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ABSTRACT Anisotropic-diffusion is acommonly used signal preprocessing technique that allows extracting
meaningful local characteristics from a signal, such as edges in an image and can be used to support
higher-level processing tasks, such as shape detection. This paper presents a fully scalable CMOS-RRAM
architecture of an edge-aware-anisotropic filtering algorithm aimed at computer vision applications. The
CMOS circuitry controls the scale-space image data to perform pseudo-parallel in-memory computing and
nonlinear processing through RRAM crossbar. The arithmetic operations for in-memory computation of
brightness gradients are efficiently accumulated to produce the enhanced image in several iterations. The
proposed architecture uses single RRAM as a computing and storage element to perform both arithmetic
operations and accumulations. Thanks to the in-memory computation, memory accesses and arithmetic
operations are reduced by 64% and 92%, respectively, compared to traditional digital implementations. This,
in turn, results in a potential reduction of power and area costs of about 75% and 85%, respectively. The
processing time is also reduced by 67%.

INDEX TERMS Scale-space image, RRAM crossbar, in memory computing, image enhancement,

anisotropic diffusion.

I. INTRODUCTION

In image processing and machine learning tasks the images
must often be enhanced in a preprocessing phase — for
instance to reduce noise and suppress undesired textures,
while, at the same time, preserving and highlighting some
other structures. In fact, images typically contain semanti-
cally meaningful features, together with irrelevant details:
often the former can be qualitatively characterized as local
extrema, the pixels along an edge within an image are an
example. A difficulty in transforming this qualitative observa-
tion into a robust algorithm for feature detection is the follow-
ing: in order to characterize an extremum some derivatives
must be computed over a neighborhood, but there is typically
no a priori information about the reference scale at which
the differences should be computed. Without such a reference
scale, features could be mistaken for noise or vice versa.
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The scale-space technique introduced by Witkin [1]
consists of trying many different scales and looking for the
persistence of a derivative change across a range of scales.
It prescribes the generation of coarser-resolution images
from an original input image by convolving the latter with a
Gaussian kernel of variable width (the standard deviation acts
as scale parameter). This family of images, ideally obtained
across a continuum of scales is called a scale-space image.
The scale-space image is then collapsed into a tree descrip-
tion, which is further refined by applying a stability criterion
to spot features that persist over large changes in scale. This
approach has been used widely and represents a preprocess-
ing step for many higher-level algorithms: edge detection
is used as a basis for shape detection, object detection and
a variety of early vision tasks [2]. In some tasks, however,
once the persistent features have been detected, another issue
has to be considered: the original versions of the scale-space
technique leave some indeterminacy about the location that
should be assigned to the feature (e.g. an edge) in the filtered
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output image. To address this problem, Perona and
Malik [3] — based on the observation that Gaussian smooth-
ing can be considered as the result of a diffusion process
[4], [5] — proposed an anisotropic diffusion approach: the
location-dependent diffusion coefficient of the correspond-
ing formulation is set to promote intra-region smoothing in
preference to inter-region smoothing. This approach uses
a parabolic (i.e. diffusion-like) differential equation as an
evolution equation for the system, it considers the original
image as the initial state of the process and the steady-state
of the process (or the state of the system after a given number
of evolution steps) as the output filtered image [6].
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FIGURE 1. a) Machine vision systems. b) Conventional and c) In-memory
computing, architectures for image preprocessing.

In practice, anisotropic diffusion (AD) filtering has
been widely used for implementations into many computer
vision systems for robotics and artificial intelligence (AI)
applications as shown in Fig. 1a). Traditional hardware imple-
mentations of image processing use (see Fig. 1b) a high-
precision number representation system, and pipelines that
include a high computational cost algorithm in the prepro-
cessing [7]-[9]. Such solutions require a high-performance
microprocessor, high-power, and area costs. Fully dedicated
hardware solutions that implement such a preprocessing are
limited by poor flexibility and low reusability. They typ-
ically target a well-defined application. By contrast, dedi-
cated and programmable approaches can be combined in the
design of hybrid architectures: those can better reflect the
structure of the image-processing pipeline, which consists
of multiple tasks with different computational burdens: they
support different degrees of programmability, parallelization,
and iterative adaptability. At present, the best-suited solution
for the design of flexible, low-complexity and low-power
image processing schemas consists of embedding a reduced-
instruction-set computer (RISC) engine with dedicated units
for intensive computation tasks, such as the in-memory com-
puting (IMC) architecture shown in Fig. 1c¢).

In the present work, by contrast, we propose an efficient
architecture for AD filtering based on a Resistive Random
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Access Memory (RRAM) crossbar topology, which performs
in-memory computation and yields comparable flexibility but
higher efficiency. RRAM is a promising candidate for the
next-generation non-volatile data storage technology due to
its excellent properties including simple structure, symmetric
and asymmetric memristive behavior, with pulse/DC sweep
voltage supplies [10], nonlinear passive resistance, high stor-
age density, low power consumption, high switching speed
and long retention [11]. Owing to its non-volatility, mem-
ristive multi-bit based designs, it has found various applica-
tions with a scalable and power-efficient analog and digital
circuits, [12]-[16]. The most prominent scalable integration
of RRAMs is the resistive crossbar memory arrays, in which
cross-point are used as storage elements and/or vector-matrix
multiplication (VMM) using Ohm’s law for multiplication
and Kirchhoff’s current law for summation [17]. Thanks to
the capability of carrying on in-memory computation, cou-
pled with the ability to realize an efficient crossbar topology,
the RRAM based circuits perform better than the conven-
tional CMOS memory circuits.

