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Abstract: Leaks in water distribution networks are estimated to account for up to 30% of the total
distributed water; moreover, the increasing demand and the skyrocketing energy cost have made
leak localization and adoption ever more important to water utilities. Each leak scenario is run on a
simulation model to compute the resulting values of pressure and flows over the whole network. The
values recorded by the sensors are seen as features of one leak scenario and can be considered as the
signature of the leak. The key distinguishing element in this paper is to consider the entire distribution
of data, representing a leak as a probability distribution. In this representation, the similarity between
leaks can be captured by the Wasserstein distance. This choice matches the physics of the system
as follows: the equations modeling the generation of flow and pressure data are non-linear. The
signatures obtained through the simulation of a set of leak scenarios are non-linearly clustered in the
Wasserstein space using Wasserstein barycenters as centroids. As a new set of measurements arrives,
its signature is associated with the cluster with the closest barycenter. The location of the simulated
leaks belonging to that cluster are the possible locations of the observed leak. This new framework
allows a richer representation of pressure and flow data embedding both the modeling and the
computational modules in a space whose elements are discrete probability distribution endowed
with the Wasserstein distance. Experiments on benchmark and real-world networks confirm the
feasibility of the proposed approach.

Keywords: leak localization; water distribution networks; Wasserstein distance

1. Introduction

Leaks in water distribution networks are estimated to comprise up to 30% of the
total distributed water, underscoring the substantial positive impact of even a relatively
small percentage improvement in leak reduction. The escalating demand, driven by the
burgeoning urban population and soaring energy costs, has heightened the importance
of early leak detection, rapid localization, and the implementation of remedial actions
for water utilities. Significant challenges arise from the scarcity of measurements and the
uncertainty in demand, making leakage localization a particularly daunting problem. This
scenario has not only significantly influenced operational practices but has also prompted
the water research community to recognize the potential of artificial intelligence and the
importance of synergy with the machine learning community. These advances have been
facilitated by both new computational techniques and the increasing availability of pressure
and flow sensors deployed throughout the water distribution network.

A key concept in this paper is the “leak scenario”, characterized by the location and
severity of the leak. Each scenario undergoes a hydraulic simulation using EPANET (ver-
sione 2.2) to compute pressure and flow values. When a potential leak is detected via
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traditional methods such as minimum night flow analysis, the actual pressure and flow
values recorded by the sensors are compared with those of the faultless network and those
obtained through the simulations of various leak scenarios. The values recorded by the
sensors are regarded as the features of a specific leak scenario, effectively serving as the
signature of the leak in a feature space. These signatures, obtained through simulating all
possible leak scenarios, are subjected to clustering. As a new set of sensor measurements
arrives, its features are compared with cluster centroids to identify the most similar one. The
signature is then assigned to that cluster, revealing the simulated leaky pipes associated with
the scenarios of that cluster as potential leak locations. The overall workflow is depicted in
Figure 1.

Figure 1. General framework of the proposed approach: Wasserstein clustering versus traditional
clustering of leakage scenarios.

The distinctive feature of this paper lies in the representation of a leak signature
over the simulation horizon as a discrete probability distribution. In this representation,
the similarity between different leaks and between a faulty signature and a faultless one
can be effectively captured by assessing the distance between their respective associated
probability distributions. This transformation shifts the problem of leak detection from the
Euclidean physical space to a space where the elements are discrete probability distributions.
This space is organized by a distance metric between probability distributions, specifically
the Wasserstein distance.

This new theoretical and computational framework allows a richer representation
of pressure and flow data by embedding both the modeling and the computational mod-
ules in the Wasserstein space. A key feature of the Wasserstein distance is the ability to
define the mean of a set of probability distributions, known as the Wasserstein barycenter.
Leveraging the Wasserstein distance and barycenters, a clustering algorithm on probability
distributions, grounded in the k-means framework, can be readily formulated. It is crucial
to emphasize that discrete probability distributions can be represented in various ways,
such as histograms or point clouds, while histograms provide the flexibility to control the
dimension of the space by adjusting the number of bins, point clouds enable the consid-
eration of the entire data sample. Computational results from three water distribution
networks highlight the advantages of considering the complete data distribution over
traditional statistics like mean or standard deviation. The findings underscore the superior
efficacy of employing a point cloud representation instead of histograms.

