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Abstract
Semantic segmentation consists of classifying each pixel of an image and consti-
tutes an essential step towards scene recognition and understanding. Deep convo-
lutional encoder–decoder neural networks now constitute state-of-the-art methods 
in the field of semantic segmentation. The problem of street scenes’ segmentation 
for automotive applications constitutes an important application field of such net-
works and introduces a set of imperative exigencies. Since the models need to be 
executed on self-driving vehicles to make fast decisions in response to a constantly 
changing environment, they are not only expected to operate reliably but also to pro-
cess the input images rapidly. In this paper, we explore genetic programming (GP) 
as a meta-model that combines four different efficiency-oriented networks for the 
analysis of urban scenes. Notably, we present and examine two approaches. In the 
first approach, we represent solutions as GP trees that combine networks’ outputs 
such that each output class’s prediction is obtained through the same meta-model. 
In the second approach, we propose representing solutions as lists of GP trees, each 
designed to provide a unique meta-model for a given target class. The main objec-
tive is to develop efficient and accurate combination models that could be easily 
interpreted, therefore allowing gathering some hints on how to improve the exist-
ing networks. The experiments performed on the Cityscapes dataset of urban scene 
images with semantic pixel-wise annotations confirm the effectiveness of the pro-
posed approach. Specifically, our best-performing models improve systems’ gener-
alization ability by approximately 5% compared to traditional ensembles, 30% for 
the less performing state-of-the-art CNN and show competitive results with respect 
to state-of-the-art ensembles. Additionally, they are small in size, allow interpret-
ability, and use fewer features due to GP’s automatic feature selection.
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1  Introduction

Semantic segmentation (SS) is a supervised machine learning (SML) technique 
that refers to the process of assigning a particular class to every pixel in an image. 
Recent advancements in the field of deep learning (DL) have also fostered the 
field of SS [19, 40]. The pioneering work of Long et al. [35] from 2015, where 
several convolutional neural networks (CNNs) were adapted and successfully 
applied to solve the SS task, has stimulated the scientific community towards 
exploration and sophistication of DL-based SS [13, 17, 53]. Current state-of-
the-art DL-based SS neural networks are mainly built upon an encoder–decoder 
architecture. Typically, the encoder is a pre-trained deep CNN that downsamples 
the input images to feature maps. This technique allows for a reduction of the spa-
tial resolution and, therefore, the memory usage while extracting relevant seman-
tic features. The decoder part follows the encoder and performs gradual upsam-
pling of the low-resolution feature maps to recover the original spatial resolution 
[19].

The street scenes’ SS for automotive applications constitutes one of the most 
challenging tasks in the field of computer vision  (CV) as several new impera-
tive exigencies emerge. As the model needs to be executed continuously on self-
driving vehicles to take fast decisions in response to constantly changing environ-
mental events, they are not only required to operate accurately but also to process 
the input images fast enough to allow timely decision-making of the self-driving 
vehicle. In this context, several new efficiency-oriented architectures were devel-
oped having these requirements in mind [36, 38, 39, 43, 52]. However, these 
tendentiously obtain a gain of efficiency at the cost of accuracy’s deterioration. 
Moreover, these networks exhibit different performances when evaluated on dif-
ferent target classes. All this suggests that their efficient and cautious combina-
tion could yield an effective performance improvement.

Given the increasing importance and the underlying complexity of street 
scenes’ SS, we propose to use Genetic Programming  (GP) [29, 46] as a meta-
learning technique to stack different efficiency-oriented SS architectures in the 
context of street scene recognition for automotive applications. The objective of 
our study is fourfold: (i) design a SS system that is simultaneously efficient and 
accurate, and can be used in the context of fast street scenes’ segmentation, (ii) 
understand the synergistic effect of each base SS network (the base learner) in the 
ensemble, (iii) obtain an interpretable fusion model that can potentially unfold 
new insights on the neural architecture design and (iv) perform time-complexity 
analysis of the proposed system.

Particularly, following the work of Mazzini and Schettini [38], we consider the 
following four efficient neural architectures as the base learners for our stacking 
model: ENet [43], ERFNet [52], ESPNet [39], and SSNet [36, 38]. We tested our 
approach on the Cityscapes dataset [14] - a popular and widely utilized dataset of 
urban scene images with pixel-wise annotations conceived for semantic under-
standing of urban street scenes. The original annotations include 30 different 
object classes, and only 19 are typically used for training and evaluation.



1 3

Genetic Programming and Evolvable Machines (2023) 24:15	 Page 3 of 37  15

The paper is organized as follows. Section 2 provides the necessary background 
for this study covering both ensemble learning and semantic segmentation with effi-
cient neural architectures. Section  4 presents the proposed approach for stacking 
efficiency-oriented networks for fast scene recognition using GP. Section 5 describes 
how the experiments were organized, the dataset, and the parameters used in this 
study. Section  6 presents and discusses the experimental findings in light of the 
experimental objectives. Section 7 concludes the work and proposes ideas for future 
research.

2 � Background

2.1 � Efficiency‑oriented deep neural networks for semantic segmentation

Historically, the development of deep CNNs for SS mainly relied on advancements 
in the neural architectures’ design for image classification and object recognition 
tasks. A breakthrough of immeasurable worth was achieved in 2015, when Long 
et al. [35] successfully adapted state of the art SOTA CNNs, originally conceived to 
solve image classification and object recognition tasks, to solve the task of predict-
ing a label for each pixel in the image (aka dense prediction tasks). This scientific 
breakthrough re-oriented the scientific community’s focus towards DL-based tech-
niques for SS problem-solving. The authors proposed to transform fully connected 
layers into fully convolutional through a process called “convolutionization” ena-
bling a given classification network, such as AlexNet [30], VGG [55] and Goog-
LeNet [57], to output a heatmap. Given that classification networks sequentially 
subsample the input image throughout the network to keep the filters small, and the 
computational requirements reasonable, their variants in the form of fully convo-
lutional networks (FCNs) produced an output whose size is significantly reduced 
compared to the networks’ input. In this sense, the authors proposed to stack sev-
eral in-network upsampling layers to obtain a prediction for the whole input image. 
Finally, to refine predictions, the authors proposed combining deep, coarse, seman-
tic information in the upsampling layers with the local appearance information from 
the respective downsampling layers.

The fully convolutional networks (FCN) paved the way for the next-generation 
DL-based SS systems such as PSPNet [65] and DeepLab [13], which currently con-
stitute the state-of-the-art in the field. Although these networks achieve superior 
results in the reference semantic image segmentation tasks, such as the Cityscapes 
[14], they also require a gargantuan amount of learnable parameters and long infer-
ence times. Meanwhile, society’s digital transformation dictates new standards for 
DL-based systems: the ever-growing number of battery-powered mobile devices and 
their applications (like, for instance, home-automation devices, augmented reality 
wearables, autonomous vehicles, and flying drones), require algorithms not only to 
operate reliably but also to fit in devices’ limited memory, have low power consump-
tion, and operate in real-time. As a matter of fact, the commonly accepted process-
ing precondition for autonomous vehicles is at least 30 frames per second (FPS) [38, 
52]; therefore, the large and complex DL-based SS systems are of no use in this 
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context. To tackle this efficiency-accuracy trade-off, part of the scientific commu-
nity focused on the so-called efficiency-oriented architectures, such as ENet [43], 
EDANet [34], ERFNet [52], and SSNet [36, 38], that will be discussed, in detail in 
the following Sections.

2.1.1 � ENet

ENet was the first CNN architecture specifically optimized for fast inference and 
high accuracy in SS tasks. It was the first high-performance DL-based architecture 
able to operate in real-time applications [43].

ENet’s architecture was strongly inspired by residual blocks, the building block of 
ResNets [22], and accommodated all the main achievements in the neural architec-
ture design of its time. The authors proposed to heavily reduce input size during the 
early stages of the network (particularly in the first two blocks) to efficiently com-
press the spatially redundant visual information and, therefore, decrease the compu-
tational costs of the network. Following the work of [57], the authors conducted the 
pooling operation in parallel with a convolution of stride two and concatenated the 
resulting feature maps to avoid too aggressive dimensionality reduction that could 
hinder the information flow. In continuation, to avoid overly downsampling, the 
authors used dilated convolutions in the main convolutional layers, inside several 
bottleneck modules, in the stages that operate upon the smallest resolutions. Follow-
ing the design principles of SegNet [3], ENet’s authors decided to save max-pooling 
layers’ indices to produce sparse upsampled maps in the decoder that are then con-
volved with a trainable decoder filter bank to produce dense feature maps. In such a 
way, the network can better retain boundary information in the extracted image rep-
resentations without storing all the encoder feature maps in memory. Unlike SegNet, 
ENet’s decoder is not an exact mirror of the encoder. Instead, ENet’s architecture 
consists of a relatively large encoder and a small decoder. This aspect was motivated 
by the consideration that the decoder’s role is to upsample the output of the encoder, 
only fine-tuning the details. Motivated by the findings of [21], the authors replaced 
all the Rectifying Linear Unit (ReLU) nonlinearities with parametric ReLUs (PRe-
LUs), which allow one to learn the negative slope of non-linearities efficiently. Fol-
lowing the findings of [26], later ratified in [58], factorized (a.k.a. asymmetric) con-
volutions were employed to reduce the amount of potentially redundant parameters 
and speedup the inference times. Finally, to deal with relatively small segmentation 
datasets, the authors placed spatial dropout at the end of the convolutional branches 
as a regularization method. ENet’s pioneering design choices greatly influenced the 
design standards of posterior efficiency-oriented networks.

