
Vol.:(0123456789)

Genetic Programming and Evolvable Machines (2023) 24:15
https://doi.org/10.1007/s10710-023-09464-0

1 3

Semantic segmentation network stacking with genetic
programming

Illya Bakurov1,2,3 · Marco Buzzelli4 · Raimondo Schettini4 · Mauro Castelli1 ·
Leonardo Vanneschi1

Received: 6 September 2022 / Revised: 14 September 2023 / Accepted: 23 September 2023 /
Published online: 26 October 2023
This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection
may apply 2023

Abstract
Semantic segmentation consists of classifying each pixel of an image and consti-
tutes an essential step towards scene recognition and understanding. Deep convo-
lutional encoder–decoder neural networks now constitute state-of-the-art methods
in the field of semantic segmentation. The problem of street scenes’ segmentation
for automotive applications constitutes an important application field of such net-
works and introduces a set of imperative exigencies. Since the models need to be
executed on self-driving vehicles to make fast decisions in response to a constantly
changing environment, they are not only expected to operate reliably but also to pro-
cess the input images rapidly. In this paper, we explore genetic programming (GP)
as a meta-model that combines four different efficiency-oriented networks for the
analysis of urban scenes. Notably, we present and examine two approaches. In the
first approach, we represent solutions as GP trees that combine networks’ outputs
such that each output class’s prediction is obtained through the same meta-model.
In the second approach, we propose representing solutions as lists of GP trees, each
designed to provide a unique meta-model for a given target class. The main objec-
tive is to develop efficient and accurate combination models that could be easily
interpreted, therefore allowing gathering some hints on how to improve the exist-
ing networks. The experiments performed on the Cityscapes dataset of urban scene
images with semantic pixel-wise annotations confirm the effectiveness of the pro-
posed approach. Specifically, our best-performing models improve systems’ gener-
alization ability by approximately 5% compared to traditional ensembles, 30% for
the less performing state-of-the-art CNN and show competitive results with respect
to state-of-the-art ensembles. Additionally, they are small in size, allow interpret-
ability, and use fewer features due to GP’s automatic feature selection.

Keywords  Genetic programming · Stacking · Semantic segmentation · Ensemble
learning · Deep learning

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s10710-023-09464-0&domain=pdf

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 2 of 37

1  Introduction

Semantic segmentation (SS) is a supervised machine learning (SML) technique
that refers to the process of assigning a particular class to every pixel in an image.
Recent advancements in the field of deep learning (DL) have also fostered the
field of SS [19, 40]. The pioneering work of Long et al. [35] from 2015, where
several convolutional neural networks (CNNs) were adapted and successfully
applied to solve the SS task, has stimulated the scientific community towards
exploration and sophistication of DL-based SS [13, 17, 53]. Current state-of-
the-art DL-based SS neural networks are mainly built upon an encoder–decoder
architecture. Typically, the encoder is a pre-trained deep CNN that downsamples
the input images to feature maps. This technique allows for a reduction of the spa-
tial resolution and, therefore, the memory usage while extracting relevant seman-
tic features. The decoder part follows the encoder and performs gradual upsam-
pling of the low-resolution feature maps to recover the original spatial resolution
[19].

The street scenes’ SS for automotive applications constitutes one of the most
challenging tasks in the field of computer vision (CV) as several new impera-
tive exigencies emerge. As the model needs to be executed continuously on self-
driving vehicles to take fast decisions in response to constantly changing environ-
mental events, they are not only required to operate accurately but also to process
the input images fast enough to allow timely decision-making of the self-driving
vehicle. In this context, several new efficiency-oriented architectures were devel-
oped having these requirements in mind [36, 38, 39, 43, 52]. However, these
tendentiously obtain a gain of efficiency at the cost of accuracy’s deterioration.
Moreover, these networks exhibit different performances when evaluated on dif-
ferent target classes. All this suggests that their efficient and cautious combina-
tion could yield an effective performance improvement.

Given the increasing importance and the underlying complexity of street
scenes’ SS, we propose to use Genetic Programming (GP) [29, 46] as a meta-
learning technique to stack different efficiency-oriented SS architectures in the
context of street scene recognition for automotive applications. The objective of
our study is fourfold: (i) design a SS system that is simultaneously efficient and
accurate, and can be used in the context of fast street scenes’ segmentation, (ii)
understand the synergistic effect of each base SS network (the base learner) in the
ensemble, (iii) obtain an interpretable fusion model that can potentially unfold
new insights on the neural architecture design and (iv) perform time-complexity
analysis of the proposed system.

Particularly, following the work of Mazzini and Schettini [38], we consider the
following four efficient neural architectures as the base learners for our stacking
model: ENet [43], ERFNet [52], ESPNet [39], and SSNet [36, 38]. We tested our
approach on the Cityscapes dataset [14] - a popular and widely utilized dataset of
urban scene images with pixel-wise annotations conceived for semantic under-
standing of urban street scenes. The original annotations include 30 different
object classes, and only 19 are typically used for training and evaluation.

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 3 of 37  15

The paper is organized as follows. Section 2 provides the necessary background
for this study covering both ensemble learning and semantic segmentation with effi-
cient neural architectures. Section 4 presents the proposed approach for stacking
efficiency-oriented networks for fast scene recognition using GP. Section 5 describes
how the experiments were organized, the dataset, and the parameters used in this
study. Section 6 presents and discusses the experimental findings in light of the
experimental objectives. Section 7 concludes the work and proposes ideas for future
research.

2 � Background

2.1 � Efficiency‑oriented deep neural networks for semantic segmentation

Historically, the development of deep CNNs for SS mainly relied on advancements
in the neural architectures’ design for image classification and object recognition
tasks. A breakthrough of immeasurable worth was achieved in 2015, when Long
et al. [35] successfully adapted state of the art SOTA CNNs, originally conceived to
solve image classification and object recognition tasks, to solve the task of predict-
ing a label for each pixel in the image (aka dense prediction tasks). This scientific
breakthrough re-oriented the scientific community’s focus towards DL-based tech-
niques for SS problem-solving. The authors proposed to transform fully connected
layers into fully convolutional through a process called “convolutionization” ena-
bling a given classification network, such as AlexNet [30], VGG [55] and Goog-
LeNet [57], to output a heatmap. Given that classification networks sequentially
subsample the input image throughout the network to keep the filters small, and the
computational requirements reasonable, their variants in the form of fully convo-
lutional networks (FCNs) produced an output whose size is significantly reduced
compared to the networks’ input. In this sense, the authors proposed to stack sev-
eral in-network upsampling layers to obtain a prediction for the whole input image.
Finally, to refine predictions, the authors proposed combining deep, coarse, seman-
tic information in the upsampling layers with the local appearance information from
the respective downsampling layers.

The fully convolutional networks (FCN) paved the way for the next-generation
DL-based SS systems such as PSPNet [65] and DeepLab [13], which currently con-
stitute the state-of-the-art in the field. Although these networks achieve superior
results in the reference semantic image segmentation tasks, such as the Cityscapes
[14], they also require a gargantuan amount of learnable parameters and long infer-
ence times. Meanwhile, society’s digital transformation dictates new standards for
DL-based systems: the ever-growing number of battery-powered mobile devices and
their applications (like, for instance, home-automation devices, augmented reality
wearables, autonomous vehicles, and flying drones), require algorithms not only to
operate reliably but also to fit in devices’ limited memory, have low power consump-
tion, and operate in real-time. As a matter of fact, the commonly accepted process-
ing precondition for autonomous vehicles is at least 30 frames per second (FPS) [38,
52]; therefore, the large and complex DL-based SS systems are of no use in this

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 4 of 37

context. To tackle this efficiency-accuracy trade-off, part of the scientific commu-
nity focused on the so-called efficiency-oriented architectures, such as ENet [43],
EDANet [34], ERFNet [52], and SSNet [36, 38], that will be discussed, in detail in
the following Sections.

2.1.1 � ENet

ENet was the first CNN architecture specifically optimized for fast inference and
high accuracy in SS tasks. It was the first high-performance DL-based architecture
able to operate in real-time applications [43].

ENet’s architecture was strongly inspired by residual blocks, the building block of
ResNets [22], and accommodated all the main achievements in the neural architec-
ture design of its time. The authors proposed to heavily reduce input size during the
early stages of the network (particularly in the first two blocks) to efficiently com-
press the spatially redundant visual information and, therefore, decrease the compu-
tational costs of the network. Following the work of [57], the authors conducted the
pooling operation in parallel with a convolution of stride two and concatenated the
resulting feature maps to avoid too aggressive dimensionality reduction that could
hinder the information flow. In continuation, to avoid overly downsampling, the
authors used dilated convolutions in the main convolutional layers, inside several
bottleneck modules, in the stages that operate upon the smallest resolutions. Follow-
ing the design principles of SegNet [3], ENet’s authors decided to save max-pooling
layers’ indices to produce sparse upsampled maps in the decoder that are then con-
volved with a trainable decoder filter bank to produce dense feature maps. In such a
way, the network can better retain boundary information in the extracted image rep-
resentations without storing all the encoder feature maps in memory. Unlike SegNet,
ENet’s decoder is not an exact mirror of the encoder. Instead, ENet’s architecture
consists of a relatively large encoder and a small decoder. This aspect was motivated
by the consideration that the decoder’s role is to upsample the output of the encoder,
only fine-tuning the details. Motivated by the findings of [21], the authors replaced
all the Rectifying Linear Unit (ReLU) nonlinearities with parametric ReLUs (PRe-
LUs), which allow one to learn the negative slope of non-linearities efficiently. Fol-
lowing the findings of [26], later ratified in [58], factorized (a.k.a. asymmetric) con-
volutions were employed to reduce the amount of potentially redundant parameters
and speedup the inference times. Finally, to deal with relatively small segmentation
datasets, the authors placed spatial dropout at the end of the convolutional branches
as a regularization method. ENet’s pioneering design choices greatly influenced the
design standards of posterior efficiency-oriented networks.

2.1.2 � ERFNet

Romera et al. [52], proposed a novel efficient residual factorized CNN for real-time
SS, called ERFNet, that, similarly to ENet [43], was also inspired by ResNets’s resid-
ual learning framework [22]. However, their architecture differs from ENet’s in three
main aspects. Firstly, the authors reduced the number of learnable parameters in the
residual (non-bottleneck) modules, by rewriting the kernels with one-dimensional

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 5 of 37  15

(1D) factorized convolutions [25]. Concretely, the authors replaced N × N (which
can be seen as matrices), as a product of two smaller 1D kernels (which can be seen
as vectors of shapes N × 1 and 1 × N , respectively). Such a simplification allows
reducing the computational costs while retaining a similar accuracy compared to
the traditional two-dimensional (2D) convolutions [23, 25, 32]. The proposed blocks
were stacked sequentially, with varying dilation rates, to build the encoder segment
of the network.

Second, similarly to ENet, ERFNet’s architecture is an asymmetric encoder-
decoder with a smaller decoder. However, the authors did not use max-pooling lay-
ers’ indices during the upsampling phase; instead, the ERFNets’ decoder uses sim-
ple deconvolution layers with stride 2 (a.k.a. transposed convolutions). The authors
pointed out that deconvolutions can save on computational resources while obtain-
ing a similar (or a slightly better) accuracy.

Third, to improve the efficiency of the downsampling operator, the authors pro-
posed to downsample the input images and the subsequent feature maps by con-
catenating the parallel outputs of a single 3 × 3 convolution (with stride 2) and a
max-pooling layer. This approach was taken from ENet; however, unlike in ENet
where it was only used in the initial block, this approach was used in all the down-
sampling blocks and not only the first (initial) block. The experiments conducted
on the publicly available Cityscapes data set [14] demonstrated that ERFNet could
achieve comparable accuracy values to the state-of-the-art networks while being
several orders of magnitude faster to compute.