The main contribution of this paper is the innovative use of
the memristive crossbar to compute local intensity changes
(i.e. compute and store brightness differences between neigh-
boring pixels, i.e. spatial gradients) and to accumulate infor-
mation through a pseudo-parallel in-memory computing
scheme. The processing element, RRAM, also acts as a
nonlinear pixel-based resistive state transition that results in
averaging and smoothing at the edges. This yields to low
power and efficient on-chip solution of the AD implementa-
tion for image enhancement. In short, the relevance of the pro-
posed design lies in the capability of the RRAM crossbar in
reproducing the AD process thus performing edge-detections
and noise-reduction, by a computationally-efficient hardware
realization.

We demonstrate the algorithm in image processing aimed
at robotics and Al applications. Simulations were performed
with 8-bit, 4-bit quantization, and equivalent 4-bit RRAM,
respectively. Detail Spice and numerical simulations show
comparable results using RRAMs in terms of effectiveness
in noise reduction and edge enhancement with efficient ded-
icated HW performances.

The rest of the paper is organized as follows: Section II
defines the scale-space technique and the anisotropic diffu-
sion process for image enhancement. Section III describes
the proposed method and the corresponding scalable design
architecture and implementation of the AD algorithm.
Section IV presents the RISC comparison and a discussion.
Conclusions are drawn in Section VI.

Il. SCALE-SPACE BASED ANISOTROPIC DIFFUSION

A. THE SCALE-SPACE TECHNIQUE

The standard scale-space technique for vision systems tries
to characterize ‘“‘semantically meaningful” features, such as
edges, as local changes in the derivatives, that are found to
be persistent across the multiple-scale representation [1], [3].
The original scale-space technique [3], when aimed at finding
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the edges in a gray-level image would work as follows. The
original gray-level image is used to generate other gray-level
images, each corresponding to a reference scale. Formally,
the algorithm, from an original image Io(x, y) generates a set
of derived images I(x, y, t) obtained by convolution of the
original image with a Gaussian kernel k(x, y; t) of variance;
larger’s correspond to images of coarser resolutions:

I (x,y,1) =Io(x,y) * k(x, y; 1) ey
where, *, is the convolution operation. The application of the
Gaussian convolution has the effect of blurring the image.
Consider however two areas of different brightness: if the
difference is high enough, then, despite the smoothing, the
boundary between regions will determine a noticeable dif-
ference at many resolutions. A jump in the image bright-
ness at a given resolution ¢ will yield a peak in the first
derivatives and a sign change in the second derivative. Thus,
on a 1D signal, finding the zero-crossing points of the sec-
ond derivative, across different scales in the coarse-to-fine
direction will allow to draw a tree-like or nested contour
structure, and to identify persistent features, present across
scales. Equivalently, in a 2D signal, one can look for the zeros
of the Laplacian.

The stability criteria admit several variants, however, even
once the persistent features have been detected, a problem
arises: one has to determine which is the location that should
be assigned to the feature (e.g. an edge) in the filtered output
image. The true location of a boundary at a coarse scale in the
standard scale-space technique is not directly available in the
coarse scale image due to Gaussian blurring [4]. This means
that the edge locations in the output image could be shifted
from their original locations [1]. To address this problem
several approaches were considered and some turned out to
be complex and/or computationally costly [18].

B. ANISOTROPIC DIFFUSION
Perona and Malik [3], changed completely the perspec-
tive on this problem, based on the observation — due to
Hummel et al. [4], Hummel [5] — that the Gaussian con-
volution can be considered as the result of an isotropic dif-
fusion process. They proposed to pass from an isotropic
diffusion process — that would equally wash out edges and
regions non containing edges — to a controlled anisotropic
diffusion process: they prescribed that the location-dependent
diffusion coefficient should be set so as to promote intra-
region smoothing in preference to inter-region smoothing,
thus preserving edges.

Formally, the anisotropic diffusion process is described by
the following equation:

I; =Div(c(x,y,t)VI) =c(x,y,t) Al + Vc(x,y,1).VI
@)
where Div is the divergence operator, V (-) and A (-)
are the gradient and Laplacian operators with respect to
the space variables, respectively, whereas c (x, y, t) is the
diffusion coefficient. The diffusion equation (2) is a special
case of a more general class of elliptic equations such that
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all the maxima of the solution of the equation in space and
time belong to the original image, thus fulfilling the so-called
causality criterion [5], a consistency requirement.

Suitable intra- and inter-region smoothing can be obtained
choosing the diffusion coefficient as a monotonically
decreasing function of the gradient of the brightness function,
i.e. a decreasing c (x,y,t) = f (||Al (x,y,t)|]) such that
f(0) = 1. Indeed, in an approximately flat region, where
the gradient A/ is close to zero, a diffusion coefficient close
to 1, grants the maximum diffusion and blurring, whereas in
proximity to the edges, where the gradient increases consid-
erably, the diffusion is inhibited. In this way, the diffusion
process will essentially take place in the interior of regions,
and not affect the region boundaries where the amplitude of
the function is large.

