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Abstract
In this paper we deal with polarizations on a nodal curve C with smooth components.
Our aim is to study and characterize a class of polarizations, which we call “good”,
for which depth one sheaves on C reflect some properties that hold for vector bundles
on smooth curves. We will concentrate, in particular, on the relation between the w-
stability of OC and the goodness of w. We prove that these two concepts agree when
C is of compact type and we conjecture that the same should hold for all nodal curves.
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Introduction

LetC be a projective curve over the complexfield.Oneof themost interesting problems
inAlgebraic Geometry is the construction ofmoduli spaces parametrizing line bundles
or in general vector bundles on C . These moduli spaces have been studied first by
Mumford [22] and Le Potier [21] in the smooth case. These spaces are interesting by
themselves as higher dimensional varieties but also for important related constructions:
just tomention some, one can consider higher-rankBrill-Noether theory,Theta divisors
and Theta functions and the moduli spaces of coherent systems. For surveys on these
topics see, for example [3,6,7]; for some results by the authors see [5,8,11–14]. When
the curve is singular, these spaces are not in general complete. It is natural to study their
possible compactifications and this has driven the attention of many authors since the
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’60s, who addressed the problem with different approaches (see, for instance, [4,18–
20,23,24]).WhenC is a reducible nodal curve, that is it has only ordinary double points,
we have more explicit results. In several of the constructions mentioned above, the
objects of these compact moduli spaces are equivalence classes of depth one sheaves
(i.e. torsion free) on the curve that are semistable with respect to a polarization (see
[25,26]).

A polarization w on C is given by rational weights on each irreducible component
ofC adding up to 1 or, equivalently, by an ample line bundle L onC (see [20,24]). Once
a polarization on the curve is fixed, the notions of degree and rank can be generalized
to the notions of w-degree and w-rank which are also defined for depth one sheaves.
With these data Seshadri introduced the notion of w-stability (or w-semistability) for
depth one sheaves allowing the construction of moduli spaces of such objects.

In this paper we are interested in studying polarizations on nodal reducible curves
having nice properties, i.e. which allow us to generalize to nodal curves some natural
properties of vector bundles on smooth curves and to simplify the study of stability
of vector bundles and coherent systems on nodal reducible curves. As motivation,
consider the following facts. On a smooth curve C , the sheaf OC is stable (as all line
bundles) and any globally generated vector bundle has non-negative degree. This is
not true anymore on reducible nodal curves. Moreover, in order to construct vector
bundles on a reducible nodal curve, one can glue vector bundles on its components.
In general, though, it is not true that glueing stable vector bundles yields a w-stable
sheaf: additional conditions on the polarization and on the degree of the restrictions
are needed (see [9,10,27]).

This motivates our definition of a good polarization. Let C be a nodal curve with
γ smooth irreducible components. For any depth one sheaf E on C , we denote by Ei

the restriction (modulo torsion) of E to the component Ci . Note that if E is locally
free, then the degree of E is actually the sum of the degrees of its restrictions Ei , but
this is not true in general. We will say that w is a good polarization if for any depth
one sheaf E the difference �w(E) of the w-degree of E and the sum of degrees of
its restrictions Ei is non negative and it is zero if and only if E is locally free (see
Definition 2.6). As anticipated, the first result of this paper is the following:

Theorem (Theorem 2.9) Let C be a nodal curve and let w be a good polarization on
it. Let E be a depth one sheaf on C. Then we have the following properties:

(a) Assume that E is locally free and, for i = 1, . . . , γ , Ei is stable with deg(Ei ) = 0.
Then E is w-stable.

(b) If E is globally generated, then degw(E) ≥ 0.

(c) If E is w-semistable and degw(E) > 0, then h0(E∗) = 0.

In particular, if E = OC or, more generally, if E is a line bundle whose restrictions
have degree 0, then E is w-stable.

Wewill show that goodpolarizations exist on any stable nodal curvewith pa(C) ≥ 2
(see Proposition 2.8 and Corollary 3.15). For nodal curves with pa(C) ≤ 1we are able
to characterize exactly which curves admit a good polarization (see Corollary 3.11).

The second result of this paper provides sufficient conditions in order to obtain a
good polarization on a nodal curve. The method relies on the choice of particular paths
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Nodal curves and polarizations with good properties 765

on the dual graph �C of C which yields a finite collection of subcurves A j of C . This
allows us to get a rather technical description of �w(E), for any depth one sheaf E on
C , and to obtain the mentioned sufficient conditions. These are stated in Theorem 3.9.
More precisely, consider, for each non-empty subcurve A j , the condition

(��)A j : 1

2
(δA j − 1) < �w(OA j ) <

1

2
(δA j + 1)

where δA j is the number of the nodes of C lying on A j which are not nodes for the
subcurve A j (see Sect. 1 for details). Then we have the following:

Theorem (Theorem 3.9) Let (C, w) be a polarized nodal curve. If conditions (��)A j

hold for all non empty A j , then w is a good polarization.

Motivated by many examples (some of them have been reported in Sect. 4), we
make this conjecture:

Conjecture (Conjecture 3.13) Let (C, w) be a polarized nodal curve. Then OC is
w-stable if and only if w is a good polarization.

In the third result of this paper we prove that this conjecture holds for curves of
compact type:

Theorem (Theorem 3.10) Let (C, w) be a polarized nodal curve of compact type.
Then OC is w-stable if and only if w is a good polarization.

The idea is to prove that conditions (��)A j are always implied by stability of OC

in the case of curves of compact type.
Finally, we wonder how being a good polarization reflects on the line bundle induc-

ing the polarization. This turns out to be related to the notion of balanced line bundles,
as defined in [15]. Balanced line bundles are important tools when one has to deal
with reducible nodal curves. For example, for such line bundles, a generalization of
Clifford’s Theorem holds. Our results can be summarized as (see Corollary 2.19 and
Corollary 3.12):

Theorem Let C be a stable nodal curve with pa(C) ≥ 2. Let L be a line bundle of
degree pa(C) − 1 and w be the polarization induced by L. Then:

(1) L is strictly balanced if and only if OC is w-stable;
(2) if C is of compact type, then L is strictly balanced if and only if w is good.

1 Notations and preliminary results on nodal curves

In this section we will introduce notations and we recall useful facts about nodal
curves, their subcurves and polarizations.

Let C be a connected reduced nodal curve over the complex field (i.e. having only
ordinary double points as singularities).Wewill denote by γ the number of irreducible
components and by δ the number of nodes of C . We will assume that each irreducible
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766 S. Brivio, F. F. Favale

component Ci is a smooth curve of genus gi . For the theory of nodal curves see [2,
Ch X]. We will denote by

ν : Cν =
⊔γ

i=1
Ci → C

the normalization map. If p ∈ C is a node, we will denote by qp,i1 and qp,i2 the branch
points over the node p, with qp,ik ∈ Cik . From the exact sequence:

0 → OC → ν∗ν∗(OC ) →
⊕

p∈Sing(C)

Cp → 0,

we deduce that χ(OC ) = ∑γ

i=1 χ(OCi ) − δ, and we obtain the arithmetic genus of
C :

pa(C) =
γ∑

i=1

gi + δ − γ + 1. (1.1)

The dual graph of C is the graph �C whose vertices are identified with the irreducible
components of C and whose edges are identified with the nodes of C . An edge joins
two vertices if the corresponding node is in the intersection of the corresponding
irreducible components. So, �C has δ edges and γ vertices, moreover it is connected
since C is connected. Its first Betti number is b1(�C ) = δ − γ + 1. We recall that a
connected nodal curve is said to be of compact type if every irreducible component
of C is smooth and its dual graph is a tree. For a curve of compact type we have
δ −γ +1 = 0 and the pull-back ν∗ of the normalization map induces an isomorphism
Pic(C) � ⊕γ

i=1 Pic(Ci ) between the Picard groups.
Let B be a proper subcurve of C , the complementary curve of B is defined as the

closure of C \ B and it is denoted by Bc. We will denote by �B the Weil divisor
�B = B · Bc = ∑

p∈B∩Bc p, we will denote its degree by δB so δB = #B ∩ Bc. In
particular, when Ci is a component of C , �Ci is given by the nodes on Ci . To simplify
notations we set �Ci = �i and δi = #�i .

