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Abstract
We analyse the p- and hp-versions of the virtual element method (VEM) for the
Stokes problem on polygonal domains. The key tool in the analysis is the existence
of a bijection between Poisson-like and Stokes-like VE spaces for the velocities. This
allows us to re-interpret the standard VEM for Stokes as a VEM, where the test and
trial discrete velocities are sought in Poisson-like VE spaces. The upside of this fact
is that we inherit from Beirão da Veiga et al. (Numer. Math. 138(3), 581–613, 2018)
an explicit analysis of best interpolation results in VE spaces, as well as stabilization
estimates that are explicit in terms of the degree of accuracy p of the method. We
prove exponential convergence of the hp-VEM for Stokes problems with regular
right-hand sides. We corroborate the theoretical estimates with numerical tests for
both the p- and hp-versions of the method.
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1 Introduction

The virtual element method (VEM) is an increasingly popular tool in the approx-
imation to solutions of fluido-static and dynamic problems based on polygo-
nal/polyhedral meshes. In particular we recall: the very first paper on low-order
VEM for Stokes [2]; its high-order conforming [11] and nonconforming versions [20,
34]; conforming [12] and nonconforming VEM for the Navier-Stokes equation [33];
mixed VEM for the pseudo-stress-velocity formulation of the Stokes problem [17];
mixed VEM for quasi-Newtonian flows [19]; mixed VEM for the Navier-Stokes
equation [24]; other variants of the VEM for the Darcy problem [18, 45, 47]; analy-
sis of the Stokes complex in the VEM framework [9, 13]; a stabilized VEM for the
unsteady incompressible Navier-Stokes equations [30]; implementation details [23].

Notwithstanding, all the above articles refer to the h-version of the method, i.e.,
when the convergence is achieved by refinement of the underlying mesh while keep-
ing the order of the approximation fixed, and the convergence analysis is performed
assuming enough smoothness of the solutions to the problem under consideration.
This is not the case when the domain of the equation is polygonal/polyhedral. In fact,
even with smooth data, solutions are expected to have singularities at the corners of
the domain; see, e.g., [27, 35]. More precisely, it can be proven that they belong to
Kondrat’ev spaces, i.e., weighted Sobolev spaces with weight given by a function of
the distance from the corners of the domain; see definitions (4) and (5) below.

For this reason, employing hp spaces arises as a natural technique in order to
construct methods, which lead to an exponential decay of the error. This approach
has been investigated in a plethora of works, in the framework of conforming and
nonconforming finite element methods. We recall the following works, which relate
to the hp approximation of problems of Stokes and Navier-Stokes type: hp primal
and mixed methods for the Stokes equation [41, 43]; mixed discontinuous Galerkin
(dG) finite element methods for the Navier-Stokes equation [37]; error indicator for
the Stokes equation [14]; analysis of Stokes flows [25]; mixed hp-dG methods for
incompressible flows [38–40] and their a posteriori version [29]; spectral elements
for Stokes eigenvalue problems [44].

The main contribution of this paper is given by the development of the analysis of
p- and hp-VEM for the approximation of solutions to the Stokes problem, building
upon the analysis for p- and hp-VEM for the Poisson problem in [6, 7]. The key tool
in the analysis is the proof of the existence of a bijection between Poisson-like [5] and
Stokes-like [11] VE spaces for the velocities. This allows us to re-interpret the stan-
dard VEM for Stokes [11] as a VEM, where the test and trial discrete velocities are
sought in Poisson-like VE spaces. The upside of this fact is that we inherit from [7]
an explicit analysis of best interpolation results in VE spaces, as well as stabilization
estimates that are explicit in terms of the degree of accuracy of the method.

We prove that the hp-version of the method converges exponentially in terms of
the cubic root of the number of degrees of freedom when the right-hand side of the
Stokes problem in a polygonal domain is analytic. In addition, we also show that the
p-version of the method converges algebraically if the solution is sufficiently regular,
and exponentially in terms of the degree of accuracy when the solution is analytic.
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In the remainder of this section, we introduce some notation, the continuous prob-
lem we are interested in, namely a Stokes problem in a two-dimensional polygonal
domain, and discuss the regularity of solutions to this kind of problems in polyg-
onal domains. Finally, we conclude this section by presenting the structure of the
remainder of the paper.

1.1 Notation

We employ the standard notation for Sobolev spaces [1]. More precisely, given a
domain D ⊂ R

d , d = 1, 2, we denote the Sobolev space of integer order s ∈ N

by Hs(D). We endow Hs(D) with standard Sobolev inner products, seminorms and
norms:

(·, ·)s,D, | · |s,D, ‖ · ‖s,D .

Fractional Sobolev spaces can be defined via interpolation theory. Moreover, we
set Pp(D) as the space of polynomials of total degree at most p over the domain D.

As customary, given two positive quantities a and b, we write a � b meaning that
there exists a positive constant c independent of the discretization parameters such
that a ≤ c b. Moreover, we write a � b if a � b and b � a at once.

We write N0 = N ∪ {0} and R
+ = {x ∈ R : x > 0}.

1.2 The continuous problem

Let Ω ⊂ R
2 be a polygonal domain with boundary Γ and f ∈ [L2(Ω)]2. We want

to approximate the solution to the following problem: find u and s such that
⎧
⎪⎨

⎪⎩

−Δu − ∇s = f in Ω

div u = 0 in Ω

u = 0 on Γ .

(1)

Define the spaces

V := [H 1
0 (Ω)]2, Q := L2

0(Ω) =
{

q ∈ L2(Ω) :
∫

Ω

q = 0

}

,

and the bilinear forms

a(u, v) := (∇u, ∇v)0,Ω, b(v, q) = (div v, q)0,Ω ∀u, v ∈ V , ∀q ∈ Q. (2)

The weak formulation of problem (1) reads
⎧
⎪⎨

⎪⎩

find (u, s) ∈ V × Q such that

a(u, v) + b(v, s) = (f , v) ∀v ∈ V

b(u, q) = 0 ∀q ∈ Q.

(3)

Problem (3) is well-posed, see, e.g., [15].
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1.3 Regularity of the solution to (1)

The regularity of the solution (u, s) to Stokes problem (1) in the polygonal domain Ω

depends on the shape of the domain. In particular, even if the right-hand side f is
analytic, the corners of the domain give rise to corner singularities in the solution,
which limit its regularity in the scale of classical Sobolev spaces. In order to properly
characterize the solution to the Stokes problem, we resort to corner-weighted Sobolev
spaces, of the kind firstly proposed in [31].

Assume that the polygon Ω has nc ∈ N corners, which we denote by C = {ci ∈
R

2, i = 1 . . . , nc}. Set the amplitude of the internal angles at each corner ci ∈ C

as φci
∈ (0, 2π)\{π} and the Euclidean norm in R

2 by |·|. Then, given the vector γ =
{γci

∈ R, ci ∈ C} ∈ R
nc and k ∈ N0, define the weight function

rk−γ (x) :=
nc∏

i=1

|x − ci |k−γci ∀x ∈ Ω .

For � ∈ N0 and γ ∈ R
nc , introduce the seminorm and associated norm

|v|2K�
γ (Ω)

:=
∑

α=(α1,α2)∈[N0]2, |α|=�

‖r |α|−γ ∂αv‖2
L2(Ω)

, ‖v‖2
K�

γ (Ω)
:=

�∑

k=0

|v|2Kk
γ (Ω)

,

where we use the notation ∂α = ∂
α1
x1 ∂

α2
x2 . We define the homogeneous Kondrat’ev

space as

K�
γ (Ω) :=

{
v ∈ L2(Ω) : ‖v‖K�

γ (Ω) < ∞
}

. (4)

Furthermore, we introduce the class of weighted analytic functions

K

γ (Ω) :=

⎧
⎨

⎩
v∈

⋂

�∈N0

K�
γ (Ω) :∃A ∈ R such that |v|K�

γ (Ω) ≤A�+1�! ∀� ∈ N0

⎫
⎬

⎭
. (5)

If there exists β ∈ R such that γc = β for all c ∈ C, we write K�
β(Ω) = K�

γ (Ω) and

K

β (Ω) = K


γ (Ω).
For each vertex c ∈ C of Ω , λc denotes the smallest positive solution to the

following equation:

(
sin(λci

φci
)
)2 = λ2

ci

(
sin φci

)2 . (6)

Observe that, for all φc ∈ (0, 2π) \ {π}, we have λc > 1/2. Furthermore, for all 0 <

φc < π , i.e., in presence of convex corners, we have λc = 1.
The following result is a finite regularity shift result in weighted Sobolev spaces

for solutions to the Stokes problem; see [27, Theorem 5.7] and [32, Section 5]; see
also [35, Proposition 1.8] for the case of homogeneous spaces.
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Theorem 1 Let � ∈ N0 and γ be such that 0 < γci
− 1 < λci

for all ci ∈ C. Assume

that f ∈
[
K�

γ−2(Ω)
]2

and let (u, s) ∈ V × Q be the unique solution to (1) with

right-hand side f . Then, there exists C > 0 such that

‖u‖K�+2
γ (Ω)

+ ‖s‖K�+1
γ−1(Ω)

≤ C‖f ‖K�
γ−2(Ω). (7)

Furthermore, if the right-hand side belongs to analytic weighted spaces, then also
the solution to the Stokes problem belongs to the same spaces, as stated in the
following result; see [27, Theorem 5.7].

