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Abstract

The representation, quantification and proper management of uncertainty is one of

the central problems in Artificial Intelligence, and particularly so in Machine Learn-

ing, in which uncertainty is intrinsically tied to the inductive nature of the learning

problem. Among different forms of uncertainty, the modeling of imprecision, that is

the problem of dealing with data or knowledge that are imperfect and incomplete,

has recently attracted interest in the research community, for its theoretical and

application-oriented implications on the practice and use of Machine Learning-based

tools and methods.

This work focuses on the problem of dealing with imprecision in Machine Learn-

ing, from two different perspectives. On the one hand, when imprecision affects the

input data to a Machine Learning pipeline, leading to the problem of learning from

imprecise data. On the other hand, when imprecision is used a way to implement

uncertainty quantification for Machine Learning methods, by allowing these latter to

provide set-valued predictions, leading to so-called cautious inference methods. The

aim of this work, then, will be to investigate theoretical as well as empirical issues

related to the two above mentioned settings.

Within the context of learning from imprecise data, focus will be given on the in-

vestigation of the learning from fuzzy labels setting, both from a learning-theoretical

and algorithmic point of view. Main contributions in this sense include: a learning-

theoretical characterization of the hardness of learning from fuzzy labels problem; the

proposal of a novel, pseudo labels-based, ensemble learning algorithm along with its

theoretical study and empirical analysis, by which it is shown to provide promising re-

sults in comparison with the state-of-the-art; the application of this latter algorithm

in three relevant real-world medical problems, in which imprecision occurs, respec-

tively, due to the presence of conflicting expert opinions, the use of vague technical

vocabulary, and the presence of individual variability in biochemical parameters; as

well as the proposal of feature selection algorithms that may help in reducing the

computational complexity of this task or limit the curse of dimensionality.



Within the context of cautious inference, focus will be given to the theoretical

study of three popular cautious inference frameworks, as well as to the development

of novel algorithms and approaches to further the application of cautious inference in

relevant settings. Main contributions in this sense include the study of the theoretical

properties of, and relationships among, decision-theoretic, selective prediction and

conformal prediction methods; the proposal of novel cautious inference techniques

drawing from the interaction between decision-theoretic and conformal predictions

methods, and their evaluation in medical settings; as well as the study of ensemble

of cautious inference models, both from an empirical point of view, as well as from a

theoretical one, by which it is shown that such ensembles could be useful to improve

robustness, generalization, as well as to facilitate application of cautious inference

methods on multi-source and multi-modal data.
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Chapter 1

Introduction

No sub-field of Computer Science has been more impactful in the recent years than

Machine Learning (ML), both in the research community as well as in the industry.

Indeed, nowadays, ML methods have been applied in a variety of settings, from

medicine [197] to finance [95], from computer security [149] to physics [56], with an

increasing number of reported success stories. From a conceptual point of view, ML

can be understood as the discipline concerned with the design of algorithms enabling

the (semi-)automatic extraction of models from data [247], as well as with the study

of the computational and statistical properties of such algorithms [140, 247], in an

attempt to capture implicit regularities and patterns in the data that could be used

to extract actionable knowledge and gain some value.

Being grounded on inductive (or transductive) procedures, ML is intrinsically

related to, and inseparable from, the notion of uncertainty [133]. Indeed, the data

that is used to learn the model is usually not a complete representation of the setting

of interest but rather a finite sample drawn from an unknown distribution: any ML

algorithm, then, can use only such a finite sample to train a model that should ideally

work well, not only on the data used to build it, but also on new data extracted from

the above mentioned unknown distribution from which the data have been drawn.

In this sense, the performance of a learning algorithm is inherently affected, and

should be robust to, the stochastic nature of the data generating process. This form

of uncertainty has been universally acknowledged in the traditional ML framework
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since its inception [248], and most of the development in statistical and algorithmic

learning theory has focused on the discovery, design and study of algorithms whose

performance can be guaranteed a-priori to be robust to the selection of the underlying

data generating distribution, i.e. on so-called distribution-free methods [7, 147, 247].

In real-world settings, however, other forms of uncertainty aside from the above

mentioned stochasticity exist and can impact on the performance and robustness

of any learning algorithm [42]. On the one hand, uncertainty can affect the data

given as input to any learning algorithm. For example, the data can be affected by

noise and errors [8, 182]; the available information could be incomplete, imprecise or

otherwise reflect a lack of knowledge [131]; vagueness or ambiguity could be present

in the definition of relevant characteristics of the data [41]; data can be collected

and aggregated from different sources or annotators that may be in conflict with

each other [27]. On the other hand, uncertainty can affect also the learning process

itself as well as the output of any model obtained by means of this process. Indeed,

not only uncertainty in the input data can be propagated through, and represented

within, the predictions issued by a ML model [133], but also forms of uncertainty

that are inherent in the learning process itself exist, such as under-specification [82],

i.e. the inability to uniquely select a single best model, or data shifts [195], i.e.

mismatches between the training and the deployment distributions.

Most relevantly, all of these forms of uncertainty can severely impact on the

development of ML models as well as on their application and deployment in real-life

decision making contexts [42, 123, 133, 141], especially in so-called critical domains

such as the clinical one [4], making the need for robust approaches even more manifest

than in the classical case [112]. In regard to uncertainty affecting the input to ML

algorithm, even though some types of uncertainty can be handled through standard

techniques such as regularization [160, 281], more generally either pre-processing

uncertainty removal techniques [244] or specialized techniques and algorithms [131]

are required to cope with these many faceted realizations of uncertainty that can

affect the data. However, the underlying assumptions of these methods are rarely

tenable [42], and they often do not offer any form of guarantee about their robustness
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and soundness from a learning-theoretic perspective. On the other hand, uncertainty

that is not properly and reliably accounted for can be unknowingly propagated in the

output of ML models [141], undermining their deployment performance or otherwise

causing such issues as automation bias [39] or detrimental algorithmic aversion [94]

when they are embedded in decision support systems. Furthermore, in both cases,

the presence of uncertainty can make the empirical validation of models in such

situation more complex, thus highlighting the need for robust learning methods that

can be guaranteed to work reliably even based on a biased or otherwise limited and

partial estimate of empirical performance [21, 38, 199]. For these reasons, the issue of

how to handle and communicate uncertainty in ML, as well as the development and

evaluation of methods and algorithms to this purpose, has been widely investigated

in the research community and has now become a blooming research field, as attested

also by the increasing number of scholarly initiatives dedicated to this topic1,2.

The aim of this work is to investigate issues and methods related to the handling

of uncertainty in ML, focusing on a specific form of uncertainty called imprecision [53,

179]. Intuitively, imprecision refers to situations of uncertainty where the available

data or knowledge are either imperfect, incomplete or partially specified. This form

of uncertainty can arise in many natural settings and setups and can manifest itself

in essentially two flavours. First, when it affects the input of the learning process

(i.e. the training data) [131], in which case either the features or the target are

not precisely known but are instead only partially specified. For example, these

partially specified values can be expressed in terms of sets or distributions, in a

very general sense, including probability distributions [11, 93, 164, 256] but also

more general structures, such as possibility degrees [131, 151], belief functions [70,

193, 245] or imprecise probabilities [92, 151]. Such form of imprecision can arise

due to many possible causes, namely due to a lack of knowledge about the domain

of interest, as a way to reduce the annotation bottleneck problem [190], or also as

a form of regularization to reduce noise-sensitiveness [151, 164]. Second, when it

1https://sites.google.com/view/udlworkshop2020/home
2https://sites.google.com/view/wuml2021/
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affects the output of a model (i.e. the predictions issued by the ML model), as a

form of uncertainty quantification [133] that allows to avoid issuing predictions that

are at risk of being incorrect due to uncertainty in the learning process and instead

resorting to partial abstention, i.e. allowing ML models that are able to predict sets

of possible candidate labels so as to suggest a situation of indecision and thus nudge

the decision makers using the ML model towards being more wary and cautious,

requiring new information to arrive at a decision [141].

Thus, while in the first sense imprecision is seen as a problem of learning from

imprecise data [92, 131], i.e. data that is not complete but only partially specified,

with the aim of developing algorithms that can learn from such data despite their

incompleteness as well as to study the properties of such algorithms; in the second

sense imprecision is seen instead as a resource, as a way to implement cautious

inference methods [133], i.e. ML methods that strike a trade-off between accuracy

and precision [174], allowing models that are sometimes less precise and informative

but, at the same time, more robust and accurate (and thus, hopefully, more useful).

The rest of this chapter will be devoted to describing in greater detail the

two above mentioned problems, to reviewing the developments and state-of-the-art

methodologies introduced in these settings as well as some of the most relevant gaps

in the literature, and to describing the main contributions and outline of the rest of

this work. More precisely, Section 1.1 will be devoted to a brief review of the basic

setting of supervised ML, so as to outline how the issue of imprecision handling, in

the two senses mentioned above, arises as a generalization of it. For each of the two

settings, the existing state-of-the-art and some relevant research problems will be de-

scribed, thus outlining the motivation and main contributions of this work. In regard

to the research problems, in particular, these will appear numbered and highlighted

in bold to denote that the contributions appearing in this thesis will be devoted

at addressing them. Then, Section 1.2 will be devoted to describing the setting of

learning from imprecise data, while Section 1.3 will instead focus on the setting of

cautious inference. Then, Section 1.4 will outline the contents and contributions

within the rest of this work.
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1.1 Supervised Machine Learning

As mentioned in the introduction, supervised learning could be understood as the

problem of constructing a model that is able to generalize to new data given a finite

sample of data drawn from the same distribution [219]. Formally, one can assume

the existence of a data space Z which can be represented as Z = X × Y , with X

being the feature space, i.e. the space of characteristics of instances that are relevant

for their predictive value, and Y being the target space, i.e. the characteristics one

is interested in predicting and which represent the supervision. Instances, then,

are assumed to be drawn i.i.d (independent and identically distributed) from an

unknown data generating distribution D ∈ P(X × Y ), i.e. a probability measure

over X × Y . The learning task of supervised ML is then usually defined in relative

terms, by referring to a predefined class of functions (or, hypotheses) H, with ∀h ∈
H, h : X 7→ Y . Intuitively H represents the class of models from which a learning

algorithm is allowed to select from: this latter can be understood as a function

A : Z∗ 7→ H, i.e. a function that accepts a finite sequence S of elements from Z (a

training set) and returns an hypothesis h ∈ H. In the most general setting where no

assumption is made about A, such as when using a non-parametric learning method,

H can be easily assumed to be the class of all measurable functions over Z.

The main goal in the supervised learning setting is then to find a model that fits

well the data generating distribution. To formalize this idea, the notion of a loss

function l : Y × Y 7→ R is introduced, where the value l(y, h(x)) represents the cost

of predicting h(x) when the correct target value is y. Thus, one defines the true

risk of a function h as LD(h) =
∫
Z
l(y, h(x))dz, which represents the expected cost

incurred by h when making predictions on instances sampled from the distribution

D. The main problem in supervised learning can then be formulated as:

Definition 1. Find an algorithm A s.t., given any training set S = ((x1, y1), ..., (xm, ym))

and a class of functions H, with probability greater than 1− δ returns an hypothesis

h ∈ H s.t.

|LD(h)− LD(h
∗)| ≤ ϵ(m, δ), (1.1)
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where h∗ = argminh∈H LD(h) is the function with minimal risk among H, and ϵ(m, δ)

represents an approximation term which decreases monotonically with both m and δ.

Thus, the above definition formalizes the intuition that the main goal in su-

pervised learning setting is to find algorithms that can provide, based only on finite

samples, models that are as good as those that would be obtained had one had access

to the whole data generating distribution. Notably, however, the data generating dis-

tribution D is not known a priori which means that Problem 1 is an ill-posed inverse

problem [247] since the true risk cannot be computed. The true risk can however be

estimated as the empirical risk :

LS(h) =
1

|S|
∑

(x,y)∈S
l(y, h(x)) (1.2)

giving rise to the effective empirical risk minimization (ERM) [246] meta-algorithm,

i.e. selecting the model that best fits the training data:

ERM(H, S) = argmin
h∈H

LS(h). (1.3)

Surprisingly, despite its simplicity, seminal results in statistical learning theory (see

e.g. [176, 248]) show that ERM is sufficient to solve Problem 1 as long as the chosen

class of models H has low capacity, i.e. it is not able to fit arbitrarily well random

data, thus providing a simple yet universal learning algorithm3. The above mentioned

paradigm has a surprisingly broad applicability, indeed the ERM paradigm and

its variations (such as regularized [234] and structural risk minimization [246]) can

be used to describe common ML paradigms such as SVM [224] and deep learning

[115] as well as statistical methods such as maximum likelihood [246] or Bayesian

learning [230]. Furthermore variations on the ERM paradigm can also be used to

handle specific forms of uncertainty, such as noisy data [8] or distribution shifts

[199]. Despite this broad applicability, however, the handling of imprecision cannot
3Here the focus in only on the risk and sample complexity of the learning algorithm A. In

general, if one also wants to take into account other computational resources, such as the time

complexity, ERM may not be a satisfying solution as for many model classes ERM is NP-hard

[139].
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be directly realized within the standard supervised setting, as will be illustrated in

the following two sections.

1.2 Learning from Imprecise Data

The handling of imprecision in the input of a ML algorithm arises as a generalization

of the above mentioned supervised learning setting, as a way to model the incorpora-

tion of incomplete and imprecise data in the training process. In fact, one no longer

assumes that the input is complete but rather both the features and the target su-

pervision are allowed to be incomplete or otherwise be only partially specified [131].

More precisely, the input space is not assumed to be in the form X × Y , but rather,

in abstract terms, as S(X) × S(Y ) where S(X),S(Y ) are collections of structures,

over X and Y respectively, encoding partial information according to a knowledge

representation formalism.

To make things more concrete and easier to understand, consider an example from

the computer vision domain, in which the objective is to automatically tag images

with an animal they depict. Each instance is represented as an image (i.e. an array of

pixels), thus no imprecision is introduced in the feature space and therefore S(X) =

X. By contrast, since the main subject of an image could be partially occluded, the

image could have been taken in bad lighting conditions or could otherwise be affected

by noise, one may assume that the annotator is not always able to precisely describe

which animal is depicted in the image, but rather may be partially undecided about

the correct labeling. Thus, for example, an image could be tagged with the set

{horse, pony, zebra}, and thus S(Y ) = 2Y , suggesting that the animal shown on the

picture is either an horse, a pony, or a zebra and, though it is not exactly known

which of them, it is known that other animals (e.g., an elephant) are excluded.

More in general, a variety of formalisms for representing imprecise information

about the input space have been considered in the literature [75, 89, 131]. The sim-

plest and more restricted form of imprecision is represented by the tasks of learning

with missing data [202] and semi-supervised learning [63], in which imprecision is
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all-or-nothing : the available features and targets are either precisely defined and cor-

respond to a single value, or they are completely unknown and then all relevant values

are deemed equally possible and a-priori equally plausible. Both of these settings

have been widely studied from the theoretical [30, 162, 216] as well as the algorithmic

and empirical point of view. In the case of missing data, imputation [244], i.e. tech-

niques to fill in missing values, and latent variables likelihood-based methods [156]

are routinely applied in practical problems. In the case of semi-supervised learning,

several algorithms and methods have been proposed [63]: these include theoretically

justified generalizations of standard ML methods such as SVM [25] or manifold reg-

ularization [22], as well as heuristic methods such as pseudo-label learning [146] and

self-supervised learning [239].

Missing data and semi-supervised learning, however, do not exhaust the scope of

all possible forms of imprecision and, therefore, other more general formalisms and

settings have been studied in the specialized literature. A very general framework

in this sense is the case of fuzzy data [131] which encompasses, as special cases,

the above mentioned missing data and semi-supervised learning settings as well as

other commonly studied forms of imprecision, such as the case of set-valued data

[69, 75]. The task of learning from fuzzy data and its sub-problems, in particular,

have attracted interest for their potential use as a form of weakly supervised learning

to avoid the annotation bottleneck of supervised learning [190], as well as for their

wide-ranging occurrence in practical settings: indeed, fuzzy data can be used to

model subjective information [41] or data from conflicting sources [20, 280], they can

arise as a result of anonymization techniques [207, 221], they can be used to model

uncertain or gradual information [42, 129] and can even be used to model noise,

errors and outliers in data [152] thus in principle allowing to frame other forms of

uncertainty under the perspective of learning from imprecise data.

Formally, in the general case of learning from fuzzy data, imprecision is repre-

sented by setting S(X) = [0, 1]X ,S(Y ) = [0, 1]Y , that is each instance is repre-

sented as a fuzzy set over the instance space. These fuzzy sets have an epistemic

semantics and represent possibility distributions [76, 97]: only one of the possible
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instantiations, i.e. the precise datasets compatible with the original imprecise one,

is the correct one and the fuzzy membership degrees, then, describe their possi-

bility, i.e. they provide an indication of the relative plausibility, according to the

sensors or agents who produced or annotated the data, they indeed represent the

correct instantiation. Restricted forms of fuzzy data can then be obtained by con-

straining the above mentioned possibility distributions: for example, the problem

of learning from set-valued data can be obtained by requiring that all possibility

distributions are boolean (i.e. S(X) = {0, 1}X ,S(Y ) = {0, 1}Y ), while the cases of

missing data and semi-supervised learning can be obtained by requiring, respectively,

that S(X) = X ∪ {⊥} and S(Y ) = Y ∪ {⊥}, where, in both cases, ⊥ represents

that any value in the corresponding domain is a-priori possible. Going back to the

imaging example introduced previously, to provide intuition about the use of fuzzy

data as a way to model imprecision in ML tasks, an image could be tagged with

{horse : 1, pony : 0.8, zebra : 0.5, dog : 0.0}, suggesting that the animal shown on the

picture is one among {horse, pony, zebra} and certainly not a dog : though it is not

exactly known which of them, horse is deemed more plausible than pony, which in

turn is deemed more plausible than zebra.

Aside from definitional and conceptual issues, the use of fuzzy data to model im-

precision in the input of a ML task has remarkable implications for the learning task

of learning from imprecise data. In this setting, the data is assumed to be generated

i.i.d. from a random fuzzy set [81] D̃ defined over P(S(X) × S(Y ) × X × Y ), i.e.

a distribution over tuples (πX , πY , x, y), where πX , πY are possibility distributions

over X and Y respectively, (x, y) is a corresponding precise instantiation, satisfy-

ing πX(x) > 0, πY (y) > 0. However, any learning algorithm is not given access to

the above mentioned complete distribution, from which the ERM algorithm could

be applied on the precise instantiations, but rather only to the imprecise instances

sampled from the marginal D̃ ↓ (S(X)×S(Y )). The aim of the learning from fuzzy

data problem can then be formulated as:

Definition 2. Find A s.t., given any imprecise training set S̃ = ((πX
1 , πY

1 ), ..., (π
X
m , πY

m))

and a class of function H, with probability greater than 1 − δ returns an hypothesis

9



h ∈ H s.t.

|LD̃(h)− LD̃(h
∗)| ≤ ϵ(m, δ), (1.4)

where ∀h ∈ H, LD̃(h) =
∫
l(y, h(πX))dD̃ and h∗ = argminh∈H LD̃(h).

Notably, even though the learning algorithm A is given only an imprecise training

set S̃, the model h given as output by A is evaluated in terms of its true risk, rather

than a possible definition of risk over imprecise instances. A practical approach to

address the task of learning from imprecise data is to understand this latter as a

combination of two different tasks [131], that are, disambiguation of the imprecise

data, i.e. finding a suitable instantiation of the imprecise data, a precise dataset

that should be as close as possible to the real but unknown one; second, learning,

i.e. finding a model that fits as well as possible the true disambiguated data and

generalize well on new, previously unobserved, data. While the learning sub-problem

is essentially equivalent, mutatis mutandis, to the one described in Definition 1 for

the case of fully supervised learning, nonetheless it is easy to observe that the gen-

eral problem of learning from fuzzy data is inherently more difficult than supervised

learning. Indeed, not only the learner can access just a finite sample from the data

generating distribution, but also the true representation of the instances in the train-

ing set is unknown to the learner. As a consequence of the former observations, the

ERM approach, as well as other standard ML approaches, cannot be directly applied

to solve this joint learning problem. Thus, several methods have been proposed or

adapted to this setting, including:

• Instance-based methods, such as generalized nearest neighbors [26, 145] and

related approaches [16, 259, 276]. These methods adapt transductive instance-

based learning algorithms for supervised learning to the case of imprecise data,

either by defining appropriate generalizations of the notion of distance between

instances, or by adopting some variation of weight-based voting;

• Heuristic methods, such as pseudo-label learning [146] or label purification [165,

262]. The core idea underlying these methods is to train iteratively a standard

supervised learning model: first, the model is trained based on a subset of

10



precise data, then the predictions of the model are used to augment the precise

dataset and re-train the model in subsequent steps;

• Generalized risk minimization approaches, such as optimistic risk minimization

[131], pessimistic risk minimization [121] and variants thereof [70, 75, 89, 132,

137]. These models start from the definition of a generalized loss function that

can then be used to directly extend the ERM principle to imprecise data.

Despite the abundance of learning algorithms and models to address the problem of

learning from fuzzy data, several issues and questions remain open in the specialized

literature, both from the the theoretical and empirical points of view.

From the theoretical standpoint, even the very question of the learnability of

learning from imprecise data, i.e. whether Problem 2 can be solved at all and with

which resource constraints, has yet to receive a satisfying answer in all but the most

basic cases. Drawing from the statistical literature concerned with censored data [44,

109] and robust inference [59, 60], previous works [38, 75, 158] have studied the learn-

ability of the optimistic risk minimization [131] approach in the superset learning

setting, i.e. the case where imprecision only affects the target labels and is given in

the form of boolean possibility distributions (i.e. sets). In this setting, general, albeit

distribution conditional4, risk and sample complexity bounds have been provided.

By contrast so far no work has considered the learnability of more general

types of imprecise data, as well as of other learning algorithms (P1.1). This

gap is further exacerbated by the fact that the above mentioned results assume that

the optimistic risk minimization problem can actually be solved efficiently. However,

the optimization problems underlying the optimistic risk minimization approach are

non-convex and non-smooth and are therefore not computationally feasible in real-

world settings, thus limiting the applicability of the above mentioned results [38].

4Namely, the risk bound in Eq. (1.4) generally depends not only on m and δ but also on the

data generating distribution D. This property is remarkable, as in the standard supervised learning

setting analogous results are usually distribution-free. Notably, as shown in [38], such a property,

even though in general undesirable, is inevitable in learning from imprecise data.
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Thus, results for other learning paradigms would be of interest, however such results,

have not been provided in previous work.

An additional limitation in current state of the art regards the fact that most

work in the learning from imprecise data setting has focused on classification (or, to

a smaller degree, regression), while other tasks have so far been overlooked. A rather

striking instance of this problem regards the lack of study related to the tasks

of feature selection and dimensionality reduction (P1.2). The importance of

these tasks in the learning from imprecise data settings stems from a feature of the

above mentioned theoretical results, namely their dimensionality- dependence: intu-

itively, this means that, without further assumptions, the risk of overfitting increases

at least linearly with the dimensionality of the input space. While such a property by

itself is not remarkable, indeed dimensionality-dependence also occurs in supervised

learning unless stronger assumptions (e.g. margin assumption) are made, a conse-

quence of it is that the availability of effective dimensionality reduction methods is

of critical importance for reducing model complexity, improving generalization and

hence control the so-called curse of dimensionality. However, limited work [16, 259,

276] has focused on this topic and the existing methods rely on strong parametric and

distributional assumptions, limiting their applicability and real-world performance.

In parallel to the above mentioned gaps in the theoretical knowledge about the

learning from imprecise data setting, under the empirical point of view, even though

several algorithms have been proposed in the literature, few works have compared

their empirical performance. Indeed, existing experimental comparisons [38, 102,

165, 262] have mainly considered prototypical evaluations of proposed learning meth-

ods against naive baselines or a limited set of competitive approaches and mostly

employed relatively small and toy benchmark datasets while no comprehensive

evaluation of data analysis and learning algorithms for these tasks has

been performed (P1.3). Also, the evaluation of the above mentioned algorithms

in practical, real-world problems has rarely been considered [64, 209, 256].

12



1.3 Cautious Inference

In contrast to the case of imprecision handling in the input of a ML algorithm, in

the output imprecision is used as a way to implement cautious inference [84], that is

a generalization of supervised learning in which the Machine Learning (ML) models

are allowed to express set-valued imprecise predictions, which can be understood

as being affected by imprecision in the sense that they do not precisely refer to a

single decision or prediction. The imprecise predictions allow the ML models to

highlight a possible state of uncertainty, suggesting that the prediction should be

discarded, that it should require further intervention from a human decision maker

[46]. Therefore, such techniques have been advocated as a promising approach in

the uncertainty quantification setting [133], to develop reliable ML-based decision

support in so-called decision-critical domains, e.g. medicine [141]. Indeed, in all

these settings, errors induced by ML models could have high-impact consequences.

Therefore, the decision makers could accept imprecise but more reliable predictions,

which could then be used either to take a decision, if the risk of doing so is deemed

acceptable, or to prompt the need to collect more information in order to reduce the

imprecision and foster human-in-the-loop decision-making [12, 32, 127, 157, 180].

As an example of this setting, consider a medical diagnosis scenario. Here in-

stances are represented by medical cases which may be described by vectors in the

input space X that characterize each such case with the presence or absence of cer-

tain symptoms. While the aim is to associate each symptomatic manifestation x ∈ X

with a given diagnosis y ∈ Y to enable appropriate treatment, some manifestations

could be characteristic of multiple diseases y1, . . . , yk. If these diseases correspond

to different and potentially contradictory treatment plans which may have negative

consequences for the involved patients then issuing any single, precise prediction

could have too large a cost. By contrast, additional medical tests could be used

to perform a differential diagnosis and consequently arrive at the correct decision.

Hence, a cautious inference method would issue an imprecise prediction in the form

{y1, . . . , yk} to denote the above mentioned state of uncertainty.
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Formally speaking, imprecision in the output of a ML algorithm can be formalized

as relaxing the assumption that ∀h ∈ H, h : X → Y , and instead allowing models

that are able to partially abstain and provide imprecise predictions, i.e. h : X → 2Y ,

with the aim of minimizing some generalized definition of loss l : Y × 2Y → R. Simi-

larly to the case of learning from imprecise data, and even more markedly so, the def-

inition of such a loss function depends on the considered cautious inference paradigm

and many different cautious learning techniques have been proposed. These include:

• Decision-theoretic models [173, 181, 179], including models based on impre-

cise probabilities [263, 271] or belief functions [161, 166], as well as three-way

decision theory [267, 47]. Decision-theoretic models directly generalize the ex-

pected utility criterion [84] by assigning an utility value to set-valued imprecise

predictions [264], so that any given loss function l : Y × Y → R is extended to

a generalized loss function l̃ : 2Y × Y → R which can then be used to select

the decision-theoretically optimal imprecise prediction for any given instance;

• Selective prediction [110, 192], which encompasses approaches based on a gen-

eralization of supervised loss-based learning obtained by combining a standard

supervised model with a model that controls when to issue an imprecise predic-

tion (more specifically, an abstain prediction [261]) and jointly learning both

models by means of learning rules based on version space learning [171] or other

theoretically-grounded learning paradigms [74];

• Conformal prediction [7, 13, 251], a general post-hoc approach to obtain cali-

brated cautious inference methods starting from any supervised model, based

on evaluating the similarity of any given instance with the training set and

then applying ideas from non-parametric frequentist statistics [217] to obtain

confidence sets or intervals around the prediction issued by the former model.

Clearly, by changing the type of expected prediction, from single-valued precise to

set-valued imprecise ones, cautious inference methods entail a trade-off between dif-

ferent quality dimensions, that should be properly evaluated so as take into account

different desirable properties:
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• Cost-sentitiveness [99]: that is, whether an imprecise model properly takes into

account information about the utilities and costs of the alternative decisions;

• Validity [251]: that is, whether the reduction in risk, or increased robustness,

offered by the imprecise model can be analytically characterized or bounded;

• Efficiency [252]: that is, whether the imprecise predictions provided by the

model are as informative as possible, i.e. its set-valued predictions are as small

as possible while still preserving the two above mentioned properties.

In recent years, compared to the learning from imprecise data setting, cautious

inference and thus the handling of imprecision in the output of ML model has become

a more established and mature field within the uncertainty quantification literature.

Indeed, all the mentioned models have been successfully employed in practical ap-

plications: ranging from drug discovery [6, 33] and protein function classification

[241] to prediction of financial trends [187] and natural language processing [261].

Additionally, strong emphasis has been placed on reducing the computational com-

plexity of these methods, which is often larger than that of standard supervised

learning5, to enable their use also in large-scale problems: such approaches include

general heuristics or utility-specific algorithms to reduce the complexity of decision-

theoretic methods [45, 173], inductive conformal prediction [184], as well as the gen-

eralization of standard approaches adopted in statistical learning theory to reduce

the computational complexity of learning, e.g. boosting [74].

On the other hand, several gaps still remain open in regard to the theoretical

study of cautious inference approaches. The first such limitation regards the fact

that the study of the theoretical properties of different cautious inference meth-

ods has been mostly isolated, with scarce communication and translation of results

among different approaches and research on different methods mainly focusing on

different properties among the ones mentioned above. Indeed, while work centered

on decision-theoretic methods has emphasized the balance among cost-sensitiveness

5Indeed, e.g. the worst-case computational complexity of decision-theoretic methods is expo-

nential in the number of classes, while selective prediction is in general NP-hard.
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and validity, research related to conformal prediction and selective prediction has

instead mainly focused on the trade-off between validity and efficiency. Thus, an

important missing step regards the definition of a general picture drawing re-

lationships among different approaches and their theoretical properties,

establishing conditions for equivalence or comparability among different

cautious inference approaches (P2.1).

A related theoretical, but also empirical, gap, stems from one of the main fo-

cuses in the cautious inference literature, which is the study of the so-called validity-

efficiency trade-off, i.e. the strive in cautious inference between more precise and

more accurate predictions while preserving desirable computational and data effi-

ciency. Drawing from analogy with the bias-variance trade-off [177] in standard

supervised learning and, especially, from the theoretical and empirical effectiveness

of ensemble methods in addressing the bias-variance trade-off [274], the use of ensem-

bles and combination methods in cautious inference has been recently investigated

as a promising way to address the above mentioned trade-off [236], to improve the

generalization of standard ensemble models by reducing the overfitting of the base

models [18], as well as to increase accuracy of cautious classifiers without an exces-

sive impact on computational complexity and data efficiency [57, 250]. Indeed, this

idea has long been studied in the fields of information fusion, to enable the com-

bination of imprecise probabilities and similar uncertainty quantification structures

[14, 72, 194], and statistical inference, as a way to combine and aggregate results

from multiple hypothesis tests or confidence intervals [163] in meta-analysis studies

[119], as well as more recently in the study of regularization mechanisms for standard

ensemble learning, for reducing overfitting and improving uncertainty quantification

and robustness by using cautious inference models as the base classifiers [18, 188].

Nonetheless, compared to the study of ensemble methods in supervised ML setting,

which is an established field from both the theoretical and empirical point of views

[204, 213, 274], the advantages and limitations of ensemble methods for im-

precise classifiers have not yet been clarified save in idealized settings,

neither from a theoretical nor from an empirical point of view (P2.2). In
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regard to the theoretical properties of such ensemble methods, most studies so far

assumed independence of the combined imprecise classifiers [236], relied on hard-

to-verify or hard-to-realize assumptions about the data generating distribution or

the ensemble mechanism [57], and were in general shown to fail at preserving the

properties (e.g. validity) enjoyed by the cautious classifiers to be combined [153].

Similarly, in regard to the empirical point of view, limited work has been performed

in regard to analyzing the effective usefulness of ensembles of cautious classifiers,

with most existing work in this sense limited to evaluation on small collections of

simple benchmark datasets [14, 18, 153].

A final, but practically very relevant, gap regards the ecological utility of cau-

tious inference methods. Indeed, even though the practical application of cautious

inference methods has been seriously investigated in the literature, most works have

focused on the utility of such methods as techniques to improve the accuracy and ro-

bustness in solving the desired problems as compared with standard ML techniques

[141, 235, 266, 272]. Nonetheless, as has been previously discussed the study and

use of imprecise classifiers has been motivated in the literature as a way to enable

more-informed and less risky AI-supported human decision-making [141]: however,

while these methods has been improve the decision-making accuracy of the humans

who interact with them [12, 32], the practical usefulness to human decision-makers

equipped with this kind of support, and more in general the user-oriented impact

on the socio-technical system that embeds these types of support, has rarely been

evaluated in the real world [220] and the ability of imprecise classifiers to reduce or

mitigate negative biases due to the use of AI, e.g. automation bias or deskilling, has

not yet been evaluated.

1.4 Outline and Main Contributions

As previously mentioned, the aim of this thesis is to present a collection of contribu-

tions to the problem of handling imprecision in ML, focusing both on the problem

of learning from imprecise data as well as the problem of cautious inference so as
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to address the above mentioned gaps in these two research fields. In particular,

as emphasized in the title of the thesis, the focus will be on robust learning meth-

ods, i.e. methods and algorithms which can be proved to work reliably and satisfy

statistical and computational guarantees under reasonable but sufficiently general

assumptions about the data. In regard to the problem of learning from imprecise

data, which will be considered in Part I, the focus is mainly on the learning from

fuzzy label setting, i.e. the setting where imprecision affects the target features and

is represented in the form of a fuzzy set or possibility distribution. The decision to

focus on this setting has been motivated by the fact that even though, obviously, it is

more restrictive than the full learning from imprecise data one, it occurs commonly

in several application scenarios, providing a generalization of common settings [190]

such as partial label learning [75], semi-supervised learning [63] and learning from

multi-rater observations [225], and still retains a significant degree of complexity,

both from a conceptual and computational point of view. Nonetheless, despite this

focus, the later chapters of this part will generalize the application of methods for

learning from fuzzy labels to more general learning from imprecise data settings. In

detail, the major contributions in this context are as follows:

• Chapter 2 focuses on the study of the learning from fuzzy label setting from a

theoretical as well as empirical point of view, in order to address research prob-

lems P1.1 and P1.3. Theoretically, the main contributions are a characteriza-

tion of the learnability of this problem by analyzing two of the main learning

paradigms proposed in this setting, namely the generalized risk minimization

approach and instance-based methods, which will be given in Section 2.1 as

well as the proposal and study of a novel pseudo-label ensemble-based method

called RRL (random resampling-based learning). Empirically, the main contri-

bution regards an extensive evaluation of learning algorithms on both synthetic

as well as real datasets, showing the empirical effectiveness of RRL compared

with other state-of-the-art algorithm for learning from fuzzy labels;

• Chapter 3 focuses on the problem of feature selection with imprecise data, so
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as to address research problem P1.2. To this end, the main theoretical con-

tribution will be the proposal of a novel feature selection approach based on

the combination of Rough Set theory [185] and the generalized risk minimiza-

tion paradigm, the systematic study of its computational properties in both

the superset learning, in Section 3.1, and learning from fuzzy label settings, in

Section 3.2, as well as the proposal of an efficient implementation of such an

algorithm based on generic algorithms. From the empirical point of view, the

main contribution will be an extensive benchmark analysis of its effectiveness,

both in terms of accuracy and computational complexity, in comparison with

the state-of-the-art method, in Section 3.3.

• Finally, Chapter 4 describes real-world applications of methods for learning

from imprecise data in medical settings, focusing in particular on the applica-

tion of the developed RRL algorithm and related variations, so as to address

research problem P1.3. Section 4.1 focuses on the application of learning from

fuzzy label methods in the problem of multi-rater ground truthing, that is the

task of obtaining a ground truth supervision from a set of potentially conflict-

ing labels provided by multiple annotators. By contrast, Sections 4.2 and 4.3

depart from the learning from fuzzy label setting and instead consider the more

general setting of learning from fuzzy data setting, in which imprecision can

also affect the features: more specifically, Section 4.2 focuses on the applica-

tion of methods for learning from fuzzy data to model and manage imprecise

data arising from vague medical terminology, while Section 4.3 focuses on the

application of such methods to problem of modeling and managing individual

variation in biomedical data, i.e. the intrinsic and characteristic patterns of

variation pertaining to a given instance or the measurement process.

In regard to the setting of cautious inference and imprecision in the output of

ML algorithms, which will be considered in Part II, the focus will be mainly on

the study of three-way decision and conformal prediction methods, their relationship

with other cautious inference methods and their ensembling. The focus on these two
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cautious inference paradigms has been motivated by their growing popularity in the

ML and data science communities, as well as due to their generality and easeness

of application: indeed, both methods can be applied as general-purpose, post-hoc

uncertainty quantification mechanisms [7, 45, 47]. In detail, the major contributions

in this context are as follows:

• Chapter 5 focuses on the study of the foundations of cautious inference meth-

ods, studying the theoretical relationships among three-way decision, selec-

tive prediction and conformal prediction, in order to address research problem

P2.1. Theoretically, the main contributions are characterizations of the con-

ditions under which the three above mentioned paradigms can be considered

equivalent, by studying separately the correspondence between three-way de-

cision and selective prediction, on the one hand in Section 5.1, and three-way

decision and conformal prediction, on the other hand in Section 5.2. This lat-

ter analysis, in particular, will lead to the definition of a novel non-conformity

measure for conformal prediction based on three-way decision as well as the

generalization of conformal prediction methods to the weakly supervised set-

ting. These latter methods will then be applied to evaluate the ecological utility

of cautious inference methods in a pilot user study based on a real-world medi-

cal problem, as an initial step toward addressing the above mentioned research

problem related to the socio-technical impact of cautious inference methods;

• Chapter 6 focuses on the study of ensembling methods for cautious inference

algorithms, so as to address research problem P2.2. First, Section 6.1 will

be devoted to a large-scale experimental comparison of ensembling methods,

with the aim of considering the benefits and limitations offered by ensembles

of cautious inference methods. In particular, the main contribution will re-

gard the study of the performance of such ensembles and their robustness to

noise and the curse of dimensionality in comparison with standard, state-of-

the-art, ensemble methods. The following section, Section 6.2, will instead

address the theoretical properties of ensembles of cautious inference methods:
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in particular, focusing on the conformal prediction framework, the aim will be

to study conditions for validity and efficiency of such ensembles under very

general conditions by adopting an information fusion perspective on ensem-

bling where the validity and efficiency of different combination methods will

be studied by means of a copula-based approach. These theoretical contribu-

tions will be complemented by an empirical contribution, where the studied

ensemble methods will be evaluated in the setting of multi-variate time series

classification, showing the efficacy of such ensemble methods in comparison

with state-of-the-art supervised learning as well as cautious inference methods.

Finally, the Conclusion, in Chapter 7, will provide a summary on the main con-

tributions in this thesis, as well as delineate some relevant directions for future work.

A summative, graphical description of the main concepts studied in this section, as

well as the of the related contributions, is given in Figure 1.1.
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Part I

Dealing with Imprecision in the

Input: Learning from Imprecise Data
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The focus of the first part of this work will be on the handling of imprecision in

the input of a ML task, that is the problem of learning a ML model based on an

imprecise and incomplete ground truth dataset. In particular, the focus will mostly

be on the problem of learning from fuzzy label, where only the target supervision

is affected by imprecision and this latter is represented in the form of a fuzzy set

encoding a possibility distribution which describes the uncertainty of the annotating

agent(s).

