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We recently introduced special fuzzy quantifiers named quantifier-based operators to form 
extended fuzzy concept lattices and to construct graded squares, hexagons, octagons and 
decagons of oppositions. This article aims to extend our previous works by organizing 
quantifier-based operators in more general structures of oppositions: the so-called graded 
cubes of opposition and 5-graded cubes of opposition.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The main objective of this paper is a follow-up to a previous publication [8], in which we focused on the construction of 
graded polygons of opposition in fuzzy formal concept analysis. In our previous publication, we proposed graded polygons of 
opposition with quantifier-based operators that are monotonous and are defined based on evaluative linguistic expressions. 
In this article, we aim to study the properties between quantifier-based operators to form generalized graded cubes of 
opposition.

1.1. Formal concept analysis

Formal Concept Analysis (FCA) is a mathematical theory originally introduced by Rudolf Wille and widely applied in several 
areas such as machine learning, semantic web, software development, chemistry and biology [19,20,39,42,43].

Formal concept analysis is principally based on the notions of formal context and formal concept. A formal context is a 
triple composed of a finite set of objects, a finite set of attributes, and a binary relation between objects and attributes. 
A formal concept is a pair (A, B) where “A is the set of all objects having all attributes of B” and “B is the set of all attributes being 
satisfied by all objects of A”. Analogously to the tradition, A and B are respectively named extent and intent of the concept.

FCA techniques extract a collection of formal concepts from each formal context. Additionally, formal concepts equipped 
with the subconcept-superconcept relation, which expresses that a concept can be more specific than another, form an alge-
braic structure called concept lattice [20].
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Fuzzy Formal Concept Analysis (FFCA) extends the formal concept analysis by ideas taken from mathematical fuzzy logic to 
be able to capture also vague information. Several approaches have been presented to develop fuzzy formal concept analysis. 
Bělohlávek and Pollandt in [3,37] considered a pair of functions called concept-forming operators, where the fundamental tool 
to generate concepts is based on the quantifier All.

The first operator transforms a fuzzy set of objects A into a fuzzy set of attributes B such that, given an attribute y, B(y)

is the truth degree to which “y is shared by all objects of A”. Dually, the second one transforms a fuzzy set of attributes B into 
a fuzzy set of objects A such that, given an object x, A(x) is the truth degree to which “x has all attributes of B”. Therefore, 
the fuzzy formal concept is a pair composed of a fuzzy set of objects and a fuzzy set of attributes, which are obtained from 
each other using the concept-forming operators. Our idea is to generalize these concepts by means of intermediate quantifiers
which are natural language expressions such as “almost all, many, most, a few”, and other ones.

1.2. Fuzzy quantifier-based operators

We recently [7,8] introduced the so-called fuzzy quantifier-based operators in fuzzy formal concept analysis to be able to 
extract more detailed information from the initial dataset. Fuzzy quantifier-based operators are special fuzzy (intermediate) 
quantifiers. Their definition is based on the standard Łukasiewicz MV-algebra. We consider expressions of natural language 
such as extremely big, very big, and not small, etc. that belong to the class of evaluative linguistic expressions whose semantics 
is formalized in the higher-order fuzzy logic (see [29]). The fuzzy quantifier-based operators are viewed as interpretations in 
a model of special formulas called intermediate quantifiers of the formal theory of intermediate generalized quantifiers developed 
in [27,30], and elsewhere.

Extended fuzzy concepts were formed using the fuzzy quantifier-based operators. If a fuzzy concept (A, B) is given then 
an extended concept has the form (A, (B, A∗)) or ((A, B∗), B), where A∗ and B∗ are fuzzy sets generated by one of our 
quantifier-based operators. Extended fuzzy concepts have the vantage to capture positive, negative, and intermediate informa-
tion, namely information based on the presence or the absence of a certain amount of properties in objects.

As an example, given an object x and an attribute y. Then B∗(x) and A∗(y) represent truth degrees to which “x has 
almost all attributes of B” and “y is shared by almost all objects of A”, respectively.

Eventually, fuzzy quantifier-based operators were employed to construct graded squares, hexagons, octagons, and 
decagons of opposition, which are extensions of Aristotle’s square. This article mainly aims to extend our previous results 
by organizing fuzzy quantifier-based operators into more general structures of the opposition called graded cube of opposition
and 5-graded cube of opposition.

1.3. Aristotle’s square of opposition

In this subsection, we will remind the reader the well-known classical square of opposition. Aristotle’s square was an-
alyzed in propositional logic in [23,33] and more deeply elaborated in first-order predicate logic by many other authors, 
for example, [10,35,40]. It comprises relations between classical (universal and existential) quantifiers. We will consider a 
formula A of the form “All B ’s are A” and its negation O “Some B ’s are not A”. Another considered formula is E of the form 
“No B ’s are A”, which is negated by I “Some B ’s are A”.

Definition 1.1. We say that

• two formulas are contradictory if in any model they cannot both be true and they cannot both be false;
• two formulas are contrary if in any model they cannot both be true, but they can both be false;
• two formulas are subcontrary if in any model they cannot both be false, but they can both be true;
• a formula is subaltern of another one (called superaltern) if in any model, it must be true if its superaltern is true. At 

the same time, the superaltern must be false if the subaltern is false.

The relations of the previous definition are schematically depicted in Fig. 1.
A graded generalization of Aristotle’s square (from the point of view of many-valued fuzzy logic) was proposed by several 

authors (see [15,26]). They proposed generalized definition of contraries, contradictories, subalterns, and sub-contraries 
properties to form a generalized Aristotle’s square of opposition.

The Peterson’s square of opposition generalizes Aristotle’s one by adding intermediate quantifiers [34]. Its formalization 
using the tools of higher-order fuzzy logic (fuzzy type theory) was introduced in [26].

Fig. 2 represents a square of opposition formed by four operators defined in [13].1

They were introduced as an analogy of the formal concept analysis and possibility theory [14]. Similarly, we can construct 
a hexagon and a cube of opposition induced by additional operators underlying formal concept analysis and possibility 
theory.

1 Consider Y ⊆ X , x ∈ X , and the class R(x) of x w.r.t. an equivalence relation R on X . Then, R�(Y ) : ∃y, y ∈ R(x) ∧ y ∈ Y , RN(Y ) : ∀y, y ∈ R(x) → y ∈ Y , 
R∇ (Y ) : ∃y, y /∈ R(x) ∧ y /∈ Y , and R
(Y ) : ∀y, y /∈ R(x) → y /∈ Y .
188
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I: at least one in A is a B

A: all A’s are B ’s

O: at least one A is not a B

E: all A’s are not B ’s

Fig. 1. Aristotle’s square. The lines , , , denote that the corresponding propositions are contraries, contradictories, subalterns, and 
sub-contraries, respectively.

R�(Y )

RN(Y )

R∇(Y )

R
(Y )

Fig. 2. Aristotle’s square with R�(Y ), RN(Y ), R∇ (Y ), and R
(Y ).
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Fig. 3. Moretti’s cube of opposition.

1.4. Cube of opposition

In the related literature, we can find several variants of cubes that generalize classical square of opposition. Among the 
most known are Moretti’s [24,25] and Johnson-Keynes cubes [41].

