 7; when L = P�±

n (q) with n even, we
suppose n ≥ 8.

1.3 Structure of the Paper

In Section 3, we collect some basic results which we use throughout the whole paper, some-
times without mention.

In Section 4, we prove Theorem 1.1 for the almost simple groups having socle a sporadic,
or an exceptional, or an alternating group.

In the rest of the paper we deal with the classical groups. In Section 5, we consider the
linear groups PSLn(q). In Section 6, we consider the unitary groups PSUn(q). In Section 7,
we consider the symplectic groups PSpn(q). In Section 8, we consider the odd dimensional
orthogonal groups P�n(q) = �n(q). In Section 9, we consider the even dimensional orthog-
onal groups P�−

n (q) having Witt defect 1.
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330 N. Gill et al.

2 An Additional Maximal Factorization of an Almost Simple Group

A computation with the computer algebra systemMagma [2] yields that there are factoriza-
tions

�+
8 (4).〈φ〉 = N−

2 · SO−
8 (2) = SO−

8 (2) · N−
2 (2.1)

and
�+

8 (16).〈φ〉 = N−
2 · (SO−

8 (4).2) = (SO−
8 (4).2) · N−

2 , (2.2)

where the subgroup SO−
8 (q1/2) ≤ �+

8 (q) is the image of a C5 subgroup under a triality
automorphism, and φ is a non-identity field automorphism of order f , where q = 2 f . Recall
that we are using the notation in [12] and hence, in particular, N−

2 is the stabilizer of a 2-
dimensional anisotropic subspace of V = F8

q . Moreover, these factorizations do not lead to a

factorization of the simple group L = �+
8 (q); actually, these factorization exists only in the

almost simple groups Aut(�+
8 (q))-conjugate to �+

8 (q).〈φ〉 and in no other almost simple
groups with socle �+

8 (q). Observe that, using triality, we have exactly three possibilities for
�+

8 (q).〈φ〉. Both factors in each of these factorisations are core-free maximal subgroups and
so these factorisations are max+ factorisations in the terminology of [17]. Thus [16, Table 4]
should have the rows of Table 2 added.

For q = 4, the factorisation can be verified by the following steps:

1. construct the action of �+
8 (4) on 2-dimensional subspaces of “minus type”;

2. find the normaliser of the induced permutation group in Sym(6580224) to obtain the
permutation group G for �+

8 (4).〈φ〉;
3. use the ClassicalMaximals command to construct an appropriate H = �−

8 (2) in �+
8 (4);

4. find the image of H in G and then determine its normaliser in G to find the appropriate
SO−

8 (2) subgroup;
5. check that the SO−

8 (2) is transitive in this action.

For q = 16 the groups are too large to do many of these steps. It is possible though to use the
ClassicalMaximals command to construct an appropriate �−

8 (4) in �+
8 (16) and then show

that it has an orbit on the set of 2-dimensional subspaces of “minus type” whose length is
one quarter of the total number of such subspaces. We then explicitly construct SO−

8 (4).2
in �+

8 (16).〈φ〉, and the Sylow 2-subgroups of the two potential factors. We can then exhibit
that the intersection of the Sylow 2-subgroups has order 8 and is contained in �−

8 (4) and so
we do indeed have a factorisation.

Table 2 Missing maximal factorizations

L ∗ or † A ∩ L B ∩ L Remark Y column

�+
8 (4) ∗ (5 × �−

6 (4)).2 �−
8 (2) G = L.2, A in C1 or C3, B in C5 or

C9 depending on choice of A. Two

possible B for each A. Moreover,

G contains a field automorphism

�+
8 (16) ∗ (17 × �−

6 (16)).2 �−
8 (4) G = L.4, A in C1 or C3, B in C5 or

C9 depending on choice of A. Two

possible B for each A. Moreover,

G contains a field automorphism

of order 4
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2.1 Dealing with theMissing Factorization

Using the notation in [16], the factorizations in (2.1) and (2.2) were erroneously ruled out
in [16, pp. 106–107] when considering the possibility

A ∩ L = ((q + 1)/d × �−
6 (q)).2d/Z and B ∩ L = �−

8 (q1/2),

where d := gcd(2, q − 1) and Z is the group of scalars in �+
8 (q). The argument there for q

even only rules out a factorization of the simple group L and misses a subtlety due to triality.
We now provide a complete analysis of this case following that in [16].

Let G be an almost simple group having socle L := P�+
8 (q) and let A and B be maximal

subgroups of G. Suppose that G = AB with A ∩ L = ((q + 1)/d × �−
6 (q)).2d/Z and

B ∩ L = �−
8 (q1/2). As in Section 1.1, we let V be an 8-dimensional vector space over the

finite field Fq equipped with a non-degenerate quadratic form of plus type with q = r f for
someprime r and someevenpositive integer f . By applying a suitable triality automorphism if
necessary we may assume that A = N−

2 , the stabilizer in G of an anisotropic 2-dimensional
subspace. Moreover, by [13] the maximality of A in G implies that G ≤ P�O+

8 (q). Let
X ∼= �−

8 (q1/2) be a subgroup of L in C5, that is, a subfield subgroup. By [13], we may take
B ∩ L = X τa for some a ∈ {0, 1, 2}, where τ is a triality automorphism of L . Write k = τ a .
Now X has a subgroup

Y = (SO+
4 (q1/2) × SO−

4 (q1/2)) ∩ X

fixing an orthogonal sum decomposition V = W1 ⊥ W2, where W1 and W2 are both non-
degenerate 4-dimensional subspaces of V of plus type. By [12, Lemma 4.1.1], we have
that

Y = (�+
4 (q1/2) × �−

4 (q1/2)).2

and Y induces SO+
4 (q1/2) and SO−

4 (q1/2) on W1 and W2 respectively. Therefore, the kernel
of the action of Y onW1 is�−

4 (q1/2) and the kernel of the action of Y onW2 is�+
4 (q1/2). Let

M be the stabilizer in L of this decomposition. Now Y k ≤ B ∩ L and Y k ≤ Mk . By [13], τ
fixes setwise the L-conjugacy class of M in L and soWk fixes an orthogonal decomposition
V = W ′

1 ⊥ W ′
2, with W ′

1,W
′
2 both 4-dimensional non-degenerate subspaces of V of plus

type. Note that Y has a subgroup of index 2 and so potentially Y k interchanges W ′
1 and W ′

2.
Indeed a Magma [2] calculation shows that this does indeed happen when q = 4.

This seems to have been overlooked by [16] as their argument seems to assume that
Y k fixes both W ′

1 and W ′
2.

We now continue the analysis of this potential factorization, obtaining the missing factoriza-
tions in [16].

For i = 1, 2, let Ki be the kernel of the action of the stabilizer in Y k of W ′
i on W ′

i . Note
that (Y k)W ′

i
induces a subgroup of GO+

4 (q) onW ′
i . Now�+

4 (q1/2) ∼= SL2(q1/2)◦SL2(q1/2)

and �−
4 (q1/2) = PSL2(q). Since GO+

4 (q) does not contain a subgroup isomorphic to an
index two subgroup of Y , each Ki is nontrivial.

Suppose first that q = r f is odd. For q �= 9, by considering the normal subgroups of Y ′,
the unique index 2 subgroup of Y , we see that either SL2(q1/2) or �−

4 (q1/2) lies in K1. On
the other hand, for q = 9, we see that the centralizer in GO+

4 (9) of �−
4 (3) does not contain

an element of order 3 and so we may draw the same conclusion about K1. Then, taking a
suitable 2-dimensional subspaceU ≤ W ′

1 and A := GU = {g ∈ G | Ug = U }, we have that
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332 N. Gill et al.

K1 ≤ A ∩ B and so q1/2 divides |A ∩ B|. As q is odd, we have that

|A|r =|�−
6 (q)|r |G : L|r = |G : L|r q6,

|B|r =|�−
8 (q1/2)|r |G : L|r = q6|G : L|r ,

|A ∩ B|r ≥q1/2,

|G|r =q12|G : L|r .
As G does not contain a triality automorphism of L , we have that |G : L|r divides fr and
hence we see that |A|r |B|r < |G|r |A ∩ B|r , contradicting G = AB. Therefore, when q is
odd, there are no factorizations, as predicted by [16].

Now suppose that q is even. Then |A|2 = 2|�−
6 (q)|2|G : L|2 = 2q6|G : L|2 and

|B|2 = q6|G : L|2, while |G|2 = q12|G : L|2. Since G = AB, this implies that |A ∩ B|2 =
2|G : L|2. Note also that

|G : L|2 divides 2 f2. (2.3)

Suppose first that B ∩ L = X . Then W ′
1 = W1 and W ′

2 = W2. Choose U ≤ W1 to be
a 2-dimensional subspace of minus type and take A := GU . Since YW1 = SO+

4 (q1/2)
and the order of the stabilizer in SO+

4 (q1/2) of a non-degenerate 2-dimensional subspace is
divisible by 4, we see that |A ∩ B|2 ≥ |YU |2 = 4q . However, this contradicts (2.3), because
|A ∩ B|2 = 2|G : L|2 ≤ 4 f2. Thus

B ∩ L = X τa ,

where a ∈ {1, 2}. When q = 4 and 16, we have verified with Magma that we do obtain the
maximal factorizations in Table 2. Suppose then q > 16. Thus q ≥ 64, because f is even.

Then, by [13], the maximality of B in G implies that |G : L| divides f . As q ≥ 64, the
group Y has a unique index 2 subgroup, namely Y ′. Then the kernel of the action of Y ′ on
W ′

1 is non-trivial and it is not hard to show that K1 ≥ SL2(q1/2). Therefore,

((Y ′)τa )W1 = SL2(q
1/2) × SL2(q).

We claim that the stabilizer in this group of a 2-dimensional subspace of W1 of minus type
has even order. We argue by contradiction, and we suppose that there exists a 2-dimensional
subspaceU of minus type of W1 with the property that the stabilizer in SL2(q1/2) × SL2(q)

has odd order. Let us denote by S1 and S2 the two simple direct factors of �+
4 (q). Let

N := SL2(q1/2) × SL2(q) and let � be the collection of all 2-dimensional subspaces of W1

of minus type. Routine computations yield

|�| = q2(q − 1)2

2
. (2.4)

Without loss of generality we may suppose that S2 ⊆ M . Observe that

|(�−
2 (q) × �−

2 (q)).2| = 2(q + 1)2 and |N | = q3/2(q − 1)(q2 − 1).

Since gcd(q + 1, q − 1) = 1 and since we are assuming that MU has odd order, we deduce
that |NU | divides q + 1 and NU ≤ S2. From one hand we deduce that the N -orbit containing
U has cardinality divisible by q3/2 and, on the other hand, we deduce that S1 centralizes NU .
As �+

4 (q) = S1N , we deduce that each orbit of M on the 2-dimensional subspaces of W1

of minus type has order divisible by q3/2. The number of N -orbits is thus |S1 : S1 ∩ N | and
hence q1/2 · q3/2 = q2 divides |�|; however, this contradicts (2.4).
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2.2 Impact of theMissing Factorizations in otherWork

The factorizations in [16] have been extensively used. Now, we comment how this extra
factorization influences other work relying in the classification in [16].

1. Since the Y column for the new factorizations are empty, these new factorizations do not
give an example of a primitive almost simple group of degree n as a proper subgroup
of a primitive almost simple group of the same degree but different socle. Thus no new
examples arise for [15, Table VI].

2. The classification of maximal factorizations of almost simple groups was used in [18]
to determine all regular subgroups of the primitive almost simple groups. These new
factorizations provide four new primitive almost simple groups with a core-free transitive
subgroup (namely the action of G on the set of cosets of A and the action of G on the
set of cosets of B). We have checked with the help of a computer that none of these new
primitive actions admits regular subgroups and hence no exception arises in [18].

3. For these new factorizations |G : A| and |G : B| are even and so these are not coprime
factorizations and so no new factorization needs to be added to [6, Table 1].

4. The maximal factorisations in [16] are used in [14] to determine the factorisations of
almost simple group with one of the two factors solvable. Therefore, in principle, the
missing factorizations arising when the socle is P�+

8 (4) and P�+
8 (16) could in principle

yield factorizations missed by [14] when using [16]. We have checked with Magma and
we confirm that no new factorization arises when one of the two factors is solvable.

3 Preliminary Remarks

Lemma 3.1 Let G be a group, let M and N be subgroups of G with G = MN and let T be
a subgroup of N. Then G = MT if and only if N = (M ∩ N )T .

Proof If G = MT , then N = MT ∩ N = (M ∩ N )T , as required. Conversely, if N =
(M ∩ N )T , then G = MN = M(M ∩ N )T = MT . ��

The following elementary lemma is one of the ingredients for our proof of Theorem 1.1
when the socle of G is an alternating group. A permutation g ∈ Sym(n) is said to be
textitsemiregular if all the orbits of 〈g〉 on {1, . . . , n} have the same length.