As will be described in the following chapters, the rationale to focus on this prob-

lem is twofold: first, the problem of learning from fuzzy label represents one of the

most commonly occurring settings in learning from imprecise data [131, 151]; sec-

ond, compared to more general forms of imprecision (and, in particular, the general

problem of learning from fuzzy data), the learning from fuzzy label problem allows

to retain and focus on the main features underlying the handling of imprecise data,

while limiting the computational complexity [131]. Nonetheless, the final chapters

of this part will illustrate the application of methods developed in the learning from

fuzzy label setting in the more general setting of fuzzy data.

In the first chapter, the main objective will be to study a theoretical character-

ization of the statistical and computational properties of learning from fuzzy label

setting, with the aim of addressing research question P1.1 concerning the learnabil-

ity of this setting. The aim of this first chapter will then be to understand whether

the learning from fuzzy label problem is feasible from a statistical point of view (i.e.

is it really possible to learn from data affected by this form of imprecision?) using

an approach building on PAC learning theory, one of the most popular theoretical

frameworks in ML theory. In particular, results will be derived for both GRM-

like algorithms, providing a generalization of previous results about the application

of this methodology in the superset learning setting, as well as for instance-based

methods. Aside from the theoretical study of the two above mentioned approaches,

the major contribution in this chapter will be the proposal and formal analysis of a

novel ensemble-based approach, called RRL (random resampling-based learning) and

based on the pseudo-label learning paradigm, which will be shown to exhibit statis-
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tical and computational properties that strike a balance between the two above men-

tioned methodologies. Building on these theoretical development, the first chapter

also provides an empirical comparison of the performance of several existing learning

algorithms for learning from fuzzy label, with the aim of addressing research ques-

tion P1.3. The considered empirical analysis encompasses several state-of-the-art

methods, including different implementations of the GRM and instance-based ap-

proaches as well as the above mentioned RRL algorithm, which are evaluated on a

large collection of benchmark datasets, including both synthetic as well as real-world

examples of learning from fuzzy label datasets.

In the second chapter, on the other hand, the focus will be on the problem

of feature selection and dimensionality reduction in the learning from fuzzy label

setting, with the aim of addressing research question P1.2. As mentioned in the

introduction, this setting has been much less studied than classification, and only

a single state-of-the-art algorithm, called DELIN, has so far been proposed in the

literature. The main contribution will be the development of a novel feature selection

method, based on Rough Set theory and the GRM paradigm, along with the study

of the proposed methodology from a computational point of view, analyzing the

computational complexity of the associated problems as well as proposing different

algorithms based both on standard greedy heuristics as well as meta-heuristics based

on evolutionary computing. Finally, the effectiveness of the proposed approach will

be evaluated in comparison with the state-of-the-art both in the superset learning

as well as in the learning form fuzzy label settings.

Finally, the last three chapters of the first part will be devoted at exploring ap-

plications of learning from fuzzy label in real-world problem arising from the clinical

setting, thus contributing to addressing research question P1.3.
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Chapter 2

Learning from Fuzzy Label

The Learning from fuzzy label problem [131] refers to a generalization of the standard

supervised Machine Learning problem, subsuming also other weakly supervised [282]

learning paradigms such as semi-supervised and superset learning [159]. In this

setting, instead of assuming precise observations (x, y) in the input space X × Y

(where X is the set of predictive features, and Y is the set of possible classification

target labels), the target information is allowed to be only weakly specified as a fuzzy

set. Thus, in the general formalism described in the Introduction, the input space

can be described as X × S(Y ), where S(Y ) = [0, 1]Y . These imprecise observations

(x, πY ), where πY is a fuzzy set over the set of labels Y , represent the uncertainty

of the agent that produced the label annotations and have an associated epistemic

semantics [79, 81]: there is an underlying true label associated with the observation

which is not precisely known, but the uncertainty with respect to its true value can

be represented through a possibility distribution [87].

In recent years, the learning from fuzzy label problem has attracted increasing

interest [2, 77], both because of the relative ease of acquiring data of this type

compared to other types of imprecise data [129] (data for learning from fuzzy label

problem can be easily acquired in multi-rater annotation settings [50, 214], or through

the use of self-labeling techniques [131, 273, 151]), to its flexibility (indeed, both

semi-supervised learning and partial label learning can be understood as special

cases of learning from fuzzy label) and also due to the availability of effective learning
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algorithms, such as generalized risk minimization (GRM) [131, 179, 214], generalized

nearest neighbor and instance-based methods (GNN) [90, 179, 232, 254] or pseudo-

label methods (PL) [146].

The first aim of this chapter will be to study a theoretical characterization of this

setting, from the perspective of Statistical Learning Theory (SLT), thus providing

an answer to research question P1.1, concerning the learnability of learning from

fuzzy label. To recall this theoretical question, following Definition 2, this amounts

to asking whether it is in general possible to find an algorithm whose true risk can be

made arbitrarily close to the optimal classifier (either relatively to a pre-defined com-

parison class H, or with respect to the Bayes classifier, i.e. the measurable function

with lowest absolute risk). Obviously, this is a problem of general interest in SLT.

Such interest derives primarily from a characterization of the standard supervised

learning, in which Vapnik and Chervonenkis [248], Valiant [243] and later Natarajan

[176], provided a positive answer to the analogous question described by Definition

1 by deriving two remarkable results. First, that the generalization gap ϵ(m, δ) (i.e.

the right-side of inequality in Definition 1) for any function class H can be charac-

terized as a polynomial function of the complexity of H itself, measured through e.g.

its Natarajan dimension d [83, 176]:

d(H) = argmax{|C|, C ⊆ X : (2.1)

∃f0, f1 : C → Y s.t. ∀x ∈ C, f0(x) ̸= f1(x)

∧ (∀B ⊆ C, ∃h ∈ H s.t. ∀x ∈ B, h(x) = f0(x) ∧ ∀x /∈ B, h(x) = f1(x)}

which intuitively measures the ability of H to arbitrarily discriminate between pairs

of classes from Y , or its Rademacher complexity [19]:

R(H, S) = 1

|S|Eσ∼{±1}m

[
sup
h∈H

m∑

i=1

σil(yi, h(xi))

]
(2.2)

which measure the ability of H to fit random noise over any given training set S.

Second, and most remarkable, that for any learning classH with bounded complexity,

the above mentioned generalization gap can be achieved by simply applying a ERM
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learning rule, i.e. (one of) the algorithms that minimize the empirical risk1

The generalization of this result to the setting of learning from fuzzy label is

however non-trivial, indeed as described in the Introduction the problem of learning

from fuzzy label is strictly harder than supervised learning, for two main reasons.

On the one hand, any learning algorithm obviously has access to less information

that can be used for optimization purposes, which usually implies that one can no

longer achieve distribution-independent guarantees on the form of ϵ(m, δ) [38]. On

the other hand, the question of how to properly generalize the ERM paradigm to this

setting does not have a single and straight-forward answer [132]. The most natural

generalization of ERM in this sense is the generalized risk minimization (GRM)

method [131]. This latter is based on the extension of a standard loss function

l : Y × Y → R to a surrogate loss function over fuzzy labels l̃ : [0, 1]Y × Y → R as

follows:

l̃(π, y) =

∫ 1

0

A({l(y′, y) : y′ ∈ πα})dα,

where πα = {y′ ∈ Y : π(y) ≥ α} is the α-cut of the fuzzy label π and A is an aggrega-

tion function specifying how to aggregate different loss function values. Then GRM

is implemented by simply applying the ERM rule for H and the imprecise training

set S̃ considering the loss function l̃. Several versions of GRM have been proposed

in the literature [92], based on the selection of an appropriate aggregation function,

including the average [75, 89, 137], the maximum [121, 120], the minimum [38, 131]

or variants thereof [132]. While different choices of aggregation function correspond

to different properties of the derived GRM rule [80, 78], the case of the minimum

(usually called optimistic risk minimization [131] or minimin optimization [179]) has

attracted particular interest in the SLT literature, due to its correspondence with the

maximax estimator in statistical decision theory [78] and its appealing theoretical

1Notably, the actual form of this second result depends on whether one considers binary or multi-

class learning tasks. In the binary case, every ERM rule achieves the above mentioned risk bounds

[247]. In the multi-class case, by contrast, the result only guarantees that the above mentioned

bounds can be achieved for at least one ERM rule: indeed, there exist multi-class learning problems

for which some ERM rules fail [83].
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properties. Indeed, different authors [158, 38] studied the application of optimistic

risk minimization to the setting of superset learning (i.e. the case where the possi-

bility distributions π are all Boolean, i.e. ∀y ∈ Y, π(y) ∈ {0, 1}), deriving guarantees

similar to the ones for supervised learning. However, the generalization of these re-

sults to the more general setting of learning from fuzzy label has not been studied

previously.

Even leaving aside the above mentioned knowledge gap, these results still do not

provide a complete characterization of the theoretical landscape for the problem of

learning from fuzzy label. Indeed, due to some unattractive features of optimistic risk

minimization (primarily, its high computational complexity), several other methods

have been proposed to address this problem, as already mentioned in the Introduc-

tion: these include, among others, instance-based methods [26, 88, 90, 91, 277, 279]

and pseudo-label learning methods [101, 102, 146, 165, 262]. The first family of

algorithms arises from a simple generalization of the nearest-neighbors learning rule

to the setting of learning from fuzzy label:

GNN(S, x) = argmax
y∈Y





∑

(xi,πi)∈N(x)

πi(y) : N(x) is a set of neighbors of x in S




(2.3)

Intuitively, such methods use the possibility degree of each possible class y as a

weight, thus favoring classes with higher possibility degree assigned to them.

By contrast, pseudo-label methods are based on an iterative training procedure

similarly to the one summarized in Algorithm 1. Intuitively, pseudo-label learning

operates by iteratively selecting a precise training set from the given imprecise one

S̃ by means of a given selection criterion (e.g. by randomly sampling precise labels,

or by using only a subset of data which is already precisely labeled). Any such

precise training set is then used to train a standard supervised ML algorithm by

ERM, whose predictions are then used to refine the selection criterion so that new

instances will be added as training data for the model at the next iteration.

Despite the practical popularity of these techniques, however, their theoretical

properties have not been studied in the literature, save in strongly restricted settings
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Algorithm 1 The meta-procedure for pseudo-label learning.
procedure pseudo_label_learning(h: ML model, S̃: imprecise dataset, C:

inclusion criterion)

S0 ← select precise instances (x, y) from S̃

T ← {(x, πx) ∈ S̃ : C((x, πx)) = True}
while T ̸= S do

Train h on Si

Si+1 ← refine the instances in Si, S̃ based on h

T ← {(x, h(x)) ∈ S : C((x, h(x))) = True}
end while

return h

end procedure

[278]. Thus, as mentioned at the beginning of this section, the main aim of this

chapter will be to address research problem P1.1. To this end, in Section 2.1, a for-

malization (in terms of fuzzy random sets [81, 86]) of the learning from fuzzy label

setting will be provided, by which a characterization of problem instances in terms

of hardness parameters is derived. These hardness parameters will be used to derive

a characterization of GRM (in particular, optimistic risk minimization), in terms of

sample complexity (that is, a bound on the sufficient number of instances to guar-

antee a required level of accuracy), and of instance-based methods (in particular,

generalized nearest neighbors), in terms of expected classification error. The derived

results provide a generalization of the above mentioned results for the superset learn-

ing setting. A relevant consequence of these results regards the limitations of both

GRM and instance-based methods in practical applications: indeed, it is shown that

instance-based methods generally exhibit exponential dependency on the dimension-

ality of the input space, limiting their applicability in large-scale problem, while the

optimization problem underlying GRM (specifically, optimistic risk minimization) is

not computationally feasible in the general case, having exponential computational

complexity in the dimensionality of the feature space. To address these limita-
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tions, in Section 2.2, the second aim of this chapter will be the proposal of a novel

learning algorithm, called Random Resampling-based Learning (RRL) and based on

the pseudo-label paradigm, whose study will provide the first learning-theoretical

analysis of pseudo-label approaches in the setting of learning from imprecise data.

Finally, to complement the above mentioned theoretical results, in Section 2.3, an

experimental analysis of state-of-the-art learning from fuzzy label algorithms on a

large benchmark, encompassing both synthetic and real-world datasets, will be dis-

cussed, providing the first large scale analysis of such techniques in terms of accuracy

as well as computational complexity and thus addressing research problem P1.3 and

showing, in particular, the efficacy of the proposed RRL algorithm in comparison

with the state-of-the-art.
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Abstract—Learning from fuzzy labels (LFL) refers to a
generalization of supervised learning in which supervision is
represented as a (epistemic) fuzzy set over the collection of
possible classification labels: this represents the uncertainty of
the annotating agent with respect to the true class label to be
assigned to the data instances, using a possibility distribution. The
two most popular LFL algorithmic approaches are either based
on generalized risk minimization (GRM) or nearest-neighbor
(NN) methods: while both methods have been applied successfully
with promising empirical results, theoretical characterizations
of these approaches, in the framework of learning theory, have
been lacking. In this article we address this gap and study the
LFL problem from the perspective of statistical learning theory,
providing a theoretical analysis of both GRM and NN, in terms
of sample complexity and risk bounds.

Index Terms—Learning Theory, Fuzzy Labels, Risk Minimiza-
tion, Nearest Neighbors

I. INTRODUCTION

The Learning from Fuzzy Labels (LFL) problem [1] refers to
a generalization of the standard supervised Machine Learning
problem, subsuming also other weakly supervised [2] learning
paradigms such as semi-supervised and superset learning [3]:
in this setting, instead of assuming precise observations (x, y)
in the input space X × Y (where X is the set of predictive
features, and Y is the set of possible classification target
labels), the target information is allowed to be only weakly
specified as a fuzzy set. These fuzzy observations (x, πY )
(where πY is a fuzzy set over the set of labels Y ) represent the
uncertainty of the agent that produced the label annotations,
be it computational or human, and usually have an epistemic
semantics [4], [5]: the true label of the observation is not
precisely known, but we can represent our uncertainty with
respect to its true value through a possibility distribution.

Thus, for example, an image could be tagged with the
fuzzy set {horse : 1, pony : 0.8, zebra : 0.5, dog : 0.0},
suggesting that the animal shown on the picture is one among
{horse, pony, zebra} and, though it is not exactly known which
of them, it is known that horse is deemed more plausible than
pony, which in turn is deemed more plausible than zebra.

In recent years, the LFL problem has attracted increasing
interest [6], [7], both because of the relative ease of acquiring
data of this type compared to other types of fuzzy data [8]
(data for LFL problem can be easily acquired in multi-rater
annotation settings [9], [10], or through the use of self-labeling
techniques [1], [11]) and also due to the availability of effec-
tive learning algorithms, such as generalized risk minimization

(GRM) [1], [10], nearest neighbor methods (GNN) [12]–[14]
or generalized maximum likelihood (GML) [15].

In this article we study the theoretical properties of the
former two classes of algorithms, from the perspective of
Statistical Learning Theory (SLT): we first provide a formal-
ization (in terms of fuzzy random sets [5], [16]) of the LFL
setting and we define important parameters that can be used to
characterize the learnability of LFL problems. In particular, we
use these parameters to derive a characterization of GRM, in
terms of sample complexity (that is, a bound on the sufficient
number of instances to guarantee a required level of accuracy),
and of G-NN, in terms of expected classification error. Our
results provides a generalization of a similar recent result,
due to Liu et al. [17], obtained in the superset learning (SSL)
setting, in three directions: first, in terms of generality of the
learning setting (indeed, SSL can be seen as a restricted form
of LFL); second, while the results in [17] apply only to the
Realizable setting our results hold also in the general agnostic
case (that is, we do not assume that a zero-error classifier
exists); third, we present the first analysis, to our knowledge,
of nearest neighbors methods for weakly supervised learning.

II. BACKGROUND

A. Possibility and Belief Function Theory

A fuzzy set (or, equivalently a possibility distribution [18])
is a function π : X 7→ [0, 1]. In this article, we focus on
normalized possibility distributions, that is distributions s.t.
∃x ∈ X.π(x) = 1. We denote with F(X) the collection of
normalized possibility distributions over X . Given α ∈ [0, 1]
we denote with πα = {x : π(x) ≥ α} the α-cut of π, and
with πα+ = {x : π(x) > α} the strong α-cut.

We recall some basic notions from Belief Function theory
(BFT): a mass function (also, random set) is defined as m :
2X 7→ [0, 1] s.t.

∑
A⊆X m(A) = 1.

From a mass function, one can define three set func-
tion: namely, a Belief function Bel(A) =

∑
B:B⊆Am(B);

a Plausibility function Pl(A) =
∑
B:A∩B 6=∅m(B); and a

Commonality function Q(A) =
∑
B:A⊆Bm(B).

The contour function of m is pl : X 7→ [0, 1], defined as
pl(x) = Pl({x}) = Q({x}). When the support of m is nested,
then the contour function pl is a possibility distribution.

Finally we recall some basic notions about the generaliza-
tion of BFT to the case of fuzzy events [5], [16]. Given X ,
a fuzzy random set is defined as m̃ : F(X) 7→ [0, 1], s.t.∑
π∈F(X) m̃(π) = 1. Belief, Plausibility and Commonality

measures can be generalized to this setting by using notions

978-1-6654-4407-1/21/$31.00 c© 2021 IEEE

20
21

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 F

uz
zy

 S
ys

te
m

s (
FU

ZZ
-IE

EE
) |

 9
78

-1
-6

65
4-

44
07

-1
/2

1/
$3

1.
00

 ©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
FU

ZZ
45

93
3.

20
21

.9
49

45
34

Authorized licensed use limited to: UNIVERSITA BICOCCA MILANO. Downloaded on June 28,2022 at 08:17:15 UTC from IEEE Xplore.  Restrictions apply. 



from generalized measure theory: however, in the context of
this paper we only provide definitions for singleton events, that
is x̃ ∈ F(X) s.t. ∃!x ∈ X∀x′ 6= x, x̃(x) = 1∧ x̃(x′) = 0. In
this case we have that

bel(x̃) =
∑

π∈F(X):π(x)=1∧∀x′ 6=x,π(x′)=0

m̃(π), (1)

pl(x̃) =
∑

π∈F(X):π(x)>0

m̃(π), (2)

q(x̃) =
∑

π∈F(X):π(x)=1

m̃(π). (3)

We note that in the case of fuzzy random sets bel(x̃) ≤
q(x̃) = Q(x̃) ≤ pl(x̃) (in standard BFT the latter inequality
actually holds with equality).

B. Supervised and Superset Learning

In the framework of SLT [19], data is usually assumed to be
sampled i.i.d. (identically and indipendently distributed) from
and unknown distribution D over X × Y , where X is the
instance space and Y is the label space. The distribution D,
and in particular its conditional D(y|x), encodes a functional
(but in general non-deterministic) dependency between input
features and target labels: our goal is to find a mapping f (or,
more in general, a conditional density function) that provides
us with a good approximation of D(y|x). Thus, we call a set
of functions H hypothesis space, where h ∈ H is a function
h : X 7→ Y . The true risk of an hypothesis over D is:

LD(h) =
∫

X×Y
l(h(x), y)dD(x, y),

where l is a loss function, which is usually assumed to be the

0-1 loss function l0−1(y′, y) =

{
0 y = y′

1 y 6= y′

Since D is unknown, usually we can only access
a finite sample of data, that is a training set, S =
〈(x1, y1), ..., (xm, ym)〉, sampled i.i.d. from D. The empirical
risk of h over S is:

LS(h) =
1

m

m∑

i=1

l(h(xi), yi).

Empirical Risk Minimization is any algorithm ERMH :
(X × Y )ω 7→ H s.t. ERMH(S) ∈ argminh∈HLS(h).

The fundamental theorem of multi-class learning [20], [21]
tells us that we can characterize the true risk of an ERM
classifier through the following result:

Theorem 1 ([20]). Let H be an hypothesis class with Natara-
jan dimension d [21]. For each ε, δ ∈ (0, 1) and distribution
D, then if ERMH is given a dataset S of size m ≥ n0 with

n0 = O(
d · ln(|Y |) + ln( 1δ )

ε2
),

with probability greater than 1 − δ, it holds that
|LD(ERMH(S))− LS(ERMH(S))| ≤ ε.

Here we recall that the Natarajan dimension d of an hypoth-
esis class H is a measure of the complexity of H [20]. Similar
bounds can also be derived for non-parametric approaches
such as k-Nearest Neighbors methods:

Theorem 2 ([19]). Let X = [0, 1]d, Y = {0, 1}, ηy(x) =
D(y = 1|x) and assume that ∀y, ηy is c-Lipschitz. Then it
holds that:

E(LD(k −NN(S))) = (1 +

√
8

k
)LBayesD

+ (6c
√
d+ k)m

−1
d+1 ,

where the expectation is w.r.t. the sampling of a training set
S of size m from D.

In the SSL setting, the distribution D is defined over
X × Y × 2Y , where for an instance (xi, yi, Ci) the learning
algorithm is not given access to the true label yi, but only
to set of candidate labels Ci. The joint distribution D can be
decomposed as Dx,y on X × Y and the conditional Ds(x, y)
on 2Y given (x, y). We note that Ds(x, y), for each x, y, can
also be seen as a mass function mx,y .

The superset condition assumes that the correct label yi
is guaranteed to be in the set of possible labels: that is, we
assume Pr(y ∈ C) = mx,y{B ∈ 2Y : y ∈ B} = qx,y(y) =
plx,y(y) = 1, where C is sampled from Ds(x, y).

In superset learning (and weakly supervised learning more
in general) the empirical risk cannot be evaluated, as the
learning algorithm cannot access the true labels yi in S. The
superset risk is defined as:

LsS(h) =
1

n

m∑

i=1

1h(xi)/∈Ci
.

Generalized Risk Minimization is the algorithm GRM that
returns (one of) the h ∈ H with minimal superset risk.

The learnability of the superset learning problem is charac-
terized by the so-called ambiguity degree [22], defined as:

α∗ = sup(x,y)∈X×Y {plx,y(l) : p(x, y) > 0, l 6= y)}.

Then the true risk of the GRM algorithm can be bounded
through the following result:

Theorem 3 ([17]). Let H be an hypothesis class with Natara-
jan dimension d. Let D be a distribution, α the corresponding
ambiguity degree and define θ = ln 2

1+α∗ . Assume that
∃h ∈ D.LD(h) = 0 (Realizability Assumption). For each
ε, δ ∈ (0, 1) if GRMH is given a dataset S of size m ≥ n0
with

n0 = O

(
1

θε
(d · ln(d|Y |

2

θε
) + ln

1

δ
)

)
,

then with probability greater than 1 − δ, it holds that
LD(GRMH(S)) ≤ ε.
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III. LEARNABILITY OF THE LEARNING FROM FUZZY
LABELS PROBLEM

In the LFL setting, the probability distribution D, from
which the instances are sampled, is defined over X × Y ×
F(Y ): each instance is a triple (xi, yi, πi), where πi is a
normalized possibility distribution over Y . The interpretation
of such a (generalized) instance is that all labels in π0+

i are
regarded as fully plausible for instance xi and, in particular, if
πi(l) ≥ πi(l′), then l is considered more plausible than l′. As
usual, we can decompose D as a probability distribution Dx,y
over X × Y and a (conditional, over (x, y)) fuzzy random
set m̃x,y . The Belief, Plausibility and Commonality measures
induced by m̃x,y , for each x, y, can thus be defined as in
Section II-A.

In order to evaluate the error of any hypothesis h ∈ H, we
first need to define the appropriate generalization of superset
risk. We define the fuzzy (empirical) risk of an hypothesis h
over training set S as:

LfS(h) =
1

m

m∑

i=1

1− πi(h(xi)).

We will assume that, ∀(x, y) ∈ X×Y, p(x, y) > 0, it holds
that plx,y(ỹ) = 1: that is, the correct label is never considered
impossible. This, in turn, implies qx,y(ỹ) > 0. We call this
the weak superset assumption and contrast it with the strong
superset assumption: ∀(x, y) ∈ X × Y, qx,y(ỹ) = 1. In this
article we will not assume this stronger version as, arguably,
it makes the LFL problem trivial, in the following sense:

Theorem 4. Under the strong superset assumption and the
Realizability Assumption, the learning from fuzzy labels prob-
lem is equivalent to the superset learning problem.

Proof. Under Realizability we know that ∃h ∈ H s.t.
LD(h) = 0: let h∗ be one such hypothesis. Under the strong
superset assumption we know that the correct label yi is
such that πi(yi) = 1. This implies that we can restrict H
to H|S = {h ∈ H : ∀xi ∈ S, h(xi) ∈ π1

i }. The result easily
follows.

Given any instance (xi, yi, πi) sampled from D, we can
bound the probability that any wrong label l 6= yi would be
s.t. πi(l) = 1 (i.e. the wrong label l is considered fully possible
for instance xi):

Definition 1. The (lower, upper) Ambiguity Degree is defined
as:

α∗ = inf(x,y)∈X×Y {qx,y(l̃) : p(x, y) > 0, l 6= y},
α∗ = sup(x,y)∈X×Y {qx,y(l̃) : p(x, y) > 0, l 6= y}.

Thus, α∗ (resp. α∗) represents a lower (resp. upper) bound on
the probability that an incorrect label l is such that πi(l) = 1:
if α∗ = 1 (hence, there exists l s.t. qx,y(l̃) = 1), then we
would never be able to recognize a classification error when
h(xi) = l. And similarly, for the correct label yi:

Definition 2. The (lower, upper) Knowledge Degree is defined
as:

k∗ = inf(x,y)∈X×Y {qx,y(ỹ) : p(x, y) > 0},
k∗ = sup(x,y)∈X×Y {qx,y(ỹ) : p(x, y) > 0}.

Thus, the strong superset condition would be equivalent to
k∗ = k∗ = 1: in this case, the correct label yi would always
be included in the 1-cut of πi. In general, however, we only
have that 0 < k∗ ≤ k∗ due to the weak superset assumption.
We note that, for any instance (xi, yi, πi), under the weak
superset condition, we would be able to detect a classification
error if were to observe that h(x) = l 6= yi and πi(l) = 0. In
particular, we can bound the probability of this event through
what we call the Unfalsifiability Degree:

φ∗ = inf(x,y)∈X×Y {plx,y(l̃) : p(x, y) > 0, l 6= y},
φ∗ = sup(x,y)∈X×Y {plx,y(l̃) : p(x, y) > 0, l 6= y}.

Indeed, when φ∗ = 1, then we will be never be able to
detect a classification error under the weak superset condition.
By contrast, when φ∗ = 0 then we are in the standard
classification setting: note that in this case we always know
that for a triple (xi, yi, πi) it holds that ∀y 6= yi ∈ Y, πi(y) = 0
and thus πi(yi) = 1 (since we require that πi is normalized).

We also note that in the superset learning setting it holds that
α∗ = φ∗, α∗ = φ∗, as in a standard random set it always hold
that qx,y(l) = Qx,y({l}) = plx,y(l) (see Sections II-A,II-B).
Further, due to the restriction to normalized possibility distri-
butions, it holds that 1−α∗ ≤ k∗: thus, in particular, it holds
that 1 ≤ α∗ + k∗ ≤ 2.

As we will see in the following Section, the Ambiguity,
Knowledge and Unfalsifiability degrees are important param-
eters of the distribution D and they characterize the learnability
of a LFL problem.

A. Generalized Risk Minimization

The Generalized Risk Minimization (GRM) algorithm for
the learning from fuzzy labels setting can be easily defined as:

GRMf
H(S) ∈ argminh∈HLfS(h),

that is, the GRMf algorithms always returns an hypothesis h
with minimal fuzzy empirical risk. In this article we do not
assume Realizability: this makes our result more general, as
it also applies in the so-called agnostic setting, in which the
data-generating distribution D is not necessarily deterministic.
Furthermore we do not make the assumption that, for any
given S, it always exists h ∈ H s.t. LfS(h) = 0: indeed, this
assumption requires restrictive conditions on the generating
distribution D to avoid the No-Free Lunch Theorem.

Thus, our goal in this Section will be to find a bound, similar
to those presented in Section II-B, that applies to the LFL
problem in the general agnostic setting: that is, we want to
bound Pr[|LD(GRMf

H)− LfS(GRMf
H)| > ε].

Theorem 5. Let H be an hypothesis class with Natarajan
dimension d. Let D be the data generating distribution and
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θD = log2(
2

1+max{φ∗,1−k∗} ), where φ∗, k∗ are the respective
(upper) Falsifiability and (lower) Knowledge Degrees. For
each ε, δ ∈ (0, 1), if GRMf

H is given a dataset S of size
m ≥ n0 with

n0 = O

(
1

(εθD)2
(d · ln(d · |Y |

2

(εθD)2
) + ln(

1

δ
))

)
,

with probability greater than 1 − δ, it holds that
|LD(GRMf

H(S))− LfS(GRMf
H(S))| ≤ ε.

Proof. We start by finding a bound for

E[|LD(GRMf
H)− LfS(GRMf

H)|]. (4)

From this, we can obtain a bound for the quantity of interest
through Markov’s inequality.

First, we note that the following inequality holds:

E[|LD(GRMf
H)− LfS(GRMf

H)|] ≤
E[suph∈H|LD(h)− LfS(h)|] =
E[suph∈H|LD(h)− LS(h) + LS(h)− LfS(h)|]

By the triangle inequality, the last expression can be upper
bounded by:

E[suph∈H|Ld(h)− LS(h)|]+
E[suph∈H|LS(h)− LfS(h)|]

(5)

The upper summand can be upper bounded as 2R(H, S),
where R is the empirical Rademacher complexity [19] of H on
S, which, in turn through Massart Lemma [19] and Natarajan’s
Lemma [21] can be upper bounded as:

2

√
2d(ln(m) + 2ln(|Y |))

m
,

where d is the Natarajan dimension of H.
As regards the lower summand, we note that

E[suph∈H|LS(h)− LfS(h)|] ≤

E[suph∈H
1

m

m∑

i=1

|l(h(xi), yi)− lf (h(xi), πi)|]

The value of |l(h(xi), yi)− lf (h(xi), πi)| is bounded between
0 (when (h(xi) = yi∧πi(yi) = 1)∨(h(xi) 6= yi∧πi(h(xi)) =
0)) and 1 (when (h(xi) = yi ∧ πi(h(xi)) = 0) ∨ (h(xi) 6=
yi ∧ πi(h(xi)) = 1).

Thus the lower summand of Eq. 5 can be bounded as:

E[suph∈H1h(xi)6=yi1πi(h(xi))>0]+

E[suph∈H1h(xi)=yi1πi(yi)<1] =

Pr[h(x) = y ∧ π(y) < 1]+

Pr[h(x) 6= y ∧ π(h(x)) > 0] ≤
max{φ∗, 1− k∗}

Thus, Eq. 4 can upper bounded as:

2

√
2d(ln(m) + 2ln(|Y |))

m
+max{φ∗, 1− k∗} ≤

2

√
2d(ln(m)+2ln(|Y |))

m

θD
,

where θD = log2(
2

1+max{φ∗,1−k∗} ). By Markov inequality,
for each ε ∈ (0, 1), it holds that

Pr[|LD(GRMf
H)− LfS(GRMf

H)| > ε] ≤

2
√

2d(ln(m)+2ln(|Y |))
m

εθD

Let δ ∈ (0, 1), we obtain

2

√
2d(ln(m) + 2ln(|Y |))

m
≤ εδθD

m ≥ 8d · ln(m) + 8d · ln(|Y |2)
(εδθD)2

A sufficient condition for this to hold is the following:

m ≥
32d · ln( 64d·|Y |

2

(εθD)2 ) + ln( 1δ )

(εθD)2
.

Hence, the statement of the theorem follows.

Thus, Theorem 5 provide an upper bound for the number
of samples needed to guarantee (with high probability) that
the GRMf algorithm returns an hypothesis with a small
generalization gap (i.e. an hypothesis that does not overfit).
This bound, crucially, depends on two parameters that encode
the uncertainty within the data generating distribution: the
probability of observing a possibility degree π(y′) > 0 for
a wrong label (i.e. φ∗) and on the probability that the correct
label has a possibility degree π(y) = 1 (i.e. k∗).

Comparing the bound obtained in Theorem 5 to the result
by Liu et al. for superset learning (see Theorem 3), we can
make the following observations:
• In our bound, there is a quadratic (inverse) dependence

w.r.t. εθD, while in Theorem 3 this dependence is only
(inverse) linear: this difference stems from the fact that
our result holds for the general agnostic setting, while
Theorem 3 only applies to the Realizable setting (which,
as we argued in Section III, is a very restrictive assump-
tion in the LFL setting);

• In our bound θD = ln( 2
1+max{φ∗,1−k∗} ), while in The-

orem 3 it holds that θ = ln 2
1+α∗ . It is easy to observe

that in the superset learning setting it holds that k∗ = 1
and φ∗ = α∗, thus in the limit we recover the same
distribution parameter used in Theorem 3. Remarkably,
if we assume the strong superset assumption, it holds
that k∗ = 1 but, in general, α∗ ≤ φ∗. This implies
that our bound would be more conservative than the
one provided in Theorem 3: as a result of Theorem 4,
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this difference stems from the fact that under these
assumptions the arguments used through our proof are too
conservative. Indeed, one can obtain a different derivation
by considering only the labels y ∈ Y s.t. π(y) = 1: in this
case, in the derivation of Theorem 5 we could substitute
φ∗ with α∗ and we would obtain that θD = θ.

Example 1. To provide an illustration of Theorem 5 we show
a numerical example showing the dependence between the
sample complexity, the parameters of the data distribution and
the difference between the agnostic and Realizable settings.

Consider a learning problem where |Y | = 10, the data
distribution D is s.t. k∗ = 0.95 (i.e., the true label is almost
always s.t. π(y) = 1), while φ∗ = 0.1 (i.e., in one case out of
ten an incorrect label is s.t. π(y′) > 0) and α∗ = 0.05 (i.e.,
in one case out of twenty an incorrect label is s.t. π(y′) = 1).

Assume that X = R
10, and H is the class of linear

multiclass predictors (i.e. H = {x 7→ argmaxi∈[|Y |](Wx)i :
W ∈ R|Y |,10}), whose Natarajan dimension is d ≤ 10 .

Assume we want to guarantee, with probability ≥ 95% w.r.t.
the sampling of a training set S, that the generalization gap
|LD(h)−LfS(h)| ≤ 0.1. Then, according to Theorem 5, if we
apply the GRM algorithm, we should require that the training
set S has sample size m ≥ 16380. By contrast, if it were
the case that k∗ = 1 (hence, the strong superset assumption
holds), it would suffice that m ≥ 13826. If we further assume
that Realizability holds (i.e. there is a linear predictor with
zero risk) then, by Theorem 3, it would suffice that m ≥ 1031.

B. Nearest Neighbors Methods

In this Section we study generalization bounds, in the form
of bounds over the expected error, for Generalized Nearest
Neighbor (GNN) [12], [13]: that is, techniques that generalize
the standard k-NN algorithm such that for each new instance x,
its classification is obtained by taking a weighted vote (where
the votes are usually represented by the possibility degrees
πi of the different classes) for the k instances closest to x in
S. In this article, we focus on a generalization of the 1-NN
algorithm that we denote as F1-NN (Fuzzy 1-NN), and we
leave the generalization to k-NN as open problem. Given an
instance x and a training set S, the F1-NN algorithm finds the
instance S1(x), the nearest neighbor of x in S, and returns
a label chosen uniformly at random among π1

S1(x)
(i.e., the

1-cut of the possibility distribution associated with S1(x)).
We will study the expected error, as a function of the size

of the training set S, the data dimensionality d and parameters
(see Section III) of the data generating distribution D. In
particular we show the following:

Theorem 6. Let X = [0, 1]d, Y = {0, 1, · · · , |Y | − 1}, ∀y ∈
Y, ηy(x) = D(ŷ = y|x) and assume that ∀y ηy is c-Lipschitz.
Then:

E[LD(F1−NN(S))] ≤ (α∗ + 2k∗ − k∗α∗)|Y |L2−Bayes
D

+ (1 + k∗α∗ − k∗)
+ (1 + α∗ + k∗α∗)4c

√
dm

−1
d+1

(6)

where the expectation is w.r.t. D and L2−Bayes
D denotes

maxyL
Bayes
D|y with D|y the distribution, obtained from D,

through the standard One-vs-Rest reduction.

In order to prove this result, we first recall the following
Lemma (see [19]):

Lemma 1. Let S be a dataset of size m, and x ∈ [0, 1]d. Let
S1(x) = argminx′∈S ||x−x′||, where ||x−x′|| is the standard
Euclidean metric. Then ES,x[||x− S1(x)||] ≤ 4

√
dm

−1
d+1 .

Proof of Theorem 6. Let x be a new instance to be classified
with true label y, S a training set and x′ = S1(x) with
associated possibility distribution πx′ and true label y′. Then,
we note that if πx′(y) < 1 the F1-NN algorithm makes a
classification error on x: this happens with probability no
greater than 1−α∗, or 1− k∗, depending on whether y 6= y′.
Furthermore, even if πx′(y) = 1, the F1-NN algorithm can
make a classification error, if y is not chosen (uniformly at
random) from π1

x′ : this happens with probability |π
1
x′ |−1
|π1

x′ |
≤ 1.

Thus:

E[LD(F1−NN(S))] ≤
E[
∑

y∈Y
ηy(x)(1− ηy(x′))(1− α∗) + ηy(x)(1− ηy(x′))α∗

+ ηy(x)ηy(x
′)k∗α∗ + ηy(x)ηy(x

′)(1− k∗)]
= E[

∑

y∈Y
ηy(x)(1− ηy(x′))(1 + α∗ − α∗)

+ ηy(x)ηy(x
′)(1 + k∗α∗ − k∗)]

Then, it holds that:

ηy(x)ηy(x
′) = ηy(x)(ηy(x

′) + ηy(x)− ηy(x))
≤ ηy(x)(ηy(x) + c||x− x′||)
= ηy(x)

2 + ηy(x)c||x− x′||
And, similarly:

ηy(x)(1− ηy(x′)) = ηy(x)(1− ηy(x′) + ηy(x)− ηy(x))
≤ ηy(x)(1 + c||x− x′|| − ηy(x))
= ηy(x) + ηy(x)c||x− x′|| − ηy(x)2

Henceforth, and noting that 1− α∗ ≤ k∗:

E[LD(F1−NN(S))] ≤
(k∗ + α∗)(1 + cE[||x− x′||]−E[

∑

y∈Y
ηy(x)

2])+

(1 + k∗α∗ − k∗)(cE[||x− x′||+E[
∑

y∈Y
ηy(x)

2]]

Then, we have that:

E[
∑

y∈Y
ηy(x)

2] = E[1−
∑

y∈Y
ηy(x)(1− ηy(x))]

≤ 1−
∑

y∈Y
E[min{ηy(x), 1− ηy(x)}]

= 1− |Y |L2−Bayes
D
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Therefore:

E[LD(F1−NN(S))] ≤ (1 + α∗ + k∗α∗)cE[||x− x′||]
+ (α∗ + 2k∗ − k∗α∗)|Y |L2−Bayes

D

+ (1 + k∗α∗ − k∗)
The Theorem then follows from Lemma 1.

Thus, the generalization error of F1-NN is proportional with
the (upper) Ambiguity Degree α∗ and inverse proportional
with the Knowledge Degrees k∗, k∗ of the generating distri-
bution D. In the worst case, where α∗ = 1 and k∗ = k∗ ∼ 0,
the bound given in Theorem 6 becomes vacuous: the second
term in Equation 6 is ∼ 1. On the other hand, if k∗ = k∗ = 1
we obtain a bound for the superset learning setting:

E[LD(F1-NN)] ≤ 2|Y |L2−Bayes
D +(1+2α∗)4c

√
dm

−1
d+1 +α∗.