2. Related Works

The current paper draws inspiration from a previous work [1], wherein the graph is
encoded into a feature space. This feature space comprises leak signatures corresponding
to various scenarios. Through a clustering procedure in the signature space, potential leaky
nodes can be identified at different confidence levels. Other methodologies, such as that
in [2], employ time-series of pressure data for classification and imputation, treating leaks
at specific network nodes. Additionally, [3] propose an ensemble approach, combining a
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convolutional neural network and support vector machine, for graph-based localization in
water distribution systems.

A distinct perspective is rooted in the concept of dictionary learning, as suggested
by [4]. They advocate for a dictionary learning strategy applicable to both sensor place-
ment and leakage isolation. The proposed strategy involves constructing a dictionary of
atoms onto which the measured pressure residuals are projected, incorporating a sparsity
constraint. Each measured residual can be expressed as a combination of a specific number
of atoms. This dictionary learning approach is further advanced in a subsequent work [5].
Building upon the dictionary representation of algorithms for sensor placement, leak detec-
tion, and localization, this work introduces an additional layer of graph interpolation as
input to dictionary classification.

A machine learning-based analysis of flow and pressure observations has become
prevalent in the leak localization literature, giving rise to several different approaches.
In [6], it is demonstrated that two distinct classifiers and a neural network can assess, for
each node, the probability of a leak occurrence. In [7], a convolutional network is used
to learn the pressure map characterizing each leak localization. In [8], probabilistic leak
localization is performed in a water distribution network using a hybrid data-driven and
model-based approach. The approach proposed in [9] is based on search space reduction
driven by minimizing the difference between simulated and observed field pressures. A
combination of a multilayer perceptron (MLP) and a convolutional neural network (CNN)
is used in [10], trained and tested to localize leaks and estimate their sizes. A model-based
approach is proposed in [11] that provides a closed-form expression for leak localization
in the case of a single leak and a single pipe. The authors in [12] conduct leak detection
using a multi-label classification task and leak localization using a regression algorithm
while in [13] the authors use acoustic signals analyzed through support vector machines
and k-NN regression.

Other machine learning-based strategies are proposed by [14], utilizing pressure
sensors and spatial interpolation. Graph interpolation is used in [15] to estimate the
hydraulic states of the complete WDN from real measurements at certain nodes. The
authors in [16] aim to estimate the complete network state using a graph neural network
approach, leveraging the topology of the physical network to estimate pressures where
measurements are not available. Pressure prediction errors are transformed into residual
signals on the edges. A similar approach has been proposed in [17], where nodal pressures
are also estimated using graph neural networks. A related approach [18] encodes data from
measured nodes as images, followed by clustering to split the network into subnetworks,
and a deep neural network for binary classification.

The authors in [19] propose simulated annealing with hyperparameter optimization
for leak localization. In [20], sensor placement and leak localization are jointly solved,
considering mutual information, relevance, and redundancy measures. Similar, Ref. [21]
simultaneously address leak detection and localization problems, with leaks detected
and validated by statistically analyzing the inlet flow. Localization is formulated as a
classification problem, and computational complexity is mitigated through a clustering
scheme.

The Wasserstein distance, central to the present paper, is also considered in [22] for the
data-driven detection and localization of leaks in industrial fluids (specifically, naphtha).
The size of the network and its hydraulics are quite different from water distribution
networks, and the method proposed is not directly relevant to the leak localization prob-
lem in water distribution networks. The use of Wasserstein distance in analyzing water
distribution networks has been previously suggested for optimal sensor placement [23]
and resilience analysis [24].

3. The Wasserstein Space

A discrete measure α is defined by a set of η-dimensional vector a, whose elements
are the weights, and a set of locations x1, . . . , xη ∈ X , also called support:
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α =
η

∑
i=1

aiδxi (1)

where δxi is the Dirac function centered at xi. The discrete measure α also describes a
discrete probability measure if the weight vector a belongs to the probability simplex Ση .
When each component of the weight vector a is equal to 1/η, the discrete probability
measure is called a point cloud and the definition becomes:

α =
1
η

η

∑
i=1

δxi (2)

Figure 2 shows the different between a generic discrete probability distributions, also
known as a histogram, and a point cloud.

Figure 2. The difference between a histogram and a point cloud.

