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Introduction

Triangulated categories have attracted great interest since their introduction in Verdier’s PhD
thesis [76]. In the beginning, the focus was mainly on derived categories of coherent sheaves
(the curious reader may refer to the brief historic dissertation [39, §1.1]). However, derived cat-
egories are far more rigid than triangulated categories, as they can be described using a higher
categorical approach. In order to broaden our framework, the triangulated categories considered
should allow such description as well. For this reason, we consider DG-categories, i.e. cat-
egories where the hom-sets are cochain complexes and the composition behaves accordingly.
It turns out that the categories given by the 0-th cohomology of the hom-sets of special DG-
categories, called pretriangulated DG-categories, come with a natural triangulated structure.
A triangulated category admitting such a construction is called algebraic. From a different
viewpoint, we say that a (DG-)enhancement of a triangulated category is a pretriangulated DG-
category corresponding to it. As one may expect, derived categories and homotopy categories
of complexes are algebraic. It should be noted that other enhancement theories exist. For in-
stance, another well-studied concept is the one of topological triangulated categories, obtained
by (stable) model categories.

In this thesis, we present the results of [49] and [50]. The former deals with the existence
of enhancements for triangulated categories with a full strong exceptional sequence. Roughly
speaking, such a sequence is a collection of simple objects generating the triangulated category,
useful in studies of both Representation Theory and Algebraic Geometry. A famous theorem on
the topic is the following.

Theorem – Keller-Orlov. [63, Corollary 1.9] (cf. [6, Theorem 6.2]). Let T be an algebraic
K-linear triangulated category with K a field. Assume that T has a full strong exceptional
sequence 〈E1, . . . ,En〉. Then T is triangulated equivalent to the bounded derived category
Db(mod(A)), where A = End(

⊕n
i=1 Ei) and mod(A) is the category of finitely generated (right)

modules over A.

From the statement, the connection with Representation Theory becomes more evident. In-
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8 INTRODUCTION

deed, we are able to describe the bounded derived categories associated to a large class of
finite-dimensional algebras (see §4.2 for more details). Concerning Algebraic Geometry, the
bounded derived category of (coherent sheaves on) the projective space has a full strong excep-
tional sequence. This example motivates the study of rationality using derived categories; the
interested reader may refer to [46].

We remark that very few examples of non-algebraic triangulated categories are known. For
instance, the stable homotopy category is a topological triangulated category that is not alge-
braic, as proved in [44, §7.6]. The first example without any enhancement is discussed in [56].
For the case of linearity over a field, the reader may refer to [68], where the triangulated category
is obtained by a semiorthogonal decomposition with algebraic components. More precisely, we
can describe the triangulated category using two triangulated subcategories which are both alge-
braic. This result may suggest that non-algebraic settings can arise from exceptional sequences,
since they give rise to semiorthogonal decompositions.

The aim of [49] is to drop the algebraic requirement in the theorem above. In order to do
so, we describe a construction to obtain a heart of a t-structure in the triangulated category from
a semiorthogonal decomposition (see Theorem 4.7). Roughly speaking, a heart of a t-structure
is an abelian subcategory that defines a cohomology study inside the triangulated category. It
turns out that a full strong exceptional sequence of length 2 gives a hereditary heart, i.e. a heart
for which Exti = 0 for i > 1. This special heart forces the triangulated category to be uniquely
determined up to triangulated equivalence; this is the content of Hubery’s Theorem 2.56. There-
fore, in the case at hand, the statement holds in the whole generality of triangulated categories
(see Corollary 4.13). For a full strong exceptional sequence with length greater than 2, we re-
quire the triangulated category T to be realized, i.e. for every admissible abelian subcategory
A ⊂ T there exists a triangulated functor real :Db(A )→ T extending the inclusion of A in
T .

4.28. Theorem. Let K be a field and let T be a realized K-linear triangulated category with a
full strong exceptional sequence 〈E1, . . . ,En〉 such that

⊕
i Hom(X ,Y [i]) is a finite-dimensional

vector space for any X ,Y ∈T . Then T ∼=Db(mod(A)), where A=End(
⊕n

i=1 Ei). In particular,
T is algebraic.

The fact that a triangulated category is algebraic, however, does not prevent bizarre be-
haviours. For instance, its structure may come from non-quasi-equivalent DG-categories, i.e.
"homologically different" DG-categories. This possibility motivates the following definition:
whenever the enhancements are all quasi-equivalent, we say that an algebraic triangulated cate-
gory has a unique enhancement.

As the reader may expect, not all algebraic triangulated categories have a unique enhance-
ment. An example is mod(K), the category of finite dimensional vector spaces over the field
K. This category becomes triangulated with shift the identity and distinguished triangles gener-
ated by short exact sequences. In [71], Schlichting proved that mod(K) does not have a unique
enhancement whenK= Fp (with p prime), giving two explicit enhancements that are not quasi-
equivalent (for the transposition of the result in the DG-world, one may refer to [14, Corollary
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3.10]). It is important to notice that one of the enhancements is notK-linear. As a matter of fact,
the only known example of a triangulated category with a non-unique enhancement linear over
a field is discussed in [67].

The motivating question that led to the birth of [50] is the following: does mod(K) have
a unique K-linear enhancement? The answer is yes (see Corollary 5.41), and it follows by
studying the associated graded algebra K[t, t−1], where t has degree 1. Indeed, if such graded
algebra is intrinsically formal, we obtain the uniqueness of enhancements for the associated
triangulated category, as proved in Proposition 5.1. The conclusion that K[t, t−1] is intrinsically
formal follows from Proposition 1.46 (see also Proposition 1.47).

After this discovery, we wanted to understand how intrinsic formality relates to stricter re-
quirements of the uniqueness of enhancements, namely the strong uniqueness of enhancements.
This property tells us that the triangulated autoequivalences of the triangulated category come
from the DG-world (cf. Proposition 3.64). Very few examples of triangulated categories with
a strongly unique enhancement are known, the most important one being the bounded derived
categories of projective varieties, investigated by Lunts and Orlov in the celebrated article [51].
The procedure used to obtain such a result has been generalized to other cases: Canonaco and
Stellari worked on coherent sheaves of a quasi-projective scheme supported in a projective sub-
scheme [14]; Olander studied the case of a proper algebraic space over an Artinian ring [60];
Li, Pertusi, and Zhao considered the case of Kuznetsov components [48].

Currently, there is only one explicit example of a triangulated category with a unique but not
strongly unique enhancement (see [33, Corollary 5.4.12]). However, we do not know whether
the uniqueness of enhancements implies the strong uniqueness of enhancements for derived
categories or homotopy categories of complexes. It is worth noting that the examples of trian-
gulated categories with a unique enhancement are by far more general: the most recent paper
in this direction is [12], where it is proved that all the derived categories and all the homotopy
categories of complexes over an abelian category have a unique enhancement.

For this reason, we are interested in characterizing the strong uniqueness of enhancements.
With this aim, we define the notions of triangulated formal DG-categories, extending the con-
cept of intrinsic formality, and formally standard DG-categories, inspired by D-standard and
K-standard categories introduced by Chen and Ye in [19]. When we restrict to graded cate-
gories, the combination of triangulated formality and formal standardness is equivalent to the
strong uniqueness of enhancements (see Theorem 5.33). Furthermore, since D-standardness
and K-standardness are instances of formal standardness in a proper sense, they are proven to
be equivalent to the strong uniqueness of enhancements.

5.47. Proposition. An additive category A is K-standard if and only if Kb(A ) has a strongly
unique enhancement.

5.51. Theorem. An exact category E is D-standard if and only if Db(E ) has a strongly unique
enhancement.

These results follow from the fact that Kb(A ) and Db(E ) have a (semi-strongly) unique
enhancement for every choice of A additive and E exact (see Proposition 5.7 and Proposition
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5.10). We emphasize that the corollary above extends [19, Theorem 5.10], which is valid for the
category of finitely generated modules over a finite-dimensional K-algebra, with K a field.

Overview Chapter 1 introduces some basic concepts on DG-rings, as well as the notion
of intrinsic formality and a discussion on its interpretation via A∞-algebras. In Chapter 2, we
deal with full exact subcategories of triangulated categories and show Hubery’s Theorem for
hereditary hearts. The crucial concept of (pretriangulated) DG-categories is defined in Chapter
3, where we also show some preliminary results on the different notions of the uniqueness of
enhancements. Chapter 4 and Chapter 5 present the content of [49] and [50] respectively.

The symbol F in the first three chapters indicates results that the author proved indepen-
dently; we will quote a reference if known. All the results in the last two chapters are new unless
otherwise specified.

Acknowledgements I am thankful to my supervisor Alberto Canonaco for his mentor-
ship, suggestions, and corrections. I would also like to thank Xiao-Wu Chen, Bernhard Keller,
and Amnon Neeman for their insight into several doubts I had during my PhD studies. I wish
to acknowledge the help provided by the reviewers Francesco Genovese and Alice Rizzardo,
whose comments and suggestions have clarified various arguments presented here. Another
thank goes to Roberta Pagliaro for her help with the corrections. Finally, I am grateful to Gus-
tavo Jasso and Noah Olander for our brief discussions on their research.



CHAPTER 1.

Intrinsic formality

In this chapter, we present some basic concepts on DG-rings and A∞-algebras, as well as conven-
tions that will be respected throughout the thesis. Moreover, we prove some expected facts on
formality (see Proposition 1.40 and Corollary 1.41) and an interesting result linking Hochschild
cohomology with group cohomology for a specific example (see Proposition 1.46).

§1.1. DG-rings

1.1. Definition. Let k be a (unital associative) commutative ring. A (unital associative) ring
R, together with a ring homomorphism iR : k→ R factoring through the center of R, is called
a central k-ring. A morphism of central k-rings is a (unital) ring homomorphism f : R→ S
satisfying a commutative diagram

k

R S.

iR

iS

f

Central k-rings are better known as (unital associative) k-algebras. However, as the standard
naming may suggest to the reader we are assuming that k is a field, we prefer to follow the choice
of [77]. Accordingly, we reserve the term algebra when linearity over a field is required. We
give a crucial example to motivate our decision.

1.2. Example. When k= Z, notice that central k-rings are simply rings.

1.3. Convention. We will work under the following conventions:
• k is a fixed (unital associative) commutative ring;
• A ring is a central k-ring;

11



12 CHAPTER 1. INTRINSIC FORMALITY

• A ring homomorphism is a morphism of central k-rings.
• The tensor product ⊗ is used to denote the tensor product over k.
• In fact, everything will be considered to be k-linear.
• When not explicitly said, modules are to be considered right modules.

1.4. Remark. Let R be a (central k-)ring. Notice that any (right) R-module is in fact also a
k-module by iR. Moreover, as a morphism of modules is R-linear, it is also k-linear.

1.5. Definition. A graded module is a k-module M with a direct sum decomposition M =⊕
i∈ZMi into k-modules.

An element m ∈Mi is called a homogeneous element of degree i. Sometimes, to denote the
degree we will use |m|= i.

1.6. Definition. Given two graded modules M,N, we define the tensor product

M⊗N :=
⊕

i

(M⊗N)i, where (M⊗N)i :=
⊕

j

(M j⊗Ni− j).

1.7. Definition. A morphism f : M → N between graded modules is homogeneous of degree
i, in symbols | f | = i, if f (M j) ⊂ N j+i for any j ∈ Z. The set of homogeneous morphisms of
degree i is denoted by Hom(M,N)i. Alternatively,

Hom(M,N)i := ∏
j

Hom(M j,N j+i).

The module of graded morphisms from M to N is given by

Hom(M,N) :=
⊕

i

Hom(M,N)i.

1.8. Definition. A graded ring is a ring A with a direct sum decomposition A =
⊕

i∈ZAi into
k-modules such that AiA j ⊂ Ai+ j. In particular, 1 ∈ A0 and A0 is a subring of A.

1.9. Definition. A ring homomorphism f : A→ B between graded rings is a graded ring homo-
morphism if f (Ai)⊂ Bi for all i ∈ Z. In other words, f ∈ Hom(A,B)0.

1.10. Definition. A DG-module (differential graded module), or complex, is a couple (M,dM)

where M is a graded module and dM : M→M is a graded morphism of degree 1, called differ-
ential, such that d2

M = 0. Habitually, we will omit dM and say that M is a DG-module. With a
slight abuse of notation, we will also use d instead of dM .

A DG-morphism (or chain map) f : M→ N between DG-modules is a graded morphism of
degree 0 commuting with the differentials, i.e. f dM = dN f .

1.11. Definition. Given a DG-module (M =
⊕

i Mi,dM), its cohomology is the graded module
H∗M := kerdM/ imdM . More explicitly, denoted with di

M : Mi→Mi+1 the morphism obtained
by restricting the differential dM to Mi, we have

H∗M :=
⊕

i

H iM, where H iM := kerdi
M/ imdi−1

M .
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1.12. Definition. The tensor product M⊗N of two DG-modules M,N is the graded tensor prod-
uct introduced in Definition 1.6 equipped with the differential

dM⊗N(m⊗n) := dM(m)⊗n+(−1)|m|m⊗dN(n)

for m ∈M and n ∈ N homogeneous. In particular, in this way M⊗N is a DG-module.

1.13. Definition. Let M,N be two DG-modules. We denote with Hom(M,N) the DG-module
of graded morphisms given by the module of graded morphisms of Definition 1.7 equipped with
the differential

dHom(M,N)( f ) := dN f − (−1)| f | f dM

for f ∈ Hom(M,N) homogeneous.

1.14. Definition. A DG-ring (differential graded ring) is a graded ring A equipped with a dif-
ferential, i.e. a morphism dA = (di

A : Ai→ Ai+1)i∈Z of degree 1 such that d2
A = 0, satisfying the

graded Leibniz rule:
di+ j

A (a ·b) = di
A(a) ·b+(−1)ia ·d j

A(b),

for every a ∈ Ai and b ∈ A j. Sometimes, we will write d instead of dA.

1.15. Definition. Let A and B be DG-rings. A graded ring homomorphism f : A→ B is a DG-
ring homomorphism if it commutes with the differentials, i.e. f dA = dB f .

1.16. Example. Any graded ring is a DG-ring with trivial differential, i.e. d = 0. Moreover,
any ring can be considered a graded ring concentrated in degree 0, so it is also a DG-ring.

1.17. Remark. Given a DG-ring A, its cohomology H∗A =
⊕

i H iA is a graded ring. Moreover,
it can be proven that any DG-ring homomorphism f : A→ B induces a graded ring homomor-
phism H∗( f ) : H∗(A)→ H∗(B).

1.18. Definition. A DG-ring homomorphism f : A→ B is a quasi-isomorphism if H∗( f ) is an
isomorphism of graded rings.

1.19. Definition. A DG-ring A is formal if there exists a zig-zag of quasi-isomorphisms

A1 . . .

A A2 H∗A.

A graded ring B is intrinsically formal if any DG-ring A with cohomology isomorphic to B is
formal.

1.20. Proposition. [22, Lemma 6.6]. A ring R is always intrinsically formal.

PROOF. Let A be a DG-ring with H∗(A) ∼= R. Set τ≤0A the DG-ring with τ≤0Ai = 0 for i > 0,
τ≤0A0 = kerd0 and τ≤0Ai = Ai for i < 0. The inclusion τ≤0A→ A and the quotient τ≤0A→ R
are quasi-isomorphisms. We conclude that A is formal.
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§1.2. A∞-algebras

1.21. Convention. We reserve the capital letter K for fields. A central K-ring is called algebra.
Accordingly, we will talk about graded algebras and DG-algebras.

1.22. Convention. Given f : A→ C and g : B→ D two graded homogeneous morphisms, we
adopt the Koszul sign rule:

f ⊗g(a⊗b) = (−1)|g||a| f (a)⊗g(b)

for a ∈ A and b ∈ B homogeneous elements.

1.23. Definition. An A∞-algebra over (a field) K is a graded K-module A =
⊕

i∈ZAi equipped
with a family of graded morphisms (mn : A⊗n→ A)n≥1 such that |mn|= 2−n and the following
holds for every n≥ 1:

(1.24) ∑
n=r+s+t

(−1)r+stmr+t+1(id⊗r⊗ms⊗ id⊗t) = 0,

where id : A→ A is the identity.

1.25. Remark. To better understand the notion of A∞-algebra, we analyze (1.24) for n = 1,2,3.
Let A be an A∞-algebra.

For n = 1, the equation gives m1m1 = 0. In particular, (A,m1) is a DG-module. Setting
n = 2, we obtain m1m2 = m2(m1⊗ id+ id⊗m1). Roughly speaking, this means that m1 satisfies
the graded Leibniz rule with respect to m2. With n = 3, we get the identity

m2(id⊗m2−m2⊗ id) = m1m3 +m3(m1⊗ id⊗2+ id⊗m1⊗ id+ id⊗2⊗m1)

as morphisms A⊗3→ A. The left-hand side is equal to zero if m2 is associative. In a sense we
will not explore, this formula tells us that m2 is associative up to homotopy. In particular, if
m3 = 0, then m2 is associative and can be used as a multiplication. The reader interested in the
topic may refer to [40].

1.26. Remark. One may wonder whether a DG-algebra can be defined as an A∞-algebra with
mn = 0 for n ≥ 3. However, A∞-algebras do not require a unit to exist; instead, such char-
acterization defines non-unital DG-algebras. Similarly, non-unital graded algebras are exactly
A∞-algebras with mn = 0 for n = 1 and n≥ 3.

As seen in Remark 1.25, an A∞-algebra is not necessarily associative. However, its coho-
mology is.

1.27. Definition. The cohomology H∗A of an A∞-algebra A is the cohomology of the DG-
module (A,m1). It can be proven that H∗A is a non-unital graded algebra with product induced
by m2.
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1.28. Definition. A morphism of A∞-algebras f : A→ B is a family of graded morphisms

f := ( fn : A⊗n→ B)n≥1, | fn|= 1−n

satisfying, for every `≥ 1,

∑
`=r+s+t

(−1)r+st fr+1+t(id⊗r⊗ms⊗ id⊗t) = ∑
1≤r≤`

`=i1+···+ir

(−1)umr( fi1 ⊗·· ·⊗ fir),

where

u =
r

∑
j=1

(r− j)(i j−1) = (r−1)(i1−1)+(r−2)(i2−1)+ · · ·+(ir−1−1).

The composition of two morphisms f = ( fn) : A→ B and g = (gn) : B→C is given by

(g◦ f )` := ∑
1≤r≤`

`=i1+···+ir

(−1)u fr ◦ (gi1 ⊗·· ·⊗gir),

while the identity id is defined by id1 := id and idn := 0 for n > 1.
A morphism of A∞-algebras f is a quasi-isomorphism if f1 is a quasi-isomorphism of DG-

modules.

1.29. Remark. Given a morphism of A∞-algebras f : A→ B, one can notice that f1 is a mor-
phism of DG-modules, i.e. f1m1 =m1 f1, and moreover f1 commutes with m2 "up to homotopy",
i.e.

f1m2 = m2( f1⊗ f1)+m1 f2 + f2(m1⊗ id+ id⊗m1).

In fact, the homology can be equipped with an A∞-structure, so that it encodes everything of
the A∞-algebra we started with.

1.30. Theorem – Kadeishvili. [34] (see, for instance, [41, Theorem 2.3] for a modern formu-
lation). Given an A∞-algebra A, its cohomology H∗A has an A∞-algebra structure H∗∞A such
that:
• m1 = 0 and m2 is induced from mA

2 ;
• There is a quasi-isomorphism of A∞-algebras H∗∞A→ A lifting the identity of H∗A.

In addition, this structure is unique up to (non-unique) isomorphism.

1.31. Remark. The notation H∗∞A is not standard, but it helps to distinguish between the natural
A∞-algebra structure of H∗A, given by setting mn = 0 for n > 2, and the A∞-algebra structure
adopted for the statement of Theorem 1.30.

1.32. Remark. By [41, Proposition 2.1], every A∞-algebra is quasi-isomorphic to a non-unital
DG-algebra.
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1.33. Definition. An A∞-algebra A is called minimal if m1 = 0. In Theorem 1.30, H∗∞A is a
minimal model for A.

An A∞-algebra is non-unital formal if its minimal model H∗∞A can be chosen to be a graded
algebra, meaning that mn = 0 for n > 2. More briefly, if H∗∞A∼= H∗A.

A graded algebra B is non-unital intrinsically formal if all minimal A∞-structures on B are
quasi-isomorphic. In other words, by Theorem 1.30, it is non-unital intrinsically formal if any
A∞-algebra A with H∗A∼= B is non-unital formal.

Notice that, until now, A∞-algebras do not have a unit. There are in fact two standard defini-
tions.

1.34. Definition. An A∞-algebra A is cohomologically unital if H∗A is a unital graded algebra.
It is strictly unital if there exists an element 1 ∈ A of degree 0 such that m1(1) = 0, m2(a⊗1) =
a = m2(1⊗a) and for any i≥ 3,

mi(a1, . . . ,ai) = 0

whenever a j = 1 for some j = 1, . . . , i.
A cohomologically unital morphism is a morphism of cohomologically unital A∞-algebras

f : A→ B such that f1 induces a unital morphism H∗A→ H∗B.
A morphism of strictly unital A∞-algebras f : A→ B is strictly unital if f1(1) = 1 and for

every i > 1, fi(a1, . . . ,ai) = 0 if a j = 1 for some j = 1, . . . , i.

1.35. Definition. We say that a strictly unital A∞-algebra A is formal if there exists a strictly
unital quasi-isomorphism H∗A→ A (where H∗A has mn = 0 for n > 2).

A graded algebra B is (A∞) intrinsically formal if all strictly unital A∞-algebras with H∗A∼=B
are formal.

1.36. Remark. A DG-algebra is formal if and only if it is formal as an A∞-algebra. Indeed, any
quasi-isomorphism between A∞-algebras gives rise to a zig-zag of quasi-isomorphisms between
DG-algebras (see [40, §3.3]). In particular, a graded algebra B is intrinsically formal if and only
if it is (A∞) intrinsically formal from Remark 1.32.

Before stating the next proposition, we need to define the notion of homotopy between
morphisms.

1.37. Definition. Let f ,g : A→ B be two morphisms of A∞-algebras. A homotopy between f
and g is a family of morphisms

h := (hi : A⊗i→ B)i≥1, |hi|=−i

such that, for all n≥ 1,

fn−gn = ∑
0≤r,t≤n

i1+···+ir+k+ j1+···+ jt=n

(−1)smr+1+t( fi1 ⊗·· ·⊗ fir ⊗hk⊗g j1 ⊗·· ·⊗g jt )

+ ∑
j+k+l=n

(−1) jk+lhn(id⊗ j⊗mk⊗ id⊗l),
(1.38)
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where

s = t + ∑
1≤v≤t

(
(1− jv)

(
n−∑

u≤v
ju

))
+ k ∑

1≤u≤r
iu + ∑

2≤v≤r

(
(1− iv) ∑

u<v
iu

)
.

Whenever there exists a homotopy between f and g, we say that f and g are homotopic.

1.39. Remark. For n = 1, the equation (1.38) reads

f1−g1 = m1h1 +h1m1,

which is exactly the standard idea of homotopy (cf. Definition 2.6).

1.40. Proposition.F. A strictly unital A∞-algebra A is formal if it is non-unital formal.

PROOF. Assume A is non-unital formal. By [47, Proposition 3.2.4.1], we have a minimal model
A′ with a strictly unital quasi-isomorphism A′ → A. Being H∗∞A ∼= H∗A and A′ strictly unital
minimal models, by Theorem 1.30 we have an isomorphism f : H∗A→ A′. Moreover, f1 :
H∗A⊗1 → A′ satisfies f1(a) = f1(a1) = f1(a) f1(1) since the differentials of H∗A and A′ are
zero, and we can find a ∈ H∗(A) such that f1(a) = 1 because f is an isomorphism. Therefore,
1 = f1(a) = f1(a) f1(1) = 1 f1(1) = f1(1). In other words, f is cohomologically unital. By [47,
Theorem 3.2.2.1], f is homotopic to a strictly unital morphism g. Since H∗A and A′ are minimal
models, f1 agrees with g1, so g is a quasi-isomorphism. The composition H∗A

g→ A′ → A
concludes the proof.

1.41. Corollary.F. A (unital) graded algebra B (over a field K) is intrinsically formal if it is
non-unital intrinsically formal.

PROOF. Let A be a strictly unital A∞-algebra such that H∗A∼= B. Since B is non-unital intrinsi-
cally formal, A is non-unital formal. By Proposition 1.40, we conclude that A is formal.

§1.3. Hochschild cohomology

In this section, we introduce Hochschild cohomology to give new examples of intrinsically
formal graded algebras. We work over a field k=K.

1.42. Definition. [1]. Let A be an algebra and M be an A-bimodule. The Hochschild complex
is the DG-module (morphisms Hom are meant as morphisms of vector spaces)

M Hom(A,M) Hom(A⊗2,M) Hom(A⊗3,M) . . .
d0 d1 d2 d3

where

dn f (a0, . . . ,an) = a0 f (a1, . . . ,an)

−
n−1

∑
i=0

(−1)i f (a0, . . . ,ai−1,aiai+1,ai+2, . . . ,an)

+(−1)n+1 f (a0, . . . ,an−1)an.
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(We use commas instead of tensor products for the sake of a simpler notation). The cohomology
of such DG-module is called Hochschild cohomology and denoted by HHn(A,M). If M = A, we
will use HHn(A) instead of HHn(A,A).

If A and M are graded, HHn(A,M) becomes graded by considering the complexes given by
morphisms of homogeneous degree: HHn(A,M) =

⊕
k∈ZHHn,k(A,M). If M = A, we will write

HHn,k(A) = HHn,k(A,A).

We can now state an important result linking Hochschild cohomology and intrinsic formal-
ity.

1.43. Theorem – Kadeishvili. [35]. A graded algebra A such that

HHn,2−n(A) = 0 for n≥ 3

is non-unital intrinsically formal.

By Corollary 1.41, we immediately obtain the following.

1.44. Corollary.F. Let A be a unital graded algebra such that HHn,2−n(A) = 0 for n≥ 3. Then
A is intrinsically formal.

Interestingly, this corollary has not been proven in the literature. In [73], it was shown for
augmented A∞-algebras, while in [69] the result is stated without proof under the assumption
that all A∞-algebras are strictly unital.

We conclude this section by giving some examples of intrinsically formal graded algebras
obtained by Theorem 1.43.

1.45. Example. Let K be algebraically closed. By [28, Lemma 2.8], for any choice of positive
integers n,k, the graded algebra K[t]/(tn+1) with deg t = k is intrinsically formal.

We work out the details of another example: K[t, t−1], which is a shorthand for the quotient
K[t,s]/(ts= 1) where the grading is required to satisfy deg(s)=−deg(t). Interestingly, intrinsic
formality is obtained by comparing Hochschild cohomology with group cohomology. For an
introduction to group cohomology, we refer to [10] (in [20, §5.1] there is an explicit description
that may be useful to understand the following proof).

1.46. Proposition.F. For any n,k ∈ Z, with n non-negative, we have that

HHn,k(K[t, t−1])∼= Hn(Z,K)

where t is homogeneous of positive degree, Hn is the group cohomology, Z andK are considered
only as additive groups and K is equipped with the structure of a Z-group module by the trivial
action.∗

In particular, K[t, t−1] is intrinsically formal.
∗For this result, I would like to thank Giorgio Leoni, whose knowledge on Group Theory has been crucial in finding

the link between the two notions of cohomology.



§1.3. Hochschild cohomology 19

PROOF. For the sake of brevity, we set A := K[t, t−1]. We denote with Homk(A⊗n,A) the K-
linear morphisms of homogeneous degree k.

Notice that a morphism f ∈ Homk(A⊗n,A) is described by a function λ : Zn→K such that
f (t p1 , . . . , t pn) = λ (p1, . . . , pn)t∑i pi+k/deg(t), where deg(t) is the homogeneous degree of t (and
for f to be nonzero, k is always divisible by deg(t)). Conversely, every such function λ give rise
to a unique homogeneous morphism f of degree k.

With this new notation, we can reinterpret the differentials dn:

dn
λ (q0, . . . ,qn) = λ (q1, . . . ,qn)

−
n−1

∑
i=0

(−1)i
λ (q0, . . . ,qi−1,qi +qi+1,qi+2, . . . ,qn)

+(−1)n+1
λ (q0, . . . ,qn−1).

As the differential of Hochschild cohomology does not change the degree of the maps, whenever
λ is associated to a morphism of degree k, dnλ is still associated to a morphism of degree k.

Then the Hochschild complex (for homogeneous morphisms of degree k) can be reinter-
preted as the following:

K HomSet(Z,K) HomSet(Z2,K) HomSet(Z3,K) . . .
d0 d1 d2 d3

where Set is the category of sets. This is exactly the group cohomology for the Z-group
module K, where both Z and K are considered as additive groups and the action of Z on K is
the trivial one.

From [10, Example III.1], we have that Hn(Z,M) = 0 for any Z-group module M and any
n≥ 2. Therefore, HHn,k(K[t, t−1]) = 0 for n≥ 2 and all k. We conclude by Corollary 1.44.

In fact, this result holds in a more general setting.

1.47. Proposition. [70, Corollary 4.2]. Let Λ be an algebra with finite projective dimension
d as a Λ-bimodule. Consider the graded algebra Λ[t, t−1] with deg t = m. Then Λ[t, t−1] is
intrinsically formal if d ≤ m.

1.48. Remark. It is very important to notice that intrinsic formality depends on the linearity:
in Remark 5.42, we give an example of a graded algebra which is intrinsically formal with
linearity over a field, but not intrinsically formal with linearity over a ring. This follows from
non-uniqueness of a DG-enhancement.





CHAPTER 2.