As the only singularities ofC are nodes,C can be embedded in a smooth projective
surface, see [1]. This gives, for any proper subcurve B ofC , the following fundamental
exact sequence

0 → OBc (−�B) → OC → OB → 0, (1.2)

from which we deduce

pa(C) = pa(B) + pa(B
c) + δB − 1. (1.3)

We recall that a connected nodal curve C of arithmetic genus pa(C) ≥ 2 is called
stable if each smooth rational component E of C meets Ec in at least three points, i.e.
δE ≥ 3. A curve is stable if and only if ωC is ample. The curve C is called semistable
if δE ≥ 2. If C is semistable, a rational component E with δE = 2 is said to be an
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Nodal curves and polarizations with good properties 767

exceptional component. Finally, C is called quasistable if it is semistable and if any
two exceptional components do not intersect each other. Good references for these
topics are [15,16].

Let L be a line bundle on C . For all i = 1, . . . , γ , let Li denote the restriction
of L to the component Ci . It is a line bundle on Ci with deg(Li ) = di . We will call
(d1, . . . , dγ ) the multidegree of L . Then the degree of L is deg(L) = ∑γ

i=1 di . We
have an exact sequence

0 → L → ν∗ν∗L →
⊕

p∈Sing(C)

Cp → 0,

from which we deduce χ(L) = ∑γ

i=1 χ(Li ) − δ. In complete analogy with the
smooth case, Riemann-Roch’s Theorem holds for any line bundle L on C : χ(L) =
deg(L)+1− pa(C). We recall that L is ample if and only if di > 0 for all i = 1, . . . γ .
We will denote by Pic0(C) ⊂ Pic(C) the variety parametrizing the isomorphism
classes of line bundles on C having multidegree (0, . . . , 0).

There exists on C a dualizing sheaf ωC , which is invertible. For simplicity, if L is a
line bundle on C and B is a subcurve of C , we will denote by degB(L) = degB(L|B)

the degree of L|B as line bundle on B. Then, we haveωC |B = ωB(B ·Bc), fromwhich
we obtain that the degree of ωC |B is degB(ωC |B) = 2pa(B) − 2 + δB . In particular,
we have deg(ωC ) = 2pa(C) − 2.

A central object in this paper will be the notion of polarization. One can refer to
[23,24] for details about polarizations and their role in studying stability of depth one
sheaves on reducible nodal curves.

Definition 1.1 A polarization on the curve C is a vector w = (w1, . . . , wγ ) ∈ Q
γ

such that

0 < wi < 1
γ∑

i=1

wi = 1. (1.4)

We will say that the pair (C, w) is a polarized curve.

Remark 1.2 Let L be an ample line bundle on C , with deg(L) = d = ∑γ

i=1 di . We
can associate to L a polarization wL on C by setting wL = 1

d (d1, . . . , dγ ). We will
callwL the polarization induced by L . Note that for any polarizationw there exists a
line bundle L which induces w. Such a line bundle is not unique: many modifications
of L (for instance, one can consider a multiple of L), lead to the same polarization.

We recall that a depth one sheaf on a curve is a coherent sheaf E with
dim Supp(F) = 1 for any subsheaf F of E . On a nodal curve this is equivalent
to saying that E is torsion free. If E is a depth one sheaf on C and B is any proper
subcurve of C , we denote by E |B the restriction of E to B and by EB the restriction
E |B modulo torsion. Then EB is a depth one sheaf on B. If Ci is an irreducible com-
ponent of C we define Ei to be ECi . We denote by di the degree of Ei and ri the rank
of Ei .
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768 S. Brivio, F. F. Favale

Ifw is a polarization onC , we define thew-rank and thew-degree of E as rkw(E) =∑r
i=1 riwi and degw(E) = χ(E) − rkw(E)χ(OC ) respectively.

Definition 1.3 Let w be a polarization on C and let E be a depth one sheaf on C . The
w-slope of E is defined as

μw(E) = χ(E)

rkw(E)
= degw(E)

rkw(E)
+ χ(OC ).

E is said to be w-semistable if for any proper subsheaf F of E we have μw(F) ≤
μw(E), i.e. if

degw(F)

rkw(F)
≤ degw(E)

rkw(E)
.

E is said to be w-stable if the above inequality is strict.

We stress that in the case of depth one sheaves having rank 1 on each irreducible
component ofC ,manydifferent notions of semistability have been introduced.One can
see for instance [17,23], for two different approaches which give equivalent stability
conditions. In particular, we recall the following characterization of w-semistability,
see [23].

Proposition 1.4 Let (C, w) be a polarized curve and let L be a depth one sheaf with
ri = 1 for all i . Then L is w-semistable if and only if for any proper subcurve B of C

degw(LB) ≥ degw(L)rkw(LB).

It is w-stable if and only if the inequality is strict.

2 Polarizations with nice properties

From now on we will assume that C is a reducible nodal curve.

2.1 The function1w and its properties

Definition 2.1 Let w be a polarization on C . Let E be a depth one sheaf on C and let
Ei be the restricion of E to Ci modulo torsion. We define �w(E) as

�w(E) = degw(E) −
γ∑

i=1

deg(Ei ).

Note that if pa(C) = 1, then �w(E) = χ(E) − ∑γ

i=1 deg(Ei ), so it does not
depend on the chosen polarization.
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Nodal curves and polarizations with good properties 769

Let E be a depth one sheaf on C . Let p ∈ Ci1 ∩Ci2 be a node of C , then ν−1(p) =
{qp,i1 , qp,i2} with qp,ik ∈ Cik . The stalk of E in p can be written (see [24]) as

Ep = Osp
p ⊕ Oap,i1

qp,i1
⊕ Oap,i2

qp,i2
(2.1)

where sp is the rank of the free part of the stalk of E in p. Moreover, we have

ri1 = sp + ap,i1 ri2 = sp + ap,i2 . (2.2)

We set tp = ap,i1 + ap,i2 .

Definition 2.2 Let E be a depth one sheaf on C and let p be a node, we will call tp
the residual rank of E at p.

Remark 2.3 A depth one sheaf E on C is locally free if and only all the residual ranks
of E are zero.

In the following lemma we summarize some basic properties satisfied by �w.

Lemma 2.4 Let C be a nodal curve with nodes p1, . . . , pδ and let w be a polarization
on it. Let E be a depth one sheaf on C. Then we have:

(a) set λi = �w(OCi ) = 1 − gi − wiχ(OC ). Then
∑γ

i=1 λi = δ and

�w(E) =
γ∑

i=1

riλi −
δ∑

j=1

sp j ; (2.3)

(b) if E is locally free, then �w(E) = 0, i.e. degw(E) = ∑γ

i=1 deg(Ei );
(c) if ri = r for all i = 1, . . . , γ , then for any node p j wehaveap j ,i1 = ap j ,i2 = tp j /2.

Moreover,�w(E) = 1
2

∑δ
j=1 tp j ≥ 0 and equality holds if and only if E is locally

free;
(d) for any line bundle L we have �w(E ⊗ L) = �w(E);
(e) if Supp(E) is a disjoint union of connected subcurves Bs for s = 1, . . . , c, then

�w(E) =
c∑

s=1

�w(E |Bs );

(f) if B is a proper subcurve of C, then �w(EB) + �w(EBc ) = �w(E) +∑
p j∈B∩Bc sp j ;

(g) if E is locally free of rank r and B is a subcurve of C, then�w(E |B) = r�w(OB).