Theorem 2 Let γ be such that 0 < γc − 1 < λc for all c ∈ C. Let f ∈
[
K


γ−2(Ω)
]2

and (u, s) ∈ V × Q be the solution to (1) with right-hand side f . Then u ∈
[
K


γ (Ω)
]2

and s ∈ K

γ−1(Ω).

1.4 Structure of the paper

In Section 2, we construct the VEM for the approximation of solutions to problem (3).
Differently from the standard approach of [11], we show that the VEM for the Stokes
equation can be re-interpreted as a VEM where the velocity space is Poisson-like [5].
Section 3 is concerned with the derivation of a priori estimates on velocities and
pressures. Among the key points here, we prove the validity of a discrete inf-sup
condition and stabilization bounds, which are explicit in terms of the degree of accu-
racy of the method. The exponential convergence for the p- and hp-versions of the
method are theoretically proven in Section 4 and numerically validated in Section 5.
We draw some conclusions in Section 6.

2 Meshes and the virtual element method

In this section, we present the virtual element method for the approximation of solu-
tions to (3). More precisely, we begin by introducing sequences of polygonal meshes
partitioning the domain Ω and their properties in Section 2.1. Next, in Section 2.2, we
recall the virtual element spaces introduced in [11], whereas, in Section 2.3, we con-
struct computable bilinear forms and exhibit the method. We devote, then, Section 2.4
to recalling the standard virtual element method from [5]. Indeed, we show that the
virtual element method for the Stokes equation can be re-interpreted as a method
where the velocity is sought in Poisson-like virtual element spaces. This fact will
play an important role in the analysis presented in Section 3 below.

Notation for the subscripts When referring to a polynomial of degree at most p ∈ N,
we use the p subscript. Instead, when referring to a function in a virtual element
space, we use the n subscript. The “n-notation” is more convenient in view of the
description of the hp-version of the method.
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2.1 Meshes

Here, we introduce the polygonal meshes, upon which we will construct the virtual
element method. Specifically, we consider sequences {Tn}n∈N of meshes, which par-
tition the domain Ω into conforming, nonoverlapping polygons. Fix n ∈ N, i.e., fix
one of the meshes in the sequence. We denote the set of vertices and edges in Tn

by Vn and En, respectively. Next, fix K ∈ Tn. We denote its diameter and cen-
troid by hK and xK , respectively. Moreover, EK represents its set of edges. We
define h := maxK∈Tn

hK .
The set of vertices Vn and edges En can be decomposed into internal and boundary,

i.e., contained in Γ = ∂Ω , ones. We write VI
n , VB

n , EI
n , and EB

n , respectively. We
denote the length of each edge e ∈ En by he.

We state the following assumptions on the sequence of meshes: for all n ∈ N,
there exists γ ∈ (0, 1) such that

(A0-p) the mesh Tn is quasi-uniform, i.e., for all K1 and K2 ∈ Tn, there holds
γ hK1 ≤ hK2 ≤ γ −1hK1 ;

(A0-hp) the mesh Tn is locally quasi-uniform, i.e., for all neighbouring K1
and K2 ∈ Tn, there holds γ hK1 ≤ hK2 ≤ γ −1hK1 ;

(A1) for all K ∈ Tn, K is star-shaped with respect to a ball with radius larger
than or equal to γ hK ;

(A2) for all K ∈ Tn and for all e ∈ EK , there holds hK ≤ γ he.

Assumptions (A1) and (A2) will be used throughout the whole paper. Instead,
assumptions (A0-p) and (A0-hp) will be considered when dealing with the p- and
hp-versions of the method, respectively.

For the sake of exposition, we construct the method for uniform p only, and
postpone to Section 4.2 the variable degree case.

Remark 1 The forthcoming analysis can be also extended to more general geome-
tries; see, e.g., [10, 16, 21]. For the sake of clarity, we stick to the setting detailed
above.

We denote the space of piecewise discontinuous polynomials of degree p ∈ N

over Tn by Pp(Tn).

2.2 The Stokes virtual element spaces

Here, we recall from [11] the virtual element spaces, which we will use in the dis-
cretization of problem (3). Henceforth, p ∈ N denotes the degree of accuracy of the
method. Given K ∈ Tn, set

Gp(K) := ∇(Pp+1(K)) ⊂ [Pp(K)]2

and introduce the subspace Hp(K) ⊂ [Pp(K)]2 such that

[Pp(K)]2 = Gp(K) ⊕ Hp(K). (8)
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In [11], Hp(K) is chosen as the L2(K)-orthogonal complement in [Pp(K)]2

of Gp(K), denoted G⊥
p (K). In practical computations, see [23], a convenient choice

is provided by the space

x⊥
Pp−1(K), x⊥ =

(−y

x

)

.

In what follows, we do not impose orthogonality in (8), but only require that Hp(K)

is such that (8) is a direct sum.
Recall that EK denotes the set of edges of the element K and introduce

Bp(∂K) :=
{
vn ∈ C0(∂K) | vn|e ∈ [Pp(e)]2 ∀e ∈ EK

}
.

Define the local bilinear forms:

aK(u, v) := (∇u, ∇v)0,K , bK(v, q) := (div v, q)0,K ∀u, v ∈ [H 1(K)]2, q ∈ L2(K).

Consider the following local Stokes problem: Given q⊕
p−2 ∈ Hp(K) and qp−1 ∈

Pp−1(K)/R:
⎧
⎪⎨

⎪⎩

find (vn, s) ∈ H 1(K) × L2(K), vn|∂K ∈ Bp(∂K) such that

−Δvn − ∇s = q⊕
p−2 in K

div vn = qp−1 in K .

(9)

Set the local Stokes-like virtual element space for the velocity as follows:

V n(K) :=
{
vn ∈ [H 1(K)]2 | vn solves a problem of the form (9)

}
.

We introduce the following linear functionals on V n(K): given vn ∈ V n(K), define

– DvK
1 (vn): the point values at the vertices of K;

– DvK
2 (vn): the point values at the p − 1 internal nodes of the Gauß-Lobatto

formula of precision 2p + 1 on each edge e ∈ EK ;
– given {qα

⊕} a basis of Hp, the “complementary” moments

DvK
3 (vn)α = 1

|K|
∫

K

vn · qα
⊕; (10)

– given {qα}p−1
α=1 a basis of Pp−1(K)/R, the “divergence” moments

DvK
4 (vn)α = hK

|K|
∫

K

div(vn)qα . (11)

Lemma 1 The above linear functionals are a set of degrees of freedom for V n(K).

Proof See [11, Proposition 3.2].

We define the H 1-conforming global Stokes-like velocity space as follows:

V n := {vn ∈ [H 1
0 (Ω)]2 : vn|K ∈ V n(K) for all K ∈ Tn}. (12)
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We endow this space with the set of degrees of freedom, which is obtained by a
standard H 1-conforming dof coupling of the local ones.

The above degrees of freedom allow us to compute two projection operators;
see [11, Sections 3.2 and 3.3]. The first one is the H 1 projector Π∇,K

p : [H 1(K)]2 →
[Pp(K)]2 defined as

{
aK(qp, vn − Π∇,K

p vn) = 0 ∀qp ∈ [Pp(K)]2
∫

∂K
vn − Π∇,K

p vn = 0.
(13)

We define the global projector Π∇
p : [H 1(Tn)]2 → [Pp(Tn)]2 so that, for all v ∈

[H 1(Tn)]2,
(
Π∇

p v
)

|K = Π∇,K
p (v|K) ∀K ∈ Tn.

Furthermore, we can compute the L2 projector Π
0,K
p−2 : V n(K) → [Pp−2(K)]2

defined as

(qp−2, vn − Π
0,K
p−2vn)0,K = 0 ∀qp−2 ∈ [Pp−2(K)]2. (14)

These two operators are instrumental in the design of the virtual element methods;
see Section 2.3 below.