Deriving exact categories

The purpose of this chapter is to study full exact subcategories of triangulated categories, having
in mind the key example of the derived categories of exact categories. The discussion in §2.3
deals with the relation of Yoneda extensions and hom-sets in triangulated categories. In the last
sections, we focus on hearts (of bounded t-structures) and show Hubery’s Theorem 2.56, proved
independently by the author in the first draft of [49].

§2.1. Triangulated categories

For the sake of fixing notation, we give a brief introduction of triangulated categories. This is
not to be intended for readers who are unfamiliar with the basic concepts. A minimal knowledge
on the topic is covered in [31, §1.2], or [59, §1.1].

2.1. Convention. Categories will always be locally small, meaning that all hom-sets are sets.
Moreover, according to Convention 1.3, we suppose that all categories are k-linear. This means
that the hom-sets are k-modules and the composition is k-bilinear. Similarly, all functors are
k-linear, i.e. the induced morphisms between hom-sets are k-linear.

2.2. Definition. A triangulated category T is an additive category together with a shift func-
tor (also called suspension functor) Σ : T → T , which is an automorphism∗, and a class of
distinguished triangles

A B C Σ(A)

satisfying the following axioms.

∗Some authors require Σ to be an autoequivalence. Here we want Σ to have a proper inverse to avoid technicality on
the choice of the inverse Σ−1 (cf. [77, Remark 5.1.2]).

21
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TR1 1. Each sequence of the form

A A 0 Σ(A)id

is a distinguished triangle.
2. If A→ B→C→ Σ(A) is a distinguished triangle and D→ E → F → Σ(D) is iso-

morphic to it, i.e. there exist vertical isomorphisms a,b,c making the following
diagram

A B C Σ(A)

D E F Σ(D)

a b c Σ(a)

commutative, then also D→ E→ F → Σ(D) is a distinguished triangle.
3. Any morphism f : A→ B gives rise to a distinguished triangle

A B C Σ(A),
f

which can be proved to be unique up to isomorphism. The object C, sometimes
denoted by Cone( f ), is called cone of f , and it is determined up to non-unique
isomorphism (see TR3). When we do not need to make f explicit, we will also use
the notation Cone(A→ B).

TR2 A sequence

A B C Σ(A)
f g h

is a distinguished triangle if and only if

B C Σ(A) Σ(B)
g h −Σ( f )

is a distinguished triangle.
TR3 For any two distinguished triangles, given a and b vertical arrows making the left square

commutative as in the diagram

A B C Σ(A)

D E F Σ(D),

a b c Σ(a)

h

there exists c making the other two squares commutative. In general, such c is not unique.
TR4 Let f : A→ B and g : B→C be two morphisms. From TR1, we get three distinguished

triangles:

A B C′ Σ(A),
f f ′ s

A C B′ Σ(A),
g f h r

B C A′ Σ(B).
g g′ t
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In this situation, the octahedral axiom requires that there exists a distinguished triangle

C′ B′ A′ Σ(C′)u v w

making the following diagram commutative:

A C A′ Σ(C′)

B B′ Σ(B)

C′ Σ(A)

g f

f

g′

h

w

tg

f ′

v

r

Σ( f ′)

u

s

Σ( f )

2.3. Definition. A triangulated functor between two triangulated categories T and T ′ is a
couple (F,η) such that
• F : T →T ′ is a functor;
• η : FΣT → ΣT ′F is a natural isomorphism;
• This couple sends distinguished triangles to distinguished triangles:

A B C Σ(A)

FA FB FC Σ(FA).

f g h

F f Fg ηAFh

For the sake of simplicity, we will say that F is a triangulated functor whenever η is not explic-
itly needed. The identity functor id is the couple (id, idΣ).

For a triangulated functor (F,η) : T →T ′, we define η i : FΣi→ΣiF inductively as follows:

η
0 = id, η

1 = η , η
−1 = (Σ−1

T ′ηΣ
−1
T )−1,

for i > 1, η
i = Σ

i−1
T ′ (η)η i−1

ΣT , η
−i = Σ

1−i
T ′ (η

−1)η1−i
Σ
−1
T .

Notice that, since Σ is an automorphism, η−i is properly defined.
A natural transformation of triangulated functors (F,η),(F ′,η ′) : T → T ′ is a natural

transformation f : F → F ′ such that

FΣT ΣT ′F

F ′ΣT ΣT ′F ′

η

f ΣT ΣT ′ f

η ′

commutes.
Given two composable triangulated functors (F,η) and (G,µ), we define the composition

as (GF,(µF)(Gη)).
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2.4. Notation. It is common to indicate the shift functor Σ with [1]; more precisely, A[1] := Σ(A)
and f [1] := Σ( f ). In general, we may write [n] instead of Σn for any n ∈ Z.

We will almost always use the [n]-notation for shifts, but sometimes Σ allows us to state
more clearly some properties.

2.5. Definition. A triangulated subcategory S of T is a full subcategory of T such that the
inclusion S ⊂T is a triangulated functor.

An extension closed subcategory E of T is a full subcategory of T such that, whenever
there exists a distinguished triangle X → Y → Z→ X [1] with X ,Z ∈ E , also Y ∈ E .

2.6. Definition. Let A be an additive category. A complex M = (Mi,di
M)i∈Z is a sequence

. . . Mi−1 Mi Mi+1 . . .
di−1

M di
M

of objects and morphisms of A such that di+1
M di

M = 0 for all integers i. A chain map between
complexes f : M→ N is a collection of morphisms { f i : Mi→ Ni}i∈Z such that di

N f i = f i+1di
M .

We say that two chain maps f ,g : M→N are homotopy equivalent if there exists a collection
of morphisms {hi : Mi→ Ni−1}i∈Z such that

f i−gi = di−1
N hi +hi+1di

M

for all i. The homotopy category of complexes K(A ) is the category whose objects are com-
plexes and morphisms are chain maps up to homotopy equivalence. By an abuse of notation, we
will denote chain maps and homotopy classes of chain maps in the same way.

bounded above for i� 0
We say that a complex M is bounded below if Mi = 0 for i� 0

bounded for |i| � 0

The full subcategory of K(A ) given by bounded above (resp. bounded below, bounded) com-
plexes is denoted with K−(A ) (resp. K+(A ), Kb(A )). We will use the notation K∗(A ) as
a short hand to refer to homotopy categories without restricting to a particular boundedness
requirement. In particular, K(A ) is also considered by setting ∗=∅.

2.7. Remark. Notice that DG-modules and DG-morphisms of a ring R are respectively com-
plexes and chain maps associated to the category Mod(R) of all R-modules.

2.8. Definition/Proposition. Let A be an additive category and consider the homotopy cate-
gory K∗(A ).
• For a complex M, the shifted complex M[1] is described by M[1]i := Mi+1 and di

M[1] :=

−di+1
M . Given a chain map f , the shifted morphism f [1] : M[1]→ N[1] is defined by

f [1]i := f i+1. This association is compatible with homotopy, hence it gives a shift functor
on K∗(A ).
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• Let f : M→ N a chain map. The cone of f is the complex

Cone( f ) := N⊕M[1], di
Cone( f ) :=

(
di

N f i

0 di
M[1]

)

Then K∗(A ) is a triangulated category whose distinguished triangles are isomorphic to

M N Cone( f ) M[1]
f

(
id
0

)
(0 id)

(cf. [32, Lemma I.4.16, I.4.19 and Theorem XI.5.5]).

2.9. Definition/Proposition. [76, II.2.2.10]. Given a triangulated category T and a triangu-
lated full subcategory S , the Verdier quotient T /S is a triangulated category, together with a
triangulated functor Q : T →T /S , satisfying the following universal property: if F : T →T ′

is a triangulated functor such that F(X) = 0 for all X ∈S , then F factors uniquely through Q.

IDEA OF PROOF. In order to define T /S , we recall a construction of localization via multi-
plicative systems. A multiplicative system S is a selection of morphisms in T satisfying some
properties (see [76, II.2.1.1] or [32, §XI.1]) such that we can create morphisms from X to Y by
(left) fractions

X Z Y,
f s

where Z is some object of T and s ∈ S. The category whose objects are the ones of T and
whose morphisms are fractions is denoted with S−1T .†

Since the collection

S := { f : X → Y | there exists a distinguished triangle X
f→ Y → Z→ X [1] with Z ∈S }

is a multiplicative system by [76, Proposition II.2.1.8], we simply define T /S := S−1T .

2.10. Definition. A triangulated subcategory S of T is thick if it is closed under isomorphism
and whenever X ⊕Y ∈ S , then X ,Y ∈ S . For any subcategory U ⊂ T , we denote with
Thick(U ) the smallest thick subcategory of T containing U .

2.11. Remark. Notice that the kernel K of a triangulated functor F : T → T ′, i.e. the full
subcategory of T whose objects satisfy F(X) = 0, is a thick subcategory. In particular, in the
case of a Verdier quotient Q : T → T /S , we have that S ⊂K ; by the universal property,
T /K ∼= T /S . Also, one can show that K = Thick(S ).

2.12. Remark. Let S be a thick subcategory of T . Then a morphism f : X → Y in T is
an isomorphism in T /S if and only if Cone( f ) ∈ S (cf. [32, Proposition XI.1.7] and [76,
Proposition II.2.1.8]).

†Analogously, one may define the category of right fractions. The resulting category is isomorphic to S−1T because
it is characterized by the same universal property [32, Proposition XI.1.5].
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We conclude by recalling the concept of triangulated envelope.

2.13. Definition. Let T be a triangulated category and S a full subcategory. The triangulated
envelope of S , denoted with 〈S 〉, is the smallest full triangulated subcategory of T containing
S . For the sake of simplicity, we will say that T is the triangulated envelope of S , and write
T = 〈S 〉, whenever 〈S 〉 is triangulated equivalent to T via inclusion.

2.14. Remark. In order to prove that some property holds for every object of 〈S 〉, we can use
the following induction principle.
Base case The property holds for every finite direct sum of shifts of objects of S .
Induction step If the property holds for X and Y , then it holds also for Cone(X → Y ).
This follows from the fact that all objects in 〈S 〉 are obtained by iterating cones.‡

§2.2. Derived categories of exact categories

The main reference for derived categories of exact categories is [11]. Here we present some
results that are of interest for our studies, especially for §2.3.

2.15. Definition. Let A be an additive category. A kernel-cokernel pair (in A ) is a pair (i, p)
of composable morphisms such that i is a kernel of p and p is a cokernel of i.

For a class of kernel-cokernel pairs E, we say that a morphism i is an admissible monic
if there exists p such that (i, p) ∈ E. Dually, we define admissible epic. We say that a class of
kernel-cokernel pairs E is an exact structure if it is closed under isomorphisms and the following
axioms are satisfied:

1. All identities are admissible monics and admissible epics.
2. The composition of two admissible monics (resp. epics) is an admissible monic (resp.

epic).
3. The push-out of an admissible monic along an arbitrary morphism exists and gives an

admissible monic. The same can be said for pull-backs of admissible epics.
An exact category E is given by a couple (A ,E), where A is an additive category and E is

an exact structure on A . A kernel-cokernel pair in E is called conflation and it is represented as
a short exact sequence in the context of abelian categories, i.e. 0→ A→ B→C→ 0. For the
sake of simplicity, E will also denote the underlying additive category A .

‡The interested reader may check this as an exercise. Hint. Consider the function dS : T → N∪{∞} defined by

dS (X) =


0 if X is a finite direct sum of shifts of objects in S

n if there exists a distinguished triangle Y1→ Y2→ X → Y1[1]

with dS (Yi)< n for i = 1,2 and dS (X)≮ n

∞ if dS (X) 6= n for all n ∈ N.
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2.16. Definition. A complex

. . . X i−1 X i X i . . .
di−1 di

is acyclic if, for all i ∈ Z, di factors through an object Ci ∈ E and 0→Ci−1→ Xi→Ci→ 0 is a
conflation.

We choose the term "acyclic complex" instead of "long exact sequence" because the latter
may recall the reader too much of the abelian situation, and we want to avoid confusion as
exact categories have a more peculiar behaviour. Indeed, it is not always possible to define
cohomology objects associated to complexes (see Definition 2.24).

2.17. Definition. The derived category D∗(E ) of an exact category E is defined as the quotient
K∗(E )/Ac∗(E ), where Ac∗(E ) is the triangulated subcategory ofK∗(E ) given by acyclic com-
plexes (see [57, Lemma 1.1]). A morphism in K∗(E ) is a quasi-isomorphism if its cone belongs
to Thick(Ac∗(E )).

2.18. Remark.

1. An additive category with split exact sequences is exact, and the derived category associ-
ated to it is simply the homotopy category of complexes. This follows from the fact that
split exact sequences are always homotopy equivalent to 0.

2. An abelian category with all its short exact sequences is exact, and the derived category
associated is the expected one.

3. A morphism of K∗(E ) becomes an isomorphism in D∗(E ) if and only if it is a quasi-
isomorphism; this follows from Remark 2.12.

Let us state a first preliminary result on distinguished triangles of derived categories.

2.19. Proposition. Let E be an exact category. A conflation in E gives rise to a distinguished
triangle in D∗(E ).

PROOF. Let

0 X Y Z 0
f g

be a conflation. Then g can be used to define a morphism Cone( f )→ Z in K∗(E ), which is an
isomorphism in D∗(E ) because its cone is the conflation we started with.

The following generalizes the last part of the statement of [45, Lemma 3.1].

2.20. Lemma.F. Let E be an exact category. Then Acb(E )⊂Kb(E ), the category of bounded
acyclic complexes, is the triangulated envelope of the full subcategory given by conflations
(intended as complexes).
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PROOF. Let X = (X i,di) be a bounded acyclic complex. Up to shift, we can assume X i = 0 for
i < 1 and i > n for some n > 3. Let us write

X := · · · → 0→ X1→ X2→ . . . → Xn→ 0→ . . .

X≤n−2 := · · · → 0→ X1→ X2→ . . .→ Xn−2 p→ coker(dn−3)→ 0→ . . .

X≥n−1[−1] := · · · → 0→ coker(dn−3)
j→ Xn−1 −dn−1

→ Xn→ 0→ . . .

where the composition of p : Xn−2→ coker(dn−3) and j : coker(dn−3)→ Xn−1 gives −dn−2.
We claim that X ∼=Cone( f ) =: Y , where f : X≥n−1[−1]→X≤n−2 is defined to be the identity

on coker(dn−3) and 0 elsewhere. This will suffice to conclude the proof of the statement. Let us
describe Y explicitly: it is the chain complex

· · ·→ 0→ X1→ X2→···→ Xn−3→ Xn−2⊕coker(dn−3)→ coker(dn−3)⊕Xn−1→ Xn→ 0 . . .

with differential

di
Y :=



(
dn−3

0

)
if i = n−3(

p id
0 − j

)
if i = n−2

(0 dn−1 ) if i = n−1

di otherwise.

We now define chain maps h : X → Y and g : Y → X as follows:

hi :=



( id
−p
)

if i = n−2( 0
− id
)

if i = n−1

− id if i = n

id otherwise

, gi :=


( id 0) if i = n−2

(− j − id) if i = n−1

− id if i = n

id otherwise.

Notice that gh = id, so it remains to prove that hg ∼= id up to homotopy; this is true using the
maps ϕ i : Y i→ Y i−1 such that ϕ i = 0 for all i 6= n−1 and ϕn−1 :=

( 0 0
− id 0

)
.

We now wonder when quasi-isomorphisms are completely described by acyclic complexes,
i.e. when acyclic complexes give thick subcategories.

2.21. Definition. Let A be an additive category. An idempotent is a morphism e : X → X , such
that e2 = e. We say that A is idempotent complete if for every idempotent e : X → X there exist
s : Y → X and r : X → Y such that e = sr and rs = idY .

An additive category is weakly idempotent complete if one of the following equivalent re-
quirements hold:

1. Every retraction has a kernel;
2. Every section has a cokernel.

2.22. Remark. Given any exact category E , we can consider its idempotent closure E ic and its
weak idempotent completion E wic. Any object in E ic is a direct summand of an object in E ; this
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is clear from the description given in [36, §1.2]. The same is true also for E wic (see [11, Remark
7.8]), since it is contained in E ic.

It is important to remember that the inclusions E → E wic and E → E ic reflect exactness,
meaning that a conflation in the target with objects in E is still a conflation in E . In addition,
their essential image is closed under extensions, i.e. if 0→ A→ B→C→ 0 is a conflation such
that A,C are in the essential image of the inclusion, then also B is.

2.23. Proposition. [11, Corollary 10.11 and Proposition 10.14]. Let E be an exact category.
Then:
• E is weakly idempotent complete if and only if Acb(E ) is thick in Kb(E ), or if and only if

Ac∗(E ) is thick in K∗(E ) for both ∗=+ and ∗=−.
• E is idempotent complete if and only if Ac(E ) is thick in K(E ).

2.24. Definition. An admissible morphism f : X → Y in an exact category is a morphism ad-
mitting a decomposition f = ip, with i admissible monic and p admissible epic. Accordingly, a
complex (X i,di)i is admissible if di is admissible for each i ∈ Z.

Notice that any acyclic complex is admissible, and any admissible morphism admits kernel,
cokernel and image.

For an admissible complex X , if im(di−1)→ ker(di) is admissible we define the i-th coho-
mology object

H i(X) :=
ker(di)

im(di−1)
= coker(im(di−1)→ ker(di)) ∈ E .

2.25. Remark.F. Cohomology objects of admissible complexes are always defined (according
to the definition above) if and only if we are working on a weakly idempotent complete exact
category.

This follows from the following characterization: an exact category E is weakly idempotent
complete if and only if any morphism j for which we can find a commutative diagram

A C,

B

j

i j

i

where ↪→ indicates admissible monics, is an admissible monic. This is the dual statement of
[11, Corollary 7.7]

Indeed, given any admissible complex X = (X i,di)i in a weakly idempotent complete exact
category E , we have the diagram above with A = im(di−1), B = ker(di) and C = X i. Since
j : im(di−1)→ ker(di) is admissible, H i(X) exists.

Conversely, if E is an exact category which is not weakly idempotent complete, we can find a
monic j : A→B which is not admissible and satisfies the diagram above for some i : B→C. Then
the complex A→C→ coker(i) is clearly admissible, but by construction we cannot compute its
cohomology.
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The following remark is of utter importance, as it allows to restrict our studies to (weakly)
idempotent complete categories without loss of generality.

2.26. Remark. By inclusions, we obtain that Db(E ) ∼= Db(E wic) and D∗(E ) ∼= D∗(E ic) for
∗=+,−,∅ (see [57, Remark 1.12]). The notation is the one used in Remark 2.22.

2.27. Lemma.F. Let E be a weakly idempotent complete exact category and ∗= b,+,−. Any
complex X ∈D∗(E ) admitting a quasi-isomorphism B[n]→ X, with B ∈ E , is admissible. More
precisely, its cohomology objects are well-defined and

H i(X) =

{
B if i =−n

0 otherwise.

The same is true in D(E ) if E is idempotent complete.

PROOF. We work under the assumption that Ac∗(E ) is thick in K∗(E ); Proposition 2.23 shows
us the reason why we have two different assumptions in the case of ∗= b,+,− and ∗=∅.

For the sake of simplicity, assume n = −1. Since s : B[−1]→ X is a quasi-isomorphism,
Cone(s) is acyclic. Moreover, Cone(s)i = X i for i 6= 0 and di

Cone(s) = di for i 6= −1,0 (d de-

notes the differential of X). We also notice that d−1
Cone(s) =

(
d−1

0

)
, so imd−2 = imd−2

Cone(s) =

kerd−1
Cone(s) = kerd−1. We therefore have the statement for all degrees but i = 0,1, since acyclic-

ity implies admissibility. Considering Cone(s), we have

X−1 X0⊕B X1.

K0 K1

(
d−1

0

)
(d0 s)

Notice that the natural projection X0⊕B�B factors through K1 = coker
(

d−1

0

)
, from which we

obtain a decomposition of the identity of B through K1. Since E is weakly idempotent complete,
we immediately get that K1 = B⊕K1

X for some object K1
X ∈ E . Therefore, the conflation K0→

X0⊕B→K1 can be divided in two direct summands: one is given by the identity of B, while the
other is K0→ X0→ K1

X . The latter is a conflation by [11, Corollary 2.18], so that H0(X) = 0.
Since K1

X → K1 is a split monomorphism, X is admissible and the cohomology is exactly as
expressed in the statement (in particular, H1(X) = coker(K1

X → K1) = B).

2.28. Remark. Under the same conditions, Lemma 2.27 holds true also for quasi-isomorphisms
X → B[n].

§2.3. Yoneda extensions in triangulated categories

In the theory of abelian categories, it is well-known that Yoneda extensions are associated to
hom-sets in the derived categories. As a matter of fact, the whole idea can be extended to exact
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categories, and the expected result holds also in this wider generality (see Corollary 2.42). We
will conclude by showing a generalization of [16, Corollary 2.8].

2.29. Definition – Yoneda extensions. Let E be an exact category. The elements of Extn(A,B)
are n-extensions for n > 0, i.e. classes of acyclic complexes

X : 0→ B→ X1→ ··· → Xn→ A→ 0

under the equivalence relation generated by identifying two acyclic complexes X, Y if there is a
family of morphisms ψ = {ψ1, . . . ,ψn} satisfying the following commutative diagram

0 B X1 . . . Xn A 0

0 B Y1 . . . Yn A 0

id ψ1 ψn id

(cf. [24, Theorem III.5.5]). For n = 0, Ext0(A,B) = Hom(A,B).
The Yoneda product is given by maps Y n,m

A,B,C : Extn(A,B)×Extm(B,C)→ Extn+m(A,C) for
any n,m≥ 0 and any A,B,C ∈A . For n,m≥ 1, the Yoneda product is the map

(
X : 0→ B→ X1→ ··· → Xn→ A→ 0 , Y : 0→C→ Y1→ ·· · → Ym→ B→ 0

)
Y ·X : 0→C→ Y1→ ··· → Ym→ X1→ ··· → Xn→ A→ 0.

If n = m = 0, the product is simply the composition of maps. The case n > 0 and m = 0 requires
a more sophisticated definition. If n = 1, let X1 ∈ Ext1(A,B) and g : B→ C. Then g ·X1 is
described by the following commutative diagram

(2.30)
0 B X1 A 0

0 C g ·X1 A 0,

g id

where g ·X1 is the pushout of g and B→ X1. For n > 1, considered an n-extension

X : 0→ B→ X1→ X2→ ·· · → Xn→ A→ 0

and g : B→C, the Yoneda product is given by substituting 0→ B→ X1 with 0→C→ g ·X1:

g ·X : 0→C→ g ·X1→ X2→ ··· → Xn→ A→ 0.

Dually, one can describe the case n = 0 and m > 0.
We can equip Extn(A,B) with a structure of abelian group via the Baer sum, described as

follows. Let X,Y ∈ Extn(A,B). Consider the direct sum of the n-extensions

X⊕Y : 0→ B⊕B→ X1⊕Y1→ ··· → Xn⊕Yn→ A⊕A→ 0,



32 CHAPTER 2. DERIVING EXACT CATEGORIES

the diagonal map ∆A =
(

id
id

)
: A→ A⊕A and the codiagonal map ∇B = (id id) : B⊕B→ B.

Then the Baer sum is given by X+Y := ∇B · (X⊕Y) ·∆A.
The neutral element of the Baer sum is the n-extension represented by

0 : 0→ B id→ B→ 0→ ·· · → 0→ A id→ A→ 0.

In the case of Ext1(A,B), this reduces to the split exact sequence 0→ B→ B⊕A→ A→ 0. The
opposite of X is simply given by choosing the opposite of the first morphism B→ X1.§

The (absolute) homological dimension of E , denoted by dimE , is the greatest integer n such
that Extn(A,B) 6= 0 for some A,B ∈ E . If such an integer does not exist, we will set dimE := ∞.

2.31. Proposition.F. [65, §A.7]. Let E be an exact category, ∗= b,+,−,∅. Given A,B ∈ E ,
• if n < 0, HomD∗(E )(A,B[n]) = 0;
• if n> 0, every morphism in HomD∗(E )(A,B[n]) is associated to an n-extension in a natural

way. More explicitly, we have a family of isomorphisms Extn(A,B)→HomD∗(E )(A,B[n])
which, a posteriori, will satisfy item 4 of Proposition 2.35.

PROOF. First, let us restrict to the case of weakly idempotent complete exact categories if ∗ =
b,+,− or idempotent complete if ∗=∅. We recall that a morphism f : A→ B[n] is represented
by a fraction

A X B[n]
g s

where g is a morphism in K∗(E ) and s is a quasi-isomorphism. By Lemma 2.27, even if trun-
cation functors are not defined in general, such X can be truncated as in the case of abelian
categories. Indeed, in D∗(E ) the definition of truncation is well-defined for admissible com-
plexes. This suffices to conclude that the reasonings of [76, Proposition III.1.2.10] and [32,
Proposition XI.4.5-8] can be applied in this case.

For the general case, notice that from Remark 2.26, we are reduced to show that an n-
extension of two objects of E in E ic (which denotes the idempotent closure of E ) always admits
a representation by an acyclic complex of E . Let A,B ∈ E and consider the acyclic complex X

0 B X1 X2 . . . Xn A 0.
ξ1 ξ2 ξn−1

with Xi ∈ E ic for all i. As observed in Remark 2.22, imξ1 is a direct summand of an object of
E . Let Y1 such that imξ1⊕Y1 ∈ E . Since the essential image of E is closed under extensions in
E ic and the inclusion reflects exactness, X1⊕Y1 ∈ E . Analogously, if we consider the conflation
0→ imξ1⊕Y1→ X2⊕Y1→ imξ2→ 0, we can find Y2 such that imξ2⊕Y2 ∈ E , so that X2⊕
Y1⊕Y2 ∈ E . By induction, we define Zi := Xi⊕Yi−1⊕Yi, where Yi is obtained as above for

§This fact becomes easy to check after Corollary 2.42, in view of the morphisms defined in Proposition 2.35. We
also remark that the opposite of X can also be represented by changing the sign of any morphism occurring in X, or,
even more generally, by changing the sign for an odd number of morphisms.
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i = 1, . . .n−1, while Y0 = Yn = 0. We also define

µi =

ξi 0 0
0 0 id
0 0 0

 : Zi→ Zi+1.

for i = 1, . . . ,n− 1. By these choices, we obtain an acyclic complex Z of E which represents
the class of X by setting

(
id 0 0

)
: Zi→ Xi for all i = 1, . . . ,n.

2.32. Definition/Proposition. [23]. Let E be a full extension closed additive subcategory of a
triangulated category T such that Hom(A,B[−1]) = 0 for any A,B ∈ E .

Then E has a natural exact structure, given by defining 0→ A→ B→C→ 0 a conflation if
A→ B→C→ A[1] is a distinguished triangle in T for some C→ A[1]. This association gives
rise to a natural isomorphism Ext1E (A,B)

∼=−→ HomT (A,B[1]) for all A,B ∈ E .
When E is considered with this natural exact structure, we say that E is Dyer (in T ).
In particular, whenever E is a Dyer exact subcategory of T , the homological dimension of

E in T , denoted by dimT (E ), is the greatest integer n such that Hom(A,B[n]) 6= 0 for some
A,B ∈ E . If such an integer does not exist, we set dimT (E ) := ∞.

2.33. Definition. A full subcategory E of a triangulated category T is called admissible if
Hom(A,B[n]) = 0 for all n < 0. Whenever it is extension closed, by Definition/Proposition 2.32
we will say that E is admissible exact. In particular, E is admissible abelian if the exact structure
gives rise to an abelian category (cf. [30, §. 2]).

2.34. Example. By Proposition 2.19 and Proposition 2.31, any exact category E is admissible
exact in D∗(E ).

2.35. Proposition.F. [65, §A.8]. Let E be a Dyer exact subcategory of a triangulated category
T . Then there is a well-defined map fn,A,B : Extn(A,B)→HomT (A,B[n]) for any A,B ∈ E and
n≥ 0. The following facts are true.

1. The image of fn,A,B is given by all the maps A→ B[n] factoring as

A→Cn−1[1]→ ·· · →C1[n−1]→ B[n]

for some Ci ∈ E , i ∈ {1, . . . ,n−1}.
2. The Yoneda product is sent to composition as expected: therefore, fn,−,− is a natural

transformation and fn,A,B is a group homomorphism with respect to the Baer sum on
Extn(A,B).

3. If fn−1,A,B is an isomorphism for any B ∈ E , then fn,A,B is injective.
4. Let gn,A,B : Extn(A,B)→ HomT (A,B[n]) be a map for any n ≥ 0 and A,B ∈ E . If g0,A,B

is the isomorphism induced by the inclusion E ⊂ T , g1,A,B is the natural isomorphism
of Definition/Proposition 2.32, and the Yoneda product is sent to the composition, then
gn,A,B = fn,A,B.
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PROOF. For n = 0, f0,A,B : HomE (A,B)→ HomT (A,B) is an isomorphism since E is a full
subcategory of T . Let n > 0 and consider X an acyclic complex

0 B X1 X2 . . . Xn A 0.
ξ0 ξ1 ξ2 ξn−1 ξn

To X we can associate conflations

0 B = imξ0 X1 imξ1 0

0 imξ1 X2 imξ2 0

...

0 imξn−1 Xn imξn = A 0

which are associated to distinguished triangles. Therefore, we define fn,A,B(X) to be the map

A→ imξn−1[1]→ ·· · → imξ2[n−2]→ imξ1[n−1]→ B[n]

obtained by the composition of the morphisms appearing in the distinguished triangles. We need
to show that if (X,ξ ) and (Y,η) give the same n-extension, then the associated map A→ B[n]
obtained is the same. Without loss of generality, assume there is a family of morphisms ψ as in
Definition 2.29. Then for each i ∈ {0, . . . ,n−1} we have

imξi Xi+1 imξi+1 imξi[1]

imηi Yi+1 imηi+1 imηi[1],

ϕi ψi+1 ϕi+1 ϕi[1]

where ϕi is obtained by the universal property of the kernel. In order to prove that the middle
square is commutative, we notice that

Xi+1→ imξi+1→ imηi+1 ↪→ Yi+2 = Xi+1→ imξi+1→ Xi+2→ Yi+2

= Xi+1→ Yi+1→ Yi+2

= Xi+1→ Yi+1→ imηi+1 ↪→ Yi+2,

so Xi+1→ imξi+1→ imηi+1 = Xi+1→ Yi+1→ imηi+1. Since ϕi+1 is the only one making the
middle square commutative by the universal property of the cokernel, TR3 entails that also the
right-hand square is commutative.