Lemma 3.2 Let g be in Sym(n) \ {1}. If NSym(n)(〈g〉) is transitive on {1, . . . , n}, then g is
semiregular.

Proof Write N := NSym(n)(〈g〉). Clearly, N permutes the orbits of 〈g〉having the same length.
Since N is transitive on {1, . . . , n}, we obtain that all 〈g〉-orbits have the same length. ��

For the rest of this paper, G denotes an almost simple group with socle L having two
group elements x, y ∈ G \ {1} with

G = NG(〈x〉)NG(〈y〉).
Write

X := NG(〈x〉) and Y := NG(〈y〉),
for short.
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Lemma 3.3 We have

G = NG(〈x〉)NG(〈y〉g) = NG(〈x〉g)NG(〈y〉),
for every g ∈ G. Let 〈g1〉, . . . , 〈g�〉 be a set of representatives for the conjugacy classes
of non-identity cyclic subgroups of G. Then there exist i, j ∈ {1, . . . , �} with G =
NG(〈gi 〉)NG(〈g j 〉).
Proof Let g be in G. We have g = uv, for some u ∈ X = NG(〈x〉) and v ∈ Y = NG(〈y〉).
Now,

NG(〈x〉g)NG(〈y〉) =NG(〈x〉v)NG(〈y〉) = NG(〈x〉v)NG(〈y〉v)
=NG(〈x〉)vNG(〈y〉)v = (XY )v = Gv = G.

The other case is similar. Now, the rest of the proof follows from the fact that 〈x〉 = 〈gi 〉hx
and 〈y〉 = 〈g j 〉hy , for some i, j ∈ {1, . . . , �} and hx , hy ∈ G. ��

Lemma 3.3 gives a very efficient test to check whether G = NG(〈x〉)NG(〈y〉). For exam-
ple, for M11 it is immediate to see with [5] that |NM11(〈g〉)| ≤ 55, for every g ∈ M11 \{1}. As
|M11| > 552, we see that Theorem 1.1 holds true for M11, that is, M11 has no factorization
of the form M11 = NM11(〈x〉)NM11(〈y〉) with x, y ∈ M11 \ {1}.

We also have the following useful lemma.

Lemma 3.4 Suppose that G = NG(〈x〉)NG(〈y〉) for some x, y ∈ G. Then G =
NG(〈x ′〉)NG(〈y′〉) for some x ′, y′ ∈ G of prime order.

Proof Let px divide |x | and py divide |y| be primes. Then x ′ := x |x |/px and y′ := y|y|/py
have prime order. Moreover,NG(〈x〉) ≤ NG(〈x ′〉) andNG(〈y〉) � NG(〈y′〉). Thus the result
follows. ��

4 Proof of Theorem 1.1 for Sporadic, Exceptional and Alternating
Simple Groups

We are now ready to prove Theorem 1.1 when L is a sporadic simple group, an exceptional
group of Lie type or an alternating group.

Proposition 4.1 L is not a sporadic simple group.

Proof All factorizations of almost simple groups having socle a sporadic simple group are
determined in [8]. The result follows by inspection. ��
Proposition 4.2 L is not an exceptional group of Lie type.

Proof Suppose that G = XY and by Lemma 3.4 we may assume that both x and y have
prime order. From [16, Table 5], we see that L is one of the following groups:

– G2(q) with q = 3 f ,
– F4(q) with q = 2 f ,
– G2(4).

Note that [16, Table 5] gives all factorisations of G, not just the maximal ones, and so lists
the possibilities for X and Y .
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Suppose first that L = G2(4). Then interchanging X and Y if necessary we have that
X ∩ L = SU3(4).4 ∩ L . Since X ∩ L has trivial centre, it follows that x /∈ L and so is a
field automorphism of order 2. However, this implies that CL(x) ∼= G2(2), which does not
contain SU3(4), a contradiction.

Next suppose that L = Gq(q) with q = 3 f . Then interchanging X and Y if necessary
we have that X ∩ L = SL3(q) or SL3(q).2. In both cases X ∩ L has trivial centre and so
SL3(q) ≤ CA(x). Moreover, x /∈ L . Hence by [9, Proposition 4.9.1], x is either a field
or graph-field automorphism of L and hence CL(x) = G2(q0) with q = qe0 , or

2G2(q),
respectively. Neither of these contain SL3(q) as a subgroup, a contradiction.

Similarly, if L = F4(q) then X ∩ L = Sp8(q). Hence Sp8(q) ≤ CA(x) and x /∈ L .
Again, x is either a field or graph-field automorphism of L and hence CL(x) = F4(q0) with
q = qe0 , or

2F4(q), respectively. Neither of these contain Sp8(q) as a subgroup, and so we
obtain another contradiction. ��
Proposition 4.3 If L = Alt(n), then the triple (G, x, y) is in Line 1 or 2 of Table 1.

Proof For 5 ≤ n ≤ 6, the result follows by a computation using Lemma 3.3. We obtain
the examples in Line 1 or 2 of Table 1. Assume that n ≥ 7. In particular, G = Alt(n) or
G = Sym(n). Then by [16, Theorem D], interchanging X and Y if necessary we have that
either Alt(n − k) � X ≤ Sym(k) × Sym(n − k) for some k ≤ 5 and Y is k-homogeneous on
n points, or one of the following holds:

1. n = 8 and X = AGL3(2);
2. n = 10 and X = PSL2(8) or PSL2(8).3.

In these two exceptional cases, X is clearly not the normaliser of a nontrivial cyclic subgroup.
Hence Alt(n− k)� X ≤ Sym(k)×Sym(n− k) and Y is k-homogeneous. Note that since X
has a nontrivial cyclic normal subgroup we must have that k ≥ 2. Hence by [1, Theorem 6],
Y is primitive on n points. As 〈y〉 � Y , we get that the socle of the primitive group Y is
〈y〉. Thus n is prime and y is a cycle of prime order. Moreover, Y ∼= AGL(1, n) ∩ G is
2-homogeneous but not 3-homogeneous. Hence either k = 2, or n = 7 and k = 5. In the
first case we deduce that x is a transposition, G = Sym(n) and X = Sym(2) × Sym(n − 2).
Thus we do obtain a factorisation. It remains to consider the case where k = 5 and n = 7,
and we may assume that x is not a transposition. Since |G| = |X ||Y |/|X ∩ Y |, we deduce
that X contains a 5-cycle. As x is not a transposition we deduce that x is a 5-cycle. However,
we then have |X | ≤ 40 and |Y | ≤ 42, which contradicts |X ||Y | ≥ |G| ≥ (7!)/2.

It is easy to verify that in Lines 1 and 2 we have CG(x)CG(y) < G and hence there is no
symbol

√
in the 6th column. ��

5 Classical Groups: Linear Groups

In this section, we assume that G is an almost simple group with socle L = PSLn(q) with
q = r f for some prime r .

We start our analysis with two technical lemmas, which help to locate the elements x and
y with G = NG(〈x〉)NG(〈y〉). Our main reference for these lemmas is [9, Chapter 4] and [4,
Chapter 3.1, Tables B.1, B.2, B.3].

Lemma 5.1 Let n ≥ 2. Suppose r f n − 1 admits a primitive prime divisor t1. Let g ∈
Aut(PSLn(q)) with t1 dividing |NAut(PSLn(q))(〈g〉)| and let T1 be a cyclic subgroup of order
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t1 in NAut(PSLn(q))(〈g〉). Then

g ∈ CAut(PSLn(q))(T1) =
⎧⎨
⎩

〈T , ι〉 ι graph automorphism, if n is even,
〈T , ι〉 ι graph-field automorphism, if n is odd and f is even,
T if n f is odd,

where T is a maximal torus of PGLn(q) having order (qn −1)/(q −1), that is, T is a Singer
cycle. In particular, |NAut(PSLn(q))(〈g〉) : CAut(PSLn(q))(g)| is relatively prime to t1.

Proof Supposefirst thatT1 ≤ CAut(PSLn(q))(g). Then g ∈ CAut(PSLn(q))(T1). LetT be aSinger
cycle of PGLn(q) containing T1. Using [9], we obtain the structure of CAut(PSLn(q))(T1).

It remains to consider the case that t1 does not divide the order of CAut(PSLn(q))(g).
We aim to prove that this case cannot arise. As t1 divides |NAut(PSLn(q))(〈g〉)| and as
NAut(PSLn(q))(〈g〉)/CAut(PSLn(q))(g) acts faithfully as a group of automorphisms on the cyclic
group 〈g〉, we deduce that t1 divides ϕ(|g|), where ϕ is the Euler totient function. In partic-
ular, |g| is divisible by a prime p with t1 | p − 1. Without loss of generality, replacing g by
g|g|/p if necessary, we may suppose that |g| = p. As f n divides t1 − 1, we have f n < t1.
As t1 | p − 1 and f n < t1, we deduce g ∈ PSLn(q). Since t1 is a primitive prime divisor for
r f n − 1, we have p �= r and hence g is semisimple. Now, as T1 acts non-trivially on 〈g〉, we
deduce that T1 permutes non-trivially the eigenspaces of g. However, this is a contradiction
because t1 > n. ��

Lemma 5.2 Let n ≥ 3. Suppose r f (n−1) − 1 admits a primitive prime divisor t2. Let g ∈
Aut(PSLn(q)) with t2 dividing |NAut(PSLn(q))(〈g〉)| and let T2 be a cyclic subgroup of order
t2 in NAut(PSLn(q))(〈g〉). Then one of the following holds:

1.

g ∈ CAut(PSLn(q))(T2) =
⎧⎨
⎩

〈T , ι〉 ι graph automorphism, if n is odd,
〈T , ι〉 ι graph-field automorphism, if n and f are even,
T if (n − 1) f is odd,

where T is a maximal torus of PGLn(q) having order qn−1 − 1. In particular,
|NAut(PSLn(q))(〈g〉) : CAut(PSLn(q))(g)| is relatively prime to t2;

2. n = t2 is prime, f = 1, g lies in a Singer cycle of PGLn(q) and has order divisible by a
primitive prime divisor p of r f n − 1 with n | p − 1.

Proof If T2 ≤ CAut(PSLn(q))(g), then the proof follows verbatim the argument in Lemma 5.1
and we obtain that Part 1 holds.

It remains to consider the case that t2 does not divide the order of CAut(PSLn(q))(g). We
aim to prove that Part 2 holds. As t2 divides |NAut(PSLn(q))(〈g〉)| and as NAut(PSLn(q))(〈g〉)/
CAut(PSLn(q))(g) acts faithfully as a group of automorphisms on the cyclic group 〈g〉, we
deduce that t2 divides ϕ(|g|). In particular, |g| is divisible by a prime p with t2 | p − 1.
Without loss of generality, we may suppose that |g| = p. As f (n − 1) divides t2 − 1, we
have f (n−1) < t2 and hence g ∈ PSLn(q). Now, as T2 acts non-trivially on 〈g〉, we deduce
that T2 permutes non-trivially the eigenspaces of g. As t2 > n−1, this is possible only when
〈g〉 has n distinct eigenvalues and t2 = n. As t2 = n and f (n − 1) < t2, we have f = 1.
Moreover, as g has n distinct eigenvalues in a suitable extension of Fq , we deduce that g is
contained in a Singer cycle of PSLn(q) and, via the embedding of F∗

qn in Fn
q \ {0}, g is a field

generator. ��
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In our proofs, we exclude those groups that are isomorphic to alternating groups, as these
have already been covered in Proposition 4.3. Thus n ≥ 2 and

(n, q) /∈ {(2, 4), (2, 5), (2, 9), (4, 2)}.
See Section 1.1, for our notation.

We first deal with 2-dimensional linear groups, because we have little room in this case
for using the primitive prime divisors t1 and t2 in Lemmas 5.1 and 5.2.

Lemma 5.3 If L = PSL2(q) and q /∈ {4, 5, 9}, then (G, x, y) is in Lines 3, 4 or 5 of Table 1.

Proof Assume that f = 1. Here G = PSL2(r) or G = PGL2(r). Now, replacing X by Y if
necessary, we may assume that r divides |X |. The only elements x of G having normalizer
of order divisible by r are the r -elements. Thus |x | = r , X is a Borel subgroup of G and

|X | =
{

(r−1)r
2 if G = PSL2(r),

(r − 1)r if G = PGL2(r).

As G = XY and X fixes a 1-dimensional subspace of V , we see from the Frattini argument
that Y acts transitively on the 1-dimensional subspaces of V .With a quick look at the structure
of the conjugacy classes ofG, we obtain that y ∈ T \{1}, with T a maximal torus of PGL2(r)
of order r + 1. In particular,

|Y | = |NG(〈y〉)| =
{
r + 1 if G = PSL2(r),
2(r + 1) if G = PGL2(r).

If G = PGL2(r), we have

|X ||Y |
|X ∩ Y | = ((r − 1)r)(2(r + 1))

2
= |G|

and hence G = XY : these examples are in Line 3 of Table 1. If G = PSL2(r), then Y is a
dihedral group with |X ∩ Y | = 1 if r ≡ 3 (mod 4) and with |X ∩ Y | = 2 if r ≡ 1 mod 4.
In particular, G = XY only when r ≡ 3 (mod 4): these examples are in Line 4 of Table 1.