For future convenience, introduce the broken Sobolev space

H 1(Tn) :=
{
v ∈ [L2(Ω)]2 : v|K ∈ [H 1(K)]2 ∀K ∈ Tn

}
,

and associate with it the broken Sobolev seminorm and norm

|v|21,Tn
:=

∑

K∈Tn

‖∇v‖2
0,K ‖v‖2

1,Tn
:= ‖v‖2

0,Ω + |v|21,Tn
.

Finally, set the pressure space as

Qn :=
{
qn ∈ L2

0(Ω) : qn|K ∈ Pp−1(K) for all K ∈ Tn

}
. (15)

2.3 The virtual element method

Here, we design computable discrete bilinear forms and right-hand side and intro-
duce the virtual element method for the approximation of solutions to the Stokes
problem (3).

2.3.1 Discrete bilinear forms

We introduce the elementwise discrete bilinear form aK
n given by

aK
n (un, vn) := aK(Π∇,K

p un,Π
∇,K
p vn) + SK((Id −Π∇,K

p )un, (Id −Π∇,K
p )vn) ∀un, vn ∈ V n(K),

(16)

where, for all K ∈ Tn, SK : H 1(K) × H 1(K) → R is a computable local stabi-
lizing bilinear form, which is computable from the degrees of freedom introduced in
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Section 2.2. We postpone the discussion about further properties of the stabilizing
bilinear forms SK to Section 3.2 below. The global discrete bilinear form reads

an(un, vn) =
∑

K∈Tn

aK
n (un|K, vn|K) ∀un, vn ∈ V n.

As for the discretization of the bilinear form b(·, ·) in (2), we observe that the diver-
gence of functions in the space V n(K) is polynomial and can be expressed in closed
form in terms of their degrees of freedom. Therefore, no approximation is necessary
for the second bilinear form and we define

bn(vn, qn) := b(vn, qn) ∀vn ∈ V n, ∀qn ∈ Qn.

2.3.2 Discrete right-hand side

Define the global piecewise L2 projector Π0
p−2 as follows: given f ∈ [L2(Ω)]2,

(
Π0

p−2f
)

|K := Π
0,K
p−2(f |K) ∀K ∈ Tn.

2.3.3 The virtual element method

The virtual element method for the Stokes problem (3) reads as follows:
⎧
⎪⎨

⎪⎩

find (un, sn) ∈ V n × Qn such that

an(un, vn) + b(vn, sn) = (Π0
p−2f , vn)0,Ω ∀vn ∈ V n

b(un, qn) = 0 ∀qn ∈ Qn.

(17)

2.4 An equivalent formulation in Poisson-like virtual element spaces

We recall the vector Poisson-like virtual element space, see [5], for this will allow
us to reinterpret method (17) in a way that is more convenient for the analysis in
Section 3 below. Given K ∈ Tn, set

Ṽ n(K) := {̃vn ∈ [H 1(K)]2 : ṽn|∂K ∈ Bp(∂K) and Δṽn ∈ [Pp−2(K)]2}.
The global H 1 standard Poisson-like virtual element space reads

Ṽ n =
{
ṽn ∈ [H 1(K)]2 : ṽn|K ∈ Ṽ n(K) for all K ∈ Tn

}
. (18)

The operators DvK
i , i = 1, . . . , 4 introduced in Section 2.2 are unisolvent degrees

of freedom for both V n(K) and Ṽ n(K), as stated in the following lemma, where we
also prove that such degrees of freedom identify a bijection between the two virtual
element spaces.

Lemma 2 For all K ∈ Tn, there exists a Stokes-to-Poisson bijection TK
StP :

V n(K) → Ṽ n(K) such that

DvK
i (vn) = DvK

i (TK
StP vn), i = 1, 2, 3, 4, ∀vn ∈ V n(K). (19)
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Proof Given K ∈ Tn, introduce the following auxiliary set of degrees of freedom:
given ṽn ∈ Ṽ n(K),

– D̃v
K

1 (̃vn): the point values at the vertices if K;

– D̃v
K

2 (̃vn): the point values at the p − 1 internal nodes of the Gauß-Lobatto
formula of precision 2p + 1 on each edge e ∈ EK ;

– given {qα
⊕} the basis of Hp−2 used in (10), the moments

D̃v
K

3 (̃vn)α = 1

|K|
∫

K

ṽn · qα
⊕; (20)

– given {pα}p−1
α=1 a basis of Gp−2 such that pα = ∇qα , with qα defined in (11), the

moments

D̃v
K

4 (̃vn)α = hK

|K|
∫

K

ṽn · pα . (21)

Since [Pp−2(K)]2 = Gp−2 ⊕ Hp−2, this is indeed a set of degrees of freedom;

see [5, Proposition 4.1]. Furthermore, D̃v
K

i = DvK
i for i = 1, 2, 3.

For any vn ∈ V n(K), introduce ṽn = TK
StP vn ∈ Ṽ n(K) as described below. First,

we require ṽn|∂K = vn|∂K . In other words, fix DvK
i (̃vn) = DvK

i (vn) for i = 1, 2.
Besides, assume that

D̃v
K

3 (̃vn) = DvK
3 (̃vn) = DvK

3 (vn).

Finally, for α = 1, . . . , p − 1, let {qα}α be the basis of Pp−1(K)/R used in (11). We
require

h−1
K |K|D̃vK

4 (̃vn)α = −h−1
K |K|DvK

4 (vn)α +
∫

∂K

vn · nKqα . (22)

This implies that DvK
4 (̃vn) = DvK

4 (vn). Indeed, {∇qα}p−2
α=1 is a basis for Gp−2 and1

h−1
K |K|DvK

4 (̃vn)α
(11)= ∫

K
div(̃vn)qα

(IBP)= − ∫
K

ṽn · ∇qα + ∫

∂K
ṽn · nKqα

(21)= −h−1
K |K|D̃vK

4 (̃vn)α + ∫

∂K
vn · nKqα

(22)= h−1
K |K|DvK

4 (vn)α .

Using that dim(V n(K)) = dim(Ṽ n(K)), we get that TK
StP is a bijection.

As an immediate consequence, we have the following result.

Corollary 1 The degrees of freedom DvK
i , i = 1, 2, 3, 4 are unisolvent on Ṽ n(K).

The two next lemmata are instrumental in order to prove Proposition 1 below.

Lemma 3 Let TK
StP be the bijection introduced in Lemma 2. Then, the following

identity is valid:
∫

K

vn · qp−2 =
∫

K

(TK
StP vn) · qp−2 ∀vn ∈ V n(K), ∀qp−2 ∈ [Pp−2(K)]2.

1Here and in what follows (IBP) means ‘integration by parts’.

Page 10 of 3124



(2021)  74 : 24Adv Comput Math

Proof For any qp−2 ∈ [Pp−2(K)]2, there exist unique qp−1 ∈ Pp−1(K)/R

and q̃p−2 ∈ Hp−2(K) such that

qp−2 = ∇qp−1 + q̃p−2, (23)

see, e.g., [23, Proposition 2.1]. Denote ṽn = TK
StP vn ∈ Ṽ n. Using Lemma 2, we

have DvK
i (vn) = DvK

i (̃vn), i = 1, 2, 3, 4. Therefore, we deduce

∫

K
vn · qp−2

(23)= ∫

K
vn · ∇qp−1 + ∫

K
vn · q̃p−2

(IBP)= − ∫
K

div(vn)qp−1 + ∫

∂K
vn · nKqp−1 + ∫

K
vn · q̃p−2

(19)= − ∫
K

div(̃vn)qp−1 + ∫

∂K
ṽn · nKqp−1 + ∫

K
ṽn · q̃p−2

(23)= ∫

K
ṽn · qp−2.

Lemma 4 Let TK
StP be the bijection introduced in Lemma 2. Then, we have

Π∇,K
p (TK

StP vn) = Π∇,K
p vn, Π

0,K
p−2(T

K
StP vn) = Π

0,K
p−2vn ∀vn ∈ V n(K). (24)

Proof Let vn ∈ V n(K) and denote ṽn = TK
StP vn ∈ Ṽ n. An integration by parts

yields

aK(qp, Π∇,K
p ṽn) = −

∫

K

Δqp · ṽn +
∫

∂K

(∇qpnK) · ṽn ∀qp ∈ [Pp(K)]2.

Since ṽn|∂K = vn|∂K and using Lemma 3, we deduce

aK(qp, Π∇,K
p ṽn) = −

∫

K

Δqp · vn +
∫

∂K

(∇qpnK) · vn = aK(qp, Π∇,K
p vn).

The second identity in (24) is a direct consequence of Lemma 3.

Define the global bijection

TStP : V n → Ṽ n (25)

as (TStP vn)|K = TK
StP(vn|K) for all vn ∈ V n and K ∈ Tn.

The following result is a direct consequence of Lemmata 3 and 4.