We obtain a commutative diagram

A imξn−1[1] . . . imξ2[n−2] imξ1[n−1] B[n]

A imηn−1[1] . . . imη2[n−2] imη1[n−1] B[n],

ϕn ϕn−1[1] ϕ2[n−2] ϕ1[n−1] ϕ0[n]

where ϕn = id and ϕ0 = id, so that the rows are in fact the same map. This gives the well-
definition of every fn,A,B.
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1. Let us consider a map α : A→ B[n] factoring through A =Cn→Cn−1[1]→ ··· →C1[n−
1]→C0[n] = B[n]. To any Ci[−1]→Ci−1, we can associate a cone, which is in E because
it is Dyer. Let us call such cone Xi. We have the following conflations: 0→ Ci−1 →
Xi→Ci→ 0. Since Ci is also the kernel of Xi+1→Ci+1, we manage to create an acyclic
complex

0→ B→ X1→ X2→ ··· → Xn→ A→ 0.

It is easy to notice that such acyclic complex is associated to the map α : A→ B[n] via
fn,A,B.

2. In the case of Extn and Extm with n,m> 0, the Yoneda product is sent to composition with
a reasoning similar to item 1. Therefore, it suffices to show it is true when either m or n
is zero. First, we recall that f1,A,B is exactly the map considered in Definition/Proposition
2.32, which is a natural transformation for both entries. So (2.30) can be translated to

(2.36)

B X1 A B[1]

C g ·X1 A C[1]

g

h

id g[1]

g[1]h

in T . Let us prove that fn,A,− is a natural transformation, the proof of fn,−,B being dual.
For a general n-extension

X : 0→ B→ X1→ X2→ ··· → Xn→ A→ 0

and g : B→ C, the map A→ C[n] associated to g ·X factors through K[n− 1]→ C[n],
where K = im(g ·X1→ X2) = im(X1→ X2), according to (2.36). Furthermore, the same
diagram shows that K → C[1] is obtained as a composition K → B[1] → C[1], where
the latter morphism is g[1]. Therefore, A→ C[n] can be written as the composition of
A→ B[n], obtained by X, and g[n] : B[n]→C[n], as wanted.
Finally, fn,−,− is a natural transformation for both entries A and B. Moreover, fn,A,B is a
group homomorphism since the Baer sum of two extensions is given by Yoneda products
as explained in Definition 2.29.

3. We want to show that the zero map A→ B[n] is associated to only one equivalence class of
extensions, i.e. the neutral element of the Baer sum, whenever fn−1,A,X is an isomorphism
for any X ∈ E . Let us consider

X : 0→ B→ X1→ X2→ ··· → Xn→ A→ 0

such that fn,A,B(X) = 0 and the associated factorization

A→Cn−1[1]→ ··· →C2[n−2]→C1[n−1]→ B[n].
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We have the following diagram, where the rows are distinguished triangles:

(2.37)

A B[n] B[n]⊕A[1] A[1]

C1[n−1] B[n] X1[n] C1[n]

0

id
g[n]

Now we pick the map A[1]→ B[n]⊕A[1]→ X1[n]. Since fn−1,A,X1 is surjective, we get
that A→ X1[n−1] is associated to an acyclic complex

Y : 0→ X1→ Y1→ ··· → Yn−1→ A→ 0.

Composing Y with 0→ B→ X1⊕B→ X1→ 0, we have the following:
(2.38)

0 B X1⊕B Y1 . . . Yn−1 A 0

0 B X1 X2 . . . Xn A 0.

(
0
id

)
id (id,ι) id

ι

We want to prove there are maps Yi → Xi+1 making every square of the diagram above
commutative, so that the two rows represent the same n-extension. We consider the se-
quences starting at X1 and C1 respectively (remember that C1 is the image of X1 → X2).
The Yoneda product of Y and g : X1 → C1 gives us g ·Y, whose associated map A→
X1[n−1]→C1[n−1] factors as A→Cn−1[1]→ ···→C1[n−1] because of the right-hand
commutative square in (2.37). Since fn−1,A,C1 is injective by assumption, we know that
g ·Y is in the same equivalence class of

X′ : 0→C1→ X2→ ··· → Xn→ A→ 0.

Therefore, we can assume, up to equivalence, that X is in fact

0→ B→ X1→ g ·Y1→ Y2→ ··· → Yn−1→ A→ 0,

since it is obtained by the Yoneda product of X′ and 0→ B→ X1 →C1 → 0. With this
assumption, (2.38) can be completed with maps Yi→ Xi+1 as wanted: the first morphism
is given according to (2.30), while all the others are the identity. It remains to show that
the equivalence class of

0→ B→ X1⊕B→ Y1→ ·· · → Yn−1→ A→ 0

is the one associated to the neutral element of the Baer sum, which is obvious because the
diagram

0 B X1⊕B Y1 . . . Yn−2 Yn−1 A 0

0 B B 0 . . . 0 A A 0

id

(
0
id

)

(0 id)

π

π id

id id
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commutes.
4. Let gn,A,B as in the statement and assume by induction that gm,C,D = fm,C,D for any m < n

and C,D ∈ E . We consider X ∈ Extn(A,B) given by

0→ B→ X1
ξ1→ X2→ ··· → Xn→ A→ 0.

Such an extension can be split into two shorter extensions:

X1 : 0→ B→ X1→ im(ξ1)→ 0

X2 : 0→ im(ξ1)→ X2→ ··· → Xn→ A→ 0.

Moreover, X1 ·X2 = X. As gn,A,B sends Yoneda product to composition, we have

gn,A,B(X) = gn,A,B(X1 ·X2)

= g1,im(ξ1),B(X1)◦gn−1,A,im(ξ1)(X2)

= f1,im(ξ1),B(X1)◦ fn−1,A,im(ξ1)(X2)

= fn,A,B(X1 ·X2) = fn,A,B(X).

2.39. Remark. By Proposition 2.35, for any Dyer exact subcategory E ⊂ T , it holds that
Ext2(A,B)⊂ Hom(A,B[2]) for any A,B ∈ E . In particular, dimT E ≤ 1 implies that dimE ≤ 1.

2.40. Definition. Let T be a triangulated category and E an admissible exact subcategory. We
say that T has all the Ext groups of E if the morphism fn,A,B defined in Proposition 2.35 is an
isomorphism for any A,B ∈ E and all n.

2.41. Corollary.F. A triangulated category T has all the Ext groups of an admissible exact
subcategory E if and only if for every morphism A→ B[n] there exists a factorization

A→Cn−1[1]→ ··· →C1[n−1]→ B[n]

with Ci ∈ E for i ∈ {1, . . . ,n−1}. In particular, if dimT E ≤ 1, then T has all the Ext groups
of E and dimE = dimT E .

PROOF. The only if part is obvious: if fn,A,B is an isomorphism, then the image of such map
contains all morphisms A→ B[n]: item 1 of Proposition 2.35 concludes.

Conversely, item 1 of Proposition 2.35 shows that fn,A,B is surjective for all n ∈ N. By
assumption, f1,A,B is an isomorphism: we obtain that f2,A,B is injective according to item 3 of
Proposition 2.35, so it is an isomorphism. An induction proves that this holds for every n.

2.42. Corollary.F. [65, Corollary A.1 and Proposition A.7]. If E is an exact category, then
D∗(E ) has all the Ext-groups of E .

PROOF. It follows from Proposition 2.31 and Proposition 2.35.
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2.43. Definition. Let T be a triangulated category. Given an admissible exact subcategory
E ⊂ T , we call realization functor (of E in T ) a triangulated functor real : Db(E )→ T such
that real|E = idE .

Before stating Proposition 2.45, we begin with a lemma that will make some reasonings
easier.

2.44. Lemma.F. Let T be a triangulated category, E ⊂ T an admissible exact subcategory
and real :Db(E )→T a realization functor. Then the following are equivalent:
• T has all the Ext groups of E .
• The realization functor is full on shifts of objects of E .
• The realization functor is fully faithful on shifts of objects of E .

PROOF. For A,B ∈ E and n≥ 0, we consider the morphisms

gn,A,B : Extn(A,B)→ HomDb(E )(A,B[n])
real→ HomT (A,B[n]).

Since to each element of HomDb(E )(A,B[1]) we can associate a distinguished triangle B→C→
A→ B[1] with C ∈ E , and this is sent by real to a distinguished triangle B→C→ A→ B[1] in
T , we have that g1,A,B is in fact the natural isomorphism defined in Definition/Proposition 2.32.
Moreover, gn,A,B sends the Yoneda product to the composition: from item 4 of Proposition 2.35,
we have that gn,A,B = fn,A,B.

By Corollary 2.42, Extn(A,B)→HomDb(E )(A,B[n]) is an isomorphism. Furthermore, gn,A,B

is surjective if and only if it is an isomorphism by item 1 of Proposition 2.35 and Corollary
2.41. We conclude by noticing that HomDb(E )(A,B[n])→HomT (A,B[n]) is surjective (resp. an
isomorphism) if and only if gn,A,B is surjective (resp. an isomorphism).

2.45. Proposition.F. Let T be a triangulated category, E ⊂ T an admissible exact subcate-
gory and real :Db(E )→T a realization functor. The following assertions are equivalent:

1. T has all the Ext groups of E .
2. The realization functor is fully faithful.
3. The realization functor is full.

If, in addition, T is the triangulated envelope of E , real is a triangulated equivalence (cf. [16,
Corollary 2.8]).

PROOF. 1⇒ 2. As explained in Remark 2.14, we can proceed by induction. Notice that the
base case is equivalent to item 1, as discussed by Lemma 2.44. Assume the thesis is known
for Ei,Fi ∈ Db(E ) with i = 1,2, and let E = Cone(E1[−1]→ E2) and F = Cone(F1[−1]→ F2).
Since real is a triangulated functor, we have that real(E) = Cone(real(E1)[−1]→ real(E2)) and
real(F) = Cone(real(F1)[−1]→ real(F2)). By the exact hom-sequences

. . . Hom(E,F2) Hom(E,F) Hom(E,F1) . . .

. . . Hom(E1,Fi) Hom(E,Fi) Hom(E2,Fi) . . .
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we conclude that Hom(E,F) ∼= Hom(real(E), real(F)) by induction hypothesis and the five
lemma.

2⇒ 3 is obvious, while 3⇒ 1 follows from Lemma 2.44.
Whenever real is fully faithful, real(Db(E )) is a full subcategory of T equivalent to the

triangulated envelope of E via inclusion. Therefore, if T is the triangulated envelope of E , real
is an equivalence.

§2.4. t-structures

In this section, we briefly discuss hearts, which are admissible abelian categories obtained by a
truncation of the triangulated category.

2.46. Definition. A t-structure on a triangulated category T is a full subcategory T ≤0 closed
by left shifts, i.e. T ≤0[1] ⊂ T ≤0, and such that for any object E ∈ T there is a distinguished
triangle A→ E→ B→ A[1], where A ∈T ≤0 and B ∈T ≥1 := (T ≤0)⊥.

We remember that for any full subcategory C ⊂ T , we write C⊥ to mean the full subcate-
gory whose objects are Y such that Hom(X ,Y ) = 0 for any X ∈ C .

We will write T ≤i :=T ≤0[−i] and T ≥ j :=T ≥1[− j+1] for any i, j integers. A t-structure
is said to be bounded if

T =
⋃

i, j∈Z
(T ≤i∩T ≥ j).

Moreover, the t-structure is non-degenerate if
⋂

i T
≤i =

⋂
j T
≥ j = 0.

The heart of a t-structure T ≤0 is the additive category A := T ≥0∩T ≤0, and it is always
admissible abelian (cf. [4, Théorème 1.3.6]).

2.47. Convention. We will use the short-hand heart only for hearts of bounded t-structures. In
fact, we are not interested in studying unbounded cases.

2.48. Definition/Proposition. [8, Lemma 3.2]. Let T be a triangulated category. A heart (of a
bounded t-structure) on T is a full additive subcategory A satisfying the following properties:

1. It is admissible, i.e. for any two objects A,B ∈A , Hom(A,B[n]) = 0 for every n < 0.
2. Given an object E ∈T , we can find integers k1 > · · ·> km and a filtration

0 = E0→ E1→ ··· → Em−1→ Em = E

such that Cone(Ei−1 → Ei) = Ai[ki] for some Ai ∈ A . The cohomology objects (with
respect to A ) are defined as H−ki(E) :=Ai. As one may expect, any distinguished triangle
gives rise to a long exact sequence of cohomology objects.

2.49. Lemma.F. For an additive subcategory A of T , the following are equivalent:
1. A is a heart on T ;
2. A is admissible abelian and T is its triangulated envelope.
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PROOF. The implication 1⇒ 2 follows from Definition/Proposition 2.48 because a heart is al-
ways admissible abelian. Let us deal with the converse. Since admissibility is already assumed,
we just need to show that the filtration exists for all objects of T . Notice all objects in T are
obtained by iterating cones by assumption (see Remark 2.14), therefore we just need to show
that whenever X ,Y admit a filtration, then Cone( f ) has a filtration as well, for all f : X → Y .

Set n and m to be the length of the filtration of X and Y respectively. We proceed by double
induction.

If n=m= 1, assume X ∈A and Y = Z[ j] for some Z ∈A . If j > 1, then Z[ j]→Cone( f )→
X [1] yields the wanted filtration. If j < 0, by assumption f = 0, so that the cone is just a direct
sum and we can consider X [1]→ X [1]⊕ Z[ j]→ Z[ j]. If j = 1, then Cone( f )[−1] ∈ A and
there is nothing to prove. We are left with the case of j = 0. By considering the octahedron
associated to X → im f → Y , we obtain a distinguished triangle ker f [1]→ Cone( f )→ coker f ,
which yields the wanted filtration.¶

If n = 1 and m > 1, assume as before that X ∈ A . Since Y has a filtration, we have a
distinguished triangle Y≤0 → Y → Y>0, where Y≤0 is the last object in the filtration whose
associated cohomology object Yh ∈ A appears with a non-negative shift kh. In other words,
H i(Y≤0) = 0 for all i > 0. By definition, X → Y>0 is zero, so that f : X → Y factors through
f≤0 : X → Y≤0. In particular, if the cone of f≤0 has a filtration, we can construct a filtration
of Y by induction using the following step: assume we have a filtration for Cone( f≤`), ` ≥ 0.
Then the octahedron associated to X → Y≤` → Y≤`+1 shows that the cone of Cone( f≤`)→
Cone( f≤`+1) is H`+1(Y )[−`−1]. We get the filtration

· · · → Cone( f≤0)→ Cone( f≤1)→ Cone( f≤2)→ . . .

Therefore, we can restrict to X → Y≤0. We consider the octahedron associated to X → Y≤0→
Yh[kh] and call fh : X → Yh[kh] and Y h = Cone(Y≤0[−1]→ Yh[kh−1]). Such octahedron shows
that Y h[1] = Cone(Cone( f≤0)→ Cone( fh)). Moreover, notice that the length of the filtration
of Y h is one less than the one of Y≤0. Our aim is now to study what happens to Cone( fh) and
apply the induction hypothesis.

If kh = 1, then Y h→Cone( f≤0)→Cone( fh) gives already the right filtration, while if kh > 1
then the filtration is obtained by Y≤0→ Cone( f≤0)→ X [1].

If kh = 0, we have a distinguished triangle ker fh[1]→ Cone( fh)→ coker fh→ ker fh[2]. Let
us consider the octahedron

Cone( f≤0) Cone( fh) Y h[1]

Cone( f≤0) coker fh Ỹ h[1]

Cone( fh) coker fh ker fh[2]

id

id

¶Please note that ker f , coker f and im f mean respectively the kernel, the cokernel and the image of f in A , and not
in the triangulated category, where in general kernels, cokernels and images do not exist.
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associated to Cone( f≤0)→ Cone( fh)→ coker fh, where Ỹ h = Cone(ker fh)[1]→ Y h[1]). By
induction hypothesis, we notice that Ỹ h has a filtration whose length is at most m. By substituting
Y with Ỹ h and X with coker fh, we notice that we have reduced the case of kh = 0 to the one of
kh > 0, which has already been discussed above.

For n > 1, set Xh to be the last object in the filtration of X before X itself, so that Cone(Xh→
X) is of the form Xh[kh] with Xh ∈A . Take the octahedron associated to f h : Xh→X→Y , which
writes the cone of f : X → Y as the cone of Xh[kh]→ Cone( f h), where the latter has a filtration
by induction hypothesis. The fact that such a cone has a filtration is exactly what we showed in
the step with n = 1 and m > 1.

2.50. Lemma. Every bounded t-structure T ≤0 is non-degenerate. In particular, the collection
of functors H i is conservative and H i(E) = 0 for all i > 0 (respectively i < 0) if and only if
E ∈T ≤0 (respectively T ≥0); this is [4, Proposition 1.3.7].

PROOF. Let E be in the intersection of all T ≤i. Since T ≤0 is bounded, E must be in T ≤ j ∩
T ≥h for some j,h. Then E is in T ≥h, but also in T ≤h−1. By definition,

T ≥h = T ≥1[−h+1] = (T ≤0)⊥[−h+1] = (T ≤0[−h+1])⊥ = (T ≤h−1)⊥.

So Hom(E,E) = 0, therefore E is a zero object. In the same way one proves that also
⋂

i T
≥i =

0.

§2.5. Hubery’s Theorem

This section is devoted to the proof of an incredibly strong result: a triangulated category T

with a hereditary heart is uniquely determined up to triangulated equivalence (see Theorem
2.56). This result has been proved by Hubery [30]; in the first draft of [49], we showed it
independently. Let us start by recalling the definition of hereditary category.

2.51. Definition. An abelian category A is hereditary if dimA ≤ 1. Similarly, an admissible
hereditary subcategory A ⊂ T is an admissible abelian subcategory satisfying dimT A ≤ 1.
A hereditary heart is a heart which is admissible hereditary.

2.52. Remark. We recall Remark 2.39 with this new notions: if A is admissible hereditary,
then it is hereditary, but the converse is not true in general (cf. Remark 4.25).

2.53. Proposition. Let T be a triangulated category with an admissible hereditary subcategory
A , and consider S := 〈A 〉 the triangulated envelope of A in T . Then any object of S can
be written as a (finite) direct sum

⊕
i Ei[i], with Ei ∈A .

PROOF. By Lemma 2.49, A is a heart on S , therefore for every E ∈S we have an associated
filtration. Let us proceed by induction on n := #{i ∈ Z : H i(E) 6= 0}. If n = 0, then E = 0 and
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we have nothing to prove (this follows from the last sentence of Lemma 2.50). If n > 0, there
exists a distinguished triangle

F E Hm(E)[−m] F [1],
f

where m := max{i ∈ Z : H i(E) 6= 0}, and Hm( f ) is an isomorphism. By induction hypothesis,
F =

⊕
i<m H i(F)[−i]. In order to conclude, we need to prove that E = F ⊕Hm(E)[−m]. But

this is true since

Hom(Hm(E)[−m−1] , F) = Hom

(
Hm(E)[−m−1] ,

⊕
i<m

H i(F)[−i]

)
=
⊕
i<m

Hom(Hm(E)[−m−1] , H i(F)[−i])

=
⊕
i<m

Extm−i+1(Hm(E) , H i(F)) = 0.

The last equality holds because m− i+1 > 1 for any i < m.

The condition of the last proposition is also necessary. In order to prove this, let us first
recall a well-known result.

2.54. Proposition. [4, Proposition I.1.11]. Let T be a triangulated category. Any commutative
square

A B

A′ B′

gives rise to a diagram

A B C A[1]

A′ B′ C′ A′[1]

A′′ B′′ C′′ A′′[1]

A[1] B[1] C[1] A[2]

where all the squares are commutative, except the lower right-hand one, which is anticommuta-
tive. Further, each of the rows and each of the columns are distinguished triangles; in particular,
Cone(C→C′) = Cone(A′′→ B′′).
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2.55. Proposition.F. Let A ⊂ T be an admissible exact subcategory of a triangulated cate-
gory. Assume that for any E ∈S := 〈A 〉, we have a decomposition E =

⊕
i Ei[i] with Ei ∈A .

Then A is an admissible hereditary subcategory.

PROOF. The decomposition immediately implies that the filtration of Definition/Proposition
2.48 exists, so A is a heart in S = 〈A 〉. Therefore, A is admissible abelian.

We are now reduced to prove that HomT (A,B[ j]) = 0 for any j ≥ 2 and any A,B ∈ A .
Let f : A→ B[ j] be any map and consider the cone C. Such cone will have H−1(C) = A,
H− j(C) = B and H i(C) = 0 for i 6= −1,− j. By assumption, we have that C =

⊕
i Ci[i], with

Ci ∈A , so we obtain that Hk(C) =Hk(
⊕

i Ci[i]) =Hk(C−k[−k]) =H0(C−k) =C−k. This entails
that C = A[1]⊕B[ j]. We consider the diagram

A B[ j] C A[1]

A B[ j] A[1]⊕B[ j] A[1]

f

α β id

0

where the dashed maps are obtained since B[ j] → A[1] is zero; indeed, Hom(B[ j],A[1]) ∼=
Hom(B,A[1− j]) = 0 for j ≥ 2 by admissibility of A . By Proposition 2.54, we also have
that Cone(α) ∼= Cone(β ). For the sake of simplicity, we write K to mean both Cone(α) and
Cone(β ), since our reasoning will be up to isomorphism. Being K = Cone(α), the long exact
cohomology sequence associated to α proves that H i(K) = 0 for any i 6= −1,0. Further, since
K = Cone(β ), we also have that H i(K) = 0 for any i 6=− j−1,− j. Since − j ≤−2, K must be
zero. In particular, α and β are isomorphisms, so f = β−10α = 0.

2.56. Theorem – Hubery.F. [30, Theorem 3.2]. Let T be a triangulated category with a
hereditary heart A . Then T is uniquely determined by A up to triangulated equivalence.
More precisely, there is a realization functor Db(A )→T which is an equivalence.

PROOF. For any couple of triangulated categories T ,T ′ satisfying the conditions of the state-
ment with the same A , we want to construct a triangulated equivalence. By Proposition 2.53,
we know that every object in both T and T ′ is a finite direct sum

⊕
i Ei[i], with Ei ∈ A . We

define a functor F : T →T ′ as follows:
1. Objects. F(

⊕
i Ei[i]) :=

⊕
i idA (Ei)[i].

2. Morphisms. Let E =
⊕

i Ei[i] and G =
⊕

j G j[ j] two objects of T , with Ei,G j ∈ A .
Given a map f : E→ G, we consider its matrix decomposition fi j. Then

F(( fi j)i, j) = ( f ′i j)i, j, f ′i j :=


0(= fi j) if i < j−1 or i > j

idA ( fi,i) if i = j

f ′i,i+1 if i = j−1

where f ′i,i+1 is obtained by the identifications HomT (Ei,Gi+1[1]) ∼= Ext1(Ei,Gi+1) ∼=
HomT ′(Ei,Gi+1[1]) according to Definition/Proposition 2.32.
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It is clear that F(id) = id. The fact that F preserves composition follows by the fact that the
isomorphism in Definition/Proposition 2.32 is natural. Therefore, F is a functor; by definition,
it is fully faithful, essentially surjective and it preserves shifts and direct sums. In order to
conclude, it remains to show that F also preserves distinguished triangles.

We recall that T is in fact given by two data: an additive category with a shift TΣ and a
class of distinguished triangles D , in brief T = (TΣ,D). With the same meaning, we write
T ′ = (T ′

Σ
,D ′). Since the functor F above gives an equivalence TΣ

∼= T ′
Σ

, we may assume
without loss of generality that TΣ = T ′

Σ
and F = id. We denote with ConeT (−) the cone of T

and with ConeT ′(−) the cone of T ′.
Our aim is to prove that D ⊆ D ′, which will directly imply D = D ′ since a class of distin-

guished triangles is closed under isomorphisms. Let A =
⊕a

i=0 Ai[ni] and B =
⊕b

j=0 B j[m j], with
Ai,B j ∈ A , and consider f : A→ B. We want to show that A→ B→ ConeT ( f )→ A[1] ∈ D

belongs to D ′ by induction on a and b.

Step 1. The case a = 0 and b = 0.
Up to shifting, we can assume A = A0 and B = B0[n]. If n 6= 0,1, then the cone is simply a

direct sum B0[n]⊕A[1], and the statement holds true. If n = 1, the cone ConeT ( f ) is an object
C such that C[−1] ∈ A is an extension of B0 and A. Then, since A is a heart for both T and
T ′, ConeT ( f ) = ConeT ′( f ) with the same distinguished triangle.

If n = 0, the cone of f : A→ B is in fact isomorphic to coker f ⊕ ker f [1],‖ because of the
octahedron obtained from A→ im f → B:

A im f ker f [1] A[1]

A B coker f ⊕ker f [1] A[1]

im f B coker f im f [1]

ker f [2]

id

h1

id

f

id

g h

g0

0

(first and last row are distinguished triangles since they are short exact sequences in a heart). In
particular, ConeT ( f ) = ConeT ′( f ). We are left to study the maps of the distinguished triangle
in T and in T ′. Let us consider the notation in the octahedron for the distinguished triangle in
T and

A B coker f ⊕ker f [1] A[1]
f α β

for the distinguished triangle in T ′. We would like to show that, up to some isomorphism
of coker f ⊕ ker f [1], α = g and β = h. We use the matrix notation: g = (g0

g1 ), where g0 :

‖Please note that ker f and coker f mean the kernel and the cokernel of f in A , and not in the triangulated category,
where in general kernels and cokernels do not exist.
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B→ coker f ⊕ker f [1]→ coker f and g1 : B→ coker f ⊕ker f [1]→ ker f [1]; h = (h0 h1), with
h0 : coker f → A[1] and h1 : ker f [1]→ A[1]. Up to isomorphism, the octahedron above can
be rewritten in T ′ simply by changing g and h since the other maps can be fixed by the case
n = 1 and by taking the same morphisms considered in T for the vertical distinguished triangle
associated to coker f ⊕ ker f [1]. Then α =

( g0
α1

)
and β = (β0 h1). We are reduced to prove

β0 = h0 and α1 = g1. In order to do that, we consider the extensions Ch0 and Cg1 associated to
h0 : coker f → A[1] and g1 : B→ ker f [1]. First of all, we need to prove that these extensions are
in fact isomorphic. Let us consider, in T , the commutative diagram

(2.57)

A Ch0 coker f A[1]

A B coker f ⊕ker f [1] A[1],

id

h0

(
id
0

)
id

f g h

where rows are distinguished triangles. Proposition 2.54 entails that ConeT (Ch0→B)∼= ker f [1],
as Cone(id) = 0. Up to isomorphisms of ker f [1], we may assume that ConeT (Ch0 → B)→
ker f [1] is in fact the identity; the map B→ ker f [1] so obtained has to be g1 by the commutative
diagram

B coker f ⊕ker f [1]

ker f [1] ker f [1].

g

(0 id)

id

Thus, Ch0
∼= Cg1 , and this holds also in T ′ since Ch0 ,Cg1 ∈ A . We now consider, in T ′, the

octahedron

(2.58)

A Ch0 coker f A[1]

A B coker f ⊕ker f [1] A[1]

Ch0 B ker f [1] Ch0 [1]

coker f [1]

id

h0

id

f

id

α β

g1

associated to the left hand square of (2.57). The first and the last row have the same maps as in
T by the case n = 1. We want to study the maps of coker f → coker f ⊕ker f [1]→ ker f [1]. By
using the cohomology with respect to A , we have a commutative diagram

A Ch0 coker f 0

A B coker f 0

id

f g0
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where the dashed map is uniquely determined by the cokernel property in A , and the identity
does make this diagram commute by (2.57); therefore, the map coker f → coker f ⊕ ker f [1]
in the octahedron (2.58) must be of the form

( id
µ

)
. Analogously, the map coker⊕ker f [1]→

ker f [1] must be of the form (ν id). The fact that the composition (ν id)
( id

µ

)
must be zero

shows that ν =−µ . Now we modify α and β up to the isomorphism
(

id 0
µ id

)
: the commutative

diagrams of (2.58) prove the last part of these equalities.(
id 0
−µ id

)
α =

(
id 0
−µ id

)(
g0

α1

)
=

(
g0

−µg0 +α1

)
=

(
g0

g1

)

β

(
id 0
µ id

)
=
(
β0 h1

)(id 0
µ id

)
=

(
β0 +h1µ

h1

)
=

(
h0

h1

)
.

This concludes the case a = 0 and b = 0.
Step 2. The case a = 0 and b > 0.

As before, we can assume without loss of generality that A = A0. Since direct sums of
distinguished triangles are distinguished (see, for instance, [59, Proposition 1.2.1]), we can
restrict to the case of a nontrivial map f =

(
f0
f1

)
: A→ B0⊕B1[1] =: B, since by assumption

fn : A→ Bn[n] is trivial for any n 6= 0,1. We consider the following octahedron in T and
labelling of morphisms

A B0⊕B1[1] ConeT ( f ) A[1]

A B1[1] C f1 [1] A[1]

B0⊕B1[1] B1[1] B0[1] B0[1]⊕B1[2]

ConeT ( f )[1].

f

id

g

(0 id) x

h

id

f1

f id

s[1]

y[1]

t[1]

f [1]

(0 id) 0

(
id
0

)
g0[1]

g[1]

We also name g = (g0 g1). First of all, notice the commutative diagrams show that h = t[1]x,(
id
0

)
y = f t, which implies y = f0t, and s[1] = xg1.