2.1.2 � ERFNet

Romera et al. [52], proposed a novel efficient residual factorized CNN for real-time 
SS, called ERFNet, that, similarly to ENet [43], was also inspired by ResNets’s resid-
ual learning framework [22]. However, their architecture differs from ENet’s in three 
main aspects. Firstly, the authors reduced the number of learnable parameters in the 
residual (non-bottleneck) modules, by rewriting the kernels with one-dimensional 
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(1D) factorized convolutions [25]. Concretely, the authors replaced N × N (which 
can be seen as matrices), as a product of two smaller 1D kernels (which can be seen 
as vectors of shapes N × 1 and 1 × N , respectively). Such a simplification allows 
reducing the computational costs while retaining a similar accuracy compared to 
the traditional two-dimensional (2D) convolutions [23, 25, 32]. The proposed blocks 
were stacked sequentially, with varying dilation rates, to build the encoder segment 
of the network.

Second, similarly to ENet, ERFNet’s architecture is an asymmetric encoder-
decoder with a smaller decoder. However, the authors did not use max-pooling lay-
ers’ indices during the upsampling phase; instead, the ERFNets’ decoder uses sim-
ple deconvolution layers with stride 2 (a.k.a. transposed convolutions). The authors 
pointed out that deconvolutions can save on computational resources while obtain-
ing a similar (or a slightly better) accuracy.

Third, to improve the efficiency of the downsampling operator, the authors pro-
posed to downsample the input images and the subsequent feature maps by con-
catenating the parallel outputs of a single 3 × 3 convolution (with stride 2) and a 
max-pooling layer. This approach was taken from ENet; however, unlike in ENet 
where it was only used in the initial block, this approach was used in all the down-
sampling blocks and not only the first (initial) block. The experiments conducted 
on the publicly available Cityscapes data set [14] demonstrated that ERFNet could 
achieve comparable accuracy values to the state-of-the-art networks while being 
several orders of magnitude faster to compute.

2.1.3 � EDANet

In [34], the authors proposed a novel CNN architecture for SS called efficient dense 
modules of asymmetric convolution (EDANet). The architecture followed the novel 
trends in the neural architectures’ design, such as the densely connected structure 
articulated in [24]. Specifically, the authors proposed a novel structure based on a 
point-wise convolution layer and two pairs of Efficient Dense modules with Asym-
metric convolutions (EDA). The overall architecture is composed of EDA modules’ 
stacks, called EDA blocks. To accelerate the actual inference speed, the authors 
arranged the composite functions in the so-called post-activation manner: (i) convo-
lution, (ii) batch normalization, and (iii) ReLU. The dense connectivity proposed in 
[24] was modified from layer-level to module-level, meaning that the output of each 
EDA module is the concatenation of its input and the newly produced features. Con-
catenating the features learned from each module that has a different receptive field 
individually allowed EDANet to gather multi-scale information together naturally. 
Intending to aggregate more contextual information, the authors used dilated convo-
lutions at the second asymmetric convolution pair of every EDA module but the ini-
tial three modules. To enlarge the receptive field gradually, the dilation rates in the 
system sequentially grow in value. As a downsampling strategy, the authors adopted 
the approach of ERFNet: by concatenating the parallel outputs of a single 3 × 3 con-
volution (with stride 2) and a max-pooling layer. Contrary to ENet and ERFNet, 
EDANet’s authors decided to discard the decoder structure. At the end of the last 
EDA block, a point-wise convolution was added as a projection layer to output C 
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feature maps (where C equals the number of target classes in a given SS task), fol-
lowed by a bilinear interpolation to upsample feature maps by a factor of 8 to the 
size of input images. Although such a design choice slightly deteriorated the net-
work’s accuracy, it also allowed for a reduction in computational costs. As a result, 
the proposed architecture is one of the most accurate among networks that exceed 
the real-time threshold of 30 FPS [34].

2.1.4 � SSNet

Contrary to the research track defined in the ENet, ERFNet, and EDANet, other sci-
entific community members focused their attention to improve the decoder’s seg-
ment. Notably, Mazzini et al. introduced a novel upsampling module that effectively 
replaces the traditional operators like, for example, the bilinear interpolation and the 
nearest neighbors upsampling [36, 38]. In this work, we considered the authors’ lat-
est scientific achievement - the so-called spatial sampling network (SSNet) for fast 
scene understanding introduced in [38]. Given that SSNet constitutes a logical con-
tinuation of the research track paved by the so-called guided upsampling network 
(GUN) [36], we will first introduce the latter.

GUN [36] is a multi-resolution neural architecture built upon a pre-trained DRN-
D-22 neural network introduced by Yu et al. [63] that jointly exploits high-resolu-
tion and large-context information. Besides efficiently adapting a novel multi-reso-
lution encoder architecture, Mazzini et al. also redesigned the decoder segment by 
replacing the traditional operators with a novel guided upsampling module (GUM). 
This module enriches the upsampling by efficiently introducing a learnable transfor-
mation to improve semantic maps along objects’ boundaries. Unlike the traditional 
upsampling operators (such as the bilinear interpolation and the nearest neighbors), 
which make use of a regular grid to sample pixels from the low-resolution images, 
GUM uses a warping grid, named guidance offset table (GOT), to correct the pre-
diction map along objects’ boundaries. Concretely, GOT contains two offset values 
for each pixel of the high-resolution feature map that shift the sampling coordinates 
of each element of the map in x and y dimensions, respectively. The offsets are pre-
dicted by a neural network branch named Guidance Module (GM). Therefore, the 
parameters are trainable by the backpropagation algorithm along with the whole 
neural network.

Further, Mazzini et  al. [38] proposed a novel lightweight architecture for the 
encoder segment and an improved guided upsampling module (iGUM) that oper-
ates as a decoder segment. Unlike GUN, SSNet’s encoder consisted of a single-
resolution neural architecture built upon the previously presented ERFNet. Similar 
to ERFNet, SSNet uses several early downsampling layers to speed up the infer-
ence time. SSNet’s authors were strongly inspired by ERFNet’s non-bottleneck-1D 
module, originally developed as a more optimal solution to the so-called non-bot-
tleneck modules proposed by [22]. However, instead of directly integrating the non-
bottleneck-1D module from ERFNet in their architecture, Mazzini et al. redesigned 
it to speed up the inference time and allow the module to learn across channels 
by employing point-wise convolutions right before and after two asymmetric ker-
nels. Recall that the non-bottleneck-1D module proposed by Romera et al. did not 
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use point-wise convolutions to encourage cross-channel learning. Finally, instead 
of using traditional upsampling layers in the decoder segment, the authors use an 
iGUM layer as a decoder. The novel iGUN was proposed to improve the overall effi-
ciency by reducing the number of learnable parameters required by GOT in the orig-
inal GUM. In the original definition of GUM, each bidimensional coordinates vector 
of the regular sampling grid was summed with its corresponding bidimensional off-
set from GOT. In this sense, GM needed to learn 2 × fN × fM parameters, where f is 
the upsampling factor, and N and M are the spatial dimensions of the output proba-
bility map to be upsampled. The novelty of iGUM relies on the simplification of the 
warping grid’s utilization. Specifically, the authors realized that a significant part of 
the offsets in GOT could be interpolated simply instead of being learned. Therefore, 
the authors proposed to learn a low-resolution GOT of size 2 × N ×M , reducing, as 
such, the number of learnable parameters and improving the system’s efficiency.

2.2 � Stacked generalization

Ensemble learning (EL) is a sub-field of machine learning (ML) inspired by humans’ 
natural tendency to seek and weigh others’ opinions prior to decision-making. Under 
this perspective, EL consists of combining several individual models, called base 
learners (BLs), in a way to produce an ensemble model which is expected to solve a 
given task better than any of the base learners in isolation [47, 50]. In general terms, 
EL methods differ in the way input data is represented and manipulated within the 
ensemble, whether the ensemble’s BLs are trained independently or not, how the 
final prediction is performed, etc.

Stacked generalization (a.k.a. stacking) consists of training an ensemble from 
the combined outputs of several base learners. Specifically, it consists of two fun-
damental steps: (i) independently training the base learners to solve the underlying 
task, (ii) and then training a meta-learner from the base learners’ predictions [62]. In 
other words, the predictions obtained from the base learners are used as inputs for a 
meta-learner. Consequently, stacking is expected to perform at least as well as (if not 
better than) the best base learner. The interpretability of a meta-learner model can 
be of high value: 

1	 Stacking/combination can aid the researcher’s interpretation of the underlying 
models, by describing their corresponding qualities, such as the need for a refine-
ment phase via max-pooling, akin to a noise reduction post-processing.

2	 Interpretation can be also achieved in terms of the mutual relationship between 
underlying models. For example, as noted in [4], the addition operator may be 
assigned a probabilistic interpretation that translates to a generalization of the 
“OR” relationship, indicating that two models are complementary (and that a 
good segmentation result can be achieved by considering either of the two).