Proposition 1 For all vn ∈ V n, we have

b(TStP vn, qn) = b(vn, qn) ∀qn ∈ Qn, (26)

and
Π∇

p (TStP vn) = Π∇
p vn, Π0

p−2(TStP vn) = Π0
p−2vn. (27)

Proof The identities in (27) follow from Lemma 4 and the definitions of Π∇
p

and Π0
p−2 directly. In order to show (26), remark that, due to Lemma 2
∫

K

div(TStP vn)qn =
∫

K

div(vn)qn ∀K ∈ Tn, ∀qn ∈ Pp−1(K)/R.

Then, (26) follows from summing up the contributions of each integral in K .
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In words, Proposition 1 states that, given two functions in the virtual element
spaces V n and Ṽ n sharing the same value of the degrees of freedom, their Π∇

p

and Π0
p−2 projections, as well as their evaluations through b(·, qn) for all qn ∈ Qn,

are the same.

3 A priori estimates

In this section, we prove the well-posedness and provide an abstract error analysis of
method (17). To this aim, we first prove that the bilinear form b(·, ·) satisfies a dis-
crete inf-sup condition independently of the degree of accuracy of the method; see
Section 3.1. Secondly, in Section 3.2, we analyse the discrete bilinear form an(·, ·)
and show that, under suitable assumptions on the stabilization terms, it is coer-
cive and continuous. Notably, the coercivity and continuity constants are determined
using Poisson-like spaces and are explicit in terms of the degree of accuracy p of
the method. The abstract error analysis on the velocities and pressures is provided
in Sections 3.3 and 3.4, respectively. The bounds herein proven are instrumental in
deducing the rate of convergence of the error of the method, which is the topic of
Section 4 below.

3.1 The discrete inf-sup condition

The discrete inf-sup stability of method (17) has been shown in [11] already. Here,
we recall its proof and show that the discrete inf-sup constant is independent of the
degree of accuracy p.

We start by recalling a classical result on the inf-sup constant for star-shaped
domains.

Lemma 5 Let D ⊂ R
2 be a domain contained in a ball of radius R and star-shaped

with respect to a concentric ball of radius ρ. Denote the inf-sup constant of bD(·, ·)
by β(D). Then, the following lower bound is valid:

β(D) ≥ ρ

2R
.

Proof See [22, Theorem 2.3].

Lemma 6 There exists a positive constant β̃, independent of the element sizes and
of the degree of accuracy p, such that

inf
qn∈Qn

sup
vn∈V n

b(vn, qn)

|vn|1,Ω‖qn‖0,Ω

≥ β̃. (28)
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Proof As is customary, we use the Fortin’s trick, i.e., we show the existence of an
operator Πn : V → V n and a positive constant C independent of p such that

{
b(Πnv, qn) = b(v, qn) for all qn ∈ Qn

‖Πnv‖1,Ω ≤ C‖v‖1,Ω .

This implies the validity of the inf-sup stability of the spaces V n and Qn; see,
e.g., [15]. We devote the remainder of the proof to showing the existence of such
operator Πn and constant C.

Let W n be a low-order (p = 2) virtual element space for the velocity. By [11,
Proposition 4.2], there exists vn ∈ W n such that

{
b(vn, qn) = b(v, qn) for all qn ∈ P0(T )

‖vn‖1,Ω ≤ C‖v‖1,Ω .
(29)

In each element K , we introduce a bubble function wK
n ∈ V n(K) such that

– wK
n |∂K = 0;

–
∫

K

wK
n qα

⊕ = 0 for all qα
⊕ ∈ Hp(K);

–
∫

K

div(wK
n )qp−1 =

∫

K

div(v − vn)qp−1 for all qp−1 ∈ Pp−1(K)/R.

In other words, we construct wK
n such that, in each element K ∈ Tn, DvK

i (wK
n ) =

0, i = 1, 2, 3, and DvK
4 (wK

n ) = DvK
4 (v − vn). Besides, by the definition of the

space V n(K), there exist s ∈ L2(K) such that
{

−ΔwK
n − ∇s = 0 in K

div wK
n = Π

0,K
p−1 div(v − vn) in K .

By the standard well-posedness of the above Stokes problem, we claim that

|wK
n |1,K ≤ 1

β(K)
‖Π0,K

p−1 div(v − vn)‖0,K ≤ 1

β(K)
|v − vn|1,K . (30)

In order to show (30), first observe that

|wK
n |21,K = aK(wK

n , wK
n ) = −bK(wK

n , s) ≤ ‖Π0,K
p−1 div(v − vn)‖0,K‖s‖0,K .

Next, denote the inf-sup constant of the continuous Stokes problem in K with
homogeneous Dirichlet boundary conditions by β(K). This gives

‖s‖0,K ≤ 1

β(K)
sup

v∈H 1
0 (K)2

bK(v, s)

|v|1,K

= 1

β(K)
sup

v∈H 1
0 (K)2

aK(wK
n , v)

|v|1,K

≤ 1

β(K)
|wK

n |1,K,

whence (30) follows.
Next, consider wn ∈ V n defined as wK

n in each element K ∈ Tn and define Πnv =
wn + vn. By construction, it follows that

b(Πnv, qn) = b(v, qn) ∀qn ∈ Qn.

From (29) and (30), we deduce that Πn is H 1(Ω)-stable, with stability constant
independent of the degree of accuracy p.
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3.2 Stabilization, coercivity, and continuity: well-posedness of the VEM

In this section, we analyse the properties of the discrete bilinear form an(·, ·).
Notably, we show that suitable choices of the stabilization forms yield to a coercive
and continuous bilinear form. Furthermore, the coercivity and continuity constant are
explicit in terms of the degree of accuracy p of the method. The main ingredient is
given by the properties of the bijection TK

StP; see Lemma 2.
In order to investigate the stability of the method, we require an additional property

on the stabilization bilinear forms: For all un, vn ∈ V n(K) and ũn, ṽn ∈ Ṽ n(K)

such that DvK
i (vn) = DvK

i (̃vn), i = 1, 2, 3, 4, i.e., ṽn = TStP vn with TStP defined
in Lemma 2,

SK(un, vn) = SK(̃un, ṽn) (31)

Furthermore, we assume that, for all p ∈ N and K ∈ Tn, there exist two positive
constant α̂∗(p) < α̂∗(p), such that

SK (̃vn, ṽn) ≥ α̂∗(p)|̃vn|21,K , SK (̃un, ṽn) ≤ α̂∗(p)|̃un|1,K |̃vn|1,K ∀ũn, ṽn ∈ Ṽ n(K) ∩ ker(Π∇,K
p ).

(32)

Set

α∗(p) = min(1, α̂∗(p)), α∗(p) = max(1, α̂∗(p)).

Following, e.g., [5], we can prove that α∗(p) and α∗(p) are the coercivity and conti-
nuity constants for the discrete bilinear form an(·, ·). The actual dependence on p of
the two constants hinges upon the definition of the stabilizing bilinear forms SK(·, ·)
in (16); see Remark 2 below for an explicit choice of the stabilization together with
the explicit dependence in terms of the degree of accuracy.

As in [5], the properties of the discrete bilinear form an(·, ·) entail that the method
is stable and p-polynomially consistent. We have the following well-posedness
result.

Theorem 3 Method (17) is well-posed.

Proof The assertion follows from the continuity of the bilinear forms an and bn,
the coercivity of an, the discrete inf-sup condition (28), and standard argument as
in [15].

Remark 2 An example of an explicit stabilization SK such that (31) and (32) are
valid is as follows:

SK(un, vn) = p

hK

(un, vn)0,∂K + p2

h2
K

(
Π

0,K
p−2un, Π

0,K
p−2vn

)

0,K
∀un, vn ∈ V n(K).

(33)
All the terms on the right-hand side of (33) are computable via the degrees of free-
dom DvK

i , i = 1, . . . , 4 explicitly. Furthermore, (31) is valid thanks to Lemmata 2
and 4. On the other hand, the bounds in (32) can be proven as in [7, Theorem 2], with
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explicit stability constants

α̂∗(p) ≥ p−5, α̂∗(p) ≤
⎧
⎨

⎩

1 if K is convex

p
2
(

1− π
ωK

+ε
)

otherwise,

for all ε > 0 and where ωK denotes the largest angle of K .
The practical dependence of the stabilization constants in terms of p results to be

much milder numerically; see [6, Section 4.6] and [7, Section 4.1].

3.2.1 Why did we assume (31)?

The reason we have introduced the auxiliary Poisson-like virtual element space Ṽ n

in (18) and analysed its relation with the Stokes-like virtual element space V n in (12)
is that we can exploit previous stability bounds that are explicit in terms of the degree
of accuracy p; see [7, Section 4].

Notably, the nonstandard assumption (31), together with (26) and (27), allows
us to analyse method (17) by mapping Stokes-like virtual element functions into
Poisson-like ones.

