

Nb-based NASICONs as electrode materials for Sodium-ion batteries

nicolo.pianta@unimib.it

LIBs: a well-known story

Over half the identified resources of the mineral are found in South America

QM

World Lithium Resources

7.5M+

Source: U.S. Geological Survey

Their criticalities

An alternative: NIBs

Anodes for NIBs

Phosphate-based NASICON

- General formula: $Na_x M_2 (PO_4)_3$
- Easy to obtain via solid-state synthesis
- Can store up to 3 4 equivalents of sodium (capacities up to 150 170 mAh g⁻¹)
- Depending on M, the potential can be tuned so to fit the requirements
- Suitable for medium voltage systems (e.g., aqueous batteries)

$Na_{x}M_{2}(PO_{4})_{3}$: the choice of M

Niobium:

- can be reduced from Nb^V to Nb^{III},
 counterbalancing the movement of two sodium ions. In NASICON systems,
 such redox reactions happens at a relatively low potential
- several of its compounds (like Nb₂O₅) are neither toxic nor hazardous
- abundance on Earth's crust comparable to that of Ni and Cu

Aim of this work

- Synthesize two Nb-based NASICONs: NaAlNb(PO₄)₃ and NaFeNb(PO₄)₃, named NANP and NFNP
- Study their morphological and electrochemical properties vs Na
- Study the Operando evolution of such materials via XRD and XAS analyses

NASICONs synthesis

$$\frac{1}{2}Na_{2}CO_{3} + \frac{1}{2}Nb_{2}O_{5} + 3NH_{4}H_{2}PO_{4} + FeC_{2}O_{4}/\frac{1}{2}Al_{2}O_{3} \rightarrow NaMNb(PO_{4})_{3}$$

Diffraction patterns

- Both NASICONs present the same structure (space group R-3c)
- Purity of the NASICONs > 97%
- Impurities: mixed oxides phosphates of the transition metals

From Rietveld Refinement

	NANP	NFNP
Na	0.6	0.66
Al/Fe	0.85	0.98
Nb	1.15	1.02

Morphology and ionic conductivity

More or less regular particles of about
 2 – 5 µm coalesced together

 Relative densities > 98% for both NASICONs

Morphology and ionic conductivity

More or less regular particles of about
 2 – 5 µm coalesced together

 Relative densities > 98% for both NASICONs

Electrochemical performances

Cycle Number

2.1 and 0.9 V vs Na⁺/Na are likely related to Nb reactions

Differential capacity

- In NANP, Nb redox couples operate at lower potentials than in NFNP (1.84 V vs 1.75 V in oxidation)
- After the first cycle Nb^{IV/III} peaks start to separate in two. This is probably due to some kind of degradation of the material

Operando XAS

- Experiment performed at Elettra -(Beamline: XAS)
- Performed in an optical cell -(polyimide window), fluorescence mode

0.0

0.2 0.4

0.6 0.8

1.0 1.2 1.4

0.8

Operando XAS

- Shift in spectra's energy is directly proportional to the state of charge of the element
- It is possible to estimate the oxidation state by taking the energy at which a spectrum reaches a precise µ

Operando XAS

- In both cases, Nb gets reduced in conjunction with the two peaks between 0.9 V and 2.1 V vs Na⁺/Na
- Iron gets reduced only around 2.1 V vs Na⁺/Na

Operando XRD: NFNP

- Experiment performed at ESRF (ID22) on a homemade transmission cell (beryllium windows)
- Electrochemical test: charge and discharge (15 mA g⁻¹)
- Diffraction analyses at 0.35 Å

Operando XRD: NFNP

Conclusions

- Nb-based NASICONs can be easily synthesized with different transition metal elements to tune the operative potential
- Niobium preserves its redox reactions, but the potential at which they happen depends on the nature of the other transition metal
- NaMNb(PO₄)₃ are able to store around 2 Na⁺, but are generally quite unstable and tend to evolve to other structures

Next steps

- Have a better understanding on the effect of the element M in the energy levels of NaMNb(PO₄)₃
- Try to stabilize the Nb-based NASICONs so to reduce their irreversible phase transitions (e.g., encapsulating in scaffolds, stabilizing coatings)
- Evaluate the effect of other elements rather than just Al and Fe

Thank you!

nicolo.pianta@unimib.it