3	 More generally, our stacking methodology could be extended for application to 
an arbitrary set of underlying models, including simple ones that provide a good 
starting point for their individual interpretability.
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Figure 1 illustrates a meta-learner combining predicted outputs of four BL models 
trained on the same input data D with target variable y. As one can see from the 
figure, the meta learner is trained on D′ , a dataset originated from the combined out-
puts of the four BLs, but the target variable is the same.

Theoretically, there are no restrictions nor precise recommendations regarding 
the definition of the meta-learning model and the BLs - these can belong to any 
known class of ML models. An overview of the scientific literature on stacked gen-
eralization for SML problem-solving does not suggest an agreement upon which 
models are to be used [50]. For example, some authors use regularized regression 
to combine predicted outputs from conceptually different BL models [49], while 
some use boosted ensembles [48]; others, use genetic algorithms (GAs) for stacking 
single-hidden-layer feed-forward networks after applying bagging on the training set 
[67]. Empirical evidence, however, shows that the most considerable performance 
improvement can be observed when stacking together more dissimilar BLs [6, 10]; 
when BLs are highly correlated in their outputs, stacking tends to overfit [49].

Due to its flexible representation and powerful inductive capabilities, GP can be 
seen as an effective meta-learner for stacking. With properly chosen operators and 
hyper-parameters, it can combine BLs in a highly non-linear fashion, better exploit-
ing their outputs and achieving superior generalization ability. Moreover, GP intrin-
sically performs an automatic selection of the terminals (i.e., input features). Finally, 
the obtained GP tree can foster the interpretability of evolved solutions to some 
degree. Figure 2 shows a possible meta-learner evolved through GP: the terminal set 
consists of BLs predictions (white nodes), which are combined using mathematical 
operators (grey nodes).

3 � Related works

3.1 � Stacking with GP

To our knowledge, the first evidence of GP’s usage in the context of stacked gen-
eralization comes from 2006 [27], when it was used as a meta-learner to combine 

Fig. 1   Stacked generalization from four base learners (BLs)
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predicted outputs from ten feed-forward artificial neural networks (FF-ANNs) with 
different neural architectures (three had no hidden layer, five had one hidden layer 
and the remaining two had two hidden layers); the experimental evidence based on 
22 publicly available datasets demonstrated the superiority of the method against 
other evaluated methods. In [12], an equivalent approach was compared against 
three other ensemble approaches based on GAs. The experimental results involv-
ing four synthetic and one real-world symbolic regression problem confirmed the 
predominance of GP-based ensembles not only against the best BL but also the three 
different types of GA-based ensembles. Zameer et al. [64] used GP as a meta-learner 
to combine four different types of artificial neural networks (ANNs) for mapping 
meteorological measures and wind power; the obtained results were compared with 
the recent artificial intelligence-based strategies on several measures and demon-
strated the efficacy of the proposed ensemble scheme. Sharma et  al. [54] used a 
multi-level stacking ensemble to forecast future incidences of conjunctivitis disease; 
the experimental result showed that stacking allowed to decrease various error met-
rics by a significant amount. Bakurov et al. [6] performed an extensive exploration 
of GP as a meta-learner for stacked generalization; the study assessed some of the 
recent advancements in the field of GP [7, 18, 31, 41, 60]. The experimental evi-
dence based on seven synthetic and four real-world symbolic regression problems 
confirmed the effectiveness of GP as a meta-learning technique when compared 
against eight other SML methods.

The absolute majority of studies in the literature apply stacking to solve SML 
problems involving cross-sectional or time-series data. In this context, a single data 
instance in the training set xi can be characterized as a vector in k-dimensional space 
with the corresponding output value yi:yi ∶ xi = x1

i
, ..., xk

i
 . Such a data representation 

makes problem-solving more accessible and simple as high-level application pro-
gramming interfaces (APIs) such as scikit-learn [11, 44] can be used; as a matter of 
fact, this API allows one to train a stacking ensemble using dozens of SML models 
in a few lines of code. This is not the case, however, when solving CV tasks, like the 
dense prediction task addressed in this work where one data instance can be seen 
as a tensor of four dimensions (batch size, number of classes, height, and width). 
Therefore, it is not surprising that there are significantly fewer works in the literature 
reporting the application of stacking in the field of CV. The next Section below enu-
merates some of the studies that use GP.

Fig. 2   Possible meta-learner 
evolved by means of GP. The 
nodes in grey represent the 
mathematical operators, whereas 
the nodes in white represent the 
outputs of different BLs
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3.2 � GP in image processing and computer vision

GP has been successfully applied to solve several image processing (IP) and CV 
applications. One of the earliest examples of GP’s application for real-world prob-
lem-solving is the work presented by Tackett [59] of Hughes Missile Systems in 
late 1993 where GP was used to construct a binary classifier that combines feature 
vectors extracted from images using the Multi-function Target Acquisition Proces-
sor algorithm. The objective of the study was to identify whether a target (like, for 
instance, a tank, aircraft, etc.), was present in a given patch of infra-red images taken 
from a cluttered terrain (containing rocks, bushes, etc.). It was shown that GP can 
achieve higher performance and reduced computational complexity when compared 
with a binary tree classifier and a back-propagation neural network. In fact, one of 
the most successful evolved classifiers comprised just 25 program elements, used 
62.5% of input features, employed just four simple arithmetic operators, and could 
have been written in a single line [45]. A similar approach was taken by Agnelli et al. 
[1], where GP was used to combine 12 low-level domain-specific feature detectors 
using essentially simple mathematical operators; the features were selected based 
on the authors’ previous experience in the specific domain, and the efficiency-effec-
tiveness trade-off. The approach was assessed in the scope of binary classification of 
image segments extracted from printed pages (including books, serials, and news-
papers). Instead of capitalizing upon existing feature detectors (aka filters), Harris 
and Buxton [20] and shortly after Poli [45] proposed to discover optimal problem-
specific filters using GP. While the former used GP to evolve edge detectors for 1-D 
signals and image profiles, the latter took a broader approach to obtain cost-effective 
filters capable of highly and selectively emphasizing the image characteristics for a 
given task. Further, Poli combined the evolved filters with simple thresholding strat-
egies to detect features of interest and build pixel-classification-based (binary) seg-
mentation algorithms. Roberts and Claridge [51] used GP to automatically evolve a 
skin lesion segmentation system from segmentation images provided by an expert 
clinician. The function set included imaging operators such as thresholds, mor-
phological operations, logical operations, region intensity functions, edge filtering, 
merging, quantisation, etc. Interestingly, the authors were able to achieve high rates 
of generalization ability (assessed on 90 images) by training on just eight images. A 
similar approach to evolve a binary segmentation system by means of GP was taken 
by Sing et al. [56]. In their study, common arithmetical operators were coupled with 
a wide range of image filters, as well as morphological and enhancement operators. 
The representation was then converted into a sequential MATLAB binary segmen-
tation program. The proposed approach was compared with a SOTA method based 
on GAs and reported not only superior performance but also simpler solutions. Al-
Sahaf [2] proposed an end-to-end image classification framework called Two-Tier 
GP (2TGP) that simultaneously evolves the feature based on raw pixel input and 
the classification rules. To extract features, the authors use the so-called aggregation 
functions, which extract a given region of interest from the image and compute an 
aggregation statistic (mean, median, standard deviation, minimum and maximum). 
To derive the classification rules, traditional arithmetic operators and one decision 
rule are used. The proposed method was assessed on four binary classification tasks 
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and was shown to outperform a traditional feature-based image classification by GP 
and another GP method which also aims to automatically extract image features. 
Some of the evolved solutions were capable of generating genuine features.

Recent works report successful usage of GP for image enhancement in real-
estate marketing [16] - a complex scenario where the overall aesthetics and techni-
cal aspects of the image must be adjusted to deliver a realistic, credible, and attrac-
tive result for customers. The authors proposed a generic framework to conceive 
effective image enhancement pipelines combining SOTA image processing filters 
and GP. When choosing the set of terminals, the authors decided to focus on five 
main aspects of image enhancement: contrast adjustment, brightness adjustment, 
colour balance, noise removal, and sharpening. Also, the authors introduce an “if-
then-else” function that, depending on image-related features that capture character-
istics of the perceived quality of the image applies one of two image enhancement 
branches of the GP tree. The GP-based system was trained to jointly optimize three 
metrics that reflect the perceived technical image quality, aesthetics, and commer-
cial attractiveness of the processed images. Later, the approach was extended with 
conditional adversarial networks for image-to-image translation to improve even fur-
ther the overall image quality [15]. It was shown that the framework was capable 
to achieve better performance than the SOTA image enhancement tools, including 
those based on generative adversarial networks. One of the largest contributions of 
this work consists of universality, as most of the SOTA approaches are primarily 
non-modular and problem-specific. This paper complements the previous studies on 
the use of GP in the context of image analysis. In the existing research, Bakurov 
et al. [4, 5] proposed a framework for full-reference image quality measures’ (FR-
IQAMs) formulation through GP in two phases, characterized by different mutation 
strategies. Specifically, the authors derived terminal sets from the building blocks 
of the so-called structural similarity at different levels of abstraction. The empirical 
evidence from a cross-dataset validation proved the method’s superiority compared 
to traditional FR-IQAMs. Moreover, it was shown that the obtained solutions are 
competitive with more complex deep image quality measures. To complement the 
work presented in [4] and later extended in [5], in this paper, we propose to solve the 
problem of street scenes’ segmentation for automotive applications. Thus, we show 
that GP can be used not only to design competitive image quality measures but also 
to address even more complex tasks, such as dense prediction.