Remark 3 By concatenating (27), (31), and (26), problem (17) is algebraically the
same as the analogous discrete problem, where test and trial functions are sought
in V n rather than Ṽ n. Besides, in Section 3.2, we have seen that analysing the
stabilization for “Stokes-type” spaces is the same as for the Poisson case, which
is thoroughly investigated in [36]. In this reference, it was observed that, in two
dimensions, the stabilization has no effect on the numerical performance of the
method.

3.3 A priori estimate on the velocity

In this section, we prove upper bounds, which will be instrumental in the analysis of
the convergence for the error on the velocity.

Introduce the weakly divergence-free subspace of Ṽ n

Z̃n := {
ṽn ∈ Ṽ n : b(̃vn, qn) = 0 for all qn ∈ Qn

}
.

For future use, we also introduce the weakly divergence-free subspace of V n

Zn := {vn ∈ V n : b(vn, qn) = 0 for all qn ∈ Qn} . (34)

Moreover, let Fn denote the smallest constant such that

|((Id −Π0
p−2)f , ṽn)0,Ω | ≤ Fn |̃vn|1,Tn

∀̃vn ∈ Z̃n.

The first result is an upper bound on the error between the solution to the continuous
problem and the discrete solution mapped through the bijection in (25).
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Lemma 7 Let u be the solution to (3), un ∈ V n the virtual element solution to (17),
and TStP the bijection defined in (25). Then, the following bound is valid:

|u − TStP un|1,Tn ≤ 1

α∗(p)

(

Fn + (α∗(p) + 1)

(

inf
z̃n∈Z̃n

|u − z̃n|1,Ω + inf
uπ ∈[Pp(Tn)]2

|u − uπ |1,Tn

))

.

(35)

Proof Introduce ũn = TStP un. Since b(un, qn) = 0 for all qn ∈ Qn, use (26) to get
that ũn ∈ Z̃n. Moreover, by (27) and (31), ũn is the solution to the reduced problem

{
find ũn ∈ Z̃n such that

an(̃un, ṽn) = (Π0
p−2f , ṽn) ∀̃vn ∈ Z̃n.

In fact, un solves the Stokes-like counterpart
{

find un ∈ Zn such that

an(un, vn) = (Π0
p−2f , vn) ∀vn ∈ Zn.

The analysis proceeds with classical tools for a priori estimates for virtual element
methods; see, e.g., [5]. For any z̃n ∈ Z̃n, the triangle inequality yields

|u − ũn|1,Tn
≤ |u − z̃n|1,Tn

+ |̃zn − ũn|1,Tn
. (36)

Denoting δn = z̃n − ũn ∈ Z̃n, for all uπ ∈ [Pp(Tn)]2, we compute,

α∗(p)|δn|21,Tn
≤

∑

K∈Tn

aK
n (δn, δn)

=
∑

K∈Tn

(
aK(u, δn) − aK

n (̃un, δn)
)

+
∑

K∈Tn

aK
n (̃zn − uπ , δn) +

∑

K∈Tn

aK(uπ − u, δn)

≤ ((Id −Π0
p−2)f , δn)0,Ω + α∗(p)

∑

K∈Tn

|̃zn − uπ |1,K |δn|1,K +
∑

K∈Tn

|uπ − u|1,K |δn|1,K

≤ (
Fn + α∗(p)|̃zn − uπ |1,Tn + |uπ − u|1,Tn

) |δn|1,Tn ,

where the last inequality follows from the definition of Fn and the Cauchy-Schwarz
inequality.

Dividing both sides by |δn|1,Tn
gives

|̃zn − ũn|1,Tn
≤ 1

α∗(p)

(
Fn+α∗(p)|̃zn − u|1,Tn

+ (α∗(p) + 1)|uπ − u|1,Tn

)
. (37)

The assertion follows combining (36) and (37).

The next result is an upper bound on the error between the solution to the
continuous problem and the H 1 projection of the discrete Stokes-like solution.
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Lemma 8 Let u and un ∈ V n be the solutions to (3) and (17), respectively. Then,
we have

|u − Π∇
p un|1,Tn

≤ 1
α∗(p)

(

Fn + (α∗(p) + 1) inf
z̃n∈Z̃n

|u − z̃n|1,Ω + (α∗(p) + 2) inf
uπ ∈[Pp(Tn)]2

|u − uπ |1,Tn

)

.
(38)

Proof Let ũn = TStP un ∈ Ṽ n. Use Proposition 1 to get

Π∇
p un|K = Π∇

p ũn|K for all K ∈ Tn.

The triangle inequality and the stability of the H 1 projector give

|u − Π∇
p un|1,Tn

≤ |u − Π∇
p u|1,Tn

+
⎛

⎝
∑

K∈Tn

|Π∇
p (u − ũn)|21,K

⎞

⎠

1/2

≤ |u − Π∇
p u|1,Tn

+ |u − ũn|1,Tn
.

(39)

For all uπ ∈ [Pp(Tn)]2, we have

|u − Π∇
p u|1,Tn

≤ |u − uπ |1,Tn
. (40)

Combining (35), (39), and (40), the assertion follows.

Next, we show an upper bound on the best error on the Poisson-like weakly
divergence free subspace Z̃n in terms of a best error in terms of functions in the
Poisson-like virtual element space Ṽ n.

Lemma 9 Let u ∈ [H 1
0 (Ω)]2 be such that

b(u, q) = 0 ∀q ∈ L2
0(Ω). (41)

Then, there exists a positive constant β̃ such that the following upper bound is valid:

inf
z̃n∈Z̃n

|u − z̃n|1,Ω ≤
(

1 + 1

β̃

(
1 + α∗(p)

α∗(p)

)1/2
)

inf
ṽn∈Ṽ n

|u − ṽn|1,Ω .

Proof We begin by proving a discrete “switched” inf-sup condition. Introduce ZC
n

the complementary space of Zn defined in (34) in V n. In Lemma 6, we proved the
existence of a surjective operator �n : Qn → V n such that

(�nqn, vn)1,Ω = b(vn, qn) ∀vn ∈ ZC
n , ∀qn ∈ Qn. (42)

In particular, the discrete inf-sup condition (28) can be written as

β̃‖qn‖0,Ω ≤ |�nqn|1,Ω ∀qn ∈ Qn. (43)
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Hence, for all vn ∈ ZC
n , thanks to the surjectivity of �n, we can write

β̃|vn|1,Ω = β̃ sup
ṽn∈ZC

n

(̃vn,vn)1,Ω

|̃vn|1,Ω
= β̃ sup

qn∈Qn

(�nqn,vn)1,Ω

|�nqn|1,Ω

(43)≤ sup
qn∈Qn

(�nqn,vn)1,Ω

‖qn‖0,Ω

(42)= sup
qn∈Qn

b(vn,qn)
‖qn‖0,Ω

.
(44)

For each ṽn ∈ Ṽ n, define wn ∈ ZC
n as the solution to

{
find wn ∈ ZC

n such that

b(wn, qn) = b(̃vn, qn) ∀qn ∈ Qn.
(45)

This problem has a unique solution due to the continuity and the discrete “switched”
inf-sup stability in (44) of the bilinear form b(·, ·); see, e.g., [15]. Furthermore, the
following a priori estimate is valid:

|wn|1,Ω

(44)≤ 1

β̃
sup

qn∈Qn

b(wn, qn)

‖qn‖0,Ω

(41),(45)= 1

β̃
sup

qn∈Qn

b(̃vn − u, qn)

‖qn‖0,Ω

≤ 1

β̃
|̃vn − u|1,Ω .

(46)
Next, define

z̃n := ṽn − TStP wn, (47)

where TStP is the bijection in (25). Thanks to (26), we get

b(̃zn, qn) = b(̃vn − TStP wn, qn) = b(̃vn − wn, qn) = 0 ∀qn ∈ Qn.

We deduce that z̃n ∈ Z̃n. Then, we have

α∗(p)| TStP wn|21,Ω

(32)≤ an(TStP wn, TStP wn)
(27),(31)= an(wn, wn)

(32)≤ (1 + α∗(p))|wn|21,Ω .
(48)

This yields

|̃zn − u|1,Ω

(47)≤ |̃vn − u|1,Ω + | TStP wn|1,Ω

(48)≤ |̃vn − u|1,Ω +
(

1+α∗(p)
α∗(p)

)1/2 |wn|1,Ω

(46)≤
(

1 + 1
β̃

(
1+α∗(p)
α∗(p)

)1/2
)

|̃vn − u|1,Ω,

whence the assertion follows.

