
A&A 678, A110 (2023)
https://doi.org/10.1051/0004-6361/202347487
c© The Authors 2023

Astronomy
&Astrophysics

Structure of the equivalent Newtonian systems in MOND N-body
simulations

Density profiles and the core-cusp problem

Federico Re1,2 and Pierfrancesco Di Cintio3,4,5

1 Dipartimento di Fisica “Giuseppe Occhialini”, Universitá di Milano Bicocca, Piazza della Scienza 3, 20126 Milano, Italy
e-mail: federico.re@unimib.it

2 INFN-Sezione di Milano Via Celoria 15, 20133 Milano, Italy
3 CNR-ISC, via Madonna del Piano 17, 50022 Sesto Fiorentino, Italy

e-mail: pierfrancesco.dicintio@cnr.it
4 INAF-Osservatorio Astronomico di Arcetri, Largo Enrico Fermi 5, 50125 Firenze, Italy
5 INFN-Sezione di Firenze, via Sansone 1, 50022 Sesto Fiorentino, Italy

Received 17 July 2023 / Accepted 25 August 2023

ABSTRACT

Aims. We investigate the core-cusp problem of the Λ cold dark matter (ΛCDM) scenario in the context of the modified Newtonian
dynamics (MOND) paradigm while exploiting the concept of an equivalent Newtonian system (ENS).
Methods. By means of particle-mesh N-body simulations in MOND, we explored the processes of galaxy formation via cold dis-
sipationless collapse and the merging of smaller substructures. From the end states of our simulations, we recovered the associated
ENS and studied the properties of their dark matter halos. We compared the simulation results with simple analytical estimates with
a family of γ-models.
Results. We find that the dark matter density of ENSs of most spherical cold collapses have a markedly cored structure, particularly
for the lowest values of the initial virial ratios. End states of some simulations with initially clumpy conditions have more complex
profiles, and some of their ENSs exhibit a moderate cusp, with the logarithmic density slope always shallower than one.
Conclusions. In contrast to what one would expect from theoretical and numerical arguments in ΛCDM, these results seem to
point towards the fact that the absence of a central DM cusp in most observed galaxies would be totally consistent in a MONDian
description.
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1. Introduction

In the Λ cold dark matter scenario (hereafter ΛCDM), theoretical
arguments and collisionless N-body simulations (Navarro et al.
1997) predict that galaxies are embedded in dark matter (DM)
halos characterised by a ρ(r) ∝ r−1 central cusp. From the
analysis of the central velocity dispersion profiles of dwarf
galaxies, observational results seem to suggest that the DM dis-
tribution has a cored density distribution1 (see Moore 1994;
Di Cintio et al. 2014).

Several solutions to this apparent contradiction – often
referred to as ‘the core-cusp problem’ – including as self-
interacting DM (e.g. see Lovell et al. 2012; Nguyen et al. 2021;
Eckert et al. 2022), DM annihilation (e.g. see Vasiliev 2007),
baryon feedback (e.g. see Governato et al. 2010; Cole et al.
2011; Pontzen & Governato 2012; Del Popolo & Pace 2016),
or simply a misinterpretation of the observational data

1 Technically speaking, in multi-component equilibrium self-
gravitating systems, there exist analytical constraints on the magnitude
of a component’s (e.g. stars) density given the logarithmic slope of
the other one (e.g. Dark Matter; e.g. see Dubinski & Carlberg 1991;
Ciotti & Pellegrini 1992; Ciotti 1996, 1999). Moreover, for a broad
range of spherical density profiles, the central density slope constrains
the value of the central anisotropy profile (An & Evans 2006).

(McGaugh et al. 2003), have been proposed so far. However,
notwithstanding the great amount of theoretical and observa-
tional work, a clear answer is still far from being obtained.
Moreover, given the large interest in alternative theories of grav-
ity, such as f (R) gravities (Buchdahl 1970; Sotiriou & Faraoni
2010), modified gravity (MoG; Moffat 2006; Moffat & Rahvar
2013), retarded gravity (Raju 2012; Yahalom 2022), emergent
gravity (Verlinde 2011, 2017), refracted gravity (Cesare et al.
2020; Sanna et al. 2023), and fractional gravity (Giusti 2020;
Benetti et al. 2023), among others, which have been proposed to
avoid introducing the DM as a collisionless fluid of exotic parti-
cles, it is natural to ask what becomes of the core-cusp problem
in those theories.

In this work, we investigate this matter in the modified New-
tonian dynamics paradigm (hereafter MOND; Milgrom 1983).
We recall that in the Bekenstein & Milgrom (1984) Lagrangian
formulation of MOND (sometimes referred to as AQUAL), the
classical Poisson equation for a density-potential pair (ρ; Φ),

∆Φ = 4πGρ, (1)

is substituted by the non-linear field equation

∇ ·

[
µ

(
||∇Φ||

a0

)
∇Φ

]
= 4πGρ. (2)
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In the equation above, a0 ≈ 10−8 cm s−2 is a scale accelera-
tion and µ(x) is the MOND interpolating (monotonic) function
known only by its asymptotic limits

µ(x) ∼
{

1, x � 1,
x, x � 1;

(3)

so that for ||∇Φ|| � a0 Eq. (2), one recovers the Newtonian
regime, while for ||∇Φ|| � a0, one obtains the so-called deep-
MOND (hereafter dMOND) regime, and Eq. (2) simplifies to

∇ · [||∇Φ||∇Φ] = 4πGρa0. (4)

We note that the non-linear operator in Eq. (4) is the special case
of the p-Laplace operator (e.g. see Stein 1970) for p = 3, while
Eq. (1) corresponds to the p = 2 case. In this respect, Eq. (2)
somewhat ‘interpolates’ between the two regimes via the µ func-
tion. We also note that in both cases, any given baryonic mass
density ρ can be taken out from Eq. (1) to obtain the relation

