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ORIENTED RIGHT-ANGLED ARTIN PRO-ℓ GROUPS

AND MAXIMAL PRO-ℓ GALOIS GROUPS

SIMONE BLUMER, CLAUDIO QUADRELLI, AND THOMAS S. WEIGEL

Dedicated to the memory of Avinoam Mann.

Abstract. For a prime number ℓ we introduce and study oriented right-angled

Artin pro-ℓ groups GΓ,λ(oriented pro-ℓ RAAGs for short) associated to a finite ori-

ented graph Γ and a continuous group homomorphism λ : Zℓ → Z×

ℓ
. We show (cf.

Thm. 1.1) that an oriented pro-ℓ RAAG GΓ,λ is a Bloch-Kato pro-ℓ group if, and

only if, (GΓ,λ, θΓ,λ) is an oriented pro-ℓ group of elementary type generalizing a re-

cent result of I. Snopche and P. Zalesskĭi (cf. [44]). Here θΓ,λ : GΓ,λ → Z×

p denotes

the canonical ℓ-orientation on GΓ,λ. We invest some effort in order to show that

oriented right-angled Artin pro-ℓ groups share many properties with right-angled

Artin pro-ℓ-groups or even discrete RAAG’s, e.g., if Γ is a specially oriented chordal

graph, then GΓ,λ is coherent (cf. Thm. 1.3(ii)) generalizing a result of C. Droms

(cf. [10]) . Moreover, in this case (GΓ,λ, θΓ,λ) has the Positselski-Bogomolov prop-

erty (cf. Thm. 1.3(i)) generalizing a result of H. Servatius, C. Droms and B. Ser-

vatius for discrete RAAG’s (cf. [43]). If Γ is a specially oriented chordal graph and

Im(λ) ⊆ 1+4Z2 in case that ℓ = 2, then H•(GΓ,λ, Fℓ) ≃ Λ•(Γ̈op) (cf. Thm. 1.3(iii))

generalizing a well known result of M. Salvetti (cf. [40]).

1. Introduction

In a recent paper (see [44]) I. Snopce and P.A. Zalesskĭi showed that for pro-ℓ com-

pletions of right-angled Artin groups, the following four properties are equivalent: the

Bloch-Kato property, 1-cyclotomicity, the elementary type property, and the realizabil-

ity as a maximal pro-ℓ Galois group . This theorem can be seen as a pro-ℓ analogue

of a result of C. Droms (see [11]) for discrete right-angled Artin groups, and provides

evidence to the conjecture that a finitely generated cyclotomically oriented Bloch-Kato

pro-ℓ group (G, θ) is necessarily of elementary type (see [36, § 7.5]), and therefore to the

Elementary Type Conjecture formulated by I. Efrat in [12].

In this paper we generalize the concept of right-angled Artin pro-ℓ group to non-

necessarily trivially oriented examples.

By an oriented graph Γ = (V , E ) we will understand a non-empty set of vertices V

together with a set of edges

E ⊆ V × V r∆(V ), where ∆(V ) = { (v, v) | v ∈ V }.
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Thus, for an edge e = (v, w) ∈ E , its inverse ē = (w, v) might be contained in E (in

which case e will be said to be an ordinary edge), or not (in which case e will be said

to be special). Hence E is the disjoint union Eo ⊔ Es of the sets of ordinary edges and

special edges.

In a similar fashion, V is the disjoint union Vo⊔Vs of the sets of ordinary vertices and

special vertices, satisfying the following condition: the origin (i.e., the first coordinate)

of every edge is an ordinary vertex, i.e., a vertex can be special only if either it is isolated

or it is the end of a special edge (see § 2.2 below).

For an oriented graph Γ = (V , E ) and a continuous homomorphism λ : Zℓ → Z×
ℓ we

call the pro-ℓ group GΓ,λ given by the presentation

(1.1) GΓ,λ =

〈

v ∈ V | ∀ e = (v, w) ∈ E , wvw−1 =

{

v if e ∈ Eo,

vλ(1) if e ∈ Es

〉

pro−ℓ

the oriented right-angled Artin pro-ℓ group (oriented pro-ℓ RAAG for short) associated

to Γ and λ. By definition, every oriented right-angled Artin pro-ℓ group GΓ,λ carries

the orientation θΓ,λ : GΓ,λ → Z×
ℓ given by θΓ,λ(v) = 1 if v ∈ Vo, and θΓ,λ(v) = λ(1)

if v ∈ Vs. Thus, if Γ is an oriented graph without special edges, then GΓ,λ is just a

right-angled Artin pro-ℓ group, and θΓ,λ = 1 is the constant 1-function. In spite of

the rather elementary presentation (1.1), oriented pro-ℓ RAAGs yield surprising variety

and flexibility — for example, among oriented pro-ℓ RAAGs one finds free pro-ℓ groups,

ℓ-adic analytic groups, and even finite ℓ-groups.

Our main goal is to prove the following “oriented analogue” of [44, Thm. 1.2, Thm. 1.5].

Theorem 1.1. Let Γ be an oriented graph, let λ : Zℓ → Z×
ℓ be a continuous homomor-

phism (satisfying Im(λ) ⊆ 1 + 4Z2 if ℓ = 2), and let (GΓ,λ, θΓ,λ) be the oriented pro-ℓ

RAAG associated to Γ and λ. The following are equivalent.

(0) The oriented graph Γ is of elementary type (see Definition 2.9).

(i) The pro-ℓ group GΓ,λ is isomorphic to the maximal pro-ℓ Galois group of a field

containing a primitive ℓ-th root of 1 (and also
√
−1 if ℓ = 2).

(ii) The pro-ℓ group GΓ,λ is a Bloch-Kato pro-ℓ group.

(iii) The oriented pro-ℓ RAAG (GΓ,λ, θΓ,λ) is a 1-cyclotomic oriented pro-ℓ group.

(iv) The oriented pro-ℓ RAAG (GΓ,λ, θΓ,λ) is an oriented pro-ℓ group of elementary

type.

(v) Every finitely generated closed subgroup of GΓ,λ is again isomorphic to an ori-

ented pro-ℓ RAAG.

Note that condition (0) in Theorem 1.1 gives a combinatorial (and rather immediate)

criterion to check whether an oriented pro-ℓ RAAG may occur as a maximal pro-ℓ

Galois group or not. On one handside, Theorem 1.1 provides a plethora of brand new

examples of pro-ℓ groups which do not occur as maximal pro-ℓ Galois groups. It is worth

mentioning that the relations involved in the presentation of an oriented pro-ℓ RAAG

are elementary — just an elementary commutator times, possibly, the λ(1)-th power of

a generator —, especially in comparison with other examples of pro-ℓ groups which are

known not to occur as maximal pro-ℓ Galois groups (see, e.g., [2,31], [6, § 9], [26, § 7]),

whose presentations require higher commutators.
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On the other hand, considering the richness of the family of oriented pro-ℓ RAAGs,

Theorem 1.1 corroborates the Elementary Type Conjecture, and the Smoothness Con-

jecture, formulated by Ch. De Clercq and M. Florence (see [7]).

In fact, there are several other conjectures concerning the structure of the maximal

pro-ℓ Galois group GK(ℓ) of a field K containing a primitive ℓ-th root of 1, and its

Fℓ-cohomology, e.g., L. Positselski’s formulation of Bogomolov Conjecture, which pre-

dicts that GK(ℓ) is a free-by-locally uniform pro-ℓ group (see [29] and [37]); J. Minač

and N.D. Tân’s Massey Vanishing Conjecture, which predicts that GK(ℓ) satisfies the

n-Massey product vanishing property for every n > 2 (see [25]); and the Universal

Koszulity Conjecture, formulated by J. Minač et al., which predicts that H•(GK(ℓ),Fℓ)

is a universally Koszul algebra (see [23]). These three properties are satisfied by oriented

pro-ℓ groups of elementary type (see respectively [37, Thm. 1.2], [34, Thm. 1.3], and

[23, § 1]). Therefore, from Theorem 1.1 one concludes the following providing evidence

for the three aforementioned conjectures.

Corollary 1.2. Let Γ be an oriented graph and let λ : Zℓ → Z×
ℓ be a continuous ho-

momorphism (satisfying Im(λ) ⊆ 1 + 4Z2 if ℓ = 2). If GΓ,λ ≃ GK(ℓ) for some field K

containing a primitive ℓ-th root of 1, then

(i) GΓ,λ has the Bogomolov-Positselski property, i.e., it is the Frattini pro-ℓ cover

of a locally uniform pro-ℓ group with free pro-ℓ kernel;

(ii) for every n > 2, GΓ,λ satisfies the n-Massey product vanishing property, i.e.,

every non-empty n-fold Massey product associated to an n-tuple of elements of

H1(GΓ,λ,Fℓ) contains 0;

(iii) the algebra H•(GΓ,λ,Fℓ) is universally Koszul.

Subsequently, we will focus on oriented pro-ℓ RAAGs associated to chordal oriented

graphs.

Recall that an oriented graph Γ is said to be chordal if it does not contain cycles

other than triangles as induced subgraphs.

Moreover, an oriented graph will be said to be specially oriented if the terminus of a

special edge is always a special vertex (see Definition 2.5). Note that an oriented graph

of elementary type is always specially oriented and chordal, but not vice-versa.

For oriented pro-ℓ RAAGs associated to chordal specially oriented graphs we prove

the following.

Theorem 1.3. Let Γ be a chordal specially oriented graph, let λ : Zℓ → Z×
ℓ be a contin-

uous homomorphism (satisfying Im(λ) ⊆ 1 + 4Z2 if ℓ = 2), and let (GΓ,λ, θΓ,λ) be the

oriented pro-ℓ RAAG associated to Γ and λ. Then:

(i) GΓ,λ has the Bogomolov-Positselski property;

(ii) every finitely generated closed subgroup of GΓ,λ is of type FP∞. In particular,

G is coherent;

(iii) the Fℓ-cohomology algebra H•(GΓ,λ,Fℓ) is quadratic — in particular, it is iso-

morphic to the exterior Stanley-Reisner Fℓ-algebra Λ•(Γ̈
op) associated to Γ̈op.

Note that Theorem 1.3–(i) can be seen as an oriented pro-ℓ analogue of a theorem of

H. Servatius, C. Droms and B. Servatius (see [43]). One may speculate whether for a

generalized pro-ℓ RAAG’s GΓ,λ based on a specially oriented graph Γ the Bogomolov-

Positselski property of (GΓ,λ, θΓ,λ) is equivalent to the chordality of Γ. Theorem 1.3–(ii)
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can be seen as an oriented pro-ℓ analogue of another theorem of C. Droms (see [10]).

As before one is tempted to believe that the coherence property of GΓ,λ for a specially

oriented graph Γ is equivalent to the chordality of Γ. Theorem 1.3–(iii) can be seen as

an oriented analogue of a result of M. Salvetti on discrete RAAG’s (cf. [40]) which holds

independently of the chordality of the underlying graph. Therefore, one may conjecture

that Theorem 1.3–(iii) holds for all GΓ,λ based on specially oriented graphs Γ (see 1.4

below).

One reason why it is interesting to investigate right-angled Artin pro-ℓ groups GΓ

(with Γ a graph without special vertices and edges) in a Galois-theoretic context is the

fact that H•(GΓ,Fℓ) is isomorphic to the exterior Stanley-Reisner Fℓ-algebra Λ•(Γ
op)

associated to Γ, and thus it is quadratic and Koszul (see, e.g., [28, § 1.2]). Moreover,

one has that the N0-graded Fℓ-group algebra gr•(GΓ) associated to the augmentation

filtration is isomorphic to the Cartier-Foita Fℓ-algebra RΓ associated to Γ, and thus it

is quadratic and Koszul as well. In particular, it is the quadratic dual of H•(GΓ,Fℓ)

(see [1, Thm. 1.2]).

The same phenomenon occurs for oriented pro-ℓ groups (G, θ) of elementary type: ifG

is such a pro-ℓ group, then both algebrasH•(G,Fℓ) and gr•(G) are Koszul and quadratic

dual to each other (see [24, Thm. A–B]). Moreover, the same phenomenon is conjectured

to hold for finitely generated maximal pro-ℓGalois groups of fields containing a primitive

ℓ-th root of 1, see [24, Conj. 1.3 and Ques. 1.5]. We suspect that the same holds also for

oriented pro-ℓ RAAGs associated to specially oriented graphs. Altogether we ask the

following.

Question 1.4. Let Γ be a specially oriented graph, let λ : Zℓ → Z×
ℓ be a continuous

homomorphism (satisfying Im(λ) ⊆ 1+4Z2 if ℓ = 2), and let (GΓ,λ, θΓ,λ) be the oriented

pro-ℓ RAAG associated to Γ and λ.