Remark 4 The last part of the proof of Lemma 9 also gives

inf
qn∈Qn

sup
ṽn∈Ṽ n

b(̃vn, qn)

|vn|1,Ω‖qn‖0,Ω

≥ β̃
√

α∗(p)/
√

1 + α∗(p).

3.4 A priori estimate on pressure

In this section, we prove upper bounds, which will be instrumental in the analysis of
the convergence of the error on the pressure obtained by the VEM.
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Lemma 10 Let (u, s) ∈ [H 1
0 (Ω)]2×L2

0(Ω) and (un, sn) ∈ V n×Qn be the solutions
to (3) and (17), respectively. Recall that the bijection TStP is defined in (25). Then,
the following bound is valid:

‖s − sn‖0,Ω ≤ 1
β̃

(

Fn + (1 + β̃) inf
qn∈Qn

‖s − qn‖0,Ω

+α∗(p)|u − TStP un|1,Ω + (1 + α∗(p)) inf
uπ ∈[Pp(Tn)]2

|u − uπ |1,Tn

)

.
(49)

Proof For all qn ∈ Qn, the triangle inequality yields

‖s − sn‖0,Ω ≤ ‖s − qn‖0,Ω + ‖sn − qn‖0,Ω .

By the discrete inf-sup condition (28), there exists vn ∈ V n such that

β̃‖sn − qn‖0,Ω ≤ b(vn, sn − qn)

|vn|1,Ω

.

We have

b(vn, sn − qn) = b(vn, s − qn) + b(vn, sn − s)

and

|b(vn, s − qn)| ≤ |vn|1,Ω‖s − qn‖0,Ω .

For ũn = TStP un, we deduce

|b(vn, sn − s)| ≤ |a(u, vn) − an(un, vn)| + |(f − Π0
p−2f , vn)|

= |a(u, vn) − an(̃un, vn)| + |(f − Π0
p−2f , vn)|

≤ | ∑
K∈Tn

aK(u − uπ , vn)| + | ∑
K∈Tn

aK
n (uπ − ũn, vn)| + Fn|vn|1,Ω

≤ (
(1 + α∗(p))|u − uπ |1,Tn

+ α∗(p)|u − ũn|1,Ω + Fn

) |vn|1,Ω ,

whence the assertion follows.

Define

γ (p) = α∗(p) + 1

α∗(p)
. (50)

Combining Lemmata 7, 8, 9 and 10, we obtain the following result.

Theorem 4 Let (u, s) ∈ [H 1
0 (Ω)]2×L2

0(Ω) and (un, sn) ∈ V n×Qn be the solutions
to (3) and (17), respectively. Recall that γ (p) is defined in (50). Then, there exists a
constant C > 0 independent of the discretization parameters such that

|u − Π∇
p un|1,Tn + β̃‖s − sn‖0,Ω ≤ C γ (p)

(

Fn + β̃−1√γ (p) inf
ṽn∈Ṽ n

|u − ṽn|1,Ω

+ inf
uπ ∈[Pp(Tn)]2

|u − uπ |1,Tn + inf
qn∈Qn

‖s − qn‖0,Ω

)

.
(51)
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4 The convergence rate of the p- and hp-versions

In Section 3, we have established an abstract error analysis for method (17). Notably,
we have proven that the error on the velocity and the pressure can be estimated from
above in terms of best polynomial approximation and best interpolation results in
virtual element spaces. With this at hand, in this section, we state the convergence
of the p- and hp-versions of method (17) for analytic, weighted analytic, and finite
Sobolev regularity solutions; see Sections 4.1 and 4.2, respectively.

4.1 p-VEM

Since all the necessary best approximation results have been proven in [6], we state
the main convergence result only. We begin with a result in classical unweighted
Sobolev spaces.

Theorem 5 Let k ∈ R
+ be such that (u, s) ∈ [H 1

0 (Ω) ∩ Hk+1(Ω)]2 × [Hk(Ω) ∩
L2

0(Ω)] and (un, sn) ∈ V n × Qn are the solutions to (3) and (17), respectively. Let
assumptions (A0-p), (A1), and (A2) be valid. Recall that γ (p) is defined in (50).
Then, there exists a positive constant C independent of the discretization parameters
such that

|u − Π∇
p un|1,Tn

+ β̃‖s − sn‖0,Ω ≤ Cγ (p)
3
2
hmin(k,p)

pk

(‖u‖k+1,Ω + ‖s‖k,Ω

)
. (52)

Furthermore, if u and s are the restrictions of suitable analytic functions over an
extension of the domain2 Ω , then there exist two positive constants C1 and C2
independent of the discretization parameters such that

|u − Π∇
p un|1,Tn

+ β̃‖s − sn‖0,Ω ≤ C1 exp(−C2 p). (53)

Proof Starting from the abstract error analysis in Theorem 4, it suffices to show h-
and p-upper bounds on the four terms appearing on the right-hand side of (51). We
can show an upper bound on them using [6, Lemmata 4.2, 4.3, and 4.4] for the finite
Sobolev regularity case, and [6, Lemmata 5.2, 5.3, and 5.4] for the analytic regularity
case.

Bound (52) follows in a straightforward manner, whereas, we apply similar results
as in [6, Theorem 5.2], in order to prove (53).

A consequence of Theorem 5 is the following results, which states the p-
convergence of the method in weighted Sobolev spaces; see Section 1.

Corollary 2 Let k ∈ N and γ ≥ k + 1. Furthermore, let (u, s) and (un, sn) ∈
V n × Qn be the solutions to (3) and (17), respectively, with right-hand side f ∈

2See [6, Section 5] for more details on this point.
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[
Kk−1

γ−2(Ω)
]2
. Under assumptions (A0-p), (A1), and (A2), there exists a positive

constant C independent of the discretization parameters such that

|u − Π∇
p un|1,Tn

+ β̃‖s − sn‖0,Ω ≤ Cγ (p)
3
2
hmin(k,p)

pk
‖f ‖Kk−1

γ−2(Ω)
.

Proof Since γ ≥ k + 1, there exists a constant CΩ such that ‖rγ−�‖L∞(Ω) ≤ CΩ for
all � ∈ {0, . . . , k + 1}. Therefore, we have

‖u‖k+1,Ω ≤ CΩ‖u‖
Kk+1

γ (Ω)
and ‖s‖k,Ω ≤ CΩ‖s‖Kk

γ−1(Ω). (54)

By Theorem 1, f ∈
[
Kk−1

γ−2(Ω)
]2

implies that (u, s) ∈
[
Kk+1

γ (Ω)
]2 × Kk

γ−1(Ω).

From (54), we obtain (u, s) ∈ [
Hk+1(Ω)

]2 × Hk(Ω) and that there exists C1 > 0
such that

‖u‖k+1,Ω + ‖s‖k,Ω ≤ C1‖f ‖Kk−1
γ−2(Ω)

.

The assertion follows applying Theorem 5.

From Theorem 5, we have that the p-version of the method converges exponen-
tially for analytic solutions and algebraically for solutions with sufficiently high finite
Sobolev regularity. However, since solutions to the Stokes problem are in general sin-
gular, as detailed in Theorem 1, we are also interested in analysing the convergence of
the hp-version of the method. Indeed, it is known that such approach allows for expo-
nential convergence with respect to a suitable root of the total number of degrees of
freedom for singular solutions as well. We postpone the design of hp-virtual element
spaces for the Stokes problem, as well as the convergence of the error, to Section 4.2
below.

Remark 5 An additional reason why the hp-version is more suited than the p-version
for the approximation of singular solutions to the Stokes problem is that the algebraic
rate of convergence in (52) contains the suboptimal term γ (p) due to the stabilization
of the method. We will observe an influence of this factor also in the numerical
performance of the method; see Section 5.2 below.

Remark 6 In Theorem 5, we proved upper bounds for errors of the form

|u − Π∇
p un|1,Tn

+ β̃‖s − sn‖0,Ω, (55)

which differ from those that are typically investigate in the VEM literature, i.e.,

|u − un|1,Tn
+ β̃‖s − sn‖0,Ω .

The reason is that we need to resort to Poisson-like spaces, when performing the
theoretical analysis, and, from Proposition 1, we know that functions in Poisson-like
and Stokes-like virtual element spaces sharing the same degrees of freedom have the
same Π∇

p projection. In turn, we had to resort to Poisson-like virtual element spaces,
because we are not able to construct a stabilization on Stokes-like virtual element
spaces with p-explicit bounds. On the positive side, the the two errors, on which we
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prove upper bounds, are those that we actually compute in the numerical experiments
presented in Section 5 below.

4.2 hp-VEM

In the present section, we construct hp-virtual element spaces for the approximation
of nonsmooth solutions to the Stokes problem (3). The main idea of the construction
hinges upon employing

– geometric refinement of the mesh towards the singular points;
– p-refinement in the elements where the solution is smooth.