Assume f > 1. If q = 8, then an inspection in [5] shows that there are no non-identity
group elements x and y with G = NG(〈x〉)NG(〈y〉). Suppose q �= 8. Let s be a primitive
prime divisor of r2 f − 1 (such a prime exists by Zsigmondy’s theorem [21] because we are
excluding the case q = 8). Since G = XY , we see that either X or Y has order divisible by
s. Replacing X by Y if necessary, we may assume that s divides |X |. Using the subgroup
structure of P�L2(q) (see [3]), we see that the only elements x having normalizer of order
divisible by s are the elements lying in a maximal torus T of PGL2(q) of order q + 1. Now,
for every x ∈ T \ {1}, we have |NP�L2(q)(〈x〉)| = 2(q + 1) f and

P�L2(q) = NP�L2(q)(〈x〉)PSL2(q).

Since G = XY , we get

P�L2(q) = NP�L2(q)(〈x〉)G = NP�L2(q)(〈x〉)Y
and so we may assume that G = P�L2(q). Thus |X | = 2(q +1) f . As |G||X ∩Y | = |X ||Y |,
we obtain that |G|/|X | = (q − 1)q/2 divides |Y |. Another inspection on the maximal
subgroups of P�L2(q) (for q �= 4, 9) shows that NP�L2(q)(〈y〉) is divisible by (q − 1)q/2
only when q ∈ {24, 28} and y is a field automorphism of order 2. If L = PSL2(28) and y is
a field automorphism of order 2, then Y ∼= PGL2(24).8 and |X ∩ Y | = 2. However,

|X ||Y |
|X ∩ Y | = 2(28 + 1)8 · (28 − 1)27

2
= |G|

2
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and hence we have no examples when q = 28. A computation with Magma shows that the
only factorization arising with L = PSL2(16) is in Line 5 of Table 1.

It is easy to verify that in Lines 3, 4 and 5we haveCG(x)CG(y) < G and hence there is no
symbol

√
in the 6th column (Line 5 can also be verifiedwith an easy computer computation).��

Next we deal with linear groups, where the primitive prime divisor t2 in Lemma 5.2 does
not exist.

Lemma 5.4 If L = PSL3(q) and q = r = 2� − 1, for some � ∈ N, then G �=
NG(〈x〉)NG(〈y〉).
Proof When (n, q) = (3, 3), the proof follows with a computer computation with the com-
puter algebra system Magma. Lemma 3.3 makes the search of factorizations G = NG(〈x〉)
NG(〈y〉) very efficient. In particular, for the rest of the argument, we suppose q �= 3.

Observe that � > 2, becausewe are excluding the case (n, q) = (3, 3). Let t1 be a primitive
prime divisor of r3 − 1 and let T1 be a cyclic subgroup of G of order t1. As t1 divides |L|,
we have that t1 divides |X | or |Y |. Without loss of generality, we suppose that t1 divides |X |
and hence t1 divides |NG(〈x〉)|. From Lemma 5.1, replacing T1 with a suitable conjugate,
we have T1 ≤ CG(x). Therefore x ∈ CG(T1). Let Tx be the maximal torus of PGL3(r)
containing T1. In particular, Tx is a torus of order (q3 − 1)/(q − 1). From Lemma 5.1, we
deduce

CAut(L)(T1) = Tx .

Thus x ∈ Tx and hence x is a semisimple element of order dividing r2+r+1. Using this fact,
we deduce that NG(〈x〉) has order a divisor of 6(r2 + r + 1). Since this number is relatively
prime to r , we deduce that Y contains a Sylow r -subgroup R of G. Thus R ≤ Y = NG(〈y〉)
and R = NR(〈y〉). A moment’s thought gives that y ∈ Z(R) and hence y is a transvection of
K . Thus |NPGL3(r)(〈y〉)| = (r − 1)2r3 and hence |Y | divides 2(r − 1)2r3. Therefore |X ||Y |
divides

6(r2 + r + 1) · 2(r − 1)2r3 = 12r3(r3 − 1)(r − 1)

and so does |G|, because G = XY . As

|G| = |G : L||L| ≥ r3(r3 − 1)(r2 − 1)

gcd(3, r − 1)
,

we deduce r + 1 = 2� divides 4 and hence � ≤ 2, contradicting the fact that � > 2. ��
Next, we deal with the exceptional case arising in Part 2 of Lemma 5.2.

Lemma 5.5 If L = PSLn(q), q = r , n is a primitive prime divisor of qn−1 − 1, n ≥ 3 and
CPSLn(q)(x) orCPSLn(q)(y) is a maximal torus of order (qn −1)/(q−1), then G �= NG(〈x〉)
NG(〈y〉).
Proof Assume by contradiction that G = XY . Here, |Aut(L) : L| = 2. Without loss of
generality, we may suppose that CPSLn(q)(x) is a maximal torus of order (qn − 1)/(q − 1).
Thus |X | = n(qn − 1)/(q − 1) when G = L , and |X | = 2n(qn − 1)/(q − 1) when G > L .
In both cases, |G : X | = |L|/(n(qn − 1)/(q − 1)).

By consulting the maximal factorizations of almost simple groups with socle PSLn(q)

in [16], we deduce that Y ≤ P , where P ∈ {P1, Pn−1} and P1, Pn−1 are maximal parabolic
subgroups.AsG = XY , we deduce that |Y | is divisible by |G : X | = |L|/(n(qn−1)/(q−1)).
As |P| = |L|/((qn − 1)/(q − 1)) we have that |P : Y | divides n. As P has no subgroups
having prime index n, we get Y = P . However, when n ≥ 3, P normalizes no cyclic
non-identity subgroup. ��
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Finally, we deal with the general case.

Lemma 5.6 If L = PSLn(q), n ≥ 3 and (n, q) �= (3, 2), then (G, x, y) is in Line 6 or 7 of
Table 1.

Proof When n = 3 and q = r = 2� −1, for some � ∈ N, the proof follows from Lemma 5.4.
Similarly, when q = r , n is a primitive prime divisor of qn−1 − 1 and CL(x) or CL(y) is a
maximal torus of order (qn − 1)/(q − 1), the proof follows from Lemma 5.5. Therefore, we
exclude these cases from the rest of the proof of this lemma.

When (n, q) ∈ {(3, 4), (3, 8), (4, 4), (6, 2), (7, 2)}, the proof follows with a computer
computation with the computer algebra system Magma. Lemma 3.3 makes the search of
factorizationsG = NG(〈x〉)NG(〈y〉) very efficient. In particular, for the rest of the argument,
we suppose

(n, q) /∈ {(3, 4), (3, 8), (4, 4), (6, 2), (7, 2)}.
For the rest of our argument, the primitive prime divisors t1 and t2 in Lemmas 5.1 and 5.2

exist and moreover, Part 2 in Lemma 5.2 does not arise.
Without loss of generality, wemay suppose that t1 divides |X |. Let T1 be a cyclic subgroup

of X having order t1 and set
C1 := CAut(L)(T1).

From Lemma 5.1, we have

x ∈ C1 =
⎧⎨
⎩

〈Tx , ι〉 ι graph automorphism of L, if n is even,
〈Tx , ι〉 ι graph-field automorphism of L, if n is odd and f is even,
Tx if n f is odd,

(5.1)

where Tx is a maximal torus of PGLn(q) having order (qn − 1)/(q − 1). We now divide
the rest of the argument in three cases, depending on whether x ∈ Tx and on whether n is
even. ��

5.1 Assume x ∈ Tx

Thus x is a semisimple element and X is a field extension subgroup of G. Thus, using the
information in [4, Tables B1, B.2, B.3], we deduce that the order of X divides

|G : G ∩ PGLn(q)|�
q − 1

|GLn/�(q
�)|, (5.2)

for some divisor � of n with � > 1.
We now turn our attention to t2. From (5.2), we see that t2 is relatively prime to |X | and

hence t2 divides |Y |. Let T2 be a cyclic subgroup of Y having order t2 and set

C2 := CAut(L)(T2).

From Lemma 5.2, we have

y ∈ C2 =
⎧⎨
⎩

〈Ty, ι〉 ι graph automorphism of L, if n is odd,
〈Ty, ι〉 ι graph-field automorphism of L, if n and f are even,
Ty if (n − 1) f is odd,

(5.3)

where Ty is a maximal torus of PGLn(q) having order qn−1 − 1.
Assume y ∈ Ty . Thus the order of Y divides

|G : G ∩ PGLn(q)|κ|GL(n−1)/κ (qκ )|, (5.4)
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for some divisor κ of n − 1. Assume first κ > 1. Then, using (5.2) and (5.4), we have

q
n(n−1)

2 |G : G ∩ PGLn(q)|r = |G|r ≤ |X |r |Y |r
≤ |G : G ∩ PGLn(q)|2r (�κ)r q

n
2 (

n
�
−1)q

(n−1)
2

(
(n−1)

κ
−1

)
.

Therefore

q
n(n−1)

2 ≤ |G : G ∩ PGLn(q)|r (�κ)r q
n
2 (

n
�
−1)q

(n−1)
2

(
(n−1)

κ
−1

)
.

A computation yields that this inequality is satisfied only when (n, q) = (3, 2). The case
(n, q) = (3, 2) is of no concern to us here, because we are excluding this case from the
statement. Assume next κ = 1. When κ = 1, using the explicit structure of CL(x) and
CL(y), we deduce |X ∩ Y |r ≥ |GLn/�−1(q�)|r . Therefore, using (5.2) and (5.4), we have

q
n(n−1)

2 |G : G ∩ PGLn(q)|r =|G|r = |X |r |Y |r
|X ∩ Y |r

≤|G : G ∩ PGLn(q)|2r �r q
n
2 (

n
�
−1)q

(n−1)(n−2)
2 q− (n−�)

2 ( n
�
−2).

Therefore

q
n(n−1)

2 ≤ |G : G ∩ PGLn(q)|r�r q n
2 (

n
�
−1)q

(n−1)(n−2)
2 q− (n−�)

2 ( n
�
−2).

Acomputation yields that this inequality is satisfied onlywhen q ∈ {2, 4} and � = 2. The case
q = 2 is impossible because GLn−1(2) is centerless, but y ∈ Z(GLn−1(q)). When q = 4,
we deduce that y is a semisimple element having an eigenspace of dimension n − 1 and that
x is a semisimple element of order 5 with no 1-dimensional eigenspaces on V . In the case
(q, �) = (4, 2), by refining the computation above comparing |G|2 with |X |2|Y |2/|X ∩ Y |2,
we deduce G � 〈PGLn(4), τ 〉, where τ is the inverse-transpose graph automorphism. Thus
we obtain the examples in Line 7 of Table 1, with the extra remark concerning G in the fifth
column.

Assume y /∈ Ty . Suppose also that, for the time being, y is an involution. Using [4,
Tables B.1, B.2, B.3] (or [9, Chapter 4]), we see that all involutions in C2 \ Ty are Aut(L)-
conjugate to ι. Thus y is Aut(L)-conjugate to a graph automorphism when n is odd and ι is
Aut(K )-conjugate to a graph-field automorphism when n and f are even. Thus the order of
Y divides

2 f (q − 1)|Spn−1(q)|, when n is odd,

2 f (q − 1)|GUn(q
1/2)|, when n, f are even.

(5.5)

Using (5.2) and (5.5), we see with a computation similar (but simpler) to the one above that
|X |r |Y |r < |G|r and hence this case does not arise. We give details only in the case that Y
is of type Spn−1(q). We have

|G|r = |XY |r ≤ |X |r |Y |r = (�|G : G ∩ PGLn(q)|)r q n
2 (

n
�
−1) · (2 f )r q

(n−1)2
4 .

Using |G|r = |G : G ∩ PGLn(q)|r q n(n−1)
2 and simplifying the expression above, we deduce

q
n2
4 + n

2 − 1
4− n2

2� ≤ (2� f )r .

Since � > 1 and n is odd, we have n2/2� ≥ n2/6 and hence

q
n2
12 + n

2 − 1
4 ≤ (2� f )r ,
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which is never satisfied. Suppose now that y is not an involution.As y ∈ C2\Ty = 〈Ty, ι〉\Ty ,
we have y2 ∈ Ty , y2 �= 1 and G = XNG(〈y2〉). Therefore, we may apply the argument in
the first part of the proof to the triple (G, x, y2) and we deduce that (G, x, y2) is in Line 7
of Table 1. Thus n is even, q = 4, |x | = 5, |y2| = 3, y2 is a semisimple element with an
(n − 1)-dimensional eigenspace and x is a semisimple element with no eigenvalues in Fq .
Now, |y| = 6 and CL(y) ∼= SUn−1(2). Then an easy computation, comparing |G|2 with
|XY |2, yields G �= XY ; therefore, there are no further examples in this case.