From this latter bound, in the best case, we have that α∗ = 0
and Equation 6 simplifies to:

E[LD(F1-NN)] ≤ 2|Y |L2−Bayes
D + 4c

√
dm

−1
d+1 ,

which can be seen as a generalization of Theorem 2 to the
multi-class case.

We remark that, the bound in Theorem 6 is exponential
in the number of features d, thus the greater the number of
features, the larger the expected risk of the F1-NN algorithm.
This observation highlights the necessity of developing feature
selection and dimensionality reduction techniques that could
effectively be applied in the superset and LFL settings.

IV. CONCLUSION

In this article we provide the first learning-theoretic study,
to our knowledge, of the learning from fuzzy labels prob-
lem: we studied two general-purpose LFL algorithm schemes
(that is, GRM and GNN methods) from the perspective of
SLT, and provided sufficient conditions for their effective
learnability, expressed as, respectively, a sample complexity
bound and an expected risk bound. These results, in turn,
could be useful also for real-world applications: to inform
model selection [23], to design effective learning algorithms
(e.g. boosting), or to perform regularization through label
smoothing [24]. The application of our results in these settings
should be investigated, to analyze their applicability in real-
world problems. Furthermore, in light of our results, the
following open problems could be worthy of further research:
• Our results depend on the data generating distribution D.

While this distribution is unknown, it can be estimated
conditional on some assumptions: e.g., D has a specific
parametric form (in which case the GRM problem is
equivalent to GML [15]); or the fuzzy labels are generated
through self- [11] or multi-rater [6], [9] labeling. It

• Theorem 5 provides an upper bound to the sample com-
plexity of any hypothesis class H for the LFL problem:
it would be interesting to find a matching lower bound;

would be thus interesting to consider instantiations of
Theorems 5, 6 for such specific cases;

• The expected risk bound for G-NN in Theorem 6 applies
specifically to the case where k = 1: it would be
interesting to generalize this bound also to the case k > 1;
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2.2 Pseudo-label Learning

In the previous section, the theoretical properties of optimistic risk minimization

and instance-based methods have been studied, providing a partially positive answer

for the learnability problem for learning from fuzzy label. Indeed, for the case of

instance-based methods, this derives directly from Theorem 6 which shows that,

conditional on the ambiguity and knowledge parameters being not too large for the

instance problem at hand, the expected risk for such methods converges to that of

the Bayes classifier. Similarly, for the case of optimistic risk minimization this result

follows from the following corollary:

Corollary 1. Let H be a hypothesis class with Natarajan dimension d. Let D be

the data generating distribution and θD = log2(
2

1+max{ϕ∗,1−k∗}), where ϕ∗, k∗ are the

respective (upper) Falsifiability and (lower) Knowledge Degrees. Let h∗ be the clas-

sifier with minimal risk in H, then with probability greater than 1− δ, when given a

training set S of size m, it holds that:

|LD(GRM f
H(S))− LD(h

∗)| ≤ ϵ(m, δ, θD), (2.4)

where ϵ(m, δ, θD) is poly-logarithmically decreasing in m, δ and θD.

Proof. By Theorem 5 in Section 2.1:

|LD(GRM f
H(S))− LD(h

∗)| =

|LD(GRM f
H(S))− Lf

S(GRM f
H(S)) + Lf

S(GRM f
H(S))− LD(h

∗)| ≤

|LD(GRM f
H(S))− Lf

S(GRM f
H(S)) + Lf

S(h
∗)− LD(h

∗)| ≤

|LD(GRM f
H(S))− Lf

S(GRM f
H(S))|+ |LD(h

∗)− Lf
S(h

∗)| ≤

ϵ(m, δ, θD)

where, following Theorem 5 in Section 2.1, ϵ(m, δ, θD) = O(

√
d ln(

d|Y |2
mθ2D

)+ln( 1
δ
)

mθ2D
)

Thus, also for the case of optimistic risk minimization the risk can be made

arbitrarily close to that of the optimal classifier in H, conditional on the falsifiability
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and knowledge parameters being not too large for the instance problem at hand. If,

furthermore, the considered task is realizable (i.e. the optimal classifier in H has

true risk equal to 0), then the expected risk for such methods converges to that of

the Bayes classifier.

Despite these positive results, however, it is easy to observe that both instance-

based methods and GRM present some limitations that may hinder their application

in real-world problems. For the case of instance-based methods this limitation is

already evident from Theorem 6 in Section 2.1: indeed, it is easy to observe that the

expected risk of generalized nearest neighbors is exponential in the dimensionality

of the feature space, thus showing that as the number of features grows also the

tendency of this learning algorithm to over-fitting similarly increases. This problem

will be addressed in Chapter 3 by means of the introduction of effective feature

selection algorithms for learning from fuzzy label. For the case of optimistic risk

minimization, on the other hand, the above mentioned limitations do not regard

so much its sample complexity but rather its computational complexity. The next

result shows that already for a very simple class of learning problems (which admit a

computationally efficient solution in the supervised learning setting), optimistic risk

minimization does not admit any polynomial-time algorithm (unless P = NP):

Proposition 1. Let S̃ be an imprecise training set obtained sampling i.i.d. from D̃,

where the feature space X = Rd and Y = {−1, 1}. Let H be the class of half-spaces

on X (i.e. H ∼= Rd). Let l : Y × R → R be a loss function satisfying the following

properties:

1. For each (x, y) ∈ Z, l can be expressed as l(y, ⟨w, x⟩) and is convex in w;

2. sign(y) = sign(⟨w, x⟩) =⇒ l(y, ⟨w, x⟩) < l(−y, ⟨w, x⟩);

3. If sign(y − ⟨w, x⟩) = sign(y) then l(y, ·) is monotonically increasing in |y −
⟨w, x⟩|.

Let l̃ be the fuzzy loss obtained from l. Then, if l does not also satisfy the following

property:

∀t ∈ [−1, 1], l(y, t) = l(−y, t) (2.5)
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it holds that, for any polynomial-time randomized learning algorithm A, the proba-

bility that |Lf
S(AH(S))− Lf

S(GRM f
H(S))| ≥ ϵ is greater than 1−O(e−ϵd);

Proof. It is easy show that for l satisfying conditions 1-3 in the theorem statement, it

holds that, when t ∈ [−1, 1], l(1, t) is monotonic non-decreasing in −t while l(−1, t)
is monotonic non-decreasing in t. Thus, unless l(1, t) = l(−1, t) for any t in the same

range, l̃ is not convex. In, particular, there either is at least a value t ∈ [−1, 1] where

l(1, t) = l(−1, t) and l̃ is non-smooth or l̃ is unbounded in [−1, 1]. Then, the result

follows from [142], Theorem 1, by noting that Lf
S is non-convex and non-smooth.

As a consequence of the above result, it can be noted that the hinge loss, the

log-loss and quadratic loss (as well as most other commonly adopted loss functions)

all satisfy conditions 1-3, but do not satisfy Eq. (2.5): as a consequence, it is easy to

show that popular learning algorithms such as least squares linear regression, SVM or

logistic regression (which are polynomial-time in supervised learning) do not admit

a polynomial-time extension to the optimistic risk minimization setting.

Pseudo-label methods could then be an alternative to both instance-based and

GRM-based methods, that aim to obtain a good trade-off between the properties of

these different approaches. Indeed, in experimental comparisons [201] pseudo-label

based methods reported good empirical performance, comparable with or better than

other general learning from imprecise labels methods. Nonetheless, the theoretical

properties of pseudo-label based methods have been investigated only in the semi-

supervised learning setting [15], while the most general setting of learning from fuzzy

label has not been studied: a possible reason for this gap may regard the complexity

of studying the dynamics of sequential iterative re-training of common pseudo-label

learning methods, as shown in Algorithm 1.

The aim of this Section will be to study a novel pseudo-label learning algorithm

called Random Resampling-based Learning (RRL), originally proposed in [50], which

is based on the parallel composition of base classifiers trained using a precise learning

algorithm, following the principles of ensemble learning. The pseudo-code formula-

tion of RRL is shown in Algorithm 2.
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Algorithm 2 The RRL algorithm.
procedure RRL(S: dataset, n: ensemble size, H: base function class)

Ensemble← ∅
for all iterations i = 1 to n do

Draw a boostrap sample S ′ from S

Tri ← ∅
for all (x, π) ∈ S ′ do

Sample α ∼ Uniform[0, 1]

Add (x, y′) to Tri, where y′ ∼ Uniform[πα]

end for

Add base model hi ∈ H trained on Tri to Ensemble

end for

return Ensemble

end procedure

The RRL algorithm is an extension of Random Forest to the setting of learn-

ing from fuzzy label. The precise pseudo-label to be associated with the imprecise

instances (x, π) in each of the bootstrap samples are drawn from a probability distri-

bution compatible with π: in particular, pseudo-label are drawn from the distribution

P̂ rπ(y) =
∫ π(y)

0
dα
|πα| , where πα is the α-cut of π, i.e. πα = {y ∈ Y : π(y) ≥ α}. The

distribution P̂ r is obtained by means of the possibility-probability transform [98] and

implemented by means of a two-stage sampling procedure: first, a α-cut is selected

uniformly at random, then, one element of the α-cut is selected uniformly at ran-

dom. Intuitively, this sampling procedure favors class labels associated with higher

possibility degrees. The above mentioned procedure is applied to obtain n bootstrap

samples which are used to train a corresponding number of h base models. Finally

the base models are aggregated by simple majority voting or averaging.

It is easy to observe that the computational complexity of the RRL algorithm is

O(Tn+|S||Y |n), where T is the cost required to train a base model h: thus, if h can be

trained in polynomial time, also RRL can be trained in polynomial time, in contrast
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with optimistic risk minimization studied in the previous sections. In regard to the

generalization properties of RRL, it can be noted first that the sampling scheme for

the pseudo-label can be given a formal justification, under weak assumptions about

the data generating fuzzy random set D̃, by means of the following results which

show that the sampling distribution of RRL corresponds to the distribution over

labels for the imprecise Bayes classifier :

f ∗ = argminf measurable w.r.t. D̃↓(X×S(Y ))LD̃(f), (2.6)

that is, the classifier with optimal performance among those that do not have access

to the true labels.

Theorem 1. Assume that D̃ satisfies the following calibration property: with prob-

ability 1 over (xi, yi, πi) ∼ D̃, it holds that D̃ ↓ (X × Y )(yi|xi) ≤ πi(yi). Then, f ∗

given by Pr(f ∗(x) = y) = P̂ rπ(y) is the Bayes classifier w.r.t. the l2 loss among

probability distributions and the uniform prior.

Proof. The calibration property assumed in the statement of the theorem guarantees

that, for each x ∈ X, the true probability distribution over Y lies in the credal set

Px,π = {P ∈ P(Y )|P (y) ≤ π(y)}. From [98], Theorem 1, it follows that P̂ rπ ∈
Px,π and P̂ rπ = argminP∈Px,π EP ′ [(P ′ − P )2], where P ′ is selected uniformly from

Px,π. Thus, among all possible distributions over Y , P̂ rπ is the one having minimal

expected l2 loss and the result follows.

Corollary 2. If the base class H is consistent, then RRL is consistent, that is, RRL

converges to the imprecise Bayes classifier.

Proof. The result follows from Theorem 1, consistency of H and the definition of

RRL.

Thus, in case RRL would have access to the whole data generating distribution

D̃, the previous results would provide intuitive justification for the sampling scheme

adopted in the corresponding algorithm, showing that in this case it would be equiv-

alent to the imprecise Bayes classifier. Nonetheless, it is easy to see that, in general,
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the ensemble classifier returned by RRL is not guaranteed to be the imprecise Bayes

classifier, since the underlying data generating distribution D̃ is unknown and in

general cannot be estimated from finite samples. To address this shortcoming, the

following two results then study the generalization properties of RRL, under two

different assumptions about the base function class H. The first results assumes

that the base function class is a bounded convex set with finite Natarajan dimen-

sion d and that the loss function which is used to measure the accuracy of the

classifiers is Lipschitz, allowing to derive a finite sample bound based on the rich

literature on randomized kernel methods [196]. First, recall that a set H is convex

if ∀h1, h2 ∈ H and α ∈ [0, 1] it holds that αh1 + (1− α)h2 ∈ H, similarly a function

l is convex if l(αh1 + (1 − α)h2) ≤ αl(h1) + (1 − α)l(h2) and it is L-Lipschitz if

|l(h1)− l(h2)| ≤ L|h1 − h2|. Then, the following theorem holds:

Theorem 2. Assume the base hypothesis class H is a bounded convex set in a Hilbert

space of functions X → RY , with supx,h|h(x)| ≤ 1 and Natarajan dimension d. Let

p be the probability density over H determined by RRL and let C = minh∈Hp(h) > 0.

Let l : Y × Y → [0, 1] be a loss function which is L-Lipschitz w.r.t. its second

argument. Then, when the RRL algorithm is executed on a training set S, with |S| =
m, sampled i.i.d. from D̃, it returns a function ĥ = 1

n

∑
i hi s.t. |minh∈H LD(h) −

Lf
S(ĥ)| can be upper bounded by

(
1√
m

+
1√
n
)
|Y |L
C

√
log

2

δ
+

√
r · ln( r|Y |2

θ2D
) + ln1

δ

mθD
+

√
Kn + lnm

δ

2(m− 1)
(2.7)

with probability greater than 1 − δ over the sampling of the S and the randomized

execution of RRL, where Kn depends only on D̃, m and r = max{n, d}.

Proof. Since H is a class satisfying the assumptions given in the statement, each h ∈
H can be expressed as h =

∫
H α(f)fdf , with

∫
H α(h)dh = 1 and ∀h ∈ H, α(h) ≥ 0.

Let h∗ = argminh∈H LD(h). Assume the learning algorithm A for H is deterministic,

and let S1, . . . , Sn be the bootstrap samples randomly selected in any randomized

execution of RRL. Denote with hi = A(Si) and let h+ = argminh∈H{Lf
S(h) : h =

∑
i αihi ∧

∑
i αi = 1 ∧ ∀iαi ≥ 0}. Then, the generalization gap |LD(h

∗) − Lf
S(ĥ)|
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can be decomposed and upper bounded as:

|LD(h
∗)− LD(h

+)|+ |LD(h
+)− Lf

S(h
+)|+ |Lf

S(h
+)− Lf

S(ĥ)|,

thus the risk of RRL can be estimated by bounding the three terms above separately.

By [196], Theorem 1, and noting that since l is L-Lipschitz l̃ is L|Y |-Lipschitz, the

first term can be upper bounded by

(
1√
m

+
1√
n
)
|Y |L
C

√
log

2

δ
.

For the second term, note that function h+ can be expressed as a linear classifier

defined over a n-dimensional feature space A, where A is the space obtained by

convex combinations of functions in the ensemble returned by the RRL algorithm.

Since H has Natarajan dimension d and is convex, the Natarajan dimension of the

above mentioned linear classifier is r = O(max{n, d}). Thus, the second term can

be bounded, by Theorem 5 in Section 2.1, as:
√

r · ln( r|Y |2
θ2D

) + ln1
δ

mθD
.

Finally, noting that Lf
S(h

+) ≤ Lf
S(ĥ) and Lf

S = ESf
i
LSf

i
, where Sf

i is sampled

i.i.d. from S, and h+ can be written in the form h+ =
∑

i αihi, the third term can

be upper bounded by a simple argument based on PAC-Bayes learning (see [238],

Theorem 1) as: √
KL(α||u) + lnm

δ

2(m− 1)
,

where α is the probabilitity distribution s.t. P (hi) = αi, u is the probability dis-

tribution s.t. P (hi) = 1
n
, and KL is the Kullback-Leibler divergence. Letting

Kn = supS∼D̃Eh1∼p,...,hn∼pKL(α||u), the result follows.

Thus, the result above shows that RRL’s generalization error, as the training

set size m and the number of ensembled models n grows to infinity, converges to

the generalization error of optimistic risk minimization. Indeed, the first and last

terms of Eq. (2.7) converge to 0 with a rate that is equivalent to the square root of

the above mentioned parameters. It can be noted, however, that while the previous
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theorem could be applied to obtain generalization bounds for RRL when using linear

or kernel methods as base classifiers, the same does not hold for the common case

of tree-based classifiers, which nonetheless are among the most popular methods

as base classifiers for ensemble methods due to their computational efficiency and

good performance [204]. Indeed, such classes of classifiers do not usually satisfy the

assumption in the previous theorem.

The following result, then, focuses on a setting which is more similar to that of

the standard Random Forest algorithm: assuming the classifiers in the ensemble to

be independent of each other, a tail bound on the probability of error is directly

obtained by an application of either Chernoff’s or Slud’s inequalities [34]:

Theorem 3. Let l0−1 be the 0-1 loss. Let H be a class of hypotheses whose Natarajan

dimension is d. Let ĥ be the function returned by Algorithm 2 and HA ⊆ H be

the set of hypothesis whose averaging is ĥ. Let γT = maxh∈HA
Lf
S(h) + ϵ ≤ 1

2
and

γV = maxh∈HA
Lf
v(h)+

√
log(2/δ)
2mh

v
≤ 1

2
. Then, assuming the h ∈ HA err independently,

the following inequalities hold jointly with probability greater than 1− 2δ:

1− LD(h) ≥
1

2
(1−

√

1− e
−Kγ2

T
1−γ2

T ) (2.8)

1− LD(h) ≥
1

2
(1−

√

1− e
−Kγ2

V
1−γ2

V ) (2.9)

LD(h) ≤ e−n·KL( 1
2
||γV ) (2.10)

where ϵ = 2
√

2d(ln(mT )+ln(|Y |))
mT

, mT is the size of the training set, mh
v is the size of

the out-of-bag validation set for base classifier h, Lf
v(h) is out-of-bag error for base

classifier h and KL(a||b) = a log a
b
+(1−a) log 1−a

1−b
is the Kullback-Leibler divergence.

Proof. Inequality (2.8) follows by applying Slud’s inequality [34, 219] to HA, by

noting that LD(h) is distributed as a Bernoulli random variable whose parameter p

is upper bounded by γT and ĥ errs on an instance x iff at least K/2 hypotheses in HA

also err. Inequality (2.9) similarly follows by Slud’s inequality, bounding LD(h) with

the validation error derived by direct application of Hoeffding’s inequality. Finally,

inequality (2.10) follows from Chernoff’s bound for binomial distributions [9].
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It is easy to notice, that under the condition of independence among the base

classifiers, the previous theorem, along with Theorem 1, implies that as the number

of ensembled base classifiers n grows to infinity, the performance of RRL converges to

that of the imprecise Bayes classifier, a result which is analogous to the consistency

of Random Forest in the standard supervised learning setting [28]. Nonetheless, even

though widely assumed in the literature on ensemble methods [28], the assumption

of independence of the base classifier is rather strong and in general cannot be guar-

anteed to hold as n grows, in which case RRL may have a rate of convergence much

smaller than exponential or may even fail to be consistent [104]. In any case, two

differences can be noted between Theorems 2 and 3. On the one hand, the two

theorems apply to different classes of base function classes: indeed, while Theorem

2 applies to convex base classes it cannot be applied to tree-based models, as men-

tioned above, while Theorem 3 cannot be directly applied to convex base classes

as the corresponding learning problems usually satisfy stability assumptions [219]

that would make the independence assumption not applicable. On the other hand,

Theorem 3 directly bounds the l0−1 loss generalization error of RRL, while Theorem

2 only provides a bound in terms of a surrogate convex loss l for which, generally,

it holds that l0−1 ≤ l. Thus, Theorem 2 provides a less informative bound than

Theorem 3 whenever accuracy is the real target performance metric.

Concluding this section, it is not hard to observe that the RRL algorithm pro-

vides a trade-off among the positive characteristics of instance-based methods as

well as optimistic risk minimization. Similarly to instance-based methods, the time

complexity of RRL is polynomial as long as the time required to train the base clas-

sifiers is also polynomial. This is in contrast with optimistic risk minimization, for

which the associated learning problem was shown to be in general computationally

hard. On the other hand, RRL shares favourable risk bounds with optimistic risk

minimization. Indeed, in general the generalization risk of RRL increases only poly-

nomially with the dimensionality of the input space, in contrast with instance-based

methods where in general the growth in generalization risk is exponential in the

dimensionality. Furthermore, it can easily be seen that, under certain conditions,
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the generalization error of RRL asymptotically tends, when the sample size m and

the number of ensembled models n grow, to the bound shown in Theorem 5 for op-

timistic risk minimization. Nonetheless, it can be noted that the above mentioned

error bounds suffer from the same limitations that were previously mentioned also

for the other considered learning from fuzzy label ML algorithms. In particular, the

obtained bounds depend on hardness parameters of the data generating distribu-

tion, which in general are unknown. Thus, application of these bounds in real-world

settings can be difficult when no information about such parameters is available or

when they cannot be estimated. For this reason, even more so than for standard su-

pervised ML, experimental evaluation is of paramount importance in the validation

of learning from fuzzy label algorithm: the following section, then, will be devoted

to the assessment of common state-of-the-art methods for learning from fuzzy label.

2.3 Experimental Analysis

As a complementary focus to the above theoretical analysis, the aim of this section

will be to discuss the empirical validation and experimental comparison of state-

of-the-art learning from fuzzy label algorithms, based on a large benchmark suite,

encompassing both synthetic and real-world datasets. The following algorithms, in

particular, were considered:

• Two pseudo-label learning algorithms, namely the RRL (denoted as RRL) algo-

rithm described in the previous section and the state-of-the art POP algorithm

(denoted as PLC) introduced in [262] (itself, a modification of the progressive

identification learning algorithm proposed in [103, 165]), using a multi-layer

perceptron as base model;

• Two variants of instance-based methods, namely generalized nearest neighbors

(denoted as GNN), i.e. the instantiation of learning rule (2.3) where N(x)

are the k nearest neighbors of x, and generalized radius neighbors (denoted as

GRN), i.e. the instantiation of learning rule (2.3) where N(x) are all instances
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at distance smaller than ϵ from x, for ϵ a threshold hyper-parameter. For the

case of GNN, the hyper-parameter k was set to 52, while for the case of GRN

the hyper-parameter ϵ was optimized during training;

• A hybrid pseudo-label and instance-based learning method, called DELIN [16,

259, 276] (denoted as DELIN). DELIN combines a pseudo-label learning ap-

proach for dimensionality reduction based on linear discriminant analysis with

an instance-based classification method based on generalized nearest neigh-

bors. The two algorithms are iteratively and alternatively executed to improve

the classification performance of standard instance-based methods by address-

ing the curse of dimensionality. Since the number of reduced dimension is a

hyper-parameter, this was optimized during training and validation. For the

generalized nearest neighbors classifier, as before, the number of neighbors was

set to 5;

• Two implementations of generalized risk minimization, namely a version gener-

alizing linear SVM learning using hinge loss as base loss (denoted as GRMSVM),

and a version generalizing a single hidden layer multi-layer perceptron using

the cross-entropy loss as base loss (denoted as GRMNN).

For all of the above mentioned algorithms, in particular, their scikit-weak implemen-

tation (see Appendix A) was considered.

Algorithms were evaluated on both contaminated version of standard precise

benchmark datasets from the UCI collection [96], as well as on real imprecise datasets.

The full list of datasets is reported in Table 2.1. For the precise benchmark datasets

two different contamination models were considered:

• Fully random contamination: for each training instance x, each of the wrong

labels y′ is randomly assigned possibility degree π(y′) with probability
(

n

⌈π(y′) · n⌉

)
ϵ⌈π(y

′)·n⌉(1− ϵ)n−⌈π(y′)·n⌉,

2This value was selected as default in analogy with the default recommended value in the scikit-

learn library (see https://scikit-learn.org/stable/modules/generated/sklearn.neighbor

s.KNeighborsClassifier.html).
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where ϵ ∈ {0.1, 0.25, 0.5, 0.7, 0.9}, n = 100, while the correct label is assigned

possibility degree π(y) = 1. This contamination model represents a generaliza-

tion of the random contamination model for superset learning adopted in [179]

to the learning from fuzzy label setting and corresponds to drawing n random

samples from a Bernoulli random variable (with parameter ϵ) and selecting for

y′ the possibility degree matching the observed number of successes;

• Label relaxation contamination [152]: in particular, a k-nearest neighbors

model was used for realizing the label relaxation. For each training instance

x, the k ∈ {3, 5, 7} nearest neighbors of x (including x itself) are selected and

each label y is given possibility degree π(y) = |{x′∈N(x):(x′,y)∈S}|
maxy′∈Y |{x′∈N(x):(x′,y′)∈S}| . Notice

that for this contamination model the possibility degree of the correct class

label y is always π(y) > 0 but, in general, it may happen that π(y) ̸= 1.

For the real-world imprecise datasets, 5 different medical tasks were considered:

• Circulating Tumor Cells detection [50, 227, 226] from fluorescence microscopy,

where fuzzy labels are obtained by consensus among 11 raters. In particular,

each rater provided a label y and π(y) = num. of raters who proposed label y
maxy′ num. of raters who proposed label y′ ;

• COVID-19 diagnosis from routine laboratory exams [43], where fuzzy labels

are obtained by weighted consensus (based on sensitivity and specificity of the

medical tests) among the results of a RT-PCR swab test and computer imaging;

• Knee lesion detection [40] from magnetic resonance imaging, where fuzzy labels

are obtained by confidence-weighted consensus among 12 raters;

• Spine surgery invasiness prediction [51], as an example of semi-supervised task,

in which a single rater labeled all instances as either non-invasive, invasive or

uncertain;

• Sagittal misalignment assessment [52], as an example of superset learning task,

where sets of labels are obtained by selecting all labels provided by two medical

specialists who annotated the dataset.
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Table 2.1: List of datasets considered in the experimental comparison of learning

from fuzzy label algorithms.

Classes Features Instances

UCI datasets

avila 10 10 20768

banknote 2 4 1372

cancerwisconsin 2 9 683

car 4 16 864

credit 2 61 1000

crowd 6 28 10845

diabetes 2 8 768

digits 10 62 5620

frog-family 4 22 7195

frog-genus 8 22 7195

frog-species 10 22 7195

hcv 4 12 582

htru 2 8 17898

ionosfera 2 33 351

iranian 2 45 7032

iris 3 4 150

mice 8 78 972

mushroom 6 99 5644

myocardial 2 111 1700

obesity 7 31 2111

occupancy 2 5 20560

pen 10 16 10992

robot 4 24 5456

sensorless 11 48 20000

shill 2 9 6321

sonar 2 60 208

vowel 11 9 990

wifi 4 7 2000

wine 3 13 178

Imprecise Datasets

ctc 2 2500 617

covid 2 69 1624

mri 2 100 427

invasiveness 3 186 72

spine 7 14 120

All algorithms were evaluated in a 10-repeated 5-fold cross-validation experimen-

tal setting, to take into account sensitivity to initialization and randomization. In

particular, all models were evaluated in terms of balanced accuracy, in order to mea-

sure the models’ error rate also under conditions of label imbalance, and running

time (in ms), as a measure of computational efficiency. For the synthetically con-

taminated datasets, balanced accuracy was evaluated by comparison with the known

ground truth labeling (which was not available to the learning algorithms). For the

real-world imprecise datasets, instead, balanced accuracy was evaluated on a subset
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of the data whose labels were precise, that is: for the ctc, mri and spine datasets, the

test sets encompassed only instances on which all raters proposed the same label; for

the covid dataset, the test set encompassed only instances on which the two diag-

nostic tests provided the same diagnosis, while for the invasiveness dataset the test

set encompassed only instances rated as invasive or non-invasive. Statistical analysis

of the results was performed by means of a ranking comparison, using Friedman test

with Nemenyi post-hoc procedure [24, 85].

Results of the experimental analysis are reported in Figures 2.1a and 2.2, in terms

of balanced accuracy, and 2.1b and 2.3, in terms of running time.

(a) (b)

Figure 2.1: Results of the experiments. Left: mean balanced accuracy scores of the

models under study (higher is better), Error bars denote 95% C.I. Mean running

times (ms) of the models under study (lower is better). Error bars denote 95%

C.I. Legend, okra: generalized risk minimization based, green: pseudo-label learning

based, blue: instance-based methods.

In terms of balanced accuracy, the three best models were RRL, DELIN and

multi-layer perception GRMNN. In particular, RRL was the best algorithm in terms

of both raw balanced accuracy as well as average ranks: even though the perfor-

mance of RRL and DELIN was not statistically significant, RRL still reported better
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(a)

(b)

Figure 2.2: Comparison of the the models under study in terms of balanced accuracy.

Left: critical difference diagram of the mean ranks (lower is better), bars denote sig-

nificance cliques at 95% confidence level. Right: heatmap of p-values obtained with

the post-hoc Friedman-Nemenyi test, significance at different thresholds is denoted

with shades of red. For each significant comparison in the right side, the best method

in the corresponding pair of models can be assessed from the left side, by looking at

which of the two models had a lower mean rank.

performance on average and was further significantly better than all other consid-

ered algorithms. Similarly, no significant difference was detected among DELIN and

GRMNN, as well as between GRMNN, GNN and PLC. These results confirm the

good performance of RRL, which can then be related with the theoretical results

demonstrated in the previous section. Indeed, the performance of RRL was compa-

rable with those of GRMNN and DELIN, respectively an optimistic risk minimization

and a (dimensionality reduced) instance-based method: interestingly, however, the

proposed RRL algorithm reported better on average performance than the other

two. Also this difference could be explained by referring to the theoretical results

of the previous sections. For the case of GRMNN, the hardness of solving the op-

timistic risk minimization could lead to premature convergence to local minima or
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(a)

(b)

Figure 2.3: Comparison of the the models under study in terms of running time.Left:

critical difference diagram of the mean ranks (lower is better), bars denote signifi-

cance cliques at 95% confidence level. Right: heatmap of p-values obtained with the

post-hoc Friedman-Nemenyi test, significance at different thresholds is denoted with

shades of red. For each significant comparison in the right side, the best method in

the corresponding pair of models can be assessed from the left side, by looking at

which of the two models had a lower mean rank.

saddle points, and consequently to suboptimal generalization error. For the case

of DELIN, by contrast, even though this algorithm performs a data dimensionality

pre-processing step to reduce the risk of over-fitting of GNN, the number of reduced

dimension may still be too large to avoid the curse of dimensionality: indeed, in

the experiments the number of reduced dimension was dynamically optimized dur-

ing cross-validation, thus leading to possible over-fitting the hyper-parameter. By

contrast the worst performing algorithm was GRN, which was reported significantly

lower performance than all the other considered methods. Interestingly, GRMNN

reported significantly better performance than GRMSVM, likely due to the fact that

most of the considered datasets did not satisfy the linear separability assumed by

the linear SVM model underlying GRMSVM.
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In terms of running time, the best performing algorithm was GNN, which was

significantly more computationally efficient than all other considered algorithms ex-

cluding GRN. This result is expected, since the training time of lazy instance-based

methods such as GNN and GRN is typically constant or linear in the size of the

training set. By contrast, the two worst performing algorithms were both gen-

eralized risk minimization methods, namely GRMNN and GRMSVM, which were

significantly less computationally efficient than all other consider algorithms. This

result, on the one hand, confirms the general hardness of these learning algorithm

(see Theorem 1; on the other hand, it can be remarked that memory transfer bottle-

necks in the scikit-weak implementation of these algorithms, which employ GPU for

tensor processing optimization, could also have a role in the observed performance

gap. Further research should devoted at decomposing these two computing costs,

and possibly optimizing memory usage. The proposed RRL algorithm reported a

running time which was intermediate between those of instance-based methods and

generalized risk minimization ones, having in particular an average running time

comparable with (i.e. not significantly different from) that of DELIN.

Thus, the experimental results show the effectiveness of the proposed RRL algo-

rithm: indeed, the proposed approach reported a running time which was compara-

ble or better than other state-of-the-art methods for learning from fuzzy label, while

at the same time exhibiting the best generalization accuracy among the compared

methods. These results, furthermore, are complemented by the robust generalization

guarantees for RRL which were proved in the previous section and which provide an

interpolation between the properties of instance-based methods and generalized risk

minimization ones.

2.4 Conclusion

The aim of this chapter was to study the problem of learnability in the setting of

learning from fuzzy label. To this aim, through two theoretical results, the first

contributions consisted in providing robust generalization guarantees, as well as an
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analysis from a computational complexity perspective, for two of the main learning

paradigms in this setting, namely instance-based methods and generalized risk min-

imization. Furthermore, the second main contribution consists in the proposal of a

novel pseudo-label learning algorithm, called RRL, and the study of its statistical

and generalization properties, which marks the first theoretical investigation of such

paradigm in the setting of learning from imprecise data. These theoretical contribu-

tions have then been complemented by a third, experimental, contribution through

which the performance (in terms of generalization accuracy and running time) of

several state-of-the-art methods for learning from fuzzy label has been compared,

showing, in particular, the effectiveness of the proposed RRL algorithm, which con-

firms and reinforces the presented theoretical analysis. In light of these results and

contributions, the following open problems could be worthy of further research:

• The focus of this chapter has been on the investigation of a specific instance of

the learning from imprecise data, namely the learning from fuzzy label problem.

While the following chapters (see Chapter 4), will investigate the application

of the RRL algorithm to the setting of learning from fuzzy data, future work

should be devoted to the investigation of the theoretical characterization as

well as of practical algorithms for more general forms of imprecise data;

• Several theoretical characterization of the main learning from fuzzy label paradigms,

namely generalized risk minimization, instance-based methods and pseudo-

label learning, have been considered, focusing on the establishment of upper

bounds on the learnability of this setting: further work should be devoted

at exploring tighter bounds, especially under constraining assumptions on the

problem instances, as well as matching lower bounds;

• From an empirical perspective, the performance gap reported by generalized

risk minimization algorithms, despite being consistent with the hardness of the

associated optimization problems, could partially be attributed to costs related

to GPU usage. Further work should be devoted at assessing this hypothesis

and optimizing resource usage to improve the efficiency of these algorithms.
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Chapter 3

Feature Selection in Learning from

Imprecise Data

The aim of the previous chapter has been to study the learnability of the learning

from fuzzy label problem: as a main result it has been shown that for three widely

adopted learning paradigms, namely generalized risk minimization, instance-based

methods and pseudo-label learning, learnability is indeed possible. Nonetheless, it

has also been shown that the dimensionality of the input feature space X (i.e. the

number of features) may have a significant impact on either the generalization or

the computational complexity of the above mentioned models. On the hand, for

instance-based methods it has been shown that even though the complexity grows

linearly with the dimensionality, the generalization error instead grows exponentially,

exhibiting a so-called curse of dimensionality phenomenon. Similarly, for the gener-

alized risk minimization and pseudo-label learning it is not hard to show that their

computational complexity and generalization error grows at least linearly with the

dimensionality of the feature space. These results are not unexpected: indeed, such

a dependence directly translates from the standard supervised setting [219] where,

without further assumptions (e.g. large margin or sparsity assumptions), dimen-

sionality directly affects both computational complexity [215] (e.g. algorithms for

computing norms or inner products have usually complexity at least linear in the
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dimensionality of the feature space1) as well model complexity [186, 249] (e.g. for

linear models the Natarajan dimension introduced in Chapter 2 is equal to the di-

mensionality of the feature space [219]) and has thus long been studied. Indeed,

several feature selection, regularization and dimensionality reduction have been de-

veloped in the supervised learning setting to address this problem: these include

unsupervised approaches (e.g. principal component analysis, autoencoders [115] and

topological methods [169]) as well as supervised ones (e.g. linear discriminant anal-

ysis, filter methods such as Relief [242], embedded methods such as LASSO [211,

233], or general wrapper methods).

By contrast, limited work has focused on feature selection or dimensionality re-

duction in learning from imprecise data [259]. Research in this sense has mostly

focused on the development of dimensionality reduction algorithms for superset learn-

ing, with the state-of-the-art algorithms for such a task being the DELIN algorithm

and its variations [16, 17, 259, 276]. From an algorithmic perspective, DELIN can be

understood as a classification and dimensionality reduction method based on pseudo-

label learning relying on linear discriminant analysis (LDA) and generalized nearest

neighbors as sub-routines, as described in the pseudo-code in Algorithm 3. Thus,

in its most basic implementation, DELIN is an iterative algorithm that, starting

from a uniform distribution over labels in the corresponding supersets, subsequently

alternates a dimensionality reduction step based on LDA with a classification step

on the reduced data using GNN, whose predicted label distributions are then used

in the successive iteration. The two-step procedure is repeated until convergence, or

after a fixed number of iterations has been performed.

In previous research, DELIN has been shown to outperform unsupervised dimen-

1In some cases, for example in kernel methods, one usually considers two different features

spaces, namely the original feature space X and an augmented feature space Φ(X), defined by a

map Φ : X → X ′, where X ′ is an Hilbert space s.t. dim(X ′) > dim(X) (X ′ can be even infinite-

dimensional). Typically, one uses the kernel trick [215] to reduce the computation of an inner

product on X ′ to the computation of a function on X: thus, while the complexity of computing

such an inner product is independent of the dimension of X ′, it is still typically linear in the

dimension of X.
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Algorithm 3 The DELIN algorithm.
procedure DELIN(d: number of dimensions, k: number of neighbors, n: number

of iterations, S: training set)

Stemp ← ∅
for all (x, L) ∈ S do

Add (x, {y : 1
|S|}y∈S) to Stemp

end for

for all iterations i = 1 to n do

Train LDA on Stemp with d dimensions

Sred = LDA(Stemp)

Train a k-GNN model on Sred

Stemp ← ∅
for all (x, L) ∈ S do

Add (x, {y : GNN(LDA(x))y}}y∈Y ) to Stemp

end for

end for

return LDA,GNN

end procedure

sionality reduction methods for superset learning, as well as to improve the general-

ization of classification algorithms, especially so for instance-based methods [17, 276].

However, despite these advantages, DELIN is affected by some limitations that hin-

der its applicability in real-world problems. First, being based on linear discriminant

analysis, DELIN relies on the parametric assumptions required by this latter model,

namely that the data features are distributed as normal, i.i.d. variables. Second, the

number of reduced dimensions that DELIN should extract from the original data is

a hyper-parameter that has to be fixed a-priori (or discovered via hyper-parameter

optimization). Third, DELIN is a dimensionality reduction rather than a feature

selection algorithm: while this could be helpful for visualization purposes when the

number of selected dimensions is small, this property may also hinder interpretability
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in cases where the semantics of the original features is relevant. Finally, the DELIN

algorithm has been defined and applied only to the specific case of superset learning,

while its generalization to the more general setting of learning from fuzzy data has

not been considered in the literature.

As a consequence of the above mentioned limitations of DELIN, the following

sections will be focused on the development of a novel feature selection approach

based on Rough Set theory [185], a general framework for the representation and

management of uncertainty in data which has been widely and successfully applied

in feature selection [23, 231], in order to address research problem P1.2. In par-

ticular, the main aim of this chapter will be to develop a non-parametric feature

selection method based on the generalization of Rough Set theory to the setting

of learning from imprecise labels. Intuitively, the Rough Set-theoretic approach to

feature selection is based on the notion of a reduct [118, 134, 135, 222, 228, 231]. In-

formally, this latter can be described as a subset of features which allows to preserve

all information about the target variable, while being minimal with this property,

i.e. all proper subsets of a reduct should introduce some new classification error.