Achieving the desired accuracy in edge preservation with
the AD process can be computationally expensive if one has
to move the information from memory to the arithmetic logic
unit (ALU) for every pair of pixels. With respect to this
burden, this paper presents an efficient solution based on the
hardware friendly, in-memory computing RRAM structure.

Ill. PROPOSED RRAM CROSSBAR-BASED IN-MEMORY
COMPUTING ARCHITECTURE

Along with the recent trends in Internet-of-Thing (IoT) to
satisfy specialized hardware systems to be more processing
capable than ever, while at the same time satisfying an ultra-
low power budget, reconfigurable in-memory processing is
the key element for achieving efficient, feasible and practical
image processor. However, the Perona and Malik scheme [3]
allowed both steering and scaling of an anisotropic bilat-
eral filter. However, in large images, basis and local filters
are largely numerous. These filters are non-separable which
causes the huge increase of the high power and computa-
tional cost in real time applications. Decomposition of the
bilateral AD filter into two line filters in non-orthogonal
directions [19] was proposed. Choosing an axis to decompose
the filter along turns out to be extremely efficient from a
computing perspective. In a practical setting, not knowing the
axis of orientation for each pixel poses a problem. Therefore,
a large number of filters are usually applied at different scales
and orientations, and the maximum response per pixel over
all the filters is accumulated. Applying a large number of
filters commonly requires a significant amount of computing
resources. Although several efficient FPGA implementations
have been presented in the literature for separable as well as
non-separable filters, research on the oriented-filter imple-
mentation on an FPGA and/or ASIC is limited [18], [20]. For
large windows, several decompositions are used, for exam-
ple, [21] approximates a large circularly symmetric filter by
octagons. An oriented Gaussian smoother [22] was proposed
for an efficient FPGA implementation. They decomposed the
2-D filter into 1-D filters and then used pipelining to obtain
higher throughput. Only a single orientation has been applied
for multiple orientations and a multiple filters in parallel
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FIGURE 2. Common bilateral AD filter and its needed resources for hardware implementation.

are required. This limits the applicability of these filters for
robust image enhancement.

Fig. 2 shows a common anisotropic bilateral filter design
and the needed resources for the hardware implementation
following a nearest neighbor’s discretization of the Laplacian
operator as defined in (3);

D

Lijmn+1)=1I;jn)+o - Z [kij(d) - VIijd)] @) ()
d=1

where gradient changes in n iterations are as VI;;(d) =
> 1ij(d) —1I;j, ond € [1, D] neighbor’s orientations, k(d)
are time-constant averaging factors. For the sake of simplic-
ity, the neighbor orientation number is D = 4 in Fig. 2.
However, in order to perform spatial parallel operations,
the image information stream has to be split into multiple
sub-streams. An (i, ), (i £ 1,j), and (i, j £ 1) memory line
buffers (LB) and FiFOs were used to access the required
number of the needed lines for processing the targeted pixel
window as shown in Fig. 2. The buffer depth depends on the
number of pixels in each line of the frame. For an image with
N x M pixels, N x M x 4 subtractions (SUB) for gradient
differences, N x M x 4 multiplications (MULTC) for k(d)
time-constant averaging, and N x M x 4 accumulation (ACC)
processes are needed.

In the next sub-sections, signal processing by means
of pixel intensity data-quantization for multi-leve]l RRAM
functionality is adopted. Work modules for RRAM-based
in-memory computation of the local scale-space gradient
changes, HW-friendly, spatial-edge-aware filter and nonlin-
ear averaging for smoothing at the edge are described for
image reconstruction and enhancement.

A. THE ALGORITHM

A comprehensive signal processing roadmap is adopted for
the in-memory image processing. Pseudocode for the pro-
posed method is presented in Algorithm one. However,
the continuous analog scale space intensities in N x M image
are sampled into Le,, = 2" (i.e., 16 samples). A 4-bit
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scale-space pixel intensity, p_int following x,y directions
(i.e, p_int(N,M)) € [0, 255] pixel’s intensity is quantized
and encoded for RRAM in-memory processing, by means,
with respect to the time programming voltage range vimax g, :
Vstep - vimaxpigh = [0 : 0.15: 2.4] V (i.e., 16 resistive levels).
After processing the local pixel through the RRAM crossbar,
the analog image is then reconstructed to show the enhanced
image at each iteration.

