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Summary 24 

Soybean (Glycine max (L.) Merril) is a popular foodstuff and crop plant, used in 25 

human and animal food. In this work, multielement analysis of soybean grains samples 26 

in combination with chemometric tools was used to classify the geographical origins. 27 

For this purpose, 120 samples from three provinces of Argentina were analyzed for a 28 

panel of 20 trace elements by inductively coupled plasma mass spectrometry (ICP-MS). 29 

First, we used principal component analysis (PCA) for exploratory analysis. Then, 30 

supervised classification techniques such as support vector machine discriminant 31 

analysis (SVM-DA), random forest (RF), k- nearest neighbors (k-NN) and class-32 

modeling techniques such as soft independent modeling of class analogy (SIMCA), 33 

potential functions (PF), and one class support vector machine (OC-SVM) were applied 34 

as tools to establish a model of origin of samples. The performance of the techniques 35 

was compare using global indexes. Among all the models tested, SVM and SIMCA 36 

showed the highest percentages in terms of prediction ability in cross-validation with 37 

average values of 99.3% for SVM-DA and a median value of balanced accuracy of 38 

96.0%, 91.7%, 88.3% for the three origins using SIMCA. Results suggested that the 39 

developed methodology by chemometric techniques is robust and reliable for the 40 

geographical classification of soybean samples from Argentina. 41 

 42 

 43 
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1. Introduction 46 

In recent years, the traceability of food products has become increasingly relevant 47 

for citizens of many countries mainly interested in food safety and quality. The 48 

traceability of a food means that movements can be traced back one step and one step 49 

forward anywhere in the supply chain. Most traceability systems are registration 50 

systems that document the path of a product from suppliers through intermediate steps 51 

to consumers. However, traceability systems mainly depend on the quality of the 52 

records and controls that are usually carried out by local food safety authorities1. Having 53 

a traceability system based on the chemical composition of food is a vital tool to 54 

guarantee the origin of food, especially for producing countries, such as Argentina.  55 

Currently, Argentina is one of the main soybeans (Glycine max (L.) Merrit) 56 

exporters worldwide. However, this country does not currently offer chemical 57 

traceability systems of origin for the soybean produced. This fact acquires great 58 

relevance today, considering the soybean production often implies the indiscriminate 59 

deforestation of native forests that still serve as a home for native communities, among 60 

other environmental and health problems. Having an origin system of chemical 61 

traceability of this food would allow its consumers to guarantee that this product was 62 

produced respecting environmental and human issues. Today, major food producing 63 

companies and even the European Union itself are committed to eliminating 64 

deforestation from their global supply chains. 65 

In this work, three important Argentine soybean producing areas were considered. 66 

The province of Córdoba, which stands out as the main producing region in the heart of 67 

Humid Pampas. The province of San Luis, in a border region of Humid Pampas with a 68 

lower production than Córdoba but of great importance at the national level. Finally, the 69 
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province of Chaco, questioned in the last years since it produces soy on the agricultural 70 

frontier occupying native forest regions. 71 

The authenticity and traceability of the food product can be demonstrated by modern 72 

analytical techniques 2. Reviews have been published about chemometric techniques 73 

applied on the geographical origin of foods 3–5. For instance, the geographical origin of 74 

soybean seeds was characterized using X-ray fluorescence, showing differences 75 

between the trace element contents in soybean from different geographical regions 6. 76 

These results showed that Mg, P, Cl, K, Mn, Cu, Br, and Ba were good parameters for 77 

constructing a discriminant model for geographical origin characterization between 78 

Japanese and imported samples (from Canada, China, and America). Beside, transgenic 79 

and non-transgenic soybean seeds was differentiated according to mineral content 80 

analyzed by ICP-MS 7. The results show that transgenic and non-transgenic soybean 81 

seeds show differences in concentrations of Cu, Fe, and Sr.  82 

Supervised pattern recognition techniques goal is to establish a classification model 83 

based on experimental data to assign unknown samples to a previously defined sample 84 

class based on its pattern of measured features8. For instance, the discriminant 85 

classification methods are appropriate when at least two classes are defined in the 86 

problem under study and allow to properly address only multi-class situations. The 87 

discriminant classification methods separate the hyperspace in as many regions as the 88 

number of sample groups. So, if a sample is matched in the region of space 89 

corresponding to a category, it is classified as that category. In reality, each sample is 90 

always assigned to one group, even if this sample is not from the studied categories. The 91 

most used discriminant classification methods in food chemistry include Linear 92 