µ

(
||gM ||

a0

)
gM = gN + S (5)

between the MOND and Newtonian force fields gM and gN and
where S ≡ ∇×h(ρ) is a density-dependent solenoidal field. It can
be proven that the latter is identically null for systems in spher-
ical, cylindrical, or planar symmetry, while it is generally non-
zero for arbitrary configurations of mass. The extent to which
the stellar system at hand with mass M is dominated by MOND
effects is usually quantified by the dimensionless parameter

κ ≡
GM
r2

c a0
, (6)

where rc is the scale of the baryon distribution. That is, for
κ � 1, the system is mainly in the Newtonian regime, and vice
versa for κ ≤ 1 MOND effects, as they become strong at all
scales.

For any given stationary model in MOND, one can always
build the equivalent Newtonian system (hereafter ENS), defined
as a system with the same baryonic mass density ρ∗ plus a
DM halo with density ρDM such that their total potential Φ
satisfying Eq. (1) is the same as the MOND potential enter-
ing Eq. (2) for the sole density ρ∗. We note that, in princi-
ple, the positivity of the DM density of the ENS is not always
assured (see Milgrom 1986), particularly for flattened systems
(see Ciotti et al. 2006, 2012; Ko 2016). We recall that Milgrom
(2010) introduced a Quasi-linear formulation of MOND (here-
after QuMOND) where the modified field equation has the same
form as Eq. (2), with ν(||gN/a0||) in lieu of ν(||gM/a0||). The
QuMOND interpolating function ν(y) can be recovered from
µ(x), appearing in Eq. (2) as

ν =
1
µ
. (7)

It is easy to show that from a given baryonic density distribution,
one obtains the MONDian potential Φ = ΦN+ΦpDM by first solv-
ing a classical Poisson equation for the Newtonian potential ΦN
and that through an algebraic passage involving ν, such poten-
tial becomes the source for the potential ΦpDM of the so-called
phantom Dark Matter via a second application of the Poisson
equation. Notably, in this alternative bi-potential MOND formu-
lation, the DM is de facto interpreted as the effect of the sec-
ond potential. As in AQUAL, in QuMOND one can retrieve

a dMOND regime that for spherical systems easily reads as
gM =

√
a0/gNgN (see Milgrom 2021).

Though several works have investigated the differences
between static equilibrium models in Newtonian and MOND
gravities, or the interpretation of observations in both theories,
much less is known about the formation and evolution of stel-
lar systems. For obvious reasons, in observed systems, one has
access only to de-projected properties for both stellar and dark
components in the Newtonian framework. Numerical experi-
ments, though with their intrinsic limitations, yield information
on the full phase-space of the simulated models, in particular the
3D density profiles. In this paper, we explore the structure of the
ENS of MOND N-body simulations of galaxy formation in order
to shed some light on the possibility that the core-cusp prob-
lem is a MOND artefact in this paradigm of gravity. We stress
the fact that the MOND core-cusp problem discussed here is
different from that introduced recently by Eriksen et al. (2021),
which deals with the modified gravity versus the modified inertia
hypothesis (see Milgrom 2022).

The rest of this paper is structured as follows. In Sect. 2,
we revise the definition of ENS and discuss their properties. In
Sect. 3, we introduce the numerical models and the analysis of
the simulations. In Sect. 4, we discuss the properties of the sim-
ulations’ end states. Finally, in Sect. 5, we summarise and dis-
cusses the implications and the relations to previous work.

2. Equivalent Newtonian systems

As anticipated above, the ENS of a MOND model is the Newto-
nian system with the same stellar (baryonic) mass distribution ρ∗
with an additional dark component ρDM such that the total poten-
tial (and thus the force field) is the same of the parent MOND
system (see Sanders & Begeman 1994; Angus et al. 2006). For
the case of an isolated spherical system, one has

ρDM = (4πG)−1∇ · (gM − gN) (8)

since the solenoidal term S vanishes. We stress the fact that,
Eq. (5) in QuMOND can be rewritten exactly as

gM = ν

(
||gN ||

a0

)
gN . (9)

If Eq. (9) is applied to a spherically symmetric system, one
has ν(y) = x/y, and the total density of its ENS (i.e. baryonic
plus phantom DM; see e.g. Hodson et al. 2020; Oria et al. 2021)
becomes

ρ∗(r) + ρDM(r) =
d(yν)

dy
ρ∗(r) −

ydν
dy

2
r3

∫ r

0
ρ∗(r)r2dr. (10)

We consider the family of spherical γ-models (Dehnen 1993;
Tremaine et al. 1994) with the density profile given by

ρ∗(r) =
3 − γ

4π
Mrc

rγ(r + rc)4−γ , (11)

where M is the total baryonic mass, 0 ≤ γ < 3 is the logarithmic
density slope, and rc is the scale radius.

If the density profile, Eq. (11), is substituted in Eq. (10), one
obtains

ρ∗ + ρDM = ρ∗

[
rc

r + rc

d(yν)
dy
−

2
3 − γ

ydν
dy

]
, (12)
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Fig. 1. Ratio of the stellar to dark density in the ENS (top) and DM
and stellar density profiles (bottom left and bottom right) in units of
3M/4πr3

c for κ = 100 and γ = 0, 0.5, 1, 1.5, 2, and 2.5.
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Fig. 2. Same as in Fig. 1 but for κ = 1.

where

y =
||gN ||

a0
= κ

(
r
rc

)1−γ (
1 +

r
rc

)γ−3

, (13)

with κ defined in Eq. (6). We note that for small radii r, Eq. (13)
tends to zero if γ < 1, while it diverges for γ > 1. In practice,
at least for the γ < 1 case, the model falls in the MOND regime,
even in central regions. Strong MOND corrections in the centre
are therefore associated with a dominant DM component ρDM in
the ENS.