B. RRAM-BASED IN MEMORY COMPUTING
ARCHITECTURE

Fig. 3 summarizes the details for the logical architecture to
implement the bilateral AD algorithm using RRAM technol-
ogy. The RRAM model is carefully chosen for the design
of an experiment perspective. High speed, multi-level char-
acteristics in the SET process, endurance, and nonlinear
switching behavior are supported by the used RRAM technol-
ogy [14]. Analytically, we slightly modified the model [23]
by assuming a low voltage conduction and a symmetric SET
operation in both directions to account for the negative and
positive neighbor pixel differences for simulating both in-
memory computations of the local gradient changes and stor-
age. Explicitly, a temperature dependent Arrhenius depen-
dence of the progressive filament formation, i.e,. dx/dt =
xo exp(—v(t)/kT), where x(¢) is a state variable, xq is a pre-
exponential factor, v(z) is the applied voltage for conduc-
tion and T is the temperature. The exponential derivative is
used to account for the nonlinear SET transitions, which has
been widely used for modeling many filament based RRAM
devices [24], [25]. However, many RRAM devices with
symmetric behavior in both direction and different degree
of energy/ latency performances have been demonstrated.
For instance, TiOx-based resistive switching device [26] has
shown 64-levels of conductance and symmetric conductance
change by adopting a hybrid pulse scheme. Programming
schemes, strategies and new materials are proposed to imple-
ment the symmetric and gradual nonlinear resistive behavior
in RRAMs, see for instance, [27], [28]. In fact, multi-level cell
operation is simulated by modulating the maximum voltage
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FIGURE 3. The proposed architecture used for in-memory computation of the intensity changes and nonlinear averaging in such direction
through N x M cross-point RRAM cells of the crossbar. In the insert, the RRAM cell and its equivalent cross-point with a selector to enable
conductance changes in pseudo parallel processing (i.e., four cycles) following the diagonal lines as indicated by the colors on the example of

4 x 4 RRAM crossbar.

of the forward sweep voltage. The produced multi resistive
states resulting from the SET operation [14] are used to
encode the pixel bit streams.

The pulse generation scheme is performed using a filter
pixel window generator and a set of instructions to map
pixel values to their corresponding pulse voltage amplitude.
However, a two N x M bit memory for i, j bit planes, con-
taining a serial step pulse-like signal image information are
used to drive a set of memory controller and alignment, which
control the RRAM crossbar with a 4-bit quantized data bus.
Usually, LBs are used to trigger a dedicated filter windo [20].
The length of the buffer line depends on the number of pixels
in a considered line, L, from the image. The outputs of the
pixel windows are stored in FIFOs (first in-firs-out) structure
together with an enable; maximize the pipeline implementa-
tion where each pixel is processed per clock cycle. The FIFO
interprets the L 4-bit address and outputs the data contained
at this address to drive the inputs of a decoder, which control
the RRAM crossbar with a 4-bit block size data bus through
MUXs. A clocked MOD-N counter, which drives the input
address of the memory banks to step through a sequence
of instructions, transmitting the specific rows and columns
segments to in-memory compute the intensity change with the
set of pseudo parallel RRAM as mentioned with colors/cycles
on the RRAM crossbar in Fig. 3. To note, the same cycles
are used to generate and store pixel filters in the FIFOs.
While the difference of neighbor pixels is performed with the
application of the corresponding voltage pulses on word, WL,
and bit, BL lines, the in-memory processing across cross-
point cells is performed only in (N + M) /2 cycles where
the crossbar dimension is N x M € 2N. This is equivalent
to the write/read, row by row in classical RRAM crossbar
designs [29]. At each cycle, only one cross-point cell per line
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and per column is selected. A very low threshold voltage is
investigated, for instance, excellent selector performance was
presented in [30]. It is assumed to not have an impact on the
intrinsic behavior of the selected RRAM cells. The MOD-N
counter is used in this design to help reduce the number of
clocks required to address the memory banks so that only a
single clock is required instead of a complex system of clocks.
The N x M-bit memory units interpret the n-bit address and
output the data contained at this address to drive the switch
matrixes through the memory controller module.

The synchronous programmed 1 x N, WL, and 1 x M, BL,
line switches are used to program alternatively the devices
in order to compute differences of in such neighbor pixel
locations in selected diagonal lines. It consists of transmission
gates that are connected to all the WLs, with W to Wy
control signals of the transmission gates stored in the N x M
scale space image segments. In conductance gradient update,
the input signal is loaded to W to Wy / By to By, which
decides the WLs/BLs to be connected to either the read volt-
age or ground following the selected RRAM cell in such row
and column. In this way, the read voltage that is applied at the
input of transmission gates can pass to the WLs/BLs, and the
conductance gradients are updated in many iterations using
multiple clock cycles in parallel. WL decoder is used for fully
parallel signal input to the crossbar rows and columns. The
crossbar WL decoder has an additional feature to activate all
the programmed WLs per cycle. It is constructed by attaching
a controlled power switches, SC, follower circuits to every
output row of the decoder. This makes all the internal power
switchers transparent for conductance changes following the
diagonal lines of the crossbar, which enables pseudo-parallel
programming of several diagonal RRAM cells of the crossbar.
If all WL decoder lines are open, the crossbar WL decoder
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Algorithm 1 Algorithm Pseudocode of RRAM-Based in

Memory Computing Using Nonlinear Anisotropic Diffusion

for Image Enhancement

1: procedure Signal processing and pixel intensity data
quantization

2: for grey image(N, M) do

32 pin(x) < Pinr(N))

4 pim(y) < Pin(M))

5: pim(x,y) < analog signal (pin(x), pint (¥))

6.