Proof (a) From [24] we have an exact sequence

0 → E →
⊕γ

i=1
Ei → T → 0, (2.4)
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770 S. Brivio, F. F. Favale

where T is a torsion sheaf on C whose support is contained in the set of nodes.
Hence we have χ(E) = ∑γ

i=1 χ(Ei ) − χ(T ). More precisely, if p j is a node, we
have h0(Tp j ) = sp j so χ(T ) = ∑δ

j=1 sp j . Then, by definition, we have

degw(E) =
γ∑

i=1

χ(Ei ) − χ(T ) − rkw(E)χ(OC )

=
γ∑

i=1

[di + ri (1 − gi )] −
γ∑

i=1

wi riχ(OC ) −
δ∑

j=1

sp j

so we get

�w(E) =
γ∑

i=1

ri [1 − gi − wiχ(OC )] −
δ∑

j=1

sp j =
γ∑

i=1

riλi −
δ∑

j=1

sp j .

Finally, we have

γ∑

i=1

λi =
γ∑

i=1

[1 − gi − wiχ(OC )] = γ − (pa(C) − δ + γ − 1) − (1 − pa(C)) = δ.

(b) Let E be a locally free sheaf of rank r . By the previous formula we have

�w(E) =
γ∑

i=1

rλi −
δ∑

j=1

r = r
γ∑

i=1

λi − δr = rδ − rδ = 0.

(c) Assume that ri = r for all i = 1, . . . , γ . By Equation (2.2) we get ap j ,i1 =
ap j ,i2 := a j . As sp j = r − a j , from (a) we have

�w(E) = r
γ∑

i=1

λi −
δ∑

j=1

(r − a j ) = rδ − rδ +
δ∑

j=1

a j =
δ∑

j=1

a j = 1

2

δ∑

j=1

t j .

Then �w(E) = 0 if and only if t j = 0 for all j , that is E is locally free.
(d) Let L be a line bundle on C with deg(Li ) = li , i = 1, . . . , γ . Since (E ⊗ L)i =

Ei ⊗ Li , we have deg(E ⊗ L)i = di + ri li and χ(Ei ⊗ Li ) = χ(Ei ) + ri li . If we
tensor the exact sequence (2.4) by L we obtain χ(E ⊗ L) = χ(E) − ∑γ

i=1 ri li ,
hence we get

�w(E ⊗ L) = χ(E ⊗ L) − rkw(E ⊗ L)χ(OC ) −
γ∑

i=1

(di + ri li )

= χ(E) +
γ∑

i=1

ri li − rkw(E)χ(OC ) −
γ∑

i=1

(di + ri li ) = �w(E).
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Nodal curves and polarizations with good properties 771

(e) Let B = �c
s=1Bs be the disjoint union of c ≥ 1 connected proper subcurves Bs .

Since Supp(E) = B, then E = ⊕c
s=1EBs and EBs is a depth one sheaf too. The

w-degree is additive with respect to direct sum, so we have

�w(E) = degw(E) −
∑

Ci⊆B

di =
c∑

s=1

degw(EBs ) −
c∑

s=1

∑

Ci⊆Bs

di =
c∑

s=1

�w(EBs ).

(f) Assume that B is a proper connected curve. By (a) we have:

�w(EB) =
∑

Ci⊆B

riλi −
∑

p j∈B\Bc

sp j .

If B = �c
s=1Bs is the disjoint union of c ≥ 1 connected proper subcurves Bs .

Then by (e)

�w(EB) =
c∑

s=1

�w(EBs )

=
c∑

s=1

⎡

⎣
∑

Ci⊆Bs

riλi −
∑

p j∈Bs\Bc
s

sp j

⎤

⎦ =
∑

Ci⊆B

riλi −
∑

p j∈B\Bc

sp j .

and a similar formula holds for Bc. So we have:

�w(EB) + �w(EBc ) =
∑

Ci⊆B

riλi −
∑

p j∈B\Bc

sp j +
∑

Ci⊆Bc

riλi −
∑

p j∈Bc\B
sp j

=
γ∑

i=1

riλi −
∑

p j /∈B∩Bc

sp j .

As �w(E) = ∑γ

i=1 riλi − ∑δ
j=1 sp j , we obtain:

�w(EB) + �w(EBc) = �w(E) +
∑

p j∈B∩Bc

sp j .

(g) By (e) it is enough to prove the assertion for any connected subcurve B. Then
B = ⋃b

k=1 Cik . Then

�w(E |B) = degw(E |B) −
b∑

k=1

dik = χ(E |B) − rkw(E |B)χ(OC ) −
b∑

k=1

dik

=
b∑

k=1

dik + r(1 − pa(B)) − r
b∑

k=1

wikχ(OC ) −
b∑

k=1

dik

= rdegw(OB) = r�w(OB).
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as claimed. ��
The following proposition gives a description of �w(E) as function of the residual

ranks of E at its nodes and its multirank.

Proposition 2.5 Let (C, w) be a connected nodal polarized curve. Let E be a depth
one sheaf on C, then we have

�w(E) =
γ∑

i=1

ri

(
λi − δi

2

)
+ 1

2

δ∑

j=1

tp j ,

where t j is the residual rank of E at the node p j .

Proof Let p j be a node, assume that p j ∈ Ci1 ∩ Ci2 . To avoid confusion we denote
by r j,ik the rank of E |Cik

so that

r j,i1 + r j,i2 = 2sp j + ap j ,i1 + ap j ,i2 = 2sp j + tp j .

We recall that we set λi = 1 − gi − wiχ(OC ), so by Equation (2.3) we have

�w(E) =
γ∑

i=1

λi ri −
δ∑

j=1

r j,i1 + r j,i2 − tp j

2

=
γ∑

i=1

λi ri − 1

2

δ∑

j=1

(r j,i1 + r j,i2) + 1

2

δ∑

j=1

tp j . (2.5)

We claim that the following relation holds:

δ∑

j=1

(r j,i1 + r j,i2) =
γ∑

i=1

riδi (2.6)

We will proceed by induction on γ . If C has 2 components and δ nodes, we denote
by r1 and r2 the ranks of the restrictions of E to the components. If p j is a node, then
r j,i1 + r j,i2 = r1 + r2 so

δ∑

j=1

(r j,i1 + r j,i2) =
δ∑

j=1

(r1 + r2) = δr1 + δr2

so Equation (2.6) holds when γ = 2.
Assume now, by induction hypothesis, that the same equation holds for nodal curves

with at most γ − 1 components. Let C be a nodal curve with γ components. We
claim that there exists a component of C whose complementary curve is connected.
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Nodal curves and polarizations with good properties 773

This is true since the graph �C is connected and every connected graph has a non-
disconnecting vertex1. Fix an ordering of the components of C in such a way that
this non-disconnecting curve is Cγ . By assumption, its complementary curve Cc

γ is
connected, with γ ′ = γ − 1 components with indices i = 1, . . . , γ − 1. Moreover, it
has δ′ = δ − δγ nodes and r ′

i = ri for all i = 1, . . . , γ − 1. We can write

δ∑

j=1

(r j,i1 + r j,i2) =
∑

p j /∈Cγ

(r j,i1 + r j,i2) +
∑

p j∈Cγ

(r j,i1 + r j,i2). (2.7)

In the first summation on the right hand side of Equation (2.7), the sum is done over
the nodes which are not on Cγ so they are exactly the nodes of Cc

γ as a nodal curve.
Then, by induction hypothesis, we have

∑

p j /∈Cγ

(r j,i1 + r j,i2) =
δ′∑

j=1

(r j,i1 + r j,i2) =
γ ′∑

i=1

(r ′
iδ

′
i ).