Discriminant Analysis (LDA), k- Nearest Neighbors (k-NN), Support Vector Machine 93 
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discriminant analysis (SVM-DA), Random Forest (RF), Partial Least-Squares 94 

Discriminant Analysis (PLS-DA), among others9. 95 

A different approach to supervised pattern recognition are the class-modeling 96 

methods that are useful when the focus is on a single class 10. The analogies among the 97 

elements of a class in each category are modeled separately. For this reason, the class-98 

modeling methods can be used to study both one-class and multi-class problems. The 99 

samples in agreement with the model are assumed as a member of the class, while 100 

objects not in agreement are assumed as non-members.  101 

When more than one class is modeled, three different situations are possible: each 102 

sample can be assigned to a single category or assigned to several categories or not 103 

assigned in any category. One of the main advantages offered by class modeling 104 

methods is the possibility of recovering samples that are not represented in any of the 105 

studied categories. As a consequence, these methods will be able to identify as 106 

“foreign” samples those problem samples that correspond to external observations or 107 

members of a new class not considered in the training stage.  Another advantage of the 108 

method is that any additional class can be added without recalculating the already 109 

existing class models, as each category is modeled separately. In addition, all class-110 

modeling methods can be used as discriminant tools, while the reverse is not always the 111 

case. The most used chemometric class-modeling techniques are Soft Independent 112 

Modeling of Class Analogy (SIMCA), Potential Functions (PF), One-Class Support 113 

Vector Machine (OC-SVM)11. 114 

Many studies in the literature compare the performance of different pattern 115 

recognition techniques in food. Hence, the aims of this work were: (1) to characterize 116 

the geographical origin of soybeans produced in three regions of Argentina using 117 
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chemometrics tools applied to trace element compositions, and (2) to compare the 118 

classification performance of three  discriminant classification methods (k-NN, SVM-119 

DA, RF) and three class-modeling methods (SIMCA, OC-SVM, PF).  120 

2. Experimental 121 

2.1.  Reagents 122 

Mono and multi-element standard solutions of trace analysis grade were purchased 123 

from Sigma-Aldrich and Agilent. Ultrapure grade 65% (m/m) HNO3 and 30% (m/m) 124 

H2O2 was acquired from Sigma (St. Louis, MO, USA). Nitric acid was further purified 125 

by sub-boiling distillation. Water with a resistivity of 18.1 MΩ cm-1 was obtained from 126 

a Milli-Q Pluswater purification system Millipore (Molsheim, France). Indium solution 127 

100 µg/L obtained from Agilent (Santa Clara, CA) was used. All the chemicals used 128 

were of the highest purity available and all the glass materials used were soaked in 10% 129 

(v/v) nitric acid and washed with deionized water. 130 

2.2.  Samples 131 

A total of 120 samples were collected from six test fields located in the north-central 132 

region of Argentina, corresponding to the main soy producing region of this country. 133 

The test fields were located at: Almirante Brown (Chaco province, 26°40' S 60°54' W), 134 

San Justo (Córdoba province, 31°26’ S 62°04’ W) and General Pedernera (San Luis 135 

province, 33º37’ S, 65º19’W). Representative samples of soybeans were collected 136 

during the 2018-2019 campaign at different times to create composite samples labeled 137 

according to the sampling region. All the samples studied correspond to the botanical 138 

species G. max and were grown by direct sowing. 139 
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In the laboratory, soybean seeds were Soybeans were manually separated from pods. 140 

Then, allseeds were washed with tap water and rinsed with deionized water. After that, 141 

seeds were homogenized with a domestic mixer and stored at −20 °C in a freezer until 142 

analysis. 143 

2.3.  Sample preparation 144 

Previous to multielemental determination in botanical samples organic matter 145 

should be eliminated (digested). For the digestion of the soybean samples a microwave 146 

digestion oven, Milestone® (Chicago, USA) model Ethos One was used. The 147 

microwave digestion program was: (1) 25-200 ºC for 15 min, (2) 200 ºC for 15 min and 148 

(3) 200-110 ºC for 15 min, followed by ventilation at room temperature for 20 min. 149 

After cooling to room temperature, the volume was made up to 25 mL with deionized 150 

water. Blank solutions and validation spiked samples were prepared in the same way. 151 