(1) Is it true that the N0-graded Fℓ-group algebra gr•(GΓ,λ) is quadratic — and thus

isomorphic to the Cartier-Foita Fℓ-algebra associated to Γ?

(2) Is it true that the cohomology ring H•(GΓ,λ,Fℓ) is isomorphic to the exterior

Stanley-Reisner Fℓ-algebra Λ•(Γ̈
op)?

Acknowledgments. The authors wish to warmly thank Ido Efrat, Ilir Snopce, Matteo Van-

nacci and Pavel A. Zalesskĭi for several helpful discussions.

2. Graphs

Although there is no standard notion of a graph, all notions known to the authors

have one common feature: a graph consists of a pair of sets (V , E ), a set of vertices V ,

and a set of edges E . In this paper we make use of two different notions — näıve graphs

and oriented graphs —, which are now discussed in more detail.

2.1. Näıve graphs. A näıve graph Γ = (V , E ) consists of a non-empty set of vertices

V and a set of edges E ⊆ P2(V ), where P2(V ) denotes the set of subsets of V of

cardinality 2. The näıve graph Γ = (V , E ) satisfying E = P2(V ) is said to be a

complete graph. Subgraphs are defined in the obvious way, and a subgraph Λ = (V ′, E ′)

of the näıve graph Γ = (V , E ) is said to be induced, if

(2.1) E
′ = E ∩ P2(V

′).



ORIENTED PRO-ℓ RAAGS AND MAXIMAL PRO-ℓ GALOIS GROUPS 5

Moreover, the subgraph is said to be proper if V ′ ( V .

Henceforth, we will always consider finite näıve graphs, i.e., näıve graphs with a finite

number of vertices.

Recall that a tree is a connected näıve graph T = (V , E ), V 6= ∅, without circuits

as subgraphs (cf. [42, § 2.2]). Every connected naiv̈e graph Γ = (V , E ) contains a

maximal subtree, i.e., a tree T = (VT, ET) which is a subgraph of Γ such that VT = V

(cf. [42, Prop. 2.11]).

Example 2.1. The näıve graphs C4 and L3 are respectively the näıve graphs with

geometric realization

v1 v2
• •

• •
v4 v3

and v1 v4
• •

• •
v2 v3

i.e., C4 is a square and L3 is a line of length 3.

A finite complete subgraph Ξ = (V ′, E ′) of a näıve graph Γ = (V , E ) is said to be a

|V ′|-clique. Note that such a subgraph is always induced. For n ≥ 1, an n-clique Ξ of

Γ is said to be maximal if there are no (n+ 1)-cliques of Γ containing Ξ as subgraph.

Definition 2.2. Let Γ = (V , E ) be a näıve graph. The clique-graph of Γ is the graph

Υ(Γ) = (mx(Γ),mx2(Γ)) with

(2.2)
mx(Γ) = {Ξ ⊆ Γ | Ξ a maximal clique in Γ }
mx2(Γ) = { {Ξ,Ξ′} | Ξ,Ξ′ ∈ mx(Γ) : V (Ξ) ∩ V (Ξ′) 6= ∅ }.

A maximal subtree TΥ(Γ) of Υ(Γ) is said to have the clique-intersection property if, for

every pair of distinct maximal cliques Ξ,Ξ′ ∈ mx(Γ), with path

PΞ,Ξ′ = (V (PΞ,Ξ′), E (PΞ,Ξ′))

V (PΞ,Ξ′) = { Ξ1 = Ξ, Ξ2, . . . , Ξr−1,Ξr = Ξ′ } ⊆ mx(Γ),

E (PΞ,Ξ′) = { {Ξ1,Ξ2}, . . . , {Ξr−1,Ξr} } ⊆ E (TΥ(Γ)),

connecting them in the tree TΥ(Γ), the clique

Ξ ∩ Ξ′ = (V (Ξ) ∩ V (Ξ′), E (Ξ) ∩ E (Ξ′))

is a subgraph of Ξi for every i = 1, . . . , r (cf. [3, § 3.1]).

For näıve graphs one has the following construction. Let Γ1 = (V1, E1) and Γ2 =

(V2, E2) be two näıve graphs, with a common induced proper subgraph Λ = (V ′, E ′).

The patching of Γ1,Γ2 along Λ is the graph Γ = (V , E ) with

V = V1 ∪ V2, E = E1 ∪ E2,

where we identify the vertices lying in V1 ∩ V ′ and in V2 ∩ V ′, and the edges lying in

E1 ∩ E ′ and in E2 ∩ E ′.
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2.2. Oriented graphs. An oriented graph Γ = (V , E ) consists of a non-empty set of

vertices V , partitioned as a disjoint union V = Vs ⊔ Vo; and a set of edges

E ⊆ V × V r∆(V ),

where ∆(V ) = { (v, v) | v ∈ V } denotes the diagonal in V × V . By definition, every

oriented graph Γ = (V , E ) comes equipped with two maps, the origin o : E → V given

by the projection on the first coordinate, and the terminus t : E → V , given by the

projection on the second coordinate. One has a partition E = Es ⊔ Eo, where

Es = { e ∈ E | (t(e), o(e)) /∈ E }
is the set of special edges, while Eo is the set of ordinary edges. Analogously, the elements

of Vs and Vo are called special vertices and ordinary vertices respectively, and they must

satisfy the following condition: if e ∈ E , then o(e) ∈ Vo.

Every oriented graph Γ = (V , E ) defines a näıve graph Γ̈ = (V , Ë ), where

(2.3) Ë = { {o(e), t(e)} | e ∈ E }.
The notions of subgraphs, induced subgraphs, cliques and patching of oriented graphs

are defined in the obvious way. Henceforth, we will consider only finite oriented graphs.

Example 2.3. Let Γ = (V , E ) be an oriented graph. We realize a special edge (v, w) ∈
Es as an arrow originating at v and pointing at w. If (v, w), (w, v) ∈ E , then we realize

them as a unique “unoriented” edge joining v and w. For example, the two pictures

v1 v4
• **

��

•

ss ��
• 44

33

•

HH

v2 v3

v1 v4
• //

��

•

♣♣
♣♣
♣♣
♣♣
♣♣
♣♣
♣♣

• // •
v2 v3

realize the same oriented graph Γ = (V , E ), with

E = { (v1, v2), (v1, v4), (v2, v3) }
︸ ︷︷ ︸

Es

⊔{ (v2, v4), (v4, v2), (v3, v4), (v4, v2) }
︸ ︷︷ ︸

Eo

and Vo = V . (Henceforth, we will use the second type of realization for oriented graphs.)

Remark 2.4. Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two oriented graphs, with V1 =

V2 = {v, w}, E1 = E2 = ∅, and such that both v, w are ordinary vertices of Γ1, but v is

a special vertex of Γ2. Then Γ1 and Γ2 are not the same oriented graph, even if their

geometric realizations are equal.

2.3. Specially oriented graphs.

Definition 2.5. An oriented graph Γ = (V , E ) with decompositions V = Vo ⊔ Vs and

E = Eo ⊔ Es is said to be a specially oriented graph (or just a special graph), if the

terminus of every special edge is a special vertex, i.e.,

Vs ⊇ { t(e) | e ∈ Es } .
In other words, an oriented graph Γ = (V , E ) is special if, and only if, Γ does not contain

a subgraph Γ′ whose geometric realization is either
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(2.4) y x z

• • •oo
or y x z

• •oo •oo

— we underline that we do not require Γ′ to be induced, so that the vertices y and z

may be joined by an edge.

Remark 2.6. By definition, a specially oriented graph without special vertices is a

combinatiorial graph in the sense of J-P. Serre (cf. [42, § 2.1]).

Example 2.7. A complete oriented graph Γ = (V , E ) is specially oriented if, and only

if, there is at most one special vertex and — if there is one, say v — (v, w) ∈ Es for

every w ∈ V r {v}.

In other words, an oriented graph Γ = (V , E ) is special if, and only if, for every

special vertex v ∈ Vs one has (v, w) /∈ E for every w ∈ V .

2.4. Oriented graphs of elementary type. For oriented graphs we have the following

two constructions.

(a) Let Γ1 = (V1, E1) and Γ2 = (V2, E2) be two oriented graphs. The disjoint union

of Γ1 and Γ2 is the oriented graph

Γ1 ⊔ Γ2 := (V1 ⊔ V2, E1 ⊔ E2) .

(b) Let Γ = (V , E ) be an oriented graph, with V = Vs ⊔ Vo. The cone graph with

basis Γ is the oriented graph

∇(Γ) := (V (∇(Γ)), E (∇(Γ))),

where V (∇(Γ)) = V ⊔ {v}, with v a “new” ordinary vertex, called the tip of

the cone, and

E (∇(Γ)) = E ⊔ {(v, w) | w ∈ Vs} ⊔ {(v, w), (w, v) | w ∈ Vo}.
Observe that V (∇(Γ))s = Vs.

Remark 2.8. It is straightforward to see that if Γ1 and Γ2 are two special graphs, then

also the disjoint union Γ1 ⊔Γ2 is a special graph. Similarly, if Γ is a special graph, then

also the cone ∇(Γ) is a special graph.

The following definition generalizes the notion of graphs of elementary type given in

[5, § 3.3].

Definition 2.9. The family of special graphs of elementary type is the smallest family

of oriented graphs containing graphs consisting of a single vertex, and such that:

(a) if Γ1,Γ2 are special graphs of elementary type, then also their disjoint union

Γ1 ⊔ Γ2 is a special graph of elementary type.

(b) if Γ is a special graph of elementary type, then also the cone ∇(Γ) is a special

graph of elementary type.

Example 2.10. Any special complete graph is of elementary type, as it may be con-

structed as iterated cone — starting from the unique special vertex, if there is one.
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For instance, the displayed graph may be obtained by iterating three times the cone-

construction by starting with the single special vertex v, i.e., Γ = ∇(∇(∇(Γ′))), where

Γ′ = ({v},∅) and v is a special vertex.

v

•

•

OO

v1

v2•

ttttttt

CC✞✞✞✞✞✞✞✞✞✞✞✞
•v3

[[✼✼✼✼✼✼✼✼✼✼✼✼

❑❑❑❑❑❑❑

Remark 2.11. (a) Since an oriented graph consisting of a single vertex is spe-

cially oriented, by Remark 2.8 an oriented graph of elementary type is specially

oriented.

(b) If a connected oriented graph Γ = (V , E ) is of elementary type, then either

|V | = 1 or one has Γ = ∇(Γ′) for some proper induced subgraph Γ′ ⊆ Γ, and

therefore there is an ordinary vertex of Γ which is joined to all other vertices.

Example 2.12. (a) By Remark 2.11, if Γ is a special graph such that either Γ̈ = C4

or Γ̈ = L3, then Γ is not a special graph of elementary type, as Γ is connected

but there are no vertices which are joined to each other vertex.

(b) The special graph Λs = (V , E ) with geometric realization

v2

v1 • v3
•

44❥❥❥❥❥❥ •
jj❚❚❚❚❚❚

is not of elementary type, as it is connected but v2 is special, so that Λs does

not decompose as a cone by Remark 2.11–(b).

Observe that the inductive definition of oriented graphs of elementary type implies

that every induced subgraph of an oriented graph of elementary type is again an oriented

graph of elementary type. Oriented graphs of elementary type are characterized as

follows.

Proposition 2.13. Let Γ = (V , E ) be an oriented graph. Then Γ is of elementary type

if, and only if, Γ is specially oriented and it does not contain an induced subgraph Γ′

such that either Γ̈′ = C4, Γ̈
′ = L3, or Γ′ = Λs (cf. Examples 2.1, 2.12–(b)).

Proof. If Γ is not specially oriented, then it is not of elementary type by Remark 2.11–

(a). If Γ contains an induced subgraph Γ′ such that either Γ̈′ = C4 or Γ̈′ = L3, or

Γ′ = Λs, then Γ′ is not of elementary type by Example 2.12–(b)–(c), and thus Γ is not

of elementary type as well.

Conversely, assume that Γ contains no such induced subgraphs, and that it is specially

oriented. By Remark 2.11–(b), without loss of generality we may assume that Γ is

connected. We proceed by induction on |V |. If |V | ≤ 2, then clearly Γ is of elementary

type. Now, the näıve graph Γ̈ = (V , Ë ) contains no induced subgraphs Γ̈′ equal to C4

or L3. By [47], Γ̈ has a central vertex, i.e., a vertex w ∈ V such that {w, v} ∈ Ë for

every v ∈ V r {w}. We have two cases.
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Case (1). If w ∈ Vo, then Γ = ∇(Γ′), with Γ′ the induced subgraph of Γ with vertices

V r {w}, which is of elementary type by induction — and thus also Γ is of elementary

type.