5.2 Assume x /∈ Tx and that n is Odd

Then, from (5.1), f is even. Suppose also that, for the time being, x has order 2. Using again
the information in [4, Section 3.1] (or in [9, Chapter 4]), we see that x is Aut(L)-conjugate
to ι. Therefore, x is Aut(L)-conjugate to a graph-field automorphism. Hence

Or ′
(X) ∼= PSUn(q

1/2).

An inspection on themaximal factorizations in [16, 17] reveals that there are no factorizations
G = XY with Or ′

(X) ∼= PSUn(q1/2). (This analysis could be omitted by comparing the
size of a Sylow r -subgroup of X , Y and G in a fashion similar to the computations above.)
Suppose now that x is not an involution. Then x2 ∈ Tx and x2 �= 1. Therefore, we may apply
Section 5.1 to the triple (G, x2, y) and we deduce that G �= NG(〈x2〉)NG(y), because except
for (n, q) = (3, 2) there are no factorizations when n is odd and the case (n, q) = (3, 2)
does not occur here as we require f even.

5.3 Assume x /∈ Tx, |x| = 2 and n is Even

Using [4, Section 3.1] (or [9, Chapter 4]), we infer that, when q is even, C1 \ Tx contains
a unique Aut(L)-conjugacy class of involutions and, when q is odd, C1 \ Tx contains two
Aut(L)-conjugacy classes of involutions. Then, using the information in [4, Section 3.1 and
Table B.3], we obtain

O2′
(CPGLn(q)x) ∼=

{
PSpn(q), or,
P�−

n (q), q odd.
(5.6)

Then t2 does not divide |NG(〈x〉)| and so t2 divides |Y |. Thus y is as in (5.3).
Assume y ∈ Ty . We claim that, using (5.4), the second possibility forCG(x) in (5.6) does

not give rise to any factorization G = XY . Indeed, we have

|G|r ≤ |X |r |Y |r ≤ (|G : PGLn(q)|)r q n(n−2)
4 · |G : G ∩ PGLn(q)|rκr q

(n−1)
2

(
n−1
κ

−1
)
.

When κ > 1, rearranging the terms and using the fact that (n−1)/κ ≤ (n−1)/3, we deduce

q
n2
12 + 5n

6 − 2
3 ≤ (|G : G ∩ PGLn(q)|κ)r ,

which is impossible. When κ = 1, a similar computation taking in account that |X ∩
Y |r ≥ |X ∩ Y ∩ L|r ≥ |�n−1(q)|r = q(n−1)2/4 yields another contradiction. Thus
O2′

(CPGLn(q)(x)) ∼= PSpn(q). Using the formula for |PSpn(q)|, we obtain

q
n(n−1)

2 ≤ |G|r ≤ |X |r |Y |r ≤ (2 f )2r q
n2
4 q

n−1
2κ ( n

κ
−1).

This inequality is satisfied only when κ = 1. Thus y is a semisimple element having an
eigenspace of dimension n − 1. The examples arising in this case are in Line 6 of Table 1.
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Assume y /∈ Ty and y is an involution. In particular, from (5.3), as n is even, f is also
even and y is Aut(L)-conjugate to a graph-field automorphism. Therefore Or ′

(CL(y)) ∼=
PSUn−1(q1/2). Using the formulae for |PSUn−1(q1/2)| and for |PSpn(q)| (or P�−

n (q),
depending on the Aut(L)-conjugacy class of x) and taking in account whether r is odd
or r = 2, we see with a computation that |X |r |Y |r < |G|r . Therefore this case does not arise.

Assume y /∈ Ty and y is not an involution. As y ∈ C2 \Ty = 〈Ty, ι〉\Ty , we have y2 ∈ Ty ,
y2 �= 1 and G = XNG(〈y2〉). Therefore, we may apply the argument in the first part to the
triple (G, x, y2) and we deduce that (G, x, y2) is in Line 6 of Table 1. Thus |y2| divides
q − 1 and y2 is a semisimple element with an (n − 1)-dimensional eigenspace. Assume that
|y| is divisible by some odd prime p. Replacing y by y|y|/2p if necessary, we may suppose
that |y| = 2p. Now, y p ∈ C2 \ Ty = 〈Ty, ι〉 \ Ty , y p is an involution and G = XNG(〈y p〉);
however, we have shown in the previous paragraph that this is impossible. Therefore, y
has order a power of 2 and hence, replacing y by y|y|/4 if necessary, we may suppose that
|y| = 4. In particular, q is odd, because when q is even Ty has odd order. To conclude the rest
of our analysis we identify Ty with the multiplicative group of Fqn−1 . (In particular, under
this identification, we refer to an element of F∗

qn−1 as an element of PGLn(q).) Let λ be a

generator of F∗
qn−1 . Then y = λ�ι, where � is a divisor of qn−1 − 1 and ι is a graph-field

automorphism. Now,

y2 = (λ�ι)2 = λ�(λ�)ι = λ�λ−�q1/2 = λ�(1−q1/2).

As y2 has order 2, we deduce �(1 − q1/2) = κ(qn−1 − 1)/2, for some κ ∈ N. Thus

� = κ
qn−1 − 1

2(1 − q1/2)
.

This shows that λ� has order a divisor of 2(q1/2 − 1) and hence λ� ∈ F∗
q . Since all elements

of PGLn(q) in F∗
q ⊆ F∗

qn−1 have the same centralizer, we have

CPGLn(q)(y
2) = CPGLn(q)(λ

�)

and hence
CPGLn(q)(y) = CPGLn(q)(〈λ�, ι〉).

Now, CPGLn(q)(λ
�) ∼= GLn−1(q), from which we deduce that

CPGLn(q)(y) ∼= CGLn−1(q)(ι) ∼= GUn−1(q
1/2).

Using this explicit description of CPGLn(q)(y) it is not hard to verify that |X |r |Y |r < |G|r .

5.4 Assume x /∈ Tx, |x| > 2 and n is Even

Here x2 ∈ Tx and x2 �= 1. Applying Section 5.1 to the triple (G, x2, y), we deduce that
(G, x2, y) is in Line 7 of Table 1. Thus n is even, q = 4, |x2| = 5, |y| = 3, x5 has no
eigenvalue in Fq and y has an (n − 1)-dimensional eigenspace on V . Thus |x | = 10 and
CL(x) ∼= GUn/2(4). However, it is not hard to see that |G|2 �= |X |2|Y |2/|X∩Y |2. Therefore,
no further example arises.

Using the explicit description ofNG(〈x〉),NG(〈y〉) in Lines 6 and 7, it is readily seen that
G = CG(x)CG(y) when (G, x, y) is in Line 6 and CG(x)CG(y) < G when (G, x, y) is in
Line 7. Thus we have the

√
symbol in Line 6, whereas

√
is omitted in Line 7.
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6 Classical Groups: Unitary Groups

In this section, we assume thatG is an almost simple groupwith socle L = PSUn(q). Exactly
as in Section 5, we start with three technical lemmas, which help to locate the elements x
and y with G = NG(〈x〉)NG(〈y〉).
Lemma 6.1 Let n be even. Suppose r2 f (n−1) − 1 admits a primitive prime divisor t2. Let
g ∈ Aut(PSUn(q)) with t2 dividing |NAut(PSUn(q))(〈g〉)| and let T2 be a cyclic subgroup of
order t2 in NAut(PSUn(q))(〈g〉). Then

g ∈ CAut(PSUn(q))(T2) = T ,

where T is amaximal torus ofPGUn(q)having order qn−1+1. In particular, |Aut(PSUn(q)) :
CAut(PSUn(q))(g)| is relatively prime to t2.

Proof Let T be a maximal torus of PGUn(q) containing T2. Observe that T2 in its action on
V = Fn

q2
fixes a 1-dimensional non-degenerate subspace and acts irreducibly on its comple-

ment. Thus |T | = qn−1 + 1. Using the information in [9, Chapter 4] and [4, Chapter 3.2,
Tables B.1, B.2, B.3] together with the fact that n is even, we obtain

CAut(PSUn(q))(T2) = T .

If T2 ≤ CAut(PSUn(q))(g), then g ∈ CAut(PSUn(q))(T2) = T and hence |Aut(PSUn(q)) :
CAut(PSUn(q))(g)| is relatively prime to t2, because so is |Aut(PSUn(q)) : T |.

It remains to consider the case that t2 does not divide the order of CAut(PSUn(q))(g).
We aim to prove that this case cannot arise. As t2 divides NAut(PSUn(q))(〈g〉) and as
NAut(PSUn(q))(〈g〉)/CAut(PSUn(q))(g) acts faithfully as a group of automorphisms on the cyclic
group 〈g〉, we deduce that t2 divides ϕ(|g|), where ϕ is the Euler’s totient function. In par-
ticular, |g| is divisible by a prime p with t2 | p − 1. Without loss of generality, we may
suppose that |g| = p. As 2 f (n − 1) divides t2 − 1, we have 2 f (n − 1) < t2 and hence
g ∈ PSUn(q). Now, as T2 acts non-trivially on 〈g〉, we deduce that T2 permutes non-trivially
the eigenspaces of g. However, this is a contradiction because t2 > 2 f (n − 1) ≥ n. ��
Lemma 6.2 Let n be a positive integer with n/2 even, let t1 be a primitive prime divisor of
r f n − 1, let g ∈ Aut(PSUn(q)) with t1 dividing |NAut(PSUn(q))(〈g〉)| and let T1 be a cyclic
subgroup of order t1 in NAut(PSUn(q))(〈g〉). Then

g ∈ CAut(PSUn(q))(T1) = 〈T , ι〉,
where T is a maximal torus of PGUn(q) having order (qn − 1)/(q + 1), ι ∈ Aut(PSUn(q)),
|ι| = 2 and CPGUn(q)(ι) ∼= PGSpn(q). In particular, |NAut(PSUn(q))(〈g〉) : CAut(PSUn(q))(g)|
is relatively prime to t1.

Proof The hypothesis n/2 even is used to guarantee that t1 divides qi − (−1)i , only when
i = n. The rest of the proof follows verbatim the proofs of Lemmas 5.1, 5.2 and 6.1.
The structure of CAut(PSUn(q))(T1) can be inferred from [4, Section 3.2, Table B.4] or [9,
Chapter 4]. ��
Lemma 6.3 Let n ≥ 4 be even with n/2 odd. Suppose r f n/2 − 1 admits a primitive prime
divisor t ′1. Let g ∈ Aut(PSUn(q)) with t ′1 dividing |NAut(PSUn(q))(〈g〉)| and let T ′

1 be a cyclic
subgroup of order t ′1 in NAut(PSUn(q))(〈g〉). Then

g ∈ CAut(PSUn(q))(T
′
1) = 〈T , ι〉,
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where T is a maximal torus of PGUn(q) having order (qn − 1)/(q + 1), ι ∈ Aut(PSUn(q)),
|ι| = 2 and CPGUn(q)(ι) ∼= PGSpn(q). In particular, |NAut(PSUn(q))(〈g〉) : CAut(PSUn(q))(g)|
is relatively prime to t ′1.

Proof The hypothesis n/2 odd is used to guarantee that t ′1 divides qi − (−1)i , only when
i = n. The rest of the proof follows verbatim the other analogous proofs. For this lemma,
the only part that is not trivial is showing that, t ′1 is relatively prime to |NAut(PSUn(q))(〈g〉) :
CAut(PSUn(q))(g)|. Arguing as usual, we have that t ′1 | p − 1, |g| = p and g is semisimple
because f n/2 < t ′1. As t ′1 is a primitive prime divisor of r f n/2 −1 we have that f n/2 divides
t ′1 − 1 and hence

α f
n

2
+ 1 = t ′1,

for some α ∈ N. If α f > 1, then t ′1 > n. If α = f = 1, then t ′1 = n/2 + 1 is even because
n/2 is odd, which is a contradiction because n ≥ 4. Therefore, in all cases t ′1 > n. Now,
T ′
1 permutes the eigenspaces of g, but it must permute the eigenspaces trivially because

t ′1 > n. ��
From here onward we make use more intensively of the work of Liebeck, Praeger and

Saxl on maximal factorizations [16, 17].

Lemma 6.4 If L = PSUn(q) with n ≥ 3, then (G, x, y) is in Line 8 or 9 of Table 1.

Proof When (n, q) ∈ {(3, 3), (3, 5), (3, 8), (4, 2), (4, 3), (6, 2), (6, 4), (9, 2), (12, 2)}, the
proof follows with a computer computation with the computer algebra system Magma.

From [16, 17], we see that, when n is odd, G admits no proper factorization, except when
(n, q) ∈ {(3, 3), (3, 5), (3, 8), (9, 2)}. In particular, since we have already dealt with these
cases, for the rest of the proof, we may assume that n is even. Set m := n/2. The other
pairs that we have excluded with the computer computation allow us to conclude that the
only maximal factorizations of G are listed in [16, Table 1] and, via Zsigmondy’s theorem,
to guarantee the existence of a primitive prime divisor of r2 f (n−1) − 1 and r f n − 1 when
n/2 = m is even, and r f n/2 − 1 when n/2 = m is odd.