2.1. Massive galaxies

In this section, we consider a typical 1012 M� massive elliptical
galaxy with a scale radius of 3 kpc modelled with a γ-model. In
this case, κ ≈ 102. Due to discreteness effects of the underlying
stellar system, Eq. (11) can be considered reliable until the radius

that contains a fraction of roughly 10−3 of the total mass M (in
this case 109 M�; i.e. the typical mass of its central supermas-
sive black hole). The Lagrangian radius enclosing such a mass
fraction is

r10−3 =
rc

10
3

3−γ − 1
. (14)

The region in the MOND regime has a far smaller radius such
that γ ≤ 1 is obtained by y(r10−3 ) � 105r2

10−3/r2
c , varying between

�2 × 102 and �2 × 103. And thus, even in the framework of
(Qu)MOND, the phantom DM halo does not really dominate in
the central region of a cored stellar density profile. In Fig. 1, we
plot the ratio of the stellar to phantom DM for γ = 0, 0.5, 1, 1.5,
2, and 2.5, as well as their respective radial density profiles for
κ = 102. We note that, remarkably, the models with a strong cusp
(i.e. γ > 1) have phantom DM halos in their ENS characterised
by a decreasing density inside the scale radius. Vice versa, cored
models are associated with ENSs that have halos with a weak
cusp and several slope changes.

2.2. Diffuse galaxies

In this section, we consider a diffuse galaxy where κ ∼ 1, which
allows its central region to fall within the MOND regime, even
for radii bigger than r10−3 . Typically, this occurs again if γ <
1. We found that limr→0 y(r) = 0 in the central region; hence,
ν(y) ∼ y−1/2. If substituted in Eq. (12), this yields

ρ∗ + ρDM

ρ∗
∼

5 − γ
6 − 2γ

√
a0r2

c

GM

( rc

r

) 1−γ
2
. (15)

In other words, the phantom DM component also dominates at
small radii. In particular, the latter has a central profile given by

ρDM ∼
(5 − γ)a0

8πGrc

√
a0r2

c

GM

( rc

r

) 1+γ
2
. (16)

The equation above is characterised by a weak cusp with a loga-
rithmic density slope of α = −

1+γ
2 > −1. For example, for γ = 0,

the DM component in the ENS would have a cusp of ∝r−1/2. We
note that this trend is valid for any spherically symmetric stellar
distribution with a central core and not only for the γ = 0 Dehnen
model. We also note it always implies a weak central cusp with
a logarithmic density slope of α = −1/2 for the phantom dark
matter. This has the interesting astrophysical implication that a
galaxy with a cored stellar density profile could indeed be inter-
preted in the DM scenario as having a cored halo due to the fact
that weak cusps can often be mistaken for cores.

For the cases with γ > 1 and κ = 1 in which the gravitational
field diverges in the centre, even though the stellar density is dif-
fuse, the ENS is DM dominated only in the external region. This
can be easily checked by substituting the asymptotic behaviour
ν(y) ∼ 1 + 1

y
− 1

y2 + o(y−2) and finding from Eq. (12) that

ρDM

ρ∗
∼

2
3 − γ

a0r2
c

GM

(
r
rc

)γ−1

−
r
rc

+ O(rγ), (17)

implying a vanishingly small central DM density. This is sum-
marised in Fig. 2, where we plot the same quantities as in the
previous figure but with κ = 1. As expected, in the upper plot
showing ρ∗/ρDM, for the values of γ 0 and 0.5 (corresponding
to the red and orange lines) the density ratio falls everywhere
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below one, meaning the system is dominated by the phantom
DM distribution at all radii. For the γ ≥ 1 cases, the phantom
DM of the ENS dominates only in the external regions. We recall
that Sánchez Almeida (2022) showed that galaxies with central
regions in the MOND regime imply an ENS characterised by a
decreasing baryon density and a cored DM.

3. Numerical code and models

3.1. Numerical code and initial conditions

The N-body simulations discussed here were performed with a
modified version of the publicly available nmody particle-mesh
MOND code (Nipoti et al. 2007a; see also Londrillo & Nipoti
2011 for additional technical details). This code uses a non-
linear Poisson solver to compute Φ from Eq. (2) on a Nr × Nϑ ×

Nϕ spherical grid in polar coordinates through an iterative relax-
ation procedure starting from a guess solution given in this work
by neglecting S in Eq. (5) (as for the linear Poisson methods, see
Londrillo & Messina 1990; Londrillo et al. 1991). As a rule, in
the simulations discussed we used a 128 × 32 × 64 grid. We also
adopted the following form for the interpolation function

µ(x) =
x

√
1 + x2

. (18)

Alternative choices can also be implemented, but they always
lead to qualitatively similar end states. The equation of motion
was integrated using a standard fourth order leapfrog scheme
(see e.g. Dehnen & Read 2011) with an adaptive timestep ∆t
conditioned by the stability threshold ∆t = C/

√
max|∇ · g|,

where the Courant-Friedrichs-Lewy condition C was taken in the
range 0.01 ≤ C ≤ 0.1.

We performed two sets of numerical simulations with ini-
tial conditions defined as follows. In the first, the particle posi-
tions were sampled from Eq. (11). In the second, following
Hansen et al. (2006), we first distributed the particles according
to a Poissonian distribution inside a larger γ model where the
centres of NC clumps2 are also described by Eq. (11) but with
different choices of rc and γ, and we later populated said clumps
with particles.