2.1.3 � EDANet

In [34], the authors proposed a novel CNN architecture for SS called efficient dense
modules of asymmetric convolution (EDANet). The architecture followed the novel
trends in the neural architectures’ design, such as the densely connected structure
articulated in [24]. Specifically, the authors proposed a novel structure based on a
point-wise convolution layer and two pairs of Efficient Dense modules with Asym-
metric convolutions (EDA). The overall architecture is composed of EDA modules’
stacks, called EDA blocks. To accelerate the actual inference speed, the authors
arranged the composite functions in the so-called post-activation manner: (i) convo-
lution, (ii) batch normalization, and (iii) ReLU. The dense connectivity proposed in
[24] was modified from layer-level to module-level, meaning that the output of each
EDA module is the concatenation of its input and the newly produced features. Con-
catenating the features learned from each module that has a different receptive field
individually allowed EDANet to gather multi-scale information together naturally.
Intending to aggregate more contextual information, the authors used dilated convo-
lutions at the second asymmetric convolution pair of every EDA module but the ini-
tial three modules. To enlarge the receptive field gradually, the dilation rates in the
system sequentially grow in value. As a downsampling strategy, the authors adopted
the approach of ERFNet: by concatenating the parallel outputs of a single 3 × 3 con-
volution (with stride 2) and a max-pooling layer. Contrary to ENet and ERFNet,
EDANet’s authors decided to discard the decoder structure. At the end of the last
EDA block, a point-wise convolution was added as a projection layer to output C

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 6 of 37

feature maps (where C equals the number of target classes in a given SS task), fol-
lowed by a bilinear interpolation to upsample feature maps by a factor of 8 to the
size of input images. Although such a design choice slightly deteriorated the net-
work’s accuracy, it also allowed for a reduction in computational costs. As a result,
the proposed architecture is one of the most accurate among networks that exceed
the real-time threshold of 30 FPS [34].

2.1.4 � SSNet

Contrary to the research track defined in the ENet, ERFNet, and EDANet, other sci-
entific community members focused their attention to improve the decoder’s seg-
ment. Notably, Mazzini et al. introduced a novel upsampling module that effectively
replaces the traditional operators like, for example, the bilinear interpolation and the
nearest neighbors upsampling [36, 38]. In this work, we considered the authors’ lat-
est scientific achievement - the so-called spatial sampling network (SSNet) for fast
scene understanding introduced in [38]. Given that SSNet constitutes a logical con-
tinuation of the research track paved by the so-called guided upsampling network
(GUN) [36], we will first introduce the latter.

GUN [36] is a multi-resolution neural architecture built upon a pre-trained DRN-
D-22 neural network introduced by Yu et al. [63] that jointly exploits high-resolu-
tion and large-context information. Besides efficiently adapting a novel multi-reso-
lution encoder architecture, Mazzini et al. also redesigned the decoder segment by
replacing the traditional operators with a novel guided upsampling module (GUM).
This module enriches the upsampling by efficiently introducing a learnable transfor-
mation to improve semantic maps along objects’ boundaries. Unlike the traditional
upsampling operators (such as the bilinear interpolation and the nearest neighbors),
which make use of a regular grid to sample pixels from the low-resolution images,
GUM uses a warping grid, named guidance offset table (GOT), to correct the pre-
diction map along objects’ boundaries. Concretely, GOT contains two offset values
for each pixel of the high-resolution feature map that shift the sampling coordinates
of each element of the map in x and y dimensions, respectively. The offsets are pre-
dicted by a neural network branch named Guidance Module (GM). Therefore, the
parameters are trainable by the backpropagation algorithm along with the whole
neural network.

Further, Mazzini et al. [38] proposed a novel lightweight architecture for the
encoder segment and an improved guided upsampling module (iGUM) that oper-
ates as a decoder segment. Unlike GUN, SSNet’s encoder consisted of a single-
resolution neural architecture built upon the previously presented ERFNet. Similar
to ERFNet, SSNet uses several early downsampling layers to speed up the infer-
ence time. SSNet’s authors were strongly inspired by ERFNet’s non-bottleneck-1D
module, originally developed as a more optimal solution to the so-called non-bot-
tleneck modules proposed by [22]. However, instead of directly integrating the non-
bottleneck-1D module from ERFNet in their architecture, Mazzini et al. redesigned
it to speed up the inference time and allow the module to learn across channels
by employing point-wise convolutions right before and after two asymmetric ker-
nels. Recall that the non-bottleneck-1D module proposed by Romera et al. did not

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 7 of 37  15

use point-wise convolutions to encourage cross-channel learning. Finally, instead
of using traditional upsampling layers in the decoder segment, the authors use an
iGUM layer as a decoder. The novel iGUN was proposed to improve the overall effi-
ciency by reducing the number of learnable parameters required by GOT in the orig-
inal GUM. In the original definition of GUM, each bidimensional coordinates vector
of the regular sampling grid was summed with its corresponding bidimensional off-
set from GOT. In this sense, GM needed to learn 2 × fN × fM parameters, where f is
the upsampling factor, and N and M are the spatial dimensions of the output proba-
bility map to be upsampled. The novelty of iGUM relies on the simplification of the
warping grid’s utilization. Specifically, the authors realized that a significant part of
the offsets in GOT could be interpolated simply instead of being learned. Therefore,
the authors proposed to learn a low-resolution GOT of size 2 × N ×M , reducing, as
such, the number of learnable parameters and improving the system’s efficiency.

2.2 � Stacked generalization

Ensemble learning (EL) is a sub-field of machine learning (ML) inspired by humans’
natural tendency to seek and weigh others’ opinions prior to decision-making. Under
this perspective, EL consists of combining several individual models, called base
learners (BLs), in a way to produce an ensemble model which is expected to solve a
given task better than any of the base learners in isolation [47, 50]. In general terms,
EL methods differ in the way input data is represented and manipulated within the
ensemble, whether the ensemble’s BLs are trained independently or not, how the
final prediction is performed, etc.

Stacked generalization (a.k.a. stacking) consists of training an ensemble from
the combined outputs of several base learners. Specifically, it consists of two fun-
damental steps: (i) independently training the base learners to solve the underlying
task, (ii) and then training a meta-learner from the base learners’ predictions [62]. In
other words, the predictions obtained from the base learners are used as inputs for a
meta-learner. Consequently, stacking is expected to perform at least as well as (if not
better than) the best base learner. The interpretability of a meta-learner model can
be of high value:

1	 Stacking/combination can aid the researcher’s interpretation of the underlying
models, by describing their corresponding qualities, such as the need for a refine-
ment phase via max-pooling, akin to a noise reduction post-processing.

2	 Interpretation can be also achieved in terms of the mutual relationship between
underlying models. For example, as noted in [4], the addition operator may be
assigned a probabilistic interpretation that translates to a generalization of the
“OR” relationship, indicating that two models are complementary (and that a
good segmentation result can be achieved by considering either of the two).

3	 More generally, our stacking methodology could be extended for application to
an arbitrary set of underlying models, including simple ones that provide a good
starting point for their individual interpretability.

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 8 of 37

Figure 1 illustrates a meta-learner combining predicted outputs of four BL models
trained on the same input data D with target variable y. As one can see from the
figure, the meta learner is trained on D′ , a dataset originated from the combined out-
puts of the four BLs, but the target variable is the same.

Theoretically, there are no restrictions nor precise recommendations regarding
the definition of the meta-learning model and the BLs - these can belong to any
known class of ML models. An overview of the scientific literature on stacked gen-
eralization for SML problem-solving does not suggest an agreement upon which
models are to be used [50]. For example, some authors use regularized regression
to combine predicted outputs from conceptually different BL models [49], while
some use boosted ensembles [48]; others, use genetic algorithms (GAs) for stacking
single-hidden-layer feed-forward networks after applying bagging on the training set
[67]. Empirical evidence, however, shows that the most considerable performance
improvement can be observed when stacking together more dissimilar BLs [6, 10];
when BLs are highly correlated in their outputs, stacking tends to overfit [49].

Due to its flexible representation and powerful inductive capabilities, GP can be
seen as an effective meta-learner for stacking. With properly chosen operators and
hyper-parameters, it can combine BLs in a highly non-linear fashion, better exploit-
ing their outputs and achieving superior generalization ability. Moreover, GP intrin-
sically performs an automatic selection of the terminals (i.e., input features). Finally,
the obtained GP tree can foster the interpretability of evolved solutions to some
degree. Figure 2 shows a possible meta-learner evolved through GP: the terminal set
consists of BLs predictions (white nodes), which are combined using mathematical
operators (grey nodes).

3 � Related works

3.1 � Stacking with GP

To our knowledge, the first evidence of GP’s usage in the context of stacked gen-
eralization comes from 2006 [27], when it was used as a meta-learner to combine

Fig. 1   Stacked generalization from four base learners (BLs)

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 9 of 37  15

predicted outputs from ten feed-forward artificial neural networks (FF-ANNs) with
different neural architectures (three had no hidden layer, five had one hidden layer
and the remaining two had two hidden layers); the experimental evidence based on
22 publicly available datasets demonstrated the superiority of the method against
other evaluated methods. In [12], an equivalent approach was compared against
three other ensemble approaches based on GAs. The experimental results involv-
ing four synthetic and one real-world symbolic regression problem confirmed the
predominance of GP-based ensembles not only against the best BL but also the three
different types of GA-based ensembles. Zameer et al. [64] used GP as a meta-learner
to combine four different types of artificial neural networks (ANNs) for mapping
meteorological measures and wind power; the obtained results were compared with
the recent artificial intelligence-based strategies on several measures and demon-
strated the efficacy of the proposed ensemble scheme. Sharma et al. [54] used a
multi-level stacking ensemble to forecast future incidences of conjunctivitis disease;
the experimental result showed that stacking allowed to decrease various error met-
rics by a significant amount. Bakurov et al. [6] performed an extensive exploration
of GP as a meta-learner for stacked generalization; the study assessed some of the
recent advancements in the field of GP [7, 18, 31, 41, 60]. The experimental evi-
dence based on seven synthetic and four real-world symbolic regression problems
confirmed the effectiveness of GP as a meta-learning technique when compared
against eight other SML methods.

The absolute majority of studies in the literature apply stacking to solve SML
problems involving cross-sectional or time-series data. In this context, a single data
instance in the training set xi can be characterized as a vector in k-dimensional space
with the corresponding output value yi:yi ∶ xi = x1

i
, ..., xk

i
 . Such a data representation

makes problem-solving more accessible and simple as high-level application pro-
gramming interfaces (APIs) such as scikit-learn [11, 44] can be used; as a matter of
fact, this API allows one to train a stacking ensemble using dozens of SML models
in a few lines of code. This is not the case, however, when solving CV tasks, like the
dense prediction task addressed in this work where one data instance can be seen
as a tensor of four dimensions (batch size, number of classes, height, and width).
Therefore, it is not surprising that there are significantly fewer works in the literature
reporting the application of stacking in the field of CV. The next Section below enu-
merates some of the studies that use GP.