Let t2 be a primitive prime divisor of r2 f (n−1) − 1. As t2 divides |L|, without loss of
generality, we may suppose that t2 divides |Y |. Let T2 be a cyclic subgroup of order t2 in Y
and let Ty be a maximal torus of PGUn(q) containing T2. From Lemma 6.1, we obtain

y ∈ Ty,

where Ty is a torus having order qn−1 + 1. As n is even, from [4, Section 3.2], the order of
Y divides

|G : G ∩ PGUn(q)|κ|GU(n−1)/κ (qκ )|, (6.1)

for some divisor κ of n − 1. Moreover, from the structure of Ty , we also deduce that Y is
contained in the stabilizer of a 1-dimensional non-degenerate subspace of V . We claim that

κ = 1. (6.2)

Since we have excluded above the pairs (n, q) ∈ {(4, 2), (4, 3), (6, 2), (12, 2)} and since
Y fixes a non-degenerate 1-dimensional subspace, using the classification of the factorizations
of almost simple groupswith socle L = PSUn(q) in [16, 17], we see that X must be contained
in a maximal subgroup A of G with the property that one of the following holds:

(i) L ∩ A = Pm ,
(ii) L ∩ A = PSp2m(q) = PSpn(q),
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(iii) L ∩ A =ˆSLm(4).2, q = 2, m ≥ 3,
(iv) L ∩ A =ˆSLm(16).3.2, q = 4 and G ≥ L.4.

In Cases (ii), (iii) and (iv), by comparing the size of a Sylow r -subgroup of Y with a Sylow
r -subgroup of A, we deduce that κ = 1, that is, (6.2) holds true. All of these computations
are straightforward and we only give details to the Case (ii). Here,

|G|r =|G : G ∩ PSUn(q)|r q n(n−1)
2 ,

|X |r ≤(2 f )r q
(n/2)2 ,

|Y |r =|G : G ∩ PSUn(q)|rκr q
(n−κ)( n

κ −1)
2 .

Now, a tedious computation using this information yields that |G|r ≤ |X |r |Y |r is satisfied
only when κ = 1.

In Case (i), using the structure of Pm (which can be deduced by fixing a hyperbolic basis
for V ), we have

Pm ∩ L ∼= Em2

q : SLm(q2).(q − 1).

We claim that also in this case κ = 1. To prove this claim we use the factorization of the
order of |SLm(q2)| into cyclotomic polynomials, (6.1) and Zsigmondy’s theorem. Assume
first that n ≥ 8 and let t ′ be a primitive prime divisor of q2(n−3) − 1. In particular, t ′ divides
qn−3 + 1 and hence t ′ divides |L|, because n is even. Now, as 2(n − 3) > n, t ′ is relatively
prime to |Pm | because

(q2m − 1)(q2m−2 − 1) · · · (q4 − 1)(q2 − 1)

cannot be divisible by t ′. Therefore, t ′ divides |Y |; but this is only possible when κ = 1.
When n = 4, we have n − 1 = 3 and hence κ ∈ {1, 3}. However, if κ = 3, then |Y | ≤
3(q3 + 1)|G : G ∩ PGU4(q)| and hence

|G : X | ≤ 3(q3 + 1).

The minimal degree of a faithful permutation representation of PSU4(q) is (q + 1)(q3 + 1)
(see [10, Table 4]). As 3(q3+1) < (q+1)(q3+1), we have L ≤ X , which is a contradiction.
Finally, when n = 6, we have n − 1 = 5 and hence κ ∈ {1, 5}. However, if κ = 5, then
|Y | ≤ 5(q5 + 1)|G : G ∩ PGU6(q)| and hence

|G : X | ≤ 5(q5 + 1).

The minimal degree of a faithful permutation representation of PSU6(q) is at least q5(q4 +
q2 + 1) (see [10, Table 4]). As 5(q5 + 1) < q5(q4 + q2 + 1), we have L ≤ X , which is a
contradiction. This concludes the proof of our claim and hence we have proved (6.2).

From (6.2), Y ∩ L is of typeˆGUn−1(q) and y ∈ Z(ˆGUn−1(q)). Thus y is a semisimple
element of order a divisor of q+1 and y has an (n−1)-dimensional eigenspace. In particular,
the order of Y divides

|G : G ∩ PGUn(q)||GUn−1(q)|. (6.3)

Using the description of Y , we have that |G : Y | = |X : X ∩ Y | is divisible by

qn−1 · qn − 1

gcd(n, q + 1)(q + 1)
.

Let t1 be a primitive prime divisor of r f n − 1 = qn − 1 when n/2 is even and let t1 be a
primitive prime divisor of r f n/2 −1 = qn/2 −1 when n/2 is odd. Observe that in either case,
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t1 divides |X |. Let T1 be a cyclic subgroup of X of order t1, let C1 := CAut(L)(T1) and let Tx
be a maximal torus of PGUn(q) containing T1. From Lemmas 6.2 and 6.3, we obtain

C1 = 〈Tx , ι〉, |ι| = 2, ι ∈ Aut(PSUn(q)) \ PSUn(q) and CPGUn(q)(ι) ∼= PGSpn(q).

6.1 Assume x ∈ Tx

Thus x is a semisimple element and X is a field extension subgroup of G. Thus, using the
information in [4, Section 3.2, Tables B.1, B.2, B.3], we deduce that the order of X divides

|G : G ∩ PGUn(q)|
q + 1

�|GUn/�(q
�)| or

|G : G ∩ PGUn(q)|
q + 1

�|GLn/�(q
�)|, (6.4)

for some divisor � of n with � ≥ 2; where the case on the right occurs when � is even and
the case on the left occurs when � is odd.

From the structure of Y , we deduce |X∩Y |r ≥ |GUn/�−1(q�)|r if � is odd, and |X∩Y |r ≥
|GLn/�−1(q�)|r if � is even. Suppose first that � is odd. Using (6.3) and (6.4), we have

|G : G ∩ PGUn(q)|r q n(n−1)
2 =|G|r ≤ |X |r |Y |r

|X ∩ Y |r
≤|G : G ∩ PGUn(q)|2r �r q

n
2 (

n
�
−1)q

(n−1)(n−2)
2 q− (n−�)

2 ( n
�
−2).

A computation yields that this inequality is never satisfied since � ≥ 3. This shows that � is
even and X is of type GLn/�(q�).�. Then, using (6.3) and (6.4), we have again

q
n(n−1)

2 ≤ (|G : G ∩ PGUn(q)|�)r q n
2 (

n
�
−1)q

(n−1)(n−2)
2 q− (n−�)

2 ( n
�
−2). (6.5)

Another computation in the same spirit as the one above shows that � = 2 and q ∈ {2, 4, 16}.
By refining the computation above, we see that the case q = 16 does not actually arise.
This can be seen by observing that (6.5) is satisfied only when G contains the whole field
automorphism of Fq2 , but now we can refine the bound |X ∩ Y |2 with 2|GLn/2−1(q2)|2.
Now, another computation with this refined value for |X ∩ Y |2 excludes the case q = 16.
(Observe that this is in line with [16, Table 1], where we see that maximal factorizations
using C3-subgroups arise only when q ∈ {2, 4}: see Cases (iii) and (iv) above.) When, q = 2,
X is not a local subgroup (see for instance [12, Proposition 4.2.4]) and hence this case does
not arise. Thus q = 4, x is an element of order (q2 − 1)/(q + 1) = 15/5 = 3 having no
eigenvalue in Fq2 and y is an element of order 5 having an eigenspace of dimension n − 1.
Moreover, consulting [16, Table 1] or by a careful computation as above, we see that 4 divides
|G : L|2. This example is in Line 8 of Table 1.

6.2 Assume x /∈ Tx and |x| = 2

Using the results in [4, Table B.4] (or in [9, Chapter 4]), we see that Or ′
(CL(x)) is of type

PSpn(q), or P�ε
n(q)

and the second case only occurs when q is odd. By distinguishing these two possibilities for
X , it is not hard to prove that |G|r |X ∩ Y |r = |X |r |Y |r yields that X is of type PSUn(q1/2)
or PSpn(q) (to exclude the case P�ε

n(q) we require the fact that q is odd). Incidentally, the
case that X is of type P�ε

n(q) can also be excluded by checking [16, Table 1].
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When X is of type PSpn(q), we obtain that x is an involution of order 2 with CL(x) ∼=
PSpn(q) and that y is an element of order dividing q + 1 and having an eigenspace of
dimension n − 1. This example is in Line 9 of Table 1.

6.3 Assume x /∈ Tx and |x| > 2

As x2 ∈ Tx \ {1} and x2 �= 1, applying Section 6.1 to the factorization G = NG(〈x2〉)Y ,
we obtain that the triple (G, x2, y) is in Line 8 of Table 1. Therefore, q = 4, NL(〈x2〉) is of
type GLn/2(q2).2 and x2 has order 3. Now, x3 /∈ Tx and x3 has order 2. Therefore, applying
Section 6.2 to the factorization G = NG(〈x3〉)Y , we obtain that the triple (G, x3, y) is in
Line 9 of Table 1. Thus x2 ∈ NL(〈x3〉) = CL(x3) ∼= Spn(4). Thus

NL(〈x〉) = NL(〈x2〉) ∩ CL(x3) ∼= NSpn(4)(〈x2〉) ∼= 3.SLn/2(4).2. (6.6)

Now, let p be a primitive prime divisor of 2 f n − 1 = qn − 1. Observe that, from (6.6),
p is relatively prime to |X |. When n/2 is even, p is also relatively prime to |GUn−1(q)| and
hence p is relatively prime to |Y |. Therefore, in order to have G = XY , n/2 must be odd.
Assume n/2 is odd. Given i ∈ {1, . . . , n}, p divides qi − (−1)i if and only if i ∈ {n/2, n}.
Therefore, |G|p > |Y |p and hence also in this case we have G �= XY . Summing up, we have
shown that this case does not give rise to a factorization of G.

Using the explicit description ofNG(〈x〉),NG(〈y〉) in Lines 8 and 9, it is readily seen that
G = CG(x)CG(y) when (G, x, y) is in Line 9 and CG(x)CG(y) < G when (G, x, y) is in
Line 8. Thus we have the

√
symbol in Line 9, whereas

√
is omitted in Line 8. ��

7 Classical Groups: Symplectic Groups

Lemma 7.1 Let n ≥ 4 be even. Suppose r f n − 1 admits a primitive prime divisor t1. Let
g ∈ Aut(PSpn(q)) with t1 dividing |NAut(PSpn(q))(〈g〉)| and let T1 be a cyclic subgroup of
order t1 in NAut(PSpn(q))(〈g〉). Then

g ∈ CAut(PSpn(q))(T1) =
⎧⎨
⎩

〈T , ι〉, when n = 4, r = 2, f is odd,
ι graph-field automorphism,

T , otherwise,

where T is a maximal torus of PGSpn(q) having order qn/2 + 1, that is, T is a Singer cycle.
In particular, |Aut(PSpn(q)) : CAut(PSpn(q))(g)| is relatively prime to t1.

Proof Let T be a maximal torus of PGSpn(q) containing T1. Then T is a cyclic group of
order qn/2 + 1. The structure of CAut(PSpn(q))(T1) follows consulting [4, Section 3.4] and [9,
Chapter 4].

Suppose that T1 ≤ CAut(PSpn(q))(g). Then g ∈ CAut(PSpn(q))(T1). If g ∈ T , then
|Aut(PSpn(q)) : CAut(PSLn(q))(g)| is relatively prime to t1, because T ≤ CAut(PSpn(q))(g)
and |Aut(PSpn(q)) : T | is relatively prime to t1. If g /∈ T , then n = 4, r = 2 and f is
odd. Moreover, g is conjugate to ι because T has odd order. Therefore, g is an involution
and hence CAut(PSpn(q))(g) = NAut(PSpn(q))(〈g〉). Moreover, CPSpn(q)(g) ∼= 2B2(q). Since
|2B2(q)| = (q2 + 1)q2(q − 1) we have that |Aut(PSpn(q)) : CPSpn(q)(g)| is relatively prime
to t1.

Suppose that T1 � CAut(PSpn(q))(g). The usual argument using the faithful action of
NAut(PSpn(q))(〈g〉)/CAut(PSpn(q))(g) on 〈g〉 gives that g ∈ PSpn(q) and that g has order
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divisible by a prime p with t1 | p − 1. However, as t1 > f n ≥ n, we see that T1 cannot
permute non-trivially the eigenspaces of g. ��
Lemma 7.2 Let n ≥ 6 be even. Suppose r f (n−2) − 1 admits a primitive prime divisor t2. Let
g ∈ Aut(PSpn(q)) with t2 dividing |NAut(PSpn(q))(〈g〉)| and let T2 be a cyclic subgroup of
order t2 in NAut(PSpn(q))(〈g〉). Then

g ∈ CAut(PSpn(q))(T2) = (q
n
2 −1 + 1) ◦ GSp2(q).