7

8

for all p;,;;(x, y) do
Lsamp <«— DMbit

v (x’ ¥; 0 : modLsgmy : 2.4 (V)) < Pint ((x,¥);

0 : modLgsamp : 256)
9: end for
11: end for
12: end procedure
13: procedureln memory-compute and nonlinear processing

14: Repeat
15: for 1: N iterations do
16: VwL <= Vo (Ati) , VBL <= —Vneighbors(Ati+Atg)
17: Go=f (VwL <V, (Atg),

VBL <« zero (Atg))
18: GNif (VwL < v, (Al2),

VBL < —VN (At14+Atg))+Go
19: Gs:if (VwL <V, (Af3),

VBL < —vs (Atz2+Atg))+AGN
20: Ge:f (VwL <V, (Aty),

VBL < —VE (At3+ Atg))+AGg
21: Gw:f (VwL < Vo (Ats),

VBL < —vw(At4+ Atg)) + AGE
22: end for

23: At < At + Aty

24: Until image enhanced

25:  Gace(N) < o x Gw(N)

26: end procedure

27: Procedure reconstruction of analog image

28: for all G4..(n, x,y) do
29: pint (nvxvy) <_GACC(nax’y)
30: end for

31: end procedure

will activate all the WLs no matter what input address is
given, as the case of cycles I and II. In fact, the design is
tolerant with the sneak path problems and electrical and/or
thermal coupling that limit the crossbar size. Such a reliable
structure is a flexible design by enabling parallel computing.

Level shifters Vp (¢ + At), see Fig.4b, define the local
pixel to be generated, while the directions of diffusion process
are specified by the followed pulse stream to be generated
and applied on the top/bottom of the RRAM cells to perform
in-memory computation of the brightness diffusion. To this
end, stored conductance data are accumulated from the four
directions (a read operation are enabled after each in-memory
computed orientation) with the targeted RRAM cross-point
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FIGURE 4. The structure of the in memory computational scheme for
implementing the physical architecture (see Fig. 3). a) One node of the
crossbar and its four neighbors. b) Equivalent RRAM based scheme for
the in memory computation, accumulation and averaging.

on the same design that produces the enhanced image in a
number of iterations, achieving therefore different compro-
mises between accuracy and information locality. This block
diagram is fully scalable; the control block can be adapted to
control any number of steps for the computation.

C. IN-MEMORY COMPUTATION OF THE

BRIGHTNESS CHANGES

In order to reflect the anisotropic filtering (3) described in
the previous subsections, the RRAM cell is considered as an
IMC element of brightness changes between neighbor pixels
and a nonlinear element to produce smoothing at the edges.
We assume that the brightness estimation of the image pixels
in each direction is presented by the accumulated and stored
output conductance G (x,y) = I(x,y, t), at each cross-point
of the RRAM crossbar as a function of the programmed
input voltage on top and bottom electrodes, Vg and Vg
respectively, which are read as a function of the selected WL
and BL in Ar = T, — T time, respectively as;

p)

VG (x,y,1) = fvwr —vpr)dt, 4

T

The associated write pulse conduction i (¢) — v(t) charac-
teristics produce the nonlinear kernel diffusion coefficients
k (x,y,t) = c(x,y, t). Equation (2) can be discretized on the
RRAM crossbar array shown in Fig. 3. However, edge detec-
tion and scale-space formulations are proposed following the
tensor scheme presented in Fig. 4a).

The 4-nearest neighbor’s discretization scheme is now
defined as (5) following the equivalent two-terminal
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FIGURE 5. In memory-computation of the gradient change between
neighbor pixels and their accumulation in one iteration (an example of a
cross-point RRAM). a) Origin (Po) and its neighbor pixel intensities
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VS, VW, VE), respectively. b) and c) The applied programming voltage to
WL and BL cross-point RRAM. d) The normalized internal state variable
and its change, historic accumulation according to the differences in the
applied voltage at its terminals. e) The resulted readout conductance, G(t).

memristive circuit shown in Fig. 4b);

1 (YnGij(m) +
£ (VsGij (m)) +
f(VwGij(m) +
f (VeGij (ni))

where 0 < o < 1/4G, is a stability factor for the pro-
posed scheme, G, = 1mS is the dynamic conductance
range. ny, ny . .. ng stands for the iteration number. N, S, E,
W are the mnemonic indices for North, South, East, West.
V indicates nearest-neighbor differences (6). The conduc-
tance gradient at each location is modulated as an absolute
conductance values of its projection along with RRAM cells
in the crossbar row and column directions as follows;

VNG (1) = |Gi—1; (1) — Gij (1) ||

VsGij (1) = |Gi1, (1) — Gij ()|

VEGi; (1) = |Gijs1 (1) = G 0|
Vi Gij (1) = || Gijm1 (1) = Gij (1) )
Fig. 5 shows an example of a given origin pixel
(Po) and its four neighbors (PN, PS, PW, PE) and the
in-memory processing (i.e compute the gradient conductance
and accumulation) as a function of the applied voltage sup-

plies (Vo, VN, Vs, Vw, VE), associated to the mentioned
pixel’s tenser scheme. Cadence Virtuoso with the RRAM