Consider two discrete probability measure α and β with weight vectors a and b, and
support x1, . . . , xη and y1, . . . , yν, respectively. The Wasserstein distance, according to the
Kantorovich formulation, can be formulated as follows:

Wp(α, β) = min
P∈U(a,b)

∑
ij

Cp
ijPij (3)

where Cp
ij is the cost to move a single unit of mass from the i-th element to the j-th and

U is the set of all possible coupling matrix between the probability vectors a and b. The
coupling matrix P ∈ Rη×ν

+ represents the amount of mass moved from each location xi
toward each location yj.

Solving the problem in Equation (3) can be computationally expensive, since, in
general, it scales cubically with the sizes of the measures. In the case of a discrete probability
measure whose support is one-dimensional, the computation of the Wasserstein distance
can be performed by a simple sorting of the measures’ locations and the application of the
following equation:

Wp(α, β) =

(
1
n

n

∑
i=1

|x∗i − y∗i |p
) 1

p

(4)

where x∗ and y∗ are the sorted samples.
One of the main advantages of the Wasserstein distance, over other probabilistic

distances (as the Kullback–Leibler or the Jensen–Shannon divergence), is that it is a weak
distance, i.e., it allows the comparison of discrete probability distributions whose supports
are not aligned, quantifying the spacial shift between the supports.

Under the Wasserstein metric, it is possible to define the average of a set of probability
measures. This mean is known as the Wasserstein barycenter and it is the measure that
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minimizes the sum of its Wasserstein distance to each element in the set. Consider N
discrete probability measures α1, . . . , αN , the associated barycenter is computed as follows:

α = argmin
α

1
N

N

∑
i=1

λiW(α, αi) (5)

where λi are used to weight the different contributions of each distribution. Without a loss
of generality, they can all be set to λi = 1/N. The computation of Wasserstein barycenters
requires one to solve a complex optimization problem. For this reason, a regularization
term is usually added to the Wasserstein distance as the entropy of the coupling matrix.
Then, the Sinkhorn–Knopp matrix scaling algorithm is used to compute the barycenters.

4. Wasserstein Enabled Leaks Localization
4.1. Generation of Leak Scenarios

First, a dataset of different leak scenarios is built by simulating a leak on each pipe
of the network. Leaks are simulated by splitting a pipe into two sections and adding an
emitter node. The demand at that node (i.e., the leaks) is computed as q = Cpγ, where p is
the pressure, C is the discharge coefficient (severity), and γ is the pressure exponent. As
explained in [25], γ = 0.5 has been used to simulate a circular hole, and different values
of C ranging between 0.05 and 0.5 have been considered. The results of each simulation
are the pressure and flow values at each junction and pipe, respectively. Only values
in correspondence with the monitoring devices are considered. The pressure and flow
variations due to each simulated leak are compared to the corresponding values obtained by
simulating the faultless network. Each simulated leak is then represented by the pressure
and flow variations together with the information related to the affected pipe and the
damage severity. The registered values of pressure and flow can be represented as a
discrete probability measure, and, in particular, as point clouds. The locations x1, . . . , xη are
the pressure or flow values registered during the simulation. Figure 3 shows some examples
of pressure and flow variation during the simulation horizon and their representation as
point clouds.

Figure 3. Flow and pressure values at a monitoring point considering a leak scenario for each water
distribution network—Hanoi (top), Anytown (center), and Neptun (bottom)—and their representa-
tion as point clouds.
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In the experiments, the simulation is performed over a 24 h horizon, registering
pressure and flow values every 10 min. Leaks are placed at the start of the simulation and
persist for the entire duration. This results in η = 144 observations for each monitoring
point. The signature of a leak scenario is then a set of m point clouds, one for each
monitoring point. This allows the comparison of different leaks using the Wasserstein
distance.

4.2. Clustering in the Wasserstein Space

The concept of a barycenter enables clustering among probability distributions in a
space whose metric is the Wasserstein distance. More simply, the barycenter in a space
of distributions is analogous of the centroid in a Euclidean space. The most common and
well-known algorithm for clustering data in Euclidean space is k-means. Since it is an
iterative distance-based algorithm, it is easy to propose variants of k-means by simply
changing the distance adopted to create clusters. The crucial point is that only the distance
is changed, and the overall iterative two-step clustering algorithm is maintained.