The Aristotle’s square of opposition is formed by two positive and two negative quantifiers that are in the relation of 
contraries, contradictories, sub-contraries, and sub-alterns. If we change B and A into their negation, ¬B and ¬A respec-
tively, we obtain another similar square of opposition aeio. Hence, formulas A, E, I, O, a, e, i, and o form a cube of opposition, 
which require, however, A, B, ¬A, ¬B to be non-empty. We can observe that the new logical square of opposition (aeio) 
follows from Aristotle’s square (AEIO) by replacing formulas B and A by ¬B and ¬A, respectively.
189
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Fig. 4. Johnson and Keynes cube of opposition.

Fig. 3 contains Moretti’s cube of opposition, which can be obtained from two squares of opposition AEOI and aeoi. The 
other relations require the following constraint to hold:

(A ∨ E) → (i ∧ o).

It means that Moretti’s cube of opposition is based on four vertices A, E, a, e. The obtained cube of opposition is then 
formed by six squares of opposition AEIO, AaOo, AeOi, aEoI, eEiI and aeoi.

The graded extension of Moretti’s cube of opposition is defined by assuming that formulas A,E,O, I, a,e,o,i can be only 
partially true. The precise definition can be found in [17].

A more general is Johnson and Keynes cube (see [17]) AEIOaeio, which consists of 4 squares AEIO, aeio, AeOi and aEoI
as depicted in Fig. 4. This requires the following additional condition to hold: 

(A ∨ a) → (¬E ∧ ¬e).

A graded Johnson and Keynes cube can be formed similarly to Moretti’s one. The details (examples of cubes, precise 
definitions, etc.) can be found in [17].

Another graded extension of the cube in the possibility theory with fuzzy events was proposed by Dubois, Prade and Rico 
in [16]. The presented cube includes also the possibility to work with Sugeno and Choquet integrals using the Łukasiewicz 
operations.

1.5. Structure of the paper

The structure of this paper is the following: in Section 2, we first recall the construction of graded squares of opposition 
using the concept-forming operators that satisfy the generalized properties of contrary, contradictory, sub-contrary, and 
subalterns introduced in [8]. Then, we repeat definitions of quantifier-based operators with which we form graded decagons, 
octagons, and hexagons of opposition in fuzzy formal concept analysis.

Important and new results are given in Sections 3 and 4, in which we construct graded cubes of opposition and gener-
alized graded cubes opposition by employing the concept-forming operators and the quantifier-based operators. Moreover, 
we introduce several figures describing the relationships between the considered operators.

Similarly as in the Aristotle’s square, the existential import (presupposition) plays a significant role in the construction 
of the graded cube of opposition. It was introduced by Peterson in [36] and is discussed below.

Finally, we underline that the structures of opposition introduced in this paper can be viewed as generalizations of the 
cube of opposition constructed using the concept-forming operators of the standard formal concept analysis [12,14].

2. Preliminaries

In this section we introduce notation, preliminary notions and some results, which will be used further in this article.

2.1. Algebraic structures of truth values

In this subsection, we will remind few of the main algebras of truth values, namely complete residuated lattices and 
MV-algebras.
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Definition 2.1. A lattice 〈L, ∨, ∧〉 is called complete if and only if all subsets of L have both a supremum and an infimum.

Definition 2.2. A residuated lattice is an algebra

〈L,∨,∧,⊗,→,0,1〉
where

(i) 〈L, ∧, ∨, 0, 1〉 is a bounded lattice,
(ii) 〈L, ⊗, 1〉 is a commutative monoid,

(iii) a ⊗ b ≤ c iff a ≤ b → c, for each a, b, c ∈ L (adjunction property).

We will denote the complete residuated lattice 〈L, ∨, ∧, ⊗, →, 0, 1〉 with its support L.

Definition 2.3 ([11,32]). An MV-algebra is a residuated lattice

〈L,∨,∧,⊗,→,0,1〉
where a ∨ b = (a → b) → b, for each a, b ∈ L. Furthermore, the following operations are defined on L. Let a, b ∈ L,

(i) ¬a = a → 0 (negation),
(ii) a ⊕ b = ¬(¬a ⊗ ¬b) (strong summation),

(iii) a ↔ b = (a → b) ∧ (b → a) (biresiduation).

The results of this paper are based on the standard Łukasiewicz MV-algebra defined as follows.

Definition 2.4. The standard Łukasiewicz MV-algebra is a special MV-algebra

〈[0,1],∨,∧,⊗,→,0,1〉
where for each a, b ∈ [0, 1]

(i) a ∧ b = min(a, b),
(ii) a ∨ b = max(a, b),

(iii) a ⊗ b = max(0, a + b − 1),
(iv) a → b = min(1, 1 − a + b).

Derived operations are negation ¬a = 1 − a and Łukasiewicz disjunction a ⊕ b = min{1, a + b}.

In the following lemma, we list some properties of the standard Łukasiewicz MV-algebra that will be used further.

Lemma 2.5. Let 〈[0, 1], ∨, ∧, ⊗, →, 0, 1〉 be the standard Łukasiewicz MV-algebra and let I = {1, . . . , n}. Then, the following hold for 
all a1, . . . , an, b1, . . . , bn, a, b, c, d, e ∈ [0, 1]:

(a) ¬¬a = a (double negation law).
(b) for each k ∈ I , 

∧
i∈I ai ≤ ak and ak ≤ ∨

i∈I ai .
(c) if ai ≤ bi for each i ∈ I , then 

∧
i∈I ai ≤ ∧

i∈I bi and 
∨

i∈I ai ≤ ∨
i∈I bi .

(d)
∨

i∈I (a ⊗ bi) = a ⊗ ∨
i∈I bi .

(e) a ⊕ ¬a = 1 and a ⊗ ¬a = 0.
(f) if a ⊗ b ≤ e, then (a ∧ c) ⊗ (b ∧ d) ≤ e.
(g) if a ≤ b and c ≤ d, then a ⊗ c ≤ b ⊗ d and a ⊕ c ≤ b ⊕ d.
(h) a ⊗ b = ¬(a → ¬b) and a → b = ¬(a ⊗ ¬b).
(i) a → b ≤ ¬b → ¬a.
(j) ¬(a ⊗ b) = ¬a ⊕ ¬b and ¬(a ⊕ b) = ¬a ⊗ ¬b.

Lemma 2.6. Let 〈[0, 1], ∨, ∧, ⊗, →, 0, 1〉 be the standard Łukasiewicz MV-algebra, and let I = {1, . . . , n}. Then, the following hold for 
all a1, . . . , an, b1, . . . , bn ∈ [0, 1]:

(a)
∧

i∈I (ai → bi) ≤ ∧
i∈I ai → ∧

i∈I bi ,
(b)

∧
i∈I (ai → bi) ≤ ∨

i∈I ai → ∨
i∈I bi .

From now on, we write A ⊂ X to denote that A is a fuzzy set in the universe X , i.e. A is a function A : X → [0, 1].
∼
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PA2

PA1

PN2

PN1

Fig. 5. Graded square of opposition.

2.2. Graded square of opposition in Fuzzy Formal Concept Analysis

In this subsection, we recall results from [7,8] where we constructed graded squares of opposition with fuzzy concept-
forming operators. The structure of truth degrees is assumed to be the standard Łukasiewicz MV-algebra.

In our explanation we must consider properties of elements of some universe, for example tall, young, shallow, etc. In the 
predicate first-order fuzzy logic they are represented by special symbols of its language that are in a model interpreted by 
fuzzy sets (cf. [21]).