Prior to use, all plastic containers were soaked in 10% v/v sub-boiling HNO3 for at least 152 

24 h and then rinsed extensively with deionized water. The samples were measured in 153 

triplicate. 154 

2.4. ICP-MS analysis 155 

The measurements of trace elements concentrations have been carried out by using 156 

an Agilent 7700 x ICP-MS spectrometer (Agilent Technologies, Santa Clara, CA). The 157 

instrument is equipped with off-axis ion lens, a quadrupole mass analyzer and an 158 

electron multiplier detector. MicroMist glass concentric nebulizer combined with a 159 

cooled double-pass spray chamber made of quartz, an octopole collision/reaction system 160 

(ORS). The operating parameters for the instrument were described as follow: RF 161 

power (1350 W), plasma gas (14.0 L/min), the flow rate of auxiliary gas (0.9 L/min), 162 

carrier gas (1.0 L/ min). Indium was used as internal standard. The selected isotopes for 163 
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measurement were 107Ag, 11B, 137Ba, 59Co, 53Cr, 63Cu, 56Fe, 7Li, 55Mn, 95Mo, 60Ni, 208Pb, 164 

85Rb, 121Sb, 78Se, 118Sn, 88Sr, 205Tl, 51V, 66Zn.  165 

The accuracy and precision of the ICP-MS method were verified with one Standard 166 

Reference Materials from the National Institute of Standards and Technology (NIST), 167 

namely SRM 1573a tomato leaves. The precision of the proposed procedure was 168 

evaluated by measuring the repeatability and reproducibility. In the repeatability test 169 

(within-day precision), the SRM was analyzed three times within one day; and in the 170 

reproducibility test (day-to-day precision), sample digestion and ICP MS analysis were 171 

studied by triplicate analyses of three aliquots of the SRM on three days for a period of 172 

three weeks. All concentration values were found to be in good agreement with the 173 

reference values (Table 1). Limit of detection (LOD) and limit of quantification (LOQ) 174 

were obtained according to IUPAC guidelines. LOD was calculate as 𝐿𝑂𝐷 = �̅�𝑏 +175 

𝑘. 𝑆𝑏, where �̅�𝑏 is the mean of the blank measures, 𝑆𝑏 is the standard deviation of the 176 

blank measures, and 𝑘 is a numerical factor chosen according to a confidence level. The 177 

LOQ was defined as 3.3-fold the LOD. 178 

TABLE 1 179 

2.5.  Chemometric models 180 

2.5.1. Exploratory data-analysis  181 

The results obtained were organized in a matrix with dimension 120 rows (soybeans 182 

samples) and 20 columns (element concentrations). Prior to the exploratory analysis of 183 

the data matrix, the concentration values of each element corresponding to each sample 184 

were autoscaled (each value is subtracted by the mean and divided by the standard 185 

deviation). This pretreatment method allows to avoid dimensionality problems between 186 

the levels of the different trace elements in the samples. 187 
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A basic exploratory analysis was performed using principal component analysis 188 

(PCA). PCA is a strategic technique that allows knowing relationships between 189 

variables, between samples as well as between variables and samples. Characterized by 190 

orthogonal linear combinations called principal components. The first components 191 

retain the highest percentage of variability present in the initial data set12. 192 

2.5.2. Supervised classification models  193 

As the objective of this work is to provide a classification model capable to predict 194 

the geographical origin of soybean seeds from three principal production regions of 195 

Argentina, we firstly perform a comparative study on the performance of three learning 196 

classification algorithms. In addition, in a subsequent stage we compare the perform of 197 

three class-modeling methods, in order to exploit their comparative advantage in terms 198 

of class prediction of future unknown samples. 199 

Three supervised classification algorithms were used to classify provenance of 200 

soybean seeds. The supervised model uses pre-defined classes to learn through a 201 

training phase how data is organized, making possible to predict unlabeled samples 202 

based on the classification model. k nearest neighbor (k-NN), support vector machines 203 