We claim that the octahedron holds with the same maps also in T ′, aside from g and h. By
induction hypothesis, we can choose B1[1]→C f1 [1] and C f1 → A[1] to be exactly s[1] and t[1]
also in T ′ up to an isomorphism of C f1 . Since y = f0t, this choice forces y to appear also in
the analogous of the octahedron above in T ′. Therefore, the associated distinguished triangle
C f1 → B0 → ConeT ′( f )→ C f1 [1], appearing (up to shift) in the analogous of the octahedron
above in T ′, is given by−y. In particular, from induction hypothesis, ConeT ( f ) = ConeT ′( f ),
and the same triangle with−g0 and x is still distinguished. It follows that, up to an isomorphism
of ConeT ′( f ), we can choose g0 and x as in the octahedron above. Finally, the claim holds.
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Now let g′ : B0⊕B1[1]→ConeT ′( f ) and h′ : ConeT ′( f )→A[1] appearing in the octahedron
in T ′ with all the other maps determined as stated in the claim. The commutative triangle proves
that g′

(
id
0

)
= g0, so that g′=(g0 g′1) for some g′1 : B1[1]→ConeT ′( f ). Moreover, h′= t[1]x= h.

It remains to prove that g′1 = g1. From the octahedron, xg′1 = s[1] = xg1. By the fact that g1

must have target kery[1], i.e. the direct summand of ConeT ′( f ) in A [1], the equality can be
considered to be x1g′1 = x1g1, where x1 : kery[1]→C f1 [1]. We know, by the long exact sequence
of cohomology with respect to A , that x1 is a monomorphism of A [1]. Therefore, x1g′1 = x1g1

implies that g′1 = g1.

Step 3. The case a > 0.

Let us consider the following octahedron in T and its notation:

A0[n0] A
⊕a

i=1 Ai[ni] A0[n0 +1]

A0[n0] B ConeT ( f0) A0[n0 +1]

A B ConeT ( f ) A[1]

⊕a
i=1 Ai[ni +1],

ι

id

π

f x

0

id

f0

ι id

g′0

y

h′0

ι [1]

f g h

z
π[1]

where

ι =


id
0
...
0

 and π =

0 id
...

. . .
0 id

 .

The entries left blank are to be intended as 0. Up to isomorphism, we can consider the first two
rows to have the same maps also in T ′ (first one being obvious, while for the second we use the
case of a = 0 and b > 0). The map

x = xπ


0 . . . 0
id

. . .
id

= g′0 f


0 . . . 0
id

. . .
id


is uniquely determined from g′0 and f , which are fixed. In particular, ConeT ( f ) = ConeT ′( f ).
By induction hypothesis, up to isomorphism we can also choose y and z as in the octahedron
above. We immediately get that g = yg′0, π[1]h = z and hy = ι [1]h′0. Let us consider the notation
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h = (h0 . . . ha)
T . Then

z = π[1]h =

0 id
...

. . .
0 id




h0

h1
...

ha

=

h1
...

ha

 .

It remains to prove that h0 is determined, as g and the other components of h are fixed. First,
the fact that hy = ι [1]h′0 shows that h0y = h′0 by applying (id 0 . . .0) on the left. As h0 and
h′0 have target A0[n0 + 1], we may consider only the part of y that composed with h0 is not
necessarily zero. For a better understanding, let us denote with Cone( f0)m the direct summand
of ConeT ′( f0) = ConeT ( f0) belonging to A [m] (recall Proposition 2.53). Similarly, we define
Cone( f )m. Then the part of y we are interested in is given by

y′ : Cone( f0)n0 ⊕Cone( f0)n0+1→ Cone( f )n0 ⊕Cone( f )n0+1, y′ =
(

φ 0
y′′ p

)
.

We now assume that n0 is the least integer for which there exists a nonzero direct summand of
A. This does not change what we have done so far, as it holds for any nonzero direct summand.
By this minimality, from the long exact cohomology sequence of the distinguished triangle
described by x,y,z

. . . Cone( f0)n0+1 Cone( f )n0+1 0 Cone( f0)n0 Cone( f )n0 0,
p φ

we conclude that p is an epimorphism and φ is an isomorphism. Now, let us consider some map
k : Cone( f )n0 ⊕Cone( f )n0+1→ A0[n0 +1] such that ky′ = h′0. We get

(
h′0,0 h′0,1

)
= h′0 = ky′ =

(
k0 k1

)(φ 0
y′′ p

)
=
(
k0φ + k1y′′ k1 p

)
This holds also replacing k with h0 = (h0,0 h0,1). Then k1 p = h′0,1 = h0,1 p, and by epimorphism
definition k1 = h0,1 (these maps are in A [n0 + 1]). Furthermore, k0φ = h′0,0− k1y′′ = h′0,0−
h0,1y′′ = h0,0φ . Being φ an isomorphism, k0 = h0,0, and so h0 is uniquely determined.

2.59. Corollary – Realization functors.F. Let A be a hereditary heart on a triangulated
category T . We consider a triangulated category T ′ and a fully faithful additive functor F :
A →T ′ whose image is an admissible hereditary subcategory. Then there exists a fully faithful
triangulated functor G : T →T ′ extending F.

PROOF. Let us consider the full subcategory S ′ := 〈F(A )〉 ⊂T ′. Since F(A ) is an admissi-
ble hereditary subcategory equivalent to A , by Theorem 2.56 we can extend F to a triangulated
equivalence with target S ′. Finally, we obtain G : T

∼=→S ′ ⊂T ′.
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2.60. Proposition.F. Let A be a hereditary category such that Ext1(A,B) is a set for any
A,B ∈ A . Then Db(A ) is a category, i.e. the classes of morphisms are sets. In particular, in
this case Db(A ) is the only triangulated category with hereditary heart A up to triangulated
equivalence.

PROOF. Since A is hereditary, each element in Db(A ) is a direct sum E =
⊕

i Ei[i] with Ei ∈
A . Then

Hom(E,F) = Hom

(⊕
i

Ei[i],
⊕

j

Fj[ j]

)
=
⊕
i, j

Hom(Ei[i],Fj[ j])

As Hom(Ei[i],Fj[ j]) is always a set, we conclude that Hom(E,F) is also a set.





CHAPTER 3.

DG-categories

In general, triangulated categories do not offer enough tools to provide a meaningful framework.
For this reason, it is common to equip such categories with additional structure. Concerning
our studies, we mainly focus on algebraic triangulated categories, which are associated to a
(pretriangulated) DG-category.

§3.1. Basics

To begin with, we introduce some basic notions and examples of the theory. We work under
Convention 2.1, requiring categories and functors to be k-linear with k a commutative ring, and
the following convention, which offers a safe framework for some crucial definitions in §3.2.

3.1. Convention. All categories are U-small for an appropriate Grothendieck universe U.

3.2. Definition. A graded category is a (k-linear) category C such that Hom(X ,Y ) is a graded
module for any objects X ,Y ∈ C and the composition

Hom(X ,Y )⊗Hom(Y,Z)→ Hom(X ,Z)

is a graded morphism of degree 0.
Recalling Definition 1.7, a morphism f is homogeneous of degree i if f ∈ Hom(X ,Y )i, and

we may indicate the degree with | f |. A (graded) isomorphism in C is a morphism f of degree 0
with an inverse (which is automatically of degree 0) g, i.e. g f = id and f g = id.

We emphasize that a morphism with inverse is just an isomorphism in the classical categor-
ical sense, but to avoid confusion between graded isomorphism and isomorphism we will avoid
the latter term.

51
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3.3. Remark. Given a graded category C, for any object X the endomorphism ring Hom(X ,X)

is in fact a graded ring. This comes from a direct calculation. Conversely, any graded ring A can
be seen as a graded category with one object � and Hom(�,�) := A.

3.4. Definition. A functor f : C→ D between graded categories is graded if

fX ,Y : Hom(X ,Y )→ Hom(fX , fY )

is a graded morphism of degree 0 for every X ,Y ∈ C.

3.5. Remark. Let A,B be graded rings. Then A,B can be also seen as graded categories. A map
f : A→ B is a graded ring homomorphism if and only if it gives rise to a graded functor.

3.6. Definition. A DG-category is a (k-linear) category C such that Hom(X ,Y ) is a DG-module
for any X ,Y ∈C and the composition Hom(X ,Y )⊗Hom(Y,Z)→Hom(X ,Z) is a DG-morphism.

The differential of C, sometimes denoted with dC, is the family of all differentials, i.e. dC :=
(dX ,Y )(X ,Y )∈C×C where dX ,Y is the differential of Hom(X ,Y ). The differential dC is said to be
trivial if dX ,Y = 0 for any (X ,Y )∈ C×C. By an abuse of notation, dC will be used also to denote
each dX ,Y . A closed morphism is a morphism f such that dC( f ) = 0. A (DG-)isomorphism in C

is a closed morphism of degree 0 with an inverse.

3.7. Remark. Any DG-category can be considered a graded category by discarding the differ-
ential. Moreover, a graded category is a DG-category with trivial differential.

DG-rings are exactly all the DG-categories with one object, using the same reasoning of
Remark 3.3.

3.8. Definition. Let C,D be two DG-categories. A functor f : C→ D is a DG-functor if

fX ,Y : Hom(X ,Y )→ Hom(fX , fY )

is a DG-morphism for every X ,Y ∈ C. In other words, it is a graded functor commuting with the
differentials.

We say that a DG-functor f is a DG-equivalence if it is fully faithful and every object of D
is DG-isomorphic to f(X) for some X ∈ C.

3.9. Remark. Analogously to Remark 3.5, given two DG-rings, DG-functors and DG-ring ho-
momorphisms are linked in a natural way.

3.10. Notation. For the sake of simplicity, DG-rings and DG-categories with one object are
identified, and the only object of a DG-ring A will be denoted by OA.

We recall the constructions of the tensor product and the functor category.

3.11. Definition. Given C,D two DG-categories, we define C⊗D the DG-category whose ob-
jects are couples X⊗Y := (X ,Y ) with X ∈ C and Y ∈D and whose morphisms are given by the
graded module

Hom(X⊗Y,X ′⊗Y ′) = Hom(X⊗X ′)⊗Hom(Y,Y ′)
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whose differential satisfies

d( f ⊗g) = d( f )⊗g+(−1)| f | f ⊗d(g)

for any homogeneous elements f ,g. The composition respects the Koszul sign rule:

( f ⊗g)( f ′⊗g′) = (−1)|g|| f
′| f f ′⊗gg′

for all homogeneous elements f ,g, f ′,g′.

3.12. Definition. Let C,D be two DG-categories. We define the functor DG-category, denoted
by H om(C,D), as follows:
• The objects are the DG-functors f : C→ D;
• A morphism η : f→ g of degree i is a family of morphisms (ηX : fX→ gX)X∈C of degree

i in D such that

(3.13) g(h)ηX = (−1)|η ||h|ηY f(h)

for any homogeneous h : X→Y . With this definition, we can create Hom(f,g) as a graded
module whose i-th component is the set of all morphisms of degree i. The differential

(dη)X := d(ηX )

gives to H om(C,D) the structure of a DG-category.
In fact, morphisms of H om(C,D) are also called DG-natural transformations. Similarly, DG-
isomorphisms, i.e. closed DG-natural transformations of degree 0 with an inverse, are also
called DG-natural isomorphisms.

3.14. Remark. One may show that a DG-functor f : C→ D is a DG-equivalence if and only if
there exists an inverse up to DG-natural isomorphisms, i.e. if and only if there exists g : D→
C such that gf ∼= idC and fg ∼= idD, in the sense of DG-natural isomorphisms. This result is
analogous to the classical one for the equivalence of categories.

An important class of DG-categories is given by complexes.

3.15. Definition. Let A be a (k-linear) category. The DG-category of complexes, denoted with
CDG(A ), is described as follows:
• Its objects are complexes M = (Mi,di)i∈Z, as in Definition 2.6.
• Given M,N complexes, the `-th homogeneous morphisms are

HomCDG(A )(M,N)` := ∏
i∈Z

HomA (Mi,N`+i).

The differential is defined by

d( f ) := dN f − (−1)| f | f dM

for any homogeneous element f .
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According to Definition 2.6, we can consider complexes that are bounded above, bounded below
or bounded, and write C∗DG(A ), with ∗=−,+ or b respectively, for the full DG-subcategory ob-
tained. The notation C∗DG(A ) will refer to all four categories of complexes defined (analogously
to the case of the homotopy category of complexes, ∗=∅ indicates CDG(A )).

An important example is the category of DG-modules CDG(Mod(k)), where Mod(k) is the
category of all (right) k-modules.

3.16. Definition. The homotopy category H0(C) of a DG-category C has the same objects of C
and the morphisms are defined by

HomH0(C)(X ,Y ) := H0(HomC(X ,Y ))

for any X ,Y ∈ C; compositions and identities of H0(C) are naturally induced by the ones of C.
Two objects X ,Y in C are homotopy equivalent if they are isomorphic in H0(C). The graded
homotopy category H∗(C) has the same objects of C and HomH∗(C)(X ,Y ) := H∗(HomC(X ,Y )).

Any DG-functor f : C→ D gives rise to a functor H0(f) : H0(C)→ H0(D) and a graded
functor H∗(f) : H∗(C)→ H∗(D) in a natural way.

3.17. Example. Notice that, for any additive category A , H0(C∗DG(A )) =K∗(A ). This moti-
vates the naming choice.

3.18. Definition. Let C be a DG-category. Its truncation is the couple (τ≤0C,p≤0) where τ≤0C

is the DG-category whose objects are the same of C and

Homτ≤0C(X ,Y )n :=


Hom(X ,Y )n if n < 0

kerd0
Hom(X ,Y ) if n = 0

0 if n > 0

for every X ,Y ∈ C, while p≤0 : τ≤0C→ C is the natural DG-functor which is the identity on
objects and the inclusion on morphisms.

3.19. Remark. Dually, one may expect to define the truncation (τ≥0C,p≥0 : C→ τ≥0C). How-
ever, p≥0 is not always well-defined: pick two composable homogeneous morphisms f and
g, respectively of degree −i and n+ i with n, i > 0, such that g f 6= 0. Then g f = p≥0(g f ) 6=
p≥0(g)p≥0( f ) = p≥0(g)0 = 0.∗

Despite such situation, notice that in the case of τ≤0C, the left truncation exists because the
DG-functor τ≤0C→ H0(C) is actually well-defined, as the obstruction above cannot happen.

3.20. Remark. Given a DG-functor f : C→ D, we have a natural DG-functor τ≤0f : τ≤0C→
τ≤0D satisfying fp≤0 = p≤0τ≤0f.

3.21. Definition. Let C be a DG-category. The opposite DG-category Co has the same objects
of C, while morphisms have opposite direction

HomCo(X ,Y ) := HomC(Y,X)

∗The author would like to thank Amnon Neeman for pointing out the impossibility of this dual truncation.
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and composition is reversed, with a change of sign:

f ◦Co g := (−1)| f ||g|g◦C f ,

where f ,g are homogeneous.

We recall that, by Convention 1.3, all modules are considered to be right. Accordingly, we
give the following key definition.

3.22. Definition. Let C be a DG-category. A (right) DG C-module is a DG-functor

M : Co→ CDG(Mod(k)).

The DG-category of (right) DG C-modules is DGMod(C) := H om(Co,CDG(Mod(k))).

3.23. Lemma – Yoneda DG-embedding. The Yoneda embedding

y : C→ DGMod(C) : X 7→ HomC(−,X)

is a fully faithful DG-functor.

3.24. Remark. Given a DG-functor f : C→ D, we have an induced DG-functor

Ind(f) : DGMod(C)→ DGMod(D)

such that Ind(f)y ∼= yf. We refer to [21, C.9] for its definition.

§3.2. Pretriangulated DG-categories

In this section, we discuss the notion of pretriangulated DG-categories, given by the DG-
versions of shifts and cones, and provide some expected results.

3.25. Definition. Let C be a DG-category. Given X ∈ C, its suspension is an object Y ∈ C

equipped with two closed morphisms σX : Y → X of degree 1 and τX : X→Y of degree−1 such
that τX σX = idY and σX τX = idX . In this case, we will write Σ(X) := Y , since Y is determined
up to unique DG-isomorphism. Conversely, we will also write Σ−1(Y ) := X .

A suspension functor Σ : C→ C is a DG-functor such that there exist two closed DG-natural
transformations σ : Σ→ id, of degree 1, and τ : id→ Σ, of degree −1, such that τσ = στ = id.

3.26. Remark. By definition, a DG-category with a suspension functor has suspensions for all
objects. The converse is also true in view of Lemma 3.23 and Corollary 3.31 below.

3.27. Definition. Let f : X → Y be a closed morphism of degree 0 in a DG-category C. A cone
of f is an object ConeDG( f ) together with 4 morphisms of degree 0

Y ConeDG( f ) Σ(X)
j

q

p

i
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satisfying
pi = id, q j = id, qi = 0, p j = 0, ip+ jq = id

and
d( j) = d(p) = 0, d(i) = j f σX , d(q) =− f σX p.

We emphasize that j and p are required to be closed, while q and i are generally not. Notice that
cones are uniquely determined up to DG-isomorphism (see [7, Lemma 4.8]).

3.28. Definition. A DG-category C is strongly pretriangulated if it is closed under cones and
suspensions, meaning that:
• Any object X ∈ C has a suspension Y ∈ C, and there exists Z ∈ C such that X is a suspen-

sion for Z;
• Any closed morphism of degree 0 have a cone.

The previous definitions are inspired by Definition/Proposition 2.8. In particular, we will see
a description of strongly pretriangulated DG-categories using DG-modules (see Lemma 3.36).

3.29. Definition. Let M be a DG-module. The associated suspended DG-module Σ(M) is de-
fined by

Σ(M)p := Mp+1 and dΣ(M) :=−dM.

For a homogeneous morphism f : M→N, we set Σ( f ) : Σ(M)→ Σ(N) by Σ( f )i := (−1)| f | f i+1.

3.30. Proposition. [77, Theorem 4.1.8]. The association

Σ : CDG(Mod(k))→ CDG(Mod(k))

is a suspension functor.

3.31. Corollary.F. For any DG-category C, DGMod(C) has a suspension functor.

PROOF. Given M a DG C-module, its suspension is given by the composition

ΣM : Co CDG(Mod(k)) CDG(Mod(k)).M Σ

This clearly extends to a DG-functor DGMod(C)→ DGMod(C). Accordingly, the associated
natural DG-transformations are induced by the ones of Σ on CDG(Mod(k)).

3.32. Proposition. For any DG-category C, DGMod(C) is strongly pretriangulated.

PROOF. Corollary 3.31 deals with suspensions, so it remains to prove the closure under cones.
Given a closed morphism f : M→N of degree 0, we define ConeDG( f ) to be the graded module
N⊕ΣM with differential

dConeDG( f ) :=
(

dN f σM

0 dΣM

)
.
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We obtain a diagram

N ConeDG( f ) ΣM

(
id
0

)

(id 0)

(0 id)

(
0
id

)
satisfying the definition of cone (cf. Definition/Proposition 2.8).

Thanks to Lemma 3.23 and Proposition 3.32, any DG-category admits an embedding into a
strongly pretriangulated DG-category.

3.33. Definition. For any DG-category C, its pretriangulated closure is the smallest full DG-
subcategory Cpretr of DGMod(C) that contains y(C) and is strongly pretriangulated. In partic-
ular, notice that the Yoneda embedding factors through Cpretr. By an abuse of notation, we call
y : C ↪→ Cpretr the natural embedding so obtained.

3.34. Remark. From Corollary 3.31, notice that Cpretr has a suspension functor associated, as
already argued in Remark 3.26.

3.35. Remark. Given a DG-functor f : C→ D, we have an induced fpretr : Cpretr→ Dpretr given
by restricting Ind(f) introduced in Remark 3.24.

3.36. Lemma. [15, Lemma 6.2.2]. A DG-category C is strongly pretriangulated if and only if
y : C→ Cpretr is a DG-equivalence.

3.37. Remark. We emphasize that any strongly pretriangulated DG-category C has a suspen-
sion functor, denoted by ΣC.

3.38. Example. A direct check shows that C∗DG(A ) is a strongly pretriangulated DG-category
for any additive category A (cf. Definition/Proposition 2.8 and Proposition 3.32).

Here we strengthen [7, Proposition 4.11].

3.39. Proposition.F. Let C,D be DG-categories, with D strongly pretriangulated. Then the
embedding y : C ↪→ Cpretr induces a DG-equivalence H om(Cpretr,D)→H om(C,D).

More explicitly,
(Essential surjectivity). Any DG-functor f : C→ D admits an extension f ′ : Cpretr→ D.
(Fully faithfulness). Let us consider another DG-functor g :C→D and an extension g′ :Cpretr→
D. Then any DG-natural transformation η : f→ g extends to a unique DG-natural transforma-
tion η ′ : f ′ → g′. In particular, if η is a DG-natural isomorphism, then η ′ is a DG-natural
isomorphism.

PROOF. An extension Cpretr→ D is given by y−1fpretr, since y is a DG-equivalence because of
Lemma 3.36.

For the sake of simplicity, assume D=Dpretr, C⊂ Cpretr and f ′|C = f. We aim to prove that η

can be extended to η ′. For suspensions, we consider f ′(ΣM) for M ∈ C. Then f ′(σM) and f ′(τM)
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shows that f ′(ΣM) ∼= Σ(fM) (via unique DG-isomorphism). As the same can be said about g′,
we define

η ′
ΣM : f ′(ΣM) Σ(fM) Σ(gM) g′(ΣM).

∼= Σ(ηM) ∼=

By construction, η ′
ΣM = ηΣM if ΣM ∈ C. Therefore, from now on we may assume that C is

closed under suspensions. Let ϕh : Mh → Nh be a closed morphism of C, with h = 1,2. We
consider ConeDG(ϕh) with the following notation

Nh ConeDG(ϕh) ΣMh
jh

qh

ph

ih

and define η ′ConeDG(ϕh)
:= g′( jh)ηNh f

′(qh)+ g′(ih)ηΣMh f
′(ph). In order to conclude the proof,

we aim to prove that for any homogeneous morphism ν : ConeDG(ϕ1) → ConeDG(ϕ2), the
requirement (3.13) of DG-natural transformation holds. This will be done in two steps.

First of all, we restrict the claim to µ : P → ConeDG(ϕ2) with P ∈ C. For the sake of
simplicity, in the following computations we avoid the subscript 2.

η
′
ConeDG(ϕ)

f ′(µ) = g′( j)ηN f
′(q)f ′(µ)+g′(i)ηΣMf ′(p)f ′(µ)

= g′( j)ηN f(qµ)+g′(i)ηΣMf(pµ)

= (−1)|η ||qµ|g′( j)g(qµ)ηP +(−1)|η ||pµ|g′(i)g(pµ)ηP

= (−1)|η ||µ|(g′( j)g(qµ)+g′(i)g(pµ))ηP

= (−1)|η ||µ|g′( jq+ ip)g′(µ)ηP = (−1)|η ||µ|g′(µ)ηP

We are now able to address the general situation of ν : ConeDG(ϕ1)→ ConeDG(ϕ2):

g′(ν)η ′ConeDG(ϕ1)
= g′(ν j1)ηN1 f

′(q1)+g′(ν i1)ηΣM1 f
′(p1)

= (−1)|ν j1||η |η ′ConeDG(ϕ2)
f ′(ν j1)f ′(q1)+(−1)|ν i1||η |η ′ConeDG(ϕ2)

f ′(ν i1)f ′(p1)

= (−1)|ν ||η |η ′ConeDG(ϕ2)
f ′(ν( j1q1 + i1 p1)) = (−1)|ν ||η |η ′ConeDG(ϕ2)

f ′(ν)

It is important to notice that the same passages also entail ηConeDG(ϕh) = η ′ConeDG(ϕh)
whenever

ConeDG(ϕh) ∈ C. The last sentence of the statement follows by definition of η ′.

3.40. Definition. A DG-functor f : C→ D is
• quasi-fully faithful if H∗(f) : H∗(C)→ H∗(D) is fully faithful;
• quasi-essentially surjective if H0(f) : H0(C)→ H0(D) is essentially surjective;
• a quasi-equivalence if it is quasi-fully faithful and quasi-essentially surjective.

From now on, ' is used to indicate that a DG-functor is a quasi-equivalence.

3.41. Remark. If a DG-functor f : C→ D is a quasi-equivalence, then also fpretr is a quasi-
equivalence (see [21, Proposition 2.5]). Similarly, if f is fully faithful, then fpretr is fully faithful
as well.

Moreover, by the suspension functor, one can show that a DG-functor f between strongly
pretriangulated DG-categories is a quasi-equivalence if and only if H0(f) is an equivalence.
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3.42. Definition. A quasi-functor f : C→ D is a (suitable equivalence class of) zig-zag of DG-
functors

C1 . . .

C C2 D.

' '

A quasi-equivalence quasi-functor is a quasi-functor given by a zig-zag of quasi-equivalences.
Two DG-categories are quasi-equivalent if there exists a quasi-equivalence quasi-functor. In
particular, a quasi-functor is a morphism of the homotopy category with respect to the model
structure on the category of DG-categories with weak equivalences the quasi-equivalences (cf.
[29, Definition 1.2.1] and [74]).† We will not investigate this aspect further.

3.43. Remark. According to Remark 3.35 and Remark 3.41, for every quasi-functor f : C→ D

we have an induced quasi-functor fpretr : Cpretr→ Dpretr.

3.44. Remark. The only quasi-functor f : A→ B such that H0(f) = 0 is the trivial one.
Indeed, if H0(f) = 0, then the image of f is quasi-equivalent to 0. We conclude that f = 0 by

the following commutative diagram:

A im(f) B.

0

f

'

3.45. Definition. A DG-category C is pretriangulated if H0(y) : H0(C) → H0(Cpretr) is an
equivalence.

3.46. Remark. The second part of Remark 3.41 can be generalized to quasi-functors between
pretriangulated DG-categories using H0(y). However, a pretriangulated DG-category does not
have a suspension functor in general.

We now introduce some standard examples of strongly pretriangulated DG-categories.

3.47. Definition. Let C be a DG-category. The DG-category of semi-free DG-modules SF(C) is
the full DG-subcategory of DGMod(C) whose objects have a filtration of free DG C-modules,
i.e.

0 = M0 ⊂M1 ⊂ ·· · ⊂Mi−1 ⊂Mi ⊂ ·· ·= M

such that Mi/Mi−1 is isomorphic to a direct sum of Σny(X) for some n ∈ Z and X ∈ C.
†In the literature, quasi-functors are generally a zig-zag of DG-functors as above, and our definition of quasi-functor

is often called an isomorphism class of quasi-functors. For the purposes of this thesis, our choice is preferable for the
sake of brevity.



60 CHAPTER 3. DG-CATEGORIES

3.48. Definition. Let C be a DG-category. The DG-category of perfect complexes Perf(C) is
the full DG-subcategory of SF(C) whose objects are homotopy equivalent to a direct summand
of Cpretr.

3.49. Remark. In the same fashion of Remark 3.35, any DG-functor f : C→ D admits exten-
sions Perf(f) : Perf(C)→ Perf(D) and SF(f) : SF(C)→ SF(D), given by restricting the DG-
functor Ind(f) : DGMod(C)→ DGMod(D), defined in [21, C.9].

3.50. Remark. The following chain of inclusions of strongly pretriangulated DG-categories
holds:

Cpretr ⊂ Perf(C)⊂ SF(C)⊂ DGMod(C).

3.51. Notation. Let C be a DG-category. We will use the following notation:

tr(C) := H0(Cpretr), D(C)c := H0(Perf(C)), D(C) := H0(SF(C)).

3.52. Remark. The notation D(C)c comes from the fact that H0(Perf(C)) is given by all the
compact objects of D(C) ([38]). We recall that an object X in a triangulated category with all
coproducts is compact if Hom(X ,−) commutes with coproducts.

Another important fact to keep in mind is that D(C)c is the idempotent closure of tr(C).

We notice that these homotopy categories are always triangulated.

3.53. Proposition. Let C be a DG-category. Then tr(C), D(C)c, D(C) and H0(DGMod(C)) are
triangulated categories (cf [77, Corollary 5.4.14]).

In particular, the shift functor Σ is the homotopy functor H0(ΣDG), where ΣDG is a suspen-
sion functor as in Definition 3.25, and the distinguished triangles are generated by

X Y ConeDG( f ) ΣDG(X)
f j p

with notation of Definition 3.27, meaning that a distinguished triangle is a triangle X ′→ Y ′→
Z′→ Σ(X ′) admitting an isomorphism of triangles

X Y ConeDG( f ) Σ(X)

X ′ Y ′ Z′ Σ(X ′)

H0( f )

x y z Σ(x)

(cf. [77, Theorem 5.4.3]).

3.54. Definition. Let C be a pretriangulated category. Then the triangulated structure consid-
ered on H0(C) is the one obtained from the equivalence H0(y) : H0(C)→ tr(C).