In the present paper, the Wasserstein k-means is used, where the Euclidean distance is
replaced by the Wasserstein distance and where centroids are replaced by the barycenters
of the distributions belonging to that cluster. As previously seen, each leak scenario can be
represented as a set of m point clouds that represent the flow and pressure distributions at
the monitoring points. This enables the usage of a Wasserstein-enabled k-means, in which
the distance between two leakages is computed as the average Wasserstein distance over
the m point clouds associated with different sensors. This approach, namely, Wasserstein-
enabled leak localization (WELL), enables the usage of the entire sample of pressures and
flows detected during the simulation horizon instead of just considering the average values,
as in standard clustering approaches.

To locate a leakage, the detected pressures and flows can be compared to the barycen-
ters resulting from the clustering procedure. The set of pipes potentially damaged is the set
of pipes belonging to the clusters associated with the closest barycenter. Figure 4 shows an
example of the prediction flow on the Anytown water distribution network.

Figure 4. An example of the leak localization prediction flow considering the Anytown water
distribution network. A leak is placed on the pipe highlighted with a blue cross; the pressure and flow
time series measured at the four monitoring points are converted into point clouds. The point clouds
representing the leak are compared with the clusters’ barycenters using the Wasserstein distance. The
pipes belonging to the closest cluster are considered as possible leak locations (the red pipes).

5. Experiments and Results
5.1. Data Resources

Three different networks have been used to test the proposed algorithm (Figure 5).
Hanoi [26] and Anytown [27] are two benchmarks used in the literature. Hanoi is composed
of 31 junctions, 1 reservoir, and 34 pipes, while Anytown has 22 junctions, 1 reservoir,
2 tanks, 43 pipes, and 3 pumps. Neptun [28] is the water distribution network of Timisoara,
Romania, more specifically, it is a district metered area of a large network, and it was a pilot
area of the European project ICeWater. Neptun is composed of 332 junctions, 1 reservoir,
312 pipes, and 27 valves.

For each of these networks, five different leaks have been simulated for each pipe,
with different severity values (discharge coefficients), ranging from 0.1 to 0.3 with a step of
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0.05. A total of 170 scenarios have been simulated for Hanoi, 215 scenarios for Anytown,
and 1560 scenarios for Neptun. In addition, four sensors have been considered for the
networks of Hanoi and Anytown and six sensors for the network of Neptun.

(a) (b) (c)
Figure 5. (a) Hanoi; (b) Anytown; (c) Neptun. The three water distribution network considered.
Pressure sensors are placed on top of junctions and are highlighted in blue. Flow sensors are placed
on top of pipes and are highlighted in red.

5.2. Computational Results

Two distinct versions of the proposed WELL algorithm have undergone testing against
the standard k-means clustering algorithm. The first version involves a histogram repre-
sentation of pressure and flow values, thereby reducing the dimensionality of the feature
space. The second version employs a point cloud representation, considering the entire
data sample.

The test set is constructed by simulating leaks in each pipe of the networks, but
with different severity values compared to those used in the training phase. Specifically,
three severity values—0.05, 0.22, and 0.5—have been employed. Table 1 provides details
regarding the size of the training and test datasets. In addition, different numbers of bins
have been considered for the WELL algorithm.

Table 1. Number of leakage scenarios used as the training and test set for each network.

Network Training Set Test Set

Hanoi 170 102
Anytown 215 129
Neptun 1560 936

To assess the performance of the three algorithms, the predictive accuracy on the test
set was considered. Table 2 presents the results for the three water distribution networks.
The findings underscore that for smaller networks, such as Hanoi and Anytown, employing
a straightforward approach like k-means proves effective. This might be attributed to the
limited variability in the flow and pressure values recorded at the monitoring points. In the
case of larger, real-world networks like Neptun, the WELL algorithm demonstrates signifi-
cantly superior performance compared to k-means. Within the WELL algorithm, the results
indicate that increasing the number of bins leads to improved accuracy, and considering
the entire data sample with a point cloud representation, yields the highest accuracy.

Real-world networks, such as Neptun (Figure 6), typically exhibit a greater variability
in terms of the pressure and flow values throughout the day when compared to smaller
benchmark networks like Anytown (Figure 7). In instances where the variance of observed
data is high, adopting an approach that leverages the entire data distribution, such as WELL,
results in superior performance. Conversely, in situations where the variance of observed
data is low, utilizing a conventional method like k-means, which considers statistics rather
than the entire distribution, remains an effective and more efficient approach.
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Table 2. Computational results in terms of prediction accuracy on three water distribution networks.
The WELL-point cloud (PC) algorithm is tested against the WELL-histogram algorithm and the
standard k-means. Different number of bins η have been tested for the WELL-histogram algorithm.
For each experiment, the best accuracy is highlighted in bold.