More formally, the Rough Set-theoretic framework assumes a factorization of the

feature space X = A1× . . . Ad, where each Ad corresponds to a specific feature (e.g.,

in the continuous case where X = Rd, it holds that Ai = R for each i). In its most

general formulation, it also assumes that for each B ⊆ A = {A1, . . . , Ad} it exists

a granulation structure on X, specifying for each instance x its set of B-neighbors

NB(x). Depending on the nature of X, various concrete implementations of the

notion of a granulation structure have been proposed [49, 222, 269]. For example,

when each Ai is discrete, one usually assumes that NB(x) = {x′ ∈ X : ∀Ai ∈
B,Ai(x) = Ai(x

′)}, i.e. the granulation structure defines an equivalence relation on

X2. On the other hand, when the Ai are continuous, typical constructions refer either

to some discretization of the features [3] or to some topology on X [255, 270, 284].

Aside, from the granulation structure on the feature space, one also considers the

standard granulation on the target space Y given by NY (x) = {x′ ∈ X : yx = yx′}.

2This corresponds to Pawlak’s rough set model[185].
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A reduct for a given training set S, is a set of features B ⊆ A such that:

• The granulation structure NB, is consistent with the target granulation NY ;

• Given any C ⊂ B, the granulation structure NC is not consistent with NY .

Then, several instantiations of the notion of reduct can be derived based on the

precise definition of consistency between two granulations [222]. As an example, one

of the most popular definitions of reduct relies on the notion of a generalized decision

DB(x) = {y′ ∈ Y : ∃x′ ∈ NB(x) s.t. yx′ = y}, and defines a set of feature B ⊆ A to

be consistent with Y on the training set S if ∀x ∈ X,DB(x) ⊆ DA(x).

Even though the framework of Rough Set theory has originally been proposed in

the settings of either fully unsupervised or fully supervised data [185], it has since

been extended to various settings of uncertain data, including missing data [253,

229, 260], interval, incomplete and set-valued data [205, 208, 206, 207], and fuzzy

or possibilistic data [68, 175]. Nonetheless, as highlighted in the recent review [49],

no previous work has focused on the task of feature selection in the setting of learn-

ing from imprecise data, which, as described in the previous sections, features a

complex interaction between learning (i.e. generalization to new data) and disam-

biguation (i.e. discrimination of the most likely data instantiations in the training

data). To address this gap, starting from the more specific setting of superset learn-

ing, in Section 3.1, the classical Rough Set-theoretic approach to feature selection,

and in particular the notion of a reduct, will be generalized to the learning from

fuzzy label setting, in Section 3.2, by adapting the optimistic risk minimization and

minimum description length [117] principle to the Rough Set-theoretic framework.

In both the superset learning and the learning from fuzzy label settings a complete

characterization of the computational complexity of the proposed feature selection

methods will be provided, showing that, generally, the problem of feature selection

is computationally hard. Then, as a way to resolve this computational complexity

issue, in Section 3.3, several approximation algorithms, based either on heuristics or

meta-heuristics, will be discussed and analyzed from a computational perspective as

well as in terms of their empirical performance, in comparison with DELIN.
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Supervised learning is an important branch of machine learning (ML), which requires a 
complete annotation (labeling) of the involved training data. This assumption is relaxed in 
the settings of weakly supervised learning, where labels are allowed to be imprecise or 
partial. In this article, we study the setting of superset learning, in which instances are 
assumed to be labeled with a set of possible annotations containing the correct one. We 
tackle the problem of learning from such data in the context of rough set theory (RST). 
More specifically, we consider the problem of RST-based feature reduction as a suitable 
means for data disambiguation, i.e., for the purpose of figuring out the most plausible 
precise instantiation of the imprecise training data. To this end, we define appropriate 
generalizations of decision tables and reducts, using tools from generalized information 
theory and belief function theory. Moreover, we analyze the computational complexity and 
theoretical properties of the associated computational problems. Finally, we present results 
of a series of experiments, in which we analyze the proposed concepts empirically and 
compare our methods with a state-of-the-art dimensionality reduction algorithm, reporting 
a statistically significant improvement in predictive accuracy.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Weakly supervised learning [69] refers to machine learning tasks in which training instances are not required to be asso-
ciated with a precise target label. Instead, the annotations can be imprecise or partial. Such tasks could be the consequence 
of certain data pre-processing operations such as anonymization [15,49] or censoring [17], could be due to imprecise mea-
surements or expert opinions, or meant to limit data annotation costs [45]. Some examples of weakly supervised learning 
tasks include semi-supervised learning, but also more general tasks like learning from soft labels [8,12,13,48], (in which 
partial labels are represented through belief functions) which, in turn, encompasses both learning from fuzzy labels [14,28]
(in which partial labels are represented through possibility distributions) and superset learning [29,40,44]. In this latter set-
ting, which will be the focus of this article, each instance x is annotated with a set S of candidate labels that are deemed 
(equally) possible. In other words, we know that the label of x is an element of S , but nothing more. For example, an image 
could be tagged with {horse, pony, zebra}, suggesting that the animal shown on the picture is one of these three, though it 
is not exactly known which of them.

In the recent years, the superset learning task has been widely investigated both under the classification perspec-
tive [19,30,64,66] and from a theoretical standpoint [39]. The latter result is particularly relevant, as it shows that, as in the 
standard PAC learning model, superset learnability is characterized by combinatorial dimensions (e.g., Vapnik-Chervonenkis 
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or Natarajan dimension) which, in general, depend on the dimensionality (i.e., the number of features) of the learning 
problem. Thus, the availability of effective feature selection [24] or dimensionality reduction algorithms would be of critical 
importance in order to control model capacity and, hence, ensure proper model generalization. Nevertheless, this task has 
not received much attention so far [61].

In this article, which is an extension of our previous article [6], we study the application of rough set theory in the 
setting of superset learning. In particular, adhering to the generalized risk minimization principle [28], we consider the 
problem of feature reduction as a mean for data disambiguation, i.e., for the purpose of figuring out the most plausible 
precise instantiation of the imprecise training data. Compared to our previous work, we provide a finer characterization 
of the theoretical properties and relations among the proposed definitions of reduct through Theorems 3.4, 3.5, 3.7 that 
were previously left as open problems. In Section 4, which has been newly added, we also discuss two computational 
experiments by which we study the empirical performance of the proposed reduct definitions, also in comparison with the 
state-of-the-art method for dimensionality reduction in superset learning.

2. Background

In this section, we recall basic notions of rough set theory (RST) and belief function theory, which will be used in the 
main part of the article.

2.1. Rough set theory

Rough set theory has been proposed by Pawlak [46] as a framework for representing and managing uncertain data, and 
has since been widely applied for various problems in the ML domain (see [4] for a recent overview and survey). We briefly 
recall the main notions of RST, especially regarding its applications to feature reduction.

A decision table (DT) is a triple DT = 〈U , Att, t〉 such that U is a universe of objects and Att is a set of attributes
employed to represent objects in U . Formally, each attribute a ∈ Att is a function a : U → Va , where Va is the domain of 
values of a. Moreover, t /∈ Att is a distinguished decision attribute, which represents the target decision (also labeling or 
annotation) associated with each object in the universe. We say that DT is inconsistent if the following holds: ∃x1, x2 ∈
U , ∀a ∈ Att, a(x1) = a(x2) and t(x1) 	= t(x2).

Given B ⊆ Att , we can define the indiscernibility relation with respect to B as xI B x′ iff ∀a ∈ B, a(x′) = a(x). Clearly, it is 
an equivalence relation that partitions the universe U in equivalence classes, also called granules of information, [x]B . Then, 
the indiscernibility partition is denoted as πB = {[x]B | x ∈ U }.

We say that B ⊆ Att is a decision reduct for DT if πB ≤ πt (where the order ≤ is the refinement order for partitions, 
that is, πt is a coarsening of πB ) and there is no C � B such that πC ≤ πt . Then, evidently, a reduct of a decision table DT
represents a set of non-redundant and necessary features to represent the information in DT . We say that a reduct R is 
minimal if it is among the smallest (with respect to cardinality) reducts.

Given B ⊆ Att and a set S ⊆ U , a rough approximation of S (with respect to B) is defined as the pair B(S) = 〈lB(S), uB(S)〉, 
where lB(S) = ⋃{[x]B | [x]B ⊆ S} is the lower approximation of S , and uB(S) = ⋃{[x]B | [x]B ∩ S 	= ∅} is the corresponding 
upper approximation.

Finally, given B ⊆ Att , the generalized decision with respect to B for an object x ∈ U is defined as δB (x) = {t(x′) | x′ ∈ [x]B}. 
Notably, if DT is consistent and B is a reduct, then δB(x) = {t(x)} for all x ∈ U .

We notice that in the RST literature, there exist several definitions of reduct that, while equivalent on consistent DTs, 
are generally non-equivalent for inconsistent ones. We refer the reader to [55] for an overview of such a list and a study of 
their dependencies, while here we report two specific definitions that are useful for the following:

Definition 2.1. B ⊂ Att is a δ-reduct if ∀x ∈ U , δB(x) = δAtt(x).

Definition 2.2. B ⊂ Att is μ-reduct if ∀x ∈ U , ∀v ∈ Vt, Pr(v|[x]B) = Pr(v|[x]Att), where

Pr(v|[x]B) = |{x′ ∈ [x]B : t(x′) = v}|
|[x]B | .

Further, we recall the following result:

Theorem 2.1. Let DT be a decision table. Then, every μ-reduct of DT is also a δ-reduct of DT, but not vice versa.

We further notice that, given a decision table, the problem of finding the minimal reduct is in general N P -hard (by 
reduction to the Shortest Implicant problem [53,59]).
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2.2. Belief function theory

Belief Function Theory (BFT), also known as Dempster-Shafer theory (DST) or Evidence theory (ET), has originally been 
introduced by Dempster in [10] and subsequently formalized by Shafer in [50] as a generalization of probability theory 
(although this interpretation has been disputed [47]). The starting point is a frame of discernment X , which represents all 
possible states of a system under study, together with a basic belief assignment (bba) m : 2X → [0, 1], such that m(∅) = 0 and ∑

A∈2X m(A) = 1. From this bba, a pair of functions, called respectively belief and plausibility, can be defined as follows:

Belm(A) =
∑

B:B⊆A

m(B) (1)

Plm(A) =
∑

B:B∩A 	=∅
m(B) (2)

As can be seen from these definitions, there is a clear correspondence between belief functions (resp., plausibility functions) 
and lower approximations (resp., upper approximations) in RST: this connection has been first established in [63], in which 
the authors showed that every belief function can be derived from a corresponding (generalized) decision table. More 
recently, the connection between BFT and RST have been investigated from both the theoretical point of view, for example in 
[68], where the authors provide a characterization of belief functions in terms of lower and upper approximation operators, 
and in [65], where the author discusses a novel approach to decision-theoretic rough sets based on BFT; and also from the 
application point of view: in [67] the authors propose an algorithm for feature reduction based on BFT in the setting of 
Pythagorean fuzzy rough approximation spaces; while in [7] the authors propose an algorithm to induce weighted decision 
rules based on RST and BFT.

Starting from a bba, a probability distribution, called pignistic probability, can be obtained [57]:

Pm
Bet(x) =

∑
A:x∈A

m(A)

|A| (3)

Finally, we recall that appropriate generalizations of information-theoretic concepts [51], specifically the concept of entropy
(which was also proposed to generalize the definition of reducts in RST [54]), have been defined for evidence theory. 
These include measures of non-specificity [1,16], measures of conflict or dissonance [26,35,56,62], and measures of total 
uncertainty [2,25,34]: see [34] for a comprehensive review on generalizations of entropy for evidence theory. Most relevantly 
for the purposes of this article, we recall the definition of aggregate uncertainty [25]:

AU (m) = max
p∈P(m)

H p(X) , (4)

where P(m) is the set of probability distributions p such that Belm ≤ p ≤ Plm , and H p(X) = − 
∑

x∈X p(x)log2 p(x) the 
Shannon entropy of p. While this measure is not compatible with Dempster combination rule (see [34]; note, however, that 
we do not rely on Dempster combination rule in this paper), it complies with the generalized risk minimization approach 
[28] to superset learning and, more in particular, with the pessimistic loss approach to generalized risk minimization [22,
23,31]. Another relevant approach is the normalized pignistic entropy (see [36] for the non-normalized definition)

H Bet(m) = H(Pm
Bet)

H(p̂m)
, (5)

where p̂m is the probability distribution that is uniform on the support of Pm
Bet(x), i.e., on the set of elements {x | Pm

Bet(x) >
0}. Similarly to the AU , also the pignistic entropy is not compatible with Dempster combination rule, but has the advantage 
of being efficiently computable.

2.3. Superset learning

As already mentioned in the introduction, superset learning is a specific type of weakly supervised learning and, more 
precisely, a specific type of the learning from soft labels [8,11,13,48] task. While in learning from soft labels the partial labels 
are represented through general belief functions [11], in the case of superset learning each instance (or object) x ∈ U , where 
U is a data set (e.g., the training data in a machine learning setting), is annotated with a collection of labels S ⊆ Y (i.e., in 
BFT terminology, the partial labels are represented by belief functions with a single focal set). The common interpretation 
of S is in terms of a set of candidates of an underlying ground-truth: There is a true label y, which is not precisely known, 
but which is known to be an element of S . In other words, S is a superset of y, hence the name “superset learning”.

As an illustration, consider the famous Iris data, where the objects are iris plants characterized by four attributes 
a1, . . . , a4 (sepal length, sepal width, petal length, petal width). Moreover, each plant belongs to either of the three cat-
egories Setosa, Versicolor, Virginica. Thus, a labeled instance in a data set might be given by (6.1, 2.9, 4.7, 1.4, Versicolor). 
Now, imagine that a botanist who is responsible for the categorization is not entirely certain about the type of a plant 
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with features x = (6.1, 2.9, 4.7, 1.4), but can at least exclude Setosa as an option. She could then label the instance with 
S = {Versicolor, Virginica}.

In spite of the ambiguous, set-valued training data, the goal that is commonly considered in superset learning is to induce 
a unique model, i.e., a map h : X → Y that generalizes beyond the training data and can be used to make predictions h(x) ∈
Y for any new query instance x ∈ X . In one way or the other, this requires the “disambiguation” of the training data. To 
this end, various methods and algorithmic approaches have been proposed in the literature, for example based on maximum 
likelihood estimation [8,13,33,40,48], generalizations of empirical risk minimization [28,30,31], convex optimization [9,18], 
and instance-based approaches [11,29,66]. In [39], superset learning has been studied from a theoretical perspective in the 
framework of PAC learning.

Superset learning has mostly been studied for classification problems so far, while other (related) machine learning tasks 
have been considered much less. This also includes feature selection, despite its important influence on model complexity, 
generalization performance, and transparency of learning algorithms. Indeed, while many works have studied feature se-
lection and dimensionality reduction in the setting of semi-supervised learning [3,52], which is actually a special case of 
superset learning, to the knowledge of the authors, the only work focusing on the more general setting of superset learning 
is the DELIN algorithm proposed in [61]. Compared to the method put forward in this article, we note two main differences. 
First, being based on Linear Discriminant Analysis (LDA), DELIN relies on specific assumptions regarding the statistical dis-
tribution of the data, whereas our method (based on Rough Set Theory) is completely non-parametric. Second, DELIN is a 
dimensionality reduction algorithm, which means that it constructs a new set of attributes that is not (in general) a subset 
of the original one. By contrast, our approach is a feature selection algorithm, which selects a subset of the original set of 
attributes. In Section 4, we will provide an experimental comparison of the two methods.

As for the notation and connection to RST, it should be clear that the attribute y and its domain Y in superset learning 
play the role, respectively, of the decision attribute t and its domain Vt in RST. As an aside, let us note that the information 
provided in superset learning may also be interpreted in a different way, which provides an alternative motivation for the 
superset extension of decision tables in general and the search for reducts of such tables in particular. As explained above, 
the superset extension is mostly motivated by the assumption of imprecise labeling: The value of the decision attribute 
is not known precisely but only characterized in terms of a set of possible candidates. As will be seen further below, 
finding a reduct is then supposed to help disambiguate the data, i.e., figuring out the most plausible among the candidates. 
Instead of this “don’t know” interpretation, a superset S can also be given a “don’t care” interpretation: In a certain context 
characterized by x, all decisions in S are sufficiently good, or “satisficing” in the sense of March and Simon [42]. A reduct 
can then be considered as a maximally simple (least cognitively demanding) yet satisficing decision rule.

3. Superset decision tables and reducts

In this section, we extend some key concepts of rough set theory to the setting of superset learning.

3.1. Superset decision tables

In superset learning, an object x ∈ U is not necessarily assigned a single annotation t(x) ∈ Vt , but instead a set S of 
candidate annotations, one of which is assumed to be the true annotation associated with x. To model this idea in terms of 
RST, we generalize the definition of a decision table as follows.

Definition 3.1. A superset decision table (SDT) is a tuple S DT = 〈U , Att, t, d〉, where 〈U , Att, t〉 is a decision table, i.e.:

• U is a universe of objects of interest;
• Att is a set of attributes (or features);
• t is the (real) decision attribute (whose value, in general, is not known);
• d /∈ Att is a candidate decision attribute, that is, a set-valued map d : U → P(Vt) such that the superset property holds: 

t(x) ∈ d(x) for all x ∈ U .

The intuitive meaning of the set-valued information d is that, if |d(x)| > 1 for some x ∈ U , then the real decision associ-
ated with x (i.e., t(x)) is not known precisely, but is known to be in d(x). Notice that Definition 3.1 is a proper generalization 
of decision tables: if |d(x)| = 1 for all x ∈ U , then we have a standard decision table.

Remark 3.1. In Definition 3.1, a set-valued decision attribute is modeled as a function d : U → P(Vt). While this mapping is 
formally well-defined for a concrete decision table, let us mention that, strictly speaking, there is no functional dependency 
between x and d(x). In fact, d(x) is not considered as a property of x, but rather represents information about a property of 
x, namely the underlying decision attribute t(x). As such, it reflects the epistemic state of the decision maker.

A SDT can be associated with a collection of compatible (standard) decision tables, which we call instantiations of the 
SDT.
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Table 1
An example of superset decision table.

a1 a2 a3 a4 d

x1 0 0 0 0 0
x2 0 0 0 1 {0,1}
x3 0 1 1 0 0
x4 0 1 1 1 {0,1}
x5 0 1 0 1 1
x6 0 1 0 0 {0,1}

Definition 3.2. An instantiation of a SDT 〈U , Att, t, d〉 is a standard DT I = 〈U , Att, t I 〉 such that t I (x) ∈ d(x) for all x ∈ U . The 
set of instantiations of S DT is denoted I(S DT ).

The notion of inconsistency of a SDT has to reflect this richness. The following definition reflects the idea that no 
instantiations are consistent.

Definition 3.3. For B ⊂ Att , the S DT is B-inconsistent if

∃x1, x2 ∈ U ,∀a ∈ B,a(x1) = a(x2) and d(x1) ∩ d(x2) = ∅ . (6)

We call such a pair x1, x2 inconsistent. If condition (6) is not satisfied, the SDT is B-consistent.

Thus, inconsistency implies the existence of (at least) two indiscernible objects with non-overlapping superset decisions. 
We say that an instantiation I is consistent with a SDT S (short, is consistent) if the following holds for all x1, x2: if x1, x2 are 
consistent in S, then they are also consistent in I.

3.2. Superset reducts

Learning from superset data is closely connected to the idea of data disambiguation in the sense of figuring out the most 
plausible instantiation of the set-valued training data [27,31]. But what makes one instantiation more plausible than another 
one? One approach originally proposed in [29] refers to the principle of simplicity in the spirit of Occam’s razor (which can 
be given a theoretical justification in terms of Kolmogorov complexity [38]): An instantiation that can be explained by a 
simple model is more plausible than an instantiation that requires a complex model. In the context of RST-based data 
analysis, a natural measure of model complexity is the size of the reduct. This leads us to the following definition.

Definition 3.4. A set of attributes R ⊆ Att is a (consistent) superset reduct if there exists a (consistent) instantiation I =
〈U , Att, t I 〉 such that R is a reduct for I and there is no other (consistent) instantiation I ′ = 〈U , Att, t I ′ 〉 with reduct R ′ ⊂ R . 
We denote with Rsuper (resp., Rc

super ) the set of superset reducts (resp., consistent superset reducts). A minimum description 
length (MDL) instantiation is one of the (consistent) instantiations of S DT that admits a reduct of minimum size compared 
to all the reducts of all possible (consistent) instantiations. We will call the corresponding reducts MDL reducts.

First of all, in order to clarify these concepts, we show a brief example.

Example 3.1. Consider the superset decision table

S DT = 〈
U = {x1, ..., x6}, A = {a1,a2,a3,a4},d

〉
given in Table 1.

It is easy to observe that the SDT admits 8 possible instantiations:

• I1 s.t. t I1 (x1) = t I1 (x2) = t I1 (x3) = t I1 (x4) = t I1 (x6) = 0 and t I1 (x5) = 1;
• I2 s.t. t I2 (x1) = t I2 (x2) = t I2 (x3) = t I2 (x4) = 0 and t I2 (x5) = t I2 (x6) = 1;
• I3 s.t. t I3 (x1) = t I3 (x2) = t I3 (x3) = t I3 (x6) = 0 and t I3 (x5) = t I3 (x4) = 1;
• I4 s.t. t I4 (x1) = t I4 (x3) = t I4 (x4) = t I4 (x6) = 0 and t I4 (x5) = t I4 (x2) = 1;
• I5 s.t. t I5 (x1) = t I5 (x2) = t I5 (x3) = 0 and t I5 (x4) = t I5 (x5) = t I5 (x6) = 1;
• I6 s.t. t I6 (x1) = t I6 (x3) = t I6 (x4) = 0 and t I6 (x2) = t I6 (x5) = t I6 (x6) = 1;
• I7 s.t. t I7 (x1) = t I7 (x3) = t I7 (x6) = 0 and t I7 (x2) = t I7 (x4) = t I7 (x5) = 1;
• I8 s.t. t I8 (x1) = t I8 (x3) = 0 and t I8 (x2) = t I8 (x4) = t I8 (x5) = t I8 (x6) = 1.

All of the instantiations are Att-consistent, since no two x, x′ ∈ U are associated with the same representation. It is easy 
to observe that the single shortest reduct among all instantiations is R = {a4}, with corresponding instantiation I7: thus I7
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is a MDL instantiation and {a4} is the unique MDL reduct (and thus also a superset reduct). The SDT also admits another 
superset reduct, namely {a2, a3} (with corresponding instantiation I2).

Then, we briefly comment on the fact that the definition of MDL reduct generalizes the standard definition of (minimal) 
reduct. Indeed, in a classical decision table, there is only one possible instantiation, hence the MDL reduct is exactly (one 
of) the minimal reducts of the decision table. Further, if we denote by R M DL the set of MDL reducts, and by Rc

M DL the set 
of consistent MDL reducts (i.e., the MDL reducts corresponding only to consistent instantiations), then we can prove the 
following result:

Theorem 3.1. R M DL ⊆ Rsuper and Rc
M DL ⊆ Rc

super . Furthermore, if R ∈ Rc
M DL (resp., Rc

super ), then ∃R ′ ∈ R M DL (resp., Rsuper ) s.t. 
R ′ ⊆ R.

Proof. If R is a consistent MDL reduct, then by definition it is also a consistent superset reduct, thus Rc
M DL � Rc

super . The 
same holds for R M DL , Rsuper .

As regard the second pair of statement, it is obviously the case that if we consider also inconsistent instantiations then 
the set of superset super-reducts (denoted with S Rsuper ) contains the set of superset super-reducts that we would obtain 
were we to consider only consistent instantiations (denoted S Rc

super ): this implies that if R ∈ S Rc
super then R ∈ S Rsuper and 

the result easily follows. �

Algorithm 1 The brute-force algorithm for finding MDL reducts of a superset decision table S .
procedure Brute-Force-MDL-Reduct(S: superset decision table)

reds ← ∅
l ← ∞
ists ← enumerate-instantiations(S)

for all i ∈ ists do
tmp-reds ← f ind-shortest-reducts(i)
len ← |red| where red ∈ tmp-reds
if len < l then

reds ← tmp-reds
l ← len

else if len = l then
reds ← reds ∪ tmp-reds

end if
end for
return reds � The MDL reducts for S

end procedure

An algorithmic solution to the problem of finding the MDL reduct for an SDT can be given as a brute-force algorithm, 
which computes the reducts of all the possible instantiations, see Algorithm 1. It is easy to see that the worst case runtime 
complexity of this algorithm is exponential in the size of the input. Unfortunately, it is unlikely that an asymptotically more 
efficient algorithm exists. Indeed, if we consider the problem of finding any MDL reduct, then the number of instantiations 
of S is, in the general case, exponential in the number of objects, and for each such instantiation one should find the 
shortest reduct for the corresponding decision table, which is known to be N P -hard. Interestingly, we can prove that the 
following decision problem (i.e., does there exist a superset reduct of size ≤ k?) related to finding MDL-Reducts is in N P N P

(i.e., the class of problems that can be checked in polynomial time with access to an oracle for S AT ).

Theorem 3.2. Let M DL-Reduct be the problem of deciding if, given an SDT S and k ∈N+ , the MDL reducts of S are of size ≤ k. Then, 
M DL-Reduct is in N P N P .

Proof. We need to show that there is an algorithm for verifying instances of M DL-Reduct whose runtime is polynomial 
given access to an oracle for an NP-complete problem. Indeed, a certificate can be given by an instantiation I (whose size 
is clearly polynomial in the size of the input SDT) together with a minimal reduct r for I s.t. |r| ≤ k. Verifying whether r is 
a minimal reduct for I can then be done in polynomial time with an oracle for NP, from which the result follows. �

From the above proof we can observe that the pair (I, r), used as a certificate, only requires that r is a reduct of I , which 
means that in general it is a superset super-reduct of S and not necessarily also a superset reduct.

While heuristics could be applied to speed up the computation of reducts [58] (specifically, to reduce the complexity 
of the f ind-shortest-reducts step in Algorithm 1) the approach described in Algorithm 1 still requires enumerating all the 
possible instantiations. Therefore, in the following section, we propose two alternative definitions of reduct in order to 
reduce the computational costs.
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3.3. Entropy reducts

We begin with a definition based on the notion of entropy [54], which simplifies the complexity of finding a reduct for 
an SDT. Indeed, while finding Superset and MDL reducts requires to enumerate all possible instantiations of a given SDT 
(which, in general, are exponentially many in the size of the SDT), the two alternative notions of entropy-based reducts that 
we propose in this Section do not require such an enumeration.

Given a decision d, we can associate with it a pair of belief and plausibility functions. Let v ∈ Vt and [x]B for B ⊆ Att an 
equivalence class, i.e. [x]B = {x′ ∈ U : ∀a ∈ B, a(x′) = a(x)}. Then:

BelS(v|[x]B) = |{x′ ∈ [x]B : d(x′) = {v}}|
|[x]B |

PlS(v|[x]B) = |{x′ ∈ [x]B : v ∈ d(x′)}|
|[x]B |

For each W ⊆ Vt , the corresponding basic belief assignment is defined as

m(W |[x]B) = |{x′ ∈ [x]B : d(x′) = W }|
|[x]B | . (7)

Given this setting, we now consider two different entropies. The first one is the pignistic entropy H Bet(m) as defined in 
(5). As regards the second definition, we will not directly employ the AU measure (see equation (4)). This measure, in fact, 
corresponds to a quantification of the degree of conflict in the bba m, which is not appropriate in our context, as it would 
imply finding an instantiation which is maximally inconsistent. We thus consider a modification of the AU measure called 
Optimistic Aggregate Uncertainty (OAU), which is consistent with the optimistic approach to generalized risk minimization 
[28,30,31]. This measure, which has already been studied in the context of evidence theory [1], superset decision tree 
learning [29] and soft clustering [5], is defined as follows:

O AU (m) = min
p∈P(m)

H p(X) , (8)

where m is a bba, and H is the Shannon entropy (see Section 2).
We now show how these two entropies can be defined for a given SDT. Let S DT = 〈U , Att, t, d〉 be an SDT, B ⊆ Att be a 

set of attributes and denote by I N D B = {[x]B : x ∈ U } the collection of equivalence classes (granules) determined by B . Let 
d[x]B be the restriction of d on the equivalence class [x]B , that is d[x]B = {d(x′) : x′ ∈ [x]B}. The H Bet and OAU entropy of d, 
conditional on B , are defined as

H Bet(d|B) =
∑

[x]B∈I N D B

|[x]B |
|U | H Bet(d[x]B )

=
∑

[x]B∈I N D B

|[x]B |
|U |

H(Pm
Bet(d[x]B ))

H(p̂m(d[x]B ))

=
∑

[x]B∈I N D B

|[x]B |
|U |

∑
v∈d[x]B

Pm(·|[x]B )
Bet (v) ∗ log(Pm(·|[x]B )

Bet (v))∑
v∈d[x]B

1
|d[x]B | ∗ log( 1

|d[x]B | )

(9)

O AU (d|B) =
∑

[x]B∈I N D B

|[x]B |
|U | O AU (d[x]B )

=
∑

[x]B∈I N D B

|[x]B |
|U | minI∈I(S DT )

∑
v∈δ I

B (x)

Pr(v|[x]I
B) ∗ log(

1

Pr(v|[x]I
B)

)

(10)

where m(·|[x]B) is the bba determined by the granule [x]B (see Eq. (7)), Pm(·|[x]B )
Bet is the pignistic probability distribution (see 

Section 2), [x]I
B is the granule of x determined by B ⊂ Att in the instantiation I ∈ I(S DT ), δ I

B is the generalized decision 
w.r.t. B for the instantiation I ∈ I(S DT ) (see Section 2), and Pr(v|[x]I

B) is the probability of class label v in the granule of 
x determined by B ⊂ Att in instantiation I (see the definition of μ-reduct in Section 2).

Definition 3.5. We say that B ⊆ Att is

• an OAU super-reduct (resp., H Bet super-reduct) if O AU (d | B) ≤ O AU (d | Att) (resp., H Bet(d | B) ≤ H Bet(d | Att));
• an OAU reduct (resp., H Bet reduct) if no proper subset of B is also a super-reduct.
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As a further heuristic, we introduce approximate reducts as follows.

Definition 3.6. We say that B ⊆ Att is

• an OAU ε-approximate super-reduct (resp., H Bet ε-approximate super-reduct), with ε ∈ [0, 1), if O AU (d | B) ≤
O AU (d | Att) − log2(1 − ε) (resp., H Bet(d | B) ≤ H Bet(d | Att) − log2(1 − ε));

• an OAU ε-approximate reduct (resp., H Bet ε-approximate reduct) if no proper subset of B is also an ε-approximate 
super-reduct.

It is easy to observe that both OAU and H Bet naturally define two families of instantiations of the underlying SDT. Indeed, 
let B be an OAU reduct and let [x]B be one of the granules with respect to an OAU reduct. Then, a OAU instantiation is any 
instantiation I O AU ∈ I(S DT ) s.t.:

decO AU ([x]B) = arg max
v∈Vt

{
Pr(v|[x]I

B) :

I ∈ { arg min
J∈I(S DT )

∑
v∈δ

J
B (x)

Pr(v|[x] J
B) ∗ log(

1

Pr(v|[x] J
B)

}
}

.
(11)

That is, an OAU reduct determines an instantiation in which each object is assigned to the most probable among the classes, 
under the probability distribution which corresponds to the minimum value of entropy.

Similarly, a H Bet instantiation with respect to [x]B is given by

decH Bet ([x]B) = arg max
v∈Vt

Pm(·|[x]B )
Bet (v) (12)

We note that, in general, neither decO AU ([x]B) nor decH Bet ([x]B) are unique: for the case of decO AU (B)([x]B) there may 
exist two instantiations I, I ′ ∈ I(S DT ) with corresponding probability distributions p, p′ (over the labels v ∈ Vt ) s.t. both 
p, p′ ∈ arg minp∈Pm

H p(X); while for the case of decH Bet ([x]B) there may be two classes v ′, v ′′ ∈ Vt s.t.

Pm(·|[x]B )
Bet (v ′) = Pm(·|[x]B )

Bet (v ′′) = maxv∈Vt Pm(·|[x]B )
Bet (v).

The following example shows, for a simple SDT, the OAU reducts, MDL reducts, and H Bet reducts and their relationships.

Example 3.2. Consider the superset decision table

S DT = 〈
U = {x1, ..., x6}, A = {a1,a2,a3,a4},d

〉
given in Table 1 and described in Example 3.1. We have that, for B = {a2, a3}:

O AU (d | A) = O AU (d | B) = 0.

Thus, B is an OAU reduct of SDT, as O AU (d | a2) = O AU (d | a3) > 0. It can easily be seen that B admits only a single OAU 
instantiation, which is given by {a2, a3} is deca2,a3 ({x1, x2}) = deca2,a3 ({x3, x4}) = 0, deca2,a3 ({x5, x6}) = 1. Indeed, every other 
possible assignment of class labels to the equivalence classes determined by B would result in a greater entropy.

Note that {a4} is also an OAU reduct and also in this case there exists a single corresponding OAU instantiation: this is 
given by {a4} is deca4 ({x1, x3, x6}) = 0, deca4 ({x2, x4, x5}) = 1.

On the other hand, H Bet(d | A) = 1
2 , while H Bet(d | {a2, a3}) = 0.81. Therefore, {a2, a3} is not an H Bet reduct. Notice that, 

in this case, there are no H Bet reducts (excluding A). However, it can easily be seen that {a2, a3} is an H Bet approximate 
reduct when ε ≥ 0.20. We note that there exists 8 different H Bet instantiations corresponding to the H Bet reduct A: in all 
these instantiations we have that dec A(x1) = dec A(x3) = 0 and dec A(x5) = 1, while we have a different instantiation for each 
of the possible class assignments for the remaining objects.

As shown in Example 3.1, the unique MDL reduct is {a4}, with corresponding MDL instantiation decM DL({x1, x3, x6}) = 0, 
decM DL({x2, x4, x5}) = 1. Thus, in this case, the MDL reduct is equivalent to one of the OAU reducts.

We note that also the other possible superset reduct (i.e. {a2, a3}, as shown in Example 3.1) is an OAU reduct: as we’ll 
show in the next Section, this is a general property of OAU reducts.

Before studying the formal properties of the proposed entropy reducts, we observe that the computation of H Bet and 
OAU entropies do not require one to enumerate all instantiations of a SDT, and can be performed in polynomial time. This 
is clearly immediate for the computation of H Bet :

Proposition 3.1. H Bet can be computed in polynomial time, without enumerating the instantiations I ∈ I(S DT ).
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Proof. In Equation (9) we only perform |I N D B ||d[x]B | ∈ O  (|U ||Vt |) operations, and there is clearly no dependency on 
|I(S DT )|. �

The analogous result for the computation of the OAU entropy is less immediate (indeed, in Eq. (10) we need to solve a 
minimization problem over I(S DT )), and rests on a previous characterization of this uncertainty measure [5,29]:

Proposition 3.2. OAU can be computed in polynomial time, without enumerating the instantiations I ∈ I(S DT ).

Proof. The OAU entropy can be computed efficiently through the P-LLE (Polynomial Lower Logical Entropy) algorithm 
proposed in [5]: the time complexity of this procedure is � (|Vt |) and O (|U ||Vt | ∗ log|Vt |), and has no dependency on 
|I(S DT )|. �

These properties imply that the computation of H Bet and OAU reduct does not require one to enumerate the instan-
tiations I ∈ I(S DT ), and instead the required computations can be performed by directly relying on the statistics in the 
original SDT: this property will be useful for designing efficient (heuristic) procedures for searching reducts, as we show 
in Section 3.4, and is similarly useful for computing OAU and H Bet instantiations. Indeed, it can easily be seen that, as a 
consequence of Propositions 3.1 and 3.2, the OAU (resp. H Bet ) instantiations, corresponding to a given OAU (resp. H Bet ) 
reduct, can be computed in polynomial time.

3.4. Properties of reducts

In this section, we study the properties of, and relationships among, the different definitions of reducts on superset 
decision tables. In Example 3.2, it is shown that the MDL reduct is one of the OAU reducts. Indeed, we can prove that this 
holds in general.

Theorem 3.3. Let R be an MDL reduct whose MDL instantiation is consistent (that is, R ∈ Rc
M DL ). Then R is also an OAU reduct.

Proof. As the instantiation corresponding to R is consistent, O AU (d | R) = 0. Thus, R is an OAU reduct. �

Corollary 3.1. Finding the minimal OAU reduct for a consistent SDT is N P -hard.

Proof. As any MDL reduct of a consistent SDT is also an OAU reduct and MDL reducts are by definition minimal, the 
complexity of finding a minimal OAU reduct is equivalent to that of finding MDL reducts. �

More in general, if we consider a consistent SDT, we can prove that the collection of OAU reducts and (consistent) 
superset reducts are equivalent, that is, the following result holds.

Theorem 3.4. Let S be a consistent SDT, then Rc
super = R O AU , that is each OAU reduct is a consistent superset reduct (and vice-versa). 

Furthermore, for each r ∈ R O AU there exists r′ ∈ Rsuper (i.e. a superset reduct) s.t. r′ ⊆ r, that is each OAU reduct is a superset super-
reduct.

Proof. Let r ∈ Rc
super , then its instantiation is consistent and hence O AU (d|r) = 0, thus r ∈ R O AU . Conversely, let r ∈ R O AU

and notice that every OAU instantiation (i.e., an instantiation s.t. ∀[x]r , d([x]r) = decO AU (r)([x]r)) is necessarily consistent (as 
O AU (d|r) = 0). Hence, r is a reduct of a consistent instantiation, thus r ∈ Rc

super .
For the last part of the theorem, it suffices to notice that no inconsistent instantiation can be an OAU instantiation, and 

that each consistent superset reduct is also a (not necessarily consistent) superset super-reduct (by Theorem 3.1). The result 
follows. �

In inconsistent SDTs, only the last part of the previous theorem holds, as shown by the following theorem.

Theorem 3.5. Let S be an inconsistent SDT. Then, for each r ∈ R O AU , there exists r′ ∈ Rsuper s.t. r′ ⊆ r.

Proof. We can notice that each r ∈ R O AU corresponds to a OAU instantiation, whose Shannon entropy (by definition of the 
OAU measure) is minimal with respect to all possible instantiations. Thus, R O AU is the collection of superset super-reducts 
whose corresponding instantiations have minimal entropy. Further, note that there may be r′ ∈ Rsuper s.t. r′ ⊆ r. �

On the other hand, as shown in Example 3.2, the relationship between MDL reducts (or OAU reducts) and H Bet reducts 
is more complex as, in general, an OAU reduct is not necessarily a H Bet reduct. In particular, one could be interested in 
knowing whether an H Bet (smaller than the whole set of attributes Att) exists and whether there exists a H Bet reduct 
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which is able to disambiguate objects that are not disambiguated when taking in consideration the full set of attributes Att . 
The following two results provide a characterization in the binary (i.e., Vt = {0, 1}), consistent case.

Theorem 3.6. Let B ⊆ Att be a set of attributes, [x1]Att , [x2]Att be two distinct equivalence classes (i.e., [x1]Att ∩ [x2]Att = ∅) that are 
merged by B (i.e., [x1]B = [x1]Att ∪ [x2]Att ), that are consistent and such that |[x1]Att | = n1 + m1 , |[x2]Att | = n2 + m2 , where the n1
(resp., n2) objects are such that |d(x)| = 1 and the m1 (resp., m2) objects are such that |d(x)| = 2. Then, H Bet(d | B) ≥ H Bet(d | Att), 
with equality holding iff one of the following two holds:

1. m1 = m2 = 0 and n1, n2 > 0;
2. m1, m2 > 0 and n1 ≥ 0, n2 = m2n1

m1
(and, symmetrically when changing n1, n2).