In particular, |Aut(PSpn(q)) : CAut(PSpn(q))(g)| is relatively prime to t2.

Proof Using the information in [9, Chapter 4], we obtain

CAut(PSpn(q))(T2) = (q
n
2 −1 + 1) ◦ GSp2(q).

Let T be the cyclic subgroup of order qn/2−1 + 1 in CAut(PSpn(q))(T2) and observe that T is
central in CAut(PSpn(q))(T2).

Suppose that T2 ≤ CAut(PSpn(q))(g). Then g ∈ CAut(PSpn(q))(T2) and hence g centralizes
T . Thus T ≤ CAut(PSpn(q))(g) and hence |Aut(PSpn(q)) : CAut(PSLn(q))(g)| is relatively
prime to t2, because so is |PSpn(q) : T |.

Suppose that T2 � CAut(PSpn(q))(g). The usual argument using the faithful action of
NAut(PSpn(q))(〈g〉)/CAut(PSpn(q))(g) on 〈g〉 gives that g ∈ PSpn(q) and that g has order
divisible by prime p with t2 | p−1. Without loss of generality, we may suppose that |g| = p
and hence g ∈ PSpn(q). Moreover, g is semisimple, because t2 divides p − 1 and t2 cannot
divide r −1: recall that t2 is a primitive prime divisor of r f (n−2) −1. Now, there exists α ∈ N
with

t2 = α f (n − 2) + 1.

If α f > 1, then t2 > n and hence T2 cannot permute non-trivially the eigenspaces of g. If
α f = 1, then t2 = n − 1 is prime. We show that this is impossible. Under the action of T2,
the vector space V = Fn

q decomposes as

V = W ⊥ W⊥,

where dimFq (W ) = n−2 and the symplectic form induced by PSpn(q) onW is non-degener-
ate,W is an irreducibleFqT2-module, andW⊥ is a 2-dimensional trivial module for T2. Since
we are supposing that T2 normalizes 〈g〉, T2 permutes the eigenspaces of g. The orthogonal
decomposition of V above yields that g has one eigenspace of dimension n − 2, and then
another eigenspace of dimension 2, or two eigenspaces of dimension 1. In either case, since
t2 = n − 1 is prime, we see that T2 fixes setwise each eigenspace of g. From this it follows
that T2 centralizes g. ��
Lemma 7.3 If L = PSpn(q), then (G, x, y) is in Line 10 of Table 1.

Proof When

(n, q) ∈ {(4, 2), (4, 3), (4, 4), (4, 8), (4, 16), (4, 32), (6, 2), (6, 3), (8, 2)},
the proof follows with a computation with the computer algebra system Magma. Now,
by excluding these cases, the maximal factorizations of the almost simple groups with socle
L = PSpn(q) appear in [16, Tables 1 and 2].Moreover, by excluding these cases, we simplify
some of the computations later in the proof.

Let t1 be a primitive prime divisor of rn f − 1: as usual the existence of t1 follows from
Zsigmondy’s theorem. As t1 divides |L|, without loss of generality, we may suppose that t1
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divides |X |. Let T1 be a cyclic subgroup of X of order t1, let C1 := CAut(PSpn(q))(T1) and let
Tx be a maximal torus of PGSpn(q) containing T1. Thus Tx is a torus of order qn/2 + 1 and
Tx is a cyclic subgroup of PGSpn(q). From Lemma 7.1, we obtain

g ∈ C1 =
{ 〈Tx , ι〉, when n = 4, r = 2, f is odd, ι is a graph-field automorphism,

Tx , otherwise.

Assume x ∈ Tx . Thus x is a semisimple element and X is a field extension subgroup of G.
We now discuss the structure of X . Assume first, for simplicity, that x ∈ PSpn(q) or n/2 is
odd. Thus, using [4, Section 3.4, Table B.7] and [9, Chapter 4 and Table 4.5.1], we see that
the order of X divides

f �|GUn/�(q
�/2)|2, (7.1)

for some divisor � of n with n/� odd. When x ∈ Tx \ PSpn(q) and n/2 is even, there are
a few more cases to consider. As Tx � PSpn(q), q is odd. As n/2 is even, qn/2 + 1 ≡ 2
(mod 4) and hence Tx = 〈a〉 × 〈b〉, where a has order 2 and 〈b〉 = Tx ∩ PSpn(q) has order
(qn/2 + 1)/2. Using the references above, we obtain that

NPGSpn(q)(〈a〉) = CPGSpn(q)(a) ∼= Spn/2(q
2).2,

where the “2” on top acts as a field automorphism. Therefore, when q is odd and n/2 is even,
we have the following possibilities for the order of X :

2 f |Spn/2(q
2)| and f �|GUn/�(q

�/2)|, (7.2)

for each divisor � of n with n/� odd.
Before considering the element y in general, we first consider the case n = 4. In this case,

from (7.1) and (7.2), |X | divides either 4 f (q2 + 1) or 2 f |SL2(q2)| = 2 f q2(q4 − 1). In the
first possibility, we have

m(PSp4(q)) ≤ |G : Y | ≤ |X | ≤ 4 f (q2 + 1), (7.3)

wherem(PSp4(q)) is the minimal degree of a faithful permutation representation of PSp4(q).
Now,m(PSp4(q)) = (q4−1)/(q−1), exceptwhen q ∈ {2, 3}. (This information is tabulated,
for instance, in [10, Table 4].) The inequality (7.3) is satisfied only when r = 2 and f ≤ 3,
or q = r = 3. However, these cases have been checked with the help of a computer.
Therefore, we may suppose that CAut(L)(x) ∼= SL2(q2).2 f . In particular, q is odd and x is
an involution. Observe that q2 ≡ 1 (mod 4) and hence (q2 + 1)/2 ≡ 1 (mod 2). Therefore
x ∈ PGSp4(q) \ PSp4(q) and hence PGSp4(q) ≤ G. In particular, |G : X | = q2(q2 − 1)/2.

From [3, Table 8.12], we see that X = CG(x) is a maximal subgroup of G. From the
classification of the maximal factorizations of almost simple groups [16, 17], we deduce that
Y is contained in a parabolic subgroup P of G whose unipotent radical Q is a non-abelian
group of order q3 (this information is in [16, (3.2.1a)]). Furthermore, from [3, Table 8.12],
we get that the shape of P ∩ L is

E1+2
q : ((q − 1) ◦ Sp2(q)).

As G = XY , we deduce that |G : X | = q2(q2 − 1)/2 divides |Y |. Using this description of
P it is not hard to see that the only elements y ∈ P with the property that NP (〈y〉) has order
divisible by q2(q2 − 1)/2 are the elements in ZQ ∼= Eq . Therefore, y is a transvection of
PSp4(q). In particular, we find the examples in Line 10 of Table 1 (for n = 4).

Suppose now that n ≥ 6. Let t2 be a primitive prime divisor of r f (n−2) − 1. Observe that
t2 does exist because n ≥ 6 and because we are excluding the case (n, q) = (8, 2) from our
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analysis here. From (7.1) and (7.2), |X | is relatively prime to t2 and hence t2 divides |Y |. Let
T2 be a cyclic subgroup of Y of order t2 and set C2 := CAut(L)(T2). From Lemma 7.2, we
obtain

y ∈ C2 = (q
n
2 −1 + 1) ◦ GSp2(q).

Write
y = yn−2y2,

where yn−2 belongs to the torus of cardinality qn/2−1 + 1 and y2 belongs to GSp2(q). Now,
this decomposition of y induces a direct sum decomposition of the underlying vector space
V = Vn−2 ⊥ V2, where y induces yn−2 on Vn−2 and induces y2 on V2. Since yn−2 is
semisimple, the 〈yn−2〉-module Vn−2 is the direct sum of pair-wise isomorphic irreducible
modules.

Suppose that none of these modules is isomorphic to any of the irre-
ducible 〈y2〉- submodules of V2 (here, we are including the possibility that y2 is a
non-identity unipotent element and hence V2 is indecomposable with a unique irreducible
submodule, which is the trivial module).

In this case, NG(〈y〉) = Y preserves the direct sum decomposition V2 ⊥ Vn−2 and hence
Y is contained in the stabilizer in G of a 2-dimensional non-degenerate subspace of V . Now,
by checking the maximal factorizations of the almost simple group G in [16, Tables 1 and 2],
we see that one of the following holds:

(i) X ∩ L ≤ Spn/2(4).2, q = 2, n/2 is even,
(ii) X ∩ L ≤ Spn/2(16).2, q = 4, n/2 is even, G = Aut(L) = L.2,
(iii) X ∩ L ≤ G2(q), q is even and n = 6.

All of these three cases can be eliminated with a computation. Indeed, since Spn/2(4).2,
Spn/2(16).2 andG2(q) normalize no non-identity cyclic subgroup,we deduce that X∩Lmust
be strictly contained in this embedding. However, by comparing the order of X (see (7.1)),
Y and G, we see that the equality G = XY cannot be satisfied. These computations can
be performed in the same spirit as the analogous computations for almost simple groups
having socle PSLn(q) and PSUn(q). For instance, in Case (iii), we have n = 6 and hence,
from (7.1), we have that |X | divides 2 f |GU3(q)|; moreover, |Y | divides |Sp2(q) ⊥ Sp4(q)| f .
A computation shows that |X |2|Y |2 < |G|2, contradicting G = XY . We omit the details of
the remaining computations for Cases (i) and (ii).

This means that, in order to have a factorization G = XY = NG(〈x〉)NG(〈y〉), some
of the 〈yn−2〉-irreducible submodules of Vn−2 are isomorphic to some of the irreducible
submodules of V2. As y2 ∈ GSp2(q), this implies that the irreducible 〈yn−2〉-submodules of
Vn−2 have dimension at most 2 and hence yn−2 has order a divisor of q + 1.

Suppose that y = y2 is a unipotent element. Thus y is a transvection of PSpn(q)

and
NPGSpn(q)(〈y〉) ∼= E1+(n−2)

q : ((q − 1) × Spn−2(q)).

Assume that X is of type Spn/2(q
2) (recall from (7.1) and (7.2) that when this happens,

x is an involution and n/2 is even). Since n/2 is even, qn/2 + 1 ≡ 2 (mod 4) and hence
x ∈ PGSpn(q) \ PSpn(q). In particular, we find one of the examples in Line 10 of Table 1.
When X is not of type Spn/2(q

2), we deduce, by consulting the factorizations of the almost
simple groups with socle L = PSpn(q) in [16] and by consulting the structure of X and Y ,
that there are no triples (G, x, y) occurring in this case.

Suppose that y is not a unipotent element. If r divides |y|, then y2 is a non-identity
unipotent element. However, this contradicts the fact that some of the 〈yn−2〉-irreducible
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submodules of Vn−2 are isomorphic to some of the irreducible submodules of V2. Therefore
r is relatively prime to |y| and hence y is a semisimple element. From the compatibility
condition between the Fq〈yn−2〉-submodules of Vn−2 and the Fq〈y2〉-submodules of V2, we
obtain |y| = |yn−2| = |y2| and that |y| is a divisor ofq+1.This gives thatCL (y) ∼=ˆGUn/2(q)

or CL(y) ∼= Spn/2(q
2), depending on whether n/2 is odd or even. Using this information

on the structure of X and Y and consulting the list of maximal factorizations for G in [16,
Tables 1 and 2], we deduce that there are no examples arising in this case.

Assume that x /∈ Tx . This implies n = 4, r = 2 and f is odd. Note that |Tx | is odd
while |x | is even. Thus by Lemma 3.4 we may assume that x is an involution and so is a
graph-field automorphism of PSp4(q) = Sp4(q). Thus X ≥ NL(〈x〉) = CL(x) ∼= 2B2(q)

is a Suzuki group. From [3, Table 8.14], we deduce that X is a maximal subgroup of G.
Using the classification of the maximal factorizations of the almost simple groups having
socle Sp4(q) [16, Table 2], we deduce that

Y ∩ L ≤ O+
4 (q) = SL2(q) × SL2(q).

Suppose that Y ∩ L does not contain any of the two simple direct factors of O+
4 (q). Then

|O+
4 (q) : Y ∩ L| ≥ (q + 1)2 because the minimal degree of a permutation representation of

SL2(q) is q + 1. Therefore |Y ∩ L| ≤ |SL2(q)|2/(q + 1)2 = q2(q − 1)2 and hence

|G| ≤ |X ||Y | ≤ 2 f (q2 + 1)q2(q − 1) · q2(q − 1)2|Y : L ∩ Y |.
As |G| = |G : L|q4(q4 − 1)(q2 − 1) and |G : L| ≥ |Y : Y ∩ L|, we deduce

(q + 1)2 ≤ 2 f (q − 1),

which is impossible. Therefore, Y contains at least one of the two simple direct factors of
O+
4 (q). Let us denote by S1 and S2 the two simple direct factors of O+

4 (q). Without loss
of generality we assume S1 ≤ Y . Since NG(〈y〉)/CG(y) is soluble and since SL2(q) is
simple, we deduce S1 ≤ CG(y) and hence y ∈ CG(S1). Using the action of the outer
automorphism group of L = Sp4(q), we deduce CG(S1) ≤ L and hence y ∈ CL (S1). As
CL(S1) ≤ NL(S1) ≤ O+

4 (q), we haveCL(S1) = S2 and hence y ∈ S2. Since the normalizers
of the non-identity elements of S2 ∼= SL2(q) have order q , 2(q − 1) or 2(q + 1), we deduce

|L ∩ Y | ≤ |O+
4 (q) ∩ Y | = |NO+

4 (q)(〈y〉)| ≤ |S1|2(q + 1) = 2q(q2 − 1)(q + 1).