(SVM-DA) and random forest (RF) are three techniques which have yielded good 204 

results in small rectangular data arrays in the literature9. 205 

k-NN is a distance based non-parametric procedure. The basic idea on which this 206 

paradigm is based is that a new sample is going to be classified in the most frequent 207 

class to which its k nearest neighbors belong. The value assumed by k is implicitly 208 

related to the shape of the decision boundaries that separate the classes. In practice, the 209 

optimal value of k is found by some validation procedure13. 210 
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SVM is a supervised technique that produces linear boundaries among the objects of 211 

the groups in a transformed space. Three parameters affect the performance of this 212 

technique: penalty factor (C value), regularization parameter (ε) and the type of kernel 213 

function used. Radial basis function (RBF) kernel was used in this study. In the 214 

optimization of the parameters (C and ε) a grid-search and cross-validation were used to 215 

best fit the model and improve the accuracy results14. 216 

RF algorithm is an ensemble learning method. The idea of ensemble learning is to 217 

build and combine base learners to obtain a better classification capability. In this 218 

technique, multiple trees are generated. Each tree gives a classification (vote for a 219 

class). The result is the class with the highest number of votes in the whole forest. As 220 

the base learner, random forest uses the CART (classification and regression tree)9.  221 

Then, in order to propose robust predictive models, three class modeling methods 222 

were performed to classify soybean samples. Soft independent modeling by class 223 

analogy (SIMCA), one class SVM (OC-SVM) and potential functions (PF). 224 

SIMCA was one of the first class-modeling technique introduced in the literature. A 225 

principal component analysis is generated for each of the classes present in the data set. 226 

The number of principal components that are retained by each class is generally 227 

obtained by cross-validation and the number of principal components retained may be 228 

different for each class15. 229 

OC-SVM consists in estimating the function that encloses training samples in a 230 

hypersphere with a reduced volume. This technique allows to classify only the objects 231 

of a class and distinguish them from other objects. RBF was the selected kernel 232 

function. This function allows to determine the radius of the hypersphere considering 233 

the parameter γ16. 234 
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PF try to estimate the shape of the probability density distribution of the class as a 235 

sum of individual contributions of the samples of the class in the training phase. To 236 

define the contributions of the samples, different functions can be used17. 237 

2.5.3. Selection of a test set for external validation of models 238 

In the classification and class modeling phase, the data matrix was random split in 239 

training (n = 84) and test (n = 36) sets. The random sampling occurred within each class 240 

and preserved the overall class distribution of the data. For discrimination models, the 241 

training set was used to tuning the parameters of k-nearest neighbors (k-NN), support 242 

vector machine (SVM-DA) and random forest (RF). Optimization of parameters was 243 

made using k-fold cross validation (k = 10). Testing set was used to compare the 244 

performance of each optimized method. To ensuring that the same resamples are used, 245 

internal parameters in R software was used. Finally, to compare the performance of 246 

optimized methods we resampled 50 iterations to avoid bias.  247 

 For class-modeling, internal cross validation, venetian blinds with 5 cross 248 

validation groups has been used with training samples to select model parameters such 249 

as number of PCs for Soft Independent Modeling of Class Analogy (SIMCA), kernel 250 

for Potential Functions (PF) and One-Class Support Vector Machine (OC-SVM). The 251 

results were achieved on the 100 iterations for each class with each classifier. 252 

2.5.4. Software 253 

Exploratory and supervised classification analysis were performed using R 254 

software18, version 3.5. For class-modeling methods the Classification toolbox19 for 255 

MATLAB® was used. 256 
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3. Results and discussion 257 

3.1.  Trace elements in soybean samples 258 

Table 1 shows the median, minimum and maximum concentration of the elements 259 

detected in soybean samples from the three geographical origins. Fe and Mn were the 260 

most abundant elements in all samples, followed by Zn, Cu, Rb, V, Li, Ti, Sr, Ba, B, 261 

Mo and Cr at levels above 1 µg kg-1, in decrescent order. The concentrations obtained 262 

for the 120 samples are provided in the Supplementary Information (SI-1).  263 

The non-parametric Kruskal-Wallis test was applied to evaluate differences between 264 

the means population of three origins. Cr, Li, Mn and Zn concentrations were 265 

significantly different among three pairs of origins (p < 0.01) (Table 1). Thirteen out of 266 

20 elements exhibited significant differences between the mean ranks of at least one 267 

pair of origins (p < 0.05), demonstrating that soybean samples from different regions 268 

have a characteristic elemental profile. There was no evidence of variation in the 269 

concentrations of Ag, Pb, or Se (p > 0.05) between any pair of origins.  270 

3.2. Exploratory data-analysis by PCA 271 

PCA was performed based on the concentration of 20 elements determined by ICP-272 