To simplify readability of this paper, in the sequel we will introduce predicates P A, P B , . . . and assume that they are 
interpreted by the respective fuzzy sets A, B, . . . ⊂∼ X , where X is a universe.2 For example, if X is a set of roses and P A is 
the property fragrant, then it is interpreted by a fuzzy set A ⊂∼ X . If x ∈ X is a rose then A(x) expresses how much fragrant 
the rose x is.

The graded square of opposition arises on the basis of the following relations between predicates (i.e. properties).

Definition 2.7. Let PA and PB be predicates. Then, we say:

(i) PA and PB are contraries if and only if A(x) ⊗ B(x) = 0 for each x ∈ X ,
(ii) PA and PB are sub-contraries if and only if A(x) ⊕ B(x) = 1 for each x ∈ X ,

(iii) PB is subaltern of PA if and only if A(x) → B(x) = 1, i.e. A(x) ≤ B(x), for each x ∈ X ,
(iv) PA and PB are contradictories if and only if A(x) = ¬B(x) for each x ∈ X .

The graded square of opposition is a diagram that shows existing relations between the predicates on its vertices.

Definition 2.8. Let PA1 , PN1 , PA2 and PN2 be predicates. The graded square of opposition is a square whose vertices are the 
predicates PA1 , PN1 , PA2 , PN2 and the following conditions hold:

(i) PA1 and PN1 are contraries,
(ii) PA2 and PN2 are sub-contraries,

(iii) PA2 is subaltern of PA1 and PN2 is subaltern of PN1 ,
(iv) PA1 and PN2 as well as PA2 and PN1 are contradictories.

A graded square of opposition is depicted in Fig. 5. 

Remark 2.9. Let A1, N1, A2, N2 ⊂∼ X , suppose that the predicates PA1 , PN1 , PA2 , and PN2 form a graded square of opposition. 
Then, given x ∈ X , the truth values A1(x), N1(x), A2(x), and N2(x) form a graded square of opposition as defined in [18].

In the previous articles, we proved that a collection of graded squares is associated with some fuzzy formal context 
(X, Y , I). Indeed, given a fuzzy set A ⊂∼ X , a square is determined by applying the following concept-forming operators to 

A: Let H ∈ {I, ¬I}3 then we put

A↑
H (y) =

∧
x∈X

(A(x) → H(x, y)) and A∩
H (y) =

∨
x∈X

(A(x) ⊗ H(x, y)) (1)

for all y ∈ Y .

2 More precisely, we first must consider a language of a predicate fuzzy logic which contains the predicate symbols P A , P B , . . . and then a model with 
the support X . Each predicate is in this model interpreted by the corresponding fuzzy set in A, B, . . .⊂∼ X .

3 Given I : X × Y → [0, 1], ¬I is a fuzzy relation given by the membership function ¬I(x, y) = 1 − I(x, y) for all x ∈ X and y ∈ Y .
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Table 1
Verbal description of A↑

I (y), A↑
¬I (y), A∩

I (y), and A∩¬I (y).

Truth degree Statement

A↑
I (y) y is shared by all objects of A

A↑
¬I (y) y is not shared by all objects of A

A∩
I (y) y is shared by at least one object of A

A∩¬I (y) y is not shared by at least one object of A

PA∩
I

P
A↑

I

PA∩¬I

P
A↑

¬I

Fig. 6. Graded square of opposition with concept-forming operators.

Let us recall that ↑
H and ∩

H were introduced in [3,37,38] to extract two different types of fuzzy concept lattices from 
(X, Y , H). Moreover, for a given y ∈ Y , the values A↑

I (y), A↑
¬I (y), A∩

I (y) and A∩¬I (y) correspond to the truth degrees of the 
statements listed in Table 1. 

Additionally, the following theorem states that the predicates interpreted by the fuzzy sets A↑
I , A↑

¬I , A∩
I , and A∩¬I can be 

organized in a graded square. Its proof can be found in [8].

Theorem 2.10. Let (X, Y , I) be a fuzzy formal context and let A ⊂∼ X. Then, the predicates P
A↑

I
, PA∩

I
, PA∩¬I

and P
A↑

¬I
respectively 

interpreted by A↑
I , A∩

I , A∩¬I and A↑
¬I , form a graded square of opposition as shown in Fig. 6. 

Therefore, Theorem 2.10 ensures that P
A↑

I
and P

A↑
¬I

are contraries, PA∩
I

and PA∩¬I
are sub-contraries, PA∩

I
is subaltern of 

P
A↑

I
, PA∩¬I

is sub-altern of P
A↑

¬I
, and P

A↑
¬I

and PA∩
I

as well as PA∩¬I
and P

A↑
I

are contradictories (see Definition 2.8). On the 
other hand, the formulas expressing the relations of contrary, sub-contrary and sub-altern carry out an existential import, 
which allows us to assume that the universe of quantification must be no-empty.

More precisely, putting A2(x) = A(x) ⊗ A(x), we proved that

(i) A↑
I (y) ⊗ A↑

¬I (y) ⊗ ∨
x∈X A2(x) = 0, i.e. P

A↑
I

and P
A↑

¬I
are contraries.

(ii) A∩
I (y) ⊕ A∩¬I (y) ⊕ ¬ 

∨
x∈X A2(x) = 1, i.e. PA∩

I
and PA∩¬I

are sub-contraries.

(iii) A↑
I (y) ⊗ ∨

x∈X A2(x) ≤ A∩
I (y), i.e. PA∩

I
is sub-altern of P

A↑
I

.

(iv) A↑
¬I (y) ⊗ ∨

x∈X A2(x) ≤ A∩¬I (y), i.e. PA∩¬I
is sub-altern of P

A↑
¬I

.

Let us underline that our approach generalizes that proposed in [17] where the hypothesis of normality of A (there is an 
element x of X such that A(x) = 1) appears instead of the existential import, which here is captured by 

∨
x∈X A(x).

2.3. Graded decagon of opposition in Fuzzy Formal Concept Analysis

In [7,8], we also introduced a new figure of opposition named graded decagon of opposition and defined as follows. Before 
we introduce the definition, let us remark the following.

In the sequel, we will consider 5 positive and 5 negative predicates. Why just 5? The main reason consists in the fact 
that our concept of quantifier-based operators is closely related to the theory of intermediate quantifiers. Peterson in his 
book [34] introduced 5 of them, namely “all, almost all, most, many, some”; two are classical (∀, ∃) and three non-classical. 
This paper stems from the formalization of their theory suggested in [30] and in detail elaborated in several other papers 
(see the citations). Therefore, we naturally consider also just these five quantifiers. Of course, it is possible to introduce 
more of them but their number is limited by the linguistic considerations because the definition of intermediate quantifiers 
193
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PA5

PA4

PN5

PN4

PN3PA3

PN2PA2

PA1 PN1

Fig. 7. Graded decagon of opposition.

(and thus also the quantifier-based operators) is based on special evaluative linguistic expressions. From it follows that other 
quantifiers must be introduced carefully w.r.t. the latter.4

Definition 2.11. Let PA1 , . . . , PA5 , PN1 , . . . , PN5 be predicates respectively.5

A graded decagon of opposition is a decagon where the vertices are the predicates PA1 , . . . , PA5 , PN1 , . . . , PN5 and the 
following conditions hold:

(i) PAi and PN j are contraries, for each i, j ∈ {1, 2, 3, 4},
(ii) PA5 and PN5 are sub-contraries,

(iii) PAi+1 is subaltern of PAi and PNi+1 is subaltern of PNi , for each i ∈ {1, 2, 3, 4},
(iv) PA1 and PN5 as well as PA5 and PN1 are contradictories.