3.55. Proposition.F. Consider a DG-functor f : C→D between strongly pretriangulated DG-
categories. Then H0(f) is a triangulated functor.
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PROOF. Since f is additive, the same holds for H0(f).
Let us consider ΣC, ΣD the suspension functors according to Remark 3.37. Set σC : ΣC→ id

the DG-natural transformation of degree 1 and τD : id→ ΣD the DG-natural transformation of
degree −1 as in Definition 3.25. We construct a DG-natural isomorphism η by composition:

fΣC f ΣDf.
f(σC) τDf

We emphasize that η is closed because it is composition of closed DG-natural transformations.
It remains to show that (H0(f),H0(η)) sends distinguished triangles to distinguished triangles.
Take a closed morphism g : X → Y of degree 0 in C and consider its cone

Y ConeDG(g) Σ(X)
j

q

p

i

with the notation of Definition 3.27 (we use g instead of f to avoid misunderstandings between
the morphism in C and the functor). Notice that the image of this diagram via f gives a cone in
D (the requirements of Definition 3.27 are immediately verified because f commutes with the
differential and respects the composition). To conclude the proof, we show that

f(Y ) f(ConeDG(g)) ΣD(f(X))
f( j)

f(q)

ηf(p)

f(i)η−1

gives a cone for f(g). Indeed, every property of Definition 3.27 is satisfied easily from what we
observed above, except the last two equalities, which follow from these computations:

d(f(i)η−1) = f(d(i))η−1 = f( jgσC,X )η
−1 = f( jgσC,X )f(τC,X )σD,f(X)

= f( j)f(g)σD,f(X)

d(f(q)) =−f(gσC,X p) =−f(g)f(σC,X )f(p) =−f(g)σD,f(X)τD,f(X)f(σC,X )f(p)

=−f(g)σD,f(X)ηf(p),

where τC is the inverse of σC and σD is the inverse of τD.

3.56. Corollary.F. Let f : C→ D be a DG-functor between pretriangulated DG-categories.
Then H0(f) is a triangulated functor.

PROOF. We extend f to a DG-functor fpretr : Cpretr → Dpretr by Proposition 3.39. Then this
extension gives a triangulated functor by Proposition 3.55. Let yC : C→ Cpretr and yD : D→
Dpretr be the Yoneda embeddings. Then H0(f) ∼= H0(yD)

−1H0(fpretr)H0(yC) is triangulated by
Definition 3.54.

3.57. Definition/Proposition. [21, Theorem 1.6.2] Let C be a DG-category and B ⊂ C a full
DG-subcategory. A DG-quotient, often denoted by C/B, is a DG-category D together with a
quasi-functor q : C→ D satisfying the following equivalent properties:
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1. The functor H0(q) is essentially surjective and H0(qpretr) induces a triangulated equiva-
lence tr(C)/ tr(B)→ tr(D).

2. For every DG-category K, the category of quasi-functors D→ K is equivalent by com-
position to the category of quasi-functors C→ K such that B→ C→ K is zero (see [21,
Appendix E] for a discussion on these categories).

The DG-quotient is determined up to quasi-equivalence, i.e. given another DG-quotient D′ with
q′ : C→ D′, we can find a quasi-equivalence quasi-functor f : D→ D′ such that q′ ∼= fq.

3.58. Remark. With the same notation above, we can choose D so that q becomes a DG-functor.
Additionally, if C is pretriangulated, then so is D. The reader may refer to [51, Remark 1.4 and
Lemma 1.5].

3.59. Example – Main examples. Here we give two very important examples of triangulated
categories.
• Let A be any additive category. Let us consider CDG(A ), whose homotopy category is

the homotopy category of complexes K(A ). By Proposition 3.39 and Remark 3.41, the
inclusion A → CDG(A ) extends to a fully faithful DG-functor A pretr → CDG(A ) be-
cause CDG(A ) is strongly pretriangulated (as noted in Example 3.38). Therefore, tr(A )

is equivalent to a triangulated subcategory of K(A ). Moreover, it is the triangulated
envelope of A . This suffices to conclude that tr(A )∼=Kb(A ), since Kb(A ) is the trian-
gulated envelope of A in K(A ). In addition, Cb

DG(A ) is quasi-equivalent to A pretr.
For a general (k-linear) category A , the same argument proves that tr(A ) is equivalent
to the bounded homotopy category of complexes in its additive closure.

• Let E be an exact category. Let Ac∗DG E be the full DG-subcategory of C∗DG(E ) whose
objects are acyclic complexes. Consider the DG-quotient D∗DG(E ) := C∗DG(E )/Ac∗DG E .
Its homotopy category is equivalent to D∗(E ) since, by definition, we have

H0(D∗DG(E ))∼= H0(C∗DG(E ))/H0(Ac∗DG E ) =K∗(E )/Ac∗(E ) =D∗(E ).

§3.3. Algebraic triangulated categories

For a fixed triangulated category, a (DG-)enhancement is a pretriangulated DG-category asso-
ciated to it. If such an enhancement exists, the triangulated category is called algebraic and we
can wonder whether the enhancement is unique. In this section, we present some preliminary
results on uniqueness and (semi-)strong uniqueness of enhancements.

3.60. Definition. Let T be a triangulated category. A (DG-)enhancement of T is a couple
(C,E) where C is a pretriangulated DG-category and E : H0(C)→ T is a triangulated equiva-
lence. If a triangulated category admits a (DG-)enhancement, it is called algebraic.
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3.61. Definition. An algebraic triangulated category T has a unique (DG-)enhancement if,
given two enhancements (C,E) and (C′,E ′), there exists a quasi-equivalence quasi-functor
f : C→ C′. In other words, there exists a zig-zag of quasi-equivalences

D1 . . .

C D2 C′.

' ' ' '

3.62. Definition. An algebraic triangulated category T has a strongly unique enhancement
(respectively, semi-strongly unique) if, given two enhancements (C,E) and (C′,E ′), there ex-
ists a quasi-equivalence quasi-functor f : C→ C′ such that E ∼= E ′H0(f) (respectively, E(X) ∼=
E ′H0(f)(X) for all X ∈ C).

The following is a non conventional definition.

3.63. Definition. Let F : T →T ′ be a triangulated functor between algebraic triangulated cate-
gories. Given enhancements (C,E) and (C′,E ′) of T and T ′ respectively, a (C,E)−(C′,E ′)-lift
of F is a quasi-functor f : C→ C′ such that F ∼= E ′H0(f)E−1. If T = T ′ and (C′,E ′) = (C,E),
we will say that f is a (C,E)-lift of F . If for every enhancement (C,E) there exists a (C,E)-lift
for F , we say that F has a good DG-lift.

Similarly, a (C,E)− (C′,E ′)-semilift of F is a quasi-functor f : C→ C′ such that F(X) ∼=
E ′H0(f)E−1(X) for any X ∈ T . In the same fashion as above, we define (C,E)-semilift and
good DG-semilift.

3.64. Proposition.F. Let T be an algebraic triangulated category with a unique enhance-
ment. The following are equivalent.

1. T has a strongly unique enhancement.
2. Every triangulated autoequivalence F : T →T has a good DG-lift.
3. There exists an enhancement (C,E) such that any triangulated autoequivalence F : T →

T has a (C,E)-lift.
4. There exist two enhancements (C,E) and (C′,E ′) such that any triangulated autoequiva-

lence F : T →T has a (C,E)− (C′,E ′)-lift.

PROOF. 1 ⇒ 4. Given two arbitrary enhancements (C,E) and (C′,E ′), we can find a quasi-
functor f such that FE ∼= E ′H0(f) by considering the enhancements (C,FE) and (C′,E ′).

4 ⇒ 3. Let us consider a quasi-equivalence g : C′ → C. This gives an equivalence G =

EH0(g)(E ′)−1 : T → T . We now consider h a (C,E)− (C′,E ′)-lift for G−1F . The quasi-
functor gh : C→ C is then a (C,E)-lift for F :

EH0(gh)E−1 ∼= EH0(g)H0(h)E−1

∼= EH0(g)(E ′)−1E ′H0(h)E−1

∼= GG−1F ∼= F
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3⇒ 2. Let (C′,E ′) be another enhancement and let g : C′→ C be a quasi-equivalence. We
denote with L the autoequivalence T →T given by EH0(g)(E ′)−1. From assumption, LFL−1

has a (C,E)-lift h. The quasi-functor g−1hg : C′→ C′ is the wanted (C′,E ′)-lift of F :

E ′H0(g−1hg)(E ′)−1 ∼= E ′H0(g−1)H0(h)H0(g)(E ′)−1

∼= L−1EH0(h)E−1L
∼= L−1LFL−1L∼= F.

2 ⇒ 1. Let (C,E) and (C′,E ′) be two enhancements. By assumption, we have a quasi-
equivalence g : C→ C′. Now we consider the equivalence EH0(g)−1(E ′)−1 : T →T . Since it
has a good DG-lift, we can consider its (C,E)-lift f, satisfying EH0(f)E−1 ∼= EH0(g)−1(E ′)−1.
From this natural isomorphism, we obtain

H0(gf) = H0(g)H0(f)∼= (E ′)−1E.

In particular, E ′H0(gf)∼= E.

Analogously to the previous proposition, one can show the following.

3.65. Proposition.F. Let T be an algebraic triangulated category with a unique enhance-
ment. The following are equivalent.

1. T has a semi-strongly unique enhancement.
2. Every triangulated autoequivalence F : T →T has a good DG-semilift.
3. There exists an enhancement (C,E) such that any triangulated autoequivalence F : T →

T has a (C,E)-semilift.
4. There exist two enhancements (C,E) and (C′,E ′) such that any triangulated autoequiva-

lence F : T →T has a (C,E)− (C′,E ′)-semilift.

3.66. Notation. Let (C,E) be an enhancement of a triangulated category T , and let S ⊂ T

be a full subcategory (not necessarily triangulated). With the notation CE
|S we mean the full

DG-subcategory of C whose objects X are such that E(X) ∼= Y ∈S . In particular, EH0(C|S )

is equivalent to S . Usually, we will simply write C|S instead of CE
|S if there is no misunder-

standing.

3.67. Lemma. Let (C,E) be an enhancement of a triangulated category T and consider S ⊂
T a full subcategory. Then C|S is closed under homotopy equivalence in C.

PROOF. Let Y ∈ C homotopy equivalent to X ∈ C|S . In other words, X and Y are isomor-
phic in H0(C). Since an equivalence sends isomorphisms to isomorphisms, E(Y ) ∼= E(X). By
definition, there exists Z ∈ S such that E(X) ∼= Z. We obtain E(Y ) ∼= Z, which implies that
Y ∈ C|S .

We now investigate some relations between uniqueness of enhancements of the triangulated
categories associated to a DG-category. We start with a technical lemma.



§3.3. Algebraic triangulated categories 65

3.68. Lemma.F. Let T be a triangulated category and A be a DG-category. If

F : T → H0(DGMod(A))

is a full triangulated functor and H0(A)⊂ EssIm(F), then tr(A)⊂ EssIm(F).
Moreover, if T is idempotent complete and G : T → H0(DGMod(A)) is a fully faithful

triangulated functor such that H0(A)⊂ EssIm(G), then D(A)c ⊂ EssIm(G).

PROOF. Let X ∈ tr(A). We aim to show that X ∈ EssIm(F). If X ∈ H0(A), this is true by
hypothesis. Therefore, it suffices to show that EssIm(F) is closed under shifts and cones (cf.
Definition 3.33). A trivial reasoning shows that X ∈ EssIm(F) if it is the shift of an object
in EssIm(F). It remains to study the case X = Cone( f ) for a morphism f : Y1 → Y2 where
Yi ∈EssIm(F) for i= 1,2. Notice there exist an object Zi ∈T and an isomorphism ϕi : FZi→Yi.
Since F is full, we can find g : Z1 → Z2 such that Fg = ϕ

−1
2 f ϕ1. Then X ∼= Cone(Fg) ∼=

F(Cone(g)) ∈ EssIm(F).
When T is idempotent complete and G : T → H0(DGMod(A)) is a fully faithful trian-

gulated functor, we have that EssIm(G) is idempotent complete. Indeed, if f : GX → GX is
idempotent, by fully faithfulness there exists an idempotent e : X → X such that f = G(e).
Hence, e = sr and rs = id for some s : Y → X and r : X → Y , so that f = G(e) = G(s)G(r) and
G(r)G(s) = id. Since D(A)c is the idempotent completion of tr(A) and the latter is contained in
EssIm(G), we conclude.

3.69. Remark. It directly follows from Lemma 3.68 that every fully faithful triangulated func-
tor F : tr(A)→ tr(A) with H0(A)⊂ EssIm(F) is an equivalence. Analogously, any fully faithful
triangulated functor G : D(A)c→ D(A)c with H0(A)⊂ EssIm(G) is an equivalence. In particu-
lar, in this situation G|tr(A) : tr(A)→G(tr(A)) is an equivalence and G is its idempotent extension
up to natural isomorphism by [2, Theorem 1.5].

If H0(A) is a full and essentially wide‡ subcategory of EssIm(G|H0(A)), the inclusion tr(A)⊂
EssIm(G|tr(A)) obtained by Lemma 3.68 is in fact an equivalence. This follows by considering
the fully faithful triangulated functor

L : tr(A) EssIm(G|tr(A)) tr(A),incl (G|tr(A))
−1

which is an equivalence since H0(A) ⊂ EssIm(L) by assumption. Therefore, since the second
functor is already an equivalence, incl is an equivalence as well. In particular, we obtain an
induced functor G′ : tr(A)→ tr(A) whose idempotent extension is G, since G′ is defined as
L−1 = (incl)−1G|tr(A).

3.70. Proposition.F. Let A be a DG-category. If D(A)c has a strongly unique enhancement,
then tr(A) has a strongly unique enhancement.

‡i.e. it contains at least one object for each isomorphism class.
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PROOF. Take a triangulated equivalence F : tr(A)→ tr(A) and consider its idempotent extension
F ′ : D(A)c→ D(A)c, which is unique (up to natural isomorphism) by [2, Theorem 1.5]. Given
an enhancement (C,E) of D(A)c, we have a quasi-functor f ′ : C→ C which is a (C,E)-lift of
F ′. We restrict f ′ to C|tr(A) (see Notation 3.66). Since F ′|tr(A) is F , the restiction of f ′ gives a
quasi-functor f : C|tr(A)→ C|tr(A) by Lemma 3.67. We conclude that f is a (C|tr(A),E|tr(A))-lift of
F .

It remains to show that tr(A) has a unique enhancement, so that we can apply Proposi-
tion 3.64 to conclude. Let (D,E) and (D′,E ′) be two enhancements of tr(A). Then Perf(D)
and Perf(D′) are enhancements of D(A)c. Indeed, tr(D) ∼= H0(D) ∼= tr(A), which implies
D(D)c ∼= D(A)c by [2, Theorem 1.5]. By hypothesis, we have a quasi-equivalence quasi-
functor g : Perf(D)→ Perf(D′) lifting the identity of D(A)c. We now consider the restrictions
Perf(D)|tr(A) and Perf(D′)|tr(A). Since g is a lift of the identity, it induces a quasi-equivalence
quasi-functor g′ : Perf(D)|tr(A)→ Perf(D′)|tr(A). We conclude by the following diagram:

D Perf(D)|tr(A) Perf(D′)|tr(A) D′.' g′ '

3.71. Remark. The previous result holds also if we replace strongly unique enhancement with
semi-strongly unique enhancement. The only difference in the proof is that we need to consider
semilifts.

3.72. Proposition.F. Let A be a DG-category.
1. If tr(A) has a unique enhancement, then D(A)c has a unique enhancement.
2. If D(A)c has a unique enhancement, then D(A) has a unique enhancement.

PROOF.

1. Let C and C′ be two enhancements of D(A)c. Then C|tr(A) and C′|tr(A) are enhancements
of tr(A). In particular, there exists a quasi-equivalence quasi-functor f : C|tr(A)→ C′|tr(A).
Consider g as the composition

C Perf(C) Perf(C|trA) Perf(C′|tr(A)) Perf(C′) C′
y

Perf(incl)

Perf(f) Perf(incl)
y

Lemma 3.68 shows that y and Perf(incl) are quasi-equivalences for both C and C′. Since
Perf(f) is a quasi-equivalence as well, g becomes a quasi-equivalence.

2. The proof is very similar to item 1: consider C and C′ two enhancements of D(A). By
hypothesis, there exists a quasi-equivalence quasi-functor f : C|D(A)c → C′|D(A)c . Let h be
the composition

C SF(C|D(A)c) SF(C′|D(A)c) C′,
φ SF(f) φ ′
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where φ ,φ ′ are defined as in [51, §1]. By [51, Proposition 1.17], they both are quasi-
equivalences. Since f is a quasi-equivalence, the same holds for SF(f) (see [5, Theorem
10.12.5.1], or [38, Example 7.2]). Finally, h is a quasi-equivalence.





CHAPTER 4.

Exceptional sequences and existence
of enhancements

Let K be a field. An exceptional object E in a K-linear triangulated category is such that
Hom(E,E) = K and Hom(E,E[n]) = 0 for n 6= 0. Roughly speaking, an exceptional object
is a very simple object in the theory of triangulated categories. Indeed, its triangulated envelope
is triangulated equivalent to the bounded derived category of finite-dimensional vector spaces
or, more geometrically, coherent sheaves over a point. We focus on full strong exceptional se-
quences, which are examples of ordered sets of exceptional objects in a K-linear triangulated
category. Let us recall the following well-known theorem by Bondal, expressing the rigidity of
full strong exceptional sequences.

Theorem – Bondal. [6, Theorem 6.2]. Assume that the bounded derived category Db(X) of
coherent sheaves on a smooth manifold X has a full strong exceptional sequence 〈E1, . . . ,En〉.
ThenDb(X)∼=Db(mod(A)), where mod(A) is the category of finitely generated (right) modules
over the algebra of endomorphisms A = End(

⊕n
i=1 Ei).

This result has been generalized by Keller (see [42, Theorem 8.7]). In particular, for the situation
at hand, we have the following.

Theorem – Keller-Orlov. [63, Corollary 1.9]. Let T be an algebraic K-linear triangulated
category with K a field. Assume that T has a full strong exceptional sequence 〈E1, . . . ,En〉.
Then T is triangulated equivalent to the bounded derived category Db(mod(A)), where A =

End(
⊕n

i=1 Ei).

In this chapter, we present the content of [49], where we wonder whether we can drop the
algebraic requirement in the theorem above. With this purpose in mind, we give a construction
of a global t-structure starting with compatible t-structures on semiorthogonal components (see
Theorem 4.7). As a corollary, a full strong exceptional sequence of length 2 gives a hereditary

69
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heart. By Hubery’s Theorem 2.56, we obtain the following.

4.13. Corollary. Let K be a field. Any K-linear triangulated category T with a full strong
exceptional sequence 〈E1,E2〉 such that dimKHom(E1,E2) < ∞ is triangulated equivalent to
Db(mod(A)), where A = End(

⊕2
i=1 Ei).

In the case of a full strong exceptional sequence of length greater than 2, we deal with real-
ized triangulated categories, meaning that they admit a realization functor for every admissible
abelian subcategory. In particular, all algebraic triangulated categories are realized (see Exam-
ple 4.24 for examples of realized triangulated categories). An induction on the length of the
exceptional sequence proves the main result below.

4.28. Theorem. Let K be a field and let T be a realized K-linear triangulated category with a
full strong exceptional sequence 〈E1, . . . ,En〉 such that

⊕
i Hom(X ,Y [i]) is a finite-dimensional

vector space for any X ,Y ∈T . Then T ∼=Db(mod(A)), where A = End(
⊕n

i=1 Ei).

§4.1. Semiorthogonal decompositions and compatibility of t-
structures

After recalling the notion of semiorthogonal decomposition, we define compatibility between
t-structures with respect to such decomposition. In Theorem 4.7 we show how this situation
gives rise to a global t-structure. As an application of the result, we study exceptional sequences
and state Corollary 4.13, which generalizes Bondal’s theorem [6, Theorem 6.2] for exceptional
sequences of length 2. Throughout this chapter, we will use Convention 2.1 (Convention 3.1 is
not needed).

4.1. Definition. Let T be a triangulated category. A semiorthogonal decomposition is a se-
quence of triangulated subcategories T1,T2, . . . ,Tn such that

1. Hom(Ti,T j) = 0 when i > j;
2. For any E ∈T , there is a filtration

0 = En→ En−1→ ··· → E1→ E0 = E

such that Cone(Ei→ Ei−1) ∈Ti for any i ∈ {1, . . . ,n}.
In this situation, we will write T = 〈T1,T2, . . . ,Tn〉.

4.2. Remark. Item 1 entails that both the filtration and its cones are unique up to isomorphism
and functorial, i.e. we can define functors σi : T →Ti described by σi(E) = Cone(Ei→ Ei−1).
Moreover, if T = 〈T1,T2〉, then σ1 is the left adjoint to the inclusion T1 ↪→ T and σ2 is the
right adjoint to T2 ↪→T .

4.3. Definition. Let T be a triangulated category. Given two full subcategories X and Y of
T , we define X ∗Y to be the full subcategory of T whose objects are

{Z ∈T | there exists a distinguished triangle X → Z→ Y → X [1], with X ∈X ,Y ∈ Y }.
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This construction gives rise to an operation ∗ between full subcategories of T .

4.4. Proposition. [4, Lemma 1.3.10]. The operation ∗ is associative.

4.5. Example. Let T be a triangulated category. Given a semiorthogonal decomposition T =

〈T1, . . . ,Tn〉, we can write T = Tn ∗ · · · ∗T2 ∗T1. If we consider a t-structure T ≤0 on T , we
have T = T ≤0 ∗T ≥1.

4.6. Definition. Let T = 〈T1,T2〉 be a semiorthogonal decomposition, T any triangulated
category. Assume that Ti has a t-structure T ≤0

i for i= 1,2. Then T ≤0
1 and T ≤0

2 are compatible
in T if Hom(T ≤0

1 ,T ≥1
2 ) = 0.

Denoted by A1 and A2 the hearts of T ≤0
1 and T ≤0

2 respectively, the relative dimension of
A1 and A2 in T is the number

rdimT (A1,A2) :=

{
sup{m ∈ Z | Hom(A1,A2[m]) 6= 0} if the set is nonempty

−1 otherwise.

Notice that, whenever the set above is nonempty, rdimT (A1,A2) ≥ 0 by compatibility. The
reason why we have chosen the value −1 in case the set is empty will become clear reading the
statement of Theorem 4.7.

4.7. Theorem. Let T be a triangulated category with a semiorthogonal decomposition T =

〈T1,T2〉. Given two compatible t-structures T ≤0
1 and T ≤0

2 on T1 and T2 respectively, the full
subcategory of T defined by

T ≤0 := T ≤0
2 ∗ (T ≤0

1 [1])

is a t-structure on T . Furthermore,
1. If T ≤0

1 and T ≤0
2 are bounded (respectively non-degenerate), then T ≤0 is bounded (re-

spectively non-degenerate).
2. Let A1, A2 and A be the hearts of t-structures associated to T ≤0

1 , T ≤0
2 and T ≤0 re-

spectively. Then
A = A2 ∗ (A1[1]).

3. The following equality holds true whenever at least one of the two hearts of t-structures
A1,A2 is nonzero:

dimT A = max{dimT1 A1,dimT2 A2, rdimT (A1,A2)+1}.

PROOF. Since T ≤0
i [1]⊂ T ≤0

i for i = 1,2, it is clear that also T ≤0 is closed by left shifts. We
aim to show that T = T ≤0 ∗T ≥1, where T ≥1 := (T ≤0)⊥. Notice that

T = T2 ∗T1 = T ≤0
2 ∗T ≥1

2 ∗ (T ≤0
1 [1])∗ (T ≥1

1 [1]).

Since 〈T1,T2〉 is a semiorthogonal decomposition and compatibility holds, we have

T ≥1
2 ∗ (T ≤0

1 [1]) = {X⊕Y | X ∈T ≥1
2 ,Y ∈T ≤0

1 [1]}= (T ≤0
1 [1])∗T ≥1

2 .
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Therefore, T = T ≤0
2 ∗ (T ≤0

1 [1])∗T ≥1
2 ∗ (T ≥1

1 [1]). We claim that T ≥1
2 ∗ (T ≥1

1 [1]) = T ≥1.
Let A∈T ≥1

2 ∗(T ≥1
1 [1]). There exists a distinguished triangle A≥1

2 → A→ A≥1
1 [1]→ A≥1

2 [1]
with A≥1

2 ∈T ≥1
2 and A≥1

1 [1] ∈T ≥1
1 [1]. Now let B ∈T ≤0 and consider a distinguished triangle

B≤0
2 → B→ B≤0

1 [1]→ B≤0
2 [1], where B≤0

2 ∈ T ≤0
2 and B≤0

1 [1] ∈ T ≤0
1 [1]. These distinguished

triangles give rise to the following hom-exact sequences:

. . . Hom(B,A≥1
2 ) Hom(B,A) Hom(B,A≥1

1 [1]) . . .

. . . Hom(B≤0
1 [1],A≥1

1 [1]) Hom(B,A≥1
1 [1]) Hom(B≤0

2 ,A≥1
1 [1]) . . .

. . . Hom(B≤0
1 [1],A≥1

2 ) Hom(B,A≥1
2 ) Hom(B≤0

2 ,A≥1
2 ) . . .

Since 〈T1,T2〉 is a semiorthogonal decomposition, Hom(B≤0
2 ,A≥1

1 [1]) = 0, and the properties of
t-structures tell us that Hom(B≤0

1 [1],A≥1
1 [1]) = 0 = Hom(B≤0

2 ,A≥1
2 ). By compatibility, we also

have Hom(B≤0
1 [1],A≥1

2 ) = 0. Then the last two exact sequences prove that Hom(B,A≥1
1 [1]) =

Hom(B,A≥1
2 ) = 0. The first exact sequence concludes that Hom(B,A) = 0. Finally, A ∈T ≥1.

Conversely, if A ∈T ≥1, then there exists a distinguished triangle

A≤0→ A→ A≥1→ A≤0[1]

with A≤0 ∈T ≤0 and A≥1 ∈T ≥1
2 ∗ (T ≥1

1 [1]). Notice A≤0→ A must be zero because A ∈T ≥1.
Since A≥1 cannot have a direct summand in T ≤0, we get that A≤0 = 0. In particular, A = A≥1;
as wanted, T ≥1

2 ∗ (T ≥1
1 [1]) = T ≥1.

1. First, we deal with boundedness. Let A ∈ T . From the semiorthogonal decomposition,
we get a distinguished triangle A2→ A→ A1[1]→ A2[1] where Ai ∈Ti for i = 1,2. Since
T ≤0

i is bounded, Ai ∈ T ≤ki
i ∩T ≥hi

i for some integers ki,hi. Let k := max{k1,k2} and
h := min{h1,h2}.
By assumption, Ai ∈ T ≤0

i [−ki], so Ai[k] ∈ T ≤0
i [k− ki] ⊆ T ≤0

i because t-structures are
closed by left shifts. Therefore, A[k] ∈T ≤0; in other words A ∈T ≤0[−k] = T ≤k.
Similarly, Ai ∈ T ≥1

i [1− hi] implies Ai[h− 1] ∈ T ≥1
i [1− hi + h− 1] ⊆ T ≥1

i (here we
use the closure by right shifts). We conclude that A[h− 1] ∈ T ≥1, which means that
A ∈T ≥1[1−h] = T ≥h. As wanted, A ∈T ≤k ∩T ≥h.
To prove non-degeneracy when T ≤0

1 and T ≤0
2 are non-degenerate, let C ∈

⋂
j T
≤ j. By

Remark 4.2, we have C =Cone(E→F) for E ∈
⋂

j T
≤ j

1 and F ∈
⋂

j T
≤ j

2 . By hypothesis,
both intersections are zero, so C ∼= 0 as wanted. The proof of

⋂
j T
≥ j = 0 is analogous

since T ≥1 = T ≥1
2 ∗ (T ≥1

1 [1]).
2. For any A∈A we can find two distinguished triangles, according to the fact that A∈T ≤0

and A[−1] ∈ T ≥1 = T ≥1
2 ∗ (T ≥1

1 [1]). Then Remark 4.2 proves that A is exactly as
described in the statement.

3. Let A = Cone(A1→ A2) and B = Cone(B1→ B2) be two objects of A , with Ai,Bi ∈Ai,
i = 1,2. For any m, we consider the long exact sequence

· · · → Hom(A1[1],B[m])→ Hom(A,B[m])→ Hom(A2,B[m])→ . . .
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associated to the distinguished triangle A1→A2→A→A1[1]. By considering the first and
the last term, we can create two exact sequences associated to the distinguished triangle
B1→ B2→ B→ B1[1]:

· · · → Hom(A1[1],B2[m])→ Hom(A1[1],B[m])→ Hom(A1[1],B1[m+1])→ . . .

· · · → Hom(A2,B2[m])→ Hom(A2,B[m])→ Hom(A2,B1[m+1])→ . . .

Notice that Hom(A2,B1[m+1]) = 0 since A2 ∈T2 and B1 ∈T1. Defined

` := max{dimT1 A1,dimT2 A2, rdimT (A1,A2)+1},

the exact sequences above prove that Hom(A,B[m]) = 0 for any m > `, so dimT A ≤ `.
To conclude, it suffices to show that dimT A ≥ `.
We have two cases. If ` is realized by the homological dimension of A1 or A2, we notice
that A1[1],A2 ⊂A by item 2, so dimT A ≥ `.
Assume `= rdimT (A1,A2)+1. If 0 < ` <+∞, for some choices of A1[1] and B2 in A

we have Hom(A1[1],B2[`]) 6= 0. Similarly, if ` = +∞, there is a sequence (an) ⊂ Z such
that an → +∞ and Hom(An

1[1],B
n
2[an]) 6= 0 for any an and some An

1[1],B
n
2 ∈ A . In both

cases, dimT A cannot be less than `. If ` = 0, then ` is also equal to the homological
dimensions of A1 or A2, and this possibility has already been addressed.

4.8. Remark. The t-structure constructed in Theorem 4.7 may not behave as wanted. For in-
stance, using the notation of the statement, A1 is not contained in A : we need to consider its
shift A1[1].

One may think this shifting could be easily adjusted, but the assumption needed is incredibly
strong. The first idea it comes to mind is to consider the t-structure T ≤1

1 = T ≤0
1 [−1] instead

of T ≤0
1 . Indeed, if we ask T ≤1

1 and T ≤0
2 to be compatible, no shift will be involved, and in

particular A1,A2 ⊂ A . However, such requirement implies that Hom(A1,A2) = 0, which is
generally too restrictive.