Proof. A sufficient and necessary condition for H Bet(d | B) ≥ H Bet(d | Att) is:

n1 + m1+m2
2 + n2

n1 + m1 + n2 + m2
≥ max

{
n1 + m1

2

n1 + m1
,

m2
2 + n2

n2 + m2

}
(13)

under the constraints n1, n2, m1, m2 ≥ 0, as the satisfaction of this inequality implies that the probability is more peaked on 
a single alternative. The integer solutions for this inequality provide the statement of the theorem. Further, one can see that 
the strict inequality is not achievable. �

Corollary 3.2. On a binary consistent SDT, a subset B ⊆ Att is a H Bet reduct iff, whenever it merges a pair of equivalence classes, the 
conditions expressed in Theorem 3.6 are satisfied.

Notably, these two results also provide an answer to the second question, that is, whether an H Bet reduct can disam-
biguate instances that are not disambiguated when considering the whole attribute set Att . Indeed, Theorem 3.6 provides 
sufficient conditions for this property and shows that, in the binary case, disambiguation is possible only when at least one 
of the equivalence classes (w.r.t. Att), that are merged by the reduct, is already disambiguated.

As we described in the statement of Theorem 3.6, our result applies only to the binary case: indeed, the general n-ary 
case is much more complex and, in such cases, disambiguation could happen also in more general situations. This is shown 
by the following example.

Example 3.3. Let S DT = 〈U = {x1, ..., x10}, Att = {a1, a2}, d〉 such that ∀i ≤ 5, d(xi) = {0, 1} and ∀i > 5, d(xi) = {1, 2}. Then, 
assuming the equivalence classes determined by Att are {x1, ..., x5}, {x6, ..., x10}, it holds that H Bet(d | Att) = 1. If we further 
assume that a1 determines a single equivalence class U , then it is easy to observe that H Bet(d | a1) < 0.95 < H Bet(d | Att)
and hence a1 is a H Bet reduct.

Note that the conditions expressed in Theorem 3.6 are satisfied for the set of all attributes Att , but Att is not a H Bet
reduct: indeed, if we consider the equivalence classes determined by Att , then n1 = n2 = 0 while m1 = m2 = 5 and therefore 
condition 2 in Theorem 3.6 holds. However, as previously shown, Att is not a H Bet reduct.

Furthermore, note that Att is not able to disambiguate, since

decH Bet (Att)([x1]Att) = {0,1} ,

decH Bet (Att)([x6]Att) = {1,2} .

On the other hand, decH Bet(a1)
(xi) = 1 for all xi ∈ U . Notice that, in this case, {a1} would also be an OAU reduct (and hence 

a MDL reduct, as it is minimal).

On the other hand, regarding the relationships between H Bet reducts and the other families of reducts, it is easy to show 
that, even on consistent SDTs, the conditions for existence of H Bet reducts (smaller than the whole set of attributes Att) are 
quite restrictive. Indeed, the following result holds.

Theorem 3.7. Let S be an SDT and r be an H Bet reduct. Then, there exists r′ ⊆ r s.t. r′ is an OAU reduct. That is, the collection of H Bet
reducts is a sub-collection of the O AU super-reducts.

Proof. First, let us assume that S is consistent, and let r ∈ R H Bet . Then, since S is consistent, each [x]r is also consistent and 
therefore, by definition, O AU (d|r) = 0 and r is an OAU super-reduct (but not necessarily also a OAU reduct). Consequently, 
the result holds for consistent SDTs.

For the inconsistent case, let r be an H Bet reduct, and {[x]i
r}i be the collection of the equivalence classes w.r.t. r. By 

definition of H Bet reducts, we have 
∑

i Pr([x]i
r) · H Bet(d|[x]i

r) ≤ H Bet(d|Att). Therefore, for the (weighted) majority of equiv-
alence classes the probability distributions P Bet(d|[x]i

r) are more peaked (equivalently, less uniform) and, hence, there exists 
an instantiation I s.t. the probability distributions P I (dI | xi

r) are also more peaked. Hence, O AU (d | r) ≤ O AU (d | Att) holds. 
Notice, however, that this only guarantees that r is a OAU super-reduct, thus the result. �
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As we did not find an appropriate generalization of Theorem 3.6 for the general multi-class case, we leave this as an 
open problem: such a result would be useful to provide general existence conditions for H Bet reducts. Moreover, we also 
leave as open problem that of finding conditions required for an H Bet to also be an OAU (or MDL) reduct.

Concerning the computational complexity of finding OAU or H Bet reducts, since as we shown in the previous Section, 
both O AU and H Bet can be computed in polynomial time, the following result holds as a simple consequence of the general 
hardness result for finding reducts in standard decision tables.

Theorem 3.8. Finding all OAU (resp. H Bet ) reduct is NP-hard.

Finally, we notice that, while the complexity of finding OAU (resp. H Bet ) reducts is still NP-hard, even in the approximate 
case, these definitions are more amenable to optimization through heuristics, as they employ a quantitative measure of 
quality for each attribute. Indeed, a simple greedy procedure can be implemented, as shown in Algorithm 2, which obviously 
has polynomial time complexity, and is guaranteed to find an OAU (resp., H Bet ) reduct (albeit not necessarily a minimal one).

Proposition 3.3. Algorithm 2 returns an OAU (resp. H Bet ) reduct in polynomial time. In particular:

• The complexity of finding a OAU reduct is O  
(|Att|2|U ||Vt | ∗ log|Vt |

)
;

• The complexity of finding a H Bet reduct is O  
(|Att|2|U ||Vt |

)
Proof. That the algorithm returns an OAU (resp. H Bet ) reduct is obvious, thus we only need to prove that its complexity is 
polynomial in the size of the SDT.

Indeed, Algorithm 2 requires a polynomial number of evaluations of the OAU (resp. H Bet ) entropy: in particular, the 
number of such evaluations is O  

(|Att|2). As shown in Propositions 3.1 and 3.2, both OAU and H Bet can be computed in 
polynomial time, thus the result follows. �

Thus, Algorithm 2 has a linear dependence in the number of objects, a linear (or log-linear, depending on whether 
H Bet or OAU reducts are searched for) dependence in the number of possible class labels, and a quadratic dependence 
in the number of conditional attributes: we note that since usually |Vt | � min{|U |, |Att|}, one can assume w.l.o.g. that 
the complexity of searching reducts is dominated by the leading term among {|U |, |Att|2}, and it is thus more or less 
independent of the number of possible class labels.

Algorithm 2 A heuristic greedy algorithm for finding approximate entropy reducts of a superset decision table S .
procedure Heuristic-Entropy-Reduct(S: superset decision table, ε: approximation level, E ∈ {O AU , H Bet })

red ← Att
Ent ← E(d | red)

check ← T rue
while check do

Find a ∈ red s.t. 
{

E(d | red \ {a}) ≤ E(d | Att) − log2(1 − ε)

E(d | red \ {a}) is minimal
if a exists then

red ← red \ {a}
else

check ← False
end if

end while
return red

end procedure

4. Experiments

In this section, we present a series of experimental studies meant to evaluate the different definitions of reduct in 
superset learning as put forward in this paper, as well as the performance of the proposed algorithms in light of the state-
of-the-art in superset dimensionality reduction (DELIN algorithm, see Section 2). More specifically, our experiments are 
aimed at studying the following aspects:

• Reduct approximation: The ability of the different types of reducts to recover the true reducts (i.e., the reducts w.r.t. the 
true, but generally unknown, decision attribute t) when varying both the number of objects associated with a set-valued 
decision and the size of the set-valued decision.

• Predictive Performance: The quality of the selected feature subsets from a machine learning point of view. We measured 
the latter in terms of the predictive accuracy of a model trained on that subset of features, using a suitable algorithm 
for superset learning.
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We conduct experiments with the following datasets from the UCI repository [20]:

• Iris: 150 objects, 3 classes, 4 attributes
• Boston house prices (Boston): 506 objects, 3 classes, 13 attributes
• Wine: 178 objects, 3 classes, 13 attributes
• Breast Cancer: 569 objects, 2 classes, 30 attributes
• Diabetes: 442 objects, 3 classes, 10 attributes
• Adult Census Income: 48842 objects, 2 classes, 14 attributes
• Abalone: 4177 objects, 15 classes, 8 attributes
• Forest Fires: 517 objects, 5 classes, 13 attributes

For the second experiment, we used the PL-KNN [29] classifier, a simple generalization of the k-nearest neighbor algo-
rithm for superset learning. Of course, more sophisticated methods for superset learning might be used as well, and the 
choice of the learning methods may clearly influence the results. However, as one advantage of a simple nearest neighbor 
approach, let us mention that its performance critically depends on the underlying feature representation, which is exactly 
what we seek to capture. Many other algorithms have in-built feature selection or transformation capabilities, which may 
bias the results.

For each UCI dataset, we created 5 different SDTs, each one generated through random coarsening: For each value 
y ∈ Vt \ {t(x)}, a biased coin with success probability γ was flipped to decide whether or not it is added to the true decision 
t(x) as an additional candidate. Obviously, the parameter γ allows for varying and controlling the degree of ambiguity [9,39]. 
We considered the following values: 0% (i.e., the case in which d(x) = t(x), which allows us to compute the true reducts for 
the SDT as a reference comparison), 5%, 10%, and 25%.

To estimate predictive performance, we adopted a 5-fold cross-validation approach: during each iteration, 4 folds were 
used for training while the remaining fold was used for testing. The training folds were used for feature selection, using the 
proposed methods and the DELIN algorithm, and for training the PL-KNN algorithm. The test fold was then used to measure 
the accuracy of the trained PL-KNN models. Specifically, we measured both the average accuracy across the 5 folds and the 
corresponding 95% confidence intervals.

4.1. Comparison of reducts for superset decision tables

In the first experiment, each dataset was discretized in a pre-processing step, i.e., numerical attributes were replaced by 
categorical attributes. In particular, since Boston, Abalone and Forest Fires are originally regression datasets (i.e., the target 
attribute t is continuous), we also discretized the target attribute. The discretization was performed by applying the k-means 
algorithm [37] with k = 5 (on the values of the respective numerical attribute, i.e., running k-means on a one-dimensional 
dataset) and k = 2 (on the values of the target attribute).

We evaluated five different algorithms: the brute-force enumeration algorithm for computing MDL reducts (see Al-
gorithm 1), the brute-force enumeration algorithms for computing H Bet and OAU reducts, and the greedy algorithms to 
compute H Bet and OAU reducts (see Algorithm 2). The algorithms were compared with respect to both their running time 
and their ability to recover the true reducts (that is, the reducts on the SDT with 0% ambiguity degree). A time budget of 
10,000 seconds was assigned to each algorithm. The results of the experiments are reported in Tables 2–10. Based on these 
results, the following observations can be made:

• Computing MDL reducts, at least through the application of the brute-force algorithm (see Algorithm 1), is in general 
infeasible in terms of computation time. Indeed, among all 8 examined datasets, only on two 5% SDT and only on one 
10% SDT, the algorithm finished the computation within the time budget. The two datasets were the smallest in terms 
of number of objects and attributes. This is hardly surprising, as the time complexity of Algorithm 1 is exponential in 
both the number of attributes and the number of objects. In the average case, we expect the algorithm to have a time 
complexity of O (2|Att| · 2ε|U |) on an ε% SDT. Let us also note that for all three datasets, the MDL reducts coincided 
with the minimal OAU reducts. This finding is interesting as, in light of Theorems 3.3 and 3.5, we know that the two 
definitions of reducts are equivalent only for consistent SDT, while all the considered SDTs were actually inconsistent.

• Regarding OAU reducts, it is interesting to observe that on all datasets, in the 5% and 10% SDT, the true reducts (that 
is, the reducts on the 0% SDT) were among the OAU reducts, and in all cases but three (Wine, Boston, and Forest Fires), 
the OAU reducts coincided with the true reducts. For the 25% SDT, on all datasets but three (Boston House Prices, Breast 
Cancer, Adult Census Income), the true reducts were among the OAU reducts, while on the three remaining datasets, 
the OAU reducts were subsets of the true reducts. Thus, from an empirical point of view, the notion of OAU reduct 
seems to be effective as a method to discover the true reducts.

• On the other hand, regarding H Bet reducts, in only three 5% SDT (Forest Fires, Abalone, Iris) and in only one 10% SDT 
(Forest Fires), the H Bet (minimal) reducts were among the true (minimal) reducts. In only one case (the 5% SDT for 
dataset Iris), the H Bet reducts coincided with the true reducts, while in all other cases the H Bet reducts were either 
a sub-family of the true reducts or super-reducts (indeed, in most cases the only H Bet reduct was the set Att of all 
attributes). Thus, compared with OAU reducts, the requirement imposed by H Bet entropy seems to be too conservative. 
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Table 2
Results for dataset Iris.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0% 1 reduct (2,3)

5% 1 reduct 1 reduct 1 reduct (2,3) (2,3)
(2,3) (2,3) (2,3)
60 s 0.24 s 0.17 s 0.15 s 0.13 s

10% 1 reduct 1 reduct 1 reduct (2,3) A
(2,3) (2,3) A
5570 s 0.24 s 0.17 s 0.15 s 0.13 s

25% 2 reducts 1 reduct (1,2) A
- (1,2) (2,3) A

0.24 s 0.17 s 0.15 s 0.13 s

Table 3
Results for dataset Boston house prices.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0% 2 reducts, 1 minimal (0,3,5,6,7,10,11,12)

5% 2 reducts, 1 minimal 1 reduct (0,1,5,6,7,8,10,11,12) A
(0,3,5,6,7,10,11,12) A

- 86 s 70 s 1.73 s 1.26 s

10% 2 minimal reducts 1 reduct (0,3,5,6,7,10,11,12) A
(0,3,5,6,7,10,11,12) A

- (0,5,6,7,8,10,11,12)

86 s 70 s 1.73 s 1.26 s

25% 1 minimal reducts 1 reduct (0,5,6,7,10,11,12) A
- (0,5,6,7,10,11,12) A

86 s 70 s 1.73 s 1.26 s

Table 4
Results for dataset Breast Cancer.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0%
6 reducts
(0,3,4,5,6,10,11,12,13,14) (0,3,4,5,7,10,11,12,13,14) (0,3,4,5,8,10,11,12,13,14)
(1,3,4,5,6,10,11,12,13,14) (1,3,4,5,7,10,11,12,13,14) (1,3,4,5,8,10,11,12,13,14)

5% 6 reducts 1 reduct (0,3,4,5,6,10,11,12,13,14) A
- As in the 0% SDT A

3316 s 3186 s 15.3 s 13.8 s

10% 6 reducts 1 reduct (0,3,4,5,6,10,11,12,13,14) A
- As in the 0% SDT A

3316 s 3186 s 15.3 s 13.8 s

25% 1 minimal reducts 1 reduct (0,5,6,7,10,11,12) A
- (0,5,6,7,10,11,12) A

86 s 70 s 1.73 s 1.26 s

This provides a stronger empirical counterpart of Theorems 3.2 and 3.7 and suggests that, in most practical cases, the 
requirements for the existence of H Bet reducts are strictly stronger than those for OAU reducts.

• As for the approximate entropy (both OAU and H Bet ) computed according to Algorithm 2, the computed reduct was 
in all cases except two (the Wine dataset for H Bet reducts, Boston House Prices for OAU reducts) a minimal reduct 
(according to the respective definition of entropy reducts). In particular, the approximate Algorithm for computing OAU 
reducts was able to recover one of the true minimal reducts in most datasets, at a computational cost which was, on 
average, at least ten times smaller. Thus, the heuristic greedy algorithm for finding OAU reducts seems to be effective 
in finding minimal reducts with significantly reduced time complexity.

4.2. Comparison between rough set feature selection and DELIN

Based on the results of the first experiment, we decided to use the algorithm for computing OAU reducts for the sec-
ond study, since this algorithm has shown strong performance in discovering the real reducts, as discussed in Section 4.1. 
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Table 5
Results for dataset Diabetes.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0% 2 reducts
(0,1,2,3,4,6,7,8,9) (0,1,2,3,5,6,7,8,9)

5% 2 reducts 1 reduct (0,1,2,3,4,6,7,8,9) A
- As in the 0% SDT A

147 s 147 s 16.2 s 16.7 s

10% 2 reducts 1 reduct (0,1,2,3,4,6,7,8,9) A
- As in the 0% SDT A

147 s 147 s 16.2 s 16.7 s

25% 2 reducts 1 reduct (0,1,2,3,4,6,7,8,9) A
- As in the 0% SDT A

147 s 147 s 16.2 s 16.7 s

Table 6
Results for dataset Adult Census Income.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0% 8 reducts, 2 minimal
(1,2,4,5,7,8,11,12,13,14) (1,2,4,5,7,10,11,12,13,14)

5% 8 reducts, 2 minimal 4 reducts, 2 minimal A \ {0,3,9,10} A \ {0,9,10}
- As in the 0% SDT (1,2,3,4,5,6,7,8,11,12,13,14)

(1,2,3,4,5,6,7,10,11,12,13,14)

2645 s 2637 s 15 s 11 s

10% 8 reducts, 2 minimal 3 reducts, 2 minimal A \ {0,3,9,10} A \ {0,9,10}
- As in the 0% SDT As in the 5% SDT

2645 s 2637 s 15 s 11 s

25% 4 reducts, 1 minimal 2 reducts, 1 minimal (1,2,4,5,7,11,12,13,14) A \ {8,9}
- (1,2,4,5,7,11,12,13,14) A \ {8,9}

2645 s 2637 s 15 s 11 s

Table 7
Results for dataset Abalone.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0% 1 reduct (2,3,5,6,7)

5% 1 reduct 1 reduct (2,3,5,6,7) (2,3,5,6,7)

- As in the 0% SDT As in the 0% SDT
475 s 421 s 16 s 16 s

10% 1 reduct 1 reduct (2,3,5,6,7) (0,2,3,5,6,7)

- As in the 0% SDT (0,2,3,5,6,7)

475 s 421 s 16 s 16 s

25% 2 reducts 1 reduct (2,3,5,6) A
- (2,3,5,6) (2,3,5,7) A

475 s 421 s 16 s 11 s

Specifically, we evaluated the greedy algorithm for computing OAU reducts (see Algorithm 2), in order to limit the execution 
time, as the evaluation was implemented using 5-fold cross-validation. For comparison, as already said, we used the DELIN 
algorithm. For the DELIN algorithm, at each iteration of 5-fold cross-validation procedure, the number of dimensions to be 
selected was set equal to the size of the minimal reduct found by the greedy OAU algorithm.1

For each iteration of the 5-fold cross-validation procedure, the training fold was used to both compute the minimal 
reducts (respectively, applying dimensionality reduction using the DELIN algorithm) and the reduced training set was then 
used to train the PL-KNN algorithm and the performance of the two feature selection approaches was compared by assess-
ing the accuracy of the trained models on the reduced test fold. The results were then averaged across the 5 folds. The 
results are reported in Table 9. In most datasets (6 out of 8), the rough set-based feature selection algorithm performed bet-
ter (in terms of average predictive accuracy) than the DELIN algorithm. In order to evaluate if the reported differences are 
statistically significant, we performed a Wilcoxon signed rank test [60] with a confidence level of 95% (α = 0.05). The ob-

1 Moreover, since DELIN requires numerical features, categorical features were first one-hot encoded.
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Table 8
Results for dataset Forest Fires.

MDL reducts OAU reducts H Bet reducts Greedy OAU reduct Greedy H Bet reduct

0%
3 reducts, 2 minimal
(0,1,3,4,5,6,7,8,10) (0,1,3,5,6,7,8,9,10)

5% 3 reducts, 2 minimal 2 reducts, 1 minimal (0,1,3,4,5,6,7,8,10) (0,1,3,5,6,7,8,9,10)

- As in the 0% SDT (0,1,3,5,6,7,8,9,10)

1258 s 1212 s 14 s 12 s

10% 4 reducts, 3 minimal 1 reduct (0,1,2,3,5,6,7,8,10) (0,1,3,5,6,7,8,9,10)

- As in the 0% SDT plus (0,1,3,5,6,7,8,9,10)

(0,1,2,3,5,6,7,8,10)

1258 s 1212 s 14 s 12 s

25% 4 reducts, 3 minimal 1 reduct (0,1,2,3,5,6,7,8,10) A
- As in the 10% SDT A

1258 s 1207 s 14 s 9 s

Table 9
Accuracy of the PL-KNN algorithm on reduced datasets, using both the OAU algorithm and the DELIN algorithm. For each dataset 
and level of ambiguity, the numbers in bold denote the feature selection algorithm resulting in the best performance.

Dataset 5% 10% 25%
OAU DELIN OAU DELIN OAU DELIN

Iris 0.91 ± 0.09 0.91 ± 0.07 0.90 ± 0.10 0.83 ± 0.13 0.90 ± 0.10 0.82 ± 0.15
Cancer 0.91 ± 0.03 0.92 ± 0.03 0.89 ± 0.05 0.90 ± 0.03 0.89 ± 0.05 0.90 ± 0.05
Wine 0.82 ± 0.12 0.78 ± 0.08 0.81 ± 0.12 0.72 ± 0.17 0.79 ± 0.13 0.71 ± 0.17
Boston 0.81 ± 0.10 0.73 ± 0.12 0.81 ± 0.10 0.71 ± 0.12 0.79 ± 0.11 0.70 ± 0.12
Diabetes 0.72 ± 0.03 0.71 ± 0.03 0.71 ± 0.03 0.71 ± 0.05 0.70 ± 0.04 0.69 ± 0.05
Adult 0.73 ± 0.04 0.72 ± 0.04 0.73 ± 0.04 0.72 ± 0.04 0.73 ± 0.04 0.72 ± 0.04
Forest Fires 0.86 ± 0.07 0.82 ± 0.07 0.86 ± 0.07 0.82 ± 0.07 0.83 ± 0.09 0.79 ± 0.10
Abalone 0.76 ± 0.07 0.76 ± 0.07 0.75 ± 0.07 0.75 ± 0.07 0.75 ± 0.09 0.75 ± 0.09

tained statistic was z = −3.2797 (p-value = 0.001), which means the difference between the two algorithms is statistically 
significant at the selected confidence level. Thus, our results provide evidence in favor of the conjecture that the features 
selected by the rough set-based approach are more informative than the features constructed using the DELIN algorithm.

That said, these results should of course be taken with some caution. Indeed, one may argue that a direct comparison be-
tween the two algorithms is difficult, for example because OAU requires discrete data while DELIN is working on numerical 
attributes. Moreover, DELIN relies on certain assumptions regarding the distribution of the data, so that its performance will 
depend on whether or not these assumptions are met. Rough set-based feature selection methods, on the other side, are 
entirely non-parametric and thus allow more flexibility in modeling the relationship between the target and the features. 
While this is clearly an advantage, some information might be lost through the discretization of numerical features: future 
work should be devoted toward generalizing the proposed approach to encompass rough set-techniques that can directly 
manage continuous features.

In terms of computational complexity and running time, the DELIN algorithm is vastly more efficient than the standard 
brute-force algorithm to compute OAU reducts. Indeed, the algorithm for finding OAU reducts is combinatorial and, in 
general, has exponential running time (in the number of features). Compared to this, DELIN is based on LDA and has a 
running time which is essentially quadratic (more precisely, O (|U ||Att|2)) and can easily be implemented using standard 
linear algebra and optimization software. We note, though, that Algorithm 2, which was the method we adopted in our 
comparison, has the same computational complexity as DELIN, and in our experiments was shown to still be effective at 
finding the true reducts. Thus, the heuristic greedy approach to finding OAU reducts could be seen as a useful trade-off on 
large-scale datasets.

5. Conclusion

Addressing the problem of superset learning in the context of rough set theory, as we did in this paper, appears to be 
interesting and mutually beneficial for both sides:

• RST provides natural tools for data disambiguation, which is at the core of methods for superset learning, most notably 
the notion of a reduct. Here, the basic idea is that the plausibility of an instantiation of the data is in direct corre-
spondence with the (information-theoretic) complexity it implies for the dependency between input features and target 
(decision) variable (and a reduct in turn captures just this complexity).

• For RST itself, the setting of superset learning is a quite natural extension of the standard setting of supervised learning, 
and comes with a number of interesting challenges and non-trivial generalizations of existing concepts.
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Table 10
Results for dataset Wine.

MDL OAU H Bet Greedy OAU Greedy H Bet

0% 163 reducts, 9 minimal
(0,1,4,5,8,9), (0,2,3,5,7,10), (0,2,3,5,10,11)

(0,2,3,7,10,11), (0,2,5,8,9,11), (0,3,4,5,7,10)

(0,3,4,5,8,9), (0,4,5,6,8,9), (4,5,6,9,10,12)

5% 174 reducts, 16 minimal 174 reducts, 16 minimal 9 reducts, 6 minimal (0,2,5,6,8,9) (0,2,3,6,7,8,9,10,11)

(0,1,2,5,6,9) (0,1,4,5,8,9) Same as MDL reducts (0,2,3,6,7,8,9,11)

(0,2,3,5,6,9) (0,2,3,5,6,10) (0,2,3,7,8,9,10,11)

(0,2,3,5,7,10) (0,2,3,5,9,10) (0,2,4,7,8,9,10,11)

(0,2,3,5,10,11) (0,2,3,7,10,11) (0,3,4,6,7,8,9,11)

(0,2,5,6,8,9) (0,2,5,8,9,11) (0,3,5,6,7,8,9,11)

(0,3,4,5,7,10) (0,3,4,5,8,9) (0,3,5,7,8,9,10,11)

(0,4,5,6,8,9) (1,2,6,7,9,12)

(4,5,6,9,10,12) (4,5,8,9,10,12)

9281 s 98 s 70 s 1.73 s 1.26 s

10% 188 reducts, 16 minimal 9 reducts, 3 minimal (0,2,5,6,8,9) (0,2,3,6,7,8,9,10,11)

The minimal reducts are (0,1,2,3,7,8,9,10,11)

as in the 5% SDT (0,2,3,4,7,8,9,10,11)

(0,2,4,5,7,8,9,10,11)

98 s 70 s 1.73 s 1.26 s

25% 191 reducts, 34 minimal 1 reduct (0,1,2,7,9,10) A
- The minimal reducts are as A

in the 5% SDT plus
(0,1,2,7,9,10) (0,1,2,7,10,12)

(0,1,4,5,9,10) (0,2,3,4,5,10)

(0,2,3,4,6,7) (0,2,3,4,7,10)

(0,2,3,6,7,10) (0,2,3,7,8,10)

(0,2,3,7,9,10) (0,2,3,7,10,12)

(0,2,4,7,9,10) (0,2,5,7,8,9)

(0,2,7,8,9,10) (0,3,4,5,6,10)

(0,3,4,5,9,10) (0,3,4,5,10,11)

(0,4,5,7,9,10) (0,4,5,8,9,11)

98 s 70 s 1.73 s 1.26 s

One such challenge has been tackled in this paper, namely the question how to generalize the notion of a reduct as well as 
devising algorithms for feature selection on the basis of this notion.

To this end, we first proposed a generalization of decision tables and then studied a purely combinatorial definition of 
reducts inspired by the Minimum Description Length principle, which we called MDL reducts. Since, as we showed, the 
computational complexity of finding this type of reducts is NP-hard, we proposed two alternative definitions based on the 
notion of entropy and harnessing the natural relationship between superset learning and belief function theory. We then 
provided a characterization for both these notions in terms of their relationship with MDL reducts, their existence conditions 
and their disambiguation power. Moreover, we developed simple heuristic algorithms for computing approximate entropy 
reducts.

Finally, we conducted experiments on real datasets in order to empirically compare the different definitions of reducts 
for superset learning and the algorithms for computing them. As a result of these experiments, we conclude that the def-
inition based on OAU entropy seems to be more effective in terms of its ability to recover the true but unknown reducts, 
compared with the definition based on H Bet entropy. We have also shown that our heuristic algorithm for computing ap-
proximate entropy provides an effective approach to finding minimal reducts with limited computational resources. Finally, 
we compared the proposed feature selection methods with a state-of-the-art dimensionality reduction algorithm for super-
set learning and showed that the proposed method leads to a significantly higher classification accuracy on a collection of 
benchmark datasets, thus highlighting its usefulness in applications.

While this paper provides a promising direction for the application of RST-based feature reduction in superset learning, 
it naturally leaves many questions open. Specifically, we plan to address the following problems in future works:

• In Theorem 3.5, we proved that, in general, OAU reducts are a sub-family of the superset super-reducts. However, our 
experiments also showed that in most cases (in which the MDL reducts were actually computed within the assigned 
time budget) the MDL reducts were exactly equivalent to the OAU reducts. Thus, the conditions for such an equivalence 
between the two definitions should be investigated in more depth;

• In Theorems 3.6 and 3.7, we described two characterizations of H Bet reducts: first, showing sufficient and necessary 
conditions for their existence on binary decision tables; second, showing that, in general, H Bet reducts are OAU super-
reducts. Therefore, the generalization of Theorem 3.6 to the multi-class case, together with a characterization of the 
conditions for the equivalence between H Bet reducts and OAU reducts, should be investigated;
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• The proposed RST feature reduction methods require the available data to be discrete: otherwise, data discretization 
techniques need to be applied which, in turn, could have an impact on the results and performance of the feature se-
lection procedure. While, at least in principle, scaling techniques [21] (such as those applied in Formal Concept Analysis) 
could be applied to manage continuous features, these would likely have a huge impact on the computational complex-
ity of the proposed methods. Thus, the generalization of the proposed approach to also encompass RST techniques that 
can directly manage continuous features, such as neighborhood- [43] or fuzzy-rough [32] based approaches, should be 
investigated.

• We studied the application of RST feature reduction to the superset learning task, however, it would also be interesting 
to study an extension of the proposed framework to other, even more general settings, such as learning from fuzzy 
[14,28] or evidential [8,11,13,48,41] data.

• In this paper, the superset assumption was motivated by the problem of imprecise labeling. As explained in Section 2.3, 
this “don’t know” interpretation can be distinguished from a “don’t care” interpretation. Proceeding from the latter, a 
reduct can be considered as a maximally simple (least cognitively demanding) yet satisfying decision rule. Interestingly, 
in spite of very different interpretations, the theoretical problems that arise are essentially the same as those studied 
in this paper. Nevertheless, elaborating on the idea of reduction as a means for finding satisfying decision rules from a 
more practical point of view is another interesting direction for future work.
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Abstract. In this article, we study the setting of learning from fuzzy
labels, a generalization of supervised learning in which instances are
assumed to be labeled with a fuzzy set, interpreted as an epistemic pos-
sibility distribution. We tackle the problem of feature selection in such
task, in the context of rough set theory (RST). More specifically, we con-
sider the problem of RST-based feature selection as a means for data
disambiguation: that is, retrieving the most plausible precise instantia-
tion of the imprecise training data. We define generalizations of decision
tables and reducts, using tools from generalized information theory and
belief function theory. We study the computational complexity and the-
oretical properties of the associated computational problems.

Keywords: Fuzzy labels · Rough sets · Feature selection · Belief
functions · Entropy

1 Introduction

Weakly supervised learning [34] refers to Machine Learning tasks in which train-
ing instances are not required to be associated with a precise target label: the
annotations can be either imprecise or partial. Such tasks could be a conse-
quence of certain data pre-processing operations such as anonymization [24];
could be due to imprecise measurements or expert opinions; or to limit data
annotation costs [20]. Some particularly relevant instances of weakly supervised
learning are superset learning [15] (i.e. instances are associated with sets of
candidate labels), learning from evidential labels [6,9] (i.e., instances are associ-
ated with belief functions over the labels) and learning from fuzzy labels [10,13].
In this latter setting, which is the focus of this article, each instance x is
annotated with a fuzzy set μ of candidate labels. These fuzzy sets have an
epistemic semantics and represent possibility distributions πμ: only one of the
labels is the correct one and the fuzzy membership degrees, then, describe the
possibility degree of the labels. For example, an image could be tagged with
{horse : 1,pony : 0.8, zebra : 0.5,dog : 0.0}, suggesting that the animal shown
c© Springer Nature Switzerland AG 2021
S. Ramanna et al. (Eds.): IJCRS 2021, LNAI 12872, pp. 164–179, 2021.
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on the picture is one among {horse,pony, zebra}: though it is not exactly known
which of them, it is known that horse is deemed more plausible than pony, which
in turn is deemed more plausible than zebra.1

While in recent years the superset learning task has been widely investi-
gated [4,16,17], also using approaches based on Rough Set theory [4,25], the
learning from fuzzy labels task has, comparatively, been given less attention
mainly due to the high computational complexity of the problem [13] and to the
difficulty of acquiring such data [14]: most works have focused on the problem of
classification [6,9,10,13,23] (in particular in those tasks where the acquisition of
such fuzzy labels is easier, e.g. multi-rater learning and self-regularized learning
[11]), while other tasks such as feature selection, despite their importance, have
mostly been ignored.

In this article, drawing from our previous work on superset feature selection
[4], we attempt to close this gap by proposing methods, based on Rough Set The-
ory (RST), Belief Function Theory (BFT) and possibility theory, to address the
problem of feature selection. Remarkably, in line with the generalized risk mini-
mization paradigm [13], we consider this task as a means for data disambiguation,
i.e., for the purpose of figuring out the most plausible precise instantiation of the
imprecise training data. For this purpose we propose a generalization of standard
Decision Tables and we describe different definitions of reducts. In particular,
in Sect. 2 we provide the necessary background knowledge on possibility theory,
Rough Set theory and Belief Function theory; in Sect. 3.1 we define a generaliza-
tion of decision tables to the learning from fuzzy label settings; in Sect. 3.2 we
introduce several notions of reducts and study their relationships and computa-
tional complexity properties; in Sect. 3.3 we propose a generalization of entropy
reducts, in order to provide an approach for performing feature selection which
is more apt at the design of heuristics or approximation algorithms; finally, in
Sect. 4, we summarize our results and describe some open problems.

2 Background

In this section, we recall basic notions of rough set theory (RST) and evidence
theory, which will be used in the main part of the article.

2.1 Possibility Theory

Possibility theory is a theory of uncertainty, alternative to probability theory,
which allows for the quantification of degrees of possibility on the basis of a
fuzzy set [33]. We recall that a fuzzy set (equivalently, a possibility distribution)
1 We note that in the learning from fuzzy labels setting, the set of candidate labels

(that is, the labels with a membership degree greater than 0) is given a disjunctive
interpretation: only one of those labels is correct, but we don’t precisely know which
one, and the membership degrees represent degrees of belief. Thus, in this article, we
do not consider the conjunctive interpretation, in which the membership degrees are
degrees of truth (and, thus, could be seen as a generalization of multi-label learning).
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F can be seen as a function F : X �→ [0, 1], that is, a generalization of the
characteristic function representation of classical sets. A possibility measure is a
function posF : 2X �→ [0, 1] such that

1. posF (∅) = 0 and posF (X) = 1,;
2. if A ∩ B = ∅ then posF (A ∪ B) = max(posF (A), posF (B)).

It can be easily seen that every possibility measure is induced by a fuzzy set F as
posF (A) = maxx∈AF (x): in this case we say that F is the possibility distribution
corresponding to the possibility measure posF .

A possibility distribution F is normal if ∃x ∈ X.F (x) = 1: in this article we
will focus on normal possibility distributions. Given α ∈ [0, 1], the alpha-cut of
F is defined as Fα = {x ∈ X : F (x) ≥ α}, while the strong α-cut is defined
as Fα+ = {x ∈ X : F (x) > α}: we recall that the collection of α-cuts of F is
sufficient to determine F [19].

The epistemic view [8] of possibility distributions refers to the common inter-
pretation under which a possibility distribution represents the degrees of belief
(of an agent) towards a set of possible alternatives. We refer the reader to [7,13]
for a discussion of epistemic possibility distributions in Machine Learning.

2.2 Rough Set Theory

Rough set theory has been proposed by Pawlak [22] as a framework for rep-
resenting and managing uncertain data, and has since been widely applied for
various problems in the ML domain (see [2] for a recent overview and survey).
We briefly recall the main notions of RST, especially regarding its applications
to feature selection.

A decision table (DT) is a triple DT = 〈U,Att, t〉 such that U is a universe
of objects and Att is a set of attributes employed to represent objects in U .
Formally, each attribute a ∈ Att is a function a : U → Va, where Va is the
domain of values of a. Moreover, t /∈ Att is a distinguished decision attribute,
which represents the target decision (also labeling or annotation) associated with
each object in the universe. We say that DT is inconsistent if the following holds:
∃x1, x2 ∈ U,∀a ∈ Att, a(x1) = a(x2) and t(x1) = t(x2).

Given B ⊆ Att, we can define the indiscernibility relation with respect to B
as xIBx′ iff ∀a ∈ B, a(x′) = a(x). Clearly, it is an equivalence relation that par-
titions the universe U in equivalence classes, also called granules of information,
[x]B . Then, the indiscernibility partition is denoted as πB = {[x]B |x ∈ U}.

We say that B ⊆ Att is a decision reduct for DT if πB ≤ πt (where the order
≤ is the refinement order for partitions, that is, πt is a coarsening of πB) and
there is no C � B such that πC ≤ πt. Then, evidently, a reduct of a decision
table DT represents a set of non-redundant and necessary features to represent
the information in DT . We say that a reduct R is minimal if it is among the
smallest (with respect to cardinality) reducts.

Given B ⊆ Att and a set S ⊆ U , a rough approximation of S (with respect to
B) is defined as the pair B(S) = 〈lB(S), uB(S)〉, where lB(S) =

⋃{[x]B | [x]B ⊆
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S} is the lower approximation of S, and uB(s) =
⋃{[x]B | [x]B ∩ S = ∅} is the

corresponding upper approximation.
Finally, given B ⊆ Att, the generalized decision with respect to B for an

object x ∈ U is defined as δB(x) = {t(x′) |x′ ∈ [x]B}. Notably, if DT is not
inconsistent and B is a reduct, then δB(x) = {t(x)} for all x ∈ U .

We note that in the RST literature, there exist several definitions of reduct
that, while equivalent on consistent Decision Tables, are generally non-equivalent
for inconsistent ones. We refer the reader to [28] for an overview of such a list
and a study of their dependencies. Moreover, we remark that, given a decision
table, the problem of finding the minimal reduct is in general ΣP

2 -complete (by
reduction to the Shortest Implicant problem [31]). We recall that ΣP

2 is the
complexity class defined by problems that can be verified in polynomial time
given access to an oracle for an NP-complete problem [1].

Finally, we recall that some previous works have investigated the general-
ization of Rough Set Theory to the case of imprecise data, both in the case of
set-valued data [4,21,25] and in the case of possibility distributions [5], or more
general uncertainty representations [30]. Nakata et al. [18] discuss a generaliza-
tion of Rough Set Theory to the case where every attribute value is expressed as
a possibility distribution and study generalized notions of rough approximations:
though this approach uses a cut-based approach similar to the one we adopt in
this paper, the authors do not study generalizations of reducts to this setting.
Ciucci et al. [5] focus on a specific type of possibility distribution (certainty
distributions) and study different notions for both rough approximations and
reducts: in our work we consider the case of general possibility distributions, but
only for the decision attribute. Also, we note that both articles [5,18] do not
consider applications to the learning from fuzzy labels setting. Finally, Trabelsi
et al. [30] considered the generalization of RST to account for evidential data in
the decision attribute and proposed a definition of reducts in that setting: while
the approach adopted by the authors shares some similarities with the approach
we propose, the former does not agree with the generalized risk minimization
principle [13] and hence cannot be applied to the task of data disambiguation.