For the sake of exposition, assume that the right-hand side f in (3) is smooth.
Thanks to Theorems 1 and 2, the solution (u, s) to (3) consists of two functions
that are smooth everywhere but at neighbourhoods of the vertices of the polygo-
nal domain Ω . There, the Sobolev regularity is known a priori and depends on the
amplitude of the angle.

The first step in the construction of hp-virtual element spaces resides in introduc-
ing the layer of the mesh associated with the set of vertices C. We assume that the
mesh Tn consists of n + 1 layers, where the first one is given by

L0
n := {K ∈ Tn | there exists a unique c ∈ C such that c ∈ EK},

and the others are defined recursively as

L
j
n :={K ∈ Tn | K �∈ ∪j−1

�=0L�
n; ∃K̃ ∈L

j−1
n such that K ∩ K̃ �=∅} ∀j =1, . . . , n.

Furthermore, for each K ∈ Tn, we denote any of the closest corner of the domain to
K , i.e., any of the c ∈ C such that dist(c, K) ≤ dist(c̃, K) for all c̃ ∈ C \ {c}, by cK .
For the sake of simplicity, we assume the uniqueness of such a vertex.

With this at hand, we say that the sequence of meshes {Tn}n∈N is geometrically
refined towards cK if there exists a grading parameter σ ∈ (0, 1) such that, for all n ∈
N,

hK � dist(cK, K) � σn−j ∀K ∈ L
j
n, ∀j = 1, . . . , n (56)

and
hK � σn ∀K ∈ L0

n. (57)
Conditions (56)–(57) assert that the elements abutting the vertices in C are small,
whereas the elements in the layers with large index j have fixed size asymp-
totically. Note that assumption (A0-hp) is satisfied automatically. We require an
additional assumption, which is necessary to show the exponential convergence result
of Theorem 6 below; see [7, Assumption (D4)].

(A4-hp) For all n ∈ N, let T 1
n = Tn \ L0

n. There exist a collection of squares Qn

such that

– card(Qn) = card(T 1
n ); for each K ∈ T 1

n , there exists Q = Q(K) ∈
Qn such that K ⊂ Q and hK � hQ. Additionally, dist(cK, Q(K)) �
hK ;

– every x ∈ Ω belongs at most to a fixed number of squares Q,
uniformly in the discretization parameters.
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In addition, for all K ∈ L0
n, K is star shaped with respect to cK and the

subtriangulation obtained by joining cK with the other vertices of K is
shape regular.

Although necessary in the proof of Theorem 6, condition (A4-hp) is not necessary in
practice. For instance, the hp-version of the method converges exponentially also on
meshes, as those depicted in Fig. 2 (right); see Section 5.3 below.

Next, we introduce a distribution of degrees of accuracy, by picking a high degree
on large elements, where the solution is smooth, and decrease such degree lin-
early while decreasing the size of the elements. More precisely, given a positive
parameter μ, set nel := card(Tn) and introduce p ∈ N

nel as follows:

pK := �μ(j + 1)� where K ∈ L
j
n ∀j = 0, . . . , n + 1. (58)

The vector p represents the distribution of the degrees of accuracy over a mesh Tn.
Given nedge := card(En), we also introduce a vector pEn ∈ N

nedge , which represents
the distribution of polynomial degrees over the skeleton of the mesh, and is defined
as

pEn
e :=

{
max(pK1 , pK2) if e ∈ EI

n and K1 ∩ K2

pK if e ∈ EB
n and e ∈ EK for some K ∈ Tn.

We now define the hp-space for the velocities as the space of functions that are
piecewise polynomials with distribution pEn over the skeleton of the mesh and solve
problems of the form (9) with right-hand side being polynomials of degree pK − 2
(vector) and pK − 1, respectively, on K . On the other hand, we define the hp-virtual
element space for the pressure as the space of piecewise polynomials of degree pK

on K .
Using the abstract analysis in Theorem 4 together with the tools in [7, Section 5],

we state the following result.

Theorem 6 Let {Tn}n∈N be a sequence of geometrically refined meshes satisfy-
ing assumptions (A1), (A2), and (A4-hp), with grading parameter σ satisfying (56)
and (57). Let the virtual element spaces V n and Qn be constructed in an hp-fashion
with suitable choice of the parameter μ in (58). Suppose that there exist cγ > 0 and
k ∈ R such that, for all p ∈ N, γ (p) ≤ cγ pk , with γ (p) defined in (50).

Let the right-hand side f be analytic in Ω and let (u, s) and (un, sn) ∈ V n × Qn

be the solutions to (3) and (17), respectively. For all n ∈ N, defineNV := card(V n)+
card(Qn). Then, there exist two positive constants C and b such that

|u − Π∇
p un|1,Tn

+ ‖s − sn‖0,Ω ≤ C exp(−b
3
√

NV ).

Proof Starting from the abstract error analysis in Theorem 4, it suffices to be able
to show hp-upper bounds on the four terms appearing on the right-hand side of (51).
More precisely, from Theorem 2, it follows that there exists γ > 1 such that

(u, s) ∈
[
K


γ (Ω)
]2 × K


γ−1(Ω).
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Then, from [7, Lemmata 2 and 3], there exist constants C1 and b1 > 0 such that, for
all n ∈ N,

inf
uπ∈[Pp(Tn)]2

|u − uπ |1,Tn
≤ C1 exp(−b1n)

Furthermore, noting that the pressure s has the same regularity as the components
of the gradient of the velocity u, with similar arguments, we deduce that there exist
constants C2 and b2 > 0 such that, for all n ∈ N,

inf
qn∈Qn

‖s − qn‖0,Ω ≤ C2 exp(−b2n).

Then, we deduce from [7, Lemmata 4 and 5] that there exist constants C3 and b3 > 0
such that, for all n ∈ N,

Fn ≤ C3 exp(−b3n).

Finally, the estimate

inf
ṽn∈Ṽ n

|u − ṽn|1,Ω ≤ C4 exp(−b4n),

for positive constants C4, b4, independent of n, is a consequence of [7, Lemmata 6
and 7].

We remark that (56), (57), and (58) imply card(Tn) � n; see, e.g., [28, Equation
(5.6)]. Since dim(V n(K)) � p2

K and dim(PpK
(K)) � p2

K for each K ∈ Tn, (58)
gives NV � n3. Since γ (p) grows at most algebraically in terms of p, we absorb the

term γ (p)
3
2 appearing on the right-hand side constants. This concludes the proof.

The assumption in Theorem 6 that γ (p) grows at most algebraically in terms of p

is fulfilled, e.g., by the stabilization introduced in Remark 2.

5 Numerical results

In this section, we present numerical results, which validate the theoretical predic-
tions of Theorems 5 and 6, see Sections 5.2 and 5.3, respectively.

We perform the numerical experiments on the two following test cases.

5.1 Setting

5.1.1 Test case 1

Given Ω1 := (0, 1)2, we consider the analytic solution

u1 :=
(−0.5 cos2(π x− π

2 ) cos(π y) sin(πy)

0.5 cos2(π y − π
2 ) cos(π x) sin(π x)

)

, s1 :=sin(π x) − sin(π y). (59)

The boundary conditions of the velocity are homogeneous on the whole boundary.
The right-hand side f is computed accordingly.
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5.1.2 Test case 2

As a second test case, see, e.g., [46, p. 133], we consider a singular function on the
L-shaped domain Ω2 := (−1, 1)2 \ [0, 1) × (−1, 0]. Let

ω := 3π/2, α = 0.54448373678246 . . . (60)

Note that α is the smallest positive solution to equation (6), with c = (0, 0) and
φc = ω. Given (r, θ) the polar coordinates at the re-entrant corner (0, 0), introduce
the auxiliary function

ψ(r, θ) = sin((1 + α)θ) cos(αω)

1 + α
− cos((1 + α)θ) − sin((1 − α)θ) cos(αω)

1 − α
+ cos((1 − α)θ).

The singular solution we approximate is

u2 :=
(

rα
(
(1 + α) sin(θ)ψ(θ) + cos(θ)ψ ′(θ)

)

rα
(
sin(θ)ψ ′(θ) − (1 + α) cos(θ)ψ(θ)

)

)

, s2 := rα−1
(
(1 + α)2ψ ′(θ) + ψ(3)(θ)

)
/(1 − α).

(61)

This solution is such that the Stokes equation is homogeneous, i.e., f = 0. Moreover,
the Dirichlet boundary conditions are homogeneous along the edges abutting the re-
entrant corner.

5.1.3 Meshes

We are interested in the p- and hp-versions of the method. The specific construction
of the mesh is not central to the convergence properties of the p-version. Therefore,
we only employ uniform Cartesian meshes both on the square domain Ω1 and on the
L-shaped domain Ω2. As for the meshes to employ for the hp-version, we postpone
their construction to Section 5.3 below.