Case (2). If w ∈ Vs, then for every v ∈ V r {w} one has (v, w) ∈ E , (w, v) /∈ E ,

and Vo = V r {w}, as Γ is specially oriented (cf. Remark 2.11–(a)). Let v1, v2 be

two distinct ordinary vertices of Γ. If (v1, v2), (v2, v1) /∈ E , then the induced subgraph

of Γ with vertices v1, v2, w is isomorphic to Λs, a contradiction. On the other hand,

(v1, v2), (v2, v1) /∈ Es, as v1, v2 ∈ Vo. Therefore, (v1, v2) ∈ Eo, and hence Γ is a complete

specially oriented graph — in particular, Γ is of elementary type by Example 2.12–

(a). �

2.5. Graphs of pro-ℓ groups. Let Γ = (V , E ) be a connected oriented graph without

special edges (i.e., a combinatorial graph in the sense of Serre — see [42, §2.1]), and let

G(Γ) = {G(v), G(e) | v ∈ V , e ∈ E }
be a collection of finitely generated pro-ℓ groups, endowed with monomorphisms of pro-ℓ

groups

∂e : G(e) −→ G(t(e))

for every edge e ∈ E . Then G(Γ) is called a finite graph of (finitely generated) pro-ℓ

groups based on Γ. A finite graph of pro-ℓ groups G(Γ) is said to be reduced if for every

edge e ∈ E , ∂e : G(e) → G(t(e)) is an isomorphism.

Suppose that Γ = T is a tree. The fundamental group Π1(G(T)) of a finite graph of

pro-ℓ groups G(T) based on T is defined by the following pro-ℓ presentation:

Π1(G(T)) = 〈G(v) | v ∈ V , ∂e(g) = ∂ē(g) ∀ g ∈ G(e), e ∈ E 〉
(cf. [49]). We have the following [49, Cor. 4.5].

Theorem 2.14. Let U be an open subgroup of the fundamental pro-ℓ group G =

Π1(G,Γ) of a finite graph of pro-ℓ groups G based on the graph Γ, and let T be the

Bass-Serre tree associated to G. Then U is the fundamental pro-ℓ group U = Π1(U ,∆),

with ∆ = U\\T, and vertex and edge groups U(m), m ∈ ∆, are stabilizers Us(m), where

s : ∆ → T is a connected transversal of ∆ in T.

3. Pro-ℓ groups and orientations

3.1. Preliminaries on pro-ℓ groups. We work in the world of pro-ℓ groups. Hence-

forth, every subgroup of a pro-ℓ group will be tacitly assumed to be closed, and the

generators of a subgroup will be intended in the topological sense.

In particular, for a pro-ℓ group G and a positive integer n, Gn will denote the closed

subgroup of G generated by the n-th powers of all elements of G. Moreover, for two

elements g, h ∈ G, we set

gh = ghg−1, and [g, h] = gh · h−1.

Given two subgroups H1, H2 of G, [H1, H2] will denote the closed subgroup of G gener-

ated by all commutators [h, g] with h ∈ H1 and g ∈ H2. In particular:

(a) G′ will denote the closure of the commutator subgroup [G,G] of G;

(b) Φ(G) = Gℓ ·G′ will denote the Frattini subgroup of G;
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(c) G(3) will denote the subgroup of G defined by

G(3) =

{

Gℓ · [G′, G] if ℓ 6= 2

G4 · (G′)2 · [G′, G] if ℓ = 2.

For the properties of Galois cohomology of pro-ℓ groups we refer to [41, Ch. I] and

to [27, Ch. I and Ch. III–§ 9].

3.2. Oriented pro-ℓ groups. Let G be a pro-ℓ group. An orientation of G is a contin-

uous homomorphism θ : G → Z×
ℓ , where Z×

ℓ denotes the group of units of Zℓ. Observe

that Im(θ) ⊆ 1 + ℓZℓ, as the pro-ℓ Sylow subgroup of Z×
ℓ is

1 + ℓZℓ = {1 + ℓλ, λ ∈ Zℓ}.
We say that the orientation θ is torsion-free if ℓ is odd, or if ℓ = 2 and Im(θ) ⊆ 1+4Z2.

We call a couple (G, θ) consisting of a pro-ℓ group together with an orientation

θ : G → Z×
ℓ an oriented pro-ℓ group (in [14, 16] an oriented pro-ℓ group is called a

cyclotomic pro-ℓ pair). A morphism of oriented pro-ℓ groups (G, θ) → (H, τ) is a

morphism of pro-ℓ groups ϕ : G → H satisfying θ = τ ◦ ϕ.
An oriented pro-ℓ group (G, θ) comes endowed with a continuous left G-module Zℓ(1),

which is isomorphic to Zℓ as an abelian pro-ℓ group, and with G-action

g.λ = θ(g) · λ for every g ∈ G, λ ∈ Zℓ(1).

Observe that the G-module Zℓ(1)/ℓ is simply the trivial module Z/ℓ, as θ(g) ≡ 1 mod ℓ

for all g ∈ G.

In the category of oriented pro-ℓ groups one has the following constructions (cf. e.g.,

[14, § 3]).

(a) If (G, θ) is an oriented pro-ℓ group and N is a normal subgroup of G such that

N ⊆ ker(θ), then the quotient G/N yields an oriented pro-ℓ group (G/N, θ/N ),

such that the canonical projection G → G/N induces a morphism of oriented

pro-ℓ groups (G, θ) → (G/N, θ/N ).

(b) If (G1, θ1) and (G2, θ2) are oriented pro-ℓ groups, then the free pro-ℓ product of

G1 and G2 yields an oriented pro-ℓ group

(G1, θ1) ∐ℓ̂ (G2, θ2) := (G1 ∐ℓ̂ G2, θ),

where θ is the orientation obtained by the universal property of the free product.

(c) If (G, θ) is an oriented pro-ℓ group and A is an abelian pro-ℓ group, then one

has an oriented pro-ℓ group

A⋊ (G, θ) := (A⋊G, θ̃),

where gag−1 = aθ(g) for every a ∈ A and g ∈ G, and such that the canonical

projection A⋊G → G induces a morphism of oriented pro-ℓ groups (A⋊G, θ̃) →
(G, θ).

The most relevant examples of oriented pro-ℓ groups arise from maximal pro-ℓ Galois

groups (cf. [16, § 4]).
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Example 3.1. For a field K, let K̄ denote a separable closure of K, and let µℓ∞ denote

the group of roots of 1 of ℓ-power order lying in K̄. If K contains a root of 1 of order ℓ,

then µℓ∞ is contained in the maximal pro-ℓ-extension K(ℓ) of K, and the action of the

maximal pro-ℓ Galois group GK(ℓ) = Gal(K(ℓ)/K) of K on µℓ∞ fixes the roots of order

ℓ, and induces a natural orientation, the so-called pro-ℓ-cyclotomic character

θ̂K,ℓ : GK(ℓ) −→ Z×
ℓ ,

as µℓ∞ ≃ Z[ 1ℓ ]/Z and Aut(Z[ 1ℓ ]/Z) is isomorphic to Z×
ℓ . In particular,

σ(ζ) = ζ θ̂K,ℓ(σ) for all σ ∈ GK(ℓ), ζ ∈ µℓ∞ .

Furthermore, one has Im(θ̂K,ℓ) = 1 + ℓfZℓ, where f is the positive integer satisfying

|µℓ∞ ∩ K×| = ℓf in case µℓ∞ ∩ K× is finite, and Im(θ̂K,ℓ) = {1} if µℓ∞ ⊆ K×. The

continuous GK(ℓ)-module Zℓ(1) induced by the cyclotomic character is called the 1st

Tate twist of Zℓ (cf. [27, Def. 7.3.6]), and for every n ≥ 1, Zℓ(1)/ℓ
n is isomorphic to the

GK(ℓ)-module of the ℓn-th roots of 1.

3.3. θ-abelian oriented pro-ℓ groups and locally uniform pro-ℓ groups. An

oriented pro-ℓ group (G, θ) with torsion-free orientation is said to be θ-abelian if ker(θ)

is a free abelian pro-ℓ group and one has an isomorphism of oriented pro-ℓ groups

(G, θ) ≃ ker(θ)⋊ (G/ ker(θ), θ/ ker(θ)).

One has the following group-theoretic “translation” of θ-abelianity. Recall that a pro-ℓ

group G is called locally uniform if every finitely generated subgroup H of G is uniform

— i.e., H is torsion free and the commutator subgroup H ′ is contained in Hℓ, and also

in H4 if ℓ = 2 (cf. [30, § 3]). One has the following (cf. [30, Thm. A]).

Proposition 3.2. A pro-ℓ group G is locally uniform if, and only if, there exists a

torsion-free orientation ðG : G → Z×
ℓ such that (G, ðG) is a ðG-abelian oriented pro-ℓ

group.

In other words, a pro-ℓ group G is locally uniform if, and only if, G has a presentation

G =
〈

x0, xi : i ∈ I | x0xi = x1+ℓf

i , [xi, xj ] = 1 ∀ i, j ∈ I
〉

for some set I and some f ∈ N∪ {∞} (f ≥ 2 if ℓ = 2), and in this case ðG(x0) = 1+ pf

and ðG(xi) = 1 for all i ∈ I. We call ðG the canonical orientation of G. Observe that

for every subgroup H ⊆ G one has ðH = ðG|H .

Remark 3.3. By Lazard’s work [20], the Fℓ-cohomology algebraH•(G,Fℓ) of a (finitely

generated) uniform pro-ℓ group G is isomorphic to the exterior algebra generated by

H1(G,Fℓ) (cf. e.g., [45, Thm. 5.1.5]). Hence, a locally uniform pro-ℓ group is Bloch-

Kato.

3.4. Kummerian oriented pro-ℓ groups and 1-cyclotomicity. An oriented pro-ℓ

group (G, θ) comes endowed with a distinguished normal subgroup of G,

Kθ(G) =
〈

gh · h−θ(g) | g ∈ G, h ∈ ker(θ)
〉

.

(cf. [16]). One has Kθ(G) ⊆ Φ(G), and moreover Kθ(G) ⊇ ker(θ)′, so that the quotient

ker(θ)/Kθ(G) is an abelian pro-ℓ group. Observe that if θ is trivial (i.e., constantly

equal to 1), then Kθ(G) = G′.
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One has the following (cf., e.g., [37, Prop. 2.6 and § 3.2]).

Proposition 3.4. Let (G, θ) be an oriented pro-ℓ group with torsion-free orientation.

The following are equivalent:

(i) The map

(3.1) H1(G,Zℓ(1)/ℓ
n) −→ H1(G,Fℓ),

induced by the epimorphism of continuous G-modules Zℓ(1)/ℓ
n → Fℓ, is surjec-

tive for every n ≥ 1.

(ii) The quotient ker(θ)/Kθ(G) is a free abelian pro-ℓ group.

(iii) There exists an epimorphism of pro-ℓ groups ϕ : G → Ḡ where Ḡ is locally

uniform and ker(ϕ) ⊆ Φ(G), inducing an epimorphism of oriented pro-ℓ groups

(G, θ) → (Ḡ, ðḠ).

If these conditions hold, then ker(ϕ) = Kθ(G) and

(Ḡ, ðḠ) ≃ ker(θ)/Kθ(G)⋊ (G/ ker(θ), θ/ ker(θ)).

An oriented pro-ℓ group (G, θ) with torsion-free orientation θ satisfying the above

equivalent conditions is said to be Kummerian (cf. [16, Def. 3.4]). If moreover the

oriented pro-ℓ group (H, θ|H) is Kummerian for every subgroupH ofG, then the oriented

pro-ℓ group (G, θ) is said to be 1-cyclotomic (cf. [36]). (Observe that in [7, 32, 33], a

1-cyclotomic oriented pro-ℓ group is said to be 1-smooth.)

Example 3.5. (a) If (G, θ) is a θ-abelian oriented pro-ℓ group with torsion-free

orientation, then, by Proposition 3.4–(iii), it is 1-cyclotomic, as (H, θ|H) is θ|H -

abelian for every subgroup H .

(b) If G is a free pro-ℓ group, then the oriented pro-ℓ group (G, θ) is 1-cyclotomic

for any orientation θ : G → Z×
ℓ (cf. [36, § 2.2]).