Now, as

|G : L|q4(q4−1)(q2−1)=|G| ≤ |X ||Y |≤2 f (q2+1)q2(q−1)·2q(q2−1)(q+1)|Y : L∩Y |
and |G : L| ≥ |Y : L ∩ Y |, we get q ≤ 2 f , which is a contradiction. Hence, no triple arises
in this case.

Using the explicit description of NG(〈x〉), NG(〈y〉) in Line 10, it is readily seen that
G = CG(x)CG(y). Thus we have the

√
symbol in Line 10. ��

8 Classical Groups: Odd Dimensional Orthogonal Groups

The analysis in this section is similar to the work in Section 7; indeed, from one side, we
use the classification of Liebeck, Praeger and Saxl [16, 17] and, from the other side, the
factorizations arising in the context of odd dimensional orthogonal groups resemble the
factorizations for symplectic groups.
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Lemma 8.1 If L = P�n(q) with n odd, then (G, x, y) is in Line 14 of Table 1.

Proof When (n, q) = (7, 3), the proof follows with a computer computation: no example
arises. Thus we assume that (n, q) �= (7, 3). Set m := (n − 1)/2. We start by summarizing
the maximal factorizations

G = AB

of almost simple groups with socle L = �n(q) (as usual we use the notation from [16, 17]):

1. A ∩ L = N−
1 and B ∩ L = Pm ,

2. n = 7, A ∩ L = G2(q) and B ∩ L is either P1, or N ε
1 , or N

ε
2 , with ε ∈ {+,−},

3. n = 13, q = 3 f , A ∩ L = PSp6(3
f ).a with a ≤ 2 and B ∩ L = N−

1 ,
4. n = 25, q = 3 f , A ∩ L = F4(3 f ) and B ∩ L = N−

1 .

Replacing X by Y if necessary, we may suppose that

X ≤ A and Y ≤ B. (8.1)

Cases 2, 3 and 4.
Here A is an almost simple subgroup of G and hence X is a core-free proper subgroup of A.
By Lemma 3.1, the factorization G = XY gives rise to the factorization

A = X(Y ∩ A) (8.2)

of A.
Now, from [16, Table 5], we see that F4(3 f ) admits no proper factorizations. Hence A ≤ X

or A ≤ Y ∩ A, which are both impossible. Therefore Case 4 does not arise.
Assume Case 2. From [16, Table 5], we see that G2(q) admits proper factorizations with

q odd only when q = 3 f . Observe that f ≥ 2, because we have dealt with �7(3) above. Let
A = A′B ′ be a maximal factorization of A with X ≤ A′ and with Y ∩ A ≤ B ′. Using the
maximal factorizations of G2(q), we see that A′ ∩ G2(q) is one of the following groups

SL3(q), SL3(q).2, SU3(q), SU3(q).2, 2G2(q),

where, for the last case, we require f odd, but we do not need this information here. From
G = AB = XB and (8.2), we deduce |G : B| = |A : A ∩ B| = |X : X ∩ B| and hence
|G : B| divides |X |. Thus

|G : B| divides |A′|. (8.3)

Now,

|G : B| =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

q3 q
3−1
2 when L ∩ B = N−

1 ,

q3 q
3+1
2 when L ∩ B = N+

1 ,

q5 q6−1
2(q−1) when L ∩ B = N+

2 ,

q5 q6−1
2(q+1) when L ∩ B = N−

2 ,

q6−1
q−1 when L ∩ B = P1.

Using this explicit value of |G : B| and using (8.3), we deduce that

– either L ∩ B = N−
1 and A′ ∩ G2(q) ∈ {SL3(q),SL3(q).2}, or

– L ∩ B = N+
1 and A′ ∩ G2(q) ∈ {SU3(q),SU3(q).2}.

As q = 3 f , we have gcd(3, q − 1) = gcd(3, q + 1) = 1 and hence A′ is an almost
simple group with socle SL3(q) or SU3(q). Recall now that, since X ≤ A′, we have X =
NG(〈x〉) = NA′(〈x〉). Now, it is not hard to verify that Aut(SL3(q)) and Aut(SU3(q))
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do not contain a non-identity cyclic subgroup 〈x〉 whose normalizer has order divisible by
|G : B| ∈ {(q3 − 1)q3/2, (q3 + 1)q3/2}. Hence, Case 2 does not arise.

The analysis for Case 3 is similar to Case 2, but simpler. The factorization for �13(3 f )

arising in Case 3 is described in detail in [16, 4.6.3, Lemma A]. Observe that A is an almost
simple group with socle PSp6(q). As NG(〈x〉) = X ≤ A, we have X = NA(〈x〉). As
G = XB and G = LB, we deduce that

|L : L ∩ B| = |G : B| = |X : X ∩ B|.
Since L ∩ B = N−

1 in Case 3, we have

|L : L ∩ B| = |�13(q) : N−
1 | = (q6 − 1)q6

2

and hence (q6 − 1)q6/2 divides |X |. Now, it is not hard to verify, using [3, Tables 8.28
and 8.29] that Aut(PSp6(q)) contains no non-identity group elements g �= 1 with
|NAut(PSpn(q))(〈g〉)| divisible by q6(q6 − 1)/2. Hence, Case 3 does not arise.
Case 1. Replacing X with Y if necessary, X ∩ L ≤ N−

1 and Y ∩ L ≤ Pm , where N
−
1 is the

stabilizer in L of a 1-dimensional non-degenerate subspace of “minus type” and Pm is the
stabilizer in L of a totally isotropic subspace of dimensionm; in particular, Pm is a parabolic
subgroup.

For simplicity, let AX be the stabilizer in G of a 1-dimensional non-degenerate subspace
of “minus type” with X ≤ AX and let BY be a parabolic subgroup of G with Y ≤ BY . It will
also be convenient to let P̂m be a parabolic subgroup of SOn(q) with BY ∩ L ≤ P̂m . Thus

AX ∩ L ∼= �−
2m(q).2 and BY ∩ L ∼= E

m(m−1)
2 +m

q : 1
2GLm(q).

Moreover,

|G : AX | = |L : L ∩ AX | = |�2m+1(q) : P�−
2m(q).2| = qm(qm − 1)

2
. (8.4)

Now G = X Pm , so X acts transitively on the set of all totally isotropic subspaces of
dimension m. Since (m, q) �= (7, 3) we have from [7, Theorem 7.1] that �−

2m(q) � X .
Since, �−

2m(q) has trivial centre and is insoluble, it follows that �−
2m(q) ≤ CG(x). Thus

SOn(q) ≤ G and x ∈ SOn(q)\�n(q) is an involution.
We now fix an Fq -basis e1, . . . , em, w, f1, . . . , fm of V such that the symmetric matrix

defining L = �2m+1(q) with respect to this ordered basis is the matrix

J =
⎛
⎝0 0 I
0 1 0
I 0 0

⎞
⎠ ,

where we use I to denote the m × m identity matrix. Using this matrix representation, P̂m
has unipotent radical subgroup

Q =
⎧⎨
⎩

⎛
⎝I v B
0 1 −vt

0 0 I

⎞
⎠ | v ∈ Fm

q , B ∈ Matm×m(Fq), B + Bt + vvt = 0

⎫⎬
⎭ ∼= E

m(m−1)
2 +m

q .

Moreover, the Levi complement of Q in P̂m is

L =
⎧⎨
⎩

⎛
⎝A 0 0
0 1 0
0 0 (A−1)t

⎞
⎠ | A ∈ GLm(q)

⎫⎬
⎭ ∼= GLm(q).
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In what follows we also need the following subgroup

Z =
⎧⎨
⎩

⎛
⎝I 0 B
0 1 0
0 0 I

⎞
⎠ | B ∈ Matm×m(Fq), B

t = −B

⎫⎬
⎭ ∼= E

m(m−1)
2

q .

A simple computation yields that Z ≤ Z(Q).
Let t be a primitive primedivisor of r f m−1 andobserve that the existence of t is guaranteed

by Zsigmondy’s theorem, because r is odd and m ≥ 3. By (8.4), t divides |G : AX | and
hence t divides |Y |. Let T be a cyclic subgroup of Y having order t . We claim that

y ∈ CG(T ). (8.5)

Since t divides |Y | and since t is a primitive prime divisor of r f m − 1, we deduce that
T ≤ L and hence T ≤ L ∩ BY ∼= Pm . Suppose that t divides |NG(〈y〉) : CG(y)|. Then,
from the faithful action of T on 〈y〉, we deduce that |y| is divisible by a prime number
p with t | p − 1. Set y′ := y|y|/p. Now, y′ is an element of prime order p. Moreover,
using the fact that t is a primitive prime divisor of r f m − 1 and that t | (p − 1), we have
y′ ∈ L ∩ Y ≤ Pm and y′ is semisimple. Furthermore, t divides |NG(〈y′〉) : CG(y′)|. In
particular, T and y′ are semisimple elements in P̂m and hence, using the explicit description
of P̂m above, we deduce that T and y′ are both in a Levi complement (which is isomorphic
to GLm(q)) of P̂m . Applying Lemma 5.1 to GLm(q) yields that it is impossible to have t
divides |NGLm (q)(〈y′〉) : CGLm (q)(y′)|. Since t divides |Y | = |NG(〈y〉)|, we get T ≤ CG(g).
Therefore, (8.5) holds true.

From (8.5), we deduce y ∈ SOn(q) and hence

y ∈ P̂m . (8.6)

Let

mt =
⎛
⎝λ 0 0
0 1 0
0 0 (λ−1)t

⎞
⎠

be a generator of T . Now, using the explicit description of Q and L above, we see that
CP̂m

(T ) = Tm � W , where Tm is a torus in L ∼= GLm(q) of cardinality qm − 1 and

W =
⎧⎨
⎩

⎛
⎝I 0 B
0 1 0
0 0 I

⎞
⎠ | B ∈ Matm×m(Fq), B + Bt = 0, λBλt = B

⎫⎬
⎭ .

From (8.5) and (8.6), we have y ∈ Tm � W .
We claim that

y ∈ W . (8.7)

We argue by contradiction and we suppose that y /∈ W . Then, replacing y by a suitable
power, we may assume that y has prime order and y ∈ Tm . Using the explicit description of
P̂m , it can be deduced that

Y ∩ SOn(q) = NSOn(q)(〈y〉) = NP̂m
(〈y〉) ⊆ ZL.

However, ZL is not transitive on the non-degenerate 1-dimensional subspaces of “minus type”
and hence AXY �= G, which is a contradiction because in Case 1 Y does act transitively
on the set of 1-dimensional non-degenerate subspaces of “minus type”. Therefore, we must
have y ∈ W and y is a unipotent element of order r . Therefore, (8.7) holds true.
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Now, it can be shown that the set

{B ∈ Matm×m(q) | Bt = −B, λBλt = B}
contains a non-zero matrix only when m is even. Thus m is even. Moreover, from [4,
Table B.12], we have

CL(y) ∼= E
m(m−1)

2 +m
q : Spm(q). (8.8)

Thus we obtain the examples in Line 14 of Table 1.
Using the explicit description of NG(〈x〉), NG(〈y〉) in Line 14, it is readily seen that

G = CG(x)CG(y). Thus we have the
√

symbol in Line 14. ��

9 Classical Groups: Even Dimensional Orthogonal Groups HavingWitt
Defect 1

We begin with the following lemma.

Lemma 9.1 Let m ≥ 5 be odd, let n := 2m and let g ∈ Aut(P�−
n (q)) with g �= 1 and with

|NAut(P�−
n (q))(〈g〉)| divisible by

q
m(m−1)

2 (qm−1 + 1)(qm−2 − 1) · · · (q2 + 1)(q − 1).

Then g is an involution not in P�−
n (q) and

CP�−
n (q)(g)

∼=
{
Spn−2(q) when q is even,
�n−1(q) when q is odd.