A graded decagon of opposition is depicted in Fig. 7.
Let us observe that the notion of graded decagon of opposition generalizes that of graded square of opposition. Indeed, 

observing Fig. 7, it is clear that the predicates PA1 , PA5 , PN1 , and PN5 form the graded square of opposition depicted in 
Fig. 5.

Remark 2.12. Sub-diagrams of the decagon in Fig. 7 can be obtained by considering two or three intermediate levels less. 
More precisely, for each i ∈ {2, 3, 4}, PA1 , PAi , PA5 , PN1 , PNi , and PN5 form a graded hexagon of opposition, and for each 
i, j ∈ {2, 3, 4} with i �= j, PA1 , PAi , PA j , PA5 , PN1 , PNi , PN j , and PN5 form a graded octagon of opposition.

A collection of graded decagons of opposition is determined starting from a fuzzy formal context (X, Y , I). In achieving 
this goal, we employed the operators given by (1) and the quantifier-based operators introduced in our previous papers to 
create extended fuzzy concepts.6

A special operation called cut of a fuzzy set is fundamental for defining quantifier-based operators:
Let A, B ⊂∼ X . The cut of A with respect to B is the fuzzy set

(A|B)(x) =
{

A(x), if A(x) = B(x),

0, otherwise.
(2)

The latter is motivated by the need to form a new fuzzy set from a given one by extracting several elements together with 
their membership degrees and putting the other membership degrees equal to 0.

For defining quantifier-based operators, we also need to consider a special measure that expresses how large the size of a 
fuzzy set is w.r.t. the size of another one.

4 In strict mathematical sense, we might consider even infinite number of the quantifier-based operators because the semantics of evaluative expressions 
is defined over the interval [0, 1]. However, this would hardly have any sense for two reasons: first, we would have to forget natural language and so, such 
operators would have no meaning, they would be just mathematical construction. Second, the concept analysis is the technique dealing with data which 
are never infinite.

5 To consider a decagon of opposition (so, a figure having ten vertices and five sides), we need the fuzzy sets A1, . . . , A5 and N1, . . . , N5. We use two 
types of letters (i.e. Ai and Ni ) because we have to distinguish the left vertices of the decagon (i.e. PA1 , . . ., PA5 ) from those on the right (i.e. PN1 , . . ., 
PN5 ). Indeed, at the end of this section, we will exhibit a concrete decagon of opposition where vertices on the left side and the right side have a different 
meaning: the first ones correspond to positive operators (they describe the presence of a property in the objects), and the second ones correspond to negative 
operators (they describe the absence of a property in the objects).

6 The next notions are based on the standard Łukasiewicz MV-algebra. Moreover, in our approach, the universe X is the collection of the objects of a 
fuzzy formal context. Hence, it must be finite.
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Table 2
Verbal description of A↑

I,BiEx(y), A↑
I,BiVe(y), A↑

I,¬Sm(y), A↑
¬I,BiEx(y), 

A↑
¬I,BiVe(y), and A↑

¬I,¬Sm(y).

Truth degree Statement

A↑
I,BiEx(y) y is shared by almost all objects of A

A↑
I,BiVe(y) y is shared by most objects of A

A↑
I,¬Sm(y) y is shared by many objects of A

A↑
¬I,BiEx(y) y is not shared by almost all objects of A

A↑
¬I,BiVe(y) y is not shared by most objects of A

A↑
¬I,¬Sm(y) y is not shared by many objects of A

Let A, B ⊂∼ X ,

μB(A) =

⎧⎪⎪⎨
⎪⎪⎩

1, if B = ∅ or A = B,
|A|
|B| , B �= ∅ and A ⊆ B,

0, otherwise,

where |A| = ∑
x∈X A(x) and |B| = ∑

x∈X B(x) represent the cardinalities of the fuzzy sets A and B , respectively.
The quantifier-based operators are defined as follows by using the evaluative linguistic expressions ¬Sm, BiVe, and BiEx, 

which respectively model the linguistic expressions not small, very big, and extremely big. Their meaning (extensions) are 
fuzzy sets on [0, 1] in the standard context 〈0, 0.5, 1〉. Formulas for their computation can be found in [8], and in more 
details also in [29,31].

Definition 2.13. Let A ⊂∼ X and let E ∈ {¬Sm, BiVe, BiEx}. Then

A↑
I (y) =

∨
Z⊂∼X

(
∧
x∈X

((A|Z)(x) → I(x, y)) ∧ E(μA(A|Z))) (3)

A↑
¬I,E(y) =

∨
Z⊂∼X

(
∧
x∈X

((A|Z)(x) → ¬I(x, y)) ∧ E(μA(A|Z))) (4)

for each y ∈ Y .

Let us notice that the quantifier-based operators given by (3) and (4) are constructed by applying ↑I and ↑¬I on the cuts of 
A. The latter represent universes of quantification smaller than A and their size is characterized by an evaluative expression 
from {¬Sm, BiVe, BiEx}. Hence, it is easy to see that A↑

I,E (y) is the truth degree to which:

There exists a cut of A such that “all its objects have the attribute y” and “its size is E (not small, very big or extremely big) w.r.t. 
the size of A”,

and A↑
¬I,E(y) is the truth degree to which:

There exists a cut of A such that “all its objects do not have the attribute y” and “its size is E (not small, very big or extremely big) 
w.r.t. the size of A”.

The existing correlation between evaluative linguistic expressions and intermediate quantifiers suggests us to rewrite the 
meaning of A↑

I,BiEx(y), A↑
I,BiVe(y), A↑

I,¬Sm(y), A↑
¬I,BiEx(y), and A↑

¬I,BiVe(y) as in Table 2. 
Using the operators defined by (1), (3), and (4), we obtain predicates that can be organized in a graded decagon of 

opposition, as shown by the following theorem whose proof is found in [8].

Theorem 2.14. Let (X, Y , I) be a fuzzy context and let A ⊂∼ X. Then, the predicates P
A↑

I
, P

A↑
I,BiEx

, P
A↑

I,BiVe
, P

A↑
I,¬Sm

, PA∩
I

, P
A↑

¬I
, P

A↑
¬I,BiEx

, 
P

A↑
¬I,BiVe

, P
A↑

¬I,¬Sm
, and PA∩¬I

form a graded decagon of opposition as depicted in Fig. 8. 

The formulas involving the quantifier-based operators and corresponding to the relations of contrary, sub-contrary, and 
subaltern established by Theorem 2.14 carry out an existential import. Indeed, we proved that

(i)
∨

Z⊂X ((A|Z)
↑
I (y) ∧ E(μA(A|Z)) ⊗ ∨

x∈X (A|Z)2(x)) ≤ A∩
I (y), i.e. PA∩

I
is subaltern of P

A↑ .

∼ I,E
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PA∩
I

P
A↑

I,¬Sm

PA∩¬I

P
A↑

¬I,¬Sm

P
A↑

¬I,BiVe
P

A↑
I,BiVe

P
A↑

¬I,BiEx
P

A↑
I,BiEx

P
A↑

I
P

A↑
¬I

Fig. 8. Graded decagon of opposition with quantifier-based and concept-forming operators.

(ii)
∨

Z⊂∼X ((A|Z)
↑
¬I (y) ∧ E(μA(A|Z)) ⊗ ∨

x∈X (A|Z)2(x)) ≤ A∩¬I (y), i.e. PA∩¬I
is subaltern of P

A↑
¬I,E

.