2.3 Belief Function Theory

Belief Function theory (BFT), also known as Dempster-Shafer theory or evidence
theory, has been introduced by Dempster and subsequently formalized by Shafer
in [26]. Given a frame of discernment X, which represents all possible states of a
system under study, a basic belief assignment (bba) is a function m : 2X → [0, 1],
such that m(∅) = 0 and

∑
A∈2X m(A) = 1. The support of m is defined as

supp(m) = {A ⊆ X : m(A) > 0}.
From a bba, a pair of functions, called respectively belief and plausibility,

can be defined as follows:

Belm(A) =
∑

B:B⊆A

m(B) Plm(A) =
∑

B:B∩A �=∅
m(B) (1)
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As can be seen from these definitions, there is a clear correspondence between
BFT and, respectively, RST and possibility theory. In the first case, it is easy
to note that belief functions (resp., plausibility functions) correspond to lower
approximations (resp., upper approximations) in RST whenever the support m
is a partition of X; we refer the reader to [32] for further connections between
the two theories. In the case of possibility theory, any possibility measure (resp.
necessity measure) is a plausibility (resp. belief) function: indeed, it can be shown
that possibility theory can be seen as a special case of BFT where we require
that m is consonant [26], that is ∀A1, A2 ∈ supp(m) . A1 ⊆ A2 ∨ A2 ⊆ A1 (i.e.,
supp(m) with the order given by ⊆ is a linear order).

Finally, we recall that several generalizations of information-theoretic con-
cepts, specifically the concept of entropy (which was also proposed to generalize
the definition of reducts in RST [27]), have been defined for BFT. Most rele-
vantly, we recall the definition of optimistic aggregate uncertainty [3,4]:

OAU(m) = min
p∈P(m)

H(p), (2)

where P(m) is the set of probability distributions p such that Belm ≤ p ≤ Plm
and H(p) = −∑

x∈X p(x)log2p(x) is the Shannon entropy of p.

3 Possibilistic Decision Tables and Reducts

In this section, we extend some key concepts of rough set theory to the setting
of learning from fuzzy labels.

3.1 Possibilistic Decision Tables

In the learning from fuzzy labels setting, an object x ∈ U is not necessarily
assigned a single annotation t(x) ∈ Vt, but may instead be associated with an
epistemic statement (elicited by an agent, human or computational) encoding the
relative plausibility of a set S of candidate annotations, one of which is assumed
to be the true annotation associated with x. The relative plausibility of the
candidate annotations is expressed as a possibility distribution (or, equivalently,
as a fuzzy set) over the label set. To model this idea in terms of RST, we
generalize the definition of a decision table as follows.

Definition 1. A possibilistic decision table (PDT) is a tuple P = 〈U,Att, t, d〉,
where 〈U,Att, t〉 is a decision table, i.e.:

– U is a universe of objects of interest;
– Att is a set of attributes (or features);
– t is the (real) decision attribute (whose value, in general, is not known);
– d ∈ Att is a map from objects to possibility distributions over Vt, d : U →

F(Vt) such that the weak superset property holds: d(x)t(x) > 0 for all x ∈ U .
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Remark 1. By d(x)y we denote the possibility degree assigned to class label y
for object x. We adopt this convention (over the alternative d(x)(y)) in order to
simplify the notation.

The intuitive meaning of the possibility distribution d is that, if |d(x)0+| > 1
for some x ∈ U , then the real decision associated with x (i.e. t(x)) is not known
precisely, but is known to be in d(x)0+. Furthermore, if d(x)a > d(x)b then the
decision a is considered more plausible than decision b for object x. Nonetheless,
an alternative preferential interpretation can also be considered (similarly to
the superset learning setting [4,16]): in this context, the inequality d(x)y ≤
d(x)y′ would mean that, for object x, the label y′ is preferred to y. Interestingly,
while in the superset learning setting the two interpretations coincide (in the
sense that they define the same notion of reducts), this is not the case in the
learning from fuzzy labels setting. In the following, we will mainly focus on the
epistemic interpretation, though we will occasionally make reference also to the
preferential one when the two differ. First, we note that Definition 1 is a proper
generalization of both standard and superset decision tables (SDT) [4]: indeed,
if d(x)0+ = d(x)1 for all x ∈ U , then we have a superset decision table; and,
in the particular case where it also holds that |d(x)0+| = 1 for all x ∈ U , then
we have a standard decision table. We remark that the weak superset property
forbids the real decision t(x), for any object x, to be considered impossible (that
is, we assume that there are no labeling errors) but nothing more is assumed:
in particular, the stronger requirement that d(x)t(x) = 1 (which means that
t(x) is considered fully plausible) is not guaranteed to hold. We call this latter
requirement the strong superset property.

While both conditions can be seen as proper generalizations of the superset
property in superset learning [16,17], we argue that under the epistemic inter-
pretation of a PDT, the strong superset property is, in a specific sense, trivial:
indeed, were this property be satisfied, then the PDT P would be equivalent to
a SDT (specifically, the SDT S = 〈U,Att, t, dS〉 s.t. ∀x ∈ U.dS(x) = d(x)1) as
under the strong superset condition (i.e. d(x)t(x) = 1) the real annotation t(x) is
guaranteed to lie among those with an associated possibility degree equal to 1.

By contrast, in the preferential interpretation, the strong superset property
only implies that t(x) is the most preferred annotation for x: this, in general,
does not imply that other possible annotations should not be considered.

A PDT can be associated with a collection of compatible (standard) decision
tables, which we call instantiations of the PDT:

Definition 2. An instantiation of a PDT P = 〈U,Att, t, d〉 is a standard deci-
sion table T = 〈U,Att, t′〉 such that d(x)t′(x) > 0 for all x ∈ U . The collection of
instantiations of P is denoted I(P ).

We note that the collection I(P ) inherits a ranking of the instantiations from
the definition of the possibilistic decision attribute d:

Definition 3. Let I1, I2 ∈ I(P ) be two instantiations of a PDT P . Then we
say that I1 is (conservatively) less possible than I2, denoted I1 ≤C I2, if:

minx∈Ud(x)I1

t′ ≤ minx∈Ud(x)I2

t′ (3)
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We say that I1 is dominated in possibility by I2, denoted I1 ≤D I2, if:

∀x ∈ U. d(x)I1

t′ ≤ d(x)I2

t′ (4)

where, in both definitions d(x)Ii

t′ refers to the value of the decision attribute d
(in P ) on the label t′(x) in the instantiation Ii.

It is easy to observe that the following result holds:

Proposition 1. The order ≤C determines a possibility distribution (equiva-
lently, a fuzzy set) μI(P ) on the collection I(P ) where, for each I ∈ I(P ):

μI(P )(I) = minx∈Ud(x)I
t′ (5)

Proof. The result easily follows from the observation that ≤C is a weak ordering
on I(P ). Using the product fuzzy set construction [19], it is then easy to see
that we can associate with ≤C a possibility distribution which is equivalent to
μI(P ). ��

The order ≤D, on the other hand, cannot be directly associated with a
(standard) possibility distribution on I(P ), as it only defines a partial order:
thus, it defines an L-fuzzy set over the set of instantiations where, in general,
L = ([0, 1],min,max). Interestingly, the ≤D order is equivalent to the notion
of dominance [12] in multi-criteria decision making: this could suggest that this
ordering over instantiations (and the corresponding definitions of reducts) could
be of particular interest in the preferential interpretation of the learning from
fuzzy-label setting.

The following definition generalizes the notion of inconsistency for a PDT:

Definition 4. For B ⊂ Att and α ∈ [0, 1) the PDT P is (α, B)-inconsistent if

∃x1, x2 ∈ U,∀a ∈ B, a(x1) = a(x2) and d(x1)
α+ ∩ d(x2)

α+ = ∅ . (6)

We call such a pair x1, x2 (α, B)-inconsistent. If condition (6) is not satisfied,
then P is (α, B)-consistent. In particular, we say that P is weakly B-consistent
if it is (0, B)-consistent; while we say that P is B-consistent when it is (α,
B)-consistent for every α.

From the definition, we see that the notion of consistency (dually, inconsis-
tency) for a PDT is richer than its classical counterpart and, in general, implies
the non-existence of indiscernible objects with non-overlapping decisions, at any
given α-cut of the possibility distribution defined by d. We say that an instan-
tiation I is α-consistent with a PDT P if the following holds for all x1, x2: if
x1, x2 are (α,Att)-consistent in S, then they are consistent in I.

3.2 Possibilistic Reducts

Learning from fuzzy labels, as a proper generalization of superset learning,
encompasses the idea of data disambiguation: the goal of such a task is to jointly
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learn a function, mapping novel objects to the corresponding correct decision,
and figuring out the most plausible instantiation of the available data.

In the case of superset learning the notion of plausibility of an instantation
can be entirely captured through the principle of simplicity [13] as any two
instantiations are, a priori, equally plausible as they are both associated a possi-
bility degree equal to 1: Thus, an instantiation that can be explained by a simple
model is more plausible than an instantiation that requires a more complex one
(this approach is, in turn, inspired by the Occam’s razor principle).

In Rough Set Theory, the most natural measure of model complexity is the
size of a reduct: indeed, this approach has been applied, in superset learning, to
define so-called Minimum Description Length (MDL) reducts [4] which refer to
the minimal reducts among all reducts of all possible instantiations. The most
natural generalization of this notion to the setting of learning from fuzzy labels
leads to the following definition:

Definition 5. A set of attributes R ⊆ Att is a possibilistic reduct of a PDT
P if there exists an instantiation I ∈ I(P ) s.t. R is a reduct for I. A mini-
mum description length (MDL) instantiation is one of the instantiations of P
admitting a reduct of minimum size (compared to all the reducts of all possible
instantiations). We call the corresponding reducts possibilistic MDL reducts.

While meaningful from a conceptual perspective, it is easy to observe that
this definition of reducts disregards the most important difference between the
superset learning and learning from fuzzy label settings: that is, the instantia-
tions can be associated with an inherent measure of plausibility, given by the
orders ≤C ,≤D. Indeed, the following result trivially holds:

Proposition 2. Let P be a PDT, and let S(P ) = 〈U,Att, t, dS〉 be the SDT
defined from P s.t. ∀x. dS(x) = d(x)0+. Then, R is a possibilistic reduct (resp.
possibilistic MDL reduct) of P iff it is a superset reduct (resp. MDL reduct) of
S(P ).

Proposition 2 shows that the notion of a possibilistic reduct discards the
epistemic information expressed by the decision attribute, and is thus equivalent
to the notion of a superset reduct. In order to capture the richer semantics of
PDTs, we argue that any proper definition of reduct should take into account
not only the simplicity of the induced model (that is, the size of the reducts) but
also the epistemic information encoded by the (possibilistic) decision attribute
d. For this reason, we consider the following definitions of reducts:

Definition 6. For each α ∈ (0, 1], let S(P )α be the SDT defined from P s.t.
∀x. dα

S(x) = d(x)α. For each possibilistic reduct R, denote by I(R) ⊆ I(P ) the
collection of instantiations of P for which R is a reduct. Then, R:

– Is an α-possibilistic reduct if it is a superset reduct of S(P )α, and an α-MDL
reduct if it is also a MDL reduct of S(P )α;

– Is a C-reduct if it is a possibilistic reduct and �R′ ⊆ Att s.t. both |R′| ≤ |R|
and ∃I1 ∈ sup≤C

I(R), I2 ∈ sup≤C
I(R′). I1 <C I2

2;
2 Here sup≤C I(R) = {I ∈ I(R) : �I ′ ∈ I(R) s.t. I <C I ′}.
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– Is a λ-reduct, with λ ∈ [0, 1], if it is a possibilistic reduct and supI∈I(R)(1 −
λ)μI(P )(I) − λ |R|

|Att| is maximal among all possibilistic reducts;
– Is a D-reduct if it is a possibilistic reduct and there is no R′ ⊆ Att s.t. both

|R′| ≤ |R| and ∃I1 ∈ sup≤DI(R), I2 ∈ sup≤D
I(R′). I1 <D I2;

Given a possibilistic reduct R of a given PDT P , we denote by αR the maximum
α s.t. R is an α-possibilistic reduct of P . We note the following basic properties:

Theorem 1. The problem of finding all possibilistic reducts (resp. all C-reducts,
all λ-reducts for any given value of λ) can be polynomially reduced to the problem
of finding all α-possibilistic reducts and α-MDL reducts. In particular:

– R is a 0-possibilistic reduct iff it is a possibilistic reduct iff it is a λ-reduct
(λ = 1);

– R is a C-reduct iff �R′ s.t. both |R′| ≤ |R| and αR′ ≥ αR.

Proof. As regards possibilistic reducts, it is trivial to show that the collection of
possibilistic reducts is the same as the collection of 0-possibilistic reducts. For
all other types of reducts, the proof is constructive: we describe an algorithm
that finds all α-possibilistic and α-MDL reducts (see Algorithm 1), and show
that this procedure can be effectively used (see Algorithms 2, 3) for finding all
other types of reducts with no more than polynomial (in the number of reducts)
overhead. For a PDT P let α(P ) = {α′ ∈ (0, 1] : ∃x ∈ U, y ∈ Vt s.t. d(x)t = α′}.
The overhead for Algorithm 2 is O(n2) and for Algorithm 3 is Θ(n) (where n
is the number of reducts). Thus, the main statement of the theorem holds. The
other statements can be easily proved. ��

Algorithm 1. The brute-force algorithm for finding the α-possibilistic and α-
MDL reducts of a possibilistic decision table P .

procedure α-possibilistic-Reducts(P : possibilistic decision table)
for all α ∈ α(P ) in decreasing order do

poss-redsα ← Superset-Reducts(S(P )α)
MDL-redsα ← Find-Shortest(poss-redsα)

end for
return poss-redsα, MDL-redsα � The collections of α-possibilistic and α-MDL reducts

end procedure

We do not know if a similar technique could also be applied to compute the
D-reducts: we leave this as open problem.

As a direct consequence of Theorem 1, we can see that the problem of finding
all α-possibilistic (resp. α-MDL) reducts is not harder than finding all superset
(resp. MDL) reducts of a given SDT.

Theorem 2. The problem of finding all α-possibilistic (resp. α-MDL) reducts is
no computationally harder than the problem of finding all superset (resp. MDL)
reducts. Thus, in particular the problem of deciding whether, given a PDT P and
k ∈ N+, the α-MDL reducts of P are of size ≤ k is ΣP

2 complete.
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Algorithm 2. The algorithm for finding the C-reducts of a possibilistic decision
table P .

procedure C-Reducts(P : possibilistic decision table)
MDL-redsα ← α-Possibilistic-Reducts(P )
C-reds ← MDL-reds1

for all α ∈ α(P ) \ {1} do
for all r ∈ MDL-redsα do

if �r′ ∈ C-reds s.t. |r′| < |r| then
C-reds.append(r)

end if
end for

end for
return C-reds � The set of C-reducts

end procedure

Algorithm 3. The algorithm for finding the λ-reducts of a possibilistic decision
table P .

procedure λ-Reducts(P : possibilistic decision table, λ ∈ [0, 1])
poss-redsα ← α-Possibilistic-Reducts(P )
λ-reds ← ∅
θ ← 0
map ← ∅
for all α ∈ α(P ) in decreasing order do

for all r ∈ poss-redsα do
θ-temp ← (1 − λ)α − λ |r|

|Att|
map.append(〈r, θ-temp〉)
if θ-temp ≥ θ then

θ ← θ-temp
end if

end for
end for
lambda-reds ← all r ∈ map
return λ-reds � The set of λ-reducts

end procedure

Proof. For each α the reduction is trivial, as the problem of finding the α-MDL
reducts of P is equivalent to finding the MDL reducts of S(P )α. Note also
that |α(P )| ≤ |U ||Vt|: this implies that the problem α-MDL Reduct requires,
in the worst case, a polynomial (in the size of the PDT P ) number of calls
to a procedure for checking MDL Reducts. This can also be easily seen from
Algorithm 1. ��

Despite this result, showing that finding minimal reducts (that is, α-MDL,
C-reducts or λ-reducts) for a PDT is not harder than finding MDL reducts for
a SDT (which, in turn, is no harder than finding minimal reducts for a classical
DT), all the reduct search problems considered require worst-case exponential
time (in the size of the PDT). Indeed, while heuristics could be applied to speed
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up the computation of reducts [29] (specifically, to reduce the complexity of
the find-shortest-reducts step in Algorithm 1) the proposed algorithms still
require enumerating all the possible instantiations. Therefore, in the following
section, we propose an alternative definition of reducts in order to reduce the
computational costs.

3.3 Entropy Reducts

Following [4] we discuss an alternative definition of reduct, based on the notion of
entropy [27], which simplifies the complexity of finding a reduct for a SDT. Given
a SDT S with decision d, and W ⊆ Vt, we can define a basic belief assignment
as

m(W |[x]B) =
|{x′ ∈ [x]B : d(x′) = W}|

|[x]B | . (7)

Let P be a PDT, α ∈ [0, 1], B ⊆ Att be a set of attributes and denote by
INDB = {[x]B} the equivalence classes (granules) with respect to B. Let dα

[x]B

be the restriction of d on the equivalence class [x]B for the derived SDT S(P )α,
and let m(·|[x]αB) the corresponding bba. Then, we define the OAU entropy of
d, conditional on B and possibility degree α, as:

OAU(d|B,α) =
∑

[x]B∈INDB

|[x]B |
|U | OAU(m(·|[x]αB)) (8)

That is, the OAU entropy of a PDT (conditional on a set of attributes B and
a possibility degree α) is obtained by first computing the derived SDT S(P )α,
and then computing the (weighted) average of the OAU entropies of the bbas (see
Eq. 2) determined by the granules {[x]B : x ∈ U}. Based on the OAU entropy of
a PDT, we can define entropy reducts for PDTs:

Definition 7. Let B ⊆ Att be a set of attributes, α ∈ [0, 1]. Then, we say that
B is:

– An α-OAU super-reduct if OAU(d |B,α) ≤ OAU(d |Att, α);
– An α-OAU reduct if no proper subset of B is also a α-OAU super-reduct;
– An α-OAU ε-approximate super-reduct, with ε ∈ [0, 1), if OAU(d |B,α) ≤

OAU(d |Att, α) − log2(1 − ε);
– An α-OAU ε-approximate reduct if no proper subset of B is also an α-OAU

ε-approximate super-reduct.

Let [x]B be one of the granules with respect to an α-OAU reduct. Then, the
α-OAU instantiation with respect to [x]B is given by

decOAU(B,α)([x]B) = arg max
v∈Vt

{
p(v) | p ∈ arg min

p∈PBel

H(p)
}

, (9)

that is, (one of) the most probable among the classes under the probability
distributions which corresponds to the minimum value of entropy.
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Table 1. An example of possibilistic decision table

w x v z d

x1 0 0 0 0 0
x2 0 0 0 1 {0 : 0.5, 1 : 1.0}
x3 0 1 1 0 0
x4 0 1 1 1 {0 : 1.0, 1 : 0.5}
x5 0 1 0 1 1
x6 0 1 0 0 {0 : 0.5, 1 : 1.0}

Example 1. Let P =
〈
U = {x1, ..., x6}, A = {w, x, v, z}, d

〉
be the PDT in

Table 1. We have that α(P ) = {0.5, 1}, thus in particular S(P )0.5 assigns {0, 1}
to objects x2, x4, x6; while S(P )1 assigns 1 to objects x2, x6 and 0 to object x4.

We have OAU(d |A, 0.5) = OAU(d |B, 0.5) = 0 for B = {x, v}. Also, it
holds that OAU(d | {x}, 0.5) = OAU(d | {v}, 0.5) > 0. Thus, B is a 0.5-OAU
reduct of SDT. We note that {z} is also a 0.5-OAU reduct since, similarly,
OAU(d | z, 0.5) = 0.

The 0.5-OAU instantiation given by {x, v} is decx,v({x1, x2}) = 0, and, sim-
ilarly, decx,v({x3, x4}) = 0 (since for objects x1, ..., x4 the instantiation with
minimal OAU value is the one where all objects are assigned the label 0),
while decx,v({x5, x6}) = 1. By contrast, 0.5-OAU instantiation given by {z}
is decz({x1, x3, x6}) = 0, decz({x2, x4, x5}) = 1.

There is a single 0.5-MDL instantiation, that is decMDL({x1, x3, x6}) = 0,
and decMDL({x2, x4, x5}) = 1, which corresponds to the 0.5-MDL reduct {z}.
Thus, in this case, the 0.5-MDL reduct is equivalent to a 0.5-OAU reduct.

As regards S(P )1, we note that the decision attribute d is single-valued
(hence, there is a single instantiation) and the corresponding DT is consistent.
In this case there is a single reduct, namely C = {x, v, z}: therefore C is the only
1-MDL reduct and the only 1-OAU reduct.

Therefore we have that the set of MDL reducts is equivalent to the set of
0.5-MDL reducts (i.e. {{z}}); while the set of C-reducts is {{z}, {x, z, v}}; on
the other hand we notice that the set of λ-reducts (for varying λ) is structured
as follows: ⎧

⎪⎨
⎪⎩

{z} λ ≥ 0.5

{{z}, {x, z, v}} λ = 0.5

{{x, z, v}} 0 ≤ λ < 0.5

Note that the set of λ-reducts and C-reducts (and possibilistic reducts, by
extension) can include two sets R,R′ ⊆ Att s.t. R ⊂ R′ as long as they corre-
spond to two different instantiations of the PDT from which they are derived.

In Example 1, the set of α-MDL reducts was exactly the set of minimal (w.r.t.
size) α-OAU reducts: this is not a coincidence, we can show that this is a general
property of OAU reducts on consistent PDTs.
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Theorem 3. Let P be a PDT, α ∈ (0, 1] and assume that S(P )α is consistent.
Then, the set of consistent α-possibilistic reducts (i.e., the α-possibilistic reducts
whose corresponding instantiations are consistent) coincides with the set of α-
OAU reducts. Thus, in particular:

1. The set of consistent α-MDL reducts coincides with the set of minimal α-OAU
reducts;

2. Finding the sets of consistent C-reducts and λ-reducts (for all values of λ)
can be reduced to finding the set of α-OAU reducts for all values of α;

3. Finding the minimal α-OAU reducts is ΣP
2 -complete.

Proof. We show the proof only for the main statement: the other statements
directly follow from the definition of α-MDL reducts and from Theorems 1, 2.
Indeed, suppose that R is a consistent α-possibilistic reduct: this means that
there exists I ∈ I(R), instantiation of S(P )α that is consistent. As a consequence
OAU(d|R,α) = 0 and thus R is a α-OAU super-reduct. Suppose, further, that R
were not a α-OAU reduct: then ∃R′ ⊂ R s.t. OAU(d|R′, α) = 0, but this means
that R′ is a consistent reduct of S(P )α which is a contradiction. Therefore R is
an α-OAU reduct and the claim follows. ��

While, as a consequence of Theorem 3, the complexity of finding minimal
α-OAU reducts is the same as finding α-MDL ones, even in the approximate
case, the former approach to finding reducts is more amenable to optimization
as it does not require an explicit enumeration of the instantiations of the PDT.
Furthermore, as this approach relies on a quantitative quality measure (i.e.,
entropy), simple greedy procedures can be implemented with polynomial time
complexity (specifically, O(m2 · n), where m is the number of attributes and n
the number of objects), and the guarantee to find an α-OAU reduct (albeit not
necessarily minimal w.r.t. size).

4 Conclusion

In this article we studied the problem of feature selection in the learning from
fuzzy label setting, and introduced generalized notions of reducts as well as
algorithms for feature selection on the basis of this notion. While this paper pro-
vides a promising direction for the application of RST-based feature selection in
weakly supervised learning, it naturally leaves many questions open. Specifically,
we plan to address the following problems in future works:

– In Theorem 1, we showed that most definitions of reducts in a PDT can be
derived from the definition of α-possibilistic reducts. Similar characterization
also for D-reducts should be investigated in order to better understand the
relationship between the latter and other types of reducts;

– In Theorem 3, we showed the equivalence of α-OAU and α-possibilistic
reducts in the consistent case. The relation between these two definitions
of reduct in the general, non-necessarily consistent case, should also be inves-
tigated;
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– The definitions of reducts considered in this article, being based on the Pawlak
definition of rough approximations, can only be applied to discrete data: thus,
the generalization of the proposed approaches to encompass RST techniques
that can be applied to continuous data (neighborhood-based or fuzzy-rough
approaches) should be investigated.

– We plan to evaluate the performance of the proposed reduct definitions on
real PDTs: These, in turn, can be obtained from multi-rater annotations, or
through self-labeling techniques [11].
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Abstract. In this article, we study the problem of feature selection
under weak supervision, focusing in particular on the fuzzy labels set-
ting, where the weak supervision is provided in terms of possibility
distributions over candidate labels. While traditional Rough Set-based
approaches have been applied for tackling this problem, they have high
computational complexity and only provide local search heuristic meth-
ods. In order to address these issues, we propose a global optimization
algorithm, based on genetic algorithms and Rough Set theory, for feature
selection under fuzzy labels. Based on a set of experiments, we illustrate
the effectiveness of the proposed approach in comparison to state-of-the-
art methods.

Keywords: Weak supervision · Feature selection · Fuzzy labels ·
Genetic algorithms · Rough sets

1 Introduction

Learning from fuzzy labels [9,12] is a weakly supervised learning problem, in
which each instance x is associated with a possibility distribution μ over candi-
date labels, having an epistemic semantics: only one of the labels is the correct
one and μ, then, describes the possibility degree of the labels. For example, an
image could be tagged with {car : 1,bus : 0.8,bicycle : 0.0}: the picture then
depicts either a car or a bus, and car is deemed more plausible than bus.

In the recent years, increasing interest has been devoted to the development
of algorithms for the learning from fuzzy labels task [7,9,12,17]. Even though
these techniques can be effective on small-scale benchmarks, they can fail to scale
to more complex and higher-dimensional problems, as their generalization ability
depends (without further assumptions) on the dimensionality of the feature space
[3]. While feature selection or data dimensionality methods could be helpful in
mitigating this issue, their development has mostly been ignored.

While Rough Set-theoretic approaches have been applied effectively to
address the above mentioned issues for other weakly supervised learning problem
[4], their extension to the learning from fuzzy labels case [3] is more difficult,
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due to increased computational complexity costs and the local heuristic nature
of the greedy algorithms currently existing in the literature.

To address these limitations, in this article which represents a continuation
of our previous work in this line of research [3], we propose a global optimization
approach that combines Rough Set-based feature selection with genetic algo-
rithms to solve the feature selection from fuzzy labels problem. In Sect. 2, we
provide the necessary background knowledge on possibility theory and Rough
Set theory. In Sect. 3, we first introduce the generalization of Rough Set the-
ory to the learning from fuzzy labels setting, as well as the existing methods
for performing feature selection in this setting, and then we introduce the pro-
posed genetic algorithm-based approach and discuss its properties; in Sect. 4
we illustrate the effectiveness of the proposed method on a comprehensive set
of benchmarks; finally, in Sect. 5, we summarize our results and describe some
open problems.

2 Background

In this section, we recall basic notions of rough set theory (RST) and possibility
theory, which will be used in the main part of the article.

2.1 Possibility Theory

Possibility theory is a theory of uncertainty which allows for the quantification
of degrees of possibility on the basis of a fuzzy set [20]. We recall that a fuzzy set
(equivalently, a possibility distribution) F can be seen as a function F : X �→
[0, 1], that is, a generalization of the characteristic function representation of
classical sets. A possibility measure is a function posF : 2X �→ [0, 1] such that

1. posF (∅) = 0 and posF (X) = 1,;
2. if A ∩ B = ∅ then posF (A ∪ B) = max(posF (A), posF (B)).

Thus, every possibility measure is associated with a fuzzy set F , s.t. posF (A) =
maxx∈AF (x): F is the possibility distribution associated with posF . We will
focus on normal possibility distributions, that is on possibility distributions F
such that ∃x ∈ X, F (x) = 1. Given α ∈ [0, 1], the alpha-cut of F is defined as
Fα = {x ∈ X : F (x) ≥ α}, while the strong α-cut is defined as Fα+ = {x ∈ X :
F (x) > α}.

In this article, we will adopt the epistemic interpretation [8] of possibility
theory, in which possibility distributions represent the degrees of belief (of an
agent) w.r.t. a set of possible alternatives. We refer the reader to [12] for a
discussion of epistemic possibility distributions in Machine Learning.

2.2 Rough Set Theory

Rough set theory has been proposed by Pawlak [16] as a framework for rep-
resenting and managing uncertain data, and has since been widely applied for
various problems in the ML domain (see [1] for an overview and survey).
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A decision table (DT) is a triple DT = 〈U,Att, t〉 such that U is a universe
of objects and Att is a set of attributes employed to represent objects in U . Each
attribute a ∈ Att is a function a : U → Va, where Va is the domain of values of
a. Moreover, t /∈ Att is a distinguished decision attribute, which represents the
target label (or, decision) associated with each object in the universe.

Given B ⊆ Att, we can define the indiscernibility relation with respect to B
as xIBx′ iff ∀a ∈ B, a(x′) = a(x). Clearly, it is an equivalence relation that par-
titions the universe U in equivalence classes, also called granules of information,
[x]B . Then, the indiscernibility partition is denoted as πB = {[x]B |x ∈ U}.

We say that B ⊆ Att is a decision reduct for DT if πB ≤ πt (where the order
≤ is the refinement order for partitions, that is, πt is a coarsening of πB) and
there is no C � B such that πC ≤ πt. Then, evidently, a reduct of a decision
table represents a set of non-redundant and necessary features: therefore, reduct
search can be understood as a process of feature selection. We say that a reduct
R is minimal if it is among the smallest (with respect to cardinality) reducts.
We remark that, given a decision table, the problem of finding minimal reducts
is in general NP-HARD.

3 Rough Set-Based Weakly Supervised Feature Selection

In this section we recall the basic definitions regarding the generalization of
Rough Set theory to the fuzzy labels setting, and discuss the existing feature
selection methods for this setting. Then, we introduce the proposed weakly super-
vised genetic rough set feature selection method and we discuss its properties.

3.1 Possibilistic Decision Tables and Reducts

In this work, we will refer to the approach for Rough Set-based weakly supervised
feature selection proposed in [4]. For other approaches to generalize Rough Set
Theory to the case of imprecise data, we refer the reader to [6,15,18].

In the learning from fuzzy labels setting, each object x ∈ U is generally not
associated a single annotation t(x) ∈ Vt. Instead, each such object x is associ-
ated with a possibility distribution π(x), which describes the state of knowledge
of the annotating agent (either human or computational): in particular, π(x)y

represents the relative plausibility of label y being the true annotation associated
with x (as compared to other labels y′). These notions can be modeled within
RST by generalizing the definition of a decision table:

Definition 1. A possibilistic decision table (PDT) is a tuple P = 〈U,Att, d, t〉,
where d : U �→ [0, 1]|Vt| is a collection of normalized possibility distributions.
t : U �→ Vt is the true decision attribute, i.e. it is a function s.t. 〈U,Att, t〉 is
a DT and s.t. the weak superset property w.r.t. d holds: d(x)t(x) > 0 for all
x ∈ U .

As mentioned in the definition, t is the true decision attribute: for each object
x, its true label is t(x). However, t is assumed to be unknown and only the
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possibility distribution d(x) is available. In regard to this latter, if |d(x)0+| > 1
for some x ∈ U , then the correct decision t(x) is not known precisely. Note that,
by the weak superset property, the true label t(x) is never considered impossible.
Furthermore, if d(x)a > d(x)b then a is considered more plausible than b for
object x.

A PDT can be associated with a collection of compatible (standard) decision
tables, called instantiations of the PDT:

Definition 2. An instantiation of a PDT P = 〈U,Att, t, d〉 is a standard deci-
sion table T = 〈U,Att, t′〉 such that d(x)t′(x) > 0 for all x ∈ U . The collection of
instantiations of P is denoted I(P ). In particular, 〈U,Att, t〉 ∈ I(P ).

Thus, the collection I(P ) contains all standard decision tables that are com-
patible (i.e., should not be considered impossible) with the imprecise knowl-
edge descibed by the possibility distribution d. Furthermore, the collection I(P )
inherits a ranking from the definition of the possibilistic decision attribute d:

Definition 3. Let I1, I2 ∈ I(P ) be two instantiations of a PDT P . Then we
say that I1 is (conservatively) less possible than I2, denoted I1 ≤C I2, if:

minx∈Ud(x)I1

t′ ≤ minx∈Ud(x)I2

t′ (1)

We say that I1 is dominated in possibility by I2, denoted I1 ≤D I2, if:

∀x ∈ U. d(x)I1

t′ ≤ d(x)I2

t′ (2)

where, in both definitions d(x)Ii

t′ refers to the value of the decision attribute d
(in P ) on the label t′(x) in the instantiation Ii.

So as to capture not only the simplicity of the induced model (that is, the size
of the reducts), but also the epistemic information encoded by the possibility
distribution d, we [3] considered the following definitions of reducts:

Definition 4 ([3]). For each α ∈ (0, 1] and PDT P , let Pα be the α-cut of
P , that is Pα = 〈U,Att, t, dα〉, where ∀x ∈ U, dα(x) = {y ∈ Vt : d(x)y ≥ α}.
For each set of attributes R ⊆ Att, denote by I(R) ⊆ I(P ) the collection of
instantiations of P for which R is a reduct. Then, R ⊆ Att:

– Is an α-possibilistic reduct if it is a reduct for some instantiation of Pα, and
an α-MDL reduct if it is a size-minimal α-possibilistic reduct;

– Is a C-reduct if it is a possibilistic reduct and �R′ ⊆ Att s.t. both |R′| ≤ |R|
and ∃I1 ∈ sup≤C

I(R), I2 ∈ sup≤C
I(R′). I1 <C I2

1;
– Is a λ-reduct, with λ ∈ [0, 1], if it is a possibilistic reduct and supI∈I(R)(1 −

λ)μI(P )(I) − λ |R|
|Att| is maximal among all possibilistic reducts;

– Is a D-reduct if it is a possibilistic reduct and there is no R′ ⊆ Att s.t. both
|R′| ≤ |R| and ∃I1 ∈ sup≤DI(R), I2 ∈ sup≤D

I(R′). I1 <D I2;

1 Here sup≤C I(R) = {I ∈ I(R) : �I ′ ∈ I(R) s.t. I <C I ′}.
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Remarkably, the problem of finding C-reducts and λ-reducts can be (poly-
nomially) reduced to the problem of finding the α-possibilistic reducts:

Theorem 1 ([3]). The problem of finding all C-reducts (resp., λ-reducts, for
any given value of λ) can be polynomially reduced to the problem of finding all
α-MDL reducts (resp., α-possibilistic reducts), for all values of α. In particular,
all the problems in the statement are in NP-HARD.

Even though the reduct search problems in Theorem 1 are unlikely to be
computationally feasible [4], a local search greedy algorithm whose runtime is
O(|U |2|Att|2) has been proposed to find approximated C-reducts or λ-reducts
[3]. This latter approach, however, suffers from several limitations. First, it is
only a local search algorithm, therefore it does not provide any guarantee about
the quality of its results. Second, though polynomial, the complexity of this app-
roach is quadratic in both the number of attributes and the number of objects.
Consequently, it doesn’t scale-well to big data or high-dimensional tasks.

3.2 Genetic Rough Set Selection

The definition of C-reducts, λ-reducts and D-reducts (see Def. 4) is intimately
tied to the notion of an instantiation of a PDT. The complexity of finding a
reduct for a PDT, therefore, could be understood as stemming from the large
size of the search space of all such instantiations. In this section, we show how
genetic algorithms can be used to effectively harness the structure of the above
mentioned search space, by providing an efficient global search algorithm. In
particular, we aim to show (as described also through the results shown in Sect. 4)
that a simple global search strategy is sufficient to out-perform the local search
methods previously proposed in the literature: for this reason, the approach we
propose grounds on basic genetic operators, and does not employ more advanced
strategies such as elitism or diversity control.

In the proposed approach, each candidate solution is represented as a pair
〈I, F 〉, where I ∈ V

|U |
t is a vector of decision labels s.t. ∀x ∈ U, d(Ix) > 0, and

F ∈ {0, 1}|Att|. Intuitively, I represents a candidate instantiation, while F is
a corresponding candidate reduct: in particular if Fa = 1, then attribute a is
included in the candidate reduct. We next define the adopted fitness functions,
the mutation and crossover criteria, and the selection algorithm.

In regard to the fitness function, we consider three different functions, in order
to take into account the differences among C-reducts, λ-reducts and D-reducts.
Namely, the three fitness functions are defined as:

FitnessC(〈I, F 〉) = 〈r, p〉, (3)

Fitnessλ(〈I, F 〉) = (1 − λ)p − λ
r

|Att| , (4)

FitnessD(〈I, F 〉) = 〈r, s〉, (5)
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where p = minx∈U d(x)Ix
, r =

{
|F | F is a super-reduct for (U,Att, I)

∞ otherwise
, and

s ∈ [0, 1]|U | is a vector s.t. sx = d(x)Ix
. Note, in particular, that only Fitnessλ

is single-valued, while the other two fitness functions are multi-valued. Conse-
quently, for these latter two fitness functions we will consider an approach based
on multi-objective optimization. In particular, given two candidate solutions
〈I1, F1〉, 〈I2, F2〉 we say that:

〈I1, F1〉 ≥F
C 〈I2, F2〉 iff r1 ≤ r2 ∧ p1 ≥ p2, (6)

〈I1, F1〉 ≥F
λ 〈I2, F2〉 iff Fitnessλ(〈I1, F1〉) ≥ Fitnessλ(〈I2, F2〉), (7)

〈I1, F1〉 ≥F
D 〈I2, F2〉 iff r1 ≤ r2 ∧ ∀x ∈ U, sx ≥ sx. (8)

Given these definitions, selection is performed by non-dominated tournament
selection [14], as described in Algorithm 1.

Algorithm 1. The selection algorithm.
procedure Non-Dominated Tournament Selection (P : population, t: tourna-
ment size, c: reduct type)

T ← t randomly selected candidate solutions from P
a ← randomly selected candidate solution in T
for all b ∈ T do

if b >F
c a then

a ← b
end if

end for
return a � A non-dominated candidate solution

end procedure

In regard to mutation, this is performed separately on the possibility degrees
and on the candidate reducts. Specifically, in regard to candidate reducts, fea-
tures are removed or added randomly according to a Bernoulli distribution
with parameter bmut. By contrast, possibility degrees are mutated according
to a two step procedure: first, for each instance x, a binary value is randomly
sampled from a Bernoulli distribution with parameter bmut; then, if the above
mentioned value was equal to 1, a new possibility degree is sampled from the
probability distribution P̂ rd(x), given by the possibility-probability transform
[10] P̂ rd(x)(y) =

∫ d(x)y

0
dα

|{y′∈Vt:d(x)y′≥α}| . In particular, we decided to adopt
this sampling distribution as it is the maximally uncertain distribution among
all possible probability distributions Pr compatible with d(x), i.e., satisfying
∀y ∈ Vt, P r(y) ≤ d(x)y and d(x)y ≥ d(x)y′ =⇒ Pr(y) ≥ Pr(y′), and hence has
minimum bias [10]. The mutation algorithm is summarized in Algorithm 2.