In both cases, the initial particle velocities were extracted
from a position-independent isotropic Maxwell-Boltzmann dis-
tribution and normalised to obtain the desired value of the initial
virial ratio 2K/|W |, where K is the total kinetic energy and W is
the virial function defined for a (finite mass) continuum system
of density ρ and potential Φ as

W = −

∫
ρ(r)〈r,∇Φ〉d3r. (19)

We recall that in isolated dMOND systems of finite mass, W =

−2
√

GM3a0/3 is constant (see Nipoti et al. 2007a). Curiously,
even in systems of particles interacting with additive 1/r forces
with logarithmic potential, the virial function is constant (see
Di Cintio et al. 2013, 2017).

The simulations of this work span a range of N between 104

and 106. All simulations were extended up to t = 300tDyn, where

tDyn ≡

√
2r3

h/GMtot and rh is the radius containing half of the

2 Clumpy initial conditions were also explored in the context of New-
tonian simulations by Nipoti (2015) and Ludlow & Angulo (2017)
when investigating the relation of the initial density fluctuation power
spectrum with the Sérsic index m (see below) conjectured by Cen
(2014).

total mass of the system Mtot so that virial oscillations and phase-
mixing are likely to be complete.

Following Ciotti et al. (2007), in some cases we enforced the
spherical symmetry during the collapse by propagating parti-
cles, only using the radial part of the evaluated force field so
that the system effectively behaves as a spherical shell model
introduced in Newtonian gravity by Hénon (1964) and used
in MOND by Sanders (2008), Malekjani et al. (2009) and by
Di Cintio & Ciotti (2011), among others, for systems interacting
with 1/rα forces.

3.2. Analysis of the end products

For all simulations presented here, we first extracted the intrin-
sic properties of the end products from their phase-space posi-
tions. We evaluated the triaxiality of the final particle distribution
(see e.g. Nipoti et al. 2006a; Di Cintio et al. 2013 and references
therein) by defining the tensor as

Ii j ≡ m
N∑

k=1

r(k)
i r(k)

j (20)

for the particles with positions ri within the Lagrangian radius
r70 containing 70% of the stellar mass of the system and evalu-
ating its three eigenvalues I1 ≥ I2 ≥ I3 with a standard iterative
procedure. By applying a rotation R to all particles of the sys-
tem so that the three associated eigenvectors became oriented
along the coordinate axes, we then obtained the three semiaxes
a ≥ b ≥ c from I1 = Aa2, I2 = Ab2, and I3 = Ac2, where A is
a numerical constant depending on the density profile. Finally,
we defined the axial ratios b/a =

√
I2/I1 and c/a =

√
I3/I1,

and the ellipticities in the principal planes ε1 = 1 −
√

I2/I1 and
ε2 = 1 −

√
I3/I1.

Following Nipoti et al. (2007a) and Di Cintio et al. (2013),
we compared the surface density profiles of the end products
with the Sersic (1968) law

Σ(R) = Σee
−b

[(
R

Re

)1/m
−1

]
, (21)

where Σe is the projected mass density at the effective radius
Re, which is the radius of the circle containing half of the pro-
jected mass, and the dimensionless parameters b,m are related
by b ' 2m − 1/3 + 4/405m, as found by Ciotti & Bertin (1999).

Once the projected density in the three principal planes was
circularised over elliptical shells, we determined the correspond-
ing pair (Re,Σe) by particle counts (i.e. we assumed a constant
mass-to-light ratio for each particle) and fit Eq. (21) for the three
projections. We found that, in general, all three sets of (Σe, Re, m)
are rather similar, differing only by less than 5%, we therefore,
report only one (randomly selected) value of m per simulation.

In addition, for all simulations, we also evaluated the so-
called anisotropy index (see Binney & Tremaine 2008) defined
by

ξ =
2Kr

Kt
, (22)

where Kr and Kt = Kθ + Kφ are the radial and tangential compo-
nents of the kinetic energy tensor, respectively, and read as

Kr = 2π
∫

ρ(r)σ2
r (r)r2dr, Kt = 2π

∫
ρ(r)σ2

t (r)r2dr. (23)

In the expressions above, σ2
r and σ2

t are the radial and tan-
gential phase-space averaged square velocity components and
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are obtained for the end products of the simulations by particle
counts over radial shells.

For each simulation, we recovered the (spherical) DM den-
sity of the ENS from Eq. (8), where the Newtonian force field gN
was evaluated and averaged on the radial coordinate. In practice,
we assumed a ‘sphericised’ system.

Finally, for the density distribution ρDM so obtained, we eval-
uated the logarithmic density slope α. We found that the profiles
of ρDM are generally well fitted by the empirical law

ρ(r) =
ραr2

α

rα(r2 + r2
α)

2−α
2

, (24)

where rα is a scale radius and ρα is the associated scale density.
Equation (24) recovers the 1/r2 trend of the density of the ENS
as predicted by the logarithmic behaviour of the far field MOND
potential. The properties of the simulations and their initial con-
ditions are summarised in Table 1.

4. N-body simulations

4.1. Spherical collapses

One of the main motivations of the present work is to establish
whether the end products of MOND dissipationless collapses
could, in principle, reproduce the structural properties of ellipti-
cal galaxies together with their inferred dark halos. Single com-
ponent Newtonian collapses with spherical initial conditions are
known to produce flatter end states for increasing values of their
initial virial ratio (see Nipoti et al. 2006a,b; Di Cintio et al. 2013
and references therein) at a fixed initial density profile.