(iii)
∨

Z1⊂∼X

∨
Z2⊂∼X

(
(A|Z1)

↑
I (y) ∧ E1(μA(A|Z1))

)
⊗

(
( (A|Z2)

↑
¬I (y) ∧ E2(μA(A|Z2))

)
⊗∨

x∈X ((A|Z1)(x) ⊗ (A|Z2)(x)) = 0, i.e. 

P
A↑

I,E1

and P
A↑

¬I,E2

are contraries.

(iv)
∨

Z⊂∼X ( ( (A|Z)
↑
I (y) ∧ E(μA(A|Z)) ) ⊗ ∨

x∈X (A|Z)2(x) ) ⊗ A↑
¬I (y) = 0, i.e. P

A↑
I,E

and P
A↑

¬I
are contraries.

(v)
∨

Z⊂∼X ( ( (A|Z)
↑
¬I (y) ∧ E(μA(A|Z)) ) ⊗ ∨

x∈X (A|Z)2(x) ) ⊗ A↑
I (y) = 0., i.e. P

A↑
I

and P
A↑

¬I,E
are contraries.

Remark 2.15. According to Remark 2.12, let E ∈ {BiEx, BiVe, ¬Sm}, then P
A↑

I
, P

A↑
I,E

, PA∩
I

, P
A↑

¬I
, P

A↑
¬I,E

, and PA∩¬I
form a graded 

hexagon of opposition. Moreover, let E1, E2 ∈ {BiEx, BiVe, ¬Sm} with E1 �= E2, then P
A↑

I
, P

A↑
I,E1

, P
A↑

I,E2

, PA∩
I

, P
A↑

¬I
, P

A↑
¬I,E1

, 

P
A↑

¬I,E2

, and PA∩¬I
form a graded octagon of opposition.

3. Graded cube of opposition with concept-forming operators

In this section, we construct graded cubes of opposition using the operators provided in Subsection 2.2. Note that a 
graded cube of opposition can be viewed as an extension of the square given by Definition 2.8.

Definition 3.1. Let PA1 , PA2 , PN1 , PN2 , Pa1 , Pa2 , Pn1 , Pn2 be predicates. A graded cube of opposition is a cube where the vertices 
are the predicates PA1 , PA2 , PN1 , PN2 , Pa1 , Pa2 , Pn1 , Pn2 and the following conditions hold:

(i) PA1 and PN1 are contraries as well as Pa1 and Pn1 , Pa1 and PN1 , PA1 and Pn1 .
(ii) PA2 and PN2 are sub-contraries as well as Pa2 and Pn2 , Pa2 and PN2 , PA2 and Pn2 .

(iii) PA2 is subaltern of PA1 , PN2 is subaltern of PN1 , PA2 is subaltern of Pa1 , Pa2 is subaltern of PA1 , PN2 is subaltern of Pn1 , 
Pa2 is subaltern of Pa1 , Pn2 is subaltern of Pn1 , and Pn2 is subaltern of PN1 .

(iv) PA1 and PN2 are contradictories as well as PA2 and PN1 , Pa1 and Pn2 , Pa2 and Pn1 .

A graded cube of opposition is depicted in Fig. 9.

Let us observe that the notion of cube of opposition generalizes the graded square of opposition. Indeed, observing Fig. 9, 
it is clear that the predicates PA1 , PA2 , PN1 , PN2 as well as Pa1 , Pa2 , Pn1 , Pn2 form a graded square of opposition (see Fig. 5).

In the sequel, we prove a list of lemmas, which will allows us to construct graded cubes of opposition with the concept-
forming operators of Subsection 2.2.

Lemma 3.2. Let (X, Y , I) be a fuzzy formal context and let A ⊂∼ X. Then, the predicates P
(¬A)

↑
¬I

, P(¬A)∩¬I
, P(¬A)∩I , P

(¬A)
↑
I

form a graded 

square of opposition as shown in Fig. 10.7

Proof. This follows from Theorem 2.10. Indeed, we can obtain a new square of opposition by substituting, in the square of 
Fig. 6, A and I by ¬A and ¬I , respectively. �

7 If A ⊂X then ¬A is a new fuzzy set on X with the membership function ¬A(x) = 1 − A(x) for each x ∈ X .
∼
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PA2

PA1

PN2

PN1

Pa2

Pa1

Pn2

Pn1

Fig. 9. Graded cube of opposition.

P(¬A)∩¬I

P
(¬A)

↑
¬I

P(¬A)∩I

P
(¬A)

↑
I

Fig. 10. Graded square of opposition with the predicates P
(¬A)

↑
¬I

, P(¬A)∩¬I
, P(¬A)∩I , and P

(¬A)
↑
I

.

Lemma 3.3. Let (X, Y , I) be a fuzzy formal context. Let A ⊂∼ X and let P
A↑

I
P

(¬A)
↑
I

, P
(¬A)

↑
¬I

, P
A↑

¬I
be predicates. Then the following holds 

true:

(a) P
A↑

I
and P

(¬A)
↑
I

are contraries,

(b) P
(¬A)

↑
¬I

and P
A↑

¬I
are contraries.

Proof. (a) Let y ∈ Y , by Lemma 2.5, (i)

A(x) → I(x, y) ≤ ¬I(x, y) → ¬A(x)

as well as

¬A(x) → I(x, y) ≤ ¬I(x, y) → A(x)

for each x ∈ X .
By the adjunction property, we have

(A(x) → I(x, y)) ⊗ ¬I(x, y) ≤ ¬A(x)

as well as

(¬A(x) → I(x, y)) ⊗ ¬I(x, y) ≤ A(x).

Then, by Lemma 2.5 (g) and by the associativity and the commutativity of ⊗,

(A(x) → I(x, y)) ⊗ (¬A(x) → I(x, y)) ⊗ (¬I(x, y))2 ≤ A(x) ⊗ ¬A(x)

where (¬I(x, y))2 = ¬I(x, y) ⊗ ¬I(x, y).
This means that

(A(x) → I(x, y)) ⊗ (¬A(x) → I(x, y)) ⊗ (¬I(x, y))2 ≤ 0
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from Lemma 2.5 (e).
Also, we get

(A(x) → I(x, y)) ≤ (¬A(x) → I(x, y)) → ((¬I(x, y))2 → 0),

for each x ∈ X , by applying the adjunction property twice.
By Lemma 2.5 (c),∧

x∈X

(A(x) → I(x, y)) ≤
∧
x∈X

( (¬A(x) → I(x, y)) → ((¬I(x, y))2 → 0) ).

By Lemma 2.6 (a), (b), we obtain∧
x∈X

(A(x) → I(x, y)) ≤
∧
x∈X

(¬A(x) → I(x, y)) → (
∨
x∈X

(¬I(x, y))2 → 0).

Using the adjunction property again, we conclude that∧
x∈X

(A(x) → I(x, y)) ⊗
∧
x∈X

(¬A(x) → I(x, y)) ⊗
∨
x∈X

(¬I(x, y))2 = 0.

Namely, A↑
I (y) ⊗ (¬A)

↑
I (y) ⊗ ∨

x∈X (¬I(x, y))2 = 0.
(b) Analogous to item (a), we can prove that∧

x∈X

(¬A(x) → ¬I(x, y)) ⊗
∧
x∈X

(A(x) → ¬I(x, y)) ⊗
∨
x∈X

I(x, y)2 = 0.

Namely, (¬A)
↑
¬I (y) ⊗ A↑

¬I (y) ⊗ ∨
x∈X I(x, y)2 = 0.