5.1.4 Stabilization

In Remark 2, we introduced a stabilization with explicit bounds in (32) in terms of the
degree of accuracy p. Notwithstanding, in the forthcoming numerical experiments,
we resort to the so-called D-recipe; see [23]. Given K ∈ Tn, introduce the local
canonical basis {ϕj }dim(V n(K))

j=1 of the space V n(K), which is dual to the degrees of

freedom {dofj (·)}dim(V n(K))
j=1 introduced in Section 2.2. We define

SK
D (un, vn) :=

dim(V n(K))∑

j=1

max(1, |Π∇
p ϕj |1,K)dofj (un)dofj (vn).

It is known [8, 36] that stabilizations of this sort lead to effective performance of the
method.

We tested the method with stabilization (33) and this leads to results comparable
to those that we present in the forthcoming sections.
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5.1.5 Polynomial bases

We refer to [23], as for the choice of the polynomial bases. We underline that this
choice could be improved; see Remark 8 below.

5.1.6 Errors

We are interested in the convergence rate of the two following quantities:

|u − Π∇
p un|1,Tn

|u|1,Tn

,
‖s − sn‖0,K

‖s‖0,Ω

.

Indeed, Theorems 5 and 6 provide upper bounds on such two quantities.

5.2 The p-version of themethod

In this section, we present numerical results validating the theoretical predictions of
Theorem 5 for the p-version of the method. We consider the exact solutions (u1, s1)

and (u2, s2) in (59) and (61), respectively. We employ a coarse mesh of 4×4 uniform
squares on the domain Ω1 and a mesh consisting of thrice 4 × 4 uniform squares on
the L-shaped domain Ω2.

As expected from the theoretical predictions, in Fig. 1, we observe exponential
convergence for the test case with smooth solution, and only algebraic convergence
for the singular solution case.

Remark 7 For the exact solution (u2, s2), the L2 error on the pressure stagnates at
around p = 4 and then grows. We observe a loss of convergence also for the H 1-
error on the velocity. This cannot be traced back to any sort of ill-conditioning. In
fact, the system matrices in the numerical experiments in Fig. 1 (left) and (right) are
the same. Rather, we deem that the reason of this phenomenon is due to the error

2 3 4 5 6 7 8 9

degree of accuracy

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

2 3 4 5 6 7 8 9

degree of accuracy

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

Fig. 1 p-version of the method. We consider the exact solutions (u1, s1) and (u2, s2) defined
in (59) and (61) in the left and right panel, respectively. We plot the errors ‖sj − sn‖0,Ω/‖sj‖0,Ω

and |uj − uj,n|1,Tn /|uj |1,Ω , for j = 1, 2. We employ a coarse mesh of 4 × 4 uniform squares
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bound (52) and notably to the presence of the suboptimal factor γ (p). To the best of
our knowledge, there are no theoretical stabilizations, which improve the behaviour
of γ (p) detailed in Remark 2. Thus, in order to approximate solutions with finite
Sobolev regularity, we suggest to employ hp-refinements, rather than the p-version
of the method; see Section 5.3 below.

5.3 The hp-version of themethod

As predicted in Theorem 5 and observed in Fig. 1 numerically, the method converges
in terms of the degree of accuracy p algebraically, whenever the exact solution is
not analytic. However, as discussed in Theorems 1 and 2, solutions to the Stokes
problem (3) on polygonal domains with smooth data belong to the Kondrat’ev
spaces K


γ (Ω) in (5). In general, for solutions (u, s) to the Stokes problem in a non-

convex domain Ω , we can expect u ∈ [Hk(Ω)
]2

and s ∈ Hk−1(Ω) for a given k < 2
only.

Exponential convergence can be recovered for weighted analytic functions, by
employing hp-approximation spaces as proven in Theorem 6; see also, e.g., [3, 4, 42]
and the references therein.

Thus, in this section, we validate the theoretical predictions of Theorem 6. To
this aim, we consider the test case with exact solution (u2, s2) in (61). We construct
the distribution of the degrees of accuracy by picking μ = 1 in (58). Moreover, we
employ hp-virtual element spaces based on geometric meshes as those depicted in
Fig. 2. There, we depict meshes with three layers, which are geometrically refined
towards the re-entrant corner (0, 0) in three different ways. The numbers within the
elements represent the local degrees of accuracy of the method. In all three cases,
given the mesh Tn at step n, we obtain the subsequent one by refining only the
elements abutting the re-entrant corner (0,0).

In Figs. 3, 4, and 5, we depict the decay of the errors in (55) employing hp-virtual
element spaces based on meshes as those in Fig. 2. We pick different choices of the
grading parameter σ , namely 1/2,

√
2 − 1, and (

√
2 − 1)2. The last choice of σ is

the optimal one for the approximation of solutions of the form xα , α > −1/2, in 1D;
see [26].

Fig. 2 Examples of meshes that are geometrically refined towards the re-entrant corner (0, 0). Here, the
grading parameter σ satisfying (56) and (57) is 1/2. The numbers in the elements denote the local degree
of accuracy. In particular, we have picked μ = 1 in (58)
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Fig. 3 hp-version of the method. We consider the exact solution (u2, s2) defined in (61). Left panel:
‖s2 − sn‖0,Ω/‖s2‖0,Ω . Right panel: |u2 − un|1,Tn /|u2|1,Ω . We employ meshes that are geometrically
refined towards the re-entrant corner as those in Fig. 2 (left). We pick three different choices of the
parameter σ satisfying (56) and (57), namely σ = 1/2, σ = √

2 − 1, and σ = (
√

2 − 1)2

We observe exponential decay of the errors. The error saturation due to ill-
conditioning manifests itself earlier for some of the meshes depicted in Fig. 2; see
Remark 8 below for further details on this point.

Depending on the type of mesh under consideration, the choice of the grading
parameter σ has different effects. For the sequence of meshes in Fig. 2 (left), the
method performs better for the choice σ = (

√
2 − 1), whereas for the sequence of

meshes in Fig. 2 (centre), it seems preferable to pick larger values of σ . Apparently,
there is not a strong effect of the choice of the parameter σ on the performance of the
method, when employing the sequence of meshes in Fig. 2 (right).

Remark 8 In the above numerical results, especially those in Fig. 3, we observe a
stagnation of the errors on the pressure and the velocity. This behaviour can be traced

Fig. 4 hp-version of the method. We consider the exact solution (u2, s2) defined in (61). Left panel:
‖s2 − sn‖0,Ω/‖s2‖0,Ω . Right panel: |u2 − un|1,Tn /|u2|1,Ω . We employ meshes that are geometrically
refined towards the re-entrant corner as those in Fig. 2 (centre). We pick three different choices of the
parameter σ satisfying (56) and (57), namely σ = 1/2, σ = √

2 − 1, and σ = (
√

2 − 1)2
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Fig. 5 hp-version of the method. We consider the exact solution (u2, s2) defined in (61). Left panel:
‖s2 − sn‖0,Ω/‖s2‖0,Ω . Right panel: |u2 − un|1,Tn /|u2|1,Ω . We employ meshes that are geometrically
refined towards the re-entrant corner as those in Fig. 2 (right). We pick three different choices of the
parameter σ satisfying (56) and (57), namely σ = 1/2, σ = √

2 − 1, and σ = (
√

2 − 1)2

back to the ill-conditioning of the resulting linear system, which is mainly due to the
choice of the polynomial bases in the definition of the degrees of freedom and in the
expansion of the polynomial projectors. A possible remedy to this problem might be
an orthogonalization process of the polynomial bases; see, e.g., [36]. We postpone to
future works the investigation of such modification of the bases.

6 Conclusions

We have analysed the p- and hp-versions of the virtual element method for a 2D
Stokes problem on polygonal domains. In particular, we have shown that the hp-
VEM converges with exponential rate to the solution of Stokes problems in polygonal
domains, with smooth right-hand side. In addition, we have proven algebraic and
exponential convergence rate of the p-version of the method for solutions with suf-
ficiently high finite Sobolev regularity and for analytic solutions, respectively. The
novel technical tool we introduced in this work is the proof of the existence of a
bijection operator between Poisson-like and Stokes-like virtual element spaces for
the velocity. This allows us to leverage known results from the analysis of the Poisson
problem in a straightforward manner. The numerical experiments we performed val-
idate and extend the theoretical results. Future investigations will cover the analysis
of p- and hp-VEM for the Navier-Stokes equation and three-dimensional problems.
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17. Cáceres, E., Gatica, G.N.: A mixed virtual element method for the pseudostress-velocity formulation

of the Stokes problem. IMA J. Numer. Anal. 37(1), 296–331 (2017)
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