We found that this (partially) holds true for MOND spheri-
cal collapses, as shown in Fig. 3 (top-left and top-middle pan-
els), where we plot the baryon density distribution at 300tDyn
for γ = 0 and 1 and the increasing values of the virial ratio
with increasingly lighter tones of blue and green in the range
10−3 ≤ 2K0/|W0| ≤ 0.5. Using Eq. (8) for the angle-averaged
final density profile on a spherical grid, we evaluated the den-
sity distribution of the DM component of the parent Newtonian
model (Fig. 3, bottom panels). We found that in qualitative
agreement with the structural properties of the ENS (see Figs. 1
and 2 in Sect. 2), cuspy end systems can be associated with cored
or weakly cuspy phantom halos. In general, the end products
of spherical collapses always have inner regions that are baryon
dominated when building their ENS, even if the initial conditions
are such that κ = 1 (in particular for the γ = 0 cases).

Consistent with Nipoti et al. (2007a), we observed that inde-
pendent of the specific value of the initial virial ratio, initial
conditions characterised by a moderate density cusp (i.e. 0.5 ≤
γ ≤ 2) tend to yield end products that are generally oblate (i.e.
0.5 . c/a . b/a) for Newtonian single component collapses. We
typically observed major ellipticities up to ∼0.63 (correspond-
ing to the gamma1v0b case, see Table 1). Remarkably, MOND
collapses with cored initial conditions (i.e. γ = 0) evolve into
rather prolate end states for 2K0/|W0| & 0.1 and markedly triax-
ial end states for lower values of the initial virial ratio. For both
cored and moderately cuspy initial conditions, the inner slope α
of the DM halo of the ENS, obtained by fitting with Eq. (24),
increases for increasing values of the baryon initial virial ratio
in the MOND simulation, as shown in Fig. 4 (top panel). The
best-fit Sérsic index m, which measures the concentration of
the projected stellar density profile, is always in the range of
2 ≤ m ≤ 4.5 for both choices of the initial density profile (Fig. 4,
middle panel), while the major ellipticity ε = 1 − c/a is typi-

cally larger when the initial condition has a lower virial ratio,
being smaller for larger values of the initial γ at fixed 2K0/|W0|

(Fig. 4, bottom panel). Remarkably, no system was found to be
more flattened than an E7 galaxy. However, as also found by
Nipoti et al. (2007a), dMOND collapses may produce even flat-
ter end states, as in the case of the gamma1v0dmd run, for which
c/a ∼ 0.24 so that ε = 0.76. For a fixed initial virial ratio, the
end states attain larger values of the central virial velocity disper-
sion σvir for increasing values of the initial density slope, while
the anisotropy index ξ decreases (cf. Table 1). At a fixed initial
density profile, the final values of σvir have little variation with
2K0/|W0|, while ξ is usually lower for the relaxed states of hotter
initial conditions.

In order to clarify whether or not the properties of the halo
in the ENS are an artefact of the angle-averaging procedure, we
also performed a set of simulations in enforced spherical sym-
metry by propagating particles only using the radial component
of the force field. By doing so, the system remains spherically
symmetric (as no radial orbit instability is possible), and S = 0
de facto holds true at all times so that Eq. (8) could be applied
exactly. In Fig. 5, we show the same quantities as in Fig. 4 as a
function of the initial values of γ for systems starting with a virial
ratio of 10−4 with (empty symbols) and without (filled symbols)
enforced spherical symmetry. The trend as well as the values of
α 3D and effective 1D simulations are comparable, and the same
could also be noted for the Sérsic index m that attains consider-
ably lower values (associated with a more concentrated density
profile) for larger values of the initial logarithmic density slope.
In all cases (cf. Table 1), as expected, 1D collapses relax to final
states with rather large values of the orbital anisotropy ξ.

Figure 6 shows the final angle-averaged density profiles for
γ0 = 0, 1, and 1.5 in 3D and 1D simulations (solid lines) as
well as the density profiles of the ENS halos (dashed lines).
Notably, if the large r behaviour of the baryon density profiles
ρ∗ (where the systems are mostly dominated by radial orbits)
does not change significantly, the inner slope of ρ∗ is always
higher for the end products of the 1D simulations and typically
settles around 2.5. With the sole exception of the cored initial
conditions (γ0 = 0), the DM halo of the ENS of the end prod-
ucts is denser (in units of the baryon component density ρ∗,50
evaluated at the half mass radius r50) for the 1D simulations,
as it is considerably shallower than the parent baryon density
in both cases.

4.2. Clumpy collapses

The numerical studies carried out so far in MOND have typically
explored spherical initial conditions (see Nipoti et al. 2007a,
2011; Ciotti et al. 2007; Sanders 2008; Malekjani et al. 2009);
discs (Brada & Milgrom 1999; Tiret & Combes 2007, 2008a;
Nipoti et al. 2007c; Ghafourian & Roshan 2017; Wittenburg
et al. 2020); or galaxy merging (Nipoti et al. 2007b; Tiret &
Combes 2008b and references therein). In this work, in addition
to the usual spherical collapses, we also explored clumpy ini-
tial conditions. When starting with such initial states, MOND
simulations tend (as expected) to yield markedly triaxial end
states with broader ranges of both c/a and b/a. In general, for
fixed values of the initial virial ratio, the systems tend to relax
at later times with respect to their initially spherical counter-
parts for analogous choices of the virial ratio, as the oscillations
of 2K/W damp out at about 50tDyn in spherical collapses (see
Nipoti et al. 2007a), while in clumpy systems, this happens on
average at around 140tDyn. We report here only the runs corre-
sponding to 2K0/|W0| = 0.1 (see Table 1).
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Table 1. Summary of the simulation properties.