The most similar works to the one presented in this paper are [9] and [8]. Bianco 
et al. [9] applied GP as a meta-learner for the predicted outputs of nine video change 
detection algorithms. It was observed that no single algorithm was able to achieve 
superior performance. Instead, different algorithms are best suited to different prob-
lems. For this matter, in order to create a robust ensemble leveraging the algorithms’ 
peculiarities, the authors proposed to combine their predicted outputs (binary fore-
ground/background masks) using a set of unary, binary, and n-ary functions (e.g., 
logical AND and logical OR), as well as post-processing operators (e.g., filters for 
noise removal) to polish the final output. The experimental evidence on a dedicated 
dataset composed of different types of video sequences (ChangeDetection.net 2014 
challenge) demonstrated a significant superiority of the proposed approach. To the 
best of our knowledge, this is the first work that uses GP to select and combine 
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different video change detection algorithms. A more recent study reports the use 
of GP to combine the outputs of existing saliency detection algorithms (which are 
essentially binary masks), using a set of provided operations [8], in the context of 
a three-step neural architecture search for image saliency fusion. The authors used 
three groups of functional operators for GP, each operating on different domains 
of pixels: (i) 2D spatial neighborhood of the pixels belonging to the same saliency 
map, (ii) stacks of pixels across different saliency maps, and (iii) individual pixels 
without considering any neighborhood. Similarly to the study in [9], no state-of-the-
art algorithm reported superior performance on the majority of datasets and problem 
domains. The experimental evaluations showed that the proposed saliency fusion 
approach could successfully outperform SOTA methods on a popular image sali-
ency benchmark.

A deep analysis of the literature suggests that GP was not used yet for stacking 
deep CNNs’ output for semantic segmentation with more than two classes. The 
most similar works perform stacking of binary masks [8, 9]. The presence of several 
classes (in our problem there are 19) makes the task particularly challenging while, 
at the same time, providing more degrees of freedom for the proposed approach, 
discussed in Sect. 4.

4 � Proposed method

The SS networks generate a high-dimensional logit tensor, representing the non-
normalized per-pixel pseudo-probability distribution over the problem classes. The 
shape of the logits tensor is [bs, C, H, W] where bs stands for the batch size, C corre-
sponds to the number of target classes and H ×W represents the spatial dimensions 
of the target image. To produce the final segmentation mask, this tensor is first sub-
ject to the softmax activation function, which normalizes the logits to a proper prob-
ability distribution; then the index of the largest value across the channel dimension 
is chosen at each pixel of the mask to represent the predicted class. In abstract terms, 
one can think of logits as a network’s internal representation (conceptualization) of 
the visual scenes before making the final decision; as such, they can simultaneously 
encode uncertainty about some of the classes and certainty regarding others.

Considering one is interested in combining predictions from several CNNs for SS, 
applying a simple voting classifier on the networks’ predicted segmentation masks 
might hinder the rich representational potential encoded in the logits. We hypoth-
esize that a properly designed ensemble model should capitalize upon the concepts 
generated by different CNNs for SS, reduce uncertainty and improve the overall con-
fidence (resulting in a better segmentation). Such a model should take into account 
both spatial and cross-channel relationships between different values of logits across 
different networks. Moreover, the final ensemble model should be simple enough to 
enable its deployment for real-time applications (ideally, also discarding some of the 
networks altogether). To the best of our knowledge, GP is the only tool that can be 
used to stack the multidimensional tensors of logits from the four efficiency-oriented 
CNNs for SS and fulfil the aforementioned requirements. Specifically, the flexibil-
ity introduced by GP’s tree-based representation allows manipulation and non-linear 
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combination of logits at different levels through a wide range of operators, includ-
ing those widely used in the field of CV and IP (like, for example, convolution and 
pooling). Moreover, GP allows for direct interpretation of candidate solutions which 
can be useful to extract additional valuable information. Finally, thanks to its abil-
ity to perform automatic feature selection and to generate highly non-linear models, 
we expect GP to evolve solutions that are both efficient and effective. The proposed 
approach for stacking SS networks approach is explored into two variants: Sect. 4.1 
presents the so-called multi-class variant (MC), whereas Sect.  4.2 shows the so-
called single-class variant (SC). Each implies a different perspective over the solu-
tions’ representation and, consequently, a different search procedure.

4.1 � Multi‑class stacking approach

In this variant of GP stacking, the prediction at each output class is obtained through 
the same evolved meta-model. From now on, it will be called the multi-class stack-
ing GP variant (MC-S-GP). The terminal set for the MC variant is composed of the 
logits1 obtained from the four high-performance SS neural architectures described 
in Sect. 2.1. In this sense, one terminal element is a 4-dimensional tensor with sizes 
[bs, C, H, W], where bs stands for the batch size, C = 19 corresponds to the number 
of target classes in the Cityscapes dataset’s instance and H ×W represents the spa-
tial dimensions of the input images. The traditional arithmetic operators were used 
along with CV-specific operators (like pooling, smoothing, and edge detection). A 
complete enumeration and description of the operators can be found in Sect.  5.4. 
We used standard GP with sub-tree mutation and sub-tree crossover to explore the 
search space of all possible stacking models. To evaluate a given candidate solu-
tion - a GP tree representing a stacking model - one needs to (i) pass individual 
networks’ logits through the tree to obtain the stacking model’s logits (a tensor with 
sizes [bs, C, H, W]), (ii) apply the softmax activation function followed by the arg-
max function, and (iii) compute the evaluation function between the predicted seg-
mentation maps and the respective targets (see Sect. 5.1 for a detailed description of 
the fitness function).

Figure 3 illustrates a potential candidate solution produced by MC-S-GP. Specifi-
cally, it is possible to see how a candidate solution can be represented both in terms 
of the Polish prefix notation (the equation on the left-hand side) and as a LISP tree 
(the hierarchical scheme on the right-hand side). The internal nodes of the tree (the 
circles) represent the primitive functions, whereas multi-colored stacks of rectangles 
represent the terminals. Given that a particular terminal corresponds to a multidi-
mensional tensor of the SS network’s logits, each uniquely colored rectangle in the 
stack regards a specific target class of an output segmentation map. In the context 
of our study, the logits tensor has shape bs × 19 × 256 × 256 , where bs stands for 
batch size, 19 corresponds to the number of target classes in the Cityscapes dataset’s 
instance, and 256 × 256 represents the spatial dimensions of the input images.

1  The logits can be defined as the predicted feature maps before the softmax activation layer.
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Algorithm 1 shows the pseudo-code for the proposed MC-S-GP method, follow-
ing the nomenclature defined in [6]. Notice that the very same stacked generaliza-
tion is applied to combine networks’ predicted outputs at every target class (1, 2, 
3,..., 19).

4.2 � Single‑class stacking approach

The dictate of a unique stacking model across different target classes may limit 
the system’s “degrees of freedom” and hinder its potential to find a highly accu-
rate solution. That is, it might be the case that the learned stacking model could be 

Fig. 3   A potential MC-S-GP model. The figure shows how a given GP individual can be represented as a 
list of program elements (on the left), and a LISP tree (on the right)

Algorithm 1    Pseudo-code for the proposed MC-S-GP method.
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sub-optimal when combining networks’ predictions for some classes (such as “car”, 
“road”, and “pedestrian”). In this sense, inspired by the work of Muni et al. [42], 
we conceive and explore an alternative representation for candidate solutions that 
allows GP to jointly develop stacking models tailored to each target class. Specifi-
cally, we propose to represent a given candidate solution as a C-dimensional list 
of trees [T] = [T0, T1, ..., TC−1] , where C = 19 and stands for the number of target 
classes in the Cityscapes dataset’s instance; each tree at a given position in the list 
consists of a potentially unique stacking model for a given class. Under this perspec-
tive, the MC-S-GP variant can be seen as a special case where all the C trees in [T] 
are the same. From now on, this second alternative of the proposed approach will be 
called the single-class stacking GP (SC-S-GP) variant.

Given the flexibility of the new representation, we decided to give it the possibil-
ity to utilize all the possible information coming from the feature maps predicted by 
the four networks. Specifically, when searching a stacking model for a given target 
class, the system was provided access to other classes’ feature maps, although with 
lower probability. Note that this is different from restricting the terminal set of a 
given tree in [T] to class-specific feature maps predicted by the four BLs, something 
which implicitly happened in the MC-S-GP variant. This decision implies that the 
terminal set for the SC-S-GP variant is obtained by concatenating the four networks’ 
logits on the channel dimension. In this sense, one terminal element is a 4-dimen-
sional tensor with sizes [bs, 4 × C , H, W], where 4 × C represents the concatenation 
of the four networks’ logits on the channel dimension (given that C = 19 , there will 
be 4x19=76 output channels).