Fig. 2   Possible meta-learner
evolved by means of GP. The
nodes in grey represent the
mathematical operators, whereas
the nodes in white represent the
outputs of different BLs

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 10 of 37

3.2 � GP in image processing and computer vision

GP has been successfully applied to solve several image processing (IP) and CV
applications. One of the earliest examples of GP’s application for real-world prob-
lem-solving is the work presented by Tackett [59] of Hughes Missile Systems in
late 1993 where GP was used to construct a binary classifier that combines feature
vectors extracted from images using the Multi-function Target Acquisition Proces-
sor algorithm. The objective of the study was to identify whether a target (like, for
instance, a tank, aircraft, etc.), was present in a given patch of infra-red images taken
from a cluttered terrain (containing rocks, bushes, etc.). It was shown that GP can
achieve higher performance and reduced computational complexity when compared
with a binary tree classifier and a back-propagation neural network. In fact, one of
the most successful evolved classifiers comprised just 25 program elements, used
62.5% of input features, employed just four simple arithmetic operators, and could
have been written in a single line [45]. A similar approach was taken by Agnelli et al.
[1], where GP was used to combine 12 low-level domain-specific feature detectors
using essentially simple mathematical operators; the features were selected based
on the authors’ previous experience in the specific domain, and the efficiency-effec-
tiveness trade-off. The approach was assessed in the scope of binary classification of
image segments extracted from printed pages (including books, serials, and news-
papers). Instead of capitalizing upon existing feature detectors (aka filters), Harris
and Buxton [20] and shortly after Poli [45] proposed to discover optimal problem-
specific filters using GP. While the former used GP to evolve edge detectors for 1-D
signals and image profiles, the latter took a broader approach to obtain cost-effective
filters capable of highly and selectively emphasizing the image characteristics for a
given task. Further, Poli combined the evolved filters with simple thresholding strat-
egies to detect features of interest and build pixel-classification-based (binary) seg-
mentation algorithms. Roberts and Claridge [51] used GP to automatically evolve a
skin lesion segmentation system from segmentation images provided by an expert
clinician. The function set included imaging operators such as thresholds, mor-
phological operations, logical operations, region intensity functions, edge filtering,
merging, quantisation, etc. Interestingly, the authors were able to achieve high rates
of generalization ability (assessed on 90 images) by training on just eight images. A
similar approach to evolve a binary segmentation system by means of GP was taken
by Sing et al. [56]. In their study, common arithmetical operators were coupled with
a wide range of image filters, as well as morphological and enhancement operators.
The representation was then converted into a sequential MATLAB binary segmen-
tation program. The proposed approach was compared with a SOTA method based
on GAs and reported not only superior performance but also simpler solutions. Al-
Sahaf [2] proposed an end-to-end image classification framework called Two-Tier
GP (2TGP) that simultaneously evolves the feature based on raw pixel input and
the classification rules. To extract features, the authors use the so-called aggregation
functions, which extract a given region of interest from the image and compute an
aggregation statistic (mean, median, standard deviation, minimum and maximum).
To derive the classification rules, traditional arithmetic operators and one decision
rule are used. The proposed method was assessed on four binary classification tasks

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 11 of 37  15

and was shown to outperform a traditional feature-based image classification by GP
and another GP method which also aims to automatically extract image features.
Some of the evolved solutions were capable of generating genuine features.

Recent works report successful usage of GP for image enhancement in real-
estate marketing [16] - a complex scenario where the overall aesthetics and techni-
cal aspects of the image must be adjusted to deliver a realistic, credible, and attrac-
tive result for customers. The authors proposed a generic framework to conceive
effective image enhancement pipelines combining SOTA image processing filters
and GP. When choosing the set of terminals, the authors decided to focus on five
main aspects of image enhancement: contrast adjustment, brightness adjustment,
colour balance, noise removal, and sharpening. Also, the authors introduce an “if-
then-else” function that, depending on image-related features that capture character-
istics of the perceived quality of the image applies one of two image enhancement
branches of the GP tree. The GP-based system was trained to jointly optimize three
metrics that reflect the perceived technical image quality, aesthetics, and commer-
cial attractiveness of the processed images. Later, the approach was extended with
conditional adversarial networks for image-to-image translation to improve even fur-
ther the overall image quality [15]. It was shown that the framework was capable
to achieve better performance than the SOTA image enhancement tools, including
those based on generative adversarial networks. One of the largest contributions of
this work consists of universality, as most of the SOTA approaches are primarily
non-modular and problem-specific. This paper complements the previous studies on
the use of GP in the context of image analysis. In the existing research, Bakurov
et al. [4, 5] proposed a framework for full-reference image quality measures’ (FR-
IQAMs) formulation through GP in two phases, characterized by different mutation
strategies. Specifically, the authors derived terminal sets from the building blocks
of the so-called structural similarity at different levels of abstraction. The empirical
evidence from a cross-dataset validation proved the method’s superiority compared
to traditional FR-IQAMs. Moreover, it was shown that the obtained solutions are
competitive with more complex deep image quality measures. To complement the
work presented in [4] and later extended in [5], in this paper, we propose to solve the
problem of street scenes’ segmentation for automotive applications. Thus, we show
that GP can be used not only to design competitive image quality measures but also
to address even more complex tasks, such as dense prediction.

The most similar works to the one presented in this paper are [9] and [8]. Bianco
et al. [9] applied GP as a meta-learner for the predicted outputs of nine video change
detection algorithms. It was observed that no single algorithm was able to achieve
superior performance. Instead, different algorithms are best suited to different prob-
lems. For this matter, in order to create a robust ensemble leveraging the algorithms’
peculiarities, the authors proposed to combine their predicted outputs (binary fore-
ground/background masks) using a set of unary, binary, and n-ary functions (e.g.,
logical AND and logical OR), as well as post-processing operators (e.g., filters for
noise removal) to polish the final output. The experimental evidence on a dedicated
dataset composed of different types of video sequences (ChangeDetection.net 2014
challenge) demonstrated a significant superiority of the proposed approach. To the
best of our knowledge, this is the first work that uses GP to select and combine

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 12 of 37

different video change detection algorithms. A more recent study reports the use
of GP to combine the outputs of existing saliency detection algorithms (which are
essentially binary masks), using a set of provided operations [8], in the context of
a three-step neural architecture search for image saliency fusion. The authors used
three groups of functional operators for GP, each operating on different domains
of pixels: (i) 2D spatial neighborhood of the pixels belonging to the same saliency
map, (ii) stacks of pixels across different saliency maps, and (iii) individual pixels
without considering any neighborhood. Similarly to the study in [9], no state-of-the-
art algorithm reported superior performance on the majority of datasets and problem
domains. The experimental evaluations showed that the proposed saliency fusion
approach could successfully outperform SOTA methods on a popular image sali-
ency benchmark.

A deep analysis of the literature suggests that GP was not used yet for stacking
deep CNNs’ output for semantic segmentation with more than two classes. The
most similar works perform stacking of binary masks [8, 9]. The presence of several
classes (in our problem there are 19) makes the task particularly challenging while,
at the same time, providing more degrees of freedom for the proposed approach,
discussed in Sect. 4.

4 � Proposed method

The SS networks generate a high-dimensional logit tensor, representing the non-
normalized per-pixel pseudo-probability distribution over the problem classes. The
shape of the logits tensor is [bs, C, H, W] where bs stands for the batch size, C corre-
sponds to the number of target classes and H ×W represents the spatial dimensions
of the target image. To produce the final segmentation mask, this tensor is first sub-
ject to the softmax activation function, which normalizes the logits to a proper prob-
ability distribution; then the index of the largest value across the channel dimension
is chosen at each pixel of the mask to represent the predicted class. In abstract terms,
one can think of logits as a network’s internal representation (conceptualization) of
the visual scenes before making the final decision; as such, they can simultaneously
encode uncertainty about some of the classes and certainty regarding others.

Considering one is interested in combining predictions from several CNNs for SS,
applying a simple voting classifier on the networks’ predicted segmentation masks
might hinder the rich representational potential encoded in the logits. We hypoth-
esize that a properly designed ensemble model should capitalize upon the concepts
generated by different CNNs for SS, reduce uncertainty and improve the overall con-
fidence (resulting in a better segmentation). Such a model should take into account
both spatial and cross-channel relationships between different values of logits across
different networks. Moreover, the final ensemble model should be simple enough to
enable its deployment for real-time applications (ideally, also discarding some of the
networks altogether). To the best of our knowledge, GP is the only tool that can be
used to stack the multidimensional tensors of logits from the four efficiency-oriented
CNNs for SS and fulfil the aforementioned requirements. Specifically, the flexibil-
ity introduced by GP’s tree-based representation allows manipulation and non-linear

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 13 of 37  15

combination of logits at different levels through a wide range of operators, includ-
ing those widely used in the field of CV and IP (like, for example, convolution and
pooling). Moreover, GP allows for direct interpretation of candidate solutions which
can be useful to extract additional valuable information. Finally, thanks to its abil-
ity to perform automatic feature selection and to generate highly non-linear models,
we expect GP to evolve solutions that are both efficient and effective. The proposed
approach for stacking SS networks approach is explored into two variants: Sect. 4.1
presents the so-called multi-class variant (MC), whereas Sect. 4.2 shows the so-
called single-class variant (SC). Each implies a different perspective over the solu-
tions’ representation and, consequently, a different search procedure.

4.1 � Multi‑class stacking approach

In this variant of GP stacking, the prediction at each output class is obtained through
the same evolved meta-model. From now on, it will be called the multi-class stack-
ing GP variant (MC-S-GP). The terminal set for the MC variant is composed of the
logits1 obtained from the four high-performance SS neural architectures described
in Sect. 2.1. In this sense, one terminal element is a 4-dimensional tensor with sizes
[bs, C, H, W], where bs stands for the batch size, C = 19 corresponds to the number
of target classes in the Cityscapes dataset’s instance and H ×W represents the spa-
tial dimensions of the input images. The traditional arithmetic operators were used
along with CV-specific operators (like pooling, smoothing, and edge detection). A
complete enumeration and description of the operators can be found in Sect. 5.4.
We used standard GP with sub-tree mutation and sub-tree crossover to explore the
search space of all possible stacking models. To evaluate a given candidate solu-
tion - a GP tree representing a stacking model - one needs to (i) pass individual
networks’ logits through the tree to obtain the stacking model’s logits (a tensor with
sizes [bs, C, H, W]), (ii) apply the softmax activation function followed by the arg-
max function, and (iii) compute the evaluation function between the predicted seg-
mentation maps and the respective targets (see Sect. 5.1 for a detailed description of
the fitness function).

Figure 3 illustrates a potential candidate solution produced by MC-S-GP. Specifi-
cally, it is possible to see how a candidate solution can be represented both in terms
of the Polish prefix notation (the equation on the left-hand side) and as a LISP tree
(the hierarchical scheme on the right-hand side). The internal nodes of the tree (the
circles) represent the primitive functions, whereas multi-colored stacks of rectangles
represent the terminals. Given that a particular terminal corresponds to a multidi-
mensional tensor of the SS network’s logits, each uniquely colored rectangle in the
stack regards a specific target class of an output segmentation map. In the context
of our study, the logits tensor has shape bs × 19 × 256 × 256 , where bs stands for
batch size, 19 corresponds to the number of target classes in the Cityscapes dataset’s
instance, and 256 × 256 represents the spatial dimensions of the input images.

1  The logits can be defined as the predicted feature maps before the softmax activation layer.

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 14 of 37

Algorithm 1 shows the pseudo-code for the proposed MC-S-GP method, follow-
ing the nomenclature defined in [6]. Notice that the very same stacked generaliza-
tion is applied to combine networks’ predicted outputs at every target class (1, 2,
3,..., 19).