Gij(n) = Gij(my1) +o 5)
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spice model is used to simulate the multi-level cell operations
by modulating the maximum voltage of successive write
pulses forwardly, each one is followed by a non-destructive
read pulse, as shown in Fig. 5b), c). The write pulses
(1ns rise/full times and 8ns pulse width) are ranging from OV
to 2.4V by a step of 0.15V. The write/read scheme is used
for reliability assessment as RRAMs suffer from device vari-
ability in write processes. A smooth nonlinearity associated
with the conductance state transitions is produced as shown
in Figs. 5d) and 5e). The memristive state variable and the
resulted readout conductance are accumulated and nonlin-
early evolved as a function of the applied pulse-associated
neighbor pixel intensities over time. Following the amount of
neighbor pixel intensity, the in-memory computed brightness
changes define the locality of the edges in such direction.
For Vpg > |VrE|, the output conductance is slightly increased
while for Vpg < |V7Eg| is decreased and remains equal when
the neighbor pixels have the same amount of brightness.
However, conductive gradients are updated at every iteration
following the history of the accumulated brightness gradient
G;j (t). The gradient can be computed on different neighbor
cells in the crossbar structure achieving different compro-
mises between accuracy and locality. f(-) is also updated
at every iteration as a function of the level of brightness
gradient G; ; (¢) given at specific neighbor pixel based-pulse
amplitudes.

Goij (1) = f (|Go,ij @)

Guij () =f (|VnGij (O]) + Goij (1)

Gsij (1) = f (| VsGij ®|) + Gij (1)

Gwij (1) = f (|VwGij ()]) + Gsij (1)

Grij (1) = f (| VEGi; ©)]) + Gwij (1) ™

This discretized formulation maintains the property of the
continuous derivative (2), which means the total amount of
brightness in the image, is preserved. Additionally, the flux
of brightness through each column and row directions of the
crossbar (see Fig. 3) only depends on the brightness values at
the two nodes defining it, which makes the proposed design
a natural choice for analog VLSI implementations.

D. CASE STUDY: ALGORITHM IMPLEMENTATION

The algorithm is validated on a grey scale image. The original
image, I, is corrupted by random noise with standard devi-
ation, r, = 30 to form the noisy image, I,, = double (Iy) +
30 x randn (size (Ip)), note that randn(-) generates random
numbers, and hence the results is different for every instance.
To get around this problem, generate I, once and then use
it for all experiments to obtain consistency when compar-
ing the methods for RRAM based AD algorithm validation.
Fig. 6 presents a noisy and filtered pepper image using the
RRAM based AD algorithm. Fig. 7 shows the pixel intensities
vs their image locations with respect to the original image.
PSNR (peak signal to noise ratio) and SSIM (structural
similarity) metrics are used to quantify the effectiveness of
using RRAM nanotechnology for a hardware friendly and
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FIGURE 6. a) Original, b) Noisy input and c) restored pepper images and
d) Edge preservation using RRAM based AD algorithm.
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FIGURE 7. Pixel intensity vs locations for the original, noisy and filtered
image, respectively.

computationally efficient AD implementation. The results
in Fig. 8 and the comparative table of the algorithm per-
formances using 8-bit, 4-bit quantization and 4bit RRAM
presented below proves that the 4-bit RRAM performs the
same performance as digital 4-bit quantization with a slight
increase of the number of iterations. This is not a draw-
back while the computation of intensity difference between
neighbor local pixels and their accumulations are performed
internally in a single cross-point RRAM cell. In our applica-
tion, for each filter window (origin pixel and its neighbors),
the origin pixel will be written one time to the cell, then
multiple iterations are needed to in-memory compute the
differences between the origin pixel and its neighbors for
accumulate operation. Besides, while the image is naturally
analog, write energy for computing difference operations is
relatively small as the intensity difference between neighbor
pixels is low. Moreover, the number of resistive levels and
the nonlinear behavior in state transitions define the adaptive
number of iterations for reducing image noise and perform
the image filtering and edge restoration. Accordingly, device
variation may increase also the iteration number resulting in a
slight increase in latency and energy but not the image quality.
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FIGURE 8. a) PSNR and b) SSIM Performance metrics used to evaluate
image quality using 8-bit, 4-bit and 4-bit RRAM, respectively.
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FIGURE 9. a) Different memristive nonlinearity shapes using, b) different
voltage programming scheme.

E. IMPACT OF NONLINEARITY ON PRESERVING EDGES
The nonlinear behavior of the memristive characteristics is
tested using three voltage programming schemes as shown in
the inset of Fig. 9. The write pulse amplitude linearly or non-
linearly increases with the pulse number. The conductance
(or resistance) dependent voltage amplitude (G-V or R-V)
with a nonlinearity, N;, can be specified as the conductance
ratio of the modeled RRAM device. This results in a dif-
ferent shape of nonlinearity (i.e, Nj, N2, N3) along with
the transition between resistive states like-pixel intensities
(see Fig. 9). PSNR, SSIM, and correlation measures are per-
formed to figure out the edge preservation using the RRAM
based AD algorithm. As shown in Table 2, any RRAM-
based nonlinearity shape could produce comparable results
of image enhancement and edge preservation with respect to
8bit and state of the art of AD algorithm [20]. Yet, a smooth
nonlinearity shows slightly better results.

IV. PERFORMANCE ASSESSEMENT AND DISCUSSIONS

In this section, a comparative analysis of the proposed RRAM
architecture is presented, along with conventional FPGA
based solutions. However, RRAM shows a small footprint,
CMOS compatible BEOL process, fast accessing compared
to FLASH, etc. [31]. The RRAM cell size is, C; = 4F2.
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TABLE 1. Comparison between Algorithm performances using 8-Bit, 4-Bit
and 4-Bit RRAM, respectively.