MS in samples of soybean (G. max) grains from three geographical origins of 273 

Argentina. The first two principal components (PCs) accounted for 51.6% of the total 274 

variance. The PC1 summarized 33.4% and the second 18.2% of the variance present in 275 

the multielemental results of analyzed samples. As can be seen in the loading-plot 276 

obtained from PCA (Figure 1a), PC1 presented a strong positive correlation with the 277 

contents of Co, Rb and Sb, and in the direction of the negative values on the x-axis with 278 

the contents of Fe and Sr. The representation of mathematical space defined by the first 279 
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two PCs is completed with the PC2, which shows a strong negative correlation with the 280 

concentrations of B, Ni and Cu mainly. 281 

FIGURE 1 282 

Fig. 1b shows the distribution of samples in the space of the two first computed PCs 283 

(score plot). No clear separation is achieved by the samples from Córdoba and San Luis, 284 

although some trends can be observed. On the other hand, the Chaco samples appear in 285 

negative values of PC1 clearly differentiated from the previous groups, indicating that 286 

there are particular characteristics in the multielemental compositions of samples of this 287 

group. These differentiation trends are in accordance with the results of the previous 288 

Kruskal–Wallis multiple comparison test. As can be seen, the five variables showing 289 

statistical differences, such as Fe, Sr, Co, Rb and Sb, also appear as most contributing to 290 

the PC1, which is able to group samples in two principal groups.  291 

These results of the exploratory analysis by PCA indicate that the contents of trace 292 

elements in the samples studied would be useful for the proposal of supervised 293 

classification models of geographical origin of soybeans produced in Argentina. 294 

3.3. Supervised classification methods 295 

In a first stage, we begin comparing the yield to correctly classify soybean samples 296 

according to their geographical region of origin, applying supervised classification 297 

methods. The algorithms selected were k-NN, SVM and RF. These methods were 298 

selected due to their great ability to achieve high correct classification rates, especially 299 

when only a small number of samples are available. 300 

The dataset (120 × 20) was splitting up into training and testing sets, in a ratio 301 

70/30. The partition of data matrix was carried out in a stratified form by random 302 
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sampling to create balanced splits of the data. The random sampling was performed 303 

within each class to preserve the overall class distribution of the data. Training set was 304 

used to tuning the hyperparameters of the algorithms k-NN, RF and SVM-DA. 305 

Optimization of parameters was made using k-fold CV (k = 10). The split of data was 306 

repeated 50 times. Finally, testing set was used to compare the performance of each 307 

optimized method. Table 2 shows the results of the classification metrics achieved by 308 

each technique in the data matrix. 309 

TABLE 2 310 

As can be seen, Table 2 shows the results achieved by each optimized algorithm in 311 

terms of average accuracy, sensitivity and specificity. Sensitivity (also called the true 312 

positive rate) describes the positive test samples of each group correctly classified as 313 

such, and specificity (also called the true negative rate) measures the ratio of negative 314 

test samples belonging to a different group which have been correctly predicted as such. 315 

The results of optimized SVM-DA model were the highest, followed by RF and k-NN 316 

in this order. This result is consistent with the findings from samples from Brazil20, 317 

since it is expected that non-linear techniques (SVM-DA) have greater flexibility in 318 

solving non-linear systems. In addition, other commonly used supervised techniques 319 

such as LDA or PLS-DA (results not shown) were simultaneously tested with worse 320 

results.  321 

To refine the classificatory results obtained by SVM-DA, we further optimize the 322 

hyperparameters of the algorithm performing 10-fold-cross validation (repeated 50 323 

times). Radial basis function (RBF) kernel SVM was selected because of its speed and 324 

great capacity to obtain good results in complex systems. The hyperparameters C = 8 325 

and γ = 0.039 were the best to obtain the minimal performance error in training setting. 326 
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Using these optimized hyperparameters, the SVM-DA algorithm achieved a 327 

classification rate with a range of 97.3% - 100% of global accuracy. A perfect 328 

classification rate was obtained for samples from the provinces of Chaco and San Luis, 329 

while only one sample from Cordoba could not be classified correctly. These results 330 

indicate that the SVM-DA method is suitable for the geographical classification of 331 

soybean samples, being able to differentiate even the samples coming from neighboring 332 

provinces (SLS and COR), which as could be observed in the exploratory analysis 333 

showed a high degree of similarity. 334 

3.4. Class-modeling methods 335 

Three different class-modeling algorithms (one class classifiers) were used to model 336 

trace element compositions of soybean produced in Argentina: SIMCA, PF (Gaussian 337 