For all i = 1, . . . , γ − 1 we denote by εi the number of points of Ci ∩ Cγ , i.e. the
nodes common to Ci and Cγ . Then we have δ′

i = δi − εi , as the nodes of Ci ∩Cγ are
not nodes of Cc

γ . If εi = 0, Ci and Cγ are disjoint and δ′
i = δi . So we have:

∑

p j /∈Cγ

(r j,i1 + r j,i2) =
γ−1∑

i=1

ri (δi − εi ). (2.8)

In the second summation on the right hand side of Equation (2.7), the sum is done
over the δγ nodes which are on Cγ so we can write

∑

p j∈Cγ

(r j,i1 + r j,i2) =
∑

Ci |Ci∩Cγ �=∅
(rγ + εi ri )

as ri = r j,ik for some j if and only if Ci is one of the components through p j and this
happens one times for each of the nodes which are on both Ci and Cγ , i.e. exactly εi
times. Hence

∑

p j∈Cγ

(r j,i1 + r j,i2) = [· · · ] =
∑

Ci | εi>0

rγ +
∑

Ci | εi>0

εi ri +
∑

Ci | εi=0

εi ri

= rγ δγ +
γ−1∑

i=1

εi ri . (2.9)

1 Let G = (V,E) be a finite connected graph, with at least 3 vertices. Then one can fix P ∈ V and consider
the distance dP (Q) of Q from P , i.e. the minimum number of edges that one needs to go through in order to
make a path from P to Q. Let R ∈ V such that dP (R) = maxQ∈V dP (Q). Then R is a non-disconnecting
vertex of G. Indeed, if Q ∈ V different from R, the shorthest path from P to Q cannot pass through R
otherwise dP (R) < dP (Q) and we get a contradiction.
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774 S. Brivio, F. F. Favale

Then, using Equations (2.8) and (2.9), we can rewrite Equation (2.7) as

δ∑

j=1

(r j,i1 + r j,i2) =
γ−1∑

i=1

ri (δi − εi ) + rγ δγ +
γ−1∑

i=1

εi ri =
γ∑

i=1

riδi

which concludes the proof of the claim. From Equations (2.5) and (2.6) one obtains
easily the desired result. ��

2.2 Good polarizations andmain properties

Now we will deal with a class of polarizations which will allow us to extend some
properties that hold for locally free sheaves on smooth curves to depth one sheaves on
polarized nodal curves (see Theorem 2.9). In order to do this we will use the function
�w that we have studied in Sect. 2.1.

Definition 2.6 Let (C, w) be a polarized nodal curve. We say that w is a good polar-
ization if �w(E) ≥ 0 for all depth one sheaves E on C and equality holds if and only
if E is locally free.

By Lemma 2.4 (b), for any polarization w we have �w(E) = 0 for all locally free
sheaves on C . Nevertheless, it can happen that �w(E) < 0 for a depth one sheaf
which is not locally free, as the next example shows.

Example 2.7 Let (C, w) be a polarized nodal curve with two smooth components C1
and C2 of genus 2 and a single node. Then �w(OC1) = −1 + 3w1. If we consider

the polarization w =
(
1
6 ,

5
6

)
, we have �w(OC1) = −1/2 < 0. Moreover, by Propo-

sition 1.4, this also implies that OC is a w-unstable sheaf on C .

First of all we will see that on all stable nodal curves with pa(C) ≥ 2 there exists
a good polarization (we will see in Remark 2.13 that is not true in general).

Proposition 2.8 Let C be a stable connected nodal curve with pa(C) ≥ 2 and let be η

be the polarization induced by ωC (this is often called canonical polarization). Then,
η is a good polarization on C.

Proof First of all, since C is a stable curve, we have that ωC is an ample line bundle so
the definition of η makes sense. As recalled in Sect. 1 we have ωC |Ci = ωCi ⊗ (�i )

so we have

ηi = gi − 1 + δi/2

pa(C) − 1
, i = 1, . . . γ .

In order to see that η is good we will compute �η(E) for a depth one sheaf E . For
the canonical polarization we have

λi = 1 − gi − ηiχ(OC ) = δi/2,
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Nodal curves and polarizations with good properties 775

so, by Proposition 2.5 we can conclude that

�η(E) = 1

2

δ∑

j=1

tp j .

In particular, �η(E) ≥ 0 and equality holds if and only if tp j = 0 for all j . By
Remark 2.3, this happens if and only if E is locally free. ��

The following theorem summarizes some important properties which hold when
we deal with good polarizations. Recall that Pic0(C) is the variety parametrizing line
bundles having degree 0 on each component (see Sect. 1).

Theorem 2.9 Let C be a nodal curve and w a good polarization on it. Let E be a
depth one sheaf on C. Then we have the following properties:

(a) Assume that E is locally free and, for i = 1, . . . , γ , Ei is stable with deg(Ei ) = 0.
Then E is w-stable.

(b) If E is globally generated, then degw(E) ≥ 0.

(c) If E is w-semistable and degw(E) > 0, then h0(E∗) = 0.

In particular, if E = OC or more generally E ∈ Pic0(C) then, E is w-stable.

Proof (a) Let E be a locally free sheaf such that Ei is stable and deg(Ei ) = 0 for all
i = 1, . . . , γ . Then, by Lemma 2.4 (b) we have degw(E) = 0. In order to prove
that E is w-stable it is enough to show that for any proper subsheaf F of E we
have degw(F) < 0.
Let F be a proper subsheaf of E and let’s consider the quotient Q = E/F . If
rkw(Q) = 0, then Q is a torsion sheaf with finite support. Then degw(Q) =∑

P∈Supp(Q) l(QP ) > 0 and then degw(F) < 0 as claimed.
Assume now that rkw(Q) > 0. Since F is a proper subsheaf of E we also have
rkw(Q) < rkw(E). We define Q′ = Q/Tors(Q) which is a depth one sheaf with
rkw(Q′) = rkw(Q) and degw(Q) ≥ degw(Q′). Moreover, as Q′ is a quotient of
Q we have that Q′ is a proper quotient of E . So for all i = 1, . . . , γ , we have a
surjective map qi : Ei → Q′

i . If Q
′
i is not zero, then either qi is an isomorphism

(this cannot occur for all i) or Q′
i is a proper quotient, in this case deg(Q′

i ) >

deg(Ei ) = 0 by the stability assumption on Ei . Hence
∑

i deg(Q
′
i ) > 0. Then, as

w is a good polarization, we have

�w(Q′) = degw(Q′) −
∑

i

deg(Q′
i ) ≥ 0

which implies degw(Q′) > 0. Then degw(Q) > 0 and we can conclude as in the
previous case.
From (a), if E is a line bundle with deg(Ei ) = 0 for all i = 1, . . . , γ , we have
that E is w-stable. One can also prove this fact directly using Proposition 1.4 by
checking that degw(L|B) > 0 for any proper subcurve B. Indeed, we have

degw(L|B) = �w(L|B) > 0,
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776 S. Brivio, F. F. Favale

as w is a good polarization and L|B is not locally free on C .
(b) Assume that E is a depth one sheaf on C which is generated by k ≥ 1 global

sections. Then we have a surjective map V ⊗ OC → E , where V ⊆ H0(E)

is a vector space of dimension k. Since by (a), OC is w-stable, then V ⊗ OC is

w-semistable. So we have
degw(E)

rkw(E)
≥ 0 and then degw(E) ≥ 0.

(c) Assume that H0(E∗) = Hom(E,OC ) �= 0. Then, there exists a non zero homo-
morphism ϕ : E → OC . We will show that degw(E) < 0. If ϕ is surjective or
injective, we conclude by w-semistability of E and by w-stability of OC (which
holds by (a), since w is good) respectively. We can assume then, that Im(ϕ) is a
proper subsheaf of OC and a proper quotient of E . In this case we have

degw(E)/rkw(E) ≤ degw(Im(ϕ))/rkw(Im(ϕ)) < 0

where we used the w-semistability of E and the w-stability of OC respectively. ��
Remark 2.10 In point (a) of Theorem 2.9 if Ei is only semistable then, with the same
arguments, one obtain that E is w-semistable.

Another interesting consequence of the previous theorem is the following corollary.

Corollary 2.11 Let C be a nodal curve andw a good polarization. Ifw = wL for some
ample line bundle L,w-(semi)stability is preserved by tensoring with L. In particular,
L is w-stable.