Remark 3.4. Observe that, in every model of classical predicate logic, when the set B interpreting the formula B(x) is equal 
to the universe X , i.e. its complement X \ B interpreting ¬B(x) is empty, the formulas (∀x)(A(x) ⇒ B(x)) and (∀x)(¬A(x) ⇒
B(x)) are both true. Consequently, these are not contraries. For such reason, the contrary requires to assume the existence 
of at least an element in X \ B , i.e. the existence of at least an element that does not belong to B . In mathematical logic, as we 
mentioned above, this is called existential import and it can be captured by the formula (∃x)¬B(x). Since in fuzzy logic the 
existential quantifier ∃ is interpreted by the supremum ∨, in order to prove that P

A↑
I

and P
(¬A)

↑
I

are contraries, we need to 
verify that

A↑
I (y) ⊗ (¬A)

↑
I (y) ⊗

∨
x∈X

(¬I(x, y))2 = 0 for each y ∈ Y .

Let us recall that we have already addressed the presupposition in the last publication [8]. Furthermore, another group of 
authors elaborated a presupposition, not only from a logical but also from a philosophical point of view (see [1,2,22,36]).

Analogously, the following condition

(¬A)
↑
¬I (y) ⊗ A↑

¬I (y) ⊗
∨
x∈X

I(x, y)2 = 0,

where 
∨

x∈X I(x, y)2 plays the role of existential import, must hold to ensure that P
(¬A)

↑
¬I

and P
A↑

¬I
are contraries. �

Lemma 3.5. Let (X, Y , I) be a fuzzy formal context. Let A ⊂∼ X and let PA∩¬I
, P(¬A)∩¬I

, PA∩
I

, and P(¬A)∩I be the predicates interpreted by 
A∩¬I , (¬A)∩¬I , A∩

I , and (¬A)∩I , respectively. Then,

(a) PA∩¬I
and P(¬A)∩¬I

are sub-contraries,

(b) PA∩
I

and P(¬A)∩I are sub-contraries.

Proof. (a) Let y ∈ Y , by Lemma 3.3 (a),∧
x∈X

(A(x) → I(x, y)) ⊗
∧
x∈X

(¬A(x) → I(x, y)) ⊗
∨
x∈X

(¬I(x, y))2 = 0.

Then,

¬(
∧

(A(x) → I(x, y)) ⊗
∧

(¬A(x) → I(x, y)) ⊗
∨

(¬I(x, y))2 ) = 1.
x∈X x∈X x∈X
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By Lemma 2.5 (j),

¬
∧
x∈X

(A(x) → I(x, y)) ⊕ ¬
∧
x∈X

(¬A(x) → I(x, y)) ⊕ ¬
∨
x∈X

(¬I(x, y))2 = 1.

Finally,∨
x∈X

(A(x) ⊗ ¬I(x, y)) ⊕
∨
x∈X

(¬A(x) ⊗ ¬I(x, y)) ⊕ ¬
∨
x∈X

(¬I(x, y))2 = 1

from Lemma 2.5 (h) and De Morgan’s law (¬(a ∧ b) = ¬a ∨ ¬b, for each a, b ∈ [0, 1]).
Namely, A∩¬I (y) ⊕ (¬A)∩¬I (y) ⊕ ¬ 

∨
x∈X (¬I(x, y))2 = 1.

(b) Analogous to item (a), we can prove that∨
x∈X

(A(x) ⊗ I(x, y)) ⊕
∨
x∈X

(¬A(x) ⊗ I(x, y)) ⊕ ¬
∨
x∈X

I(x, y)2 = 1.

Namely, A∩
I (y) ⊕ (¬A)∩I (y) ⊕ ¬ 

∨
x∈X I(x, y)2 = 1. �

Remark 3.6. In a model of classical predicate logic, when the set X \ B interpreting the formula ¬B(x) is empty then the 
formulas (∃x)(A(x) ∧ ¬B(x)) and (∃x)(¬A(x) ∧ ¬B(x)) are both false. Consequently they are not sub-contraries. Therefore, 
also in this case the existential import is necessary. Since we deal with fuzzy sets, we have shown that

A∩¬I (y) ⊕ (¬A)∩¬I (y) ⊕ ¬
∨
x∈X

(¬I(x, y))2 = 1 for each y ∈ Y ,

in order to prove that PA∩¬I
and P(¬A)∩¬I

are sub-contraries.
Analogously, the relation of sub-contrary of PA∩

I
and P(¬A)∩I is expressed by

A∩
I (y) ⊕ (¬A)∩I (y) ⊕ ¬

∨
x∈X

I(x, y)2 = 1

where the subformula ¬ 
∨

x∈X I(x, y)2 plays the role of existential import.

Lemma 3.7. Let (X, Y , I) be a fuzzy formal context. Let A ⊂∼ X and let P(¬A)∩¬I
, P

A↑
I

, PA∩
I

, and P
(¬A)

↑
¬I

be predicates. Then

(a) P(¬A)∩¬I
is subaltern of P

A↑
I

,

(b) PA∩
I

is subaltern of P
(¬A)

↑
¬I

.

Proof. (a) Let y ∈ Y , by Lemma 2.5(i),

A(x) → I(x, y) ≤ ¬I(x, y) → ¬A(x)

for each x ∈ X .
By Lemma 2.5(b),

A↑
I (y) ≤ ¬I(x, y) → ¬A(x).

From the adjunction property, we have A↑
I (y) ⊗ ¬I(x, y) ≤ ¬A(x).

By Lemma 2.5 (g),

A↑
I (y) ⊗ ¬I(x, y)2 ≤ ¬A(x) ⊗ ¬I(x, y).

By Lemma 2.5 (c), (d),

A↑
I (y) ⊗

∨
x∈X

¬I(x, y)2 ≤
∨
x∈X

(¬A(x) ⊗ ¬I(x, y)).

Namely, A↑
I (y) ⊗ ∨

x∈X ¬I(x, y)2 ≤ (¬A)∩¬I (y).
(b) Analogous to item (a), we can prove that∧

x∈X

(¬A(x) → ¬I(x, y) ) ⊗
∨
x∈X

I(x, y)2 ≤
∨
x∈X

( A(x) ⊗ I(x, y) ).

Namely, (¬A)
↑

(y) ⊗ ∨
x∈X I(x, y)2 ≤ A∩(y). �
¬I I
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PA∩
I

P
A↑

I

PA∩¬I

P
A↑

¬I

P(¬A)∩¬I

P
(¬A)

↑
¬I

P(¬A)∩I

P
(¬A)

↑
I

Fig. 11. Graded cube of opposition with the concept-forming operators.

Lemma 3.8. Let (X, Y , I) be a fuzzy formal context. Let A ⊂∼ X and let PA∩¬I
, P

(¬A)
↑
I

, P(¬A)∩I , and P
A↑

¬I
be the predicates interpreted by 

A∩¬I , (¬A)
↑
I , (¬A)∩I , and A↑

¬I , respectively. Then,

(a) PA∩¬I
is subaltern of P

(¬A)
↑
I

,

(b) P(¬A)∩I is subaltern of P
A↑

¬I
.

Proof. (a) Analogous to the proof of Lemma 3.7 (a), we can prove that∧
x∈X

(¬A(x) → I(x, y) ) ⊗
∨
x∈X

(¬I(x, y))2 ≤
∨
x∈X

( A(x) ⊗ ¬I(x, y) ).