4.9. Remark. Theorem 4.7 is incredibly linked to torsion pairs (for an introduction of the con-
cept, we refer to [27, §I.2]). Let T be a triangulated category with a semiorthogonal decom-
position 〈T1,T2〉 and a t-structure T ≤0 such that T ≤0

i = T ≤0 ∩Ti is a t-structure on Ti for
i = 1,2. If these t-structures are compatible in T , Theorem 4.7 gives rise to a t-structure T ≤0

# ,
which is different from T ≤0. Indeed, E ∈T ≤0

1 ∩T ≥0
1 is an object in (T ≤0

# ∩T ≥0
# )[−1].

As a matter of fact, T ≤0
# gives rise to a heart which is a tilted version of the heart A of

T ≤0. This is simply true by picking the couple F = A ∩T1 and T = A ∩T2, which is a
torsion pair by [53, Exercise 6.5].

4.10. Remark. Theorem 4.7 is very similar to [4, Theorem 1.4.10], which constructs global
t-structures via recollements instead of semiorthogonal decompositions. Let us explain this
relation in detail.

First of all, we recall that any recollement gives rise to a semiorthogonal decomposition. We
consider T = 〈T1,T2〉 a semiorthogonal decomposition and let T ≤0

i a t-structure on Ti for
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i = 1,2. Then from Theorem 4.7 we get the global t-structure T ≤0
2 ∗ (T ≤0

1 [1]), while, under
the assumption that the semiorthogonal decomposition comes from a recollement, [4, Theorem
1.4.10] gives the t-structure T ≤0

2 ∗T ≤0
1 . In other words, the new result gives a tilted version of

the old statement (see Remark 4.9).
Moreover, the two theorems deal with different situations. Indeed, although it is possible to

construct a left adjoint i∗ to the inclusion i∗ : T1 → T (i.e. T1 is left admissible) and a right
adjoint j∗ to the inclusion j! : T2 → T (i.e. T2 is right admissible) by [6, Lemma 3.1], in
general a left (respectively right) admissible subcategory does not need to be right (respectively
left) admissible. Conversely, a recollement does not ensure that the compatibility requirement
is satisfied, since T ≥1

2 is not necessarily equal to T ≥1∩T2.
Concerning our studies, Theorem 4.7 is to be preferred because it computes the homological

dimension of the obtained heart; this is crucial, especially for Corollary 4.13.

The definition of compatible t-structures can be generalized so that Theorem 4.7 holds for
semiorthogonal decompositions of any length, but the requirement may result unnatural since
we need to consider some shifts.

4.11. Definition. Let T = 〈T1, . . . ,Tm〉 and assume Ti has a t-structure T ≤0
i for i = 1, . . . ,m.

Then all the t-structures are compatible if Hom(T ≤0
i [k− i−1],T ≥1

k ) = 0 for any k > i.

With this notion of compatibility, we can apply Theorem 4.7 by recursion. Considering the
same notation of the definition above, if Ai is the heart of T ≤0

i , the obtained heart A of T is
described as

A = Am ∗Am−1[1]∗ · · · ∗A2[m−2]∗A1[m−1].

4.12. Example – Exceptional sequences. Let K be a field and consider a K-linear triangulated
category T . We recall that an exceptional object is an object E ∈T such that

Hom(E,E[n]) =

{
K if n = 0

0 otherwise.

A sequence of exceptional objects E1, . . . ,Em ∈ T , such that Hom(Ei,E j[n]) = 0 for any i > j
and all n, is called an exceptional sequence. It is full if T is the triangulated envelope of
{E1, . . . ,Em}.

Consider a K-linear triangulated category with a full exceptional sequence E1, . . . ,Em such
that

⊕
i Hom(A,B[i]) is a finite-dimensional vector space for any A,B ∈T ∗. By [31, §1.4], it is

known that such a full exceptional sequence gives rise to a semiorthogonal decomposition given
by Ti = {

⊕
` E⊕b`

i [`] : b` ∈ N}. Accordingly, we will use the notation 〈E1, . . . ,Em〉 to indicate
exceptional sequences. Notice that on each Ti we can consider a bounded t-structure with heart
Ai = {E⊕b

i : b ∈ N}.

∗In fact, it suffices to require this property for A,B ∈ {E1, . . . ,Em}.
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If the full exceptional sequence is also strong†, i.e. Hom(Ei,E j[n]) = 0 for any i, j and n 6= 0,
the above t-structures are compatible: indeed, taking k > i,

Hom

(⊕
`≥0

E⊕b`
i [`][k− i−1],

⊕
j<0

E
⊕c j
k [ j]

)
= 0.

Moreover, the t-structure induced on T is bounded.

4.13. Corollary. Let K be a field. Any K-linear triangulated category T with a full strong
exceptional sequence 〈E1,E2〉 such that dimKHom(E1,E2) < ∞ is algebraic. In particular,
T ∼= Db(mod(A)), where A = End(

⊕2
i=1 Ei) and mod(A) is the category of finitely generated

(right) A-modules.

PROOF. Theorem 4.7 and Example 4.12 prove that T has a hereditary heart A . By Theorem
2.56, T ∼=Db(A ) is algebraic. We conclude by [63, Corollary 1.9].

4.14. Example. LetK be a field. By [25, §1],Db(P1) :=Db(Coh(P1
K)) = 〈O,O(1)〉 is a strong

full exceptional sequence, where Coh(P1
K) is the category of coherent sheaves on P1

K, O is the
structure sheaf and O(1) is its twist. From Corollary 4.13, we conclude that Db(P1) is the
unique K-linear triangulated category with a full strong exceptional sequence 〈E1,E2〉 such that
dimKHom(E1,E2) = 2.

§4.2. Quivers

In order to study exceptional sequences of length greater than 2, we need some basic knowledge
on quivers. Here we give a brief introduction, mostly following [6, §5].

4.15. Definition. A quiver is a quadruple Q = (Q0,Q1,s, t), where Q0 is a set of vertices, Q1

a set of arrows between vertices and s, t : Q1 → Q0 are the maps indicating source and target
respectively. A quiver is finite if Q0 and Q1 are finite. It is ordered if the vertices are ordered
and for every arrow a, s(a)< t(a).

A path p of length n is a sequence of arrows a1, . . . ,an ∈ Q1 such that t(ai) = s(ai+1).
Moreover, with the same notation, t(p) := t(an) and s(p) := s(a1). We also allow paths of
length 0: such paths are in correspondence with the vertices. Let p,q be two paths. Then the
composition of paths q◦ p is defined to be the concatenated path whenever s(q) = t(p).

Let K be a field. The path algebra KQ is the K-vector space with basis the paths. The
product is described as follows:

λq ·µ p =

{
(λ µ) q◦ p if s(q) = t(p)

0 otherwise,

†This condition can be weakened.
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where λ ,µ ∈K and p,q are paths. In particular, paths of length 0 are idempotents in KQ.
If S⊂KQ is any subset, (Q,S) is called quiver with relations and its associated path algebra

is given by KQ/〈S〉, where 〈S〉 is the ideal generated by S.

Now, let us consider A = KQ/〈S〉 the path algebra associated to the quiver with relations
(Q,S). A left A-module is a vector space V over K with the left action of the algebra A. This
is also called representation of a quiver. When dealing with right A-modules, one can consider
the opposite quiver Qop where s, t are swapped with respect to Q. In other words, arrows go in
the other direction, analogously to what happens with the notion of the opposite category. As
one expects, left modules associated to (Qop,Sop) are right modules of A.

In case the quiver Q is finite and ordered, let X1, . . . ,Xn be the vertices and pi the idempotent
in A associated to Xi. Every right A-module V has a decomposition V =

⊕
i∈Q0

GiV , where
GiV := V pi. Let us denote with Si the representation for which G jSi = δi jK, where δi j is the
Kronecker delta, and all arrows are represented by the zero morphisms. Notice that for each
right A-module V we can create a filtration

(4.16) 0 = F0V ↪→ F1V = G1V ↪→ F2V =
2⊕

j=1

G jV ↪→ ··· ↪→ Fn−1V =
n−1⊕
j=1

G jV ↪→ FnV =V

such that each quotient F iV/F i−1V is a direct sum of copies of Si. The modules Pi = piA are
projective and the decomposition A =

⊕n
i=1 Pi holds. As a matter of fact,

A∼= HomA(A,A)∼= HomA

(
n⊕

i=1

Pi,
n⊕

i=1

Pi

)
∼=
⊕
i, j

Hom(Pi,Pj).

These isomorphisms allow to interpret the arrows of a quiver as morphisms between projective
modules. In particular, being A the path algebra of an ordered quiver, Hom(Pi,Pj) = 0 for i > j.
Furthermore, it is possible to consider the exact sequence

(4.17) 0→ F i−1Pi→ Pi→ Si→ 0

for every i = 1, . . . ,n. Notice that P1 = S1.
Let T be a K-linear algebraic triangulated category with a full strong exceptional sequence

〈E1, . . . ,En〉. Then A = End(
⊕n

i=1 Ei) is the path algebra of an ordered and finite quiver with
relations. In particular, the equivalence F : T →Db(mod(A)) obtained in [63, Corollary 1.9] is
such that F(Ei) = Pi, the projective modules of the path algebra A.

§4.3. Filtered enhancements

In this section, we explore the definition of filtered triangulated categories and give a fairly
simple result that we could not find in the literature, namely if a triangulated category admits
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a filtered enhancement, then every triangulated subcategory admits a filtered enhancement in
a natural way (see Proposition 4.21). Main reference is [3, Appendix A]. In Remark 4.22, we
discuss the relation of filtered enhancements with realization functors.

4.18. Definition. Let us consider a quintuple (F ,F (≤ 0),F (≥ 0),s,α), where F is a trian-
gulated category, F (≤ 0) and F (≥ 0) are strictly full triangulated subcategories, s : F →F

is a triangulated isomorphism and α : idF → s is a natural transformation. We set F (≤ n) =
snF (≤ 0) and F (≥ n) = snF (≥ 0). In this picture, F is called a filtered triangulated category
if it satisfies the following axioms:
fcat1 F (≤ 0)⊂F (≤ 1) and F (≥ 1)⊂F (≥ 0).
fcat2 F =

⋃
n F (≤ n) =

⋃
n F (≥ n).

fcat3 Hom(F (≥ 1),F (≤ 0)) = 0.
fcat4 For any X ∈F there exists a distinguished triangle A→X→B→A[1] where A∈F (≥ 1)

and B ∈F (≤ 0); in other words, F = F (≥ 1)∗F (≤ 0).
fcat5 For any X ∈F , it holds that αs(X) = s(αX ).
fcat6 For any X ∈F (≥ 1) and Y ∈F (≤ 0), α induces isomorphisms

Hom(Y,X)∼= Hom(Y,s−1X)∼= Hom(sY,X).

A triangulated category T admits a filtered enhancement if there exists a filtered triangulated
category F such that T ∼= F (≤ 0)∩F (≥ 0) in the sense of triangulated categories. For the
sake of simplicity, we assume that T = F (≤ 0)∩F (≥ 0).

4.19. Proposition. [3, Proposition A.3]. Let F be a filtered triangulated category. Then the
following assertions hold true:

1. The inclusion i≤n : F (≤ n)→ F has a left adjoint σ≤n, and the inclusion i≥n : F (≥
n)→F has a right adjoint σ≥n. In particular, these adjoints are exact (see, for instance,
[31, Proposition 1.41]).

2. There is a unique natural transformation δ : σ≤n→ σ≥n+1[1] such that, for any X ∈F ,

σ≥n+1(X)→ X → σ≤n(X)
δ (X)→ σ≥n+1(X)[1]

is a distinguished triangle. Up to unique isomorphism, this is the only distinguished
triangle A→ X → B→ A[1] with A ∈F (≥ n+1) and B ∈F (≤ n).

3. For any two integers m,n, we have the following natural isomorphisms:

σ≤mσ≤n ∼= σ≤min{m,n}, σ≥mσ≥n ∼= σ≥max{m,n}, σ≥mσ≤n ∼= σ≤nσ≥m.

PART OF THE PROOF. We want to prove the first two isomorphisms of item 3, since it is the
only part of the statement not considered in [3]. Being the reasoning analogous, let us focus
just on the first isomorphism. Let X ∈F . If m ≥ n, then F (≤ m) ⊃F (≤ n). We recall that
σ≤mi≤m ∼= id because the inclusion i≤m is fully faithful. Since σ≤n(X) ∈F (≤ m), we simply
have that σ≤mσ≤n(X) ∼= σ≤n(X) by the natural isomorphism mentioned before. We conclude
that σ≤mσ≤n ∼= σ≤n.
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Let m≤ n, so that F (≤m)⊂F (≤ n). Then, by adjunction, we have the following isomor-
phisms for any X ∈F and Y ∈F (≤ m):

HomF (≤m)(σ≤mσ≤n(X),Y )∼= HomF (σ≤n(X),Y )
∼= HomF (≤n)(σ≤n(X),Y )
∼= HomF (X ,Y ).

In particular, σ≤mσ≤n is left adjoint to i≤m. Since adjoints are determined up to a natural iso-
morphism, σ≤mσ≤n ∼= σ≤m as wanted.

4.20. Remark. By item 2 of Proposition 4.19, we also have the following isomorphisms:

sσ≤n ∼= σ≤n+1s, sσ≥n ∼= σ≥n+1s.

Let us set grn := σ≤nσ≥n. This is not the definition used in [3], but it will come in handy in
the proof of the following statement.

4.21. Proposition. Let T be a triangulated category admitting a filtered enhancement F . Then
any triangulated subcategory S of T has a filtered enhancement given by the full subcategory
G of F with objects

{X ∈F | s−n grn(X) ∈S ∀n}.

PROOF. First of all, we would like to show that G is a triangulated subcategory of F . Notice
that the shift functor of F obviously restricts to G since s−n grn is exact, being composition of
triangulated functors. Let us consider X → Y with X ,Y ∈ G . This gives a distinguished triangle
X → Y → Z→ X [1] in F . We get that

s−n grn(X)→ s−n grn(Y )→ s−n grn(Z)→ s−n grn(X [1])

is a distinguished triangle in T , with s−n grn(X) and s−n grn(Y ) objects of S . This suffices
to conclude that s−n grn(Z) ∈ S , so that Z ∈ G . Next, we set G (≤ 0) := G ∩F (≤ 0) and
G (≥ 0) := G ∩F (≥ 0). We would like to prove that the autoequivalence s : F →F can be
restricted to G . Let X ∈ G . Then, by Remark 4.20, we have

s−n grn(sX) = s−n
σ≤nσ≥ns(X)

∼= s−n
σ≤nsσ≥n−1(X)

∼= s−nsσ≤n−1σ≥n−1(X)

= s−n+1 grn−1(X) ∈S .

So we can restrict s and create an exact autoequivalence s : G → G , called s as well by an abuse
of notation. Of course, the restriction of α : idF → s gives us the required natural transformation
and fcat5 is ensured. We set G (≤ n) and G (≥ n) via s as described in Definition 4.18. Being s
an equivalence, we have the following

G (≥ n) = sn(G (≥ 0)) = sn(G ∩F (≥ 0)) = sn(G )∩ sn(F (≥ 0)) = G ∩F (≥ n),
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and analogously G (≤ n) = G ∩F (≤ n). This immediately shows that fcat1,2,3,6 hold. As
fcat5 has already been dealt with, it remains to show fcat4. In order to do that, we recall the
distinguished triangle in item 2 of Proposition 4.19. Therefore, the statement is reduced to
establish that the images of σ≤n and σ≥n are in G (≤ n) and G (≥ n) respectively, so that these
functors are adjoints to the inclusions as in F . Let X ∈ G and consider σ≤m. By item 3 of
Proposition 4.19 and Remark 4.20 the following isomorphisms hold:

s−n grn(σ≤mX) = s−n
σ≤nσ≥nσ≤m(X)

∼= s−n
σ≤nσ≤mσ≥n(X)

∼= s−n
σ≤mσ≤nσ≥n(X)

∼= σ≤m−ns−n
σ≤nσ≥n(X).

In particular, s−n grn(σ≤mX) ∼= σ≤m−n(A), where A ∈S . If m− n ≥ 0, we have the following
inclusions:

A ∈S ⊂T ⊂F (≤ 0)⊂F (≤ m−n),

so σ≤m−n(A)=A. If m−n< 0, being A∈F (≥ 0) it holds that Hom(A,σ≤m−n(A))= 0 by fcat3.
In particular, item 2 of Proposition 4.19 entails that σ≤m−n(A) = 0. As wanted, s−n grn(σ≤mX)∈
S , so that σ≤mX ∈ G . With a similar reasoning, one can prove that σ≥mX ∈ G .

The reason why filtered enhancements become of great interest is their relation with realiza-
tion functors (see Definition 2.43).

4.22. Remark. In [3, Appendix], it is proven that every triangulated category with a filtered
enhancement admits a realization functor for any heart. However, some authors point out that an
additional requirement, called fcat7, may be necessary to provide the result (see [66, Appendix
A] for further details). For the sake of completeness, let us state this new axiom using the same
notation of Definition 4.18.
fcat7 Given any morphism f : X → Y in F , the diagram

σ≥1(X) X σ≤0(X) σ≥1(X)[1]

s(σ≥1Y ) s(Y ) s(σ≤0Y ) s(σ≥1Y )[1]

ασ≥1(Y )
σ≥1( f ) αY f

δ (X)

ασ≤0(Y )
σ≤0 f ασ≥1(Y )

σ≥1( f )[1]

can be extended to a 3×3-diagram whose rows and columns are distinguished triangles.
Once ensured that F satisfies fcat7, it is easy to prove that also G as defined in Proposition

4.21 fulfills fcat7. This will be key in what follows.

§4.4. Realized triangulated categories

This section revolves around the unconventional notion of realized triangulated categories. After
the definition, we will give some large classes of examples studied in the literature and show that
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Bondal’s theorem [6, Theorem 6.2] can be generalized for this type of triangulated categories.

4.23. Definition. A triangulated category T is called realized if for every heart A of every
triangulated subcategory S ⊂T there exists a realization functor real :Db(A )→T . Alterna-
tively, T is realized if for every admissible abelian subcategory there exists a realization functor
in T (cf. Lemma 2.49).

4.24. Example.

1. Triangulated categories with a filtered enhancement are realized, as discussed in Proposi-
tion 4.21 and Remark 4.22.

2. Algebraic triangulated categories are realized by [43, Theorem 3.2], where the first item
is proved in detail in [37, Section 4]. In fact, every algebraic triangulated category has a
filtered enhancement (see [18, Proposition 3.8]), but fcat7 has not been investigated.

3. Every triangulated category which is the underlying category of a stable derivator admits
a filtered enhancement; this is the content of [54]. This applies, for instance, to topo-
logical triangulated categories obtained by stable combinatorial model categories by [26,
Example 4.2].

4. Triangulated categories satisfying the axioms explained in [58] are realized by [58, The-
orem 5.1]. An interesting example is the stable homotopy category (see [58, p. 249]),
which is not algebraic, as proved in [44, §7.6].

4.25. Remark. A derived category does not have all the Ext groups of its hearts (recall Defi-
nition 2.40). Let us consider Db(P1) with the notation introduced in Example 4.14. One can
show that A = {O⊕a0

P1 [2]⊕OP1(1)⊕a1 | a0,a1 ≥ 0} gives a heart by applying Theorem 4.7. As
highlighted in [53, Exercise 5.3], Db(A ) ∼= Db(pt)⊕2 is not equivalent to Db(P1), so Db(P1)

cannot have all the Ext groups of A by Proposition 2.45.
With a different approach, notice that A 3 OP1 [2] → OP1(1)[2] ∈ A [2] does not factor

through an object in A [1], and therefore Corollary 2.41 proves that Db(P1) does not have all
the Ext groups of A .

4.26. Remark. LetK be a field and consider a realizedK-linear triangulated category T with a
full strong exceptional sequence 〈E1, . . . ,En〉. Then we can consider the heart A on T obtained
according to Theorem 4.7 and Example 4.12, giving rise to a realization functor Db(A )→ T .
One would like to prove that such functor is in fact an equivalence using Proposition 2.45, so that
[63, Corollary 1.9] can be applied to ensure the generalization of Bondal’s result [6, Theorem
6.2]. However, when n> 2, it is not always true that T has all the Ext groups of A : for instance,
if n = 3,

A 3 E1[2]
f−→ E3[2] ∈A [2]

does not necessarily factor through A [1]. In general, we would have f /∈ Ext2A (E1[2],E3) by
item 1 of Proposition 2.35. For example, consider the quiver obtained by the following vertices
and arrows:
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1 2 3

f

In order to resolve this issue, we recall what was already discussed in Remark 4.9. If the
length of the exceptional sequence is 2, the heart obtained by Theorem 4.7 is a tilt of mod(A),
where A = End(

⊕2
i=1 Ei). As we will see, the same idea can be used to prove the general case.

Let us prove a technical lemma concerning triangulated categories having all the Ext-groups.

4.27. Lemma. Let T be a triangulated category with a semiorthogonal decomposition T =

〈T1,T2〉 and two compatible t-structures T ≤0
1 and T ≤0

2 on T1 and T2 respectively. We denote
with Ai the heart of T ≤0

i . By Theorem 4.7, we obtain the heart of t-structure

A = A2 ∗A1[1].

We consider the following hypotheses:
1. Ti has all the Ext groups of Ai;
2. The map fm,A,B : ExtmA (A,B)→ HomT (A,B[m]) defined in the statement of Proposition

2.35 is an isomorphism for every A ∈A1[1] and B ∈A2.
Then T has all the Ext groups of A .

PROOF. Before starting the actual proof, let us remark that ExtmA (A,B) = ExtmA2
(A,B) whenever

A,B ∈A2. Indeed, let

X : 0→ B→ X1→ X2→ ·· · → Xn→ A→ 0

be an extension in A with A,B ∈A2 and let σ2 : T → T2 be the right adjoint of the inclusion
functor ι : T2→T (see Remark 4.2). Then we get

ισ2X : 0 B ισ2X1 . . . ισ2Xn A 0

X : 0 B X1 . . . Xn A 0

id id

which shows that ισ2X∼= X in ExtmA (A,B) (recall the equivalence relation used to describe the
Yoneda extensions in Definition 2.29). Since σ2X ∈ ExtmA2

(A,B), we conclude that ι gives an
isomorphism between ExtmA2

(A,B) and ExtmA (A,B) whenever A,B ∈A2. In a similar way, con-
sidering the left adjoint of the inclusion T1→T , one can prove that ExtmA (A,B)=ExtmA1[1]

(A,B)
if A,B ∈A1[1].

Given A,B ∈ A , we consider two distinguished triangle A2 → A→ A1 → A2[1] and B2 →
B→ B1 → B2[1] with A2,B2 ∈ A2 and A1,B1 ∈ A1[1]. We obtain the following hom-exact
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sequences

. . . Hom(A1,B[m]) Hom(A,B[m]) Hom(A2,B[m]) . . .

. . . Hom(A1,B2[m]) Hom(A1,B[m]) Hom(A1,B1[m]) . . .

. . . Hom(A2,B2[m]) Hom(A2,B[m]) Hom(A2,B1[m]) = 0 . . .

By Proposition 2.35, these exact sequences have maps from the Ext groups. We proceed by
induction on m. From the induction hypothesis and item 3 of Proposition 2.35 we deduce that

ExtmA (A2,B1)⊆ Hom(A2,B1[m]) = 0.

Therefore, using the third row, hypothesis 1 and the five lemma entail that Hom(A2,B[m]) ∼=
ExtmA (A2,B). The second row proves that Hom(A1,B[m]) ∼= ExtmA (A1,B) by both hypotheses
and the five lemma. From the first row, we conclude that Hom(A,B[m])∼= ExtmA (A,B).

4.28. Theorem. Let K be a field and let T be a realized K-linear triangulated category with a
full strong exceptional sequence 〈E1, . . . ,En〉 such that

⊕
i Hom(X ,Y [i]) is a finite-dimensional

vector space for any X ,Y ∈T . Then T ∼=Db(mod(A)), where A = End(
⊕n

i=1 Ei) and mod(A)
is the category of finitely generated (right) A-modules.

PROOF. We will prove the statement by induction on n, the length of the exceptional sequence.
The base case n = 2 is already taken care of by Corollary 4.13.

If n > 2, we write T = 〈T̃ ,En〉 with T̃ := 〈E1, . . . ,En−1〉. By induction hypothesis, there
exists a triangulated equivalence ϕ :Db(mod(Ã))→ T̃ with Ã = End(

⊕n−1
i=1 Ei). We divide the

proof in two parts:
1. The t-structures associated to ϕ(mod(Ã)) and En are compatible. By Theorem 4.7, we

obtain a heart A on T .
2. T has all the Ext groups of A .

Once both items are ensured, Proposition 2.45 can be applied, proving that T ∼= Db(A ), and
an application of [63, Corollary 1.9] will complete the proof.

From (4.16), every object X ∈mod(Ã) has an associated filtration

0 = F0X ↪→ F1X ↪→ ·· · ↪→ Fn−2X ↪→ Fn−1X = X

where FkX/Fk−1X is a direct sum of copies of Sk. Moreover, for each Pk there is a short exact
sequence 0→ Fk−1Pk→ Pk→ Sk→ 0 by (4.17). In particular, S1 = P1.

Let us deal with 1. It suffices to show that Hom(ϕ(X),En[m]) = 0 for every m ≤ −1 and
X ∈mod(Ã). We proceed by induction on k, requiring FkX = X . If k = 1, F1X is in fact a direct
sum of copies of P1 = ϕ−1(E1), so the claim holds because the sequence is strong.

If k > 1, notice that the short exact sequence 0→ Fk−1Pk→ Pk→ Sk→ 0 is associated to a
distinguished triangle in T , so it gives rise to the hom-sequence

Hom(ϕ(Fk−1Pk)[1],En[m])→ Hom(ϕ(Sk),En[m])→ Hom(Ek,En[m]).
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By induction, Hom(ϕ(Fk−1Pk)[1],En[m]) = 0, while Hom(Ek,En[m]) = 0 by hypothesis. There-
fore, Hom(ϕ(Sk),En[m]) = 0. We now consider X = FkX and the distinguished triangle

Fk−1X → X → X/Fk−1X → Fk−1X [1]

obtained by the filtration. From the associated hom-sequence, Hom(ϕ(X),En[m]) = 0 since the
same holds for Fk−1X and X/Fk−1X , the last one being a direct sum of copies of Sk.

It remains to prove item 2. According to Lemma 4.27, we will prove by induction on m that
Hom(ϕ(X),En[m]) ∼= ExtmA (ϕ(X),En) with ϕ(X) ∈ ϕ(mod(Ã))[1] ⊂ A . The cases m = 0,1
are true since A is a heart. Let m > 1. By Proposition 2.35, it holds that Extm(Ek[1],En) ⊂
Hom(Ek[1],En[m]) = 0, and therefore Extm(Ek[1],En) = 0. Let us consider the distinguished
triangle Fk−1Pk → Pk → Sk → Fk−1Pk[1]. Applying Hom(ϕ(−),En[m]), we get the following
commutative diagram with exact rows
(4.29)

Extm−1(Ek[1],En) Extm−1(ϕ(Fk−1Pk)[1],En) Extm(ϕ(Sk)[1],En) 0

Hom(Ek[2],En[m]) Hom(ϕ(Fk−1Pk)[2],En[m]) Hom(ϕ(Sk)[1],En[m]) 0

∼= ∼=

proving that Extm(ϕ(Sk)[1],En)∼= Hom(ϕ(Sk)[1],En[m]) for every k by the five lemma.
Now, we proceed by induction on the length of the filtration. If X = F1X , there is nothing to

prove since F1X is a sum of copies of S1 = E1, and therefore Hom(ϕ(F1X)[1],En[m]) = 0 since
m > 1. If X = FkX , we consider the short exact sequence 0→ Fk−1X → X → X/Fk−1X → 0.
Then we get the following commutative diagram with exact columns:

Extm−1(ϕ(Fk−1X)[1],En) Hom(ϕ(Fk−1X)[2],En[m])

Extm(ϕ(X/Fk−1X)[1],En) Hom(ϕ(X/Fk−1X)[1],En[m])

Extm(ϕ(X)[1],En) Hom(ϕ(X)[1],En[m])

Extm(ϕ(Fk−1X)[1],En) Hom(ϕ(Fk−1X)[1],En[m])

Extm+1(ϕ(X/Fk−1X)[1],En) Hom(ϕ(X/Fk−1X),En[m]).

∼=

∼=

fk

∼=

gk

To show that fk is an isomorphism, it suffices to apply the five lemma whenever gk is a monomor-
phism. More strongly, we claim that gk is an isomorphism. The idea is exactly the one seen
above with the diagram (4.29). In order to prove that

Extm+1(Ek[1],En)⊂ Hom(Ek[1],En[m+1]) = 0,
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we will check that Extm(Ek[1],Y ) ∼= Hom(Ek[1],Y [m]) for any Y ∈A , and conclude by item 3
of Proposition 2.35. This is in fact true. Indeed, notice that

Extm(Ek[1],ϕ(X)[1]) = Hom(Ek[1],ϕ(X)[m+1]) = 0

for any X ∈ mod(Ã) because Ek is projective in ϕ(mod(Ã)). Furthermore, as remarked before
(4.29), Extm(Ek[1],En) = Hom(Ek[1],En[m]) = 0. We conclude that

Extm(Ek[1],Y ) = Hom(Ek[1],Y [m]) = 0

since any Y ∈ A is the extension of a direct sum of copies of En and an object ϕ(X)[1] ∈
ϕ(mod(Ã))[1].



CHAPTER 5.