4.2 � Single‑class stacking approach

The dictate of a unique stacking model across different target classes may limit
the system’s “degrees of freedom” and hinder its potential to find a highly accu-
rate solution. That is, it might be the case that the learned stacking model could be

Fig. 3   A potential MC-S-GP model. The figure shows how a given GP individual can be represented as a
list of program elements (on the left), and a LISP tree (on the right)

Algorithm 1   Pseudo-code for the proposed MC-S-GP method.

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 15 of 37  15

sub-optimal when combining networks’ predictions for some classes (such as “car”,
“road”, and “pedestrian”). In this sense, inspired by the work of Muni et al. [42],
we conceive and explore an alternative representation for candidate solutions that
allows GP to jointly develop stacking models tailored to each target class. Specifi-
cally, we propose to represent a given candidate solution as a C-dimensional list
of trees [T] = [T0, T1, ..., TC−1] , where C = 19 and stands for the number of target
classes in the Cityscapes dataset’s instance; each tree at a given position in the list
consists of a potentially unique stacking model for a given class. Under this perspec-
tive, the MC-S-GP variant can be seen as a special case where all the C trees in [T]
are the same. From now on, this second alternative of the proposed approach will be
called the single-class stacking GP (SC-S-GP) variant.

Given the flexibility of the new representation, we decided to give it the possibil-
ity to utilize all the possible information coming from the feature maps predicted by
the four networks. Specifically, when searching a stacking model for a given target
class, the system was provided access to other classes’ feature maps, although with
lower probability. Note that this is different from restricting the terminal set of a
given tree in [T] to class-specific feature maps predicted by the four BLs, something
which implicitly happened in the MC-S-GP variant. This decision implies that the
terminal set for the SC-S-GP variant is obtained by concatenating the four networks’
logits on the channel dimension. In this sense, one terminal element is a 4-dimen-
sional tensor with sizes [bs, 4 × C , H, W], where 4 × C represents the concatenation
of the four networks’ logits on the channel dimension (given that C = 19 , there will
be 4x19=76 output channels).

This strategy was motivated by the importance of taking into account the global
context of the scenes in order to improve the local predictions. Specifically, we
wanted to allow the resulting model to make use of more information from the
scene’s context when trying to differentiate between classes like, for instance, a
pedestrian and a rider in a road scene. It happens that simply learning to identify
people in a scene is not enough - the context in which they happen to appear might
be crucial for the posterior decision-making process. In this sense, we believe that
properly “mixing” the feature maps from different classes may allow the system to
achieve superior performance.

A more complex and versatile solutions representation required us to adapt the
search algorithm accordingly. In this sense, for the SC-S-GP variant, we propose to
use a local search (LS) strategy where the GP’s sub-tree mutation plays the role of
the neighborhood function. Specifically, the proposed LS strategy consists of explor-
ing the neighborhood of a given size for every successive tree ( TCi

 ) in [T] (starting
from TC0

 up to TC18
 ). To conclude one iteration, it is necessary to explore the neigh-

borhood of every tree in the C-dimensional list [T]. Every candidate neighbor of
TCi

 is evaluated in the context of the class it represents; that is, each neighbor of
TCi

 is assessed in terms of its ability to improve the system’s fitness on class i. To
evaluate [T] (i.e., a given candidate-solution), one needs to (i) pass the correspond-
ing networks’ logits to each tree TCi

 in the list [T] to obtain the stacking model’s
logits at each class, (ii) concatenate the resulting C tensors along the channel dimen-
sion to form a tensor with sizes [bs, C, H, W]), (iii) apply the softmax activation

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 16 of 37

function followed by the argmax function, and (iv) compute the evaluation function
between the predicted segmentation maps and the respective targets (see Sect. 5.1
for a detailed description of the fitness function).

Figure 4 illustrates a potential candidate solution (i.e., a stacking model), in the
scope of the SC-S-GP variant. From the figure, a candidate solution [T] stores C
trees, each meant to combine networks’ logits at a given target class Ci . For example,
the tree TC0

 regards the first target class and it combines the respective output logits
from the four different networks. Contrarily to the MC-S-GP variant, the input ter-
minals for a given tree TCi

 have shape [bs, H, W] as they regard only one dimension
of the output logits. In this sense, the number of distinct terminals comprising a GP
tree at a given class is 76 (four SS networks × 19 classes). To construct the trees, we
decided to use the same functions’ set as in 4.1.

Algorithm 2 shows the pseudo-code for the proposed SC variant of the S-GP
method. Note that here we follow the nomenclature defined in [6].

5 � Experimental environment

5.1 � Fitness function

Intuitively, a successful SS system is one that maximizes the overlap between the
predicted and true pixel classes. To measure the quality of a given stacking model
on the underlying SS task, we use the mean of class-wise intersection over union

Fig. 4   A potential SC-S-GP model. The figure shows how a C-dimensional list of LISP trees (in above)
can be used to represent a joint SC-S-GP model where the predictions for each class are obtained by a
unique GP tree (i.e., sub-model). The circle below shows a potential neighborhood of the tree T

C0

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 17 of 37  15

(mIoU). It is computed as the class-wise mean of the intersection over union (IoU),
also known as the Jaccard coefficient:

where A and B stand for the predicted and target segmentation masks for a given
class, and TP, FP, and FN stand for true positives, false positives, and false nega-
tives, respectively. Typically, SS models include a background class in addition to
the target classes. In simple terms, the background class is used to represent a none
of the above class, which serves as an adjunct to all the other classes; therefore, if
we want to identify C classes in an image, in practice, there will be C + 1 classes.
However, when objects of interest occupy a relatively small part of the image, even
a naive model predicting background everywhere would have good MIoU for the
background class. When calculating metrics, one typically is more interested in
target classes rather than the background. Intuitively, a good identification of the
objects will translate into a good identification of the background as well. To deal
with the aforementioned limitations of the quality measurement, it is common to
ignore the background class before taking the mean over IoUs [19, 36, 38, 40].

(1)Jaccard = IoU =
‖A ∩ B‖
‖A ∪ B‖

=
TP

TP + FP + FN
,

Algorithm 2    Pseudo-code for the proposed single-class variant of the S-GP.

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 18 of 37

5.2 � Dataset

Cityscapes is a popular and widely-utilized dataset of high-resolution urban scenes.
It consists of 5000 annotated images, which are provided in three sets: 2975 training
images, 500 validation images, and 1525 testing images. From the 5000 annotated
images, only 3475, which regard the training and validation sets, are fine-annotated;
the remaining 1525 from the test partition are coarse-grained annotations. For this
reason, we only used the train and validation sets of the data. The original annota-
tions include 30 different object classes; out of these, 19 were used in our study
following the common practice adopted by the scientific community [34, 36, 38,
43, 52]: road, pole, sky, bus, sidewalk, traffic light, person, train, building, traffic
sign, rider, motorcycle, wall, vegetation, car, bicycle, fence, terrain, truck, and back-
ground. The images were collected in 50 different European cities, in different parts
of the year, with a large variability of weather and illumination conditions, making
this dataset highly convenient for developing and benchmarking solutions designed
for real-world automotive applications. The images were cropped down to 256 × 256
in a random fashion to foster the experiments.

5.3 � Base learners’ hyper‑parameters

All models were trained following the procedure described in [33], minimizing the
cross-entropy loss between the ground truth and the predicted classes for each pixel.
We adopted Adam as a stochastic optimizer [28], using an initial learning rate of
5 × 10−4 , updated through the following polynomial decay learning rate policy:

where epoch is the 0-based index of the current epoch, LR0 is the initial learning
rate, and total_epochs is set to 150 for all experiments, after preliminary evaluation.
We used batch size = 6 in order to fit memory constraints. The images were pre-
processed by subtracting the mean and dividing by the standard deviation computed
on ImageNet [30], and data-augmented by random scale augmentation sampling the
scaling factor from a uniform distribution with the interval [0.5, 2].

Figure 5a and b present the correlation heatmaps between the four networks cal-
culated on the training and test data. The correlation between a given pair of net-
works was estimated as the average MIoU between their predicted feature maps at a
given data partition. From the figure, it becomes clear that network outputs are not
significantly correlated. This aspect means that the candidate base learners in the
stacked ensemble can be said to be heterogeneous, and a significant improvement in
the task can be potentially obtained if using them together in an ensemble [10].

(2)LR(epoch) =

(
1 −

(
epoch

total_epochs

)0.9
)

⋅ LR0,

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 19 of 37  15

5.4 � S‑GP’s hyper‑parameters

Table 1 provides a complete enumeration of the experimental parameters for the
proposed S-GP system. The column S-GP’s variant divides the table’s rows across
the two S-GP variants: the multi-class (MC) and the single-class (SC); whenever the
parameters across the two variants overlap, we use the notation “MC & SC”. The
following paragraphs provide a detailed discussion of the selected parameters and
values.

Fig. 5   Correlation heat-maps between the four efficiency-oriented neural networks. The correlation is
calculated as the MIoU between the predicted SS maps on the training and test data (left and right sub-
figures, respectively)

Table 1   Enumeration of S-GP’s hyper-parameters

S-GP’s variant Parameter Value

MC & SC Training batch size 150
Runs 10
Function set {FS

basic
 , FS

CV
}

MC Terminals {ENet, ERFNet, EDANet, SSNet}
(Population x generations) (285 x 40)
Initialization RHH
Selection Tournament with pool size of 5%
Crossover Swap, P(C)=0.7
Mutation Sub-tree, P(M)=1-P(C)=0.3

SC Terminals {ENetx19, ERFNetx 19,
EDANetx19, SSNetx19}

(Neighborhood x generations) {(60x10), (40x15)}
Initialization Grow
Neighborhood function Sub-tree
Control 1.0
Update-rate 0.95

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 20 of 37

To train the system, we relied on batch processing. Specifically, we used a batch
size of 150 images to evaluate the population/neighborhood at the end of each gen-
eration. Preliminary experiments showed that smaller batch sizes tend to deteriorate
the system’s performance. Individuals’ fitness was computed as the mean intersec-
tion over union (MIoU) between the predicted segmentation maps and the respective
target annotations. Considering the algorithms’ stochastic nature, we repeated our
experiments ten times (runs), each with a different seed for the pseudo-random num-
bers generator to initialize and execute the search. We guaranteed an equal computa-
tional effort for each variant of the S-GP system, measured in terms of fitness evalu-
ations per run - 11685. In this sense, we decided to execute the MC variant of the
S-GP system for 40 generations with a population size of 285 candidate solutions.
The SC variant was studied in two configurations: (i) 15 generations and neighbor-
hood size of 40 candidate solutions, and (ii) 10 generations and neighborhood size
of 60 candidate solutions; in this sense, we wanted to assess the trade-off between
the exploitation and the exploration of the proposed LS-based approach.

To explore the search space of possible stacking models in the MC variant, we
used standard GP with sub-tree mutation and sub-tree crossover with probabilities
of 30% and 70%, respectively; the initial population was generated by employing
the Ramped Half-and-Half (RHH) initialization technique with a maximum depth
of 5 levels; the selection was a tournament with a tournament pool size of 5%. In the
SC variant, we used the GP’s sub-tree mutation as the neighborhood function and
grow initialization technique with a maximum depth of 5 levels; the initialization
was repeated 15 times for each of the 19 trees to match the number of RHH’s fitness
evaluations; in this sense, the best tree on the training data was selected for con-
structing the initial candidate solution. The LS-based approach for the SC variant
was explored in two forms: (i) with standard hill climbing (HC) and (ii) with simu-
lated annealing (SA); the control and the update-rate parameters for the latter were
set to 1.0 and 0.95, respectively. In particular, the control parameter corresponds to
the temperature parameter of SA, while the update-rate parameter governs the cool-
ing strategy responsible for decreasing the temperature. Note that both S-GP vari-
ants were artificially seeded base-learners’ genotypes in the initial population/neigh-
borhood. This was performed to allow the search algorithms to start at a good point
in the search space and foster their convergence. In particular, the base learners were
provided in the form of a single-node tree for the MC variant of the proposed S-GP
method. For the SC variant, given the fact it corresponds to a list of stacking models
for each target class, the initial seed consists of a list made of 19 single-node trees. It
is worth noting that we preferred to rely on the standard GP search process due to its
simplicity, to maintain the computational effort manageable, and to provide compact
solutions. For instance, we could have considered geometric semantic GP [41] as the
stacking method, but this would have produced solutions whose size and complex-
ity would not be acceptable for the underlying requirements of the application under
analysis.