(c) If (G, θ) is an oriented pro-ℓ group with trivial orientation θ ≡ 1, then (G, θ) is

Kummerian if, and only if, the abelianization G/G′ is a free abelian pro-ℓ group

(cf. [16, Example 3.5–(1)]). Consequently, (G, θ) is 1-cyclotomic if, and only

if, H/H ′ is a free abelian pro-ℓ group for every subgroup H of G (pro-ℓ groups

satisfying this property are also called absolutely torsion-free pro-ℓ groups, cf.

[48]).

1-cyclotomic oriented pro-ℓ groups arise naturally in Galois theory (cf. [16, Thm. 4.2]

and [36, § 2.3]).

Theorem 3.6. Let K be a field containing a primitive ℓ-th root of 1 (and also
√
−1 if

ℓ = 2). Then (GK(ℓ), θ̂K,ℓ) is a torsion-free 1-cyclotomic oriented pro-ℓ group.

The pro-ℓ version of De Clercq-Florence’s Smoothness Conjecture (cf. [7, Conj. 14.25],

see also [32, Conj. 2.10]) states the following.

Conjecture 3.7. If a pro-ℓ group G may be endowed with a 1-cyclotomic orientation

θ : G → Z×
ℓ , then G is weakly Bloch-Kato.

The definition of weakly Bloch-Kato pro-ℓ group may be found in [7, Def. 14.23] — for

our purposes it is enough to remark that a Bloch-Kato pro-ℓ group is (unsurprisingly)

also weakly Bloch-Kato (see also [32, § 2.3]).
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Remark 3.8. Let (G, θ) be a Kummerian oriented pro-ℓ group, with θ a torsion-free

orientation. Then by Proposition 3.4 one has

(G/Kθ(G), θ/Kθ(G)) ≃ ker(θ)/Kθ(G) ⋊ (G/ ker(θ), θ/ ker(θ))

with ker(θ)/Kθ(G) a free abelian pro-ℓ group. Now let N be a normal subgroup of G

contained in ker(θ) such that the map

res1G,N : H1(G,Fℓ) −→ H1(N,Fℓ)
G

is injective — namely, by duality the map N/N ℓ[N,G] → G/Φ(G) induced by the

inclusion N →֒ G is injective. Then the group N̄ = NKθ(G)/Kθ(G) is an isolated

subgroup of the free pro-ℓ group ker(θ)/Kθ(G). Therefore,

ker(θ)

Kθ(G)
≃ N̄ ×A and

ker(θ/N )

Kθ/N (G/N)
≃ ker(θ)/Kθ(G)

N̄
≃ A,

where A is a free pro-ℓ group. Thus, also the oriented pro-ℓ group (G/N, θ/N ) is Kum-

merian by Proposition 3.4.

3.5. Oriented pro-ℓ groups of elementary type. The following definition is due to

I. Efrat (cf. [14, § 3], see also [36, § 7.5]).

Definition 3.9. The family of oriented pro-ℓ groups of elementary type is the smallest

class of oriented pro-ℓ groups such that

(a) the oriented pro-ℓ group ({1},1) consisting of the trivial group and the trivial

orientation is of elementary type, as well as the oriented pro-ℓ group (Zℓ, λ) for

any linear orientation λ : Zℓ → Z×
ℓ ;

(b) any oriented pro-ℓ group (G, θ) with G a Demushkin group and θ : G → Z×
ℓ its

canonical orientation (cf. [19, Thm. 4] and [36, § 5.3]);

(c) if (G1, θ1) and (G2, θ2) are two oriented pro-ℓ groups of elementary type, then

also the free product

(G1, θ1) ∐ℓ̂ (G2, θ2)

is an oriented pro-ℓ group of elementary type;

(d) if (G, θ) is an oriented pro-ℓ group of elementary type and A is a free abelian

pro-ℓ group, then also the oriented pro-ℓ group A⋊ (G, θ) is of elementary type.

By [36, Thm. 1.3], if (G, θ) is an oriented pro-ℓ group of elementary type, then G

is Bloch-Kato and (G, θ) is 1-cyclotomic. Moreover, one has the following fact (cf.

[36, § 3.3–3.4]).

Fact 3.10. Let (G, θ) be an oriented pro-ℓ group and let H ⊆ G be a subgroup.

(i) If (G, θ) = (G1, θ1) ∐ℓ̂ (G2, θ2), then

(H, θ|H) ≃
∐

i∈I

ℓ̂
(Hi, τi),

where Hi is a subgroup of either G1 or G2 — and τi denotes the restriction of

θ1 or θ2 respectively —, or Hi is a free pro-ℓ group.

(ii) If (G, θ) = A⋊(G◦, θ◦) for some oriented pro-ℓ group (G◦, θ◦) and A ≃ Zℓ, then

(H, θ|H) ≃ (A ∩H)⋊ (H◦, θ◦|H◦
)

for some subgroup H◦ ⊆ G◦.
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In particular, if (G, θ) is of elementary type, then for every finitely generated subgroup

H ⊆ G the oriented pro-ℓ group (H, θ|H) is again of elementary type.

Efrat’s Elementary Type conjecture predicts that every finitely generated pro-ℓ group

which is isomorphic to a maximal pro-ℓ Galois group of a field containing a primitive

ℓ-th root of unity, endowed with the cyclotomic character, should be completed into an

oriented pro-ℓ group of elementary type (cf. [12], see also [13, Ques. 4.8], [15, Conj. 1.2]

and [21, § 10]).

Conjecture 3.11. Let K be a field containing a primitive ℓ-th root of 1, and suppose

that [K× : (K×)ℓ] < ∞ (i.e., the maximal pro-ℓ Galois group GK(ℓ) is finitely generated).

Then (GK(ℓ), θ̂K,ℓ) is an oriented pro-ℓ group of elementary type.

4. Oriented pro-ℓ RAAGs

4.1. Oriented pro-ℓ RAAGs. From now on a non-trivial torsion-free orientation

λ : Zℓ → Z×
ℓ will be called a linear orientation. Recall from the Introduction the defini-

tion of an oriented pro-ℓ RAAG (GΓ,λ, θΓ,λ) associated to an oriented graph Γ = (V , E )

and a linear orientation λ. The following fact is a direct consequence of the definition

of an oriented pro-ℓ RAAG.

Fact 4.1. Let Γ = (V , E ) be an oriented graph, and let λ : Zℓ → Z×
ℓ be a linear orien-

tation.

(i) If Γ = Γ1 ⊔ Γ2, then the associated oriented pro-ℓ group (GΓ,λ, θΓ,λ) decomposes

as free pro-ℓ product of oriented pro-ℓ groups

(GΓ1,λ, θΓ1,λ)∐ℓ̂ (GΓ2,λ, θΓ2,λ).

(ii) More generally, if Γ is the patching of two induced subgraphs Γ1,Γ2 along a

common induced subgraph Λ, then then the associated oriented pro-ℓ group

(GΓ,λ, θΓ,λ) decomposes as amalgamated free pro-ℓ product of oriented pro-ℓ

groups

(GΓ1,λ, θΓ1,λ)∐ℓ̂
GΛ,λ

(GΓ2,λ, θΓ2,λ),

with amalgam GΛ,λ (for the definition of amalgamated free pro-ℓ product of

oriented pro-ℓ groups see [37, Def. 5.4]).

(iii) If Γ = ∇(Γ′) for some induced subgraph Γ′, with tip v ∈ V , then one has

(GΓ,λ, θΓ,λ) ≃ 〈 v 〉⋊ (GΓ′,λ, θΓ′,λ).

4.2. Oriented pro-ℓ RAAGs and generalized pro-ℓ RAAGs. Following [35, § 5.1],

we say that an ℓ-labelled graph is an oriented graph Γ = (V , E ) such that E = Es,

endowed with a map f = (fo, ft) : Es → ℓZℓ × ℓZℓ, which we call the ℓ-labelling of Γ.

The generalized pro-ℓ RAAG associated to a ℓ-labelled graph Γ = (V , E ) with la-

belling f is the pro-ℓ group with presentation
〈

v ∈ V | [v, w]vfo(e)wft(e) = 1 for e = (v, w) ∈ E

〉

.

Now let λ be a linear orientation, and let Γ = (V , E ) be any oriented graph, with

E = Es ⊔ Eo. Then the pro-ℓ group GΓ,λ is the generalized pro-ℓ RAAG associated to a
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ℓ-labelled graph Γ′ = (V , E ′) such that Ë ′ = Ë , with ℓ-labelling

f(e) =

{

(λ(1)− 1, 0) if e ∈ Es

(0, 0) if e ∈ Eo.

4.3. Examples. Let λ : Zℓ → Z×
ℓ be a linear orientation. One has the following exam-

ples of oriented pro-ℓ RAAGs.

Example 4.2. If Γ = (V , E ) is an oriented graph with E = Eo (namely, no edge is

an “arrow”), then GΓ,λ is the pro-ℓ completion of the discrete RAAG associated to

the näıve graph Γ̈. In particular, if Γ has no edges, then GΓ,λ is the free pro-ℓ group

generated by V .

Example 4.3. Let Γ = (V , E ) be the specially oriented graph with geometric realization

v w

• // •
Then

G = GΓ,λ =
〈

v, w | wv = vλ(1)
〉

,

and one has θΓ,λ(v) = 1 and θΓ,λ(w) = λ(1). Observe that (GΓ,λ, θΓ,λ) is θΓ,λ-abelian.

Remark 4.4. A 2-generated pro-ℓ group G is isomorphic to an oriented pro-ℓ RAAG

associated to an oriented graph (with two vertices) if, and only if, either of the following

occurs: G is a free pro-ℓ group (in which case, the associated oriented graph consists

of two disjoint vertices); or G is locally uniform (in which case, the two vertices of the

associated oriented graph are joined).

Example 4.5. Let Γ = (V , E ) be a complete specially oriented graph and let λ : Zp →
Z×
p be a linear orientation. Then Γ has at most one special vertex (cf. Example 2.7),

say w, and

GΓ,λ =
〈

w,Vo | [v, v′] = 1, wv = vλ(1) ∀ v, v′ ∈ Vo

〉

(where we set implicitly w = 1 and we omit the relations wv = vλ(1), if Vs = ∅), which is

locally uniform, with canonical orientation ðG = θΓ,λ — in particular, θΓ,λ(w) = λ(1),

if Vs 6= ∅, and θΓ,λ(v) = 1 for every v ∈ Vo.

Example 4.6. Let Γ = (V , E ) be the oriented graph with geometric realization

v1
•

•
❚❚❚

❚❚❚

77♣♣♣♣♣♣♣ •
❥❥❥

❥❥❥

gg◆◆◆◆◆◆◆

v2 •

OO

v4

v3

— observe that Γ is specially oriented, but not of elementary type by Remark 2.11–(b),

as the induced subgraph Γ′ with vertices v1, v2, v4 is as the graph Λs in Example 2.12–

(c), and Γ = ∇(Γ′). Moreover, Γ is the patching of the induced vertices Γ1,Γ2 —
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with vertices respectively v1, v2, v3 and v1, v3, v4 — along the induced subgraph ∆ with

vertices v1, v3. Then

GΓ,λ =
〈

v1, . . . , v4 | v1vi = v
λ(1)
i , [v2, v3] = [v3, v4] = 1, i = 2, 3, 4

〉

≃ GΓ1,λ ∐ℓ̂
G∆,λ

GΓ2,λ,

where GΓ1,λ, GΓ2,λ and G∆,λ are all locally uniform. (The oriented graph Γ is chordal,

cf. § 7 below.)

Unlike (pro-ℓ completions of) RAAGs, an oriented pro-ℓ RAAG may yield non-trivial

torsion, as shown by the following example.

Example 4.7. For ℓ odd, set λ : Zℓ → Z×
ℓ such that λ(1) = 1 + ℓ, and let Γ = (V , E )

be the oriented graph

v1
•

''◆◆
◆◆◆

◆◆

•

77♣♣♣♣♣♣♣ •kk

v3 v2

Then one has

GΓ,λ =
〈
v1, v2, v3 | v2v1 = v1+ℓ

1 , v3v2 = v1+ℓ
2 , v1v3 = v1+ℓ

3

〉
,

and this pro-ℓ group is a finite ℓ-group, as shown by J. Mennicke (cf. [41, Ch. I,

§ 4.4, Ex. 2(e)]). Observe that on the one hand the oriented graph Γ is not specially

oriented; on the other hand, the orientation θΓ,λ is constantly equal to 1 as V = Vo,

and the oriented pro-ℓ group (GΓ,λ, θΓ,λ) is not Kummerian, as ker(θΓ,λ)/KθΓ,λ
(GΓ,λ) =

GΓ,θ/G
′
Γ,λ ≃ (Z/ℓZ)3.