Proof Set v := qm(m−1)/2(qm−1 + 1)(qm−2 − 1) · · · (q2 + 1)(q − 1), L := P�−
n (q) and

A := Aut(P�−
n (q)). The proof follows by an inspection of Section 3.5 and Tables B.11, B.12

in [4]. We give some details to make this inspection more elementary.
Suppose first that g has prime order. Assume also that g ∈ L . Now,

|NA(〈g〉) : CL(g)| = |NA(〈g〉) : NL(〈g〉)||NL(〈g〉) : CL(g)|. (9.1)

The first factor on the right hand side of (9.1) divides |Out(L)|. Observe that the second
factor on the right hand side of (9.1) divides r − 1 when g is unipotent (because |g| = r
and ϕ(r) = r − 1) and divides n when g is semisimple (because NL(〈g〉)/CL(g) acts by
permuting the eigenspaces of g). Therefore, |CL(g)| is divisible by v/�, where � := �1�2,
�1 := gcd(v, |Out(L)|) ≤ 8 f and �2 ≤ r − 1 when g is unipotent and �2 ≤ 2m when g
is semisimple. Now, using [4, Section 3.5], a case-by-case analysis shows that there is no g
having centralizer divisible by such a large number.

Assume that g /∈ L . Let h ∈ L ∩ NA(〈g〉). Then, gh = gi , for some 1 ≤ i ≤ |g| − 1.
Now,

h−1ghg−1 = gi−1 ∈ L ∩ 〈g〉 = 1

and hence i = 1. This shows that L ∩ NA(〈g〉) = CL(g). Therefore

|NA(〈g〉) : CL(g)| = |NA(〈g〉)L : L|
and hence |NA(〈g〉) : CL(g)| divides |Out(L)|. Therefore, |CL(g)| is divisible by v/�, where
� := gcd(v, |Out(L)|) ≤ 8 f . Now, using [4, Section 3.5] and the notation therein, we see
that the only elements having prime order with g /∈ L and having centralizer divisible by such
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a large number are conjugate to γ1 when q is odd and to b1 when q is even. Moreover, the
structure of CL(g) is discussed in [4, Section 3.5.2] when q is odd and in [4, Section 3.5.4]
when q is even. The proof of the lemma follows in this case.

Suppose now that g does not have prime order. We need to show that no extra case arises.
Observe that from the previous part of the proof, g has order a power of 2. Without loss of
generality, replacing g by g|g|/4 if necessary, we may suppose that g has order 4. Observe
that g2 is A-conjugate to γ1 when q is odd and to b1 when q is even. Set Ā := CA(g2)/〈g2〉
and adopt the “bar” notation for the projection of CA(g2) onto Ā. We have

Ā ∼=
{
Aut(Spn−2(q)) when q is even,
Aut(�n−1(q)) when q is odd.

Moreover, NA(〈g〉) = C Ā(ḡ). This shows that C Ā(ḡ) has order divisible by v/2. When q is
odd, wemay apply [4, Section 3.5] to the odd dimensional orthogonal group�n−1(q) and we
see that Aut(�n−1(q)) contains no involutions whose centralizer has order divisible by v/2.
Similarly, when q is even, we may apply [4, Section 3.4] to the symplectic group Spn−2(q)

and we see that Aut(Spn−2(q)) contains no involutions whose centralizer has order divisible
by v/2 (to check this it is useful to recall that n − 2 = 2m − 2 ≥ 8). ��

We are also going to need [18, Lemma 4.4] that lists all possibilities of �O−
2m(q) that act

transitively on an orbit of �2m(q) on nonsingular 1-subspaces. However, it is not claimed
there that all groups listed are actually transitive. We rule out two possibilities with the
following lemma.

Lemma 9.2 Let Y ≤ �O−
2m(2) such that m ≡ 2 (mod 4) and either SUm/4(24) or �−

m/2(2
4)

is normal in Y . Then Y does not act transitively on the set of nonsingular 1-subspaces.

Proof Note that SUm/4(24) ≤ �−
m/2(2

4) ≤ �O−
2m(2) and so it suffices to show that Y :=

N�O−
2m (2)(�

−
m/2(2

4)) is not transitive on the set of nonsingular 1-spaces. Let k = GF(2),

V = k2m and Q be a nondegenerate quadratic form on V of “minus type”. Let � = {v ∈
V | Q(v) = 1}, which corresponds to the set of all nonsingular 1-subspaces of V . Consider V
as am/2-dimensional vector space over K = GF(24). Following [16, p. 59], let P : V → K
be a nondegenerate quadratic form on V of “minus type” such that Q = TrK→k ◦ P ,
that is, Q(v) = P(v) + P(v)2 + P(v)4 + P(v)8 for each v ∈ V . Note that � = {v ∈
V | P(v) + P(v)2 + P(v)4 + P(v)8 = 1}. Now arguing as in [16, p. 59] we have that
Y = 〈�−

m/2(2
4), φ〉, where φ : V → V has order 8 and P(vφ) = P(v)τ , where τ is a

generator of Aut(GF(24)).
Let v ∈ V such that P(v) �= 0. Then P(〈v〉K ) = K . Since TrK→k is k-linear, its kernel

has size 8 and so there are precisely 8 elements w ∈ 〈v〉K such that Q(w) = 1. Since the
isometry group of P has index 4 in Y , it follows that Y is not transitive on �. ��
Lemma 9.3 If L = P�−

n (q), then (G, x, y) is in Lines 11, 12 or 13 of Table 1.

Proof When (n, q) = (8, 2), the proof follows with a computer computation with the com-
puter algebra system Magma: there are no triples in this case. Set m := n/2. From [16, 17],
there exist two core-free maximal subgroups A and B of G, with X ≤ A and with Y ≤ B.
Moreover, replacing x by y if necessary, from [16], we see that one of the following holds:

1. L = P�−
10(2), A ∩ L = Alt(12) and B ∩ L = P1,

2. A ∩ L = N1, B ∩ L =ˆGUm(q) and m is odd,
3. A ∩ L = P1, B ∩ L =ˆGUm(q) and m is odd,
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4. A ∩ L = N1, B ∩ L = �−
m(q2).2, q ∈ {2, 4}, m is even and G = Aut(L),

5. A ∩ L = N+
2 , B ∩ L = GUm(4), q = 4, m is odd and G = Aut(L).

Case 1.
This case can be dealt with a computer computation and we obtain one of the examples in
Line 11 of Table 1.
Case 5.
The factorization G = XY of G gives rise to the factorization

B = G ∩ B = XY ∩ B = (X ∩ B)Y

of B, via Lemma 3.1. Let us denote by g �→ ḡ the natural projection from B to B̄ =
B/Z(B ∩ L) = B/Z(GUm(4)) and observe that Z(GUm(q)) has order gcd(m, q + 1) =
gcd(m, 5). Now, B̄ is an almost simple group with socle PSUm(4)withm odd. An inspection
of [16] reveals that this group B̄ has no maximal factorizations and hence the factorization
B = (X ∩ B)Y implies B̄ = Ȳ , or B̄ = X ∩ B. The second option is absurd because, by
hypothesis, X ∩ L ≤ A ∩ L = N+

2 and N+
2 ∩ B cannot project surjectively to B. Therefore

B̄ = Ȳ and hence y ∈ Z(GUm(4)). In particular, Z(GUm(4)) �= 1 and hence 5 divides m.
Moreover,

Y = NG(Z(GUm(4))), (9.2)

|y| = 5 and y is a semisimple element having no eigenvalue in Fq .
Now, by [12, Lemma 4.1.1], �+

2 (4) × �−
n−2(4) ≤ A ∩ L = N+

2 = O+
2 (4) × O−

n−2(4)
and A ∩ L ∩ O+

2 (4) = �+
2 (4). Hence A = NG(�+

2 (4)) and |�+
2 (4)| = 3. If 〈x〉 = �+

2 (4),
we obtain the examples in Line 12 of Table 1. Suppose then 〈x〉 �= �+

2 (4). Let us denote
by g �→ ḡ the natural projection from A to Ā = A/Z . Now, Ā is an almost simple group
with socle P�−

2m−2(4). As usual, from Lemma 3.1, the factorization G = XY gives rise to a
factorization A = X(A ∩ Y ) of A and hence to the factorization Ā = X̄ A ∩ Y of the almost
simple group Ā having socle P�−

2m−2(q). As (2m − 2)/2 = m − 1 is even, Case 4 holds for
the factorization, Ā = X̄ A ∩ Y , that is, X̄ is contained in a subgroup of type N1 of Ā, or of
type �−

m−1(q
2).2 = �−

m−1(16).2. However, the first possibility is impossible, otherwise we
would have a factorization of G where one of the two factors (namely X ) is contained in the
stabilizer of a 3-dimensional non-degenerate subspace of V = Fn

q , contradicting [16]. In the
second case, we claim that |X | is not divisible by |G : B|. Indeed, from (9.2), we have

|G : B| = |P�−
n (q) : GUm(q)|

is divisible by qm−2 − 1, because m is odd. However, if t is a primitive prime divisor of
qm−2 − 1, then it is readily seen that t is relatively prime to |�−

m−1(q
2).2| and hence to |X |.

Cases 2, 3 and 4.
Suppose first that B ∩ L = ĜUm(q)). From the factorization G = XB, we deduce that |X |
is divisible by |G : B| and hence by

|LB : B| = |L : L ∩ B| = q
m(m−1)

2 (qm−1 + 1)(qm−2 − 1) · · · (q2 + 1)(q − 1).

Now, Lemma 9.1 yields that x is an involution whose centraliser is N1. Thus A ∩ L = N1.
Hence, Case 3 does not occur and we only need to consider Cases 2 and 4. In both cases we
have A ∩ L = N1. Hence X ≤ N1 and so Y acts transitively on an L-orbit of nonsingular
1-subspaces. Thus by [18, Lemma 4.4] and Lemma 9.2 we have that one of the following is
a normal subgroup Y0 of Y :
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1. SUm(q) and m odd;
2. SUm/2(q2), with m ≡ 2 (mod 4), m ≥ 6, and q = 2 or 4;
3. �−

m(q2) with m even and q = 2 or 4.

The last possibility is that Y0 has trivial centre and is insoluble, so must lie inCG(y). How-
ever, inspecting [4, Section 3.5] we see that this is not possible (note that Y0 is irreducible).
WhenY0 = SUm(q)wehave that B = Y = NG(〈y〉) for some y ∈ Z(B∩L) = Z( ĜUm(q)).
Thus y is semisimple of order a divisor of q + 1 and y has no eigenvalue in Fq . Moreover,
the argument at the start of the paragraph yields that x is an involution whose centraliser is
N1 and so we have Line 11.

It remains to consider the case where Y0 = SUm/2(q2) when q = 2 or 4. Then Y =
NG(〈y〉) for some y ∈ Z(B ∩ L) = Z( ĜUm/2(q2)). Thus y is semisimple of order q2 + 1
and y has no eigenvalue in Fq2 . We also have that B ∩ L = O−

m(q2) and so for the maximal
factorisation to exist we need G = Aut(L). Using the argument in [16, p. 59], let Q : V →
GF(q) and P : V → GF(q2) be nondegenerate quadratic forms of “minus type” such that
Q = Trq2→q ◦ P . Let v ∈ V such that Q(v) = 1. As the elements of 〈v〉GF(q2) have
distinct P-values, we have that B∩N1 = O−

2m(q2)v = O−
2m(q2)〈v〉GF(q)2

= Spm−2(q
2)×C2.

By [16, Table 1] we have that O−
m(q2) = (Spm−2(q

2) × C2)(GUm/2(q2).2) and so B =
(Spm−2(q

2) × C2)(GUm/2(q2).4 f ), where f = 2 if q = 4 and f = 1 otherwise. Thus
B = (B ∩ N1)Y and so by Lemma 3.1 G = N1Y . Note that N1 is the centraliser in G
of an involution in SO−

2m(q)\�−
2m(q) whose centraliser in L is Spn−2(q), and so we have

the factorisation in Line 13 of Table 1. It remains to show that it is not possible to have
X < N1. Note that N1 = Spn−2(2) × C2 when q = 2, while when q = 4 we have
N1 = (Spn−2(4) � 〈φ〉) × C2, where φ is a field automorphism. Also if x = (x1, x2) ∈ N1,
then X ≤ NSpn−2(4)�〈φ〉(〈x1〉) ×C2. Note that it remains to consider the case where x1 �= 1.
Looking at |X : B| we deduce that a primitive prime divisor of r f (n−2) − 1 divides |X |
and so, by Lemma 7.1, we deduce that x1 lies in a maximal torus of PGSpn−2(q) of order
q(n−2)/2 + 1. Then looking at the possible orders of NSpn−2(4)�〈φ〉(〈x1〉) we deduce that no
factorisation arises.

In Line 11, we see from [16, 3.5.2(b)] that ˆSUm(q) ≤ CG(y) acts transitively on an
L-orbit of nonsingular 1-spaces and so we get G = CG(x)CG(y). However, for Lines 12
and 13 we see in [16, 3.5.1 and 3.5.2(c)] that CG(y) needs to contain field automorphisms to
be transitive on the conjugacy class 〈x〉G . Since such elements of NG(〈y〉) do not centralise
y, it follows that CG(x)CG(y) < G. Thus we have the

√
symbol in Line 11, whereas

√
is

omitted in Lines 12 and 13.
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