The terminal set for the MC variant of the S-GP system was built from the four
SS neural networks’ output logits; in this sense, a given terminal can be seen as a
tensor of shape bs × 19 × 256 × 256 , where bs stands for the batch size, 19 repre-
sents the number of target classes and 256 × 256 represents the spatial dimension of

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 21 of 37  15

the networks’ output; in total, there are four distinct terminals. The terminal set for
the SC’s variant was also built from the SS neural networks’ output logits, but with
a difference. Since the SC’s variant discriminates between networks’ output feature
maps channels, the feature maps were flattened across the channel dimension and
detached; therefore, a given terminal in the SC variant can be seen as a tensor with
sizes bs × 256 × 256 , and there are 4 × 19 = 76 distinct terminals.

Besides the traditional operators (such as {+, -, *, /}), we also used pixel-wise
minimum, maximum, mean, and some of the most popular convolution and pool-
ing operators from the field of image processing and computer vision. Specifically,
as for the convolution operators, we used the vertical and the horizontal Sobel ker-
nels, the discrete approximations of the Laplacian and the Gaussian filters; as for the
pooling operators, we used average and maximum pooling with stride and padding
set to one; for both convolution and pooling operators, we used a 3 × 3 sized win-
dow/kernel. We ran the experiments with (function set FSCV ) and without (func-
tion set FSbasic ) the computer-vision-specific operators following Table 2, in order
to verify their utility for the underlying problem. Moreover, we also considered the
maximum, the minimum, and the average operators, applied pixel-wise between the
two input terminals. Finally, we added the sine and the cosine functions to the func-
tions’ set to foster non-linearities’ modeling.

5.5 � Other ensemble methods

To ensure the viability of the proposed approach, S-GP will be compared against
two traditional ensemble methods such as simple (i.e., unweighted average) and vot-
ing, alongside more complex weighted average ensembles. To implement the latter,
we relied upon GAs. The purpose of this section is to provide a brief description of
these ensemble methods and their parameters.

To implement the voting ensemble, we generated the predicted segmentation
masks for each of the considered SS networks and applied a voting scheme classi-
fier as described in [66]. The simple (i.e., unweighted average) average ensemble,
instead, was implemented at the logits’ level. That is, first, we stack the four SS net-
works’ non-normalized per-pixel pseudo-probability distributions over the classes,
which yields a tensor with sizes bs × 4 × 19 × 256 × 256 ; then, we apply the aver-
age across the second dimension of this tensor, which yields a tensor with sizes
bs × 19 × 256 × 256 ; finally, this tensor is converted into the output segmentation

Table 2   Detailed list of the two
considered function sets

Functions FSbasic FSCV

Traditional (+, -, *, /) ✓ ✓

Trigonometric (sine, cosine) ✓ ✓

Pixelwise (minimum, maximum, average) ✓ ✓

Convolutional edge (Sobel vertical/horizontal) ✓

Convolutional filter (Laplacian, Gaussian) ✓

Pooling (average, maximum) ✓

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 22 of 37

map by passing it through the softmax activation layer and taking the index of the
maximum value on the second dimension (representing, at this stage, the likelihood
of a given pixel belonging to some target class).

Two variants of GAs were implemented for the weighted average ensemble, to
establish compatibility with each of the proposed S-GP methods and to allow for a
fair comparison. The first variant, named MC-GA, follows the concept of the pro-
posed MC variant of S-GP. Specifically, candidate solutions with four constrained
parameters are evolved through GA to implement a weighted average as a linear
combination of the form w0 × X0 + w1 × X1 + w2 × X2 + w3 × X3 , where wi repre-
sents a given parameter and Xi the corresponding logits’ tensor of the SS network
i. To evaluate candidate solutions, a similar procedure is taken to that described for
the simple average ensemble with the exception that logits are weighted. To estab-
lish compatibility with the MC variant of S-GP, the GA was used with the same
parameters as GP when possible (see Table 1 for a complete overview of the param-
eters). In particular, the same selection method, mutation and crossover probabili-
ties, number of generations, population size, and training batch size were used. The
second variant, named SC-GA, corresponds to the proposed SC variant of S-GP.
Given that S-GP aims at evolving a separate stacking ensemble model for each class,
the SC-GA variant follows the same approach by simultaneously evolving a combi-
nation of 19 class-specific weighted-average ensembles. Each class-specific ensem-
ble is a weighted average of the four logits, obtained from the SS networks, that
were sliced on the underlying class. This approach is repeated for all target classes,
which yields candidate solutions with 4 × 19 = 76 parameters. Once the weights are
applied, the procedure to evaluate the fitness is equivalent to the aforementioned
MC-GA variant. Similarly to the aforementioned MC-GA, the SC-GA variant was
used with the same parameters as GP.

Several other ensemble methods were proposed [50]. The fundamental reason
why these were not included in this work is directly related to the specifics of the
machine learning task addressed in this work (semantic segmentation) and therefore
the representation of one training instance - in our task, it is a multidimensional ten-
sor and not a vector, as it happens in traditional machine learning applications. For
example, in the case of the MC variant of S-GP, one training instance is a tensor with
shape [bs, C, H, W], and the produced output by the stacking model must be equal in
size. This is clearly different from D-dimensional vectors that one can usually find
in traditional machine learning applications where other SOTA ensemble methods
exhibit preeminent results. On the other hand, evolutionary-based approaches, such
as GA and GP, are more flexible to handle more complex data representations.

6 � Results and discussion

This section presents the experimental results and discusses the main findings. It is
divided into four sub-sections, following the experimental objectives:

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 23 of 37  15

1.	 design a stacking model by means of GP that efficiently leverages the synergistic
effect of efficient neural architectures’ combination, and attains levels of precision
superior to any of the networks in isolation;

2.	 assess networks’ relative importance (worth);
3.	 obtain a set of small and human-interpretable models that simultaneously achieve

high levels of precision on the underlying CV task;
4.	 assess systems’ time complexity.

6.1 � Performance

Figure 6 presents the performance of the MC variant of S-GP and compares it
against the corresponding MC GA-based stacking, the simple (i.e., unweighted)
average ensemble, and the best base learner. Note that the figure intentionally
excludes the voting ensemble as it reports significantly lower accuracy when com-
pared to the simple average. Specifically, the averages calculated across the elite
individuals observed at every generation of each run are reported for GP and GA.
The proposed S-GP is presented in two configurations that differ in terms of the
feature set (visit Sect. 5.4 for the details related to the feature sets): MS-FSbasic in
blue and MC-FSCV in red. The corresponding MC-GA weighted average is pre-
sented in green. The simple (i.e., unweighted) average ensemble and the best base
learner (SSNet [36]) are depicted as black and grey straight lines, respectively. In a
top-down manner, the figure depicts: (i) the training fitness, calculated as MIoU on
batches of the training set, (ii) the test fitness, (iii) and the trees’ length calculated as
the number of program elements.

From the elites’ aggregated training fitness (the sub-figure at the top), we can
see that S-GP with the two feature sets seems to exhibit a comparable performance
until generation 16/17. From that moment on, MC-FSCV stagnates while MC-FSbasic
continues to exhibit fitness improvement (blue and red lines, respectively), although
at a lower rate of change. When compared with MC-GA, both S-GP variants exhibit
notably higher training fitness. Although the average line of the MC-GA approach
exceeds that of SSNet (in black), it also shows a substantial amount of instability
during the training.

Since systems’ generalization ability is of great concern, we focus our attention
on the elites’ aggregated test fitness (the sub-figure in the middle). To begin with,
it is paramount to mention that both configurations of MC-GP and MC-GA outper-
form the best base learner regardless of the feature set, and the differences are statis-
tically significant after Wilcoxon’s signed-rank test for related paired samples with
a significance level of 5%. Regarding the difference between the two feature sets of
the proposed S-GP approach: MC-FSbasic (in blue) generalizes slightly better than its
analogue with CV operators, however, the difference is not statistically significant.
Moreover, similarly to what was observed with the training fitness, the test fitness
of the two feature sets stagnates after generation 16/17, making this more notice-
able for the MC-FSCV configuration (in red). Similarly to what was observed from
the curves on the training data, the average test fitness of the MC-GA approach is

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 24 of 37

notably less stable when compared to S-GP, although a light-increasing trend can be
observed. The differences between MC-GA and the two proposed MC-GP variants
in terms of the test fitness were not found to be statistically significant after Wil-
coxon’s signed-rank test for related paired samples with a significance level of 5%.

The simple average ensemble (AVG), depicted as a grey line in both training and
test fitness plots, is shown to be the least-performing model, which can be explained

Fig. 6   Learning curves for the MC variant of the S-GP system (MC-FS
basic

 in blue and MC-FS
CV

 in red),
and the corresponding MC-GA ensemble (MC-GA in green). The figure also includes the simple (i.e.,
unweighted) average ensemble and the best base learner in grey and black, respectively (Color figure
online)

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 25 of 37  15

by the fact that the best base learner (SSNet) is substantially better than the other
three models, that exhibit comparable performance. In this sense, giving equal
weight to all the models deteriorates the performance of the ensemble with respect
to the SSNet.

Another pivotal aspect to take into account is the solutions’ complexity. This
becomes particularly important when solutions’ interpretability is required (which
is our case). In this sense, it is useful to analyze the length of the elite trees obtained
through S-GP (the sub-figure at the bottom). From the figure, we can see that, at the
end of 40 generations, MC-FSbasic (in blue) tends to produce twice as long trees as
MC-FSCV (in red); interestingly, the difference starts to increase significantly after
the 20th generation - a few generations after the aforementioned stagnation point.
The MC-GA approach (in green) is shown as a straight line given the fact the candi-
date solutions in GAs are of fixed size. We fix the length of the solutions obtained by
MC-GA to 15, as it corresponds to the length of a binary tree encoding the weighted
average as a linear combination of the form w0 × X0 + w1 × X1 + w2 × X2 + w3 × X3 ,
where Xi represents the output of a specific neural model.

From the perspective of trees’ length, MC-GA clearly provides the simplest solu-
tion. In light of the generalization ability, however, the MC-GA does not appear as
the most prominent approach given its relative under-performance and notable insta-
bility (both across generations and runs). Instead, the proposed MC-FSbasic method
appears to be the most accurate and stable across runs and generations.