4.4. Specially oriented graphs and Kummerianity. The goal of this subsection is

to prove that Kummerianity characterises oriented pro-ℓ RAAGs associated to specially

oriented graphs.

Let Γ = (V , E ) be an oriented graph, let λ : Zℓ → Z×
ℓ be a linear orientation, and let

(GΓ,λ, θΓ,λ) be the associated oriented pro-ℓ RAAG. First, we need the following lemma.

Lemma 4.8. Let θ : GΓ,λ → Z×
ℓ be a torsion-free orientation such that the oriented

pro-ℓ group (GΓ,λ, θ) is Kummerian, and let ϕ : GΓ,λ → Ḡ be an epimorphism satisfying

condition–(iii) of Proposition 3.4. Moreover, for every edge e ∈ E , let He be the subgroup

of GΓ,λ generared by o(e), t(e). Then the restriction

ϕ|He
: He −→ Ḡ

is a monomorphism of locally uniform pro-ℓ groups.

Proof. Set G = GΓ,λ. By Proposition 3.4, kerϕ = Kθ(G), and thus ðḠ = θ/ ker(θ). For

every edge e = (v, w) ∈ E , ϕ(He) is a subgroup of the locally uniform pro-ℓ group Ḡ,

and thus it is locally uniform as well, with associated canonical orientation ðϕ(He) =

ðḠ|ϕ(He). Moreover, Kθ(G) ⊆ Φ(G) by definition, so that ϕ(v) and ϕ(w) are linearly

independent modulo Φ(Ḡ), and He is 2-generated.

On the other hand, consider the epimorphism of pro-ℓ groups

ϕ|He
: He −→ ϕ(He).
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By Example 4.3–(a), He is a quotient of the 2-generated locally uniform pro-ℓ group

H = 〈 v, w | Rλ(e) = 1 〉,
with associated canonical orientation ðH . Altogether, one has a chain of epimorphisms

of pro-ℓ groups H → He → ϕ(He), where both H and ϕ(He) are 2-generated locally

uniform pro-ℓ groups. Therefore, both homomorphism are isomorphisms of 2-generated

locally uniform pro-ℓ groups, and one has a chain of isomorphism of oriented pro-ℓ

groups

(H, ðH) // (He, θ|He
)

ϕ //
(
ϕ(He), ðḠ|ϕ(He)

)
,

as the canonical orientations depend uniquely by the structures of the locally uniform

pro-ℓ groups by Proposition 3.2. In particular, one has

(4.1) ðH(v) = ðHe
(v) = ðḠ(ϕ(v)) = θ(v)

— where the last equality follows by the fact that ðḠ ◦ϕ = θ by Proposition 3.4 —, and

analogously for w. �

Theorem 4.9. Let Γ = (V , E ) be an oriented graph, let λ : Zℓ → Z×
ℓ be a linear

orientation, and let (GΓ,λ, θΓ,λ) be the associated oriented pro-ℓ RAAG. Then there

exists a torsion-free orientation θ : G → Z×
ℓ such that the oriented pro-ℓ group (GΓ,θ, θ)

is Kummerian if, and only if, Γ is specially oriented and θ = θΓ,λ.

Proof. Set G = GΓ,λ.

Suppose first that Γ is specially oriented. Let F be the free pro-ℓ group generated

by V , and let RΓ,λ be the normal subgroup of F generated (as a normal subgroup) by

{Rλ(e), e ∈ E } — namely, one has a short exact sequence of pro-ℓ groups

{1} // RΓ,λ
// F

π // G // {1} .

Set θ̃ = θΓ,λ ◦π, and consider the oriented pro-ℓ group and (F, θ̃). By Example 3.5–(b),

(F, θ̃) is Kummerian, and thus F/Kθ̃(F ) is a locally uniform pro-ℓ group by Proposi-

tion 3.4. We claim that RΓ,λ ⊆ Kθ̃(F ). Indeed, for every edge e = (x,w) ∈ E , one has

the following.

(i) If e ∈ Es, then x ∈ Vs, so that y ∈ Vo by condition (ii) in Definition 2.5.

Consequently, θΓ,λ(x) = λ(1) and y ∈ ker(θΓ,λ), so that

Rλ(e) = [x, y]y1−λ(1) = [x, y]y1−θΓ,λ(x) ∈ Kθ̃(F ).

(ii) If e ∈ Eo, then x, y ∈ Vo by condition (i) in Definition 2.5. Consequently,

x, y ∈ ker(θΓ,λ), so that

Rλ(e) = [x, y] ∈ Kθ̃(F ).

Therefore,
G

KθΓ,λ
(G)

≃ F/RΓ,λ

Kθ̃(F )/RΓ,λ
≃ F

Kθ̃(F )
,

where the latter is a locally uniform pro-ℓ group. Hence, (G, θΓ,λ) is Kummerian by

Proposition 3.4.

Suppose now that Γ is not specially oriented, and that θ : G → Z×
ℓ is a torsion-free

orientation such that (G, θ) is a Kummerian oriented pro-ℓ group. Then Γ contains a
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(non-necessarily induced) subgraph Γ′ = (V ′, E ′), with V ′ = {x, y, z}, as in (2.4). Set

e1 = (x, y) ∈ E and e2 = (z, x) ∈ Es. By Lemma 4.8, one has

He2
=

〈

x, z | xz = zλ(1)
〉

,

and ðHe2
(x) = θ(x) = λ(1) by (4.1). Now one has two cases.

(i) If Γ′ is as the left-side one in (2.4) — i.e., e1 ∈ Eo —, then [x, y] = 1 and

He1
≃ Z2

ℓ by Lemma 4.8. In particular,

θ(x) = ðHe1
(x) = 1 6= λ(1)

by (4.1), a contradiction.

(ii) If Γ′ is as the right-side one in (2.4) — i.e., e1 ∈ Es —, one has

He1
≃

〈

x, y | yx = xλ(1)
〉

by Lemma 4.8. In particular, θ(x) = ðHe1
(x) = 1 6= λ(1) by (4.1), a contradic-

tion.

Therefore, if Γ is not specially oriented, (G, θ) cannot be Kummerian. �

From Theorem 3.6 and from Theorem 4.9, one deduces that the oriented pro-ℓ RAAG

(GΓ,λ, θΓ,λ) associated to an oriented graph Γ and a linear orientation λ : Zℓ → Z×
ℓ may

occur as the maximal pro-ℓ Galois group of a field K containing a primitive ℓ-th root of

unity (and also
√
−1 if ℓ = 2) only if Γ is specially oriented, and with θΓ,λ = θ̂K. This

is a refinement of [35, Thm. 5.32].

4.5. Cliques and locally uniform oriented pro-ℓ RAAGs. From Theorem 4.9 we

deduce the following.

Corollary 4.10. Let Γ = (V , E ) be an oriented graph, and let λ : Zℓ → Z×
ℓ be a linear

orientation. The associated oriented pro-ℓ RAAG (GΓ,λ, θΓ,λ) is locally uniform if, and

only if, Γ is complete and specially oriented.

Proof. Set G = GΓ,λ. Suppose that Γ is complete and specially oriented. If Vs = ∅,

then G is the pro-ℓ completion of the discrete RAAG associated to the näıve graph Γ̈,

and thus it is a free abelian pro-ℓ group. Otherwise, there is only one special vertex

w ∈ Vs (cf. Example 2.7), and thus

G =
〈

V | [v, v′] = 1, wv = vλ(1) ∀ v, v′ ∈ Vo

〉

is locally uniform.

Conversely, suppose that G is locally uniform, with canonical orientation ðG. Then

(G, ðG) is a Kummerian oriented pro-ℓ group, and therefore by Theorem 4.9, Γ is spe-

cially oriented and ðG ≡ θΓ,λ. In particular, given two vertices v, v′ ∈ V , let H be the

subgroup of G generated by v, v′. Then H is locally uniform with ðH ≡ θΓ,λ|H (cf.

Lemma 4.8), so that v, v′ are joined by an edge. �

By the proof of Theorem 4.9, the subgroup of an oriented pro-ℓ RAAG, associated to

a specially oriented graph Γ and a linear orientation, generated by two adjacent vertices

of Γ is isomorphic to the oriented pro-ℓ RAAG associated to the induced subgraph of Γ

with these two vertices. This is true also for every clique of Γ.
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Proposition 4.11. Let Γ = (V , E ) be a specially oriented graph and λ : Zℓ → Z×
ℓ a

linear orientation. If ∆ = (V (∆), E (∆)) is a clique of Γ, then the inclusion V (∆) →֒ V

induces a monomorphism of oriented pro-ℓ groups

(G∆,θ, θ∆,λ) −→ (GΓ,λ, θΓ,λ).

Proof. By Corollary 4.10, (G∆,λ, θ∆,λ) is θ∆,λ-abelian — and thus the pro-ℓ group G∆,θ

is locally uniform —, as ∆ is complete and specially oriented.

Set G = GΓ,λ. Since Γ is specially oriented, (G, θΓ,λ) is a Kummerian oriented

pro-ℓ group by Theorem 4.9, and thus G/KθΓ,λ
(G) is a locally uniform pro-ℓ group by

Proposition 3.4. Let

(4.2) φ∆ : G∆,θ −→ G and ϕ : G −→ G/K(GΓ)

denote respectively the morphism induced by the inclusion V (∆) →֒ V and the canonical

projection — note that both maps π|V and (π ◦ φ∆)|V (∆) are injective, as KθΓ,λ
(G) ⊆

Φ(G) — and let H be the subgroup of G generated by V (∆). Then one has a chain of

morphism of pro-ℓ groups

G∆,λ
φ∆ // H

π|H // π(H) ,

where both G∆,λ and π(H) are locally uniform pro-ℓ groups, minimally generated by

V (∆). Therefore, both morphisms are isomorphism, andH is locally uniform as well. In

particular, θ∆,λ = ðπ(H) ◦ π ◦φ∆, as the canonical orientations are uniquely determined

by the structure of the locally uniform pro-ℓ groups (cf. Proposition 3.2). �

4.6. Cohomology of oriented pro-ℓ RAAGs. Let Γ̈ = (V̈ , Ë ) be a näıve graph, and

let V denote the Fℓ vector space with basis V̈ . The exterior Stanley-Reisner Fℓ-algebra

associated to Γ̈op is the Fℓ-algebra

Λ•(Γ̈
op) =

Λ•(V )
(

v ∧ w | {v, w} /∈ Ë

) ,

where Λ•(V ) denotes the exterior Fℓ-algebra generated by V . Clearly, Λ•(Γ̈
op) is a

quadratic algebra.

Now let Γ = (V , E ) be an oriented graph, and let λ be a linear orientation. By

duality, one has an isomorphism of Fℓ-vector spaces

(4.3) V = Λ1(Γ̈
op)

∼−→ H1(GΓ,λ,Fℓ) = Hom(GΓ,λ,Fℓ).

(cf. [41, Ch. I, § 4.2]). By [35, Lemma 5.8], the cup-product extends the isomorphism

(4.3) to a homomorphism of graded Fℓ algebras

(4.4) Λ•(Γ̈
op) −→ H•(GΓ,λ,Fℓ)

which is an isomorphism in degree 2 too. Therefore, if H•(GΓ,λ,Fℓ) is quadratic, then

H•(GΓ,λ,Fℓ) ≃ Λ•(Γ̈
op) (cf. [35, Thm. E]).

Example 4.12. Let λ be a linear orientation, and let Γ = (V , E ) be an oriented graph

without triangles as induced subgraphs. Then H•(GΓ,λ,Fℓ) is isomorphic to Λ•(Γ̈
op)

(cf. [35, Thm. F]).
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Remark 4.13. Put ℓ = 2, and let λ : Z2 → Z×
2 be a linear orientation — i.e., λ(1) =

1+4µ for some µ ∈ Z2r {0}. Given an oriented graph Γ = (V , E ), set G = GΓ,λ. Then

the quotient G/G4G′ is isomorphic to (Z/4Z)d, where d is the number of vertices of Γ,

so that the map

H1(GΓ,λ,Z/4Z) −→ H1(GΓ,λ,F2),

induced by the canonical projection Z/4Z → F2, is surjective. This implies that the

Bockstein morphism bG : H1(G,F2) → H2(G,F2) is trivial (cf., e.g., [33, p. 415]). Fur-

thermore, if H is a subgroup of G such that the restriction map res1G,H : H1(G,Fℓ) →
H1(H,Fℓ) is surjective, the commutativity of the diagram

H1(G,Fℓ)
bG //

res1G,H

��

H2(G,Fℓ)

res1G,H

��
H1(H,Fℓ)

bH // H2(H,Fℓ)

implies that also the Bockstein morphism bH : H1(H,F2) → H2(H, ,F2) is trivial.