Proof Let L be a line bundle which induces the polarization wL , with Li ∈ Picdi (Ci ).
Since wi = di/d then we have

wi d j = w j di .

This implies, by [24], that wL -stability is preserved by tensoring with L . In particular,
since OC is wL -stable by Theorem 2.9, then L is wL -stable too. ��

2.3 Polarizations andw-stability ofOC

In this subsection we investigate polarized nodal curves (C, w) with w-stable OC .

Lemma 2.12 Let (C, w) be a polarized nodal curve. Then OC is w-stable if and only
if

0 < �w(OB) < δB (2.10)

for any proper subcurve B of C. If equality holds for some subcurve B then OC is
w-semistable. Moreover we can specialize the result in the following cases:

• If pa(C) = 0, then OC is always w-stable;
• If pa(C) = 1, then OC is always w-semistable and it is w-stable if and only if C
is a cycle of rational curves;
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Nodal curves and polarizations with good properties 777

• If pa(C) ≥ 2, then OC is w-stable if and only the conditions

(�)B : pa(B) − 1

pa(C) − 1
< rkw(OB) <

pa(B) − 1 + δB

pa(C) − 1
(2.11)

hold for all proper subcurves B of C.

Actually, it is enough to check the the Inequalities (2.10) and (2.11) only for connected
subcurves.

Proof By Proposition 1.4 we have that OC is w-stable if and only if degw(OB) > 0
for any proper subcurve B of C . Moreover, since degw(OB) = �w(OB), by
Lemma 2.4(e), it is enough to check the condition degw(OB) > 0 only for connected
subcurves.

Let B be a proper subcurve of C and Bc its complementary curve. Then OB and
OBc are two depth one sheaves on C . We have

degw(OB) = χ(OB) − rkw(OB)χ(OC ) = 1 − pa(B) − rkw(OB)χ(OC ).

From Equation (1.2) we have χ(OBc ) = χ(OC ) − χ(OB) + δB , so

degw(OBc ) = χ(OBc ) − rkw(OBc )χ(OC )

= χ(OC ) − χ(OB) + δB − (1 − rkw(OB))χ(OC )

= rkw(OB)χ(OC ) + pa(B) − 1 + δB .

Hence OC is w-stable if and only if both the above values are strictly positive, we
obtain Inequality (2.10). If pa(C) ≥ 2, solving the inequalities we get condition (�)B .

Assume now pa(C) = 0. Then C is a curve of compact type whose components
are rational. Then, if B is a proper connected subcurve of C , we have that B is
also of compact type. In particular pa(B) = 0 too. By Inequality (2.10) we get
1 − δB < rkw(OB) < 1, so OC is w-stable.

Assume now pa(C) = 1. Then Inequality (2.10) is equivalent to 1−δB < pa(B) <

1. Since pa(B) ≤ 1 and pa(B) ≥ 1 − δB we have that OC is always w-semistable.
Now we investigate the w-stability of OC . As pa(C) = 1, we have either C is of
compact type whose components consist of an elliptic curve C1 and γ − 1 rational
curves or the dual graph has a single cycle and all components are rationals. In the
first case, pa(C1) = 1 so OC is never w-stable. In the second case, if we can find a
proper connected subcurve B of C which contains a cycle then pa(B) = 1 andOC is
never w-stable. This happens exactly when C is not a cycle. If C is a cycle and B is a
proper connected subcurve, then δB = 2 and pa(B) = 0 so OC is w-stable. ��
Remark 2.13 Let C be a nodal curve with pa(C) = 1 which is not a cycle. Then good
polarizations do not exist on C .

Remark 2.14 Assume that (C, w) is a polarized nodal curve of compact type. We can
translate the conditions of w-stability forOC , given by Teixidor i Bigas in [25], using
our notation as follows:OC is w-stable if and only if 0 < �w(OAi ) < 1 for a suitable
family of connected subcurves Ai ⊂ C .
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Corollary 2.15 Let w be a good polarization on a nodal curve C with pa(C) ≥ 2.
Then w satisfies (�)B for all B subcurve of C. In particular, we have

gi − 1

pa(C) − 1
< wi <

gi − 1 + δi

pa(C) − 1
.

An interesting question is then the following:

Question 2.16 Are all polarizations for which OC is w-stable also good?

We will give a complete answer for curves of compact type in Sect. 3.

2.4 Polarizations and balanced line bundles

In this subsectionwe deal with polarized curves (C, wL)wherewL is induced by a line
bundle L . We highlight the relation between the wL -stability of OC and a particular
class of line bundles: balanced line bundles (for details one can see [15,16]).

Definition 2.17 Let C be a quasistable curve of arithmetic genus pa(C) ≥ 2. A line
bundle L on C is said to be balanced if the following properties hold:

(1) for every exceptional component E of C we have degE (L) = 1;
(2) for any proper subcurve B we have

∣∣∣∣degB(L) − deg(L)

2pa(C) − 2
degB(ωC )

∣∣∣∣ ≤ 1

2
δB . (2.12)

L is said to be strictly balanced if the inequality is strict for every subcurve B such
that B ∩ Bc is not contained in the exceptional locus of C .

Proposition 2.18 LetC beaquasistable nodal curvewith pa(C) ≥ 2. Let L ∈ Picd(C)

be an ample line bundle and let w = wL be the polarization induced by L.

(a) If d ≥ pa(C) − 1 and L is balanced, then OC is w-semistable and it is w-stable
when d > pa(C) − 1;

(b) if d ≤ pa(C) − 1 and OC is w-stable then C is stable and L is strictly balanced.

Proof Let L ∈ Picd(C) be an ample line bundle. Then di = deg(Li ) > 0 for all i and
d = ∑γ

i=1 di . As w is induced by L , we have wi = di
d , for all i = 1, . . . γ . Let B be

a subcurve of C . Then B = ⋃b
k=1 Cik . Since L|B is a line bundle on B, we have:

degB(L) =
b∑

k=1

dik =
b∑

k=1

wik d = drkw(OB),

moreover we recall that

degB(ωC ) = 2pa(B) − 2 + δB .
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We have:
∣∣∣∣degB(L) − d

2pa(C) − 2
degB(ωC )

∣∣∣∣ (2.13)

=
∣∣∣∣drkw(OB) − d

pa(C) − 1
(pa(B) − 1 + δB/2)

∣∣∣∣

= d

pa(C) − 1

∣∣(pa(C) − 1)rkw(OB) − (pa(B) − 1 + δB/2)
∣∣ .

Note that condition (�)B in Lemma 2.12 can be also written as

pa(B) − 1 < (pa(C) − 1)rkw(OB) < pa(B) − 1 + δB,

which is equivalent to

∣∣(pa(C) − 1)rkw(OB) − (pa(B) − 1 + δB/2)
∣∣ < δB/2.

(a) Let d ≥ pa(C) − 1 and assume that L is balanced. Then Equations (2.12) and
(2.13) imply

∣∣(pa(C) − 1)rkw(OB) − (pa(B) − 1 + δB/2)
∣∣ ≤ δB

2

pa(C) − 1

d
.

If d > pa(C) − 1, we get

∣∣(pa(C) − 1)rkw(OB) − pa(B) + 1 − δB/2
∣∣ < δB/2,

which is equivalent to (�)B . This implies that OC is w-stable. If d = pa(C) − 1, we
get

∣∣(pa(C) − 1)rkw(OB) − pa(B) + 1 − δB/2
∣∣ ≤ δB/2,

so we can conclude that OC is w-semistable.
(b) Let d ≤ pa(C) − 1 and assume that OC is w-stable. Then w satisfies (�)B for

all subcurve B. Let R be a rational component of C , since (�)R holds, we have:

−1 < (pa(C) − 1)wR < δR − 1.