Figure 7 presents the SC variant of S-GP and compares it against the corre-
sponding GA weighted ensemble, the simple (i.e., unweighted) average ensemble,
and the best base learner. Note that the figure intentionally excludes the voting
ensemble as it reports significantly lower accuracy when compared to the simple
average. Similarly to Fig. 6, the lines represent the average fitness and length val-
ues calculated across the elite individuals observed at every generation of each run,
reported for GP and GA. Given the abundance of considered configurations in the
SC variant of S-GP, we divide the figure into two columns, each regarding a dif-
ferent feature set: SC-FSbasic on the left and SC-FSCV on the right. In a top-down
manner, the figure is divided into three sub-figures (following the configuration of
Fig. 6): (i) the training fitness calculated as MIoU on batches of the training set,
(ii) the test fitness, (iii) and the trees’ length calculated as the number of program
elements. The four colored lines represent the performance of the two different LS
approaches studied in two configurations of neighborhood size versus generations.
Notice that each configuration requires an equal number of fitness evaluations by
run ( 40 × 15 = 60 × 10 = 600 ). The same number of fitness evaluations was used
for the SC-GA method. Specifically, the figure presents:

•	 In sky blue HC with a neighborhood size of 40 executed for 15 generations
(HC_40×15)

•	 In dark blue HC with a neighborhood size of 60 executed for ten generations
(HC_60×10)

•	 In dark red SA with a neighborhood size of 40 executed for 15 generations
(HC_40×15)

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 26 of 37

•	 In coral SA with a neighborhood size of 60 executed for ten generations
(HC_60×10).

•	 In green the GA-weighted ensemble where each of the 19 channels is a
weighted ensemble of the four SS networks

•	 In grey the simple (i.e., unweighted) average ensemble of the four SS net-
works’ logits

•	 In black the best base learner (SSNet [36])

From the proposed SC S-GP configurations only HC_60×10 using the FSCV fea-
ture set was able to learn from the training data. However, in terms of generaliza-
tion ability, none could report results statistically superior to the best base learner
(SSNet [36]), except SC-GA. The differences between SC-GA and the proposed
SC-GP variants in terms of the test fitness were found to be statistically signifi-
cant after Wilcoxon’s signed-rank test for related paired samples with a signifi-
cance level of 5%, except for the HC_40×15 variant with CV-based operators.

In fact, the behavior of SC-GA is similar to what has been observed in Fig. 6
with MC-GA: negligible superiority over the best base learner and notably high

Fig. 7   Learning curves for the SC variant of the S-GP system with different configurations and the
corresponding GA-weighted ensemble (SC-GA, in green). The figure also includes the simple (i.e.,
unweighted ensemble) average ensemble and the best base learner in grey and black, respectively. The
first column regards the so-called basic feature set, whereas the second column regards the feature set
including CV-based operators (Color figure online)

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 27 of 37  15

variability between the generations and across the runs. Concerning the solu-
tions’ complexity, the HC_60×10 configuration was the one producing the smallest
trees (in average terms). The length of the SA-GA approach is not present in the
figure because it is disproportionally large when compared to the proposed S-GP
variant: assuming a binary tree representation, the length of the SC-GA method is
15 × 19 = 285.

A closer inspection of the results showed that the HC_60×10 configuration often
converged to the best learner with slight modifications at some of the target classes,
for example, applying a max pooling operator over the S-GP model regarding the
background class. The presented results refute our assumption about the benefits of
the joint evolution of tailored S-GP for each class. We argue that this happens for the
following two reasons. First, the usage of a single stacking model across all target
classes, as in the MC variant, introduces an implicit form of regularization for the
S-GP system; contrarily and, for us unexpectedly, fine-tuning a stacking model for
each target class introduces too many “degrees of freedom” and, instead of foster-
ing S-GP’s performance, hinders its potential from finding a good solution. Second,
we speculate that the larger amount of “degrees of freedom” introduced by the SC
variant also demands more computational resources (like, for instance, the neighbor-
hood’s size and the number of generations). Given the noticeable under-performance
of the SC variant, in addition to its excessive computational load (see Sect. 6.4), it
was decided to leave this research track, and we focus instead on the MC variant
only.

Table 3   Summary table comprising all the methods (algorithms) involved in this study

Approach Algorithm Test fitness Train fitness Length

CNN for SS EDANet 0.4497 0.4849 1
ENet 0.3885 0.4250 1
ERFNet 0.4557 0.4880 1
SSNet 0.5057 0.5404 1

Simple ensemble Average 0.4894 0.5235 9
Voting 0.4676 0.5030 5

GA ensemble MC-GA 0.5099 0.5446 15
SC-GA 0.5107 0.5450 285

GP ensemble MC-GP-basic 0.5111 0.5708 78.2
MC-GP-CV 0.5096 0.5664 36.9
SC-HC-basic-40x15 0.4683 0.5000 95.5
SC-HC-basic-60x10 0.4564 0.4916 98.2
SC-SA-basic-40x15 0.4978 0.5293 102.2
SC-SA-basic-60x10 0.4961 0.5316 70.8
SC-HC-CV-40x15 0.4998 0.4816 50
SC-HC-CV-60x10 0.5045 0.5671 27.4
SC-SA-CV-40x15 0.4979 0.5389 59.3
SC-SA-CV-60x10 0.5032 0.5388 67

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 28 of 37

Table 3 provides a summary of performance across the proposed MC and SC
variants of S-GP, the GA-based counterparts, traditional ensemble methods, and the
base learners. Specifically, the table contains the average test ( Test fitness ) and train-
ing ( Train fitness ) fitness values, calculated for each algorithm (identified by the col-
umn Algorithm). The column Approach serves as a macro category to group differ-
ent algorithms. The values for the proposed S-GP ensemble and the corresponding
GA-weighted were obtained by averaging the results obtained from the elite candi-
date solutions at the end of the runs. The column Length represents the average solu-
tions’ length proposed by different algorithms. To provide a fair comparison in terms
of the solutions’ length, we use a binary tree encoding for the two GA-weighted
average ensemble methods. Specifically, in MC-GA the tree length corresponds to
the length of a binary tree encoding the weighted average as a linear combination of
the form w0 × X0 + w1 × X1 + w2 × X2 + w3 × X3 ; in SC-GA the length of the binary
trees encoding the weighted average as an equivalent linear combination for each of
19 channels is, therefore, 19 × 15 = 385 . The voting ensemble, however, can be seen
as an exception as it consists of the four SS networks and a single voting operator
with arity four (which yields a length of five). A statistical analysis was carried out
to assess the differences in terms of the methods’ generalization ability. In particu-
lar, we tested whether the differences in terms of average test fitness between the
best base learner (SSNet) and different methods were significant after Wilcoxon’s
signed-rank test for related paired samples with a significance level of 5%; the algo-
rithms reporting statistically better results are reported in bold.

From the summary table, it becomes clear that the only approaches that were
able to achieve a statistically significant improvement over the baseline were the
proposed MC variant of S-GP with the basic and CV-based feature sets and the
corresponding GA-based ensembles. The largest accuracy was observed for the
MC variant of S-GP with the basic feature set but at the cost of generating deeper
trees. Section 6.3, however, shows that manual simplification of the trees generated
through MC-GP-basic can produce small and interpretable models.

6.2 � Worth analysis

Figure 8 shows the estimated worth of program elements for the MC and SC vari-
ants of the S-GP system, with function sets FSbasic and FSCV . Following the common
practice in GP [61], the worth was estimated as the program elements’ frequency of
the best individuals’ genotype (the elites), observed at the end of the last generation
of every run. In this sense, the figure reports the frequency counts of program ele-
ments from the 10 runs. The most frequent program elements are also assumed to be
the most relevant. The program elements were ranked in descending order according
to their estimated worth and colored based on whether they belonged to the func-
tions’ or terminal set (brighter and darker tones, respectively).

When looking at the terminals’ worth (these correspond to the darker tones of the
figure’s bars), one can observe that within each variant of S-GP, the worth of termi-
nals follows the same order, regardless of the feature set. Independently on the variant,

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 29 of 37  15

SSNet is shown to be by far the most relevant efficiency-oriented SS network in the
S-GP ensembles. When considering the MC variant of S-GP - the most prominent
stacking method - the ERFNet is reported as the second most relevant terminal. Such
an order was expected since SSNet’s encoder is essentially a slight improvement over
the ERFNet’s. Moreover, SSNet uses a more sophisticated decoder which was shown
to improve the segmentation maps along objects’ boundaries efficiently. Surpris-
ingly, EDANEt’s worth is estimated to be roughly the same as ENet’s: in MC-FSbasic ,
EDANet’s worth is slightly above ENet’s, whereas in MC-FSCV , the opposite happens.
In our opinion, this happens because, under the perspective of the accuracy-speed
trade-off that reigns the neural architectures’ design, these two networks headed more
towards speed at the cost of accuracy. In a nutshell, besides obtaining network worth
estimates, one can conclude that these estimates happen to be robust with regard to the
empirical findings from the literature.

When looking at the functions’ worth (these correspond to lighter tones of the
figure, one can observe that pixel-wise average, addition, maximum, and minimum

Fig. 8   Estimate of program elements’ worth via frequency plots. The figure contains both multi and sin-
gle-class variants of the proposed S-GP approach explored using two types of operators (basic and CV-
based). The evolution for MC with FS

basic
 in a automatically excluded trigonometric operators sine and

cosine, as well as pixel-wise minimum and maximum. The evolution for MC with FS
CV

 in c excluded
convolutional-edge filters based on the Sobel operator

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 30 of 37

happen to be the most relevant across operators regardless of the variant and feature
set. The subtraction, division, multiplication, and trigonometric functions are notably
the least relevant functions. This fact suggests the small utility of these functions for the
underlying problem instance.

When looking at the coral bars of Fig. 8c and d both regard FSCV configurations
for the MC and SC variants of S-GP), one can observe that the MaxPool is the most
frequently used CV-based operator. Other operators can be found, but at a significantly
lower rate, which suggests their reduced utility in the scope of the underlying problem
instance: the AvgPool, the Laplacian filter, the AvgPool, and the Gaussian kernel.

6.3 � Inspection of stacking models

Figure 9a, b, c, and d present four example candidate solutions of the multi-class
stacking variant, which achieved a fair performance-complexity trade-off. In fact,
their compact representation allows a closer inspection of the underlying trees.

It is fundamental to remind the reader that our stacking procedure was applied
before the SoftMax operation (i.e., our generated solutions directly process the logit
data). This experimental choice, whose superiority over post-SoftMax processing
was determined via preliminary experiments, has the advantage of operating on the
raw network outputs before any non-linear compression of the data range that might
hinder the ability to capture nuances in the predictions or even lose information due

Fig. 9   Candidate stacking models evolved utilizing S-GP (multi-class variant)

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 31 of 37  15

to numerical precision issues. Furthermore, in this context, the data can be re-pur-
posed and combined without the need to preserve their characteristics as probabil-
ity distributions since those will be enforced as a post-processing SoftMax step if
necessary.

One potential drawback of working with logits is that there is no inherent control
over the original data distribution since different networks (or even different training
runs of the same network) will produce outputs in arbitrary ranges. This factor is
possibly the reason for the behavior shown in Fig. 9c, where the SSNet terminal is
multiplied by a factor of 3 before combination with other branches. Notice that this
tree has been mathematically simplified for ease of interpretation and that the under-
lying operation was a sequence of sums involving the same network multiple times.

An alternative explanation for increasing the values of one network output before
the further combination is boosting its importance relative to other networks, as the
optimization procedure implicitly learned that it is more reliable and thus should
be given greater relevance in a consensus-based decision. This hypothesis is cor-
roborated by the fact that SSNet specifically has the highest accuracy among our
set of base learners. The actual consensus can then be implemented by combining
multiple branches through a pixel-wise sum operation (or, equivalently, an average)
as displayed in solutions Fig. 9a and b. The final class decision for each pixel is, in
fact, determined by the ArgMax operator across all class values. The relative order
of these values can be overturned if enough branches agree on a particular class dis-
tribution, simply by summing (or averaging) their outputs.