This strategy was motivated by the importance of taking into account the global 
context of the scenes in order to improve the local predictions. Specifically, we 
wanted to allow the resulting model to make use of more information from the 
scene’s context when trying to differentiate between classes like, for instance, a 
pedestrian and a rider in a road scene. It happens that simply learning to identify 
people in a scene is not enough - the context in which they happen to appear might 
be crucial for the posterior decision-making process. In this sense, we believe that 
properly “mixing” the feature maps from different classes may allow the system to 
achieve superior performance.

A more complex and versatile solutions representation required us to adapt the 
search algorithm accordingly. In this sense, for the SC-S-GP variant, we propose to 
use a local search (LS) strategy where the GP’s sub-tree mutation plays the role of 
the neighborhood function. Specifically, the proposed LS strategy consists of explor-
ing the neighborhood of a given size for every successive tree ( TCi

 ) in [T] (starting 
from TC0

 up to TC18
 ). To conclude one iteration, it is necessary to explore the neigh-

borhood of every tree in the C-dimensional list [T]. Every candidate neighbor of 
TCi

 is evaluated in the context of the class it represents; that is, each neighbor of 
TCi

 is assessed in terms of its ability to improve the system’s fitness on class i. To 
evaluate [T] (i.e., a given candidate-solution), one needs to (i) pass the correspond-
ing networks’ logits to each tree TCi

 in the list [T] to obtain the stacking model’s 
logits at each class, (ii) concatenate the resulting C tensors along the channel dimen-
sion to form a tensor with sizes [bs, C, H, W]), (iii) apply the softmax activation 
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function followed by the argmax function, and (iv) compute the evaluation function 
between the predicted segmentation maps and the respective targets (see Sect. 5.1 
for a detailed description of the fitness function).

Figure 4 illustrates a potential candidate solution (i.e., a stacking model), in the 
scope of the SC-S-GP variant. From the figure, a candidate solution [T] stores C 
trees, each meant to combine networks’ logits at a given target class Ci . For example, 
the tree TC0

 regards the first target class and it combines the respective output logits 
from the four different networks. Contrarily to the MC-S-GP variant, the input ter-
minals for a given tree TCi

 have shape [bs, H, W] as they regard only one dimension 
of the output logits. In this sense, the number of distinct terminals comprising a GP 
tree at a given class is 76 (four SS networks × 19 classes). To construct the trees, we 
decided to use the same functions’ set as in 4.1.

Algorithm  2 shows the pseudo-code for the proposed SC variant of the S-GP 
method. Note that here we follow the nomenclature defined in [6].

5 � Experimental environment

5.1 � Fitness function

Intuitively, a successful SS system is one that maximizes the overlap between the 
predicted and true pixel classes. To measure the quality of a given stacking model 
on the underlying SS task, we use the mean of class-wise intersection over union 

Fig. 4   A potential SC-S-GP model. The figure shows how a C-dimensional list of LISP trees (in above) 
can be used to represent a joint SC-S-GP model where the predictions for each class are obtained by a 
unique GP tree (i.e., sub-model). The circle below shows a potential neighborhood of the tree T

C0
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(mIoU). It is computed as the class-wise mean of the intersection over union (IoU), 
also known as the Jaccard coefficient:

where A and B stand for the predicted and target segmentation masks for a given 
class, and TP, FP, and FN stand for true positives, false positives, and false nega-
tives, respectively. Typically, SS models include a background class in addition to 
the target classes. In simple terms, the background class is used to represent a none 
of the above class, which serves as an adjunct to all the other classes; therefore, if 
we want to identify C classes in an image, in practice, there will be C + 1 classes. 
However, when objects of interest occupy a relatively small part of the image, even 
a naive model predicting background everywhere would have good MIoU for the 
background class. When calculating metrics, one typically is more interested in 
target classes rather than the background. Intuitively, a good identification of the 
objects will translate into a good identification of the background as well. To deal 
with the aforementioned limitations of the quality measurement, it is common to 
ignore the background class before taking the mean over IoUs [19, 36, 38, 40].

(1)Jaccard = IoU =
‖A ∩ B‖
‖A ∪ B‖

=
TP

TP + FP + FN
,

Algorithm 2    Pseudo-code for the proposed single-class variant of the S-GP.
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5.2 � Dataset

Cityscapes is a popular and widely-utilized dataset of high-resolution urban scenes. 
It consists of 5000 annotated images, which are provided in three sets: 2975 training 
images, 500 validation images, and 1525 testing images. From the 5000 annotated 
images, only 3475, which regard the training and validation sets, are fine-annotated; 
the remaining 1525 from the test partition are coarse-grained annotations. For this 
reason, we only used the train and validation sets of the data. The original annota-
tions include 30 different object classes; out of these, 19 were used in our study 
following the common practice adopted by the scientific community [34, 36, 38, 
43, 52]: road, pole, sky, bus, sidewalk, traffic light, person, train, building, traffic 
sign, rider, motorcycle, wall, vegetation, car, bicycle, fence, terrain, truck, and back-
ground. The images were collected in 50 different European cities, in different parts 
of the year, with a large variability of weather and illumination conditions, making 
this dataset highly convenient for developing and benchmarking solutions designed 
for real-world automotive applications. The images were cropped down to 256 × 256 
in a random fashion to foster the experiments.

5.3 � Base learners’ hyper‑parameters

All models were trained following the procedure described in [33], minimizing the 
cross-entropy loss between the ground truth and the predicted classes for each pixel. 
We adopted Adam as a stochastic optimizer [28], using an initial learning rate of 
5 × 10−4 , updated through the following polynomial decay learning rate policy:

where epoch is the 0-based index of the current epoch, LR0 is the initial learning 
rate, and total_epochs is set to 150 for all experiments, after preliminary evaluation. 
We used batch size = 6 in order to fit memory constraints. The images were pre-
processed by subtracting the mean and dividing by the standard deviation computed 
on ImageNet [30], and data-augmented by random scale augmentation sampling the 
scaling factor from a uniform distribution with the interval [0.5, 2].

Figure 5a and b present the correlation heatmaps between the four networks cal-
culated on the training and test data. The correlation between a given pair of net-
works was estimated as the average MIoU between their predicted feature maps at a 
given data partition. From the figure, it becomes clear that network outputs are not 
significantly correlated. This aspect means that the candidate base learners in the 
stacked ensemble can be said to be heterogeneous, and a significant improvement in 
the task can be potentially obtained if using them together in an ensemble [10].

(2)LR(epoch) =

(
1 −

(
epoch

total_epochs

)0.9
)

⋅ LR0,
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5.4 � S‑GP’s hyper‑parameters

Table  1 provides a complete enumeration of the experimental parameters for the 
proposed S-GP system. The column S-GP’s variant divides the table’s rows across 
the two S-GP variants: the multi-class (MC) and the single-class (SC); whenever the 
parameters across the two variants overlap, we use the notation “MC & SC”. The 
following paragraphs provide a detailed discussion of the selected parameters and 
values.

Fig. 5   Correlation heat-maps between the four efficiency-oriented neural networks. The correlation is 
calculated as the MIoU between the predicted SS maps on the training and test data (left and right sub-
figures, respectively)

Table 1   Enumeration of S-GP’s hyper-parameters

S-GP’s variant Parameter Value

MC & SC Training batch size 150
Runs 10
Function set {FS

basic
 , FS

CV
}

MC Terminals {ENet, ERFNet, EDANet, SSNet}
(Population x generations) (285 x 40)
Initialization RHH
Selection Tournament with pool size of 5%
Crossover Swap, P(C)=0.7
Mutation Sub-tree, P(M)=1-P(C)=0.3

SC Terminals {ENetx19, ERFNetx 19, 
EDANetx19, SSNetx19}

(Neighborhood x generations) {(60x10), (40x15)}
Initialization Grow
Neighborhood function Sub-tree
Control 1.0
Update-rate 0.95
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To train the system, we relied on batch processing. Specifically, we used a batch 
size of 150 images to evaluate the population/neighborhood at the end of each gen-
eration. Preliminary experiments showed that smaller batch sizes tend to deteriorate 
the system’s performance. Individuals’ fitness was computed as the mean intersec-
tion over union (MIoU) between the predicted segmentation maps and the respective 
target annotations. Considering the algorithms’ stochastic nature, we repeated our 
experiments ten times (runs), each with a different seed for the pseudo-random num-
bers generator to initialize and execute the search. We guaranteed an equal computa-
tional effort for each variant of the S-GP system, measured in terms of fitness evalu-
ations per run - 11685. In this sense, we decided to execute the MC variant of the 
S-GP system for 40 generations with a population size of 285 candidate solutions. 
The SC variant was studied in two configurations: (i) 15 generations and neighbor-
hood size of 40 candidate solutions, and (ii) 10 generations and neighborhood size 
of 60 candidate solutions; in this sense, we wanted to assess the trade-off between 
the exploitation and the exploration of the proposed LS-based approach.