Namely, (¬A)
↑
I (y) ⊗ ∨

x∈X (¬I(x, y))2 ≤ A∩¬I (y).
(b) Analogous to the proof of Lemma 3.7 (a), we can prove that∧

x∈X

( A(x) → ¬I(x, y) ) ⊗
∨
x∈X

I(x, y)2 ≤
∨
x∈X

(¬A(x) ⊗ I(x, y) ).

Namely, A↑
¬I (y) ⊗ ∨

x∈X I(x, y)2 ≤ (¬A)∩I (y). �
Remark 3.9. Also for the subaltern relations given by Lemma 3.7 and Lemma 3.8, an existential import is necessary. This is 
represented by the subformula 

∨
x∈X (¬I(x, y))2 for item (a), and by the subformula 

∨
x∈X I(x, y)2 for item (b).

We now have enough tools to construct graded cubes of opposition using the concept-forming operators. Indeed, the 
following theorem can be proved.

Theorem 3.10. Let (X, Y , I) be a fuzzy context and let A ⊂∼ X. Then, the predicates P
A↑

I
, P

A↑
¬I

, PA∩
I

, PA∩¬I
, P

(¬A)
↑
¬I

, P
(¬A)

↑
I

, P(¬A)∩¬I
, and 

P(¬A)∩I form a graded cube of opposition as shown in Fig. 11.

Proof. The theorem immediately follows from Theorems 2.10 and 2.14, and Lemmas 3.2, 3.3, 3.5, and 3.8. �
Remark 3.11. It is important to underline that the cube from Fig. 11 can be understood as an extension of the cube of 
opposition constructed using the concept-forming operators in the standard formal concept analysis. In fact, let (X, Y , I) be 
a formal context such that I ⊆ X × Y and A ⊆ X . Then, A↑

I , A↑
¬I , A∩

I , A∩¬I , (¬A)
↑
¬I , (¬A)

↑
I , (¬A)∩¬I , and (¬A)∩I , are classical 

sets. More precisely, we get

A↑
I = {y ∈ Y | ∀x ∈ A, (x, y) ∈ I} and A∩

I = {y ∈ Y | ∃x ∈ A | (x, y) ∈ I}.
Moreover, if (X × Y ) \ I = {(x, y) ∈ X × Y | (x, y) /∈ I} and X \ A denotes the complement of A w.r.t. X , then A↑

¬I = A↑
(X×Y )\I , 

A∩¬I = A∩
(X×Y )\I , (¬A)

↑
¬I = (X \ A)

↑
(X×Y )\I , (¬A)∩I = (X \ A)∩I , (¬A)∩¬I = (X \ A)∩(X×Y )\I , and (¬A)

↑
I = (X \ A)

↑
I . Then, our cube 

of opposition coincides with that presented in [12,14].
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Fig. 12. Predicates on the surface of a 5-graded cube of opposition.
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Fig. 13. Relations of contradictory on a 5-graded cube of opposition.

Remark 3.12. Fixing y ∈ Y and assuming the so-called normalization conditions (there exist x1, x2, x3, x4 ∈ X such that 
A(x1) = 1, A(x2) = 0, I(x3, y) = 1, and I(x4, y) = 0), we obtain an example of graded cube of opposition as defined in 
[16]. Therefore, we here adopt a more generic approach, where the normalization condition is replaced by the “existential 
import”.

4. 5-Graded cube of opposition with concept-forming and quantifier-based operators

In this section, we construct a 5-graded cube of opposition with the concept-forming and quantifier-based operators. 
A 5-graded cube of opposition can be understood as an extension both of the graded cube and the graded decagon described 
above.

Definition 4.1. Let PA1 , . . . , PA5 , PN1 , . . . , PN5 , Pa1 , . . . , Pa5 , Pn1 , . . . , Pn5 be predicates. A 5-graded cube of opposition is a cube 
such that the predicates PA1 , . . . , PA5 , PN1 , . . . , PN5 , Pa1 , . . . , Pa5 , Pn1 , . . . , Pn5 are organized on its surface as shown in Fig. 12. 
Moreover, the following properties hold: 

(i) PA1 and PN5 are contradictories as well as PN1 and PA5 , Pa1 and Pn5 , Pa5 and Pn1 (see Fig. 13).
(ii) PA5 and PN5 are sub-contraries as well as Pa5 and Pn5 , PA5 and Pn5 , PN5 and Pa5 (see Fig. 14).

(iii) PA5 is subaltern of Pa1 , Pa5 is subaltern of PA1 , PN5 is subaltern of Pn1 , Pn5 is subaltern of PN1 , PAi+1 is subaltern of PAi

and PNi+1 subaltern of PNi , for each i ∈ {1, 2, 3, 4} (see Fig. 15).
(iv) PAi and PN j are contraries for each i, j ∈ {1, 2, 3, 4} (see Fig. 16).
(v) Pai and Pn j are contraries for each i, j ∈ {1, 2, 3, 4} (see Fig. 17).

(vi) PAi and Pn j are contraries for each i, j ∈ {1, 2, 3, 4} (see Fig. 18).
(vii) Pai and PN j are contraries for each i, j ∈ {1, 2, 3, 4} (see Fig. 19).
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Fig. 14. Relations of sub-contrary on a 5-graded cube of opposition.
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Fig. 15. Relations of subaltern on a 5-graded cube of opposition.
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Fig. 16. Relations of contrary on a 5-graded cube of opposition.

Remark 4.2. Notice that Definition 4.1 implies that the predicates PA1 , . . ., PA5 , PN1 , . . . , PN5 as well as Pa1 , . . . , Pa5 , Pn1 , . . . ,
Pn5 form a graded decagon of opposition (see Definition 2.11). Furthermore, the predicates PA1 , PA5 , PA5 , PN5 , Pa1 , Pn1 , Pa5 , 
Pn5 form a graded cube of opposition (see Definition 3.1).

The following lemmas will be used below.
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Fig. 17. Relations of contrary on a 5-graded cube of opposition.
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Fig. 18. Relations of contrary on a 5-graded cube of opposition.
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Fig. 19. Relations of contrary on a 5-graded cube of opposition.

Lemma 4.3. Let (X, Y , I) be a fuzzy formal context. Let A ⊂∼ X and let E1, E2 ∈ {¬Sm, BiVe, BiEx}. Let P
A↑

I,E1

, P
(¬A)

↑
I,E2

, P
A↑

¬I,E1

, and 

P
(¬A)

↑
¬I,E2

be predicates. Then

(a) P
A↑

I,E1

and P
(¬A)

↑
I,E2

are contraries,

(b) P
A↑ and P

(¬A)
↑ are contraries.
¬I,E1 ¬I,E2
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Proof. (a) Let Z1, Z2 ⊂∼ X and let y ∈ Y . Then, by Lemma 2.5 (b), (i),

(A|Z1)
↑
I (y) ≤¬I(x, y) → ¬(A|Z1)(x) and

(¬A|Z2)
↑
I (y) ≤¬I(x, y) → ¬(¬A|Z2)(x)

for all x ∈ X . Hence, the inequality

(A|Z1)
↑
I (y) ⊗ (¬A|Z2)

↑
I (y) ⊗ (¬I(x, y))2 ≤ ¬(A|Z1)(x) ⊗ ¬(¬A|Z2)(x)

holds by the adjunction property and Lemma 2.5 (g).
Note that ¬(A|Z1)(x) ⊗ ¬(¬A|Z2)(x) = 0 from (2) and Lemma 2.5 (e). Hence,

(A|Z1)
↑
I (y) ⊗ (¬A|Z2)

↑
I (y) ⊗ (¬I(x, y))2 = 0.