WELL

Network k k-means 5 15 25 35 45 55 PC

Hanoi

5 1.000 0.941 0.971 1.000 0.971 0.971 1.000 1.000

15 1.000 - 0.941 0.941 0.971 0.941 0.971 1.000

25 1.000 - - 0.971 1.000 1.000 1.000 1.000

35 1.000 - - - 0.971 0.971 0.941 1.000

45 1.000 - - - - 0.941 0.941 1.000

55 1.000 - - - - - 0.941 1.000

Anytown

5 1.000 0.791 0.907 1.000 1.000 1.000 1.000 1.000

15 1.000 - 0.488 0.581 0.837 0.721 0.884 1.000

25 1.000 - - 1.000 0.860 1.000 1.000 1.000

35 1.000 - - - 0.860 0.860 1.000 1.000

45 1.000 - - - - 1.000 1.000 1.000

55 1.000 - - - - - 1.000 1.000

Neptun

5 0.996 0.877 0.972 0.985 0.991 0.984 0.986 0.997

15 0.993 - 0.954 0.973 0.980 0.976 0.989 0.989

25 0.981 - - 0.917 0.929 0.929 0.933 0.988

35 0.940 - - - 0.950 0.959 0.969 0.997

45 0.944 - - - - 0.946 0.954 0.996

55 0.939 - - - - - 0.928 0.997

Figure 6. Different representations of the same discrete probability measures representing the flow
measured in a monitoring point of the Neptun water distribution network. In situations where
the variability of the measured data is high, a histogram with just a few bins may not adequately
represent the entire distribution of data. The red dotted line represents the mean of the observed data.
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Figure 7. Different representations of the same discrete probability measures representing the flow
measured in a monitoring point of the Anytown water distribution network. When the variability
of the measured data is low, utilizing a point cloud does not confer significant advantages over
histograms. The red dotted line represents the mean of the observed data.

6. Conclusions

The present paper introduces a novel approach, Wasserstein-enabled leaks localization
(WELL), for addressing the critical issue of leak localization in water distribution networks.
By considering the entire distribution of data and representing leaks as discrete probability
distributions, the proposed framework leverages the Wasserstein distance to measure the
similarity between different leaks. This approach captures the non-linear nature of the
hydraulic simulation, providing a richer representation of pressure and flow data.

The Wasserstein space proves to be a valuable domain for modeling and clustering
discrete probability distributions, allowing for the definition of Wasserstein barycenters
and the implementation of a Wasserstein-enabled k-means clustering algorithm. The exper-
iments conducted on benchmark and real-world water distribution networks showcase
the effectiveness of the WELL algorithm in leak localization. Particularly, in real-world
networks with a higher variability, WELL outperforms the standard k-means algorithm.
On the two benchmark networks, Hanoi and Anytown, the average accuracy of k-means
and WELL-PC is the same (1.00), while the histogram version of WELL reaches a lower
accuracy, 0.97 on Hanoi and 0.98 on Anytown. With the real-world network, Neptun,
the average accuracy of WELL-PC is 0.99, while k-means reaches 0.97; moreover, in this
case, the histogram version of WELL performs worse than the other two, with an average
accuracy of 0.96.

The flexibility of representing discrete probability distributions as histograms or
point clouds is highlighted, with computational results emphasizing the advantages of
considering the entire data distribution over traditional statistical measures, such as mean
or standard deviation. The Wasserstein distance and barycenters play a crucial role in
achieving better performances in leak localization.

The primary drawback lies in the increased computational complexity introduced
by the computation of Wasserstein distances, particularly when determining Wasserstein
barycenters, while the Wasserstein distance for discrete distributions with one-dimensional
supports has a closed form, making it relatively straightforward to compute, the computa-
tion of Wasserstein barycenters still necessitates the resolution of a complex optimization
problem. To mitigate this challenge, an entropic regularization has been used for the
Wasserstein barycenters.

It is important to note that the proposed methodology has been tested on simulated
leaks. Real-world leaks are usually affected by multiple unknown parameters and interac-
tions, which could negatively influence the performance.
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