5. Bloch-Kato Oriented pro-ℓ RAAGs

5.1. A Tits’ alternative. Recall that by Remark 3.3 a locally uniform pro-ℓ group is

Bloch-Kato. For Bloch-Kato pro-ℓ groups one has the following Tits’ alternative type

result (cf. [36, § 7.1]).

Proposition 5.1. Let G be a Bloch-Kato pro-ℓ group. If ℓ = 2 suppose further that

the Bockstein morphism bG : H1(G,F2) → H2(G,F2) is trivial. Then either G is locally

uniform, or G contains a subgroup which is a free non-abelian pro-ℓ group. In particular,

if G is 2-generated, then either G is a free pro-ℓ group; or G is locally uniform.

By Remark 4.4, the same phenomenon occurs for oriented pro-ℓ RAAGs. Moreover,

observe that by Remark 4.13, if ℓ = 2 the Bockstein morphism is always trivial for

every subgroup of an oriented pro-ℓ RAAG such that the restriction map of degree 1 is

surjective.

5.2. Non-specially oriented graphs.

Theorem 5.2. Let Γ = (V , E ) be an oriented graph, and let λ be a linear orientation.

If GΓ,λ is Bloch-Kato, then Γ is specially oriented.

Proof. Set G = GΓ,λ, and suppose that Γ is not specially oriented. Then Γ contains

a (non-necessarily induced) subgraph with geometric realization as in (2.4) (cf. Defini-

tion 2.5). Set e1 = (x, y), e2 = (z, x) ∈ E . Let H be the subgroup of G generated by

x, y, z, and let H0 be the subgroup of H generated by y, z. If H0 is not free nor locally

uniform, then by Proposition 5.1 H0 (and thus also G) is not Bloch-Kato. So, let us

assume that H0 is locally uniform or free.

Observe that the subgroups He1
and He2

of G, generated respectively by x, y and

x, z, are not free. Therefore, if G is Bloch-Kato, then they must be locally uniform by

Proposition 5.1.
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Suppose first that H0 is locally uniform: then [y, z] ∈ Hℓ
0 ⊆ Hℓ, and thus H is

powerful, as also [x, y], [x, z] ∈ Hℓ. If H is locally uniform, then one has

ðH(x) = ðHe1
(x) = 1 and ðH(x) = ðHe2

(x) = λ(1),

a contradiction. Therefore, H is powerful but not locally uniform, and since powerful

pro-ℓ groups contain no non-abelian free subgroups (cf. [9, Thm. 3.13]), H is not Bloch-

Kato by Proposition 5.1.

Suppose now that H0 is a free pro-ℓ group, and set t = yz. Then

(5.1) xt = xy · xz =

{

y · xz = yzλ(1) = tzλ(1)−1, if (x, y) ∈ Eo,

x1−λ(1)yzλ(1) = x1−λ(1)tzλ(1)−1, if (x, y) ∈ Es.

Let Ht be the subgroup of H generated by x, t. Observe that (5.1) implies that zλ(1)−1

lies in Ht, and therefore Ht is not a free pro-ℓ group, as

x
(

zλ(1)−1
)

= zλ(1)(λ(1)−1).

Moreover, Proposition 5.1 may apply also to Ht (cf. § 5.1). If Ht is locally uniform,

then also the subgroup 〈 t, zλ(1)−1 〉 ⊆ Ht is locally uniform, but 〈 t, zλ(1)−1 〉 is also a

subgroup of H0 which is free: therefore,

〈 t, zλ(1)−1 〉 ≃ Zℓ =⇒ tµ1 = zµ2(λ(1)−1) for some µ1, µ2 ∈ Zℓ r {0}.
This implies that [z, tµ1 ] = 1, while H0 = 〈 t, z 〉 is free, a contradiction. Therefore, Ht is

not free nor locally uniform, and thus Proposition 5.1 implies that H0 (and hence also

G) is not Bloch-Kato. �

From the proof of Theorem 5.2 we deduce the following.

Corollary 5.3. Let Γ = (V , E ) be an oriented graph, and let λ be a linear orientation.

If every finitely generated subgroup of GΓ,λ is isomorphic to an oriented pro-ℓ RAAG,

then Γ is specially oriented.

Proof. Set G = GΓ,λ. Suppose that Γ is not specially oriented, and let x, y, z ∈ V and

H,H0, Ht ⊆ G be as in the proof of Theorem 5.2.

If the 2-generated pro-ℓ group H0 is not a free pro-ℓ group nor locally uniform, then

H0 does not occur as an oriented pro-ℓ RAAG by Remark 4.4. So, let us suppose that

H0 is free or locally uniform.

If H0 is a free pro-ℓ group, then the 2-generated pro-ℓ group Ht is not free nor locally

uniform, and hence Ht does not occur as an oriented pro-ℓ RAAG, again by Remark 4.4.

Finally, suppose that H0 is locally uniform. Then H is powerful — but not locally

uniform, by the proof of Theorem 5.2 —, and by [9, Thm. 3.13]H has no free 2-generated

subgroups. Suppose that every 2-generated subgroup of H is locally uniform. Thus, H

is torsion-free. Moreover, for every couple of elements u,w ∈ H , the subgroup 〈 u,w 〉 is
uniform, and

[u,w] ∈
{

〈 u,w 〉ℓ if ℓ 6= 2,

〈 u,w 〉4 if ℓ = 2.

Therefore, for every subgroup V of H one has V ′ ⊆ V ℓ (V ′ ⊆ V 4 if ℓ = 2), so that

V is powerful, and also uniform as H is torsion-free. Hence, H is locally uniform, a
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contradiction. Thus, there exists a 2-generated subgroup of H which is neither free nor

locally uniform, and consequently it does not occur as an oriented pro-ℓ RAAG. �

Remark 5.4. From the proof of Corollary 5.3, one deduces that a pro-ℓ group G is

locally uniform if, and only if, every 2-generated subgroup of G is uniform.

5.3. The oriented graph Λs. Recall that the oriented graph Λs is specially oriented

but not of elementary type (cf. Example 2.12–(c)).

Proposition 5.5. Let λ be a linear orientation. Then the pro-ℓ group GΛs,λ is not

Bloch-Kato.

Proof. Set G = GΛs,λ. Up to a change of the generator x, we may assume that

θΛs,λ(x) = λ(1) = 1 + pf for some f ≥ 1

(in particular, if ℓ = 2 then f ≥ 2). Put q = pf . Then G has a minimal presentation

G =
〈

x, z1, z2 | xz1 = z1+q
1 , xz2 = z1+q

2

〉

.

Hence, we can consider G as the fundamental group of the graph of pro-ℓ groups

• Z •
G1 G2

where Z is the pro-ℓ-cyclic subgroup of G generated by x, and for i = 1, 2 the group Gi

is the subgroup of G generated by x, zi — i.e., Gi ≃ 〈zi〉⋊Z —, and the monomorphisms

from Z to G1, G2 are the canonical embeddings.

Let φU : G → Z/qZ be the homomorphism defined by φU (zi) = 1 for i = 1, 2, and

φU (x) = 0. Set ui = zqi , for i = 1, 2, and t = z1z
−1
2 . Then U is the normal subgroup

of G generated by x, u1, u2, t. Note that x, u1, t are enough to generate U (as normal

subgroup), as

(5.2) xt = z1+q
1 z−1−q

2 = u1tu2.

Let U1, U2 be the subgroups of U generated by u1, x and u2, x respectively. By Theo-

rem 2.14, U is the fundamental pro-ℓ group of the graph of pro-ℓ groups U based on the

graph ∆ = U\T, with q edges, where T = (V (T), E (T)) is the second-countable pro-ℓ

tree associated to the decomposition as pro-ℓ amalgam G ≃ G1 ∐ℓ̂
Z G2, namely

V (T) = { gG1, gG2 | g ∈ G } and E (T) = { gZ | g ∈ G }.
In particular U(vi) = Ui for i = 1, 2.

LetH be the subgroup of U generated as a pro-ℓ group by {u1, x, t}, and set y = u−1
1 x.

Then u2 ∈ H , and U1 = 〈 u1 〉 ⋊ 〈 y 〉. Moreover, H is the fundamental pro-ℓ group of

the graph of pro-ℓ groups

H = •
Z

〈 y 〉

•
U1 〈 u−1

2 x 〉 ≃ Zℓ

which is a restriction of U . In particular, the monomorphisms of pro-ℓ groups associated

to the bottom edge of U are the inclusion Z →֒ U1 and the isomorphism Z → 〈 u−1
2 x 〉,

x 7→ u−1
2 x, while the monomorphisms of pro-ℓ groups associated to the top edge of U are
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the monomorphism 〈 y 〉 → U , y 7→ x, and the isomorphism 〈 y 〉 → 〈 u−1
2 x 〉, y 7→ u−1

2 x.

Hence

H =
〈

u1, y, t, u
−1
2 x | yu1 = u1+q

1 , t−1yt = u−1
2 x

〉

,

and this yields the minimal presentation

(5.3) H =
〈

u1, y, t | [y, u1]u
−q
1 =

[
u1y, [t

−1, y]
]
uq
2

(
(u−1

2
)u−1

1

)q

= 1
〉

— observe that u2 may be generated by u1, y, t, as u2 = [t−1, y]u−1
1 by (5.2).

Now let F be the free pro-ℓ group generated by {u1, y, t}, and let R be the normal

subgroup of F such that H = F/R. Then R/Rℓ[R,F ] 6= RF(3)/F(3), because

[u1, y]u
−q
1 /∈ F(3) and

[
u1y, [t

−1, y]
]
uq
2

(
(u−1

2
)u−1

1

)q

∈ F(3)

(recall that 4 | q if ℓ = 2). Hence, by [24, Thm. 7.3], the cup-product

(5.4) H1(H,Fℓ)×H1(H,Fℓ)
`−→ H2(H,Fℓ)

is not surjective, and H•(H,Fℓ) is not a quadratic algebra (see also [35, Prop. 2.4]). �

Corollary 5.6. Let λ be a linear orientation. Then the pro-ℓ group GΛs,λ contains a

finitely generated subgroup which does not occur as an oriented pro-ℓ RAAG.

Proof. Let G and H be as in the proof of Proposition 5.5. Since the cup-product

(5.4) is not surjective, H2(H,Fℓ) is not isomorphic to Λ2(Γ̈
op) for any oriented graph

Γ. Therefore, H can not be isomorphic to the oriented pro-ℓ RAAG associated to an

oriented graph Γ and a linear orientation. �

6. Oriented pro-ℓ RAAGs and maximal pro-ℓ Galois groups

6.1. Oriented pro-ℓ RAAGs of elementary type. The following fact is rather

straightforward, and it follows from the inductive procedure to construct oriented graphs

of elementary type and oriented pro-ℓ groups of elementary type (cf. § 3.5).

Fact 6.1. Let Γ = (V , E ) be an oriented graph, and let λ be a non trivial linear orien-

tation. Then (GΓ,λ, θΓ,λ) is an oriented pro-ℓ group of elementary type if, and only if,

Γ is of elementary type.

Moreover, from Proposition 3.10 one deduces the following.

Fact 6.2. Let Γ = (V , E ) be an oriented graph, and let λ be a non trivial linear orien-

tation. If Γ is of elementary type, then for every subgroup H of GΓ,λ one has

(H, θΓ,λ|H) ≃ (GΓ′,λ′ , θΓ′,λ′)

for some oriented graph Γ′ of elementary type and some non trivial linear orientation

λ′.

The following is the group-theoretic analogue of Proposition 2.13.

Proposition 6.3. Let Γ = (V , E ) be a specially oriented graph, and let λ be a lin-

ear orientation. Then Γ is of elementary type if, and only if, GΓ,λ has no subgroups

isomorphic to GΓ′,λ′ , with Γ′ ∈ {Λs,C4,L3} and λ′ a linear orientation.
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In the statement of Proposition 6.3, C4 and L3 denote — with an abuse of notation

— those specially oriented graphs with no special vertices and edges whose associated

näıve graphs are equal to C4 and L3 (as defined in Example 2.1) respectively. In order

to prove Proposition 6.3, we need the following technical lemma.

Lemma 6.4. Let Γ = (V , E ) be a specially oriented graph and let λ be a linear orien-

tation. If Γ has an induced subgraph Γ′ such that Γ̈′ has geometric realization

v1 x v2
• • •

then the subgroup V of G generated by {v1, v2} is a free pro-ℓ group.