Then, by Lemma 2.5 (f), (d),

((A|Z1)
↑
I (y) ∧ E1(μA(A|Z1))) ⊗ ((¬A|Z2)

↑
I (y) ∧ E2(μA(¬A|Z2))) ⊗

∨
x∈X

(¬I(x, y))2 = 0.

Finally, using Lemma 2.5 (c), we obtain∨
Z1⊂∼X

∨
Z2⊂∼X

((A|Z1)
↑
I (y) ∧ E1(μA(A|Z1))) ⊗ ((¬A|Z2)

↑
I (y) ∧ E2(μA(¬A|Z2))) ⊗

∨
x∈X

(¬I(x, y))2 = 0. (5)

(b) Analogously to item (a), we can prove that∨
Z1⊂∼X

∨
Z2⊂∼X

((A|Z1)
↑
¬I (y) ∧ E1(μA(A|Z1))) ⊗ ((¬A|Z2)

↑
¬I (y) ∧ E2(μA(¬A|Z2))) ⊗

∨
x∈X

I(x, y)2 = 0. � (6)

Remark 4.4. Lemma 4.3 has important consequences on the behavior of the corresponding quantifier-based operators. Note 
the subformula∨

x∈X

(¬I(x, y))2 (7)

in (5). We can understand it as a common presupposition8 of the quantifier-based operators A↑
I,E1

and (¬A)
↑
I,E2

. Analogously, 
the subformula 

∨
x∈X I(x, y)2 in (6) can be viewed as a common presupposition of the quantifier-based operators A↑

¬I,E1

and (¬A)
↑
¬I,E2

.

Lemma 4.5. Let (X, Y , I) be a fuzzy formal context. Let A ⊂∼ X and let E ∈ {¬Sm, BiVe, BiEx}. Let P
A↑

I
, P

(¬A)
↑
I,E

, P
A↑

¬I
, and P

(¬A)
↑
¬I,E

be 
predicates. Then the following holds true:

(a) P
A↑

I
and P

(¬A)
↑
I,E

are contraries,

(b) P
A↑

¬I
and P

(¬A)
↑
¬I,E

are contraries.

Proof. (a) Let y ∈ Y , by Lemma 2.5 (b), (i),

A↑
I (y) ≤ ¬I(x, y) → ¬A(x) and (¬A|Z)

↑
I (y) ≤ ¬I(x, y) → ¬(¬A|Z)(x)

for all x ∈ X . Then, the inequality

A↑
I (y) ⊗ (¬A|Z)

↑
I (y) ⊗ (¬I(x, y))2 ≤ ¬A(x) ⊗ ¬(¬A|Z)(x)

holds from the adjunction property and Lemma 2.5 (g).
Note that ¬A(x) ⊗ ¬(¬A|Z)(x) = 0 follows from (2) and Lemma 2.5 (e).
Hence, 

A↑
I (y) ⊗ (¬A|Z)

↑
I (y) ⊗ (¬I(x, y))2 = 0.

8 Recall that the concept of common presupposition was introduced by the authors in [28].
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P
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P
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P
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Fig. 20. Predicates related to concept-forming and quantifier-based operators on a 5-graded cube of opposition.
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Fig. 21. Relations of contradictory with the concept-forming operators and the quantifier-based operators.

Then, by Lemma 2.5 (f), (d),

A↑
I (y) ⊗

∨
Z⊂∼X

((¬A|Z)
↑
I (y) ∧ E(μA(¬A|Z))) ⊗

∨
x∈X

(¬I(x, y))2 = 0. (8)

(b) Analogously to item (a), we can prove that

A↑
¬I (y) ⊗

∨
Z⊂∼X

((¬A|Z)
↑
¬I (y) ∧ E(μA(¬A|Z))) ⊗

∨
x∈X

I(x, y)2 = 0. � (9)

Remark 4.6. The subformula 
∨

x∈X (¬I(x, y))2 related to (8) represents the existential import, which is essential to be able 
to show the contrary of P

A↑
I

and P
(¬A)

↑
I,E

. Analogously, the subformula 
∨

x∈X I(x, y)2, appearing in Equation (9), is the 
existential import related to the relation of contrary between the predicates P

A↑
¬I

and P
(¬A)

↑
¬I,E

.

The previous lemmas allow us to obtain the main result of this paper.

Theorem 4.7. Let (X, Y , I) be a fuzzy formal context and let A ⊂∼ X. Then, the predicates

P
A↑

I
, P

A↑
I,BiEx

, P
A↑

I,BiVe
, P

A↑
I,¬Sm

, PA∩
I

, P
A↑

¬I
, P

A↑
¬I,BiEx

, P
A↑

¬I,BiVi
, P

A↑
¬I,¬Sm

, PA∩¬I
, P

(¬A)
↑
¬I

, P
(¬A)

↑
¬I,BiEx

, P
(¬A)

↑
¬I,BiVe

, P
(¬A)

↑
¬I,¬Sm

, P(¬A)∩¬I
,

P
(¬A)

↑
I

, P
(¬A)

↑
I,BiEx

, P
(¬A)

↑
I,BiVi

, P
(¬A)

↑
I,¬Sm

, and P(¬A)∩I

form a 5-graded cube of opposition as shown in Figs. 21–27 (see also Fig. 20).
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Fig. 22. Relations of sub-contrary with the concept-forming operators and the quantifier-based operators.
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Fig. 23. Relations of subaltern with the concept-forming operators and the quantifier-based operators.
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Fig. 24. Relations of contrary with the concept-forming operators and the quantifier-based operators.
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Fig. 25. Relations of contrary with the concept-forming operators and the quantifier-based operators.
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Fig. 26. Relations of contrary with the concept-forming operators and the quantifier-based operators.

PA∩
I

P
A↑

I

P
A↑

I,BiEx

P
A↑

I,BiVe

P
A↑

I,¬Sm

P
A↑

¬I,BiEx

P
A↑

¬I,BiVe

P
A↑

¬I,¬Sm

P
(¬A)

↑
¬I,BiEx

P
(¬A)

↑
¬I,BiVe

P
(¬A)

↑
¬I,¬Sm

PA∩¬I

P
A↑

¬I

P(¬A)∩¬I

P
(¬A)

↑
¬I

P(¬A)∩I

P
(¬A)

↑
I

P
(¬A)

↑
I,BiEx

P
(¬A)

↑
I,BiVe

P
(¬A)

↑
I,¬Sm

Fig. 27. Relations of contrary with the concept-forming operators and the quantifier-based operators.
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Proof. The theorem follows from Theorem 3.10, Theorem 2.14,9 and Lemmas 4.3 and 4.5. �
5. Conclusion and future directions

This article follows previous publication where we constructed graded polygons of opposition using the quantifier-based 
operators, which we defined as extensions of the fuzzy concept-forming operators.

Additionally, the graded cubes and 5-graded cubes of opposition here are presented as extensions of graded polygons of 
opposition, which in turn are generalizations of Aristotle’s square.

As a future work, we plan to address the construction of a generalized hexagon ([4–6]) and to define new quantifier-
based operators in the fuzzy formal concept analysis. Moreover, we intend to construct new structures of opposition with 
the so-called fuzzy scaling quantifiers, which are introduced in [9] to extend the Relational Concept Analysis using fuzzy logic.
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¬I,BiEx

, P
(¬A)

↑
¬I,BiVe
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