#bit 8-bit 4-bit 4-bit RRAM
Metrics
#iterations 85 85 178 85 215
PSNR 31.6 28.3 29.1 27.9 29.1
SSIM 0.91 0.75 0.81 0.73 0.81

TABLE 2. Impact of memristive noninearity on the image enhancement
using the 4-Bit RRAM quantization.

onlinearity N, N, N;
Metrics
PSNR(dB) 29.1 29.8 28.6
SSIM 0.81 0.87 0.79
Correlation 0.97 0.98 0.96

TABLE 3. Parameters used to calculate required resources and
performance assecement for local pixel computations.

rchitecture Conventional design- RRAM-based
Parameter based FPGA solutions solution
Memg,. 9 [33] 5
Ar.op 12 [33] 1 (in-memory
compute)
Pro ime (NS) 1200 (8-bit) [20], [32] 100

800 (4-bit quantization)

A(F?) 120 (SRAM blocks) [31] | 4+260 (WL, BL
320 (other blocks) [35]. | switch matrices
+WL decoders)

While the cell sizes of SRAM, Dynamic Random Access
Memory (DRAM) and STT-RAM are A = 120F%, A = 6F2,
and A = 20F?, respectively [31]. An image size, I, =
256 x 256 is chosen for performance evaluation (i.e, memory
access(Memyg..), number of arithmetic operations (Ar.op),
processing time (Progme), power consumption(P) and area
cost(A)). Table 3 shows the parameters for evaluating the
required resources for a single local pixel computations
using traditional FPGA solutions and the proposed RRAM
implementation.

The total number of memory access to compute the
required arithmetic operations for a given local pixel depen-
dent neighborhood information in traditional FPGA solution
is given as follows;

Memgce = Memgace (Vin) + Memacc(ki,j) (8)

where v, = v;,(Po) + 4Vieighpor, 1s five access times for
the encoded neighbor pixel-input signals. Memgcc(k;j) is
the 4-time register accesses as the simplest best case of a
constant-time nonlinear averaging process as shown in Fig. 2.
While for the RRAM integration, 5 memory accesses are
required to process in-memory the targeted pixel location
as shown in Figs. 4 and 8. Based on Fig. 2, the number of
arithmetic operations needed for computing using traditional
FPGA implementations [20], [32], [33] is calculated as;

Ar.op = SUB(-) + MULTC(-) + ACC(:) C)
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TABLE 4. Performance assessments and reduced resources using the
proposed RRAM based design w. r. t conventional FPGA implementations.

hitecture | Previous HD RRAM- RISC
Metrics implementations | based AD | comparison/saving
Memory 589824 327680 64%
access
Arithmetic 786432 65536 92%
operations
Processing 1200(8-bit) 400 67%
time(ns) 800(4-bit) 50%
Power (watt) 3.408 (OAD [20]) | 16;
7.943 (TF [34]); ~75% for
I, =150 x 150 I,= I, =400 x 550
400 x
550
A(F%) 3.457.280 67,584 85%

These operations are done naturally using RRAM based in-
memory computations (i.e. only the access pulse train is
required across its nodes). The RRAM-based IMC, instead
of traditional FPGA implementation [32], shows a vast
decrease in both; number of memory accesses and arithmetic
operations.

The processing time in real-time applications is defined
as the required time to process given parallel pixels per
clock cycle. For the clock frequency, F. = 100MHz (period
T. = 10ns) used for the FPGA platform on which the
experiment processes a local pixel per clock pulse. The image
processing time, Progme, is estimated by assuming best case
as fully parallel computing in conventional FPGA structure;

Progme = #bit X At X Neyjes + delays (10)

where #bit is the number of bits in, n, number of cycles to pro-
cess the accessed input signals for a local pixel processing and
At is the bit-time information. Delays must be considered for
accessing the memory following the pixel-neighbor’s locality.
As for the RRAM architecture, the pseudo parallelism with
four programming cycles described in the previous section
leads to 4 pulse timing (100ns per cycle, as shown in Fig. 5).

The calculated power, using RRAM to process image
pixels, is defined as;

Prray = Gij X viz’j+n>< <[VNG,'J + VsGij+ VeG;
+ VwGij] x [Vavij+ Vsvij + VEvij
2
+ Vv ) (11)

where the first term corresponds to write original image
on the crossbar RRAM, while the second term corresponds
to write the accumulated differences with respect to the
applied voltage difference between neighbor pixels in n
iteration. Power values are presented in Table 4. However,
from the OAD (optimized anisotropic diffusion) [20] and the
TF (trilateral filter) [34], a random noise r, = 12 and a
number of iterations, n = 4, are used to perform the algorithm
computation in hardware for a natural Einstein grayscale
image of size 150 x 150. In our case, using pepper image
with a size of 400 x 550, r,, = 30 and n = 185 parameters are
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TABLE 5. Performance metrics/operation comparing various embedded memory candidates for the implementation of ad-based image processing

algorithm.
Operation SRAM [36] FeFET [36] RRAM [14], [36]
#Cells/Op Write Write #Cells/Op Write Write #Cells/Op Write Write
Energy/Op Latency/Op Energy/Op Latency/Op Energy/Op Latency/Op
IMC SP and SP and - -
Differences MUs ~f) ~1ns MUs
IMC 6T[4] 1T ~0.1pJ ~10 ns 1R ~1pJ-0.1 ~10ns-
Accumulations pl 100ps
Nonlinear SP and - - SP and
processing MUs MUs

used in our case study. The consumed power for image based-
filtering and edge preservation depends greatly on the image
size, applied noise, and the iteration number. This explains
the greater calculated power when using RRAM, as shown
in Table 4. However, using a similar image and parameters,
Prray 1s estimated to be 4x less than that consumed in
conventional hardware implementation [20], [34]. Thanks to
in-memory processing, simply in response to the difference
in voltage, Prraym is expected to be very low compared to
conventional computing if hard noise and large image size
apply.