On strongly unique enhancements

In this chapter, we discuss the content of [50]. This research was firstly motivated by the study
of mod(K), the category of finite-dimensional vector spaces over the field K. This category
is triangulated in a natural way, with shift the identity and distinguished triangles generated
by short exact sequences. In [71], it is proved that mod(K) does not have a unique Z-linear
enhancement for K = Fp with p prime (see [14, Corollary 3.10] for the DG-version of the
result). However, when K-linearity is assumed, the uniqueness of enhancements is ensured,
and it follows from the fact that for any intrinsically formal graded ring B, tr(B) has a unique
enhancement (this is the content of Proposition 5.1). For more details, we refer to Corollary
5.39 and Corollary 5.41.

Next, we wondered how intrinsic formality can be used to study the strong uniqueness of
the enhancements. To this end, we relaxed the intrinsic formality, defining triangulated formal
DG-categories. This new concept lies between the uniqueness of enhancements and the semi-
strong uniqueness of enhancements. More precisely, if A is a triangulated formal DG-category,
then tr(A) has a unique enhancement, and if A is pretriangulated, then tr(A) has a semi-strongly
unique enhancement. Inspired by the notions of D-standard and K-standard categories intro-
duced by Chen and Ye in [19], we also define formally standard DG-categories. Considering
graded categories, we have the following.

5.33. Theorem. Let B be a graded category. The following are equivalent:
1. B is triangulated formal and formally standard;
2. tr(B) has a strongly unique enhancement;
3. D(B)c has a strongly unique enhancement.

As a matter of fact, the implication 1⇒ 2,3 holds for more general DG-categories (see
Proposition 5.28 and Remark 5.29). First simple applications of the result are discussed in §5.4.
In Corollary 5.39, Example 5.40 and Corollary 5.41, we deal with particular cases of periodic tri-
angulated categories, i.e. triangulated categories such that [n]∼= id for some integer n (see [70]).

85
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In §5.5, we show that K-standardness and D-standardness are instances of formal standardness.
Briefly, we recall that an exact category E is D-standard if any triangulated autofunctor F on
Db(E ) satisfying F(E ) ⊂ E and F|E ∼= idE is naturally isomorphic to the identity (see Defini-
tion 5.44 and Lemma 5.46). For additive categories, one can analogously define K-standardness
considering Kb(A ).

5.47. Proposition. An additive category A is K-standard if and only if Kb(A ) has a strongly
unique enhancement.

This follows from the fact that Kb(A ) has a semi-strongly unique enhancement for every
choice of A (see Proposition 5.7). Interestingly, this result appeared in [51] in a slightly differ-
ent fashion, but the authors did not show that tr(A )∼=Kb(A ) (recall Example 3.59).

Concerning bounded derived categories, an analogous result holds.

5.51. Theorem. An exact category E is D-standard if and only if Db(E ) has a strongly unique
enhancement.

As above, this holds true because Db(E ) has a semi-strongly unique enhancement for any
exact category E (see Proposition 5.10). In particular, all bounded derived categories of hered-
itary abelian categories have a strongly unique enhancement (Corollary 5.53). For instance,
Db(Mod(Z)), the bounded derived category of abelian groups, has a strongly unique enhance-
ment. Moreover, all known geometric examples show D-standardness to conclude that the
bounded derived category has a strongly unique enhancement (see [61, 62, 14, 60, 48]). This is
done by exhibiting an almost ample set, which generalizes the ample sequences introduced by
Orlov in [61]. In §5.A, we give a self-contained proof of the following.

5.58. Theorem. Let A be an abelian category with an almost ample set. Then Db(A ) has a
strongly unique enhancement (cf. [13, Proposition 3.7]).

We also prove the strong uniqueness of enhancements for algebraic triangulated categories
with a full strong exceptional sequence (see Theorem 5.61). This result is already known for a
broader class of examples, and the reader may refer to [17, Theorem 1.1], but it has never been
stated in the context of exceptional sequences.

§5.1. Triangulated formality

Comparing Definition 1.19 and Definition 3.61, one may expect to find a connection between
intrinsic formality and uniqueness of enhancements. This idea inspires the original notion of
triangulated formal DG-categories, which mimics the behaviour of intrinsically formal graded
rings in the sense of Proposition 5.1 below. In this section, we will discuss how this concept
relates to the study of enhancements (see Figure 5.18 for an overview). We work under Con-
vention 3.1. Recall Notation 3.10.
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5.1. Proposition. Let B be an intrinsically formal graded ring. For any enhancement (C,E) of
tr(B), there exists a quasi-equivalence quasi-functor f : Bpretr→ C such that EH0(f)(OB)∼= OB.

PROOF. Without loss of generality, we assume that C is strongly pretriangulated. Consider
C ∈ C such that E(C)∼= OB. Since

Hn(HomC(C,C))∼= H0(HomC(C,C)[n])∼= H0(HomC(C,C[n]))
∼= HomH0(C)(C,C[n])∼= Homtr(B)(OB,OB[n])∼= Hn(B) = Bn,

HomC(C,C) has cohomology B (the product of B is recovered from the composition on tr(B)).
By hypothesis, we obtain a zig-zag of quasi-isomorphisms from B to HomC(C,C) extending to
a quasi-fully faithful quasi-functor f : Bpretr → C by Remark 3.41 and Proposition 3.39. Since
EH0(f)(OB)∼=OB, Remark 3.69 shows that H0(f) is an equivalence, so f is a quasi-equivalence.

The previous proposition motivates the following.

5.2. Definition. A DG-category A is triangulated formal if
TF For any enhancement (C,E) of tr(A), we have a quasi-equivalence quasi-functor f :Apretr→

C such that

(5.3) EH0(f)(X)∼= X for all X ∈ H0(A).

A DG-category A is unbounded triangulated formal if
uTF Given any enhancement (C,E) of D(A), there exists a quasi-equivalence quasi-functor

f : SF(A)→ C such that (5.3) holds.

5.4. Remark. Let A be a DG-category.
1. Triangulated formality is stable under quasi-equivalence. Indeed, if g : A→ B is a quasi-

equivalence quasi-functor and B is triangulated formal, for any enhancement (C,E) of
tr(A) we obtain an enhancement (C,H0(gpretr)E) of tr(B). By assumption, we obtain
f : Bpretr→ C satisfying (5.3). Then fgpretr : Apretr→ C satisfies (5.3) for A. The same is
true also in the unbounded case by picking SF(g) instead of gpretr.

2. If tr(A) ∼= tr(A′) via the inclusion A ⊂ A′, then A is (unbounded) triangulated formal
whenever A′ is (unbounded) triangulated formal.

3. If A is triangulated formal, then tr(A) has a unique enhancement. Analogously, if A is
unbounded triangulated formal, then D(A) has a unique enhancement.

4. If tr(A) has a semi-strongly unique enhancement, then A is triangulated formal by pick-
ing a (Apretr, id)− (C,E)-semilift of the identity id : tr(A)→ tr(A) for any enhancement
(C,E) (we use Proposition 3.65). Analogously, if D(A) has a semi-strongly unique en-
hancement, then A is unbounded triangulated formal.

5. As a matter of fact, tr(A) has a semi-strongly unique enhancement if and only if Apretr is
triangulated formal.
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5.5. Example. Intrinsically formal graded rings are examples of triangulated formal graded cat-
egories with one object by Proposition 5.1. In particular, rings are triangulated formal by Propo-
sition 1.20.

We now provide a wide range of meaningful examples of triangulated formal DG-categories.

5.6. Proposition. Let A be a (k-linear) category. Then it is triangulated formal (cf. [51,
Proposition 2.6]).

PROOF. The idea is to proceed analogously to the proof of a ring being intrinsically formal
(cf. Proposition 1.20). Let (C,E) be an enhancement of tr(A ). For the sake of simplic-
ity, assume C to be strongly pretriangulated and consider C|A (recall Notation 3.66). Take
τ≤0(C|A ) as described in Definition 3.18. We have two natural DG-functors given by trun-
cation: τ≤0(C|A )→ C|A and, by Remark 3.19, τ≤0(C|A )→ H0(C|A )∼=A (the equivalence
H0(C|A )∼=A is given by the restriction of E). It is easy to prove that these DG-functors are in
fact quasi-equivalences, because H i(C|A ) = 0 for i 6= 0. By Remark 3.41 and Proposition 3.39,
we can extend the zig-zag A ← τ≤0(C|A )→ C|A to obtain a quasi-equivalence quasi-functor
f : A pretr → C. The fact that EH0(f)(X) ∼= X for all X ∈ A follows from the definition of f;
indeed, H0(f) restricted to A is the inverse of E on objects.

5.7. Proposition. Let A be an additive category. Then Kb(A ) has a semi-strongly unique
enhancement.

PROOF. We recall thatKb(A )∼= tr(A ) by Example 3.59, soKb(A ) has a unique enhancement
from Proposition 5.6 and Remark 5.4. To simplify the notation, assume Kb(A ) = tr(A ). We
want to show item 3 of Proposition 3.65 for the enhancement (A pretr, id). Let F be an autoe-
quivalence of Kb(A ). Since A is triangulated formal by Proposition 5.6, considering the en-
hancement (A pretr,F) of Kb(A ), we get a quasi-equivalence quasi-functor f : A pretr→A pretr

such that FH0(f)(X) ∼= X for all X ∈ A . Let G := FH0(f). Then G|A gives an equivalence
A → A , so we can consider the DG-functor g := (G|A )pretr : A pretr → A pretr. Of course,
GH0(g−1) is the identity when restricted to A . By [19, Proposition 3.2], GH0(g−1)(X) ∼= X
for all X ∈ Kb(A ). By recalling the definition of G and moving the equivalences around, we
get F(X) ∼= H0(gf−1)(X) for all X ∈ Kb(A ). This is exactly item 3 of Proposition 3.65, as
wanted.

Proposition 5.8 below is inspired by [43, Theorem 3.2]. In that article, the authors used
the definition of algebraic triangulated categories via Frobenius categories (see [14, Proposi-
tion 3.1]). Using DG-categories, we are able to say something more, and provide a proof of
uniqueness of enhancements for bounded derived categories of exact categories. Furthermore,
the DG-category EDG associated is immediately triangulated formal.

5.8. Proposition. Let T be an algebraic triangulated category and let E be an admissible exact
subcategory. Then for any enhancement (C,E) of T , there exists a realization functor real :
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Db(E )→ T admitting a (Db
DG(E ), id)− (C,E)-lift,∗ where Db

DG(E ) was defined in Example
3.59.

PROOF. As our reasoning will not be affected by the quasi-equivalence inclusion y : C→ Cpretr,
for the sake of simplicity we assume C to be strongly pretriangulated, and consider the DG-
functor (C|E )pretr→ C obtained by Proposition 3.39.

From the natural truncation τ≤0C|E → C|E , and the quasi-equivalence τ≤0C|E →H0(C|E )∼=
E (this is a quasi-equivalence because E ⊂ T is admissible by assumption), Proposition 3.39
gives rise to a quasi-functor f : E pretr → (C|E )

pretr → C. At the homotopy level, this defines a
triangulated functor Kb(E )→T (recall Example 3.59).

We now want to prove that Acb(E )→Kb(E )→ T is the zero functor. Indeed, given any
conflation 0→ A→ B→C→ 0 in E , we obtain a commutative diagram

A B Cone( f ) A[1]

A B C A[1]

f

∼=
f

of distinguished triangles in T . Since Hom(A[1],C) = Hom(A,C[−1]) = 0, the morphism
Cone( f )→C is determined by B→ Cone( f )→C, which is exactly the map appearing in the
conflation. Looking at Cone( f )→C in Kb(E ), its cone is the conflation 0→ A→ B→C→ 0,
and its image is zero since Cone( f )→C is an isomorphism in T . This shows that conflations
are sent to zero via Kb(E )→T . By Lemma 2.20, we conclude that Acb(E )→Kb(E )→T is
the zero functor.

By Remark 3.44, at the DG-level we have that Acb
DG(E )→ Cb

DG(E ) ∼= E pretr → C is the
trivial quasi-functor. Therefore, we obtain an induced quasi-functor r :Db

DG(E )→ C satisfying
the statement.

5.9. Corollary. For any exact category E , Db(E ) has a unique enhancement. More precisely,
the full DG-subcategory EDG :=Db

DG(E )|E is triangulated formal.
In addition, given any enhancement (C,E) of Db(E ), the pretriangulated closure of the

truncation p≤0 : τ≤0C|E → C|E gives rise to a DG-quotient.

PROOF. Notice that tr(EDG) ∼= Db(E ) since tr(EDG) ⊂ H0(Db
DG(E )) ∼= Db(E ) and tr(EDG) is

the triangulated envelope of E . By applying Proposition 5.8 to T = Db(E ), we can construct
a quasi-equivalence quasi-functor between any enhancement of Db(E ) and Db

DG(E ) (the quasi-
functor is a quasi-equivalence by Corollary 2.42 and Proposition 2.45). Moreover, this quasi-
equivalence fixes E , so (5.3) is satisfied. The last part of the statement follows from the con-
struction of the realization functor in the proof of Proposition 5.8.

5.10. Proposition. Let E be an exact category. Then Db(E ) has a semi-strongly unique en-
hancement.
∗For the sake of simplicity, we assume Db(E ) = H0(Db

DG(E )).
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PROOF. Mimicking the proof of Proposition 5.7 with the natural enhancement obtained by
Db

DG(E ), the statement follows since the reasoning of [19, Proposition 3.2 and Proposition 3.7]
can be adapted to this setting. The only detail to be precise about is the fact that G|E gives an ex-
act equivalence E → E , which gives a DG-functor Cb

DG(E )→ Cb
DG(E ) inducing a quasi-functor

g :Db
DG(E )→Db

DG(E ) via the property of DG-quotients.

5.11. Remark. Recalling Remark 2.18, Proposition 5.10 in fact generalizes both Proposition
5.7 and [12, Remark 5.4], which shows that Db(A ) has a semi-strongly unique enhancement
for any abelian category A .

Let us state some results relating triangulated formality with the uniqueness of enhance-
ments. First of all, we motivate why we avoided the notion of triangulated formality for perfect
complexes.

5.12. Proposition. A DG-category A is triangulated formal if and only if the following holds
cTF For any enhancement (C,E) of D(A)c, we can choose a quasi-equivalence quasi-functor

f : Perf(A)→ C satisfying (5.3).

PROOF. TF⇒ cTF. Let (C,E) be an enhancement of D(A)c and consider the restriction C|tr(A)
(see Notation 3.66). By triangulated formality, we get a quasi-equivalence quasi-functor f ′ :
Apretr→ C|tr(A) satisfying (5.3). Denote by f the following composition:

Perf(A) Perf(Apretr) Perf(C|tr(A)) Perf(C) C
Perf(y) Perf(f ′) Perf(incl) y

Notice that EH0(f)(X)∼= X for all X ∈ H0(A), and all DG-functors considered in the composi-
tion are quasi-fully faithful. Lemma 3.68 shows that f is a quasi-equivalence.

cTF ⇒ TF. Given any enhancement (D,F) of tr(A), then Perf(D) is an enhancement of
D(A)c with the unique extension of F (we recall Remark 3.52). Moreover, D∼= Perf(D)|tr(A) via
inclusion. By cTF, we have a quasi-equivalence quasi-functor g : Perf(A)→ Perf(D) satisfying
(5.3). Restricting g to Apretr, by Remark 3.69 we get a quasi-equivalence Apretr→ Perf(D)|tr(A)
satisfying (5.3).

5.13. Remark. From Proposition 5.12, D(A)c has a unique enhancement for any triangulated
formal DG-category A.

5.14. Proposition. A triangulated formal DG-category A is also unbounded triangulated for-
mal.

PROOF. Let (C,E) be an enhancement of D(A) and consider C′ :=C|D(A)c . By Proposition 5.12,
we obtain a quasi-equivalence quasi-functor f : Perf(A)→ C′ satisfying (5.3). Let us define h as
the composition

SF(A) SF(Perf(A)) SF(C′) C,
φPerf(A) SF(f) φC′
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where φPerf(A) and φC′ are quasi-functors described in [51, §1]. Then h is a quasi-equivalence as
explained in the proof of item 2 of Proposition 3.72.

We are reduced to check that (5.3) is satisfied. In [51], φPerf(A) and φC′ are obtained by
a Yoneda embedding and a restriction functor, both of which do not affect the subcategory
associated (Perf(A) and C′ respectively). Therefore, since SF(f) is an extension of f, h fulfils
(5.3).

5.15. Remark. Notice that D(A) has a unique enhancement for any triangulated formal DG-
category A by Proposition 5.14.

We can prove the converse of Proposition 5.14 in a special case.

5.16. Proposition. An unbounded triangulated formal DG-category A is also triangulated for-
mal if the following holds:

EE For any enhancement (C,E) of tr(A), E extends to a triangulated equivalence E ′ : D(C)→
D(A) up to natural isomorphism, i.e. E ′|H0(C)

∼= E.

(EE stands for Extending Enhancements).

PROOF. Let (C,E) be an enhancement of tr(A). By assumption, we can consider the enhance-
ment (SF(C),E ′) of D(A) such that E ′|H0(C)

∼= E. Since A is unbounded triangulated formal,

there exists f : SF(A)→ SF(C) such that E ′H0(f)(X)∼= X for all X ∈ H0(A).
We now want to show that EssIm(f|Apretr) is contained in C̄, the homotopy closure of C in

SF(C). Let Y ∈ EssIm(f|A). Then there exists X ∈ H0(A) such that Y ∼= H0(f)(X). By applying
E ′, we have E ′Y ∼= E ′H0(f)(X) ∼= X . Since E ′|H0(C)

∼= E, we can choose Y ′ ∈ H0(C) such that

E ′Y ′ ∼= X ∼= E ′Y . In particular, Y is homotopy equivalent to Y ′. From this, we have f|A : A→ C̄.
Being H0(C̄) triangulated, EssIm(f|Apretr)⊆ C̄, as wanted.

Consider the quasi-functor g : Apretr → C̄←↩ C, where the first map is the quasi-functor
f|Apretr and the second is a Yoneda embedding. Since EH0(g)(X) ∼= EH0(f|Apretr)(X) ∼= X for
any X ∈ H0(A), by Remark 3.69 we conclude that g is a quasi-equivalence, so A is triangulated
formal.

5.17. Remark. Assume A is a DG-category for which EE holds and D(A) has a semi-strongly
unique enhancement. Then Perf(A) is unbounded triangulated formal because SF(Perf(A)) ∼=
SF(A) by [51, Proposition 1.17]. Since A satisfies EE, from [2, Theorem 1.5] one can prove
that Perf(A) also satisfies EE. By Proposition 5.16, Perf(A) is triangulated formal, meaning that
D(A)c has a semi-strongly unique enhancement by Remark 5.4.

5.18. Figure. Relation between triangulated formality and uniqueness of enhancements for a
DG-category A.
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D(A)c has a semi-strongly
unique enhancement

tr(A) has a semi-strongly
unique enhancement

D(A) has a semi-strongly
unique enhancement

A is triangulated formal A is unbounded triangulated formal

tr(A) has a unique enhancement D(A) has a unique enhancement

D(A)c has a unique enhancement

Remark 3.71

Remark 5.4 Remark 5.4

Remark 5.17 +EE

Proposition 5.14

Remark 5.4 Remark 5.4Proposition 5.16 +EE

Proposition 3.72
Proposition 3.72

§5.2. Formal standardness

We recall that strong uniqueness of enhancements can be rephrased by saying that all triangu-
lated autoequivalences admit a lift once uniqueness is ensured (see Proposition 3.64). Roughly
speaking, in order to obtain such property in the case of a triangulated formal DG-category A

(in vision of Proposition 5.28), we need to force all equivalences fixing the objects of A to have
a lift. This idea motivates the original definition of formal standardness. The name gets inspi-
ration from the concepts of D-standardness and K-standardness, studied in §5.5, and from its
relation to triangulated formal DG-categories.

5.19. Lemma. Let T be a triangulated category and consider S ⊂T a full subcategory. Then
any triangulated equivalence F : T →T such that FX ∼= X for X ∈S is naturally isomorphic
to a triangulated equivalence G such that GX = X for X ∈S .

PROOF. Let us consider the family of isomorphisms η := (ηX ), where ηX : X → FX is an
isomorphism if X ∈S , while ηX = idFX if X /∈S .† We then define G as follows:

G(X) :=

{
X if X ∈S

F(X) otherwise
and GX ,Y := η

−1
Y FX ,Y ηX .

Notice that η becomes a natural isomorphism G→ F .

5.20. Definition. Let A be a DG-category and consider a triangulated autoequivalence (F,η) of
tr(A) such that

(5.21) FX = X for any X ∈ H0(A).

†This definition explicitly requires the axiom of choice, since we choose an isomorphism for every object in S .
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Its graded restriction is a graded functor Fgr
|H∗(A) : H∗(A)→ H∗(A) defined by Fgr

|H∗(A)(X) = X
and

HomH∗(A)(X ,Y ) HomH∗(A)(X ,Y )

⊕
i

Homtr(A)(X ,Y [i])
⊕

i

Homtr(A)(FX ,F(Y [i]))
⊕

i

Homtr(A)(X ,Y [i])

∼=

(Fgr
|H∗(A))X ,Y

∼=⊕
i FX ,Y [i]

⊕
i η i

Y

for any X ,Y ∈ A, where the vertical arrows are obtained via the following isomorphisms‡

HomH∗(A)(X ,Y )∼=
⊕

i

H i(HomA(X ,Y ))∼=
⊕

i

H0(HomA(X ,Y [i]))∼=
⊕

i

HomH0(A)(X ,Y [i]).

5.22. Definition. A DG-category A is
• formally standard if, given two triangulated equivalences F,G : tr(A)→ tr(A) satisfying

(5.21) and Fgr
|H∗(A)

∼= Ggr
|H∗(A), there is a natural isomorphism F ∼= G.

• lifted if for every triangulated equivalence F : tr(A)→ tr(A) for which (5.21) holds, we
have a quasi-functor f : A→ A such that H∗(f)∼= Fgr

|H∗(A).

The notion of liftedness is introduced to treat at the same time the two following examples,
which are crucial for applications.

5.23. Example.

• Every graded category B is lifted: indeed, given a triangulated equivalence F : tr(B)→
tr(B), the DG-functor f required is simply given by the graded restriction Fgr

|B .

• Let E be an exact category and consider EDG := Db
DG(E )|E as in Corollary 5.9. We

claim that EDG is lifted: indeed, for any triangulated equivalence F : tr(EDG)→ tr(EDG)

satisfying (5.21), we obtain an exact equivalence E → E . This induces an equivalence
Cb

DG(E )→ Cb
DG(E ); via quotient we get a quasi-functor Db

DG(E )→Db
DG(E ), and finally

a quasi-functor f : EDG → EDG. Moreover, the exact equivalence E → E uniquely de-
termines what happens on H∗(EDG); this is Proposition 5.24 below. We conclude that
H∗(f)∼= Fgr

|H∗(EDG)
.

5.24. Proposition. Let E be an exact category, and consider (F,η) : Db(E )→ Db(E ) a tri-
angulated equivalence such that F(X) = X for all X ∈ E . Then F|E determines uniquely
Fgr
|H∗(EDG)

, meaning that any other triangulated equivalence (G,µ) satisfying G|E = F|E is such
that Ggr

|H∗(EDG)
= Fgr

|H∗(EDG)
.

PROOF. By Corollary 2.42, H∗(EDG) is simply the category of the Ext-groups, i.e.

HomH∗(EDG)(X ,Y ) =
⊕

i

Exti(X ,Y )[−i]

‡The first and the last isomorphisms are given by definition, while the second one is obtained by iterated composition
of the closed morphisms associated to the suspension functor.
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for every X ,Y ∈ E . Since every morphism in Hom(X ,Y [1]) is associated to a conflation as ex-
plained in Definition/Proposition 2.32, given another triangulated autoequivalence (G,µ) such
that G|E = F|E (so G(X) = X for all X ∈ E as well), we have the following isomorphism of
distinguished triangles

Y Z X Y [1]

Y Z X Y [1],

F f

id

Fg

id

ηY Fh

id

G f Gg µY Gh

where the first two vertical arrows are the identity because G|E = F|E . From the universal
property of the cokernel X in E , the dashed morphism is also the identity, so that ηY Fh = µY Gh.
As every extension is obtained by Yoneda products of elements in the first Ext-group (cf. the
beginning of the proof of Proposition 2.35), a simple induction concludes the proof.

5.25. Lemma. A DG-category A is formally standard if and only if any triangulated equiva-
lence F : tr(A)→ tr(A), such that (5.21) holds and Fgr

|H∗(A)
∼= id, is naturally isomorphic to the

identity.

PROOF. Of course, if A is formally standard, then any such F is naturally isomorphic to the
identity. Conversely, let F,G : tr(A)→ tr(A) be two triangulated equivalences satisfying (5.21)
such that Fgr

|H∗(A)
∼= Ggr

|H∗(A). Then

(G−1F)gr
|H∗(A)

∼= (Ggr
|H∗(A))

−1Fgr
|H∗(A)

∼= idgr
|H∗(A) .

We conclude that G−1F ∼= id, so F ∼= G, as wanted.

5.26. Remark. Replacing tr(A) with D(A)c in Definition 5.22, one could be tempted to define
perfect formally standard and perfect lifted DG-categories. However, this is not useful, since the
equivalences F : D(A)c→D(A)c satisfying (5.21) are determined by F|tr(A) up to natural isomor-
phism by [2, Theorem 1.5], and Remark 3.69 shows that the inclusion tr(A)⊂ EssIm(F|tr(A)) is
an equivalence, so that F|tr(A) can be thought of as an equivalence tr(A)→ tr(A). In other words,
the only equivalences admitting a graded restriction on D(A)c are equivalences restricting to
tr(A).

5.27. Remark. Given a DG-category A and a full DG-subcategory A′ ⊂ A such that the inclu-
sion induces a DG-equivalence A′pretr ∼= Apretr, the following implications hold.

1. If A is lifted, then A′ is lifted.
2. If A′ is formally standard, then A is formally standard.

Roughly speaking, these properties should suggest that a DG-category is lifted and formally
standard when a good balance is achieved.
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§5.3. Main result

In this section, we show how the new notions introduced so far (triangulated formality, for-
mal standardness and liftedness) are connected to strong uniqueness of enhancements. In the
case of graded categories B, we are able to provide a characterization of strong uniqueness of
enhancements for tr(B) and D(B)c (see Theorem 5.33).

Let us start with a sufficient condition for strong uniqueness of enhancements.

5.28. Proposition. Let A be a lifted, triangulated formal and formally standard DG-category.
Then tr(A) has a strongly unique enhancement.

PROOF. Let F : tr(A)→ tr(A) be any triangulated equivalence. Let us consider the enhance-
ment (Apretr,F) of tr(A). By triangulated formality, there exists f : Apretr → Apretr such that
FH0(f)(X)∼=X for all X ∈H0(A). Up to natural isomorphism, we can assume that G :=FH0(f)

satisfies (5.21) by Lemma 5.19. We aim to prove that G has an (Apretr, id)-lift. This suffices
to conclude that F has an (Apretr, id)-lift as well. Since A is lifted, we have a quasi-functor
g : A→ A such that H∗(g)∼= Ggr

|H∗(A). Up to natural isomorphism, notice that H0(gpretr) satisfies

(5.21). It remains to prove that Ggr
|H∗(A)

∼= H0(gpretr)gr
|H∗(A), which follows from direct computa-

tions. Formal standardness implies that G∼= H0(gpretr).
Since any triangulated equivalence F : tr(A)→ tr(A) has an (Apretr, id)-lift, item 3 of Remark

5.4 and Proposition 3.64 show that tr(A) has a strongly unique enhancement.

5.29. Remark. By Proposition 5.12 and Remark 5.26, we can modify the proof of Proposition
5.28 to prove that D(A)c has a strongly unique enhancement under the same requirements.

We now aim to prove the converse implication of Proposition 5.28. In order to do so, we
need to restrict to graded categories and state a technical result (Lemma 5.31). First, we recall
the following.

5.30. Fact. [29, Theorem 1.2.10] and [74, Théorème 2.1, Remarque 1]. Every DG-category
is quasi-equivalent to a cofibrant§ DG-category. Moreover, let C be a cofibrant DG-category.
Every quasi-functor f : C→ D can be represented by a DG-functor f ′ : C→ D. In particular,
this means that H0(f)∼= H0(f ′).

5.31. Lemma – Presentation via a cofibrant DG-category. Let A be a DG-category and let C
be a cofibrant DG-category with a quasi-equivalence quasi-functor f : C→ Apretr. Then we can

construct a quasi-equivalence h : D→ A, where D := D
H0(f)

|H0(A)
.

PROOF. We use the notation of the statement. Let A′ be a full pretriangulated DG-subcategory
of Apretr such that A ⊂ A′ and all the homotopy equivalence classes of A in A′ are represented

§One may refer to [75, §2] for the definition of a cofibrant DG-category. However, the lazy reader may rest assured
that we are interested only in the property highlighted by this statement.
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only by objects of A. In other words, if Y ∈ A′ is homotopy equivalent to an object of A,
then Y ∈ A. Notice the functor i : H0(A′)→ H0(Apretr) = tr(A), obtained from the inclusion
A′ ⊂ Apretr, is an equivalence by Lemma 3.68, so (A′, i) is an enhancement of tr(A).

Let us now consider the quasi-equivalence quasi-functor f ′ : C→ Apretr← A′. By Fact 5.30,
we can assume f ′ to be a DG-functor. In Apretr, the image of D via the quasi-functor f lies in the
homotopy closure of A, so in general we may find an object of f(D) not belonging to A. The
definition of A′ ensures that this is not the case for f ′; we conclude that f ′(D) ⊂ A. Finally, the
restriction f ′|D : D→ A is the wanted quasi-equivalence h.

5.32. Proposition. Let B be a graded category. If tr(B) has a strongly unique enhancement,
then B is triangulated formal and formally standard.