We recall that wR = dR
d and dR ≥ 1 since L is ample. So we have:

1 ≤ dR <
d

pa(C) − 1
(δR − 1),

as d ≤ pa(C) − 1 we obtain 1 ≤ dR < δR − 1. This implies δR ≥ 3, so C is a stable
curve.
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Now we prove that L is strictly balanced. Since d ≤ pa(C) − 1 we have

∣∣∣∣degB(L) − d

2pa(C) − 2
degB(ωC )

∣∣∣∣ <
d

(pa(C) − 1)

δB

2
≤ δB

2

by Inequality (2.13). This proves that L is strictly balanced. ��
Corollary 2.19 Let C be a stable nodal curve with pa(C) ≥ 2. Let L be an ample line
bundle of degree pa(C) − 1 and wL be the polarization induced by L on C. Then L
is strictly balanced if and only if OC is wL-stable.

Proof SinceC is stable, the exceptional locus ofC is empty. Moreover, as we assumed
deg(L) = pa(C) − 1, Condition (2.12) is equivalent to (�B). This implies the claim.

��

3 Good polarizations andw-Stability ofOC

Let (C, w) be a polarized nodal curve. In this section we will obtain sufficient condi-
tions for a polarizationw to be good (see Theorem 3.9). Recall that, by Corollary 2.15,
any good polarization satisfies properties (�)B of Lemma 2.12, or equivalently, is such
that OC is w-stable. We will show that for curves of compact type, w-stability of OC

is also sufficient in order to have w good (see Theorem 3.10).
With this aim, we will give a description of �w(E) as a function depending only

on the residual ranks and on the contribution of the non-free part of the stalks of E at
nodes of C . We will get this description by considering paths on the dual graph of C ,
as follows.

Assume that C has γ irreducible components and δ nodes. Let C1, . . . ,Cγ denote
the smooth components of C and p1, . . . , pδ denote the nodes of C . Let �C = (V, E)

be the dual graph of C . It is a finite graph with γ = #V vertices and δ = #E edges.
Since C is connected the same holds for �C .

Notations 3.1
Given a path γ in �C , we will denote by L(γ ) ∈ N the length of γ i.e. the number of
edges which are part of γ . A path has length 0 if and only if it is the trivial path. A path
joining Ci with C j is saidminimal if it has minimal length among all the paths joining
Ci and C j . As the graph �C is connected and finite, minimal paths exist for each pair
of vertices. Two edges of�C are said equivalent if and only if the corresponding nodes
lie on the same two components, i.e. if they connect the same vertices of �C .

A marking M is a subset of E which is a transversal for the above equivalence
relation, i.e. every edge of �C is equivalent to exactly one edge in M. The subgraph
�M
C = (V,M) has the same vertices of �C , is connected and it is also simple (i.e.

for each pair of vertices there is at most one edge).
For our construction wewill need to fix arbitrarily a component of C. For simplicity,

we will use Cγ . We define P as any set satisfying the following properties:

(1) the elements of P are minimal paths in �M
C connecting a vertex Ci to Cγ ;
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(2) for each Ci there exists exactly one path in P starting from Ci , which we will be
denoted by γi ;

(3) if γi ∈ P and C j is a vertex on γi , then γ j is a restriction of γi .

We will call P a set of minimal paths of �C . In order to simplify the notations, if
C j ∈ V, pk ∈ E we will write pk ⊆ γi if and only if pk is an edge on γi and C j ∈ γi
if and only if C j is a vertex on γi . We setM′ the subset ofM which consists of all the
edges on some path in P .

If γi ∈ P and p j ⊆ γi is a node in Ck1 ∩ Ck2 , we say that Ck1 precedes Ck2 with
respect to γi if and only if, compared to Ck2 , Ck1 is closer to Ci along the path γi .

Indeed, this does not depend on the choice of γi ∈ P passing through p j as the
next lemma shows.

Lemma 3.2 Assume that γi1 and γi2 are two minimal paths ending in Cγ , which pass
through p j ∈ M with p j ∈ Ck1 ∩ Ck2 . Then the curve Ck1 precedes Ck2 with respect
to γi1 if and only if the same happens with respect to γi2 .

Proof Assume, by contradiction, thatCk1 precedes Ck2 with respect to γi1 and follows
Ck2 with respect to γi2 . For all l = 1, 2, we denote by γ ′

il
the path obtained by γil

by removing all the edges before p j and by γ ′′
il
the path obtained by γ ′

il
were we

have removed also p j . Hence, γ ′
i1
and γ ′′

i2
are both minimal paths (since minimality

is preserved by restriction) which start from Ck1 and end in Cγ . Similarly, γ ′
i2
and γ ′′

i1
are both minimal paths connecting Ck2 and Cγ . As two minimal path joining the same
vertices must have the same length we have

{
L(γ ′

i1
) = L(γ ′′

i2
) = L(γ ′

i2
) − 1

L(γ ′
i2
) = L(γ ′′

i1
) = L(γ ′

i1
) − 1

which is clearly impossible. ��
Definition 3.3 Let p j ∈ E corresponding to a node in Ck1 ∩ Ck2 . If p j is equivalent
to an edge which is on a path γi ∈ P we say that Ck1 precedes Ck2 if and only if Ck1
precedes Ck2 with respect to γi . If p j is not equivalent to any edge on a path γi ∈ P ,
we choose arbitrarily one of the two possible cases (Ck1 precedes Ck2 or Ck2 precedes
Ck1 ) making the same choice for equivalent edges.

Lemma 3.2 ensures that the above definition is well posed. This gives the structure
of oriented graph to �C and to its subgraph �M

C .

Notations 3.4
Let E be a depth one sheaf on C. Let p j be a node with p j ∈ Ck1 ∩ Ck2 . Denote by
q j,k1 and q j,k2 the points of Ck1 and Ck2 respectively on the normalization of C which
are glued together in order to obtain p j . We recall that we have integers s j , a j,k1 and
a j,k2 such that

Ep j = Os j
p j ⊕ Oa j,k1

q j,k1
⊕ Oa j,k2

q j,k2
,
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and satisfying rkl = s j + a j,kl for l = 1, 2. We set

a j := a j,k1 and b j := a j,k2 ⇐⇒ Ck1 precedes Ck2 (3.1)

and the opposite in the other case. In particular, we have that a j + b j = tp j .

Lemma 3.5 Let E be any depth one sheaf on C. Then

(a) if pl and p j are equivalent edges, we have bl − al = b j − a j ;
(b) if γi ∈ P then we have

∑
p j⊆γi

(b j − a j ) = rγ − ri .

Proof (a) Let E be a depth one sheaf. Let p j and pl be two equivalent edges. Then
p j , pl ∈ Ck1 ∩ Ck2 . Without loss of generality we can assume that Ck1 precedes
Ck2 . Then

rk1 = s j + a j = sl + al rk2 = s j + b j = sl + bl ,

so al − a j = s j − sl = bl − b j and then bl − al = b j − a j as claimed.
(b) Let γi ∈ P .Wewill prove the formula by induction on the lenght of γi . If L(γi ) = 1

then γi is a single edge (say p j ) joining the vertices Ci and Cγ . Then ri =
s j + a j , rγ = s j + b j so rγ − ri = b j − a j as claimed. Now assume that the
formula is true for any minimal path of lenght at most L and consider a minimal
path γi of lenght L + 1. Let pl be the first edge, and denote by Ck the second
vertex on the path (the first is Ci ). If we remove pl from the path we get, by the
definition of P the minimal path γk joining Ck to Cγ which has length L . So, by
induction, we have

rγ − rk =
∑

p j⊆γk

(b j − a j ).

On the other hand we have ri = sl + al , rk = sl + bl so rk − ri = bl − al and we
have

rγ − ri = (rk − ri ) + (rγ − rk) = (bl − al) +
∑

p j⊆γk

(b j − a j ) =
∑

p j⊆γi

(b j − a j )

as claimed.
��

By Lemma 3.5(a) it follows that the choice of the marking M does not influence
the relation in Lemma 3.5(b).