As for the area costs in conventional FPGA solutions, addi-
tional and optimized areas for the subtraction and weighted
averaging could be estimated from neuromorphic processors,
for instance, [35]. The RRAM compared to SRAM based
design results in a saving of 85% of the area cost. However,
peripheral CMOS circuits for RRAM control are critical.
For advanced technology node, the ratio area/ delay is still
similar because most of the CMOS devices are the smallest
pass gates. In fact, the main delay confinement still applies
to CMOS technology. With advanced CMOS technologies,
area overhead of the memory buffers, which is a trade-off
between area and delay time, could be alleviated in RRAM
based design because the delay time is smaller since the path
is shorter.

As for comparison, SRAM and ferroelectric field-effect
transistor (FeFET) are used as a baseline for comparisons
(see table V) as these technology-based designs can perform
the same operations as RRAM architecture for AD algorithm
implementation. However, SRAM is the most reported stable
design in term of low energy latency and endurance charac-
teristics in the IMC scope [36]. As for FeFET, a challenging
32 levels of conductance states have been recently demon-
strated [37], [38]. But, SRAM, for instance, is a volatile
and binary type memory (single bit per cell). FeFET does
not allow in-memory compute the difference operation in
response to the difference in voltage as it is a transistor
based. Therefore, separate processing (SP) and memory units
(MUs) are needed to either perform the IMC differences,
accumulations operations, or nonlinear averaging when using
the above-mentioned technologies. This will cause a larger
area and hence exhibit higher delay and energy costs.
Moreover, voltage-latency with multi-level behavior of
FeFETs [37], [38], are limited by parasitic.
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RRAM, despite variability issues that could be alleviated
while scarifying more cycle iterations, has comparable met-
rics and is a suitable solution for the implementation of
AD algorithm as the proposed RRAM architecture has more
efficient design due to the single cell ability to have multiple
level and nonlinear change in response to the difference in
voltage.

The scale-spaces generated by the above-described scheme
can be a suitable choice to implement the nonlinear dif-
fusion satisfying the set of criteria listed in section II in
order to generate the multiscale ‘““semantically meaningful”
representations of images. The advantages of the proposed
design includes; energy-efficient estimated detection accu-
racy, small on-chip area, and scalability of the memristive
crossbar array comparing to traditional CMOS circuits as
presented in Table 4. As for the crossbar approach, the total
power required for the conductance update according to the
write operations is low. Additionally, the proposed memris-
tive system could be scaled with lower leakage current when
compared to the conventional CMOS design.

Overall, the existing mixed-signal, FPGA and analog
implementations of the edge-aware image enhancement tasks
have large on-chip area and high power dissipation draw-
backs [39], [40]. Thanks to small on-chip area and scal-
ability of using memristive circuits, the proposed RRAM
architecture based image-edge detection and enhancement
module is an appropriate solution for image pre-processing.
In fact, the scalable design shown in Fig. 3 that enables the
in-memory and a self-assisted nonlinear processing results
with an ultra-low power, potentially reduced on-chip area
and efficiently accelerates the processing time for a particular
application and integration into the existing pixel sensors and
used for the edge-computing-based Al and robotic applica-
tions. Nonetheless, device exploration to meet the algorithm
requirements will be investigated in the future. Further anal-
ysis including RRAM non-ideality, for instance, the number
of resistive states, the dynamic range, variability, energy, and
latency will accomplished to show the real impact and the
viability of using RRAM for filtering and edge detection
based image pre-processing tasks.

V. CONCLUSION
In this paper, a fully scalable and hardware friendly architec-

ture using the nonlinear anisotropic diffusion algorithm for
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storing and in-memory processing a given image is proposed.
Multi-level characteristics, endurance and nonlinear behav-
ior are supported by RRAM technology. Image pixels are
quantized to perform filtering and local edge enhancement
with multi-level IMC operations through the RRAM crossbar.
Pseudo parallel computing is proposed to accelerate the AD
algorithm. The Super self-assisted non-linear processing by
means the kernel coefficients associated with the write pulses
produce a smoothing at the edges. Brightness gradients fol-
lowing several directions through an adaptive tensor scheme
and pseudo parallel processing are conducted in order to
satisfy a set of criteria for obtaining ‘“‘semantically mean-
ingful” multiple scale descriptions. Accumulation of these
gradients could be read efficiently through the design struc-
ture to produce an enhanced image. Results show some huge
improvements in terms of power, area overheads and accel-
erations. The use of RRAM is an efficient solution where
the computation cost is a major concern since it reduces the
design complexity and speeds up the computation.
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