Proof. LetH,H1, H2 be the subgroups ofG generated respectively by {x, v1, v2}, {x, v1},
and {x, v2}. By Proposition 4.11, H1, H2 are locally uniform — in particular, for i = 1, 2

one has Hi = 〈 vi 〉 ⋊ 〈 x 〉, with xvi = v
λ(1)
i , if x ∈ Vs; while Hi = 〈 x 〉 ⋊ 〈 vi 〉, with

vix = xθΓ,λ(vi), if x ∈ Vo.

Set Z = 〈 x 〉 and Vi = 〈 vi 〉, with i = 1, 2, and let T = (V (T), E (T)) be the

second-countable pro-ℓ tree with

V (T) = { hH1, hH2 | h ∈ H }, E (T) = { hZ | h ∈ H }.
Then H acts naturally on T by g · (hHi) = (gh)Hi and g · (hZ) = (gh)Z. The stabilizers

in V of and edge hZ and a vertex hHi of T are respectively

StabV (hZ) = V ∩ hZ = V ∩
〈
hx

〉
,

StabV (hHi) = V ∩ hHi = V ∩
〈
hvi,

hx
〉
.

We have two cases. If x ∈ Vs, then
vix = v

1−λ(1)
i x for both i = 1, 2, and we may write

h = vxµ, for some v ∈ V and µ ∈ Zℓ, as H = V ⋊ Z. Then

hx = vx = v′ · x, hvi = vv
λ(1)µ

i v−1,

for some v′ ∈ Φ(V ). If x ∈ Vo, then H = Z ⋊ V , and we may write h = xµv for some

v ∈ V and µ ∈ Zℓ. Then

hx = xθΓ,λ(v), hvi = xµ(1−θΓ(vi)) · vvi.
In both cases, StabV (hZ) = {1} and StabV (hHi) = 〈 vviv−1 〉 ≃ Zℓ. By [22, Thm. 5.6],

V is isomorphic to the free pro-ℓ product of some StabV (hHi) and of a free pro-ℓ group,

and therefore V is a free pro-ℓ group. �

Proof of Proposition 6.3. Set G = GΓ,λ. If Γ is of elementary type, then (G, θΓ,λ) is of

elementary type by Fact 6.1. Hence, for every finitely generated subgroup H ⊆ G the

oriented pro-ℓ group (H, θΓ,λ|H) is isomorphic to an oriented pro-ℓ RAAG associated to

some oriented graph of elementary type by Fact 6.2.

Conversely, suppose that Γ is not of elementary type. By Proposition 2.13, Γ has an

induced subgraph Γ′ = (V ′, E ′) such that either Γ′ = Λs, or Γ̈
′ ∈ {C4,L3}.

Assume first that Γ′ = Λs, with V ′ = {x, v1, v2}. By Proposition 4.11, the subgroup

of G generated by x is isomorphic to Zℓ, while by Lemma 6.4, the subgroup of G

generated by {v1, v2} is a free pro-ℓ group. Hence, the subgroup of G generated by V ′

is 〈

x, v1, v2 | xvi = v
λ(1)
i , i = 1, 2

〉

≃ GΛs,λ.
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Assume now that Γ̈′ = C4, with

V
′ = { v1, v2, v3, v4 } and Ë

′ = { {v1, v2}, . . . , {v4, v1} } .
By Lemma 6.4, the two subgroups H1, H2 of G generated by v1, v3 and by v2, v4
respectively, are 2-generated free pro-ℓ groups. Now pick y1, y3 ∈ ker(θΓ,λ|H1

) and

y2, y4 ∈ ker(θΓ,λ|H2
) such that the subgroup of H1 generated by y1, y3 is not isomorphic

to Zℓ, and analogously y2, y4 — this is possible as both kernels are non-abelian free

pro-ℓ groups. Then the subgroup of G generated by y1, y2, y3, y4 is

〈 y1, y2, y3, y4 | [yi, yj] = 1, i = 1, 3, j = 2, 4 〉 ≃ GC4,λ′

with λ′ an arbitrary linear orientation.

Finally, assume that Γ̈′ = L3, with

V
′ = { v1, v2, v3, v4 } and Ë

′ = { {v1, v2}, {v2, v3}, {v3, v4} } .
If v2 ∈ Vs, then (v2, v1), (v2, v3) ∈ Es, as Γ is specially oriented, and thus the induced

subgraph of Γ with vertices v1, v2, v3 is Λs: in this caseG contains a subgroup isomorphic

toGΛs,λ′ for some λ′ by the above argument. Analogously if v3 ∈ Vs. Otherwise, suppose

that v2, v3 ∈ Vo, so that (v2, v3) ∈ Eo. By Lemma 6.4, the two subgroups H1, H2 of G

generated by v1, v3 and by v2, v4 respectively, are 2-generated free pro-ℓ groups. Put

y1 = [v1, v2] and y4 = [v3, v4] — observe that y1, y4 ∈ ker(θΓ,λ). Then the subgroup of

G generated by y1, v2, v3, y4 is

〈 y1, v2, v3, y4 | [y1, v2] = [v2, v3] = [v3, y4] = 1 〉 ≃ GL3,λ′

with λ′ an arbitrary linear orientation. �

6.2. 1-cyclotomic oriented pro-ℓ RAAGs. By Theorem 4.9, an oriented pro-ℓRAAG

associated to an oriented graph Γ may be 1-cyclotomic only if Γ is specially oriented.

We show that, in fact, 1-cyclotomicity is far more restrictive.

Proposition 6.5. Let λ be a linear orientation. Then the oriented pro-ℓ RAAG (GΛs,λ, θΛs,λ)

is not 1-cyclotomic.

Proof. We keep the same notation as in the proof of Proposition 5.5. Recall that GΛs,λ

has a subgroup H with minimal presentation

H =
〈

u1, y, t | yu1 = u1+q
1 ,

[
u1y, [t

−1, y]
]
= u−q

2

(
(u−1

2
)u1

)q 〉

,

where u1 = zq1 , y = u−1
1 x, t = z1z

−1
2 , cf. (5.3).

Let φV : H → Z/ℓZ be the homomorphism defined by φV (y) = 1, φ(u1) = φ(t) = 0,

and set v = yℓ, w = [y, t−1]. Let φV : H → Z/ℓZ be the homomorphism defined by

φV (y) = 1, φ(u1) = φ(t) = 0. Then V is a normal subgroup of H of index ℓ, and it is

generated, as a normal subgroup, by v, u1, t
−1. In fact, V is generated as a pro-ℓ group

by the set






v, t−1, [y, t−1] = w,
[
y, [y, t−1]

]
, . . . , [y, [. . . , [y

︸ ︷︷ ︸

p−1 times

, t−1] . . .]], u1







,
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as H/V = {V, yV, . . . , yp−1V }, and yu1 = u1+q
1 . Observe that by (5.2), u2 lies in the

subgroup of V generated by t, w, u1, and thus the relation

u1

[
y, [y, t−1]

]
[u1, w] =

[
u1y, [y, t

−1]
]
= u−q

1

(
u−1

1 u2

)q

∈ 〈 t, w, u1 〉q

implies that every higher commutator [y, [. . . , [y, t−1] . . .]] — and thus the whole pro-ℓ

group V — is minimally generated by the set {v, t−1, w, u1}.
Set θ = θΛs,λ|V : V → Z×

ℓ . Since θ(v) = (1 + q)ℓ and θ(u1) = θ(t) = θ(w) = 1, u1

lies in ker(θ). Now let N be the normal subgroup of V generated by u1 as a normal

subgroup. Then the map N/N ℓ[N, V ] → V/Φ(V ) is injective, and hence Remark 3.8

implies that if the oriented pro-ℓ group (V, θ) is Kummerian, then also the oriented pro-ℓ

group (V/N, θ/N ) is Kummerian. We claim that the latter is not Kummerian. Indeed,

{vN, tN,wN} is a minimal generating set of V/N . Moreover, one has u2 ≡ w mod N ,

and thus
yw = y[y, t−1] ≡ w1+q mod N.

Therefore, one computes
[
v, t−1

]
=

[
yℓ, t−1

]
= yℓ−1

[y, t−1] · yℓ−2

[y, t−1] · · · y[y, t−1] · [y, t−1]

≡ w(1+q)ℓ−1 · w(1+q)ℓ−2 · · ·w1+q · w mod N

≡ w1+(1+q)+...+(1+q)ℓ−2+(1+q)ℓ−1

mod N.

This yields a relation [vN, tN ] = (wN)µ, with µ ∈ ℓZℓ, µ 6= 0. Hence, by [16, Thm. 8.1],

the oriented pro-ℓ group (V/N, θ/N ) is not Kummerian. Thus, (G, θΛs,λ) is not a 1-

cyclotomic oriented pro-ℓ group. �

6.3. Proof of Theorem 1.1.

Proof of Theorem 1.1. Let Γ = (V , E ) be an oriented graph, let λ : Zℓ → Z×
ℓ be a linear

orientation, and set G = GΓ,λ and θ = θΓ,λ : G → Zℓ.

The equivalence between (0) and (iv) is stated in Fact 6.1.

It is well-known that (iv) implies (i), as the realizability as a maximal pro-ℓ groups

is closed with respect to free pro-ℓ products and semi-direct products with Zℓ (cf. ...).

Moreover, (iv) implies also (ii) and (iii), cf. [36, Thm. 1.4] (see also Proposition 3.10).

Finally, (iv) implies also (v), as stated in Fact 6.2.

The Norm Residue Theorem (cf. [18]) yields the implications (i) ⇒ (ii) (cf. [30, § 2])

and (i) ⇒ (iii) (cf. [36, Thm. 1.1]).

Assume that G is Bloch-Kato. Then Γ is specially oriented by Proposition 5.2.

Suppose that G contains a subgroupH isomorphic toGΓ′,λ with either Γ′ ∈ {Λs,C4,L3}.
If Γ′ = Λs, then H is not Bloch-Kato by Proposition 5.5. If Γ′ = C4,L3, then H is not

Bloch-Kato by [44, Thm. 1.2]. Therefore, G contains no subgroups isomorphic to GΓ′,λ

for such an oriented graph Γ′, and (G, θΓ,λ) is of elementary type by Proposition 6.3.

This proves the implication (iii) ⇒ (iv).

Assume (G, θ) is 1-cyclotomic. Then by Theorem 4.9, Γ is specially oriented, and

θ = θΓ,λ. Suppose that G contains a subgroup H isomorphic to GΓ′,λ with either

Γ′ ∈ {ΛsC4,L3}. If Γ′ = Λs, then H can not be completed into a 1-cyclotomic oriented

pro-ℓ group by Proposition 6.5. If Γ′ = C4,L3, then H can not be completed into a

1-cyclotomic oriented pro-ℓ group by [44, Thm. 1.5] and Theorem 4.9. Therefore, G
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contains no subgroups isomorphic to GΓ′,λ for such an oriented graph Γ′, and (G, θΓ,λ)

is of elementary type by Proposition 6.3. This proves the implication (ii) ⇒ (iv).

Finally, assume that every finitely generated subgroup of G is isomorphic to an ori-

ented pro-ℓ RAAG. Then Γ is specially oriented by Corollary 5.3. Suppose that G

contains a subgroup H isomorphic to GΓ′,λ with either Γ′ ∈ {Λs,C4,L3}. If Γ′ = Λs,

then H contains a subgroup which can not occur as an oriented pro-ℓ RAAG by Corol-

lary 5.6. If Γ′ = C4,L3, then H contains a subgroup which can not occur as an oriented

pro-ℓ RAAG by [44, Thm. 1.2]. Therefore, G contains no subgroups isomorphic to GΓ′,λ

for such an oriented graph Γ′, and (G, θΓ,λ) is of elementary type by Proposition 6.3.

This proves the implication (iv) ⇒ (iv). �

7. Chordal oriented graphs

7.1. Chordal graphs and patching of graphs.

Definition 7.1. A näıve graph Γ̈ = (V̈ , Ë ) is said to be chordal (or triangulated) if

there are no induced subgraphs of Γ which are circuits of length at least 4. An oriented

graph Γ = (V , E ) is said to be chordal if Γ̈ is a chordal näıve graph.

Chordal graphs have the following characterization (cf. [8, Prop. 5.5.1] and [3,

Thm. 3.2]).

Proposition 7.2. Let Γ̈ = (V̈ , Ë ) be a näıve graph. Then the following are equivalent.

(i) The graph Γ̈ is chordal.