To explore the search space of possible stacking models in the MC variant, we 
used standard GP with sub-tree mutation and sub-tree crossover with probabilities 
of 30% and 70%, respectively; the initial population was generated by employing 
the Ramped Half-and-Half (RHH) initialization technique with a maximum depth 
of 5 levels; the selection was a tournament with a tournament pool size of 5%. In the 
SC variant, we used the GP’s sub-tree mutation as the neighborhood function and 
grow initialization technique with a maximum depth of 5 levels; the initialization 
was repeated 15 times for each of the 19 trees to match the number of RHH’s fitness 
evaluations; in this sense, the best tree on the training data was selected for con-
structing the initial candidate solution. The LS-based approach for the SC variant 
was explored in two forms: (i) with standard hill climbing (HC) and (ii) with simu-
lated annealing (SA); the control and the update-rate parameters for the latter were 
set to 1.0 and 0.95, respectively. In particular, the control parameter corresponds to 
the temperature parameter of SA, while the update-rate parameter governs the cool-
ing strategy responsible for decreasing the temperature. Note that both S-GP vari-
ants were artificially seeded base-learners’ genotypes in the initial population/neigh-
borhood. This was performed to allow the search algorithms to start at a good point 
in the search space and foster their convergence. In particular, the base learners were 
provided in the form of a single-node tree for the MC variant of the proposed S-GP 
method. For the SC variant, given the fact it corresponds to a list of stacking models 
for each target class, the initial seed consists of a list made of 19 single-node trees. It 
is worth noting that we preferred to rely on the standard GP search process due to its 
simplicity, to maintain the computational effort manageable, and to provide compact 
solutions. For instance, we could have considered geometric semantic GP [41] as the 
stacking method, but this would have produced solutions whose size and complex-
ity would not be acceptable for the underlying requirements of the application under 
analysis.

The terminal set for the MC variant of the S-GP system was built from the four 
SS neural networks’ output logits; in this sense, a given terminal can be seen as a 
tensor of shape bs × 19 × 256 × 256 , where bs stands for the batch size, 19 repre-
sents the number of target classes and 256 × 256 represents the spatial dimension of 
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the networks’ output; in total, there are four distinct terminals. The terminal set for 
the SC’s variant was also built from the SS neural networks’ output logits, but with 
a difference. Since the SC’s variant discriminates between networks’ output feature 
maps channels, the feature maps were flattened across the channel dimension and 
detached; therefore, a given terminal in the SC variant can be seen as a tensor with 
sizes bs × 256 × 256 , and there are 4 × 19 = 76 distinct terminals.

Besides the traditional operators (such as {+, -, *, /}), we also used pixel-wise 
minimum, maximum, mean, and some of the most popular convolution and pool-
ing operators from the field of image processing and computer vision. Specifically, 
as for the convolution operators, we used the vertical and the horizontal Sobel ker-
nels, the discrete approximations of the Laplacian and the Gaussian filters; as for the 
pooling operators, we used average and maximum pooling with stride and padding 
set to one; for both convolution and pooling operators, we used a 3 × 3 sized win-
dow/kernel. We ran the experiments with (function set FSCV ) and without (func-
tion set FSbasic ) the computer-vision-specific operators following Table 2, in order 
to verify their utility for the underlying problem. Moreover, we also considered the 
maximum, the minimum, and the average operators, applied pixel-wise between the 
two input terminals. Finally, we added the sine and the cosine functions to the func-
tions’ set to foster non-linearities’ modeling.

5.5 � Other ensemble methods

To ensure the viability of the proposed approach, S-GP will be compared against 
two traditional ensemble methods such as simple (i.e., unweighted average) and vot-
ing, alongside more complex weighted average ensembles. To implement the latter, 
we relied upon GAs. The purpose of this section is to provide a brief description of 
these ensemble methods and their parameters.

To implement the voting ensemble, we generated the predicted segmentation 
masks for each of the considered SS networks and applied a voting scheme classi-
fier as described in [66]. The simple (i.e., unweighted average) average ensemble, 
instead, was implemented at the logits’ level. That is, first, we stack the four SS net-
works’ non-normalized per-pixel pseudo-probability distributions over the classes, 
which yields a tensor with sizes bs × 4 × 19 × 256 × 256 ; then, we apply the aver-
age across the second dimension of this tensor, which yields a tensor with sizes 
bs × 19 × 256 × 256 ; finally, this tensor is converted into the output segmentation 

Table 2   Detailed list of the two 
considered function sets

Functions FSbasic FSCV

Traditional (+, -, *, /) ✓ ✓

Trigonometric (sine, cosine) ✓ ✓

Pixelwise (minimum, maximum, average) ✓ ✓

Convolutional edge (Sobel vertical/horizontal) ✓

Convolutional filter (Laplacian, Gaussian) ✓

Pooling (average, maximum) ✓
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map by passing it through the softmax activation layer and taking the index of the 
maximum value on the second dimension (representing, at this stage, the likelihood 
of a given pixel belonging to some target class).

Two variants of GAs were implemented for the weighted average ensemble, to 
establish compatibility with each of the proposed S-GP methods and to allow for a 
fair comparison. The first variant, named MC-GA, follows the concept of the pro-
posed MC variant of S-GP. Specifically, candidate solutions with four constrained 
parameters are evolved through GA to implement a weighted average as a linear 
combination of the form w0 × X0 + w1 × X1 + w2 × X2 + w3 × X3 , where wi repre-
sents a given parameter and Xi the corresponding logits’ tensor of the SS network 
i. To evaluate candidate solutions, a similar procedure is taken to that described for 
the simple average ensemble with the exception that logits are weighted. To estab-
lish compatibility with the MC variant of S-GP, the GA was used with the same 
parameters as GP when possible (see Table 1 for a complete overview of the param-
eters). In particular, the same selection method, mutation and crossover probabili-
ties, number of generations, population size, and training batch size were used. The 
second variant, named SC-GA, corresponds to the proposed SC variant of S-GP. 
Given that S-GP aims at evolving a separate stacking ensemble model for each class, 
the SC-GA variant follows the same approach by simultaneously evolving a combi-
nation of 19 class-specific weighted-average ensembles. Each class-specific ensem-
ble is a weighted average of the four logits, obtained from the SS networks, that 
were sliced on the underlying class. This approach is repeated for all target classes, 
which yields candidate solutions with 4 × 19 = 76 parameters. Once the weights are 
applied, the procedure to evaluate the fitness is equivalent to the aforementioned 
MC-GA variant. Similarly to the aforementioned MC-GA, the SC-GA variant was 
used with the same parameters as GP.

Several other ensemble methods were proposed [50]. The fundamental reason 
why these were not included in this work is directly related to the specifics of the 
machine learning task addressed in this work (semantic segmentation) and therefore 
the representation of one training instance - in our task, it is a multidimensional ten-
sor and not a vector, as it happens in traditional machine learning applications. For 
example, in the case of the MC variant of S-GP, one training instance is a tensor with 
shape [bs, C, H, W], and the produced output by the stacking model must be equal in 
size. This is clearly different from D-dimensional vectors that one can usually find 
in traditional machine learning applications where other SOTA ensemble methods 
exhibit preeminent results. On the other hand, evolutionary-based approaches, such 
as GA and GP, are more flexible to handle more complex data representations.

6 � Results and discussion

This section presents the experimental results and discusses the main findings. It is 
divided into four sub-sections, following the experimental objectives: 
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1.	 design a stacking model by means of GP that efficiently leverages the synergistic 
effect of efficient neural architectures’ combination, and attains levels of precision 
superior to any of the networks in isolation;

2.	 assess networks’ relative importance (worth);
3.	 obtain a set of small and human-interpretable models that simultaneously achieve 

high levels of precision on the underlying CV task;
4.	 assess systems’ time complexity.

6.1 � Performance

Figure  6 presents the performance of the MC variant of S-GP and compares it 
against the corresponding MC GA-based stacking, the simple (i.e., unweighted) 
average ensemble, and the best base learner. Note that the figure intentionally 
excludes the voting ensemble as it reports significantly lower accuracy when com-
pared to the simple average. Specifically, the averages calculated across the elite 
individuals observed at every generation of each run are reported for GP and GA. 
The proposed S-GP is presented in two configurations that differ in terms of the 
feature set (visit Sect. 5.4 for the details related to the feature sets): MS-FSbasic in 
blue and MC-FSCV in red. The corresponding MC-GA weighted average is pre-
sented in green. The simple (i.e., unweighted) average ensemble and the best base 
learner (SSNet [36]) are depicted as black and grey straight lines, respectively. In a 
top-down manner, the figure depicts: (i) the training fitness, calculated as MIoU on 
batches of the training set, (ii) the test fitness, (iii) and the trees’ length calculated as 
the number of program elements.

From the elites’ aggregated training fitness (the sub-figure at the top), we can 
see that S-GP with the two feature sets seems to exhibit a comparable performance 
until generation 16/17. From that moment on, MC-FSCV stagnates while MC-FSbasic 
continues to exhibit fitness improvement (blue and red lines, respectively), although 
at a lower rate of change. When compared with MC-GA, both S-GP variants exhibit 
notably higher training fitness. Although the average line of the MC-GA approach 
exceeds that of SSNet (in black), it also shows a substantial amount of instability 
during the training.