Another often selected function, as also highlighted by the worth analysis, is the
MaxPool operator. This operation is hypothesized to work as a spatial denoising
operator, as it effectively removes isolated low-level single-pixel values. The ori-
gin of these sparse elements can be potentially attributed to artifacts of the dilated
convolutions and the fast upsampling modules, implemented in many efficient net-
works for semantic segmentation. The preference for max pooling also supports this
denoising interpretation as opposed to average pooling, which would instead have
the effect of spreading the impact of such sparse elements.

Finally, Fig. 9d shows a solution that combines all the aforementioned elements:
reinforcing a single network by summing it with itself, conducting a consensus pro-
cess via either sums or averages, and widespread use of max pooling, potentially as
a denoising operator.

By taking into consideration the solutions’ performance in terms of MIoU on test
data, as well as the level of complexity of the corresponding stacking trees, the can-
didate in Fig. 9b can be considered as an ideal compromise. This solution effectively
exploits the SSNet and ERFNet models from the pool of investigated base learn-
ers, running respectively at 113.1FPS and 61.0FPS on a TitanX (Pascal) Graphic
Processing Unit (GPU), as reported by [38]. Their stacking will therefore operate
on up to 39FPS, minus the necessary computation of pooling and averaging opera-
tions, effectively matching the commonly-adopted criterion of 30FPS for real-time
performance [37, 38, 52]. Figure 10 shows an example of output segmentation maps
produced by the stacking model of Fig. 9b.

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 32 of 37

6.4 � Time complexity

Figure 11 presents experiments’ processing times calculated as the average number
of hours to execute one run. We can see that the MC variants happen to be by far the
most time-efficient experiments - a fact that is directly related to the solutions’ sim-
plicity of representation and, consequently, processing-time usage. As for the func-
tions’ set, one can see that S-GP with CV-based operators generally requires slightly
larger processing times. This outcome happens because the CV-based operators
(like, for example, the convolution or the pooling) are applied between the underly-
ing kernel and a kernel-sized patch of the input image, for every pixel in the padded
input image.

Fig. 10   Example of output segmentation maps produced by the stacking model in Fig. 9b

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 33 of 37  15

7 � Conclusion

This paper presents a study of genetic programming (GP) in the context of stacked
generalization for semantic segmentation (SS) neural architectures. More spe-
cifically, we explored GP’s role as the meta-learning algorithm that combines pre-
liminary outputs of four different efficiency-oriented semantic segmentation archi-
tectures for fast recognition of urban scenes, such as ENet, ERFNet, EDANet, and
SSNet in an evolutionary fashion. The contribution of this work is three-fold. First,
we generated stacking models able to overcome the performance of each of the state-
of-the-art neural architectures considered in this study (measured as mean intersec-
tion over union calculated on the test set). Second, we were able to assess networks’
relative importance in the context of the stacking model. Third, we evolved stacking
models that are of small size and human-interpretable.

Further research in the field is still in demand, and we consider deepening the
cross-fertilization between the fields of evolutionary computation and ensemble
learning. For example, stacking multiple training instances of the underlying neural
models, or breaking the search-space into disjoint sub-spaces that would be better
handled by carefully evolved stacking models focused on a given sub-space. Another
valuable research direction could involve other sources of information when gener-
ating stacking models like, for example, the depth or attention maps.

Author Contributions  IB: Data curation, Formal Analysis, Investigation, Methodology, Software, Validation,
Visualization, Writing - original draft, Writing - review & editing. MB: Conceptualization, Formal Analysis,
Investigation, Methodology, Project administration, Software, Supervision, Validation, Visualization, Writing -
original draft, Writing - review & editing. RS: Conceptualization, Methodology, Resources, Supervision, Writ-
ing - review & editing. MCi: Funding acquisition, Methodology, Supervision, Writing - review & editing. LV:
Funding acquisition, Methodology, Supervision, Writing - review & editing.

Funding  Open access funding provided by FCT|FCCN (b-on). This work was supported by national
funds through the FCT (Fundação para a Ciência e a Tecnologia) by the projects GADgET (DSAIPA/

Fig. 11   Experiments’ processing times in hours per run

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 34 of 37

DS/0022/2018), AICE (DSAIPA/DS/0113/2019), UIDB/04152/2020 - Centro de Investigação em Gestão
de Informação (MagIC)/NOVA IMS, and by the grant SFRH/BD/137277/2018.

Declarations 

Conflict interests  No financial or non-financial conflicts of interests.

Ethical approval  No human or animal participants were involved in this study.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

	 1.	 D. Agnelli, A. Bollini, L. Lombardi, Image classification: an evolutionary approach. Pattern Recog-
nit. Lett. 23(1), 303–309 (2002). https://​doi.​org/​10.​1016/​S0167-​8655(01)​00128-3

	 2.	 H. Al-Sahaf, A. Song, K. Neshatian, M. Zhang, Two-tier genetic programming: towards raw pixel-
based image classification. Expert Syst. Appl. 39(16), 12291–12301 (2012). https://​doi.​org/​10.​
1016/j.​eswa.​2012.​02.​123

	 3.	 V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional encoder-decoder archi-
tecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(12), 2481–2495 (2017).
https://​doi.​org/​10.​1109/​TPAMI.​2016.​26446​15

	 4.	 Bakurov, I., Buzzelli, M., Castelli, M., Schettini, R., Vanneschi, L.: Genetic programming for struc-
tural similarity design at multiple spatial scales. in Proceedings of the Genetic and Evolutionary
Computation Conference, GECCO ’22, p. 911-919. Association for Computing Machinery, New
York, NY, USA (2022). https://​doi.​org/​10.​1145/​35122​90.​35287​83

	 5.	 I. Bakurov, M. Buzzelli, R. Schettini, M. Castelli, L. Vanneschi, Full-reference image quality
expression via genetic programming. IEEE Trans. Image Process. 32, 1458–1473 (2023). https://​
doi.​org/​10.​1109/​TIP.​2023.​32446​62

	 6.	 I. Bakurov, M. Castelli, O. Gau, F. Fontanella, L. Vanneschi, Genetic programming for stacked
generalization. Swarm Evolut. Comput. 65, 100913 (2021). https://​doi.​org/​10.​1016/j.​swevo.​2021.​
100913

	 7.	 Bakurov, I., Vanneschi, L., Castelli, M., Fontanella, F.: Edda-v2–an improvement of the evolution-
ary demes despeciation algorithm. in International Conference on Parallel Problem Solving from
Nature, pp. 185–196. Springer (2018)

	 8.	 S. Bianco, M. Buzzelli, G. Ciocca, R. Schettini, Neural architecture search for image saliency
fusion. Inform. Fusion 57, 89–101 (2020)

	 9.	 S. Bianco, G. Ciocca, R. Schettini, Combination of video change detection algorithms by genetic
programming. IEEE Trans. Evol. Comput. 21(6), 914–928 (2017)

	10.	 L. Breiman, Stacked regressions. Mach. Learn. 24, 49–64 (1996). https://​doi.​org/​10.​1007/​BF001​
17832

	11.	 Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Pretten-
hofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B., Varoquaux, G.: API
design for machine learning software: experiences from the scikit-learn project. in ECML PKDD
Workshop: Languages for Data Mining and Machine Learning, pp. 108–122 (2013)

	12.	 Bukhtoyarov, V., Semenkina, O.: Comprehensive evolutionary approach for neural network ensem-
ble automatic design. pp. 1–6 (2010). https://​doi.​org/​10.​1109/​CEC.​2010.​55865​16

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/S0167-8655(01)00128-3
https://doi.org/10.1016/j.eswa.2012.02.123
https://doi.org/10.1016/j.eswa.2012.02.123
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1145/3512290.3528783
https://doi.org/10.1109/TIP.2023.3244662
https://doi.org/10.1109/TIP.2023.3244662
https://doi.org/10.1016/j.swevo.2021.100913
https://doi.org/10.1016/j.swevo.2021.100913
https://doi.org/10.1007/BF00117832
https://doi.org/10.1007/BF00117832
https://doi.org/10.1109/CEC.2010.5586516

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 35 of 37  15

	13.	 L.C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, A.L. Yuille, Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans.
Pattern Anal. Mach. Intell. 40(4), 834–848 (2018). https://​doi.​org/​10.​1109/​tpami.​2017.​26991​84

	14.	 Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler, M., Benenson, R., Franke, U., Roth, S.,
Schiele, B.: The cityscapes dataset for semantic urban scene understanding. in 2016 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) pp. 3213–3223 (2016)

	15.	 J. Correia, N. Rodriguez-Fernandez, L. Vieira, J. Romero, P. Machado, Towards automatic image
enhancement with genetic programming and machine learning. Appl. Sci. (2022). https://​doi.​org/​10.​
3390/​app12​042212

	16.	 J..a Correia, D. Lopes, L. Vieira, N. Rodriguez-Fernandez, A. Carballal, J. Romero, P. Machado,
Experiments in evolutionary image enhancement with elaine. Genet. Progr. Evolvable Mach. 23(4),
557–579 (2022). https://​doi.​org/​10.​1007/​s10710-​022-​09445-9

	17.	 Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detec-
tion and semantic segmentation. in 2014 IEEE Conference on Computer Vision and Pattern Recog-
nition pp. 580–587 (2014)

	18.	 Gonçalves, I., Silva, S., Fonseca, C.M., Castelli, M.: Unsure when to stop?: Ask your semantic
neighbors. in Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,
pp. 929–936. ACM, New York, NY, USA (2017). https://​doi.​org/​10.​1145/​30711​78.​30713​28

	19.	 S. Hao, Y. Zhou, Y. Guo, A brief survey on semantic segmentation with deep learning. Neurocom-
puting 406, 302–321 (2020). https://​doi.​org/​10.​1016/j.​neucom.​2019.​11.​118

	20.	 Harris, C., Buxton, B.F.: Evolving edge detectors with genetic programming (1996). in Proceedings
of the First Annual Conference, July 28-31, 1996, Stanford University. The MIT Press. https://​doi.​
org/​10.​7551/​mitpr​ess/​3242.​003.​0044

	21.	 He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. in 2015 IEEE International Conference on Computer Vision
(ICCV) pp. 1026–1034 (2015)

	22.	 He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. in 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 770–778 (2016)

	23.	 Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam,
H.: Mobilenets: Efficient convolutional neural networks for mobile vision applications. CoRR
(2017). arXiv:​ org/​abs/​1704.​04861

	24.	 Huang, G., Liu, Z., Weinberger, K.Q.: Densely connected convolutional networks. in 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR) pp. 2261–2269 (2017)

	25.	 Jaderberg, M., Vedaldi, A., Zisserman, A.: Speeding up convolutional neural networks with low
rank expansions. ArXiv arXiv:​ abs/​1405.​3866 (2014)

	26.	 Jin, J., Dundar, A., Culurciello, E.: Flattened convolutional neural networks for feedforward accel-
eration. CoRR arXiv:​ abs/​1412.​5474 (2015)

	27.	 Johansson, U., Löfström, T., König, R., Niklasson, L.: Building neural network ensembles using
genetic programming. in The 2006 IEEE International Joint Conference on Neural Network Pro-
ceedings, pp. 1260 – 1265 (2006). https://​doi.​org/​10.​1109/​IJCNN.​2006.​246836

	28.	 Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:​ 1412.​6980
(2014)

	29.	 J. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection
(MIT Press, London, 1992)

	30.	 A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural
networks. Commun. ACM 60, 84–90 (2012)

	31.	 La Cava, W., Spector, L., Danai, K.: Epsilon-lexicase selection for regression. in Proceedings of the
Genetic and Evolutionary Computation Conference 2016, GECCO ’16, p. 741-748. Association for
Computing Machinery, New York, NY, USA (2016). https://​doi.​org/​10.​1145/​29088​12.​29088​98