(ii) The graph Γ̈ decomposes as patching of two induced proper subgraphs Γ̈1, Γ̈2

which are chordal, along a common clique ∆̈ ⊆ Γ̈1, Γ̈2.

(iii) The graph Υ(Γ̈) has a maximal subtree TΥ(Γ̈) with the clique-intersection prop-

erty.

Example 7.3. Consider the näıve graph Γ̈ = (V̈ , Ë ) with geometric realization

v1
•

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧❧❧

❧❧❧
❧

✄✄
✄✄
✄✄
✄✄
✄✄

❀❀
❀❀

❀❀
❀❀

❀❀

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘❘❘

❘❘❘
❘

∆̈

• • • •
v2 v3 v4 v5

Then Γ̈ is chordal, and it is the pasting of the two induced subgraphs Γ̈1 = (V̈1, Ë1) and

Γ̈2 = (V̈2, Ë2), with V̈1 = V̈ r {v5} and V̈2 = V r {v2}, along the common subgraph ∆̈,

which is the triangle with vertices v1, v3, v4. Moreover, if ∆̈′ and ∆̈′′ are the triangles

with vertices v1, v2, v3 and v1, v4, v5 respectively, then Γ̈1 may be obtained as the pasting

of ∆̈′ and ∆̈ along the common edge with vertices v1, v3, and analogously Γ̈2 is the

pasting of ∆̈ and ∆̈′′ along the common edge with vertices v1, v4.

7.2. Chordal oriented graphs and oriented pro-ℓ RAAGs. Let Γ = (V , E ) be

a specially oriented graph, and let λ be a linear orientation. Recall that by Proposi-

tion 4.11, if ∆ = (V (∆), E (∆)) is a clique of Γ, then the inclusion V (∆) →֒ V induces

a monomorphism of pro-ℓ groups G∆,λ → GΓ,λ. Hence, if Γ is chordal, then one may
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find two proper induced subgraphs Γ1,Γ2 of Γ, whose intersection is a clique ∆, such

that Γ is the patching of Γ1,Γ2 along ∆, so that

(7.1) (GΓ,λ, θΓ,λ) ≃ (GΓ1,λ, θΓ1,λ) ∐ℓ̂
G∆,λ

(GΓ2,λ, θΓ2,λ)

(see 4.1–(ii)). Moreover, by [35, Prop. 5.22] this amalgamated free pro-ℓ product is

proper — i.e., the two factors are subgroups of the amalgamated free pro-ℓ product —,

as G∆,λ is a locally uniform pro-ℓ group. Therefore, an oriented pro-ℓ RAAG associated

to a chordal specially oriented graph may be constructed iterating amalgamated free

pro-ℓ products over locally uniform subgroups, starting from oriented pro-ℓ RAAGs

associated to complete specially oriented graphs.

In particular, let T = TΥ(Γ) be a maximal subtree of the clique-graph Υ(Γ) with the

clique-intersection property. Then one has a decomposition as proper amalgamated free

pro-ℓ product

GΓ,λ ≃
∐ℓ̂

∆∈mx(Γ) G∆,λ

N
,

where N is the normal subgroup of the free pro-ℓ product
∐

∆G∆,λ generated by the

elements

ιΞ,∆(v) · ιΞ,∆′(v)−1, v ∈ V (∆), Ξ = ∆ ∩∆′, (∆,∆′) ∈ E (T),

and ιΞ,∆ : GΞ,λ → G∆,λ is the monomorphism of locally uniform pro-ℓ groups induced

by V (Ξ) →֒ V (∆) (cf. [4]).

Example 7.4. Let λ be a linear orientation, and let Γ = (V , E ) be a specially oriented

graph with associated näıve graph Γ̈ as the chordal graph in Example 7.3. Moreover,

let ∆ be the clique of Γ with vertices v1, v3, v4, and analogously ∆′ and ∆′′. Then the

clique-graph Υ(Γ) has geometric realization

∆′ ∆ ∆′′

•
Ξ1

•
Ξ2

•

where Ξ1 = ∆′ ∩∆ and Ξ2 = ∆ ∩ ∆′′ are the 2-cliques with vertices v1, v3 and v1, v4
respectively. Therefore,

(7.2) GΓ,λ ≃
(

G∆′ ∐ℓ̂
GΞ1,λ

G∆,λ

)

∐ℓ̂
GΞ2,λ

G∆′′,λ,

Observe that G∆′,λ, G∆,λ, G∆′′,λ are 3-generated locally uniform pro-ℓ groups, while

GΞ1,λ, GΞ2,λ are 2-generated locally uniform pro-ℓ groups.

7.3. Chordal oriented graphs and cohomology. In [35, Thm. H] it is shown that

a generalized pro-ℓ RAAG associated to an oriented graph Γ satisfying a particular

group-theoretic condition has Fℓ-cohomology isomorphic to the exterior Stanley-Reisner

algebra Λ•(Γ̈
op). Thus, the following theorem is a refinement of the aforementioned

result.

Theorem 7.5. Let Γ = (V , E ) be an oriented graph, and let λ be a linear orientation.

If Γ is chordal and specially oriented, then

H•(GΓ,λ,Fℓ) ≃ Λ•(Γ̈
op).
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In order to prove Theorem 7.5, we need a technical lemma, which is a slight modifi-

cation of [35, Prop. 5.21]. Given a pro-ℓ group G, for n ≥ 1 let Φn(G) denote the n-th

term of the Frattini series of G — namely, Φ1(G) = G and Φn+1(G) = Φ(Φn(G)). If G

is locally uniform, then Φn(G) = Gℓn (cf. [9, Thm. 3.6]).

Recall that, given a specially oriented graph Γ = (V , E ) containing a clique ∆ =

(V (∆), E (∆)), the inclusion V (∆) →֒ V induces a monomorphism of pro-ℓ groups

φ∆ : G∆,λ → GΓ,λ (cf. Proposition 4.11), with λ a linear orientation.

Lemma 7.6. Let Γ = (V , E ) be a specially oriented graph, and let λ be a linear orien-

tation. If ∆ = (V (∆), E (∆)) is a clique of Γ, then

Φn(G∆,λ) = G∆,λ ∩ Φn(GΓ,λ)

for all n ≥ 1 (where we consider G∆,λ as a subgroup of GΓ,λ via the monomorphism

φ∆).

Proof. Set G = GΓ,λ, A = G∆,λ, and Ḡ = G/KθΓ,λ
(G), and let ϕ : G → Ḡ denote the

canonical projection. Recall that ϕ|A is injective. Clearly, one has the inclusion

Φn(A) ⊆ A ∩ Φn(G).

Let F be the free pro-ℓ group generated by V ′, where V = V ′ ⊔ V (∆), and put

G̃ = F ∐ℓ̂ A. Let π : G̃ → G be the epimorphism which sends every vertex v ∈ V ′,

considered as an element of F , to the same vertex, considered as an element of G, and

such that π|A = φ∆. Altogether, one has a chain of epimorphisms of pro-ℓ groups

G̃ = F ∐ℓ̂ A
π // G

ϕ // Ḡ .

Pick an element x ∈ A ∩ Φn(G). Then

ϕ(x) ∈ ϕ(A) ∩Φn(Ḡ) = ϕ(A) ∩ Ḡℓn = ϕ(A)ℓ
n

,

as Ḡ is locally uniform, generated by ϕ(V ′) ⊔ ϕ(V (∆)). Since ϕ ◦ φ∆ : A → ϕ(A) is an

isomorphism, there exists y ∈ Aℓn such that ϕ(φ∆(y)) = ϕ(x), and hence x = φ∆(y),

namely, x ∈ Aℓn . �

Proof of Theorem 7.5. By (4.4) one knows that Hn(GΓ,λ,Fℓ) ≃ Λn(Γ̈
op) for n = 0, 1, 2.

Therefore, it sufficies to show that H•(GΓ,λ,Fℓ) is a quadratic algebra.

Let Γ1,Γ2 be proper induced subgraphs of Γ whose intersection is a clique ∆. We

claim that the free amalgamated pro-ℓ product (7.1) is proper. Indeed, for every n ≥ 1

set Un = Φn(GΓ1,λ) and Vn = Φn(GΓ2,λ). Then {Un | n ≥ 1} and {Vn | n ≥ 1} are

basis of open neighbourhoods of 1 in GΓ1,λ and GΓ2,λ respectively. By Lemma 7.6,

Un ∩G∆,λ = Vn ∩G∆,λ = Gℓn

∆,λ for every n ≥ 1,

and [39, Thm. 9.2.4] implies that the amalgam is proper.

Now, if Γ is complete, then GΓ,λ is locally uniform, and thus H•(GΓ,λ,Fℓ) ≃ Λ•(Γ̈
op)

by Remark 3.3. Otherwise, by the inductive procedure to construct chordal graphs we

may assume that H•(GΓi,λ,Fℓ) ≃ Λ•(Γ̈
op
i ) for both i = 1, 2. Moreover, one has

Hn(GΓ,λ,Fℓ) ≃ ker
(

resnGΓ1,λ,G∆,λ

)

⊕Hn(G∆,λ,Fℓ)⊕ ker
(

resnGΓ2,λ,G∆,λ

)

for n = 1, 2. Hence, we may apply [35, Thm. B], and H•(GΓ,λ,Fℓ) is a quadratic

algebra. �
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7.4. The Bogomolov-Positselski property. AKummerian oriented pro-ℓ group (G, θ)

with torsion-free orientation is said to have the Bogomolov-Positselski property ifKθ(G)

is a free pro-ℓ group (cf. [37, § 3]). From Theorem 7.5 we deduce that an oriented pro-ℓ

RAAG associated to a chordal specially oriented graph has the Bogomolov-Positselski

property.

Theorem 7.7. Let Γ = (V , E ) be a chordal specially oriented graph, and let λ be a

linear orientation. Then (GΓ,λ, θΓ,λ) has the Bogomolov-Positselski property.

Proof. Since Γ is specially oriented, (GΓ,λ, θΓ,λ) is Kummerian by Theorem 4.9. Let

Γ1,Γ2 be proper induced subgraphs of Γ whose intersection is a clique ∆. By the proof

of Theorem 7.5, the amalgamated free pro-ℓ product (7.1) is proper, and moreover it

satisfies the hypothesis of [37, Thm. 5.5].

If Γ is complete, then it has the Bogomolov-Positselski property as KθΓ,λ
(GΓ,λ) is

trivial. Otherwise, by induction we may assume that (GΓi,λ, θΓi,λ) has the Bogomolov-

Positselski property for both i = 1, 2, and [37, Thm. 5.5] yields the claim. �

Let K be a field containing a primitive ℓ-th root of unity (and also
√
−1 if ℓ = 2). In

[29, Conj. 1.2], L. Positselski conjectures that (GK(ℓ), θ̂K) has the Bogomolov-Positselski

property. Therefore, Theorem 7.7 implies Corollary 1.2–(iii).

7.5. Coherent oriented pro-ℓ RAAGs. A finitely generated pro-ℓ group G is said

to be coherent if every finitely generated subgroup H ⊆ G is also finitely presented, i.e.,

if |H1(H,Fℓ)| < ∞ implies |H2(H,Fℓ)| < ∞. Moreover, G is said to be of type FP∞ if

Hn(G,Fℓ) is finite for every n ≥ 1. We prove that every finitely generated subgroup of

an oriented pro-ℓ RAAG associated to a chordal specially oriented graph — even if it

may not occur as an oriented pro-ℓ RAAG — is of type FP∞.

Theorem 7.8. Let Γ = (V , E ) be a chordal specially oriented graph, and let λ be a

linear orientation. Then every finitely generated subgroup of GΓ,λ is of type FP∞. In

particular, GΓ,λ is coherent.

Proof. Set G = GΓ,λ, and let H be a finitely generated subgroup of G. Moreover, set

K = KθΓ,λ
(G) ∩H and Q =

HKθΓ,λ
(G)

KθΓ,λ
(G)

.

Then one has a short exact sequence of pro-ℓ groups

{1} // K // H // Q // {1}
where K is a free pro-ℓ group by Theorem 7.7, and Q is locally powerful as Γ is specially

oriented (cf. Theorem 4.9). By [17, Thm. 2, § 3], H is of type FP∞ if, and only

if, Hn(K,Zℓ) is a finitely generated Zℓ[[Q]]-module for each n ≥ 1. Since H is finitely

generated,H1(K,Zℓ) is a finitely generated Zℓ[[Q]]-module, whileHn(K,Zℓ) = 0 for each

n ≥ 2 as K is a free pro-ℓ group. Hence, H is of type FP∞. In particular, H2(H,Fℓ) is

finite, and thus G is coherent. �
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