Since systems’ generalization ability is of great concern, we focus our attention 
on the elites’ aggregated test fitness (the sub-figure in the middle). To begin with, 
it is paramount to mention that both configurations of MC-GP and MC-GA outper-
form the best base learner regardless of the feature set, and the differences are statis-
tically significant after Wilcoxon’s signed-rank test for related paired samples with 
a significance level of 5%. Regarding the difference between the two feature sets of 
the proposed S-GP approach: MC-FSbasic (in blue) generalizes slightly better than its 
analogue with CV operators, however, the difference is not statistically significant. 
Moreover, similarly to what was observed with the training fitness, the test fitness 
of the two feature sets stagnates after generation 16/17, making this more notice-
able for the MC-FSCV configuration (in red). Similarly to what was observed from 
the curves on the training data, the average test fitness of the MC-GA approach is 
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notably less stable when compared to S-GP, although a light-increasing trend can be 
observed. The differences between MC-GA and the two proposed MC-GP variants 
in terms of the test fitness were not found to be statistically significant after Wil-
coxon’s signed-rank test for related paired samples with a significance level of 5%.

The simple average ensemble (AVG), depicted as a grey line in both training and 
test fitness plots, is shown to be the least-performing model, which can be explained 

Fig. 6   Learning curves for the MC variant of the S-GP system (MC-FS
basic

 in blue and MC-FS
CV

 in red), 
and the corresponding MC-GA ensemble (MC-GA in green). The figure also includes the simple (i.e., 
unweighted) average ensemble and the best base learner in grey and black, respectively (Color figure 
online)
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by the fact that the best base learner (SSNet) is substantially better than the other 
three models, that exhibit comparable performance. In this sense, giving equal 
weight to all the models deteriorates the performance of the ensemble with respect 
to the SSNet.

Another pivotal aspect to take into account is the solutions’ complexity. This 
becomes particularly important when solutions’ interpretability is required (which 
is our case). In this sense, it is useful to analyze the length of the elite trees obtained 
through S-GP (the sub-figure at the bottom). From the figure, we can see that, at the 
end of 40 generations, MC-FSbasic (in blue) tends to produce twice as long trees as 
MC-FSCV (in red); interestingly, the difference starts to increase significantly after 
the 20th generation - a few generations after the aforementioned stagnation point. 
The MC-GA approach (in green) is shown as a straight line given the fact the candi-
date solutions in GAs are of fixed size. We fix the length of the solutions obtained by 
MC-GA to 15, as it corresponds to the length of a binary tree encoding the weighted 
average as a linear combination of the form w0 × X0 + w1 × X1 + w2 × X2 + w3 × X3 , 
where Xi represents the output of a specific neural model.

From the perspective of trees’ length, MC-GA clearly provides the simplest solu-
tion. In light of the generalization ability, however, the MC-GA does not appear as 
the most prominent approach given its relative under-performance and notable insta-
bility (both across generations and runs). Instead, the proposed MC-FSbasic method 
appears to be the most accurate and stable across runs and generations.

Figure  7 presents the SC variant of S-GP and compares it against the corre-
sponding GA weighted ensemble, the simple (i.e., unweighted) average ensemble, 
and the best base learner. Note that the figure intentionally excludes the voting 
ensemble as it reports significantly lower accuracy when compared to the simple 
average. Similarly to Fig. 6, the lines represent the average fitness and length val-
ues calculated across the elite individuals observed at every generation of each run, 
reported for GP and GA. Given the abundance of considered configurations in the 
SC variant of S-GP, we divide the figure into two columns, each regarding a dif-
ferent feature set: SC-FSbasic on the left and SC-FSCV on the right. In a top-down 
manner, the figure is divided into three sub-figures (following the configuration of 
Fig.  6): (i) the training fitness calculated as MIoU on batches of the training set, 
(ii) the test fitness, (iii) and the trees’ length calculated as the number of program 
elements. The four colored lines represent the performance of the two different LS 
approaches studied in two configurations of neighborhood size versus generations. 
Notice that each configuration requires an equal number of fitness evaluations by 
run ( 40 × 15 = 60 × 10 = 600 ). The same number of fitness evaluations was used 
for the SC-GA method. Specifically, the figure presents:

•	 In sky blue HC with a neighborhood size of 40 executed for 15 generations 
(HC_40×15)

•	 In dark blue HC with a neighborhood size of 60 executed for ten generations 
(HC_60×10)

•	 In dark red SA with a neighborhood size of 40 executed for 15 generations 
(HC_40×15)
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•	 In coral SA with a neighborhood size of 60 executed for ten generations 
(HC_60×10).

•	 In green the GA-weighted ensemble where each of the 19 channels is a 
weighted ensemble of the four SS networks

•	 In grey the simple (i.e., unweighted) average ensemble of the four SS net-
works’ logits

•	 In black the best base learner (SSNet [36])

From the proposed SC S-GP configurations only HC_60×10 using the FSCV fea-
ture set was able to learn from the training data. However, in terms of generaliza-
tion ability, none could report results statistically superior to the best base learner 
(SSNet [36]), except SC-GA. The differences between SC-GA and the proposed 
SC-GP variants in terms of the test fitness were found to be statistically signifi-
cant after Wilcoxon’s signed-rank test for related paired samples with a signifi-
cance level of 5%, except for the HC_40×15 variant with CV-based operators.

In fact, the behavior of SC-GA is similar to what has been observed in Fig.  6 
with MC-GA: negligible superiority over the best base learner and notably high 

Fig. 7   Learning curves for the SC variant of the S-GP system with different configurations and the 
corresponding GA-weighted ensemble (SC-GA, in green). The figure also includes the simple (i.e., 
unweighted ensemble) average ensemble and the best base learner in grey and black, respectively. The 
first column regards the so-called basic feature set, whereas the second column regards the feature set 
including CV-based operators (Color figure online)
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variability between the generations and across the runs. Concerning the solu-
tions’ complexity, the HC_60×10 configuration was the one producing the smallest 
trees (in average terms). The length of the SA-GA approach is not present in the 
figure because it is disproportionally large when compared to the proposed S-GP 
variant: assuming a binary tree representation, the length of the SC-GA method is 
15 × 19 = 285.

A closer inspection of the results showed that the HC_60×10 configuration often 
converged to the best learner with slight modifications at some of the target classes, 
for example, applying a max pooling operator over the S-GP model regarding the 
background class. The presented results refute our assumption about the benefits of 
the joint evolution of tailored S-GP for each class. We argue that this happens for the 
following two reasons. First, the usage of a single stacking model across all target 
classes, as in the MC variant, introduces an implicit form of regularization for the 
S-GP system; contrarily and, for us unexpectedly, fine-tuning a stacking model for 
each target class introduces too many “degrees of freedom” and, instead of foster-
ing S-GP’s performance, hinders its potential from finding a good solution. Second, 
we speculate that the larger amount of “degrees of freedom” introduced by the SC 
variant also demands more computational resources (like, for instance, the neighbor-
hood’s size and the number of generations). Given the noticeable under-performance 
of the SC variant, in addition to its excessive computational load (see Sect. 6.4), it 
was decided to leave this research track, and we focus instead on the MC variant 
only.

Table 3   Summary table comprising all the methods (algorithms) involved in this study

Approach Algorithm Test fitness Train fitness Length

CNN for SS EDANet 0.4497 0.4849 1
ENet 0.3885 0.4250 1
ERFNet 0.4557 0.4880 1
SSNet 0.5057 0.5404 1

Simple ensemble Average 0.4894 0.5235 9
Voting 0.4676 0.5030 5

GA ensemble MC-GA 0.5099 0.5446 15
SC-GA 0.5107 0.5450 285

GP ensemble MC-GP-basic 0.5111 0.5708 78.2
MC-GP-CV 0.5096 0.5664 36.9
SC-HC-basic-40x15 0.4683 0.5000 95.5
SC-HC-basic-60x10 0.4564 0.4916 98.2
SC-SA-basic-40x15 0.4978 0.5293 102.2
SC-SA-basic-60x10 0.4961 0.5316 70.8
SC-HC-CV-40x15 0.4998 0.4816 50
SC-HC-CV-60x10 0.5045 0.5671 27.4
SC-SA-CV-40x15 0.4979 0.5389 59.3
SC-SA-CV-60x10 0.5032 0.5388 67
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Table  3 provides a summary of performance across the proposed MC and SC 
variants of S-GP, the GA-based counterparts, traditional ensemble methods, and the 
base learners. Specifically, the table contains the average test ( Test fitness ) and train-
ing ( Train fitness ) fitness values, calculated for each algorithm (identified by the col-
umn Algorithm). The column Approach serves as a macro category to group differ-
ent algorithms. The values for the proposed S-GP ensemble and the corresponding 
GA-weighted were obtained by averaging the results obtained from the elite candi-
date solutions at the end of the runs. The column Length represents the average solu-
tions’ length proposed by different algorithms. To provide a fair comparison in terms 
of the solutions’ length, we use a binary tree encoding for the two GA-weighted 
average ensemble methods. Specifically, in MC-GA the tree length corresponds to 
the length of a binary tree encoding the weighted average as a linear combination of 
the form w0 × X0 + w1 × X1 + w2 × X2 + w3 × X3 ; in SC-GA the length of the binary 
trees encoding the weighted average as an equivalent linear combination for each of 
19 channels is, therefore, 19 × 15 = 385 . The voting ensemble, however, can be seen 
as an exception as it consists of the four SS networks and a single voting operator 
with arity four (which yields a length of five). A statistical analysis was carried out 
to assess the differences in terms of the methods’ generalization ability. In particu-
lar, we tested whether the differences in terms of average test fitness between the 
best base learner (SSNet) and different methods were significant after Wilcoxon’s 
signed-rank test for related paired samples with a significance level of 5%; the algo-
rithms reporting statistically better results are reported in bold.