Kernels) and OC-SVM. Being class modeling methods, they model one class at a time, 338 

we have considered the three classes (CHC, COR, SLS) separately.  339 

For each class and for each type of classifiers, we used the following validation 340 

protocol. We made a double cross-validation with the following protocol, which have 341 

been repeated 100 times (iterations): I) Random split samples in training (70%) and test 342 

(30%) sets; II) Use the training samples to calibrate the model; internal cross validation 343 

has been used with training samples to select model parameters (such as number of PCs 344 

for SIMCA, kernel for Potential Functions and one-class SVM); III) Predict the test 345 

samples and calculate sensitivity, specificity and their average (balanced accuracy). 346 

Thus, test samples do not participate in the model optimization along each iteration. 347 

Figure 2 shows the distribution of balanced accuracy obtained for each modelled 348 

class obtained on the 100 validation iterations summarized in box plots. Boxplots are a 349 

standardized way of displaying the distribution of data based on a five parameters 350 
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summary (“minimum”, first quartile (Q1), median, third quartile (Q3), and 351 

“maximum”). 352 

FIGURE 2 353 

As is shown in Fig. 2, CHC was best modelled class with a median of 96.0% for the 354 

three methods studied. However, the OC-SVM method shows a higher density of results 355 

around 100% success, indicating a better performance for modelling the samples of this 356 

group. It is also observed that class modelling methods have greater difficulties in 357 

differentiating samples from COR and SLS provinces, being these classes associated to 358 

lower average balanced accuracies (91.7% and 88.3% respectively) and greater 359 

dispersion of results over the validation iterations with respect to CHC. The best method 360 

for the COR group was SIMCA with a higher average accuracy and a lower dispersion 361 

of results. The samples of the SLS group presented greater difficulties to be modelled 362 

correctly, showing similar performances between OC-SVM and PF methods. These 363 

results, while compatible with the performances achieved by the supervised 364 

classification methods, indicate that the recommendation of class modelling techniques 365 

for CHC samples is appropriate, with their respective advantages. As an example, Fig. 3 366 

shows the Hotelling T2 versus residual Q plot based on 1 PC SIMCA model for CHC 367 

class, where the separation of samples from this group is clearly observed.    368 

FIGURE 3 369 

4. Conclusion 370 

In this study, ICP-MS in combination with chemometric tools was successfully used 371 

to classify soybean grains samples of three different geographical origins from 372 

Argentina. Supervised classification techniques (RF, SVM-DA, k-NN) and class-373 
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modeling techniques (SIMCA, OC-SVM and PF) were performed on trace element 374 

compositions of samples. Among all the models tested, SVM-DA and SIMCA showed 375 

the highest percentages in terms of prediction ability in cross-validation with average 376 

values of 99.3% for SVM-DA and a median value of balanced accuracy of 96.0% for 377 

CHC, 92.0% for COR, 88.0% for SLS using SIMCA. It is important to highlight that 378 

although the average accuracy for SIMCA reached lower values, the main advantage of 379 

this method is that it has a high capacity to identify unmodelled samples, which in the 380 

case of supervised classification techniques are unable to detect. For future studies, we 381 

expect that some limitations found in our present research can be addressed, such as the 382 

expansion of soybean data from other regions. 383 

5. References 384 

1.  Kemsley EK, Defernez M, Marini F. Multivariate statistics: Considerations and 385 

confidences in food authenticity problems. Food Control. 2019;105:102-112. 386 

doi:10.1016/J.FOODCONT.2019.05.021. 387 

2.  Wadood SA, Boli G, Xiaowen Z, Hussain I, Yimin W. Recent development in 388 

the application of analytical techniques for the traceability and authenticity of 389 

food of plant origin. Microchem J. 2020;152:104295. 390 

doi:10.1016/j.microc.2019.104295. 391 

3.  Badia-Melis R, Mishra P, Ruiz-García L. Food traceability: New trends and 392 

recent advances. A review. Food Control. 2015;57:393-401. 393 

doi:10.1016/j.foodcont.2015.05.005. 394 

4.  Borràs E, Ferré J, Boqué R, Mestres M, Aceña L, Busto O. Data fusion 395 

methodologies for food and beverage authentication and quality assessment – A 396 