Name Gravity Initial profile N 2K0/|W0 | c/a b/a m ξ σvir α

gamma0v0 MOND γ = 0 3 × 104 10−4 0.36 0.56 2.45 3.04 0.83 0.25
gamma05v0 MOND γ = 0.5 3 × 104 10−4 0.42 0.62 2.33 2.84 0.84 −0.15
gamma1v0 MOND γ = 1 3 × 104 10−4 0.54 0.98 2.07 2.73 0.89 −0.11
gamma15v0 MOND γ = 1.5 3 × 104 10−4 0.53 0.94 0.89 2.91 1.03 −0.23
gamma2v0 MOND γ = 2 3 × 104 10−4 0.57 0.92 0.72 2.26 1.05 −0.35
gamma0ve1m3 MOND γ = 0 3 × 104 10−3 0.36 0.56 3.34 3.13 0.83 0.21
gamma0ve3m3 MOND γ = 0 3 × 104 3 × 10−3 0.33 0.50 4.28 3.15 0.85 0.50
gamma0ve1m2 MOND γ = 0 3 × 104 10−2 0.34 0.57 2.53 3.10 0.84 0.40
gamma0ve3m2 MOND γ = 0 3 × 104 3 × 10−2 0.32 0.52 3.06 3.33 0.86 0.52
gamma0ve1m1 MOND γ = 0 3 × 104 0.1 0.32 0.46 2.23 2.98 0.84 0.70
gamma0ve2m1 MOND γ = 0 3 × 104 0.2 0.33 0.38 3.07 3.03 0.83 0.75
gamma0ve3m1 MOND γ = 0 3 × 104 0.3 0.36 0.37 3.29 3.02 0.83 0.85
gamma0ve4m1 MOND γ = 0 3 × 104 0.4 0.37 0.38 2.91 3.01 0.82 0.89
gamma0ve5m1 MOND γ = 0 3 × 104 0.5 0.40 0.42 2.50 2.92 0.83 1.10
gamma1ve1m3 MOND γ = 1 3 × 104 10−3 0.49 0.87 1.90 2.86 0.90 −0.21
gamma1ve3m3 MOND γ = 1 3 × 104 3 × 10−3 0.50 0.91 3.75 2.96 0.91 −0.14
gamma1ve1m2 MOND γ = 1 3 × 104 10−2 0.48 0.67 2.48 3.18 0.91 −0.12
gamma1ve3m2 MOND γ = 1 3 × 104 3 × 10−2 0.47 0.82 4.10 3.20 0.93 −0.10
gamma1ve1m1 MOND γ = 1 3 × 104 0.1 0.42 0.62 2.66 3.32 0.90 0.00
gamma1ve2m1 MOND γ = 1 3 × 104 0.2 0.45 0.46 3.10 2.99 0.87 0.15
gamma1ve3m1 MOND γ = 1 3 × 104 0.3 0.51 0.52 2.25 3.33 0.88 0.21
gamma1ve4m1 MOND γ = 1 3 × 104 0.4 0.54 0.54 2.87 3.46 0.88 0.25
gamma1ve5m1 MOND γ = 1 3 × 104 0.5 0.95 0.96 3.04 3.71 0.87 0.45
gamma1v1em1 MOND γ = 1 5 × 104 0.1 0.51 0.95 1.24 2.43 0.88 −0.15
gamma1v0b MOND γ = 1 2.1 × 105 0 0.37 0.69 2.58 2.90 0.89 −0.15
gamma1v0dmd dMOND γ = 1 2.1 × 105 0 0.24 0.41 2.45 3.49 0.82 0.50
clumpy1 MOND clumpy 8.7 × 104 0.1 0.46 0.85 1.91 2.72 0.87 0.70
clumpy2 MOND clumpy 8.7 × 104 0.1 0.46 0.67 2.86 2.48 0.84 0.50
clumpy3 MOND clumpy 8.7 × 104 0.1 0.60 0.97 3.32 1.44 1.11 −0.40
clumpy4 MOND clumpy 8.7 × 104 0.1 0.57 0.67 1.98 2.07 0.88 0.05
clumpy5 MOND clumpy 8.7 × 104 0.1 0.66 0.94 3.47 1.62 1.18 −0.75
clumpy6 MOND clumpy 8.7 × 104 0.1 0.41 0.70 1.75 1.98 0.85 −0.80
clumpy7 MOND clumpy 8.7 × 104 0.1 0.30 0.54 1.67 2.22 0.83 1.10
clumpy8 MOND clumpy 8.7 × 104 0.1 0.33 0.59 3.39 2.02 0.84 0.95
clumpy9 MOND clumpy 8.7 × 104 0.1 0.80 0.98 1.64 1.41 1.08 −0.40
clumpy10 MOND clumpy 8.7 × 104 0.1 0.56 0.71 0.98 1.89 0.85 −0.99
clumpy1dmd dMOND clumpy 8.7 × 104 0.1 0.13 0.28 3.46 7.45 0.77 1.01
clumpy2dmd dMOND clumpy 8.7 × 104 0.1 0.36 0.61 3.16 2.69 0.83 1.00
clumpy3dmd dMOND clumpy 8.7 × 104 0.1 0.35 0.38 1.40 1.94 0.82 −1.99
clumpy4dmd dMOND clumpy 8.7 × 104 0.1 0.30 0.37 1.74 2.34 0.81 0.70
clumpy5dmd dMOND clumpy 8.7 × 104 0.1 0.55 0.56 0.82 2.08 0.82 −0.50
clumpy6dmd dMOND clumpy 8.7 × 104 0.1 0.33 0.62 1.55 2.00 0.83 0.90
clumpy7dmd dMOND clumpy 8.7 × 104 0.1 0.26 0.57 1.44 2.24 0.82 0.91
clumpy8dmd dMOND clumpy 8.7 × 104 0.1 0.29 0.59 1.89 2.00 0.81 0.99
clumpy9dmd dMOND clumpy 8.7 × 104 0.1 0.35 0.39 1.56 2.10 0.81 0.80
clumpy10dmd dMOND clumpy 8.7 × 104 0.1 0.42 0.60 1.76 1.70 0.75 0.61
gamma0v5em51D MOND (1D) γ = 0 3 × 104 10−4 0.96 0.98 2.26 20.5 0.71 −0.01
gamma05v5em51D MOND (1D) γ = 0.5 3 × 104 10−4 0.98 0.99 2.27 33.1 0.98 −0.45
gamma1v5em51D MOND (1D) γ = 1 3 × 104 10−4 0.97 0.97 1.62 88.0 1.63 −0.40
gamma15v5em51D MOND (1D) γ = 1.5 3 × 104 10−4 0.97 0.99 0.71 44.8 1.48 −0.21
gamma2v5em51D MOND (1D) γ = 2 3 × 104 10−4 0.96 0.97 0.51 451 4.72 −0.35
gamma1v3em31D MOND (1D) γ = 1 3 × 104 3 × 10−3 0.97 1.00 2.10 4.47 0.66 0.01
gamma1v1em21D MOND (1D) γ = 1 3 × 104 10−2 0.97 0.99 3.78 15.8 0.60 −0.10
gamma1v3em21D MOND (1D) γ = 1 3 × 104 3 × 10−2 0.96 0.98 3.11 5.19 0.63 −0.51
gamma1v1em11D MOND (1D) γ = 1 3 × 104 0.1 0.97 0.99 2.42 4.02 0.64 −0.62
gamma1v2em11D MOND (1D) γ = 1 3 × 104 0.2 0.98 0.99 3.61 3.19 0.62 −0.45
gamma1v3em11D MOND (1D) γ = 1 3 × 104 0.3 0.99 0.99 4.09 2.57 0.63 −0.35