From the summary table, it becomes clear that the only approaches that were 
able to achieve a statistically significant improvement over the baseline were the 
proposed MC variant of S-GP with the basic and CV-based feature sets and the 
corresponding GA-based ensembles. The largest accuracy was observed for the 
MC variant of S-GP with the basic feature set but at the cost of generating deeper 
trees. Section 6.3, however, shows that manual simplification of the trees generated 
through MC-GP-basic can produce small and interpretable models.

6.2 � Worth analysis

Figure 8 shows the estimated worth of program elements for the MC and SC vari-
ants of the S-GP system, with function sets FSbasic and FSCV . Following the common 
practice in GP [61], the worth was estimated as the program elements’ frequency of 
the best individuals’ genotype (the elites), observed at the end of the last generation 
of every run. In this sense, the figure reports the frequency counts of program ele-
ments from the 10 runs. The most frequent program elements are also assumed to be 
the most relevant. The program elements were ranked in descending order according 
to their estimated worth and colored based on whether they belonged to the func-
tions’ or terminal set (brighter and darker tones, respectively).

When looking at the terminals’ worth (these correspond to the darker tones of the 
figure’s bars), one can observe that within each variant of S-GP, the worth of termi-
nals follows the same order, regardless of the feature set. Independently on the variant, 
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SSNet is shown to be by far the most relevant efficiency-oriented SS network in the 
S-GP ensembles. When considering the MC variant of S-GP - the most prominent 
stacking method - the ERFNet is reported as the second most relevant terminal. Such 
an order was expected since SSNet’s encoder is essentially a slight improvement over 
the ERFNet’s. Moreover, SSNet uses a more sophisticated decoder which was shown 
to improve the segmentation maps along objects’ boundaries efficiently. Surpris-
ingly, EDANEt’s worth is estimated to be roughly the same as ENet’s: in MC-FSbasic , 
EDANet’s worth is slightly above ENet’s, whereas in MC-FSCV , the opposite happens. 
In our opinion, this happens because, under the perspective of the accuracy-speed 
trade-off that reigns the neural architectures’ design, these two networks headed more 
towards speed at the cost of accuracy. In a nutshell, besides obtaining network worth 
estimates, one can conclude that these estimates happen to be robust with regard to the 
empirical findings from the literature.

When looking at the functions’ worth (these correspond to lighter tones of the 
figure, one can observe that pixel-wise average, addition, maximum, and minimum 

Fig. 8   Estimate of program elements’ worth via frequency plots. The figure contains both multi and sin-
gle-class variants of the proposed S-GP approach explored using two types of operators (basic and CV-
based). The evolution for MC with FS

basic
 in a automatically excluded trigonometric operators sine and 

cosine, as well as pixel-wise minimum and maximum. The evolution for MC with FS
CV

 in c excluded 
convolutional-edge filters based on the Sobel operator
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happen to be the most relevant across operators regardless of the variant and feature 
set. The subtraction, division, multiplication, and trigonometric functions are notably 
the least relevant functions. This fact suggests the small utility of these functions for the 
underlying problem instance.

When looking at the coral bars of Fig. 8c and d both regard FSCV configurations 
for the MC and SC variants of S-GP), one can observe that the MaxPool is the most 
frequently used CV-based operator. Other operators can be found, but at a significantly 
lower rate, which suggests their reduced utility in the scope of the underlying problem 
instance: the AvgPool, the Laplacian filter, the AvgPool, and the Gaussian kernel.

6.3 � Inspection of stacking models

Figure 9a, b,  c, and d present four example candidate solutions of the multi-class 
stacking variant, which achieved a fair performance-complexity trade-off. In fact, 
their compact representation allows a closer inspection of the underlying trees.

It is fundamental to remind the reader that our stacking procedure was applied 
before the SoftMax operation (i.e., our generated solutions directly process the logit 
data). This experimental choice, whose superiority over post-SoftMax processing 
was determined via preliminary experiments, has the advantage of operating on the 
raw network outputs before any non-linear compression of the data range that might 
hinder the ability to capture nuances in the predictions or even lose information due 

Fig. 9   Candidate stacking models evolved utilizing S-GP (multi-class variant)
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to numerical precision issues. Furthermore, in this context, the data can be re-pur-
posed and combined without the need to preserve their characteristics as probabil-
ity distributions since those will be enforced as a post-processing SoftMax step if 
necessary.

One potential drawback of working with logits is that there is no inherent control 
over the original data distribution since different networks (or even different training 
runs of the same network) will produce outputs in arbitrary ranges. This factor is 
possibly the reason for the behavior shown in Fig. 9c, where the SSNet terminal is 
multiplied by a factor of 3 before combination with other branches. Notice that this 
tree has been mathematically simplified for ease of interpretation and that the under-
lying operation was a sequence of sums involving the same network multiple times.

An alternative explanation for increasing the values of one network output before 
the further combination is boosting its importance relative to other networks, as the 
optimization procedure implicitly learned that it is more reliable and thus should 
be given greater relevance in a consensus-based decision. This hypothesis is cor-
roborated by the fact that SSNet specifically has the highest accuracy among our 
set of base learners. The actual consensus can then be implemented by combining 
multiple branches through a pixel-wise sum operation (or, equivalently, an average) 
as displayed in solutions Fig.  9a and b. The final class decision for each pixel is, in 
fact, determined by the ArgMax operator across all class values. The relative order 
of these values can be overturned if enough branches agree on a particular class dis-
tribution, simply by summing (or averaging) their outputs.

Another often selected function, as also highlighted by the worth analysis, is the 
MaxPool operator. This operation is hypothesized to work as a spatial denoising 
operator, as it effectively removes isolated low-level single-pixel values. The ori-
gin of these sparse elements can be potentially attributed to artifacts of the dilated 
convolutions and the fast upsampling modules, implemented in many efficient net-
works for semantic segmentation. The preference for max pooling also supports this 
denoising interpretation as opposed to average pooling, which would instead have 
the effect of spreading the impact of such sparse elements.

Finally, Fig. 9d shows a solution that combines all the aforementioned elements: 
reinforcing a single network by summing it with itself, conducting a consensus pro-
cess via either sums or averages, and widespread use of max pooling, potentially as 
a denoising operator.

By taking into consideration the solutions’ performance in terms of MIoU on test 
data, as well as the level of complexity of the corresponding stacking trees, the can-
didate in Fig. 9b can be considered as an ideal compromise. This solution effectively 
exploits the SSNet and ERFNet models from the pool of investigated base learn-
ers, running respectively at 113.1FPS and 61.0FPS on a TitanX (Pascal) Graphic 
Processing Unit (GPU), as reported by [38]. Their stacking will therefore operate 
on up to 39FPS, minus the necessary computation of pooling and averaging opera-
tions, effectively matching the commonly-adopted criterion of 30FPS for real-time 
performance [37, 38, 52]. Figure 10 shows an example of output segmentation maps 
produced by the stacking model of Fig. 9b.
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6.4 � Time complexity

Figure 11 presents experiments’ processing times calculated as the average number 
of hours to execute one run. We can see that the MC variants happen to be by far the 
most time-efficient experiments - a fact that is directly related to the solutions’ sim-
plicity of representation and, consequently, processing-time usage. As for the func-
tions’ set, one can see that S-GP with CV-based operators generally requires slightly 
larger processing times. This outcome happens because the CV-based operators 
(like, for example, the convolution or the pooling) are applied between the underly-
ing kernel and a kernel-sized patch of the input image, for every pixel in the padded 
input image.

Fig. 10   Example of output segmentation maps produced by the stacking model in Fig. 9b
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7 � Conclusion

This paper presents a study of genetic programming (GP) in the context of stacked 
generalization for semantic segmentation (SS) neural architectures. More spe-
cifically, we explored GP’s role as the meta-learning algorithm that combines pre-
liminary outputs of four different efficiency-oriented semantic segmentation archi-
tectures for fast recognition of urban scenes, such as ENet, ERFNet, EDANet, and 
SSNet in an evolutionary fashion. The contribution of this work is three-fold. First, 
we generated stacking models able to overcome the performance of each of the state-
of-the-art neural architectures considered in this study (measured as mean intersec-
tion over union calculated on the test set). Second, we were able to assess networks’ 
relative importance in the context of the stacking model. Third, we evolved stacking 
models that are of small size and human-interpretable.

Further research in the field is still in demand, and we consider deepening the 
cross-fertilization between the fields of evolutionary computation and ensemble 
learning. For example, stacking multiple training instances of the underlying neural 
models, or breaking the search-space into disjoint sub-spaces that would be better 
handled by carefully evolved stacking models focused on a given sub-space. Another 
valuable research direction could involve other sources of information when gener-
ating stacking models like, for example, the depth or attention maps.
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