17 

 

review. Anal Chim Acta. 2015;891:1-14. doi:10.1016/j.aca.2015.04.042. 397 

5.  Granato D, Putnik P, Kovačević DB, et al. Trends in Chemometrics: Food 398 

Authentication, Microbiology, and Effects of Processing. Compr Rev Food Sci 399 

Food Saf. 2018;17(3):663-677. doi:10.1111/1541-4337.12341. 400 

6.  Otaka A, Hokura A, Nakai I. Determination of trace elements in soybean by X-401 

ray fluorescence analysis and its application to identification of their production 402 

areas. Food Chem. 2014;147:318-326. doi:10.1016/j.foodchem.2013.09.142. 403 

7.  Mataveli LRV, Pohl P, Mounicou S, Arruda MAZ, Szpunar J. A comparative 404 

study of element concentrations and binding in transgenic and non-transgenic 405 

soybean seeds. Metallomics. 2010;2(12):800-805. doi:10.1039/c0mt00040j. 406 

8.  Berrueta LA, Alonso-Salces RM, Héberger K. Supervised pattern recognition in 407 

food analysis. J Chromatogr A. 2007;1158(1-2):196-214. 408 

doi:10.1016/J.CHROMA.2007.05.024. 409 

9.  James G, Witten D, Hastie T, Tibshirani R. An Introduction to Statistical 410 

Learning. Springer; 2013. 411 

10.  Oliveri P, Downey G. Multivariate class modeling for the verification of food-412 

authenticity claims. TrAC Trends Anal Chem. 2012;35:74-86. 413 

doi:10.1016/j.trac.2012.02.005. 414 

11.  Oliveri P. Class-modelling in food analytical chemistry: Development, sampling, 415 

optimisation and validation issues – A tutorial. Anal Chim Acta. 2017;982:9-19. 416 

doi:10.1016/J.ACA.2017.05.013. 417 

12.  Bro R, Smilde AK. Principal component analysis. Anal Methods. 418 

2014;6(9):2812-2831. doi:10.1039/C3AY41907J. 419 



18 

 

13.  Gemperline P. Practical Guide to Chemometrics. CRC press; 2006. 420 

14.  Varmuza K, Filzmoser P. Introduction to Multivariate Statistical Analysis in 421 

Chemometrics. CRC press; 2016. 422 

15.  Mees C, Souard F, Delporte C, et al. Identification of coffee leaves using FT-NIR 423 

spectroscopy and SIMCA. Talanta. 2018;177:4-11. 424 

doi:10.1016/J.TALANTA.2017.09.056. 425 

16.  Guerbai Y, Chibani Y, Hadjadji B. The effective use of the one-class SVM 426 

classifier for handwritten signature verification based on writer-independent 427 

parameters. Pattern Recognit. 2015;48(1):103-113. 428 

doi:10.1016/J.PATCOG.2014.07.016. 429 

17.  Marini F. Chemometrics in Food Chemistry. Vol 28. Newnes; 2013. 430 

18.  Team RC. R: A language and environment for statistical computing. 2015. 431 

19.  Ballabio D, Consonni V. Classification tools in chemistry. Part 1: linear models. 432 

PLS-DA. Anal Methods. 2013;5(16):3790-3798. doi:10.1039/C3AY40582F. 433 

20.  Barbosa RM, de Paula ES, Paulelli AC, et al. Recognition of organic rice samples 434 

based on trace elements and support vector machines. J Food Compos Anal. 435 

2016;45:95-100. doi:10.1016/j.jfca.2015.09.010. 436 

Figure captions 437 

Fig. 1. PCA results: (a) Loading plot of PC1 vs PC2 of PCA performed using all the 438 

determined trace element concentrations; (b) the corresponding score plot of PC1 vs 439 

PC2 with the scores identified according to their geographical origin: CHC Chaco, COR 440 

Córdoba and SLS San Luis. 441 
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 442 

Fig. 2. Box plot comparing the supervised classification chemometrics models 443 

applied for soybean seeds classification. 444 

 445 

Fig. 3. Hotelling T2 versus Q residuals for the simples from Chaco (CHC) SIMCA 446 

model. 447 

 448 

  449 
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Table I. Trace element composition of soybean seeds according to their geographical origin.  459 

Element 

Certified 

Values 

(µg g-1) 

Recovery Geographical origin (µg kg-1) 
P 

value 
Percentage 

(%) 