Finally, single-point crossover is applied to I and F , separately. The complete
pseudo-code for the proposed method is reported in Algorithm 3.
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Algorithm 2. The mutation algorithm.
procedure Mutation(〈I, F 〉: candidate solution, bmut : mutation probability)

for all a ∈ {0, ..., |Att| − 1} do
if Uniform(0, 1) ≤ bmut then

Fa ← 1 − Fa

end if
end for
for all x ∈ {0, ..., |U | − 1} do

if Uniform(0, 1) ≤ bmut then
Ix ← random label sampled from P̂ rd(x)

end if
end for
return 〈I, F 〉 � A new candidate solution

end procedure

Algorithm 3. The proposed weakly supervised genetic rough set feature selec-
tion algorithm.

procedure Weakly Supervised Genetic Rough Set Selection(〈U, Att, d〉:
PDT, Popsize: population size, bmut, c: reduct type, t: tournament size)

Pop ← Popsize randomly initialized candidate solutions
Best ← ∅
while Not converged and termination criterion not reached do

Compute fitness according to Fitnessc

Best ← the non-dominated candidate solutions in Pop ∪ Best
NewPop ← ∅
for all i = 1 to Popsize do

NewPop.append(Non − DominatedTournamentSelection(Pop, t, c))
end for
Pop ← NewPop
Apply Crossover on Pop
Apply Mutate on Pop

end while
return Best � The best candidate solutions

end procedure

We next study the convergence and complexity properties of the proposed
method. The following result shows that, asymptotically, Algorithm 3 is guar-
anteed to return all C-reducts (resp., λ-reducts, D-reducts).

Theorem 2. Let n be the number of iterations for which Algorithm 3 runs before
termination. Let P be a PDT. If n → ∞, then almost surely ∃R ∈ Best s.t. R is a
C-reduct. Furthermore, Best = C(P ) almost surely, where C(P ) is the collection
of C-reducts for PDT P . The same result holds for λ-reducts, D-reducts.

Proof. We prove the result for C-reducts, as the case of λ-reducts and D-reducts
is equivalent. A C-reduct corresponds, by definition, to a non-dominated candi-
date solution according to order ≤F

C . Since at least one C-reduct is guaranteed



768 A. Campagner and D. Ciucci

to exist, Pr(∃R ∈ Best : R is a C-reduct) > 0. Since as, n → ∞, Algorithm 3 is
guaranteed to visit all the non-dominated candidate solutions in the search space
(since, at each step, each of these candidate solution has non-zero probability of
being added to the population), the result follows.

Thus, in the long run, the proposed method is guaranteed to find all the reducts
of the desired class. This property provides an advantage w.r.t. the previously
described local search methods that, by contrast, do not provide any such guar-
antee. Nonetheless, we note two limitations of the previous result: 1) the previous
result only holds asymptotically, with no bounds on the expected number of iter-
ations required to achieve convergence; 2) the previous results holds irrespective
of the population size, thus, as a degenerate case, also for purely random search.
While it is reasonable to expect that larger, or even adaptive, population size
could improve speed of convergence, we leave the development of such results as
open problem.

The computational complexity of Algorithm 3 can be characterized as follows:

Theorem 3. Let n be the number of iterations for which Algorithm 3 runs before
termination. Then, the complexity of Algorithm 3 is O(n|U ||Att|).

Proof. The mutation and crossover steps have both complexity O(|U |+|Att|) per
iteration. The per-iteration complexity of the selection step is O(|U |). The per-
iteration complexity required for computing the fitness of the candidate solutions
in the population is O(|U ||Att|). Therefore the result follows.

The previous theorem ensures that, as long as the number of iterations is
o(|U ||Att|), the proposed method has better computational complexity than the
local search methods described in [3]. We leave as open problem the definition of
algorithm to automatically tune the number of iterations, based on the available
data, so as to guarantee quick convergence with high probability.

4 Experiments and Results

In this section, we discuss the experiments that we designed to evaluate the
proposed method, in comparison with other feature selection methods for the
learning from fuzzy labels problem, and present and discuss the obtained results.

4.1 Experimental Design

In order to evaluate the proposed genetic algorithm-based feature selection meth-
ods we considered a benchmark suite encompassing 14 different datasets:

– Two fuzzy-labeled datasets, previously described, respectively, in [2] and [5];
– 12 datasets from the UCI repository. The precise labels for these datasets were

fuzzified by means of nearest neighbors label smoothing [13]. In particular,
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setting the number of neighbors equal to k, for each instance x, the associated
possibility distribution is obtained as:

d(x)y =
|{i ∈ {1, . . . , k} : Ni nearest neighbor of x ∧ t(Ni) = y}| + 1t(x)=y

k + 1

The full list of datasets, including he number of instances, features and classes,
is reported in Table 1.

Table 1. List of datasets

Dataset Instances Features Classes

Avila 20768 10 10

Car 864 16 4

Crowd 10845 28 6

Frog family 7195 22 4

HCV 582 12 4

Iranian 7032 45 2

Mushroom 5644 99 6

Dataset Instances Features Classes

Myocardial 1700 111 2

Pen 10992 16 10

Sensorless 20000 48 11

Taiwan 6819 94 2

Wifi 2000 7 4

CTC 617 2500 2

Kyphosis 120 14 7

We considered the following 3 feature selection algorithms:

– The proposed Rough Set-based genetic algorithms, considering the three fit-
ness functions λ,C,D, denoted respectively as GRSSL,GRSSC,GRSSD.
We selected, in particular, a budget of n = 1000 iterations;

– The greedy Rough Set-based local search algorithms for λ-reducts, C-reducts
and D-reducts, denoted respectively as RSSL,RSSC,RSSD;

– The DELIN algorithm [19], as a comparison baseline. This latter is a dimen-
sionality reduction algorithm based on linear discriminant analysis, whose
runtime is O(|U ||Att|2)
Performance was evaluated by means of the following experimental design:

1. For each dataset, split in training set Tr (70%) and test set Ts (30%);
2. Apply the feature selection algorithms on the training set Tr, obtaining a

reduct F and the reduced training set TrF ;
3. Train a kNN classifier on the reduced training set TrF ;
4. Evaluate the trained kNN classifier on the reduced test set TsF .

In regard to performance measures, we measured the balanced accuracy, so
as to take into account the label imbalance in the considered datasets. The
algorithms were also compared in terms of running time. Differences among
algorithms (if any) were analyzed by means of a statistical testing approach. In
particular, we applied the Friedman rank test to evaluate whether some global
statistically significant difference existed among the considered algorithms, and
then applied the post-hoc Nemenyi test for pair-wise comparisons of perfor-
mance. In both cases, p-values smaller than 0.05 were considered to be significant
evidence of performance difference (at a confidence level of 95%).
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4.2 Results and Discussion

The results of the experiments are reported in Fig. 1 and 2; both in terms of
average ranks and p-values for the post-hoc test. As shown in Fig. 1, the three
proposed genetic algorithms reported the best average ranks w.r.t. balanced
accuracy, and were significantly more accurate than the Rough Set-based local
search algorithm. In particular, the GRSSL algorithm (that is, the genetic rough
set selection for λ-reducts) was the feature selection algorithm with best perfor-
mance, being significantly more accurate than all other algorithms. By con-
trast, while significantly better than the Rough Set-based local search methods,
GRSSC and GRSSD were better than the baseline DELIN only on average. We
conjecture that this could be due to the intrinsic complexity of the underlying
multi-objective optimization problems: indeed, for example, GRSSD involves the
solution of a |U |+1-dimensional problem. Future research should thus be devoted
at exploring more advanced techniques to address this aspect.

Also in terms of running time, the proposed genetic algorithms compare
favorably with the Rough Set-based local search methods, as shown in Fig. 2.
We note, though, that DELIN had better run-time than all other considered algo-
rithms, being significantly more efficient than GRSSD, while the difference w.r.t.
GRSSL and GRSSC was not significant. This could be explained by two different
reasons. First, DELIN only uses matrix operations in its execution, that can be
performed very efficiently through numerical linear algebra libraries; by contrast
Rough Set-based algorithms also include table manipulation operations, having
higher computational costs. Second, the complexity of DELIN is O(|U ||Att|2),
while for the genetic algorithms the complexity is O(n|U ||Att|), with the itera-
tions’ budget set to n = 1000 iterations: for all datasets, except CTC, n was much
greater than |Att|, thus the effective complexity of GRSSL, GRSSC and GRSSD
was o(|U ||Att|2). We remark, however that, despite this difference, the proposed

Fig. 1. Average ranks and p-values for balanced accuracy.
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Fig. 2. Average ranks and p-values for running time.

genetic algorithms were significantly more accurate. Nonetheless, future work
should be devoted at exploring algorithmic strategies to automatically control
the number of iterations n, based on the available data.

5 Conclusion

In this article, we studied the problem of feature selection in the learning from
fuzzy label setting, and proposed a method, combining genetic algorithms and
Rough Set theory, for efficiently solving this problem. We studied the computa-
tional properties of the proposed method and showed its effectiveness in com-
parison to existing feature selection methods, on a comprehensive set of bench-
marks. While this paper provides a promising direction for the application of
RST-based feature selection in weakly supervised learning, it naturally leaves
many questions open. Specifically, we plan to address the following problems:

– In the proposed method, we did not apply any advanced multi-objective
optimization techniques, such as diversity control, elitism or Pareto strength
assignment [14]. Future work should evaluate the potential benefits of includ-
ing such techniques in the proposed method;

– In Theorem 2 we showed that the proposed method is a global search strategy:
asymptotically, the best solutions found by the genetic algorithm are exactly
the desired reducts. Further research should study non-asymptotic character-
izations of the proposed method, in terms of expected time to convergence,
or PAC population bounds [11];

– Similarly, as long as the number of iterations n is constant or upper-bounded
by the size of the PDT P , the complexity of the proposed algorithm is par-
ticularly favourable w.r.t. the standard Rough Set greedy algorithm. Further
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research should be devoted at exploring the relationship between n and the
quality of the returned solutions.
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Chapter 4

Applications of Learning from

Imprecise Data

In the previous chapters the main focus has been on the development and study of

practical algorithms for dealing with imprecision in the input of ML models, focusing

in particular on the case of learning from fuzzy label, as well as on the empirical

evaluation of existing techniques on general benchmarks. By contrast, the main aim

of this chapter will be to illustrate the application of techniques for learning from

imprecise data in practical, real-world settings. Indeed, despite rapid development

of algorithmic approaches for these types of problems, the practical evaluation of

such approaches on real-world data and problems has rarely been considered and

reported about in the specialized literature: relevant examples in this sense include

applications in the setting of learning from crowdsourced data [64, 240, 256] as well

as in the setting of physical device modeling [209]. To this purpose, this chapter will

describe the application of the RRL algorithm proposed in the previous chapters,

or variations thereof, to three medical problems: the problem of ground-truthing in

multi-rater labeling, the problem of handling vague ordinal terminology in medical

datasets, and the problem of handling data affected by individual variation.

In the first case, in Section 4.1, the main focus will be on a relevant problem

emerging in medical decision making tasks, in which the ground truth annotations to

be used as target supervision by a ML model are not guaranteed to be correct, as the
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involved annotators (humans or otherwise) are not necessarily infallible, either due to

limited expertise or to the inherent complexity of the annotation task. In this setting,

one of the main approaches to counter the above mentioned problem is to collect and

aggregate labels produced by many raters who independently provide their labeling of

the dataset, similarly to what happens in crowdsourcing [36]. Drawing from the vast

literature concerned with learning in crowdsourcing scenarios [275], several state-of-

the-art techniques have been proposed for multi-rater ground truthing and learning

[136, 198, 227, 226], most of which based on adaptations of the majority aggregation

scheme (i.e. the process of selecting for each instance a single, optimal label by

majority voting, or a variations thereof, on the multi-rater ground truth and then

applying standard or regularized machine learning models), described in Algorithm

4. The main objective of the first section will be to illustrate the application of

Algorithm 4 Generic aggregation-based algorithm for learning from multi-rater

labels.
procedure Aggregation-based Multi-rater Learning(S =

{(x1, (y
1
1, . . . , y

k
1)), . . . (xm, (y

1
m, . . . , y

k
m)): multi-rater training set, A: aggre-

gation rule, H: model class)

Stemp ← ∅
w ← ∅
for all r ∈ {1, . . . , k} do

end forw[r]← Compute weight of rater r based on S

for all (x, (y1, . . . , yk) ∈ S do

y∗ ← aggregate A(y1, . . . , yk;w) based on w

Add (x, y∗) to Stemp

end for

h← optimal model in H w.r.t. Stemp

return h

end procedure

learning from imprecise data techniques to the problem of learning from multi-rater

data, focusing in particular on the application of the RRL algorithm to set-label
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or fuzzy-labeled data obtained by imprecisiation of the original multi-rater datasets

[152], showing promising results compared to state-of-the-art approaches.

Section 4.2 of this chapter will be focused, in contrast, on the problem of learning

from vague ordinal data in medical datasets. In contrast to the case of imprecise

data, vague data refers to data representations, usually typical of linguistic data, that

may be interpreted differently by different agents, due to the inherent ambiguity or

arbitrariness of their semantics [130]. As in the case of imprecise data, standard ML

and statistical data analysis techniques cannot be naively applied when dealing with

vague data, which generally requires the careful application of ad-hoc techniques

[144]. This type of data occurs frequently in the medical domain, especially when

referring to medical terminology: a particularly relevant example of this issue is the

use of severity ordinal scales [212] (i.e. ordinal scales that are used to express the

severity of a medical condition in a standardized format) which, while widely used

as standard ordinal features in ML-based medical studies, have been shown to be

inherently affected by vagueness [10, 41]. The aim of this section will then be to

illustrate the application of learning from fuzzy data techniques to the setting of

learning from vague ordinal data: to this purpose a general-purpose, questionnaire-

based, technique to transform vague data into imprecise data (modeled in the form

of possibility distributions) will be illustrated, which will then be used to ground

the application of learning from fuzzy data techniques, including an adaptation of

the RRL learning algorithm discussed previously, showing that these techniques can

provide significant advantages in comparison with standard encoding approaches as

well as with approaches based on the use of fuzzy set theory to deal with vague data.

Finally, Section 4.3 will be devoted the application of learning from imprecise

data techniques to the problem of managing data affected by within-subject (or,

individual) variation [107]. This latter refers to a widely known phenomenon in the

biomedical domain, denoting variation and noise in the values of a set of features of

interest that is due not to population differences or errors, but rather to the intrinsic

and characteristic patterns of variation pertaining to a given individual [189] or the

measurement process [258]. Individual variation has been deemed critical for proper
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analysis of medical data, and may have relevent implications for data analysis. In-

deed, data which may affected by individual variation, even when pertaining with

a single individual, may no longer be represented as a point estimate (x1, ..., xd),

bu rather only as a cloud of possible realizations that are all compatible with the

characteristic of the given individual [106]. Thus, in the specialized literature, it is

usually assumed that each individual features’ distribution can then be represented

by a d-dimensional Gaussian Nx = (x,Σx), where x denotes an averaged, charac-

teristic representation of the individual, called value at the homeostatic point, and

Σx is a covariance matrix denoting the degree of individual variation for each of the

features of interests, and their dependencies. Thus, any ML model trained on a sin-

gle snapshot of data for a given set of patients, may fail to generalize not only when

given data pertaining to new patients, but also when given different instantiations

of the data pertaining to the same patients considered in its training set, whenever

individual variation causes these latter to be sufficiently different for the model to

fail to classify them correctly [200]. Despite these characteristics, the impact of in-

dividual variation on the development of ML models has seldom been considered

in the literature. The aim of this section, then, will be to describe the problem of

handling individual variation in ML models with a two-fold objective: first, to show

that standard ML models can fail to be robust and generalize properly when con-

fronted with data affected by individual variation; second, to show how techniques

for learning from imprecise data, and specifically so adaptations of the generalized

nearest neighbors and RRL algorithms to the more general setting of learning from

fuzzy data, can be useful in this setting. In particular, the problem of individual

variation management will be addressed within the context of COVID-19 diagnosis

from laboratory blood exams, so as to rely on the vast literature concerning the

estimation of individual variation parameters for this type of data [1, 58, 210].
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a b s t r a c t

In recent years, Machine Learning (ML) has attracted wide interest as aid for decision mak-
ers in complex domains, such as medicine. Although domain experts are typically aware of
the intrinsic uncertainty around it, the issue of Ground Truth (GT) quality has scarcely been
addressed in the ML literature. GT quality is regularly assumed to be adequate, regardless
of the number and skills of raters involved in data annotation. These factors can, however,
potentially have a severe negative impact on the reliability of ML models. In this article we
study the influence of GT quality, in terms of number of raters, their expertise, and their
agreement level, on the performance of ML models. We introduce the concept of reduction:
computational procedures by which to produce single-target GT from multi-rater settings.
We propose three reductions, based on three-way decision, possibility theory, and probability
theory. We provide characterizations of these reductions from the perspective of learning
theory and propose two ML algorithms. We report the result of experiments, on both
real-world medical and synthetic datasets, showing that GT quality strongly impacts on
the performance of ML models, and that the proposed algorithms can better handle this
form of uncertainty compared with state-of-the-art approaches.

� 2020 Elsevier Inc. All rights reserved.

1. Introduction

In recent years, interest in Machine Learning (ML) technologies and systems supporting human decision makers has
greatly increased, especially in light of the promising results achieved to date in many decision-intensive domains. A
paradigmatic example of such a domain is medicine [41]. One factor that led to the adoption of ML in the medical domain
is the large amount of data routinely collected and stored, ranging from simple scalar measurements (e.g., blood pressure), to
3D images (e.g., from magnetic resonance imaging).

Uncovering hidden patterns in data that support human decisions during diagnosis and treatment planning requires the
data to be enriched with target annotations that specify their ‘‘true nature”. Original data and their annotations constitute
the ‘‘Ground Truth” (GT) that ML models are trained on so that they can subsequently replicate or predict correct associa-
tions in new, unseen, instances of data. In the experimental sciences, these target annotations, also called labels, are typically

https://doi.org/10.1016/j.ins.2020.09.049
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generated under controlled conditions ensuring that a given instance can be associated with a certain class [44]: the result-
ing GT labels can therefore be considered certain. In the medical domain however, the GT labels are typically generated by
human raters who annotate the available data based on their interpretation and skills. Besides it being a time-consuming
and error-prone task, human annotation must contend with inter-observer variability, which occurs when raters interpret
the same instance differently; this phenomenon has been reported and discussed extensively [16,20] and related to the re-
liability of the resulting data. Despite the apparent problem with uncertainties in GT, scholars in the ML and AI communities
seldom address the question of how reliable their GT actually is [4,5,42]. We have termed this question the ‘‘elephant in the
record” [6,3] in an attempt to promote awareness of an enormous issue in ML in medicine, which, although widely recog-
nized, is rarely addressed in the specialist literature.

One approach to counter the potential fallibility of human annotators is to create GT labels from a number of annotations,
produced by many raters who independently provide their labeling of the dataset. For many applications, it is both feasible
and convenient to involve people from the general public as annotators; these are ‘‘crowd sourcing” or ‘‘citizen science” pro-
jects. In the medical domain, however, raters must be specialists; even so, their degree of competence, which can vary, is
very important for the quality of the resulting annotations. Information on annotator competence level, however, is not usu-
ally reported in medical ML studies. Sometimes it is stated that medical professionals were involved in producing the GT, but
details such as the number of raters and their level of expertise are omitted; or it may be that different raters were associated
with different subsets of the dataset [15,17]. In other cases, the number of raters is limited to three [2,18], or the raters were
not medical specialists but lay-people specifically trained for the task [42]. This situation is understandable, as the time of
highly trained and specialized medical professionals, such as dermatopathologists or licensed ophthalmologists, is very valu-
able; for these reasons, involving the huge numbers of annotators typical of crowdsourcing settings would be unfeasible in
the medical domain.

Having acknowledged the problem of GT uncertainty, it is crucial to investigate the implications of creating GTs involving
few annotators [2,18], in terms of both reliability and how effects on the robustness of ML models that are trained using such
annotations. The overall goal is to investigate novel methods to mitigate potential shortcomings and make the best possible
use of the available annotations. Even in the ideal situation, where one is able to involve many raters with high level of
expertise, to take the ground truthing process seriously requires knowing how to deal adequately with inter-observer vari-
ability that will necessarily affect the resulting annotations. We focus specifically on the key step by which the original,
vector-valued, multi-rater representation is converted into a single label or value. This reduction step is typically performed
by selecting the label that the majority of voters have chosen. If the number of raters is small, however, the chance of select-
ing the wrong label is relevant, as is the resulting label noise [39]. Even if the ML model can learn the relevant patterns in
datasets with label noise, the performance of the model will nevertheless be affected, because the GT used to test the model
will also have the same level of uncertainty.

In this paper, we will investigate how rater expertise, the number of raters, inter-rater variability, and the way the multi-
rater representation is reduced into a single value all affect the classification performance of a ML model. Specifically, in this
article we offer the following three main contributions:

� We introduce a general theoretical framework grounding on the concept of reduction (the transformation of multi-rater
annotations to a single label); we will distinguish between the standard reduction, based on majority voting (majority
reduction), and alternative reductions that are based on probability theory, possibility theory and three-way decision
(TWD) theory;

� We discuss the theoretical properties of the different reductions from the point of view of learning theory and introduce
two algorithms that can be applied to general reductions;

� Finally, we report on an empirical investigation in which we analyzed, using a collection of both real and synthetic data-
sets, the effects of the number of raters, their expertise, their inter-rater agreement, and the chosen reduction method on
the performance of ML models. Specifically, we will show that the proposed algorithms are more effective than the tra-
ditional majority voting based approach, especially in circumstances where the raters annotating the dataset do not
demonstrate high accuracy.

The rest of this article will be structured as follows: in Section 2, we will introduce the necessary mathematical back-
ground, and in Section 3 we will introduce the measures of reliability that we use to quantify the level of agreement between
the raters. In Section 4.1, we will define the concept of reduction and describe a number of alternative reductions. In Sec-
tion 4.2, we will define the ML models embedding these reductions, and analyze these learning models from the perspective
of learning theory. In Section 4.3, we will introduce the concept of simulated level of expertise and apply it to a number of
datasets to investigate its effect on the performance of MLmodels; we will show and discuss the obtained results in Section 5.
Finally, in Section 6, we will draw our conclusions and outline some open problems, possible ways to address them, and
future work in this strand of research.
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2. Mathematical background

2.1. Supervised and multi-rater machine learning

To start, let us assume that in a standard ML environment, our knowledge is available in the form of a decision table that
describes a set of objects and everything we know about it.

Definition 1. A decision table is a tuple hU;A; ti where

� U is a universe of objects of interest (e.g. images or medical records).
� A is a set of features that we use to represent objects in U. Specifically, we define each feature as a function a : U # Va

where Va is the domain of values that the feature a can assume.
� t, with t R A, is a decision attribute that represents the target attached to the objects in U.

The learning task can then be described as follows. Let P be a probability distribution over U andH a class of hypotheses,
i.e., a set of functions h : U # Vt . Assuming that we have an instance-level loss function, lt : H� U # R, we can define the
loss function Lt;P : H# R as

Lt;PðhÞ ¼
Z
U
ltðh; xÞdPðxÞ; ð1Þ

the goal of the standard ML classification task [36] is to find a hypothesis h�ðSÞ such that

h�ðSÞ ¼ argminh2HLt;PðhÞ; ð2Þ
where S#U is a finite sample (also called a training set).

Notice that in general we do not know P, nor the value of tðxÞ 8x 2 U. Therefore we can only estimate the loss via the
empirical loss, defined as

ELt;SðhÞ ¼
X
x2S

ltðh; xÞ: ð3Þ

The goal of the learning process then changes to finding a hypothesis h�ðSÞ that 8P satisfies some bounds on the real loss.
These bounds depend on the size of the training sample jSj, the complexity of H as measured by the Vapnik–Chervonenkis
(VC) dimension [36] or similar constructs, the empirical loss and other approximation parameters.

In the present work, we deal with a more general learning task, which we call learning from multi-observer labels.

Definition 2. A multi-observer decision table is a tuple hU;A; t;Di where

� U is a universe of objects of interest.
� A is a set of features that we use to represent objects in U. Specifically, we define each feature as a function a : U # Va

where Va is the domain of values that the feature a can assume.
� t R A is a particular decision attribute, i.e., the target, which we assume to be the true (but possibly unknowable) decision
associated with the object in U. We will denote the domain of values of t as Vt; specifically we will here assume that
Vt ¼ 0;1f g.

� D, with D \ ðA [ tf gÞ ¼ £, is a set of decision attributes that represent the decisions that a set of observers assign to
objects in U. Notice that when D ¼ £ and t is known hU;A; ti is a decision table.

Remark 1. With an abuse of notation we will write DðxÞ to denote the decision values assumed by object x, and DðSÞ to indi-
cate the values assumed by all objects x in S.

This kind of setting was proposed and studied in the crowdsourcing domain. While most work in the literature generally
acknowledges the limitations of simple majority voting to transform the original multi–observer table into a standard table,
relatively few have proposed corrections to this criterion; usually, such corrections have been by means of either computa-
tional procedures that estimate the error rates of the single annotators or information provided by raters in addition to the
annotation. For instance, Raykar et al. [39] proposed an iterative approach based on Expectation–Maximization to jointly
estimate the annotators’ error rates and true labels, and train a logistic regression algorithm; while Whitehill et al. [45]
describe a parametric Bayesian approach to estimate annotators’ error rates and true labels based on an objective indication
of the difficulty of each instance. Heinecke et al. [19] describe algorithms based on learning theory by which to estimate the
annotators’ error rates and perform an accuracy-weighted correction to majority voting; Hertwig [21] discusses a
confidence-weighted correction to majority voting (in which annotators are supposed to provide also an estimate of their
confidence, together with their proposed label); Prelec et al. [38] consider a mechanism for majority voting correction, called
surprisingly popular algorithm: in this approach, an estimate of the annotators’ competence is made by asking annotators to

A. Campagner et al. Information Sciences 545 (2021) 771–790

773



report which option, in their opinion, will be the most popular. These methods were developed for GT obtained by crowd-
sourcing or similar approaches and, thus, show several limitations in settings such as medicine (the reference setting for our
research). The most prominent of these are the need for an additional source of objective or subjective information [21,38,45]
(such as objective evaluations of case complexity, or raters’ confidence) that may be difficult to elicit, the need to involve
large number of raters (or annotated examples) to obtain accuracy rates significantly greater than those achieved via simple
majority voting [19,39], or, more generally, no significant improvements over simple majority voting.

A similar setting has been studied in the Rough Set Theory (RST) literature under the term multi-source information sys-
tems. For instance, Sang et al. [40] studied rule learning in this setting using decision-theoretic rough sets; however, that
setting differs from that which we consider here in that it does not typically consider annotations’ quality.

Most approaches involving multi–observer tables require transforming the original multi–observer table into a standard
table, where each instance is associated with a single label (which is plausibly the most appropriate one). To formalize this
concept, the notion of reduction was introduced in [4] as here:

Definition 3. A reduction is a transformation T : VD # CðVtÞ that maps each multi-observer labeling to a structure over labels
in Vt .

Here, ‘‘structure” is intended in a general sense; examples include: a single labeling, thus CðVtÞ ¼ Vt , or a probability dis-
tribution over labels.

With respect to the ML task, which call learning from reductions, the goal is to simultaneously find a reduction T and a
hypothesis h� minimizing the loss with respect to the true, but unknown, labeling t. Note that, in general, each of the raters
d 2 D may disagree on some subset Sd # S with the true labeling t, and thus it may also happen that we have
8d 2 D: tðxÞ – dðxÞ for a given x 2 S. The task of learning from multi-observer labels can therefore be seen as a generalization
of the task of learning from noisy labels [1], as the reduction may produce the wrong label.

Finally, we also recall the pseudo-labels [28] approach, which has been widely applied in semi-supervised learning: this
approach uses synthetic labels for the unsupervised instances, and updates them iteratively on the basis of the output of an
underlying classifier. Since its proposal this approach has shown remarkable results in solving different ML tasks: semi-
supervised learning [32], ensemble learning [46] and, most relevant to this paper, learning from noisy labels [30]. As we
show in Section 4.2, the algorithms that we propose to address the learning from reductions task are based on the
pseudo-label approach, as they involve training an ensemble of models on labels sampled from a prior distribution (which
is specified by the reduction employed). Despite this similarity, the two approaches differ in their implementation details: in
the pseudo-labels approach the probability distribution over the labels is iteratively updated on the ground of the output
provided by the underlying classification algorithm. Therefore, the learning algorithm is used to estimate the correct class
assignment probability. By contrast, in the ‘‘learning from reductions” task, the distribution over labels is established a priori
(from the labels provided by the raters and the specific reduction employed) and is then used to train a ML model, by min-
imizing the loss w.r.t. this prior distribution.

2.2. Introduction to uncertainty representation

Probability theory and related methods, such as information theory, are the most used frameworks to represent and man-
age uncertainty in ML, due to its solid theoretical foundations and the wide successful application in many fields. However, a
variety of alternative or complementary uncertainty management frameworks have been proposed in the literature in order
to cope with some shortcomings of probability theory in dealing with phenomena like representation of ignorance [37].
Among them, we will consider possibility theory based on fuzzy sets [49] and three-way decision [48].

Three-way decision (TWD), originally proposed by Yao [48], is a framework for uncertainty management, inspired by
human decision-making and Rough Set Theory (RST) [47], that can be understood as an extension of standard decision theory
by which objects in the domain of interest are divided in three categories: a positive, or acceptance, region; a negative, or
rejection, region; and a further boundary, or non-commitment, category, which represents lack of knowledge or (temporary)
abstention concerning the status of the objects placed in this latter region. With respect to the ML setting, according to TWD,
every data point can be classified as belonging to the target class, not belonging to the target class, or being in the boundary,
that is a region that represents lack of knowledge with respect to class assignment. Despite its apparent simplicity, TWD has
been successfully applied in the ML literature for many tasks, such as classification under uncertain boundaries [31], ensem-
ble construction [50], deep learning [29]. Most relevantly for our purposes, TWD has been applied successfully to manage
semi-supervised (or, more generally, weakly supervised) learning: Miao et al. [34] studied a semi-supervised learning
approach based on TWD; Min et al. [35] proposed a weakly supervised algorithm based on a tripartition of the instances into
positive/negative and uncertain one; and Campagner et al. [7] proposed a TWD-based framework of algorithms for general
weakly supervised learning tasks. Interestingly, although the considered tasks and approaches are quite distinct from that
which we present in this article (see the previous Sections), TWD has also been applied to multi-observer tasks: Hu et al.
[22] studied an approach to information aggregation based on TWD; Huang et al. [23] studied how to employ TWD for infor-
mation fusion; and Sang et al. [40] employed TWD to manage multi-source information tables (a generalization of multi-
observer decision tables). For an extensive review of application of TWD in ML, see [8].

A. Campagner et al. Information Sciences 545 (2021) 771–790

774



Another popular uncertainty representation is possibility theory, which allows for the quantification of degrees of possi-
bility on the basis of a fuzzy set [49]. A fuzzy set F can be seen as a function lF : X # ½0;1�, that is, a generalization of the

characteristic function representation of classical sets. A possibility measure is a function pos : 2X # ½0;1� such that

1. posð£Þ ¼ 0 ^ posðXÞ ¼ 1, and
2. if A \ B ¼ £ then posðA [ BÞ ¼ maxðposðAÞ; posðBÞÞ.

It can be easily seen that every possibility measure and distribution is induced by a fuzzy set F as posðAÞ ¼ maxx2AlFðxÞ. A
possibility distribution is normal if 9x 2 X:lFðxÞ ¼ 1.

A possibility distribution lF induces the necessity measure nec : 2X # ½0;1�, defined as necðAÞ ¼ 1� posðAcÞ which is thus
dual to the measure pos. A possibility measure can be interpreted as imprecise probabilities [12], that is as an imprecise spec-
ification of our belief given by a set of compatible probability distributions

Prl ¼ Prj8A#X:neclðAÞ 6 PrðAÞ 6 poslðAÞ
n o

: ð4Þ

This epistemic view [12] of fuzzy sets as possibility distributions has led to the active research areas of statistics on fuzzy
data andmachine learning on fuzzy data: see Hüllermeier [24] for an introduction to fuzzy ML using generalized loss functions
and Couso et al. [11] for a recent survey of the area. In Section 4.2, we build on this literature to study how to employ pos-
sibility theory to manage uncertainty in multi-rater settings.

3. Reliability

The intuitive notion of reliability, specifically inter-rater reliability, relates to the extent to which we can trust a GT in
making decisions, or better yet, for training models on, which support our decision making. More technically, the reliability
of a given multi-rater labeling of a dataset takes the agreement among the different raters into account: that is, the precision
of the labelings (from a metrological point of view ). If all raters agree on every case, the reliability is maximal. Most relia-
bility measures, such as the proportion of agreement and the k, which currently are those most widely employed in empirical
studies, have limitations from a theoretical and conceptual point of view [27]. For instance, they do not take into account that
agreement could arise by chance or they employ scales for score interpretation that are too permissive and arbitrary.

Because of such limitations, in this article we will consider a more robust reliability measure, known as Krippendorff’s a
[27]. This is defined as:

aK ¼ 1� Do

De
: ð5Þ

In the formula of aK ;Do and De can respectively be defined as:

Do ¼ 1
jUjjDj

X
i;j2Vt

dði; jÞ
X
x2U

jDj ci;j
jDj
2

� � ; ð6Þ

De ¼ 1
jUjjDj
2

� �X
i;j2Vt

dði; jÞPi;j; ð7Þ

where dði; jÞ is a distance function and ci;j is defined as:

ci;j ¼ j d1; d2 2 D : d1ðxÞ ¼ i ^ d2ðxÞ ¼ jf gj; ð8Þ
and Pi;j can be defined as:

Pi;j ¼
ni � nj i– j
ni � ðni � 1Þ i ¼ j

�
; ð9Þ

and ni ¼
P

xj d 2 DjdðxÞ ¼ if gj.
In this formulation, the Do represents the observed degree of disagreement, while De represents the disagreement due to

chance and is thus employed as a correction factor essentially based on the observed total class proportions. For example, if
we have a strong class imbalance, De would be small and the factor Do

De
would be large, resulting in a low aK value. It should

also be noted that both Do and De are defined on the range ½0;1� and thus the resulting aK can yield values in the range of
½�1;1� where aK ¼ 1 corresponds to perfect agreement. The case of aK ¼ 0 corresponds to perfect disagreement (that is,
when there is no statistical association between the objects and their labels), while values aK < 0 corresponds to cases where
the disagreements are systematic. A further analysis of the aK measure, including a discussion of its robustness and its desir-
able properties as a measure of inter-rater agreement can be found in [27]. This publication discusses, among other topics,
robust criteria for assess the reliability of a multi-rater decision table, and indicates that a dataset should be considered suf-
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ficiently reliable if aK P 80%. If needed, one can use a bootstrapping procedure to estimate the distribution of aK and find a
confidence interval ½amin

K ;amax
K � which is then compared to the 80% threshold.

4. Methods

4.1. Reductions

In this section, we will discuss the concept of reduction: any computational procedure that transforms multi-rater deci-
sion tables into decision tables with structure-valued decision attributes [4]. We will describe a number of alternative reduc-
tions and discuss the epistemic interpretation that can be associated with each of these reductions.

We will assume a binary-valued target: that is, the target of the multi-rater decision table is expressed in terms of a m–
dimensional vector over the set Vt ¼ 0;1f g (i.e., DðxÞ 2 Vm

t ), wherem ¼ jDj. We suppose that the target of the training sample
is generated from x 2 S via a reduction T : Vm

t # CðVtÞ, where CðVtÞ is a set of structures, in a general sense, over Vt as already
defined in Section 2 above. In general, the reduction T involves an information loss because it is impossible to perfectly
recover DðxÞ by observing TðDðxÞÞ in the case that CðYÞ – Vm

t and T – idVm
t
. This means that T implicitly defines an inverse

set–valued map LT : CðYÞ # PðVm
t Þ.

Note that we can interpret a reduction T through an epistemic lens: T½DðxÞ� represents the belief as to which alternatives
in Vt are the most plausible ones. We can provide a quantitative counterpart to this qualitative concept by considering the
information loss of each reduction. This can be quantified by considering the inverse LT of a reduction T, which defines the
set of all possible DðxÞ that satisfy a given requirement. This measure of information loss IL will be defined as

ILðDðxÞ; TÞ ¼ jLTðT½DðxÞ�Þj � 1
2m � 1

: ð10Þ

The simplest and most commonly used reduction is themajority-voting reduction, or justmajority reduction, which selects
the mode from a set of labels. The majority reduction can be defined as maj : VD # Vt with

maj½DðxÞ� ¼ argmaxv2 0;1f gj d 2 DjdðxÞ ¼ vf gj: ð11Þ
The epistemic stance justifying this reduction is that each rater d 2 D has a small error rate �d � 1

2 and thus, if m ¼ jDj is
sufficiently large, the probability that maj½DðxÞ�– tðxÞ is negligible. Note, however, that this assumption may be unjustified
when the plurality choice has a small margin compared with the other alternatives, or whenever it is difficult to assess and
bound the error rate of the raters. We can quantify the information loss of the majority reduction by taking

ILðDðxÞ;majÞ ¼ O

Pm
f �¼dm=2e

m

f �

� �
2m � 1

0
BB@

1
CCA: ð12Þ

In Eq. (12), the numerator term indicates that the only preserved information is the identity of the most frequent label
according to the majority reduction.

As described in Section 2.1 above, most work in the multi-rater supervised setting has been devoted to establishing pro-
cedures that act as corrections to or improvements over simple majority voting, typically based on methods that estimate
the error rate of the raters. We will denote all these methods with the term Corrected Majority. As anticipated above, these
approaches present some limitations when they are applied to medicine or similarly critical domains. They usually require
additional data, beyond the annotations’ [21,38,45], and have generally yielded results that differed significantly from the
simple majority only when either a large number of annotators or data instances is available. We conjecture that these lim-
itations are due to these methods’ focus on finding corrections to the problems of simple majority voting in a crowdsourcing
setting, with a strong requirement of compatibility with the traditional supervised setting and learning algorithms.

To avoid these limitations, we consider four different reductions, first proposed in [4]. These attempt to preserve more
information than the majority reduction, by adopting more expressive representations, based on standard uncertainty rep-
resentation frameworks, namely probability theory, possibility theory and three-way decision.

The probabilistic reduction is defined as prob : VD # PrðVtÞ, where PrðVtÞ are the probability distributions over Vt , with

prob½DðxÞ� ¼ h0 :
jD0ðxÞj
jDj ;1 :

jD1ðxÞj
jDj i; ð13Þ

where Dv ðxÞ ¼ d 2 DjdðxÞ ¼ vf g. Compared with the majority reduction, the probabilistic reduction is more information-
conservative. Indeed, the probabilistic reduction preserves the frequency of occurrence of each alternative in Vt and forgets
only which rater proposed a given label. The information loss of the probabilistic reduction is

ILðDðxÞ;probÞ ¼
m

jD1ðxÞj � 1

� �
2m � 1

;
ð14Þ

A. Campagner et al. Information Sciences 545 (2021) 771–790

776



and it can easily be established that ILðDðxÞ; probÞ < ILðDðxÞ;majÞ.
As a ‘‘hybrid” reduction, which in terms of informativeness can be placed between the majority and probabilistic reduc-

tions, we also introduce the overwhelming majority reduction, which is defined as over : VD # PrðVtÞ with

over½DðxÞ� ¼ hmaj½DðxÞ� : 1i if maxv2 0;1f gjDv j P s
smð1� hPeð0Þ; Peð1ÞiÞ otherwise:

�
: ð15Þ

In Eq. (15) we have that s is a parameter, 1 is the constant 1 vector, sm : Rk # ½0;1�k is the softmax function

smðhp1; . . . ; pkiÞ ¼ hep1 ; . . . ; epk i � 1Pk
i¼1e

p
i

; ð16Þ

and PeðvÞ is an estimate of the probability that v is not the real value of tðxÞ. If, for instance, we assume that the raters have a

constant error rate �, then in the binary case Vt ¼ 0;1f g; PeðvÞ ¼ �Dv ð1� �ÞD1�v .
The fuzzy-possibilistic reduction is defined as fuzzy : VD #FðVtÞ, where FðVtÞ is the collection of fuzzy sets definable over

Vt defined as

fuzzy½DðxÞ� ¼ h0 :
jD0j
jDv� j ;1 :

jD1j
jDv� ji; ð17Þ

where v� ¼ argmaxv2Vt
jDv j.