	32.	 Lebedev, V., Ganin, Y., Rakhuba, M., Oseledets, I.V., Lempitsky, V.S.: Speeding-up convolutional
neural networks using fine-tuned cp-decomposition. in Y. Bengio, Y. LeCun (eds.) 3rd International
Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Con-
ference Track Proceedings (2015). arXiv:​ org/​abs/​1412.​6553

	33.	 Leonardi, M., Mazzini, D., Schettini, R.: Training efficient semantic segmentation cnns on multi-
ple datasets. in International Conference on Image Analysis and Processing, pp. 303–314. Springer
(2019)

	34.	 Lo, S.Y., Hang, H., Chan, S., Lin, J.J.: Efficient dense modules of asymmetric convolution for real-
time semantic segmentation. in Proceedings of the ACM Multimedia Asia (2019)

https://doi.org/10.1109/tpami.2017.2699184
https://doi.org/10.3390/app12042212
https://doi.org/10.3390/app12042212
https://doi.org/10.1007/s10710-022-09445-9
https://doi.org/10.1145/3071178.3071328
https://doi.org/10.1016/j.neucom.2019.11.118
https://doi.org/10.7551/mitpress/3242.003.0044
https://doi.org/10.7551/mitpress/3242.003.0044
http://arxiv.org/1704.04861
http://arxiv.org/1405.3866
http://arxiv.org/1412.5474
https://doi.org/10.1109/IJCNN.2006.246836
http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2908812.2908898
http://arxiv.org/1412.6553

	 Genetic Programming and Evolvable Machines (2023) 24:15

1 3

15  Page 36 of 37

	35.	 Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. in:
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440
(2015). https://​doi.​org/​10.​1109/​CVPR.​2015.​72989​65

	36.	 Mazzini, D.: Guided upsampling network for real-time semantic segmentation. in: British Machine
Vision Conference 2018, BMVC 2018, Newcastle, UK, Sept 3-6, 2018, p. 117. BMVA Press (2018)

	37.	 Mazzini, D., Buzzelli, M., Pau, D.P., Schettini, R.: A cnn architecture for efficient semantic segmen-
tation of street scenes. in: 2018 IEEE 8th International Conference on Consumer Electronics-Berlin
(ICCE-Berlin), pp. 1–6. IEEE (2018)

	38.	 Mazzini, D., Schettini, R.: Spatial sampling network for fast scene understanding. in 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops (CVPRW) pp. 1286–1296 (2019)

	39.	 Mehta, S., Rastegari, M., Caspi, A., Shapiro, L., Hajishirzi, H.: Espnet: Efficient spatial pyramid
of dilated convolutions for semantic segmentation. ArXiv arXiv:​ abs/​1803.​06815 (2018)

	40.	 S. Minaee, Y.Y. Boykov, F. Porikli, A.J. Plaza, N. Kehtarnavaz, D. Terzopoulos, Image segmen-
tation using deep learning: A survey. IEEE Trans. Pattern Anal. Mach. Intell. (2021). https://​doi.​
org/​10.​1109/​TPAMI.​2021.​30599​68

	41.	 Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. in: Inter-
national Conference on Parallel Problem Solving from Nature, pp. 21–31. Springer (2012)

	42.	 D. Muni, N. Pal, J. Das, A novel approach to design classifiers using genetic programming. IEEE
Trans. Evol. Comput. 8(2), 183–196 (2004). https://​doi.​org/​10.​1109/​TEVC.​2004.​825567

	43.	 Paszke, A., Chaurasia, A., Kim, S., Culurciello, E.: Enet: A deep neural network architecture for
real-time semantic segmentation. ArXiv arXiv:​ abs/​1606.​02147 (2016)

	44.	 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, E. Duchesnay,
Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

	45.	 R. Poli, Genetic programming for feature detection and image segmentation, in Evolutionary
Computing. ed. by T.C. Fogarty (Springer, Heidelberg, 1996), pp.110–125

	46.	 Poli, R., Langdon, W.B., McPhee, N.F.: A field guide to genetic programming. Published via and freely
available at http://​www.​gp-​field-​guide.​org.​uk (2008). (With contributions by J. R. Koza) http://​lulu.​com

	47.	 R. Polikar, Ensemble based systems in decision making. Circuits Syst. Mag. IEEE 6, 21–45
(2006). https://​doi.​org/​10.​1109/​MCAS.​2006.​16881​99

	48.	 S.S.M. Rahman, T. Islam, M.I. Jabiullah, Phishstack: Evaluation of stacked generalization in
phishing urls detection. Procedia Comput. Sci. 167, 2410–2418 (2020). https://​doi.​org/​10.​1016/j.​
procs.​2020.​03.​294

	49.	 S. Reid, G. Grudic, Regularized linear models in stacked generalization, in Multiple Classifier
Systems. ed. by J.A. Benediktsson, J. Kittler, F. Roli (Springer, Heidelberg, 2009), pp.112–121

	50.	 Y. Ren, L. Zhang, P. Suganthan, Ensemble classification and regression-recent developments,
applications and future directions [review article]. IEEE Comput. Intell. Mag. 11(1), 41–53
(2016). https://​doi.​org/​10.​1109/​MCI.​2015.​24712​35

	51.	 M.E. Roberts, E. Claridge, An artificially evolved vision system for segmenting skin lesion
images, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003. ed.
by R.E. Ellis, T.M. Peters (Springer, Heidelberg, 2003), pp.655–662

	52.	 E. Romera, J. Álvarez, L.M. Bergasa, R. Arroyo, Erfnet: Efficient residual factorized convnet for
real-time semantic segmentation. IEEE Trans. Intell. Transp. Syst. 19, 263–272 (2018)

	53.	 O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedical image seg-
mentation, in Medical Image Computing and Computer-Assisted Intervention - MICCAI 2015.
ed. by N. Navab, J. Hornegger, W.M. Wells, A.F. Frangi (Springer, Cham, 2015), pp.234–241

	54.	 N. Sharma, M. Mangla, S.N. Mohanty, C.R. Pattanaik, Employing stacked ensemble approach
for time series forecasting. Int. J. Inf. Technol. 13, 2075–2080 (2021). https://​doi.​org/​10.​1007/​
s41870-​021-​00765-0

	55.	 Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recogni-
tion. CoRR abs/1409.1556 (2015)

	56.	 Singh, T., Kharma, N., Daoud, M., Ward, R.: Genetic programming based image segmentation
with applications to biomedical object detection. in: Proceedings of the 11th Annual Conference
on Genetic and Evolutionary Computation, GECCO ’09, p. 1123-1130. Association for Comput-
ing Machinery, New York, NY, USA (2009). https://​doi.​org/​10.​1145/​15699​01.​15700​52

	57.	 Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.,
Rabinovich, A.: Going deeper with convolutions. in 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1–9 (2015). https://​doi.​org/​10.​1109/​CVPR.​2015.​72985​94

https://doi.org/10.1109/CVPR.2015.7298965
http://arxiv.org/1803.06815
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TPAMI.2021.3059968
https://doi.org/10.1109/TEVC.2004.825567
http://arxiv.org/1606.02147
http://www.gp-field-guide.org.uk
http://lulu.com
https://doi.org/10.1109/MCAS.2006.1688199
https://doi.org/10.1016/j.procs.2020.03.294
https://doi.org/10.1016/j.procs.2020.03.294
https://doi.org/10.1109/MCI.2015.2471235
https://doi.org/10.1007/s41870-021-00765-0
https://doi.org/10.1007/s41870-021-00765-0
https://doi.org/10.1145/1569901.1570052
https://doi.org/10.1109/CVPR.2015.7298594

1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 37 of 37  15

	58.	 Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architec-
ture for computer vision. in 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) pp. 2818–2826 (2016)

	59.	 Tackett, W.A.: Genetic programming for feature discovery and image discrimination. in: Proceed-
ings of the 5th International Conference on Genetic Algorithms, p. 303-311. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA (1993)

	60.	 Vanneschi, L., Bakurov, I., Castelli, M.: An initialization technique for geometric semantic gp based
on demes evolution and despeciation. in 2017 IEEE Congress on Evolutionary Computation (CEC),
pp. 113–120 (2017). https://​doi.​org/​10.​1109/​CEC.​2017.​79693​03

	61.	 L. Vanneschi, R. Poli, Genetic Programming - Introduction, Applications Theory and Open Issues.
(Springer, Heidelberg, 2012)

	62.	 D.H. Wolpert, Stacked generalization. Neural Netw. 5, 241–259 (1992)
	63.	 Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. in 2017 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 636–644 (2017). https://​doi.​org/​10.​1109/​CVPR.​2017.​75
	64.	 A. Zameer, J. Arshad, A. Khan, M.A.Z. Raja, Intelligent and robust prediction of short term wind

power using genetic programming based ensemble of neural networks. Energy Conv. Manag. 134,
361–372 (2017). https://​doi.​org/​10.​1016/j.​encon​man.​2016.​12.​032

	65.	 Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. in 2017 IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 6230–6239 (2017). https://​doi.​org/​
10.​1109/​CVPR.​2017.​660

	66.	 Zhou, Z.H.: Ensemble Methods: Foundations and Algorithms, (2012). https://​doi.​org/​10.​1201/​b12207
	67.	 Zhou, Z.H., Wu, J.X., Jiang, Y., Chen, S.F.: Genetic algorithm based selective neural network

ensemble. in Proceedings of the 17th International Joint Conference on Artificial Intelligence - Vol-
ume 2, IJCAI’01, p. 797-802. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2001)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Illya Bakurov1,2,3 · Marco Buzzelli4 · Raimondo Schettini4 · Mauro Castelli1 ·
Leonardo Vanneschi1

 *	 Illya Bakurov
	 ibakurov@novaims.unl.pt; bakurov1@msu.edu

	 Marco Buzzelli
	 marco.buzzelli@unimib.it

	 Raimondo Schettini
	 raimondo.schettini@unimib.it

	 Mauro Castelli
	 mcastelli@novaims.unl.pt

	 Leonardo Vanneschi
	 lvanneschi@novaims.unl.pt

1	 Information Management School, Universidade Nova de Lisboa, Campus de Campolide,
1070‑312 Lisboa, Lisbon, Portugal

2	 BEACON Center of Evolution in Action, Michigan State University, East Lansing, MI, USA
3	 Department of Computer Science and Engineering, Michigan State University,

East Lansing, MI, USA
4	 Department of Informatics, Systems and Communication, University of Milano – Bicocca, Viale

Sarca 336, 20126 Milan, Italy

https://doi.org/10.1109/CEC.2017.7969303
https://doi.org/10.1109/CVPR.2017.75
https://doi.org/10.1016/j.enconman.2016.12.032
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1201/b12207

	Semantic segmentation network stacking with genetic programming
	Abstract
	1 Introduction
	2 Background
	2.1 Efficiency-oriented deep neural networks for semantic segmentation
	2.1.1 ENet
	2.1.2 ERFNet
	2.1.3 EDANet
	2.1.4 SSNet

	2.2 Stacked generalization

	3 Related works
	3.1 Stacking with GP
	3.2 GP in image processing and computer vision

	4 Proposed method
	4.1 Multi-class stacking approach
	4.2 Single-class stacking approach

	5 Experimental environment
	5.1 Fitness function
	5.2 Dataset
	5.3 Base learners’ hyper-parameters
	5.4 S-GP’s hyper-parameters
	5.5 Other ensemble methods

	6 Results and discussion
	6.1 Performance
	6.2 Worth analysis
	6.3 Inspection of stacking models
	6.4 Time complexity

	7 Conclusion
	References