Definition 3.6 Assume that a marking M and a set P of minimal paths on �C (as
in Notation 3.1) have been chosen. Then, for any p j ∈ M, we define A j to be the
subcurve of C with the following property: Ci is a component of A j if and only if
p j ⊆ γi .
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Note that A j could be empty for same j : this occurs exactly when p j /∈ M′.
Before stating the main result of this section, we will need the following technical

result:

Lemma 3.7 Let A j ⊆ C be as in Definition 3.6 and assume that A j is not empty. Then

(a) A j is a proper connected subcurve of C;
(b) Ac

j is connected;

(c)
∑

Ci⊆A j

(
λi − δi

2

)
= 1− pa(A j )+(pa(C)−1)rkw(OA j )− 1

2δA j = �w(OA j )−
1
2δA j ;

(d) if C is of compact type, then δA j = 1.

Proof (a) Consider a componentCi of A j . Then the pathγi passes through p j . Assume
that p j ∈ Ck1 ∩ Ck2 and that Ck1 precedes Ck2 . Let Cl be a vertex on γi which is
between Ci and Ck1 (included). Then γl is the restriction of γi and p j is an edge
in γl . In particular, Cl is a component of A j . This shows that Ci is connected to
Ck1 using only curves in A j so A j is connected. Properness follows as Ck2 cannot
be a component of A j .

(b) It is enough to show that if Ci is a component not in A j then there is a path in �C

fromCi toCγ which only passes through verticeswhich correspond to components
not in A j . The path γi connects Ci with Cγ . Assume, by contradiction, that one
of the vertex on the path γi , say Ck , is a component of A j . Then, the restriction of
γi from Ck to Cγ is γk . Since Ck is a component of A j we have that p j ⊂ γk , so
the same is true for γi . But this is impossible as we assumed that Ci /∈ A j .

(c) We denote by C(A j ) and N (A j ) the number of components and of nodes respec-
tively of the curve A j . We recall that δA j = A j · Ac

j is the number of nodes of C
lying on A j which are not nodes of A j . Then we have

∑

Ci⊆A j

(
λi − δi

2

)
=

∑

Ci⊆A j

[1 − gi + wi (pa(C) − 1)] − 1

2

∑

Ci⊆A j

δi

= C(A j ) −
∑

Ci⊆A j

gi

+rkw(OA j )(pa(C) − 1) − N (A j ) − 1

2
δA j

= 1 − pa(A j ) + (pa(C) − 1)rkw(OA j ) − 1

2
δA j (3.2)

as A j is connected and pa(A j ) = ∑
Ci⊆A j

gi + N (A j ) −C(A j ) + 1. Finally, we
recall that 1 − pa(A j ) + (pa(C) − 1)rkw(OA j ) = �w(OA j ).

(d) SinceC is of compact type, by (a) and (b) it follows that A j and Ac
j are both curves

of compact type too. From Equation (1.3) we have:

γ∑

i=1

gi =
∑

Ci⊆A j

gi +
∑

Ci⊆Ac
j

gi + δA j − 1,
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784 S. Brivio, F. F. Favale

which implies δA j = 1. ��
Remark 3.8 We point out that, if C is of compact type, the family of connected curves
{A j }, defined in Definition 3.6, can be used to obtain the conditions of w-stability in
[25] (see also Remark 2.14).

We are now able to state our first result of this section:

Theorem 3.9 Let (C, w) be a polarized nodal curve. Fix a marking M on the dual
graph �C and a set of minimal path P as in Notations 3.1. Then for any depth one
sheaf E we have:

�w(E) =
∑

p j∈M′

[
a j

(
1

2
(1 − δA j ) + �w(OA j )

)
+ b j

(
1

2
(1 + δA j ) − �w(OA j )

)]

+1

2

∑

p j /∈M′
(a j + b j ).

In particular, if the conditions

(��)A j : 1

2
(δA j − 1) < �w(OA j ) <

1

2
(δA j + 1) (3.3)

hold for all the non-empty subcurves A j then w is a good polarization.

Proof We start from the expression of �w(E) given by Proposition 2.5. Then, using
Lemma 3.5(b) we have

�w(E) =
γ∑

i=1

ri

(
λi − δi

2

)
+ 1

2

δ∑

j=1

tp j

=
γ∑

i=1

⎛

⎝rγ +
∑

p j⊆γi

(a j − b j )

⎞

⎠
(

λi − δi

2

)
+ 1

2

δ∑

j=1

tp j

= rγ

γ∑

i=1

(
λi − δi

2

)
+

γ∑

i=1

∑

p j⊆γi

(a j − b j )

(
λi − δi

2

)
+ 1

2

δ∑

j=1

tp j .

By Lemma 2.4(a) we have that the coefficient of rγ in the last equality is 0 so �w(E)

is equal to

γ∑

i=1

∑

p j⊆γi

(a j − b j )

(
λi − δi

2

)
+ 1

2

δ∑

j=1

(a j + b j )

=
δ∑

j=1

(a j − b j )
∑

γi⊇p j

(
λi − δi

2

)
+ 1

2

δ∑

j=1

(a j + b j )

123



Nodal curves and polarizations with good properties 785

=
∑

p j∈M′

⎡

⎣a j

⎛

⎝1

2
+

∑

γi⊇p j

(
λi − δi

2

)⎞

⎠ + b j

⎛

⎝1

2
−

∑

γi⊇p j

(
λi − δi

2

)⎞

⎠

⎤

⎦

+1

2

∑

p j /∈M′
(a j + b j )

since, if p j /∈ M′ the sum over the path passing through p j is trivial. If p j ∈ M′, the
condition γi ⊇ p j is equivalent to Ci ∈ A j so, by Lemma 3.7(c) we have

�w(E) =
∑

p j∈M′

[
a j

(
1

2
+ �w(OA j ) − δA j

2

)
+ b j

(
1

2
− �w(OA j ) + δA j

2

)]

+1

2

∑

p j /∈M′
(a j + b j )

which is equal to the expression in the statement of the Theorem.
Finally, if Conditions (3.3) hold, we have that all the coefficients of a j and b j in the

last expression of�w(E) are strictly positive. This proves that�w(E) ≥ 0.Moreover,
if at least one among a j and b j for j = 1, . . . , δ is not zero we have �w(E) > 0.
Hence we have that �w(E) > 0 if and only if E is locally free, i.e. w is a good
polarization. ��

With the expression given in Theorem 3.9 we are able to give a (positive) answer
to Question 2.16 for curves of compact type.

Theorem 3.10 Let (C, w) be a polarized nodal curve of compact type. Then the col-
lection {A j | j ∈ E} depends only on the choice2 of Cγ , for all p j ∈ E the curve A j

is non-empty and we have

�w(E) =
∑

p j∈E

[
a j

(
�w(OA j )

) + b j
(
1 − �w(OA j )

)]
.

Moreover, we have that OC is w-stable if and only if w is good.

Proof As C is of compact type we have that E = M and also that M = M′. In
fact, assume that there exists an edge p j ∈ M \ M′, then p j = Ck1 ∩ Ck2 and
p j � γki , with γki ∈ P . Then γk1 ∪ γk2 ∪ p j is the support of a cycle in �C , which
is impossible. The set P is uniquely determined by the curve fixed at the beginning,
i.e. on the component we have labeled Cγ . Then, the collection {A j | j ∈ E} is also
uniquely determined by Cγ . Finally, since �C does not have any cycles, then A j is
non-empty for all p j ∈ E .

2 It is the arbitrary curve which we fix when we define the set of minimal paths P .

123



786 S. Brivio, F. F. Favale

As C is of compact type we have, by Lemma 3.7(d) that δA j = 1 for all subcurve
A j . With this information we can write the formula of Theorem 3.9 as follows:

�w(E) =
∑

p j∈E

[
a j

(
�w(OA j )

) + b j
(
1 − �w(OA j )

)]
.