Notes. After the name of each simulation (Col. 1), we report the gravity law (MOND or dMOND, Col. 2), the initial density profile (Col. 3), the
number of particles (Col. 4), the initial virial ratio (Col. 5), the axial ratios (Cols. 6 and 7), the Sérsic (Col. 8), the final anisotropy index (Col. 9),
the virial velocity dispersion (Col. 10) and the central slope of the ENS (Col. 11).

The final 3D (angle averaged) density profiles (Fig. 3, top-
right panel) are strikingly more complex than those obtained
from spherical initial conditions and individually bare more
slope changes. The projected 2D density profiles were fitted with

the Sérsic law with roughly the same (percentage) asymptotic
standard error of about 3% on average regarding the spherical
collapses, while the scatter in the m Sérsic parameter is slightly
smaller for MOND clumpy systems (see top panel in Fig. 7).
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Fig. 3. Final (t = 300tDyn) density profiles from MOND simulations (top panels) and the DM halo of the ENS (bottom panels) for cored γ0 = 0
(left), moderately cuspy γ = 1 (centre), and clumpy (right) initial conditions. The increasing initial values of the virial ratio in the models with
spherical initial conditions with γ = 0 and 1 are mapped with increasingly lighter tones of blue and green, respectively. All clumpy initial conditions
start with 2K0/|W |0 = 0.1.

For comparison, we also ran the same clumpy initial conditions
in dMOND, finding a larger scatter in m.

As a general trend, the DM halo of the circularised ENS of
clumpy collapses is significantly more cored3 than what is typi-
cally obtained in spherical collapses. In several cases, the inner
density slopes are negative, down to ∼−0.99, corresponding to
a DM density profile that decreases in the central regions (mid-
dle panels in Fig. 7). Interestingly, no initially clumpy system
was found to evolve into a state flatter than an E7 galaxy (thin
dashed line in bottom panels of Fig. 7) in MOND simulations.
However, some dMOND collapses resulted in considerably flat-
ter end states (and often prolate) with major ellipticity reaching
0.87 for the clumpy1dmd.

We observed that final states with larger values of the
anisotropy index ξ (i.e. more and more dominated by low-
angular momentum orbits) are always associated with larger
ellipticities ε and Sérsic indexes. A similar, though somewhat
weaker, correlation was also found between α and ε, which could
be read in the DM scenario as steeper inner DM profiles produc-
ing flatter stellar distributions.

4.3. The MOND mass-to-light ratio – ellipticity relation

Using a broad sample of elliptical galaxies from independent
surveys and different methods to evaluate the mass-to-light ratio
M/L (i.e. Jeans anisotropic modelling, gravitational lensing,
X-ray spectra, and the dynamics of satellite star clusters) and the

3 Notably, in Newtonian simulations of clumps in fall in DM halo,
Cole et al. (2011) found that the central DM cusp is considerably weak-
ened by the collapsing clumpy satellites.

ellipticity ε, Deur (2014, 2020) and more recently Winters et al.
(2023) recovered the linear relation

M/L = (14.1 ± 5.4)ε, (25)

where the M/L is normalised such that M/L(εapp = 0.3) ≡
8 M�/L� ≡ 4M/M∗(εapp = 0.3) and the intrinsic ellipticity ε is
extrapolated from its observed 2D projected value εapp, assum-
ing that all systems are oblate, with a Gaussian distribution of
projection angles θ so that

εapp = 1 −
√

(1 − ε)2 sin2 θ + cos2 θ. (26)

The equation above in the context of ΛCDM implies that a
larger contribution of the DM mass MDM to the total mass M
corresponds to a larger departure from the spherical symme-
try (quantified here by a larger major ellipticity) for the stel-
lar component. Winters et al. (2023) argue that, if true, such a
correlation would contrast with the standard ΛCDM scenario
of galaxy formation, where more massive (and rather spheri-
cal) DM halos embed less flattened stellar systems. We note that
some peculiar elliptical galaxies (though excluded by the origi-
nal sample of Winters et al. 2023), such as the ultrafaint dwarfs
(Simon 2019), appear to go against the trend given by Eq. (25),
having usually ε . 0.1 with M/L in some cases up to 103.