PROOF. By item 4 of Remark 5.4, we are reduced to check that B is formally standard. For
this purpose, we will show that any autoequivalence F on tr(B) satisfying (5.21) is naturally
isomorphic to H0((Fgr

|B )
pretr). Indeed, if this is true, given any autoequivalence G such that

(5.21) holds, Fgr
|B
∼= Ggr

|B implies that (Fgr
|B )

pretr ∼= (Ggr
|B)

pretr by Proposition 3.39, from which

F ∼= H0((Fgr
|B )

pretr)∼= H0((Ggr
|B)

pretr)∼= G, as wanted. We divide our reasoning in two steps:
1. We choose a presentation A according Lemma 5.31 and a "well-behaved" associated en-

hancement (C,H0(e)). The meaning of its well-behaviour will become clear in the second
part of the proof.

2. We describe a DG-functor f ′, which is a (Bpretr, id)-lift of F . We conclude that F ∼=
H0(f ′)∼= H0((Fgr

|B )
pretr).

We prove item 1. Let (C,E) be a cofibrant enhancement of tr(B) and define A :=CE
|H0(B)

. We
consider the DG-functors j : Apretr→ Cpretr, induced by the inclusion, and h : A→ B, associated
to a (C,E)− (Bpretr, id)-lift of the identity (which exists by Proposition 3.64) as expressed in
Lemma 5.31. We define e to be the (quasi-equivalence) quasi-functor given by the following
composition

C Cpretr Apretr Bpretr,
y j hpretr

where y is the Yoneda embedding. We want to consider the enhancement (C,H0(e)). The "well-

behaviour" discussed above is motivated by the fact that A = C
H0(e)

|H0(B)
. Let us prove it. By the

definition of the functors, for every X ∈ H0(A) we have

H0(e)(X)∼= H0(hpretr)H0(j)−1H0(y)(X)∼= H0(hpretr)H0(j)−1(X)

∼= H0(hpretr)(X)∼= Y ∈ H0(B).

This implies that A ⊂ C
H0(e)

|H0(B)
. Conversely, let X ∈ C

H0(e)

|H0(B)
. Then we have H0(e)(X) ∼= Y ∈

H0(B). Since h : A→ B is a quasi-equivalence, there exists Z ∈ A such that H0(h)(Z) ∼= Y .
From the definitions of j and y, we have H0(e)(Z) ∼= Y . In particular, X and Z are homotopy
equivalent. Since A is closed under homotopy equivalence by Lemma 3.67, X ∈ A as wanted.
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We prove item 2. By Proposition 3.64, F has a (C,H0(e))-lift, and by Fact 5.30, this

lift can be chosen to be a DG-functor f. Since A = C
H0(e)

|H0(B)
, we have that f(A) ⊆ A because

H0(e)H0(f)(X)∼= FH0(e)(X)∼= H0(e)(X) for every X ∈ H0(A). We define fA := f|A : A→ A.
Notice that fpretrj∼= jfpretr

A by Proposition 3.39.

Moreover, since B is graded and h : A→ B is a quasi-equivalence, we have that H∗(h) :
H∗(A) → H∗(B) = B is a graded equivalence (i.e. a DG-equivalence between graded cat-
egories). Therefore, for the sake of simplicity, we can replace B with H∗(A) and h with
H∗(h)−1h, so that H∗(h) = id. From the definition of H∗, we obtain the commutative diagram
of DG-categories

A A

B B

fA

h h

H∗(fA)

which can be extended to the pretriangulated closures by Proposition 3.39. Let f ′=(H∗(fA))pretr.
We have the following situation

Bpretr Apretr Cpretr C tr(B)

Bpretr Apretr Cpretr C tr(B).

f ′

hpretr j

f
pretr
A fpretr

e

y H0(e)

f F

hpretr j

e

y H0(e)

In particular, this diagram shows that f ′ is a (Bpretr, id)-lift of F . We have a natural isomor-
phism η : F → H0(f ′), which gives a graded isomorphism µ : Fgr

|B → H∗(fA). Being B a DG-
category with trivial differential, µ is a DG-natural isomorphism, so we can extend it to a unique
DG-natural isomorphism on Bpretr by Proposition 3.39. In particular, (Fgr

|B )
pretr ∼= f ′ up to DG-

isomorphism, so F ∼= H0((Fgr
|B )

pretr).

5.33. Theorem. Let B be a graded category. The following are equivalent:

1. B is triangulated formal and formally standard;
2. tr(B) has a strongly unique enhancement;
3. D(B)c has a strongly unique enhancement.

PROOF. Proposition 5.28 (remembering Example 5.23) and Proposition 5.32 prove 1⇔ 2. Re-
mark 5.29 deals with 1⇒ 3, while Proposition 3.70 shows 3⇒ 2.
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§5.4. Free generators

Our aim is to apply Theorem 5.33. We start with some simple examples, described by the
following non-canonical definition.

5.34. Definition. A DG-category A is a free generator if every object X ∈ D(A)c is isomorphic
to a direct summand of

(5.35)
⊕
i∈Z

(
ni⊕

j=1

Ci, j[i]

)
for some Ci, j ∈ H0(A) and ni 6= 0 for finitely many i’s.

5.36. Example. In a trivial way, any pretriangulated DG-category is a free generator, but this
example is far from our idea of application, since we want to study it for graded categories (i.e.
DG-categories with trivial differential). Let us give some meaningful examples.
• The DG-category R given by a semisimple ring is a free generator. Indeed, a finitely gen-

erated R-module is a direct summand of a free R-module of finite rank. As a consequence,
D(R)c is obtained by cones of closed morphisms⊕

i∈Z
Rni [i]→

⊕
j∈Z

Rm j [ j],

which are simply given by kernels and cokernels of maps Rni → Rmi , again expressed via
finitely generated R-modules.

• Consider an algebraic finite triangulated category T as defined in [55] and let Λ be the
algebra of endomorphisms associated to a basic additive generator X . Given an enhance-
ment (C,E) of T , any object Y ∈E−1(X), together with its endomorphisms, defines a free
generator DG-category with one object (this follows from the fact that T is equivalent to
the category of finitely generated projective (right) Λ-modules).

Roughly speaking, the following lemma tells us that whenever a ring is a free generator,
then it is a free generator also for its associated periodic triangulated categories (a triangulated
category is called periodic if [n]∼= id for some n; see [70] for a more thorough introduction).

5.37. Lemma. Let R be a ring and consider R[t, t−1] with t homogeneous of positive degree. If
R is a free generator, then so is R[t, t−1].

PROOF. Let us consider the inclusion R→ R[t, t−1], which is a (differential) graded morphism.
Then we can extend it to a DG-functor π : Perf(R)→ Perf(R[t, t−1]). Set n := deg(t), and for
any k ∈ Z use k̄ ∈ {0, . . . ,n−1} for the representative of k in Z/nZ.

The objects in DGMod(R) are functors M : Ro → CDG(Mod(k)), so they are DG-modules
M(Ro) := (Mk,dk)k∈Z. Similarly, an object M/n ∈ DGMod(R[t, t−1]) can be thought of as the
DG-module M/n(R[t, t−1]o) := (Mk

/n,d
k
/n)k∈Z. The morphism M/n(t) : M/n→M/n has degree n
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and an inverse, which shows that Mk
/n
∼= Mk+ jn

/n for every j ∈ Z. In particular, M/n is identified

with (Mk̄
/n,d

k̄
/n)

n−1
k̄=0 , with dn−1

/n : Mn−1
/n →M0

/n.
Then π can be explicitly expressed by (cf. [70, Definition 3.7])

π(M)k :=
⊕
¯̀=k

M`, dk
π(M) :=

⊕
¯̀=k

d`
M

(the behaviour of π on morphisms is expressed accordingly). From this description, it is easy
to notice that π is essentially surjective. Since π is also additive and preserves suspensions, the
statement follows.

5.38. Proposition. Let A be a free generator DG-category. Then A is formally standard.

PROOF. Define Aadd the full DG-subcategory of Apretr whose objects are of the form (5.35).
Notice that H0(Aadd) ⊂ tr(A). Let F : tr(A)→ tr(A) be a triangulated equivalence such that
its graded restriction is naturally isomorphic to the identity. Therefore, F|H0(Aadd)

is naturally
isomorphic to the identity. Let G be the composition

H0(Aadd) tr(A) D(A)c.
F|H0(Aadd)

Since A is a free generator, D(A)c is the idempotent completion of H0(Aadd); [2, Proposition
1.3] gives a unique extension H : D(A)c → D(A)c of G, which is therefore an extension of F .
Further, from the same proposition the natural isomorphism F|H0(Aadd)

→ id extends to a natural
isomorphism H→ id. By restricting this natural isomorphism, F is naturally isomorphic to the
identity. Lemma 5.25 concludes the proof.

5.39. Corollary. Let K be a field. Given a free generator K-algebra Λ with finite projective
dimension d as a Λ-bimodule, then D(Λ[t, t−1])c has a strongly unique enhancement for any t
homogeneous of degree greater or equal than d.

PROOF. Under these assumptions, Proposition 1.47 shows that Λ[t, t−1] is intrinsically formal.
By Example 5.5, Lemma 5.37, Proposition 5.38 and Theorem 5.33, we conclude.

5.40. Example. LetK be a perfect field and let Λ be a semisimple finite-dimensionalK-algebra.
In this case, Λ is a projective Λ-bimodule by [64, Corollary b, p. 192]. Then, by Example 5.36
and Corollary 5.39, D(Λ[t, t−1])c has a strongly unique enhancement for any homogeneous t of
positive degree.

5.41. Corollary. LetK be a field. The triangulated category mod(K) with suspension the iden-
tity has a strongly unique K-linear enhancement.

PROOF. We claim that mod(K) is triangulated equivalent to D(K[t, t−1])c with t homogeneous
of degree 1. First, let us consider the description of the DG-functor π : Perf(K)→ Perf(K[t, t−1])

given in the proof of Lemma 5.37. At the homotopy level, we have an induced triangulated
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functor F : Kb(mod(K))→ D(K[t, t−1])c (recall Example 3.59). Since deg(t) = 1, F|mod(K)
is essentially surjective and fully faithful. Therefore, D(K[t, t−1])c ∼= mod(K) as (K-linear)
additive categories. We now observe that the suspension functor in D(K[t, t−1])c is isomorphic
to the identity because deg(t) = 1 (cf. the proof of Lemma 5.37). This suffices to conclude that
mod(K) is triangulated equivalent to D(K[t, t−1])c, as noted in [71, §1.1]. The statement now
follows from Corollary 5.39.

5.42. Remark. Notice that Corollary 5.41 does not hold when K= Fp (with p a prime) and we
consider linearity over k= Z (see [71] and [14, Corollary 3.10]).

Furthermore, since Fp[t, t−1] is formally standard by Lemma 5.37 and Proposition 5.38,
Theorem 5.33 shows that D(Fp[t, t−1])c has a strongly unique enhancement if and only if
mod(Fp) ∼= Fp[t, t−1] is triangulated formal. Example 5.5 then ensures that Fp[t, t−1] is not
intrinsically formal as a Z-linear graded ring.

5.43. Remark. Let us briefly discuss the example of a non-unique K-linear enhancement pro-
vided by Rizzardo and Van den Bergh in [67].

Let K be a field and F := K(x1, . . . ,xn) with n > 0 even. Then D(F[t, t−1])c with deg(t) =
n has a non-unique enhancement, as shown in [67]. We notice that this example carefully
avoids any situation described above. As discussed in Example 5.36, F[t, t−1] is a free generator
because F is semisimple. However, it is not finite-dimensional, because, as seen in Example
5.40, this will not work for a perfect field.

As one may expect from the viewpoint depicted in this article, the proof in [67] shows
explicitly that F[t, t−1] is not intrinsically formal by deforming the graded algebra into a different
minimal A∞-algebra.

§5.5. D-standardness and K-standardness

In this section we consider the notions of D-standard and K-standard categories introduced in
[19], and show that they are, in fact, equivalent to strong uniqueness of enhancements in a proper
way. We emphasize that these results hold for k-linearity, where k is any commutative ring.

5.44. Definition. Let A be an additive category. Then A is K-standard if the following impli-
cation holds:

(♠) Whenever F : Kb(A )→Kb(A ) is a triangulated equivalence such that F(A )⊆A and
η0 : F|A → idA is a natural isomorphism, there exists a natural isomorphism η : F → id
extending η0.

Accordingly, an exact category E is D-standard if (♠) holds for F :Db(E )→Db(E ).

5.45. Remark. Because of Remark 2.18, K-standardness is just a specialized version of D-
standardness. Nonetheless, we will treat them separately as the results for additive categories
are easier to prove.
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5.46. Lemma. Let A be an additive category (resp. let E be an exact category). Then (♠)
holds if and only if the following is satisfied.
(♣) Whenever F :Kb(A )→Kb(A ) is a triangulated equivalence such that F(A )⊆A and

F|A ∼= idA , then F ∼= id (replace Kb(A ) and A with Db(E ) and E respectively in the
case of exact categories).

PROOF. This result is analogous to [19, Lemma 3.5]. The fact that (♠) implies (♣) is obvious.
Conversely, let η0 : F|A → idA . By (♣), there exists µ : F→ id. In particular, µ|A : F|A → idA ,
so we can consider Kb(η0µ

−1
|A )µ : F→ id: by definition, such natural isomorphism restricted to

A is η0. This concludes the proof. Analogously, we can show the result for Db(E ).

5.47. Proposition. An additive category A is K-standard if and only if Kb(A ) has a strongly
unique enhancement.

PROOF. Remembering Example 3.59, Lemma 5.25 and Lemma 5.46 show that A is K-standard
if and only if it is formally standard. Since A is triangulated formal by Proposition 5.6, Theorem
5.33 concludes the proof.

5.48. Example. We recall that a Krull-Schmidt category A is an additive category in which
every object decomposes into a finite direct sum of objects having local endomorphism rings.

A Krull-Schmidt category A is an Orlov category if
1. The endomorphism ring of each indecomposable is a division ring;
2. There is a degree function deg : ind(A )→ Z, where ind(A ) is the set of all indecompos-

ables, such that degX ≥ degY implies Hom(X ,Y ) = 0 whenever X 6∼= Y .¶

As proved in [19, Proposition 4.6], an Orlov category A is K-standard, soKb(A ) has a strongly
unique enhancement. An example is given by proj(A) for A a triangular algebra (i.e. an algebra
whose associated Ext-quiver does not admit oriented cycles), see [19, Example 4.7] and [17,
Lemma 2.1].

5.49. Lemma. Let E be an exact category, and let EDG := Db
DG(E ) as in Example 5.23. Then

E is D-standard if and only if EDG is formally standard.

PROOF. By Lemma 5.46 and Lemma 5.19, E is D-standard if and only if any triangulated
equivalence F : Db(E )→ Db(E ) such that F(X) = X for X ∈ E and F|E ∼= idE is naturally
isomorphic to the identity. By Lemma 5.25, we are reduced to prove that F|E ∼= idE if and only
if Fgr
|H∗(EDG)

∼= idH∗(EDG). This follows from Proposition 5.24.

We now aim to show the analogous of Proposition 5.47 for derived categories.

5.50. Proposition. Let E be an exact category, and consider F a triangulated autoequivalence
of Db(E ) such that F(E ) ⊂ E and F|E ∼= idE . Let (C,E) be any enhancement of Db(E ). If F
has a (C,E)-lift, then F is naturally isomorphic to the identity.

¶Here the degree function differs slightly from the definition in [19] (we used≥ instead of≤); the proof of Theorem
5.61 will motivate our choice.
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Moreover, the identity of C is the only quasi-functor lifting the identity of Db(E ). Conse-
quently, any autoequivalence of Db(E ) has at most one (C,E)-lift.

PROOF. Without loss of generality, assume C is a cofibrant DG-category. By Fact 5.30, there
exists a DG-functor f : C→ C which is a (C,E)-lift of F . We now consider f|E : C|E → C|E .
Defined the quasi-equivalence quasi-functor

(C|E )
pretr Cpretr C,

j y

where j is induced by inclusion, notice that yf ∼= fpretry and j(f|E )
pretr ∼= fpretrj by Proposition

3.39.
Moreover, we are able to construct the following commutative diagram

H0(C|E ) τ≤0C|E C|E

H0(C|E ) τ≤0C|E C|E

id

'
p≤0

τ≤0f|E f|E

'
p≤0

by assumption (indeed H0(f|E ) = F|E ∼= id). The commutative diagram obtained by taking the
pretriangulated closures shows that (f|E )pretr is the identity quasi-functor by the universal prop-
erty of the DG-quotient (see item 1 of Definition/Proposition 3.57 and Corollary 5.9). This
suffices to show that f is the identity as well because fy−1j ∼= y−1j(f|E )

pretr ∼= y−1j, where j and
y are quasi-equivalences. In particular, F ∼= EH0(f)E−1 ∼= EE−1 ∼= id, as wanted.

5.51. Theorem. Let E be an exact category. Then E is D-standard if and only if Db(E ) has a
strongly unique enhancement.

PROOF. Recall that EDG is triangulated formal by Corollary 5.9. If E is D-standard, by Lemma
5.49 EDG is also formally standard. Proposition 5.28 shows that Db(E ) has a strongly unique
enhancement, since EDG is always lifted (see Example 5.23). The converse implication follows
from Proposition 5.50 and Proposition 3.64.

5.52. Proposition. Let A be an abelian category with enough projective objects. We denote
with Proj(A ) its subcategory of projective objects. If Kb(Proj(A )) has a strongly unique en-
hancement, then Db(A ) has a strongly unique enhancement.

PROOF. It immediately follows from Proposition 5.47, [19, Theorem 6.1] and Theorem 5.51.

5.53. Corollary. Let A be a hereditary category. Then its bounded derived category Db(A )

has a strongly unique enhancement (cf. [19, Corollary 5.6]).

5.54. Example. Let R be any ring (recall Convention 1.3). If R is (right) hereditary, the bounded
derived category of (all right) R-modules has a strongly unique enhancement. If R is (right)
semihereditary and Noetherian, the bounded derived category of finitely generated R-modules
has a strongly unique enhancement. Dually, the result holds for left modules.
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By combining Corollary 5.53 with Hubery’s Theorem 2.56, we have the following.

5.55. Corollary. Any triangulated category with a hereditary heart is algebraic and has a
strongly unique enhancement.

§5.A. Appendix. Almost ample sets and exceptional sequences

In the context of bounded derived categories in algebraic geometry, it is common to consider
Fourier-Mukai transforms. Roughly speaking, these are triangulated functors coming from a
geometric perspective. When dealing with smooth projective varieties, it is possible to show that
Fourier-Mukai transforms are precisely the triangulated functors admitting a lift. The interested
reader may refer to [14, §6.3] for a brief overview of this connection; further suggested readings
on the topic are [75], [52] and [72].

A well-known theorem by Lunts and Orlov states that the bounded derived category of
coherent sheaves on a projective variety (with a technical assumption) has a strongly unique
enhancement (see [51, Theorem 9.9], but also [61, Theorem 2.2] in the context of Fourier-
Mukai transforms). The proof strategy is to show that D-standardness holds using the notion of
ample sequence [61, Definition 2.12]. Here we consider a generalization due to Canonaco and
Stellari [13, Definition 2.9], and prove explicitly the theorem for the sake of completeness.

We conclude the section by showing that an algebraic triangulated category with a full strong
exceptional sequence has a strongly unique enhancement as well. This result is already known
in a wider generality (see Example 5.48).

5.56. Definition. Given an abelian category A and a set I, we say that {Pi}i∈I ⊂A is an almost
ample set if, for any A ∈A , there exists i ∈ I such that

1. There is a natural number k and an epimorphism P⊕k
i → A;

2. Hom(A,Pi) = 0.

5.57. Example. Given an algebraic space X proper over an Artinian ring with depth ≥ 1 at
every closed point, the category of coherent sheaves Coh(X) has an almost ample set (see [60,
Lemma 3.3.2]). Another class of examples is given by [13, Proposition 2.12].

5.58. Theorem. Let A be an abelian category with an almost ample set. Then Db(A ) has a
strongly unique enhancement (cf. [13, Proposition 3.7]).

PROOF. We will show that A is D-standard, and conclude by Theorem 5.51. Let (F,η) :
Db(A )→ Db(A ) be an autoequivalence such that F(A ) ⊂ A and F|A ∼= idA . The idea is
to follow the reasoning of [62, Proposition 3.4.6]. Notice that we are reduced to show the
original proof from Step 4 forward, as the previous steps follows directly from assuming that F
fixes A . For clarity, we will use Σ instead of [1] to indicate the shift functor.
Step 1. We extend the natural isomorphism f : idA → F|A to the shifts of A .
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In order to extend f to a natural transformation between triangulated functors, we need to
require that the diagram

Σ Σ

FΣ ΣF

id

f Σ Σ f

η

is commutative. This forces us to define, for X ∈A , fΣX := η
−1
X Σ( fX ) and, inductively, fΣiX :=

η−1Σ( f
Σi−1X ) for any i≥ 1. In a similar fashion, fΣ−iX = Σ−1(ηΣ−iX f

Σ1−iX ).
Step 2. By induction on n, we extend f to the whole Db(A ).

Let Dn ⊂Db(A ) be the full subcategory of objects X for which there exists a ∈ Z such that
H p(X) = 0 for p < a or p > a+n. For the sake of simplicity, assume X = (X i,di) with H p(X) =

0 for p < −n or p > 0. By assumption, there exist i ∈ I and k ∈ N such that s : P⊕k
i → kerd0

is an epimorphism and Hom(kerd0,P⊕k
i ) = 0. First of all, s induces a morphism P⊕k

i → X by
composition. We obtain a distinguished triangle

Σ−1(Xn−1) P⊕k
i X Xn−1

where H p(Xn−1) = 0 for p <−n or p >−1, so Xn−1 ∈Dn−1. Since Hom(kerd0,P⊕k
i ) = 0, the

epimorphism kerd0→H0(X) implies that Hom(H0(X),P⊕k
i ) = 0. Using the filtration of X , we

conclude that

Hom(X ,F(P⊕k
i ))∼= Hom(X ,P⊕k

i )∼= Hom(H0(X),P⊕k
i ) = 0.

By [62, Lemma 3.1.1], we can choose a unique morphism fX : X → F(X) completing the dia-
gram

(5.59)

Σ−1(Xn−1) P⊕k
i X Xn−1

F(Σ−1(Xn−1)) F(P⊕k
i ) F(X) F(Xn−1).

f
Σ−1(Xn−1)

f
P⊕k
i

π

fX fXn−1

F(π)

More strongly, fX is the only morphism satisfying fXn−1π = F(π) fX .
Step 3. The morphism fX does not depend on the choice of s.

Assume there exists another j ∈ I such that Hom(kerd0,P⊕m
j ) = 0 and t : P⊕m

j → kerd0 is
an epimorphism. We claim that we can find ` such that

P⊕n
` P⊕k

i

P⊕m
j kerd0

u
s

t

and Hom(kerd0,P⊕n
` ) = 0. Indeed, we just consider P⊕k

i ×kerd0 P⊕m
j : since {Pi}i∈I is an al-

most ample set, there exists an epimorphism P⊕n
` → P⊕k

i ×kerd0 P⊕m
j and Hom(P⊕k

i ×kerd0
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P⊕m
j ,P⊕n

` ) = 0. Since s, t are epimorphisms, so is P⊕k
i ×kerd0 P⊕m

j → kerd0: we conclude that
Hom(kerd0,P⊕n

` )= 0. From the previous step, we can define f `X associated to P⊕n
` . In particular,

the following diagram

P⊕n
` X X `

n−1 Σ(P⊕n
` )

P⊕k
i X Xn−1 Σ(P⊕k

i )

id v

π

is commutative for some v : X `
n−1→ Xn−1. By induction, we have that fXn−1 and fX`

n−1
are natural

isomorphisms in Dn−1, so the diagram

X X `
n−1 Xn−1

F(X) F(X `
n−1) FXn−1

π

f `X
f
X`

n−1

v

fXn−1

F(π)

F(v)

commutes (the composition of the horizontal morphisms are π and F(π) from the choice of v).
In particular, fXn−1π = F(π) f `X , but this property determines uniquely fX , so fX = f `X . Consid-
ered f j

X associated to P⊕m
j , we can show that f j

X = f `X by the same reasoning. Finally, fX does
not depend on the choice of s.
Step 4. The morphism fX extends the natural isomorphism in a natural way over Dn.

Let g : X → Y be a morphism of Dn. We want to prove that fY g = F(g) fX . Since any
morphism inDb(A ) is a fraction of a quasi-isomorphism and a morphism of complexes, we can
assume for the sake of simplicity that g is a morphism of complexes. Also, we can assume as
before that H p(X) = 0 for p<−n and p> 0. Set c as the greatest integer such that Hc(Y ) 6= 0 (if
Y ∼= 0, there is nothing to prove, so we can consider Y nonzero), and set the notation Y = (Y i,ei).
We distinguish the proof in two cases.
Case 1. c < 0. Consider the pullback K := kerd0×kere0 Y−1 given by the diagram

K kerd0

Y−1 kere0

and let i ∈ I such that P⊕k
i → K is an epimorphism and Hom(K,Pi) = 0. Since Y−1→ kere0 =

ime−1 is an epimorphism (because c < 0), then s : P⊕k
i → K → kerd0 is an epimorphism and

Hom(kerd0,Pi) = 0. By Step 3, we can choose fX induced by the morphism s just defined. We
notice that P⊕k

i → kerd0 → X → Y factors through kere0. Let us call w : P⊕k
i → kere0 ⊂ Y 0.
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By definition of the epimorphism P⊕k
i → kerd0, w factors through w′ : P⊕k

i →Y−1, a morphism
such that w = e−1w′. This suffices to show that P⊕k

i → X → Y is homotopy equivalent to 0, so
it is 0 in Db(A ). Finally, g factors through gn−1 : Xn−1→ Y , where Xn−1 ∈ Dn−1 is defined as
in Step 2. The commutativity fY g = F(g) fX can now be checked by substituting X with Xn−1.
Notice that if X ∈ Dk, then Xn−1 ∈ Dk−1 for k > 0, and whenever X ∈ D0, then Xn−1 ∈ D0

with Σ−1(Xn−1) isomorphic to an object of A . In this last case, passing from g to Σ(gn−1), c
increases by 1.
Case 2. c≥ 0. Choose an epimorphism P⊕k

i → kerec⊕Hc(X) and Hom(kerec⊕Hc(X),P⊕k
i ) =

0 (notice Hc(X) is nonzero only if c = 0). Let s : Σ−c(P⊕k
i )→ Y the morphism obtained from

the epimorphism above. As in Step 2, this gives a distinguished triangle with cone Yn−1 ∈Dn−1.
Notice that fY g = F(g) fX follows once we prove that fX is compatible with gn−1 : X → Y →
Yn−1. Indeed, in the diagram

X Y Yn−1

FX FY FYn−1

g

fX

t

fY fYn−1
F(g) F(t)

the square on the right commutes by definition, so whenever the rectangle commutes, also the
square on the left does, because

F(t)( fY g−F(g) fX ) = fYn−1 gn−1−F(gn−1) fX = 0

implies that fY g−F(g) fX factors through F(s), so it is 0 from

Hom(X ,F(Σ−c(P⊕k
i )))∼= Hom(X ,Σ−c(P⊕k

i )) = 0.

(indeed, Hom(Σ−p(H p(X)),Σ−c(P⊕k
i )) = 0 for all p). As in Case 1, if Y ∈Dk, then Yn−1 ∈Dk−1

for k > 0, and whenever Y ∈D0, then Yn−1 ∈D0 and, passing from g to gn−1, c decreases by 1.
Finally, to check commutativity of fX , let X ,Y ∈ Dn. We use either Case 1 or Case 2 to

replace one of the two with an object in Dn−1. By applying the same case a finite number of
times, we can apply the other case. In particular, we end up with two objects in Dn−1, for which
the property has already been verified by induction.

5.60. Remark. We shall notice that the natural isomorphism constructed is unique because it
is the only one making (5.59) commutative. An abelian category with such a property is called
strongly D-standard, see [19, Definition 5.1]. An example of a D-standard abelian category
which is not strongly D-standard is mod(K[ε]) with ε2 = 0 (see [19, Theorem 7.1]).

We now investigate the case of a triangulated category with a full strong exceptional se-
quence, defined in Example 4.12. The following result holds in fact for all derived categories of
finitely generated modules over a triangular algebra, as discussed in Example 5.48.

Moreover, by recalling Theorem 4.28, we conclude that having a full strong exceptional
sequence (with finite-dimensional hom-sets) forces any realized triangulated category to be al-
gebraic with a strongly unique enhancement.
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5.61. Theorem. Let K be a field and consider an algebraic K-linear triangulated category
T with a full strong exceptional sequence 〈E1, . . . ,En〉 such that

⊕
i Hom(X ,Y [i]) is a finite-

dimensional vector space for any X ,Y ∈T . Then T has a strongly unique enhancement.

PROOF. By [63, Corollary 1.9], we have T ∼= Db(mod(A)), where A := End(
⊕n

i=1 Ei). Fur-
thermore, such A is a finite ordered quiver with relations, i.e. there exists a finite ordered quiver
Q and an ideal I ⊂ KQ for which A ∼= KQ/I. We now consider the projective submodules Pi,
for i = 1, . . . ,n, as in §4.2. Notice A =

⊕
i Pi. By [9, Proposition 1.3.6], any indecomposable

projective module is isomorphic to some Pi.
We claim that proj(A), the category of finite-dimensional projective modules of A, is an

Orlov category because Hom(Pi,Pi) =K and we can define a degree function

deg : ind(proj(A))→ Z : Pi 7→ i.

Indeed, if j = deg(X)≥ deg(Y ) = i, then X ∼= Pj, Y ∼= Pi and Hom(Pj,Pi) = 0 for j > i. By [19,
Proposition 4.6] (or [17, Proposition 2.2]), proj(A) is K-standard. Proposition 5.52 concludes
the proof.
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