In order to conclude the proof, by Theorem 2.9, we only need to show that if OC

is w-stable then w is a good polarization. Assume that OC is w-stable. This, by
Lemma 2.12, is equivalent to saying 0 < �w(OB) < δB for all proper subcurves B
of C . In particular, for all j we have 0 < �w(OA j ) < 1, which are the Conditions
(3.3) stated in Theorem 3.9. ��

In particular, for nodal curves of arithmetic genus pa(C) ≤ 1 we have a complete
picture of the situation:

Corollary 3.11 Let C be a nodal curve with pa(C) ≤ 1.

(a) If pa(C) = 0, then any polarization on C is good;
(b) if pa(C) = 1 and C is a cycle of rational curves, then any polarization is good;
(c) if pa(C) = 1 and C is of compact type, then a good polarization on C does not

exist.

In particular, if (C, w) is any polarized nodal curve with pa(C) ≤ 1, then OC is
w-stable if and only if w is good.

Proof (a) Let C be a nodal curve with pa(C) = 0. Then C is of compact type and by
Lemma 2.12, OC is w-stable for any polarization w. By Theorem 3.10 we have
that any w is a good polarization.

(b) LetC be a cycle of rational curves andw a polarization. Fix a markingM and a set
P of minimal paths on �C and let {A j } be the subcurves defined in Definition 3.6.
By Lemma 3.7, for any j for which A j is not empty, A j and Ac

j are both proper
connected subcurves of C , so pa(A j ) = pa(Ac

j ) = 0. From Equation (1.3), we

get δA j = 2. Since �w(OA j ) = 1 − pa(A j ) = 1, we have 1
2 < �w(OA j ) < 3

2
which are the sufficient conditions (��)A j stated in Theorem 3.9. This implies that
w is good.

(c) It follows by Remark 2.13.
��

Finally as an immediate consequence of Corollary 2.19 and Theorem 3.9, we have
the following:

Corollary 3.12 Let C be a stable nodal curve of compact type with pa(C) ≥ 2. Let L
be a line bundle on C with degree pa(C) − 1. Then wL is a good polarization if and
only if L is strictly balanced.

As we have seen in the proof of Theorem 3.10, Conditions (3.3) are really useful as
they allow us to prove that, on a curve of compact type, a polarization w is good if and
only ifOC isw-stable. Nevertheless, it can happen that the notion of good polarization
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is equivalent to the w-stability of OC also for curves which are not of compact type
(see Corollary 3.11 and the examples in Sect. 4). The reason for this is that Conditions
(3.3) are, in general, only sufficient. Moreover, to the authors’ knowledge, there is no
example of a polarized curve (C, w) with OC which is w-stable but for which w is
not good. This suggests the following conjecture:

Conjecture 3.13 Let (C, w) be a polarized nodal curve. Then OC is w-stable if and
only if w is a good polarization.

Finally, Theorem 3.9 allows us to produce an open subset of good polarizations on
a stable nodal curve C with pa(C) ≥ 2. For any nodal curve C we will denote by
WC ⊂ Q

γ the variety parametrizing polarizations on C .

Lemma 3.14 Let C be a nodal curve, fix a markingM and a set of minimal paths P .
Then Conditions (3.3) are open inWC .

Proof Let {A j } be the curves constructed starting from P . Consider w and w′ inWC

and set εi = w′
i − wi . Then we have

�w′(OA j ) = �w(OA j ) + (pa(C) − 1)
∑

Ci⊆A j

εi .

If w satisfies Conditions (��)A j for all non-empty A j then one can take εi to be small
enough so that (��)A j hold also for w′. ��
Corollary 3.15 Let C be a stable nodal curve with pa(C) ≥ 2. Then there is a non-
empty open subset of WC whose elements are good polarizations.

Proof Since C is stable we can consider the canonical polarization η (see 2.8). From

its definition it follows that �η(OA j ) = 1
2δA j , so η satisfies condition (��)A j . One

can then conclude by using Lemma 3.14. ��

4 Some examples

In this section we propose some examples of curves (not of compact type) which we
have analyzed in order to study the relation betweenw-stability ofOC and the fact that
w is a good polarization. We underline that we always obtain an equivalence between
these two concept. So these are motivating examples for Conjecture 3.13.

Example 4.1 Let (C, w) be a polarized nodal curve with two smooth irreducible com-
ponents and δ nodes.

Let C1 and C2 be the components of C and p1, . . . , pδ the nodes. If δ = 1 then C
is of compact type and the assertion follows from Theorem 3.10, so we will assume
δ ≥ 2. We fix M = {p1} so that P = {γ1, γ2}, where γ1 has support on the edge
corresponding to p1 and γ2 is trivial. We have A1 = C1 and A2 = · · · = Aδ = ∅. Let
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788 S. Brivio, F. F. Favale

E be any depth one sheaf on C , by Theorem 3.9 we have:

�w(E) = a1

(
1

2
(1 − δ) + λ1

)
+ b1

(
1

2
(1 + δ) − λ1

)
+ 1

2

δ∑

j=2

(a j + b j )

where, as in Lemma 2.4, λi = �w(OCi ). Assume that OC is w-stable, then for
i = 1, 2, we have 0 < λi < δ, with λ1 + λ2 = δ. If (��)C1 holds, i.e. if

1

2
(δ − 1) < λ1 <

1

2
(1 + δ) (4.1)

then by Theorem 3.9 w is good. If (��)C1 does not hold we have either λ1 ∈(
0, 1

2 (δ − 1)
) = I1 or λ1 ∈ ( 1

2 (1 + δ), 1
) = I2. In the second case we have λ2 ∈ I1

so up to changing the label to C1 and C2 we can assume λ1 ∈ I1. Then we have

�w(E) = (b1 − a1)

(
1

2
(δ − 1) − λ1

)
+ b1 + 1

2

δ∑

j=2

(a j + b j ).

If b1 ≥ a1, then we are done. Assume now that a1 ≥ b1. By Lemma 3.5, we have
b j − a j = b1 − a1 for all j so we can write

�w(E) = (b1 − a1)

(
1

2
(δ − 1) − λ1

)
+ 1

2

δ∑

j=1

b j + 1

2
(a1 − b1)(δ − 1)

= λ1(a1 − b1) +
δ∑

j=1

b j .

Hence, also in this case we have that w is good.

Example 4.2 Let (C, w) be a polarized nodal curve which is a cycle with 3 smooth
irreducible components.

LetC1,C2 andC3 be the components and let p1, p2 and p3 the nodes. The dual graph
is a trianglewith edge pi opposite to the nodeCi . In this caseE = M,P = {γ1, γ2, γ3},
where γ1 and γ2 have support on the edge corresponding to p2 and p1 respectively
and γ3 is trivial. Then A1 = C2, A2 = C1 and A3 = ∅. Let E be any depth one sheaf
on C , by Theorem 3.9 we have:

�w(E) = a1

(
λ2 − 1

2

)
+ b1

(
3

2
− λ2

)
+ a2

(
λ1 − 1

2

)

+b2

(
3

2
− λ1

)
+ 1

2
(a3 + b3)

where, as above λi = �w(OCi ). Assume that OC is w-stable, we have 0 < λi < 2
with λ1 + λ2 + λ3 = 3. If conditions (��)Ai hold, i.e. if

1
2 < λ1, λ2 < 3

2 we can
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conclude. If (��)Ai do not hold, one can prove that by exchanging the labels to C1,C2
and C3 one can assume 0 < λ1 < 1

2 and 1
2 < λ2 < 3

2 . We can write

�w(E) = a1

(
λ2 − 1

2

)
+ b1

(
3

2
− λ2

)
+

(
1

2
− λ1

)
(b2 − a2) + b2 + 1

2
(a3 + b3).

The cycle in the dual graph yields the following relation

b2 − a2 = b1 − a1 + b3 − a3.

As in the previous example using the above relation, one can prove that �w(E) ≥ 0
and equality holds if and only if E is locally free, i.e. that w is good.
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