Chaco 

n = 40 

Córdoba 

n = 40 

San Luis 

n = 40 

Ag - - 0.05  

(nd – 0.15) 

0.05  

(nd – 0.15) 

0.05  

(nd – 0.10) 

ns 

 

B 33.1 98.0 3.3 a 

(0.3 – 4.6) 

3.4 a 

(1.7 – 4.8) 

1.5 b 

(0.5 – 2.8) 

*** 

Ba - - 2.0 a 

(0.6 – 4.9) 

4.8 b 

(0.4 – 7.2) 

3.4 b 

(2.0 – 6.4) 

** 

Co 0.58 97.7 1.1 a 

(0.8 – 1.4) 

1.4 b 

(1.3 – 1.5) 

1.4 b 

(1.3 – 1.4) 

** 

Cr 1.99 100.1 1.2 a 

(0.8 – 3.4) 

 

3.2 b 

(1.3 – 3.9) 

1.8 c 

(0.9 – 3.8) 

*** 

Cu 4.70 98.2 20.2 a 

(2.8 – 44.1) 

18.3 b 

(3.9 – 27.8) 

5.1 b 

(1.9 – 18.4) 

*** 

Fe 367.5 97.9 162 a 

(140 – 190) 

135 b 

(120 – 148) 

138 b 

(120 – 150) 

** 

Li - - 3.3 a 

(0.9 – 6.8) 

10.6 b 

(3.0 – 16.7) 

4.9 c 

(0.9 – 14.8) 

*** 

Mn 246.3 104.0 24 a 

(10 – 69) 

98 b 

(56 – 132) 

64 c 

(33 – 109) 

*** 

Mo - - 2.4 a 

(1.1 – 5.3) 

2.6 b 

(0.5 – 4.6) 

0.9 b 

(0.2 – 3.7) 

*** 

Ni 1.58 100.8 4.2 a 

(1.3 – 10.8) 

4.1 a 

(1.9 – 5.2) 

1.5 b 

(0.6 – 3.7) 

*** 

Pb - - 0.05  

(nd – 0.10) 

0.05  

(nd – 0.08) 

0.05  

(nd – 0.10) 

ns 

Rb 14.8 99.3 8.8 a 

(5.2 – 16.5) 

15.4 b 

(9.2 – 16.3) 

14.3 b 

(6.4 – 16.3) 

*** 

Sb - - 0.06 a 

(nd – 0.06) 

0.07 b 

(nd – 0.07) 

0.06 a 

(nd – 0.07) 

** 

Se 0.05 98.5 0.12 

(nd – 0.12) 

0.12 

(nd – 0.12) 

0.12 

(nd – 0.15) 

ns 

Sn - - 0.8 a 

(nd – 1.4) 

2.5 b 

(nd – 3.2)  

1.8 b 

(nd – 2.7) 

*** 

Sr - - 5.1 a 

(2.1 – 6.2) 

3.1 a 

(2.1 – 3.9) 

3.3 b 

(2.1 – 5.4) 

*** 

Ti - - 6.4 a 

(2.0 – 7.9) 

3.3 b 

(2.2 – 6.1) 

2.8 b 

(2.1 – 3.8) 

** 

V 0.83 97.6 11.2 a 

(3.9 – 17.4) 

2.4 b 

(1.7 – 2.5) 

2.2 b 

(2.0 – 3.8) 

** 

Zn 30.9 99.9 11.3 a 

(10.5 – 20.4) 

30.6 b 

(20.8 – 31.4)  

20.5 c 

(12.2 – 31.2) 

*** 

Nonparametric Kruskal-Wallis test was applied: ns. not significant at p > 0.05; *. p < 0.05; **. p 460 
< 0.01; ***. p < 0.001. Pairwise comparison, different letters a, b or c, in the same row indicate 461 
significant differences (p < 0.05). 462 
 463 
 464 

465 
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Table II. Classification results achieved with the different chemometrics models. 466 

Method Number of samples Classification metrics 

 Training set Testing set Balanced 

accuracy (%) 

Sensitivity 

(%) 

Precision 

(%) 

k-NNa 28 12 83.4 83.4 83.4 

SVM-DAb 28 12 91.7 91.7 91.7 

RFc 28 12 83.4 83.4 91.7 
a k: number of neighbors = 5 467 
b C: penalty factor = 16; Gamma: intensive loss function: 0.039 468 
c nt: number of trees = 500; mtry: number of variables tried in each split = 7 469 

 470 