Using the simulations discussed in the previous sections, we
investigated relation (25) in the context of MOND, evaluating
the effective DM mass MDM in the ENSs of both clumpy and
spherical collapses. To do so, after recovering the ρDM from the
angle-averaged ENS, we integrated it radially up to the radius
containing all simulation particles.
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of the initial virial ratio for initial conditions with Dehnen profiles with
γ = 0 (circles) and 1 (triangles).

In Fig. 8, we show the total-to-stellar mass (we assumed units
such that M∗/L = 1) ratio M/M∗ versus major ellipticity ε for
collapses with both spherical and clumpy initial states, indicated
by circles and diamonds, respectively, as well as the observa-
tional relation given in Eq. (25). We found that the end products
of initially clumpy systems in (almost) all cases fall within the
relation and error range (Fig. 8, shaded area) of Winters et al.
(2023), while the spherical collapses fall on a rather steeper
relation. We performed a linear fit (Fig. 8, orange dotted line),
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index (middle panel), and minor ellipticity ε = 1 − c/a as function of
the logarithmic density slope γ of the initial condition for full 3D (filled
symbols) and 1D simulations (empty symbols).

obtaining

M/M∗ = (23.24 ± 0.59)ε. (27)

We stress the fact that none of the simulations discussed
above produced final states that could be interpreted as ultra-
faint dwarfs (except possibly some dMOND collapses), which
in the standard cosmological scenario are supposed to be DM
dominated at all radii (i.e. even in the central region where our
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simulations, when interpreted in the context of DM, have baryon
dominated cores).

5. Discussion and conclusions

In this work, we investigated the structure of dark matter den-
sity profiles of (angular averaged) ENSs of the end states of
MOND dissipationless collapse simulations. Moreover, we stud-
ied a broader range of initial conditions than those discussed by
Nipoti et al. (2007a), including non-spherical ones.

The main results of this work can be summarised as fol-
lows: Simple analytical estimates in spherical symmetry suggest
the presence of a core or even centrally decreasing DM distri-
bution in ENSs of MOND models with cuspy stellar profiles.
Conversely, cored stellar profiles are associated with ENS DM
central density profiles ρDM ∝ 1/rα with α . 1. Our MOND
N-body simulations and the angle-averaged ENS of their end
states nicely confirm this. This established, we can conclude that
the flat-cored halos invoked by some observational studies can
be reasonably considered to be in agreement with our numerical
findings, as the dynamical effect of a weak cusp, independent of
the specific value of the central logarithmic density slope of the
baryons, can easily be mistaken for that of a cored dark mass
distribution in the DM paradigm.

In general, we observed that for the simulations in Newto-
nian gravity in MOND, the stronger the collapse (i.e. lower ini-
tial virial ratio and/or larger initial density slope), the steeper
the final density profile, and thus the dark halo of the ENS has
a markedly cored, or sometimes even depleted, inner density.
Obviously, the end product of simplified MOND N-body sim-
ulations with enforced spherical symmetry have an ENS with
markedly flat cores, even for a broad spectrum of initial values
of density slope and virial ratio, and baryon density is always
dominated by a rather strong cusp at inner radii. Moreover, we
also find that, if interpreted in the context of DM, the relaxed
end states with smaller values of the ellipticity (i.e. less flat-
tened) should have cuspier DM halos. In general, independent
of the specific form of the initial density profile, colder initial
conditions are always associated with flatter end states. As a by-
product of this simulation study on ENSs, we also recovered
a numerical confirmation of the claimed Deur (2014) observa-
tional linear correlation between M/L (or M/M∗) and ε, though
with a seemingly different slope when evaluating the dark matter
content of ENSs in units of the baryon mass (the latter being a
pre-defined simulation parameter).
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Fig. 7. Matrix plot of the Sérsic index, slope of the DM profile in
the ENS, major ellipticity, and anisotropy index for simulations with
clumpy (diamonds) and spherical (circles) initial conditions. Empty
symbols denote the dMOND runs.

Our findings led us to speculate that in the context of MOND,
the core-cusp problem could be a ‘MOND artefact’ in the same
sense as rings and DM shells discussed by Milgrom & Sanders
(2008). Moreover, we stress the fact that in the DM halos recon-
structed from observational data using the line-of-sight velocity
dispersion of a given tracer stellar population, the effect of the
velocity anisotropy profiles β(r) = 1 − σ2

t (r)/2σ2
r (r) (and the

intrinsic departure from the spherical symmetry) is neglected, as
noted by Evans et al. (2009) for the case of dwarf spheroids. In
fact, since the central stellar β profile imposes a constraint on
the slope of the DM component in the form of the inequality
β ≤ α/2 (see An & Evans 2006; Ciotti & Morganti 2009, 2010),
the entity of the central density cusp or core inferred for observed
galaxies is likely to bare a rather large uncertainty. In the con-
text of (single component) MOND models, the relation between
anisotropy and central density cusps has not been explored in
detail, neither analytically nor in simulations. Simple numeri-
cal experiments (Di Cintio et al. 2013) with inverse power-law
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radial forces seem to suggest that the density slope anisotropy
inequality is a rather general property of the relaxed states of
collapses with long-range interactions. A natural follow-up of
this work would be a systematic study of the interplay of the β
profiles in MOND systems and the DM density profiles of the
parent ENSs.
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