The fuzzy reduction can be seen as an expression of the degrees of belief in terms of a relative preference among alter-
natives. Thus, by means of the fuzzy-possibilistic reduction, we transform a multi-rater labeled instance into fuzzy data.

Notice that, although the fuzzy-possibilistic and probabilistic reductions have different epistemic interpretations, their
information loss is exactly the same:

Theorem 1. IL(D(x), fuzzy) = IL(D(x), prob).

Proof. Let fuzzy½DðxÞ� ¼ hf 0; f 1i and assume, without loss of generality, that f 0; f 1 are sorted in decreasing order and let

0 ¼ argmaxv2Vt
jDv j. Noticing that

P
if i ¼

P
v2Vt

jDv j
jD0 j ¼ m

jD0 j and we can thus obtain jD0j ¼ mP
i
f i

from which we can obtain

8v 2 Vt jDv j ¼ f v � jD0j. Consequently we can obtain exactly the result of prob½DðxÞ� using only the information that was orig-
inally available using fuzzy½DðxÞ�. h

Finally, as an alternative approach similar to, but more conservative than, the overwhelming majority reduction, we
introduce the three-way reduction, which is defined as tw : VD # PðVtÞ with

tw½DðxÞ� ¼ hmaj½DðxÞ� : 1i if maxv2Vt jDv j P s
Vd

t ¼ v 2 Vtjs P jDv j P df g otherwise

�
; ð18Þ

where s and d are two parameters controlling, respectively, the minimum probability threshold that would be required to
select a single specific alternative, and the minimum probability threshold required to claim that an alternative would be
acceptable. Thus, if there is any strong evidence, measured by s, toward a specific alternative, then that specific alternative
is selected. Otherwise, it is not possible to precisely claim which is the correct alternative. In this case, all of the alternatives
supported by a sufficient amount of evidence, as measured by d, are selected and all others are excluded. Thus, we have three
alternatives: to accept 0; to accept 1, and to abstain, as it is typical of TWD. Note also that, according to this epistemic inter-
pretation, 0 < d < s and 1

jVt j 6 s should hold true.

The information loss for the three-way reduction can be defined as follows:

ILðDðxÞ; twÞ ¼

Pm

k¼s

m

k

� �
�1

2m�1 9v s:t: jDv j P s
Ps

k¼d

m

k

� �
�1

2m�1 otherwise

8>>>>><
>>>>>:

: ð19Þ

In the following example we illustrate the results of the different reductions on a simple multi-rater decision table.

Example 1. Let S be a multi-rater decision table of three cases and

DðSÞ ¼
0 1 0 1 0
1 0 1 1 1
1 0 0 0 0

2
64

3
75

the respective labeling given by five observers.
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Applying the maj reduction, we obtain

maj½DðSÞ� ¼ 0 1 0½ �; ð20Þ
and the information loss is

ILðDðSÞ;majÞ ¼ 15=31 15=31 15=31½ �: ð21Þ
Then, for the probabilistic reduction we obtain

prob½DðSÞ� ¼
ð0 : 3=5;1 : 2=5Þ
ð0 : 1=5;1 : 4=5Þ
ð0 : 4=5;1 : 1=5Þ

2
64

3
75; ð22Þ

for which the information loss is

ILðDðSÞ;probÞ ¼ 10=31 5=31 5=31½ �: ð23Þ
For the fuzzy reduction we get

fuzzy½DðSÞ� ¼
ð0 : 1;1 : 2=3Þ
ð0 : 1=4;1 : 1Þ
ð0 : 1;1 : 1=4Þ

2
64

3
75; ð24Þ

and the information loss is ILðDðSÞ; fuzzyÞ ¼ ILðDðSÞ; probÞ.
In the three-way reduction, we set s ¼ 4; d ¼ 2 giving

tw½DðSÞ� ¼ 0;1f g 1 0½ �; ð25Þ
for which the information loss is

ILðDðSÞ; twÞ ¼ 19=31 6=31 6=31½ �: ð26Þ
It can easily be seen that the majority, overwhelming majority, fuzzy-possibilistic (through the possibility-probability

transformation, see Section 4.2) and three-way reductions can all be considered robust instances of the general probabilistic
reduction. They, however, differ in how they assign probabilities p0; p1 to the two possible labels, applying different forms of
penalization to control the noisiness of the raw frequencies employed by the probabilistic reduction:

� The majority reduction simply assigns probability equal to 1 to the label with maximum frequency;
� The overwhelming majority assigns exponentially more weight to the maximum frequency label: this probability is
directly proportional to the error probability of each of the two labels;

� Similarly, the fuzzy-possibilistic approach assigns more weight to the maximum frequency label; however, this increase
is smaller than for the overwhelming majority reduction and is proportional to j jD0j � jD1j j;

� The three-way reduction assigns probabilities according to a uniform distribution, after performing a thresholding of the
label frequencies according to a threshold s: the two labels are treated as indistinguishable if maxv2f0;1gjDv j < s.

Finally, it can be noted that when maxv2f0;1gjDv j P s the results of the majority, overwhelming majority and three-way
reduction coincide.

4.2. Learning from reductions

In this Section we define generalized learning paradigms, based on standard optimization and ML approaches, for the
reductions defined in Section 4.1 above. We also report basic results with respect to learnability and error bounds from
the perspective of Computational Learning Theory for the respective models. A summary of the different reductions and their
advantages and limitations, including those of the associated learning setting and taking into account the results described in
Section 4.3, is provided in Table 1.

4.2.1. Learning paradigms for reductions
Each reduction provides a transformation from the set of labels, that is, Vt , to a class of structures CðVtÞ over Vt . Therefore

it is evident that all reductions that do not result in a single label require a modification to the traditional supervised learning
setting. We assume that, for a given reduction T, the optimal hypothesis h�ðTðSÞÞ is induced by an algorithm A defined as a
function A : PðU � CðVtÞÞ#H, which represents a generalization of the standard framework that is defined by an algo-
rithm A : PðU � VtÞ #H.

In this work we will consider the following learning tasks, which can be instantiated from a multi-observer decision table
by means of a reduction T:
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1. Learning from noisy labels: the employed reduction is the majority reduction, thus A : PðU � VtÞ #H. Note that this case
is not, in general, equivalent to a standard classification setting. Except in the trivial case for which
8x 2 U;8d 2 D:dðxÞ ¼ tðxÞ, each d 2 D has a non-zero error rate and thus the label induced by the majority reduction
can be noisy.

2. Noisy Superset Learning: in this case the three-way reduction is employed, thus A : PðU �PðVtÞÞ#H. In this case, the
main assumption of Superset Learning (tðxÞ 2 three½DðxÞ�) may not hold because there is no guarantee that the label
tðxÞ has a sufficient probability score attached, that is, it has been selected by a sufficient number of raters, and it is thus
included in the result of the three-way reduction.

3. Probabilistic Learning: in this case, the probabilistic or overwhelming majority reductions are employed, thus
A : PðU � PrðVtÞÞ #H.

4. Learning on fuzzy data [24,11]: in this case the fuzzy reduction is employed, thus A : PðU �FðVtÞÞ#H.

For each of the learning paradigms described above, we can clearly observe that empirical loss cannot be defined in terms
of t, as the true labeling t is not observed in the multi-observer decision table, but only in terms of T½DðSÞ�:

ELT;SðhÞ ¼
X
xS

lTðh; xÞ: ð27Þ

Thus, compared with traditional supervised or superset learning, in learning from multi-observer tables we have another
source of approximation because the real labels for the instances are in general not observed.

In learning from noisy labels, standard ML models, or simple modifications thereof, can be employed [1]. Moreover, sam-
ple complexity bounds have been established showing that, under reasonable constraints on the error rate, if class H is prob-
ably approximately correct (PAC) learnable [36] in the supervised setting, then H is also PAC learnable in the noisy label
setting [1]. In our setting, assuming that each rater d 2 D has a constant error rate gd, the probability that applying the major-
ity reduction leads to an incorrect result (that is, the probability that TðDðxÞÞ– tðxÞ) can be expressed via the Poisson binomial
distribution. Thus, the probability that at least dmþ1

2 e raters would make an error is given by

PðerrorÞ ¼
Xm

k¼dmþ1
2 e

X
B2Fk

Pi2BgiPjRBð1� gjÞ; ð28Þ

where Fk is the family of all subsets of raters of size k. Applying the Chernoff bound, the inequality can be approximated as

PðerrorÞ 6 e�
mþ1
2 logmþ1

2l ; ð29Þ
where l ¼Pigi. Thus we can claim that the probability of error decreases exponentially with both increasing the number of
raters, and decreasing the expected error rate per rater.

From this estimate, we can directly compute a condition for learnability of the hypothesis class H, based on the results
due to Angluin et al. [1].

Theorem 2. Let H be a PAC-learnable hypothesis class with VC-dimension c. Then H is learnable with noisy samples, with
probability 1� d over the choice of the sample set S and maximum approximation error �, when given jSj > n0 samples with

n0 ¼ O
c � log 1

d

� 1� 2e�
mþ1
2 logmþ1

2l

� �2
0
B@

1
CA: ð30Þ

Proof. From Angluin et al. [1] it holds that the sample complexity of learning with noisy examples is n0 ¼ O
c�log1d

�ð1�2�rÞ2
� �

, where

�r is the probability of errors in the labels. From the previous analysis we obtained that �r 6 e�
mþ1
2 logmþ1

2l , hence the result. h

We also note that the following inverse result was proven by Heinecke et al. [19], in a more general setting, and could be
used to obtain a bound on the number of raters required to achieve a given threshold on the maximum error rate.

Table 1
Summary of the reduction strategies.

Reduction Advantages Limitations

Majority Simple; default ML models can be
used

Not robust when few raters available or majority has low margin

Corrected Majority More accurate; sample
complexity bounds available

More complex implementation; require many annotators/instances;
may require additional information

Probabilistic Overwhelming Maj. Fuzzy-
Possibilistic Three-way

More accurate; sample
complexity bounds available

Ad-hoc ML algorithms needed; exact learning algorithms have high
time complexity
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Theorem 3. [19] Fix a sample S, a desired maximum error rate d and an average rater error rate gO. Then the number m of raters
required to guarantee that Pðmaj½DðSÞ� ¼ tðSÞÞ P 1� d is

m ¼ O
log jSj

d

ð1� 2gOÞ2
 !

: ð31Þ

In the next section, we will present two general algorithms that could be applied for other general reductions that do not
necessarily return single labels.

4.2.2. Learning from non-majority reductions
For each of the overwhelming majority, probabilistic, fuzzy and three-way reductions, we consider two different learning

meta-algorithms. The first is derived from a resampling-based ensemble strategy, and thus we will call the corresponding
algorithms probabilistic, fuzzy, three-way and overwhelming majority Resampling-based Reduction Learning (RRL). This
approach was first studied by Jin et al. [26] in the superset learning setting and we provide a generalization to all the settings
considered in this paper.

The second learning strategy, which is a generalization of the approach proposed by Cour et al. [10] for the superset learn-
ing setting, is based on a weighted ensemble of models. We will call the respective algorithms based on this latter strategy
Score Weighting Reduction Learning (SWRL).

In both cases, we assume the hypothesis class H to be composed of scoring classifiers, i.e., each h 2 H is actually defined
as the composition of two functions s : X # RVt and dec : RVt # Vt . In this formulation we stipulate that hðxÞ ¼ decðsðxÞÞ,
where dec is defined as

decðsðxÞ ¼ hs1; . . . ; skiÞ ¼ argmaxv i2Vt
si: ð32Þ

Thus, smaps every instance x 2 X to a vector hs1; . . . ; skiwhere si is the score assigned to alternative v i 2 Vt , and dec simply
selects the alternative v i with maximum assigned score. We cast the learning problem in the standard optimization frame-
work defined in Section 2.1 above; we will adopt an approach based on empirical loss minimization.

Consider first the overwhelming majority reduction or, equivalently the probabilistic reduction. In this case, the learning
algorithm receives as input, for each instance x 2 S, a probability distribution over (a subset of) all labels in Vt . According to
the RRL meta-algorithm, the goal is to find a hypothesis h in H minimizing:

Lprob;SðhÞ ¼ 1
jSj
X
x2S

Xk
i¼1

pilðhðxÞ;v iÞ; ð33Þ

where prob½DðxÞ� ¼ hp1 : v1; . . . ; pk : vki. The same form of the empirical loss can also be applied for the probabilistic reduc-
tion. The name RRL is used because a simple strategy to approximately minimize the empirical loss in this setting involves
sampling from the distribution over the labels in order to obtain a set of instantiations of S. That is, we obtain a set of new
decision tables DTi ¼ hSi;Ai; diif gi where 8x 2 S:diðxÞ 2 DðxÞ and we then find a hypothesis hi minimizing the empirical loss
over DTi. In detail, let x 2 S and let T½DðxÞ� ¼ hp1 : v1; . . . ; pk : vki, where T is the probabilistic or overwhelming reduction. The
RRL algorithm can be described as the following iterative algorithm:

1. For each iteration i
(a) For each instance x 2 S

i. Sample a label v 2 over½DðxÞ� (resp. prob½DðxÞ�) according to the given probability distribution hp1; . . . ; pki

(b) Find hi minimizing the empirical loss with respect to the current instantiation S� over½DðSÞ�.
2. Return the hypothesis given by hðxÞ ¼ argmaxv2Vt

j hi : hiðxÞ ¼ vf gj

The SWRL learning algorithm can be obtained from the RRL algorithm noting that, if the loss function is convex, we can
apply Jensen’s inequality to push the weights pi inside the loss function: the hypothesis minimizing this new loss function
has an empirical loss which is strictly less than that for the minimizer of Eq. (33). Formally, if h ¼ dec 	 s, the goal in the SWRL
meta-algorithm is to find the minimizer of the following optimization problem:

h� ¼ argminh2H
1
S

X
x2S

lT
Xk
i¼1

pisiðxÞ; x
 !

; ð34Þ

where siðxÞ is the score assigned for an instance x to the label v i 2 Vt .
These approaches can both be directly generalized to the case of the three-way reduction (and hence, to the noisy super-

set learning setting). Indeed, setting 8v i 2 tw½DðxÞ�; pi ¼ 1
jtw½DðxÞ�j, the RRL algorithm reduces to the approach proposed by Jin

et al. [26], while the SWRL algorithm reduces to the approach proposed by Cour et al. [10]. We also note that, although both
are based on the same empirical loss minimization perspective, our proposed approach differs from that of Hüllermeier in
[25]. The latter approach adopts an optimistic point of view with respect to the minimization of the loss function:
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h� ¼ argminh2H
1
jSj
X
x2S

mini2 1;...;kf glðhtðxÞ;v iÞ: ð35Þ

Our approach, instead, adopts a robust point of view by requiring that the average of the losses (in the RRL algorithm), or
the loss with respect to the average of the prediction scores (in the SWRL algorithm), is minimized. We argue that this
approach better adapts to the noisy setting, as it reflects the uncertainty implicit in this learning task, given that the superset
assumption could be violated (that is, the real label could be excluded from the value of T½DðxÞ�).

In regard to sample complexity bounds for RRL and SWRL in the binary classification setting, it can be verified that the
probability of an error in a label, for the probabilistic reduction, can be upper bounded as

PprobðerrorÞ ¼ O
Xm

k¼s�m

X
B2Fk

Pi2BgiPjRBð1� gjÞ þ
Xs�m�1

k¼1

X
B2Fk

½pDB
ðPi2BgiPjRBð1� gjÞÞ þ pDnBðPiRBgiPj2Bð1� gjÞÞ�

 !
; ð36Þ

where pDB
is the probability assigned to the decision expressed by the raters in B and pDnB is the complementary probability.

Indeed, as in the general form of the probabilistic reduction s ¼ 1, the first summand is the probability that all raters pro-
vided the wrong label while the second summand can be decomposed in two parts:

� The first part of the sum corresponds to the probability that the label selected by the raters in B is selected via resampling,
weighted by the probability that the raters in B chose the wrong label.

� The second part of the sum is symmetric to the first part but with respect to the raters not in B.

Starting from this general error probability we can obtain analogous bounds for the overwhelming majority, PoverðerrorÞ,
and three-way, PtwðerrorÞ, reduction by setting

pover
DB

¼ 1� a
aþ b

; ð37Þ

ptw
DB

¼ 1
2
; ð38Þ

where a ¼ Pi2BgiPjRBð1� gjÞ and b ¼ PiRBgiPj2Bð1� gjÞ and s is set accordingly. Sample complexity bounds can then be
obtained from the error bounds in Eq. (30).

Theorem 4. LetH be a PAC-learnable hypothesis class with VC-dimension c. ThenH is learnable using the reduction (red) and the
respective RRL learning scheme, with probability 1� d over the choice of the sample set S and maximum approximation error �,
when given jSj > n0 samples with

n0 ¼ O
c � log 1

d

�ð1� 2PredðerrorÞÞ2
 !

; ð39Þ

where red 2 prob; over; threef g.

Proof. The theorem directly follows from Theorem 2 when setting P_red (error) accordingly. h

Moreover, it can be observed that, while the error estimate for these reductions is, in general, larger than the estimate for
the majority reduction, these bounds are not tight. If the number of raters jDj is large, then the first term of Eq. (36) can be
made arbitrarily small by selecting an appropriately large value for s. We also see that, for the overwhelming majority reduc-
tion, this condition has the effect of making the smallest sub-term of the second term vanishingly small. For the three-way
reduction, if PðerrorÞ ! 0 (hence t 2 tw½DðSÞ� is guaranteed), then the learning problem reduces to superset learning and the
sample complexity can be bounded per the result due to Liu et al. [33]. We can also observe that, when the error probability
is vanishingly small and the reduction always returns a single labels, then the sample complexity bounds for standard (ag-
nostic) PAC learning apply.

In regard to the fuzzy-possibilistic reduction, approaches to learning from fuzzy data have been proposed by both Hüller-
meier [24], based on generalized loss functions and the optimistic empirical loss minimization previously described, and
Denoeux [13], based on generalized maximum likelihood. Despite their conceptual simplicity, however, these methods
are complex from a computational perspective, as they involve solving generalized loss minimization problems. See the sur-
vey by Couso et al. [11] for an overview of the field.

The approach that we propose recasts the learning from fuzzy data problem as a variant of the general probabilistic learn-
ing framework and is based on the work on possibility-probability transformations of Dubois et al. [14]. The correspondence
between possibility measures and sets of probability distributions highlighted in Section 2.2 above. If we assume that a pos-
sibility distribution fuzzy½DðxÞ� ¼ h1 ¼ p1 > . . . > pk > pkþ1 ¼ 0i represents an imprecise probabilistic distribution, and if we
use the principle of indifference to select the least informative probability distribution compatible with p, then a probability
distribution Prp can be obtained as
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Prpðv jÞ ¼
Xk
i¼1

pi � piþ1

jAij lAi
ðv jÞ; ð40Þ

where Ai ¼ v j 2 Sj jDvj jjDv� j P pi

n o
, i.e., Ai is the pi-cut. Thus, we can simply implement the fuzzy-RRL and fuzzy-SWRL algorithms

by substituting the probability values obtained through the above mentioned transformation into the corresponding prob-
abilistic algorithm. Analogously, it is possible to obtain sample complexity bounds by plugging these values into the error
probability estimate of Eq. (36).

From a complexity-theoretic point of view, we note that all the non-majority reduction-based learning approaches pre-
sented in this Section have a higher computational complexity than the majority reduction. This is because the associated
loss minimization problem essentially iterates over all possible compatible labelings. While in the most general case the time
complexity increase could be exponential, the computational costs can be reduced adopting an approximation scheme based
on Monte Carlo sampling, as shown for the RRL algorithm. Thus, it is possible to implement the RRL and SWRL algorithms,
renouncing to the optimality of the found solution, with a time complexity that is equivalent, up to a constant factor repre-
sented by the number of samples, to that of training a traditional model using empirical loss minimization.

4.3. Experimental evaluation

As mentioned, the goal of this article is to investigate the relationships among factors such as the number of raters and
their expected expertise, measures of reliability, usage of different reductions and their effects on the accuracy and gener-
alizability of the predictive models. Specifically, we aim to address the following questions:

1. Is the standard practice of considering a small number of raters (normally one or three) adequate for establishing a con-
sensus to be employed as GT in ML applications? What is the influence of rater accuracy (modeled via their error rate gi),
and the influece of inter-rater agreement (quantified using Krippendorff’s a), on the quality of the consensus? Ultimately,
what is the influence of these factors on the performance of ML models?

2. Could better consensus strategies help alleviate any of the problems previously discussed? Could these strategies
improve the accuracy and the generalizability/robustness of the induced models? We will investigate this while consid-
ering the influence of the number of raters, their reliability, their expertise and the selection of a specific reduction on the
predictive accuracy and robustness of the models.

3. How does rater expertise (modeled using the error rate gi of the raters) affect predictive performance of the model?
Specifically, how is the potential robustness of the different reductions affected by a given proportion, nc , of non-
expert raters?

To address these research questions, we performed an experimental evaluation based on a collection of different datasets.
The main challenge in setting up this experiment was the lack of publicly available multi-rater annotated datasets. To avoid
this problem, we adopted a private medical dataset, collected by two authors of this study, and described in [42,43], which
involved 11 raters. We also considered two standard medical datasets from the UCI repository, which were augmented using
a synthetic procedure to obtain multi-rater annotations, and three synthetic datasets. We decided to employ synthetically
generated datasets so that we could easily control the error rate of the virtual raters, a prerequisite for addressing our third
research question, as listed above. In greater detail, the employed datasets were:

1. Circulating Tumor Cells (CTC) [42,43], 617 instances, 50x50 RGB images, labeled by 11 raters, identification of Circulating
Tumor Cells from fluorescence microscopy;

2. Breast Cancer: 699 instances, 10 numerical features, single rater, identification of benign or malignant tumors;
3. Diabetes: 768 instances, 8 numerical features, single rater, identification of diabetic patients;
4. Synthetic Gaussians (SG): a synthetic dataset with two Gaussian distributed classes, 1000 instances, 20 features and 21

raters generated using a simple random label flipping procedure.1 We vary the proportion of non-competent raters, nc ,
with nc ¼ 0:1;0:25;0:5. A non-competent rater is simulated as a rater with accuracy of 
 50%. The remaining proportion
(1� nc) of the raters are considered experts, that is, with accuracy 
 95%. The three generated pairs of Synthetic Gaussian
data with labels from rater populations with nc ¼ 0:1;0:25;0:5 will be denoted SG-0.1, SG-0.25 and SG-0.5 respectively.

As the Breast Cancer and Diabetes datasets were annotated by a single rater, we developed a synthetic procedure to sim-
ulate a multi-rater scenario by employing 11 Decision Tree classifiers with different hyperparameter settings, trained on
boostrapped samples generated from the original dataset.

In the SG datasets, we considered only very accurate versus random raters so that we could easily control the percentage
of non-expert raters and thus analyze the influence of this parameter on the performances of the induced models, while

1 According to the described label flipping procedure, for each instance a given rater has probability p of retaining the correct label and probability 1� p of
flipping it.
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keeping all other parameters constant. Hence, the average error rate gO which, as shown in Section 4.2 above, is relevant in
the resulting performances of the learning algorithms.

For each dataset, we considered four different reductions: the majority reduction, the overwhelming majority reduction,
the three-way reduction and the fuzzy-possibilistic reduction. For the overwhelming majority and three-way reductions, we
considered a threshold value of s ¼ 0:73; this value was selected so that at least 8 raters would be needed to achieve signif-
icant majority in the datasets with 11 raters. In addition, for the three-way reduction we selected the confidence parameter
d ¼ 0, given that all considered datasets consist of binary classification problems. We did not evaluate the methods proposed
in the crowdsourcing literature (described in the previous sections of the paper), as they were shown to significantly out-
perform the majority reduction only when large numbers of raters were available (usually > 50); we were primarily inter-
ested in studying ground truth and ML model quality when the number of available raters is small (
 10), as it is typical in
medical settings.

For all reductions, we employed the scikit-learn 1 implementation of the Random Forest algorithm with default hyperpara-
meters: the number of estimators was set to 100. We chose Random Forest because it has been shown to be one of the most
effective learning algorithms in general settings [9], and also because it is relatively easy to implement and tune. For the major-
ity reduction, we trained a standard Random Forest, while for the other reductions we employed the RRL algorithm.

For the CTC dataset, we considered only data points where all 11 raters had a consensus as the GT to be used during test-
ing, while for the Diabetes and Breast Cancer datasets we used the original labels as testing. In the SG datasets the correct
label is defined during the data generation process (as instances are generated from one of two gaussian distributions).

To evaluate the previously described hypotheses for all datasets, we performed the following pipeline:

� For each number of raters m 2 1;3; . . . ; jDj � 2f g do:

1. Generate n samples of size m of jDj where n ¼ min
jDj
m

� �
;100

� �
. Note that this number of samples allows us to con-

sider a large part of the population (which is the set of all possible combinations of raters, for a given number of raters).

Specifically, when jDj
m

� �
6 100, we sampled the whole population. Given the large size of the considered samples, the

obtained results are robust estimates of real performance.
2. For each such sample S, train and test the ML model for each reduction using a fivefold cross-validation scheme. We

note that training was performed using the reduced multi-rater labels whereas testing was performed using the cor-
rect labels;

3. Compute the mean accuracy and its 95% confidence interval over the set of samples of n raters. Compute the mean
Krippendorff a value across all generated samples of size n, to evaluate the average inter-rater agreement.

5. Results and discussion

The average accuracy and confidence intervals obtained for the different datasets and reductions are reported in Tables 2–
7. The average aK values, for the different datasets and numbers of raters, are reported in Table 9.

As a first observation, we can see the effects of the number of raters on the performance of the ML algorithms. As can be
noted from the Tables, in all datasets and for all reductions, there is both an increase in average accuracy and a decrease in
the width of confidence intervals when the number of raters increases. In all but two cases (the majority reduction on the
CTC and SG-0.5 datasets), the difference between the performance of the algorithm trained on data provided by only one or
three raters and the performance of the algorithm trained on data provided by the maximum number of raters was statis-
tically significant. This can also be observed by looking at the confidence intervals that do not overlap in Figs. 1–6. These
observations provide an answer to the first of our research questions: employing a low number of raters can severely under-
mine the ground truthing process, and consequently the performance and trustworthiness of ML models, in that low-quality
GT labels have a detrimental effect on both the accuracy and the generalization capacity, here measured in terms of variabil-
ity, of the models.

These observations can also be supplemented with a theoretical analysis based on the results reported in Section 4.2. Let
us consider a dataset of size jSj ¼ 771, which is the average of the number of instances in the considered datasets, and
assume a value of d ¼ 0:05: that is, we require a 95% probability that the labeling resulting from the majority reduction
has no errors. Then, the relationship between the average error rate of the raters and the required number of raters needed
to obtain perfect labeling with probability P 1� d is as shown in Fig. 7. The inflection point in the graph represents the fact
that Eq. (31) provides only an upper bound on the number of sufficient raters and not an exact estimate, which is however
available when the average rater accuracy is 100%.

The performance bounds for the various reductions, described by Theorems 2 and 4, have an inverse exponential depen-
dency on the number of raters. This relationship provides a clear explanation for the previous observations. We can interpret
the chart in Fig. 7 as a critique of the common practice in ML studies of considering the involvement of only one or three
raters sufficient, or even adequate. In fact, to have any guarantee that the label quality is adequate with so few raters, we

1 https://scikit-learn.org/stable/
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would need either a single perfect rater or a group of near perfect raters, with accuracy greater than 90%. It goes without
saying that, in general, this is a requirement very difficult to satisfy in the real world.

Another line of reasoning, which reaches the same conclusions, would consider the aK values. Increasing the number of
raters results in a larger aK value in all datasets, except SG-0.25 and SG-0.5. In general, this correlation confirms that increas-

Table 2
Mean Accuracy and 95% Confidence Intervals Obtained for the CTC Datasets.

Raters maj over tw fuzzy

1 0:80� 0:07 0:80� 0:07 0:80� 0:07 0:80� 0:07
3 0:86� 0:05 0:86� 0:04 0:88� 0:04 0:86� 0:04
5 0:87� 0:03 0:88� 0:03 0:89� 0:02 0:90� 0:02
7 0:87� 0:01 0:89� 0:02 0:89� 0:01 0:90� 0:01
9 0:87� 0:01 0:90� 0:01 0:91� 0:01 0:91� 0:00

Table 3
Average Accuracy and 95% confidence intervals obtained for the Breast Cancer Dataset.

Raters maj over tw fuzzy

1 0:79� 0:09 0:79� 0:09 0:79� 0:09 0:79� 0:09
3 0:82� 0:05 0:82� 0:06 0:82� 0:02 0:86� 0:02
5 0:89� 0:03 0:91� 0:02 0:91� 0:02 0:91� 0:01
7 0:89� 0:01 0:92� 0:01 0:93� 0:01 0:93� 0:01
9 0:89� 0:01 0:93� 0:01 0:93� 0:01 0:93� 0:00

Table 4
Mean Accuracy and 95% confidence intervals obtained for the Diabetes Dataset.

Raters maj over tw fuzzy

1 0:68� 0:04 0:68� 0:04 0:68� 0:04 0:68� 0:04
3 0:71� 0:03 0:71� 0:02 0:73� 0:03 0:72� 0:03
5 0:71� 0:03 0:73� 0:01 0:73� 0:01 0:73� 0:01
7 0:71� 0:03 0:77� 0:01 0:75� 0:01 0:73� 0:01
9 0:71� 0:03 0:79� 0:01 0:77� 0:01 0:78� 0:00

Table 5
Average accuracy and 95% confidence intervals obtained for the Synthetic Gaussians Dataset with nc ¼ 0:1.

Raters maj over tw fuzzy

1 0:82� 0:05 0:82� 0:05 0:82� 0:05 0:82� 0:05
3 0:84� 0:04 0:84� 0:03 0:87� 0:03 0:84� 0:02
5 0:86� 0:03 0:87� 0:01 0:87� 0:01 0:86� 0:02
7 0:86� 0:02 0:87� 0:01 0:89� 0:01 0:86� 0:02
9 0:87� 0:01 0:88� 0:00 0:89� 0:01 0:88� 0:01
11 0:88� 0:00 0:88� 0:00 0:89� 0:00 0:88� 0:01
13 0:88� 0:00 0:88� 0:00 0:89� 0:00 0:88� 0:01
15 0:88� 0:00 0:88� 0:00 0:89� 0:00 0:89� 0:00
17 0:88� 0:00 0:88� 0:00 0:89� 0:00 0:89� 0:00
19 0:88� 0:00 0:88� 0:00 0:90� 0:00 0:89� 0:00

Table 6
Average accuracy and 95% confidence intervals obtained for the Synthetic Gaussians Dataset With nc ¼ 0:25.

Raters maj over tw fuzzy

1 0:75� 0:06 0:75� 0:06 0:75� 0:06 0:75� 0:06
3 0:76� 0:06 0:76� 0:05 0:80� 0:04 0:8� 0:06
5 0:76� 0:04 0:81� 0:03 0:84� 0:03 0:85� 0:04
7 0:79� 0:03 0:82� 0:03 0:84� 0:02 0:85� 0:01
9 0:81� 0:03 0:82� 0:03 0:84� 0:02 0:85� 0:01
11 0:82� 0:03 0:83� 0:03 0:85� 0:02 0:86� 0:01
13 0:82� 0:01 0:85� 0:03 0:85� 0:02 0:86� 0:01
15 0:82� 0:01 0:85� 0:02 0:85� 0:02 0:87� 0:01
17 0:82� 0:00 0:86� 0:01 0:86� 0:01 0:87� 0:01
19 0:82� 0:00 0:86� 0:00 0:87� 0:00 0:87� 0:00
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ing the number of raters results in an increase of labeling quality, as demonstrated in Theorems 2 and 4. The exceptions to
this finding are datasets SG-0.25 and SG-0.5, where we can identify a number of raters nT (15 for dataset SG-0.25 and 13 for
dataset SG-0.5, see Table 9) beyond which the reliability begins to decrease. This decreasing reliability can be explained by
the fact that a large proportion of the raters in these datasets essentially classified completely at random, a behavior heavily
penalized by the aK measure when the number of raters increases. Interestingly, although the aK values drop when the num-
ber of raters for SG-0.25 and SG-0.5 increases, the ML models increase their accuracy and decrease their variability as the
number of raters grows; this is especially so for the overwhelming majority, three-way and fuzzy-possibilistic reductions
(see Tables 6 and 7). These findings also provide an affirmative answer to our second research question above: whether
the usage of non-majority reductions could be helpful, especially on datasets affected by high uncertainty.

Table 7
Mean Accuracy and 95% Confidence Intervals Obtained for the Synthetic Gaussians Dataset With nc ¼ 0:5.

Raters maj over tw fuzzy

1 0:52� 0:08 0:52� 0:08 0:52� 0:08 0:52� 0:08
3 0:56� 0:07 0:59� 0:07 0:59� 0:07 0:61� 0:07
5 0:58� 0:07 0:59� 0:07 0:59� 0:07 0:61� 0:07
7 0:59� 0:06 0:59� 0:07 0:59� 0:07 0:63� 0:07
9 0:59� 0:06 0:60� 0:07 0:60� 0:05 0:63� 0:05
11 0:60� 0:06 0:62� 0:05 0:60� 0:05 0:65� 0:05
13 0:60� 0:05 0:62� 0:05 0:62� 0:03 0:67� 0:05
15 0:61� 0:05 0:63� 0:05 0:63� 0:03 0:69� 0:03
17 0:61� 0:03 0:65� 0:03 0:65� 0:01 0:71� 0:02
19 0:61� 0:03 0:67� 0:01 0:65� 0:01 0:71� 0:01

Fig. 1. Average accuracy and 95% confidence intervals for the CTC dataset. Horizontal jitter has been added to limit the overlap of the error bars.

Fig. 2. Average accuracy and 95% confidence interval for the Breast Cancer dataset. Horizontal jitter has been added to limit the overlap of the error bars.
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Fig. 3. Average accuracy and 95% confidence intervals for the Diabetes dataset. Horizontal jitter has been added to limit the overlap of the error bars.

Fig. 4. Average accuracy and 95% confidence intervals for the Synthetic Gaussian with nc ¼ 10% dataset. Horizontal jitter has been added to limit the
overlap of the error bars.

Fig. 5. Average accuracy and 95% confidence intervals for the Synthetic Gaussian with nc ¼ 25% dataset. Horizontal jitter has been added to limit the
overlap of the error bars.
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With reference to Figs. 1–6 and Tables 2–7, we can observe that for all datasets there exists a number of raters beyond
which all non-majority reductions under consideration achieve a significantly better performance than the majority reduc-
tion. When considering the maximum number of raters (9 in the CTC, Diabetes and Breast Cancer dataset and 19 in the SG
datasets), the difference in model accuracy associated with GT generated by the majority reduction versus that of GT asso-
ciated with the non-majority reductions was always statistically significant.

With regard to the three non-majority reductions, we applied the Friedman test to detect any statistically significant dif-
ference among them. The average ranks are reported in Table 8. No statistically significant difference was found at a ¼ 0:05.
Indeed, the summary statistics is Q ¼ 1:307 and the critical value for n ¼ 6; k ¼ 3;a ¼ 0:05 is Qcrit 
 7.

We can observe that, despite a lack of statistical significance, on average the three-way reduction is associated with better
performance than the other reductions, because its Friedman rank (see Table 8) is lower. The fuzzy-possibilistic reduction, by
contrast, had better performance on datasets affected by greater uncertainty, as can be observed with the Synthetic Gaussian
dataset with nc ¼ 50% dataset.

The superior performance of all non-majority reductions compared with the majority reduction could be explained using
a model-complexity argument. In fact, the learning algorithms for the non-majority reductions are based on model ensem-
bling over a large number of possible instantiations of the original dataset, a learning paradigm that allows addressing effec-
tively the bias-variance trade-off [36]. This effect is particularly evident with high uncertainty datasets, where the complex
patterns concealed by the label noise cannot be reliably recovered using the majority reduction.

Finally, in response to our third research question (studying the influence of raters expertise and the proportion of expert
raters on the performance of the ML models), we can observe that the average accuracy of ML models, for all the considered
reductions, severely degrades when the proportion nc of non-expert raters increases (see Tables 5–7 and Figs. 4–6). This
degradation is most severe for the majority reduction: indeed when nc ¼ 0:1 ! 0:5, we get acc ¼ 0:88 ! 0:61. This means
that we move from a model accuracy higher than the average rater accuracy (81%), in SG-0.1, to a model accuracy lower

Fig. 6. Average accuracy and 95% confidence intervals for the Synthetic Gaussian with nc ¼ 50% dataset. Horizontal jitter has been added to limit the
overlap of the error bars.

Fig. 7. Bound of the number of raters needed to obtain a labeling error d 6 0:05 at a fixed average rater error rate on a dataset of size jSj ¼ 771.
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than average rater accuracy (75%), in SG-0.5. The non-majority reductions, by contrast, were more robust to increasing,
especially the fuzzy-possibilitic reduction: even in the SG-0.5 dataset, this reduction achieves a performance comparable
to average performance of the raters.

Therefore, the non-majority reductions can be employed to effectively manage the uncertainty intrinsic to low-reliability
contexts, as they exhibit a lesser degradation of performance compared with state-of-the-art approaches.

6. Conclusion

In this paper, we examined how Ground Truth quality may impact the performance of predictive models in multi-rater
settings. To this end, we considered the importance of the number of the raters involved in ground truthing, the effect of
their expertise and the effect of the degree of inter-rater agreement.

Our findings leads us to contest the meaningfulness of the common practice of training ML models on the basis of major-
ity labeling obtained from small sets of annotators, or even single annotators. To study this problem, we introduced and
studied the concept of reduction – that is, any computational procedure that manages the uncertainty of multiple labels
and reduces the noise intrinsic in any multi-rater setting. We also proposed a set of reductions, based on possibility theory
and three-way decision, and studied their theoretical properties. We then applied these reductions in a set of experiments
on both real-world and synthetic medical datasets, with the following outcomes:

� We found evidence that the number and expertise of the raters involved in the annotation phase have a critical influence
on both the accuracy and generalization capacity of the trained models.

� We provided proof that the proposed reductions better leverage multi-rater annotations and can be used to define a set of
more expressive ML models that can better capture the patterns hidden behind the uncertainty and noise resulting from
the disagreements and errors of the raters; these models can achieve higher classification accuracy and exhibit higher
robustness when the accuracy of the raters decreases.

� Our results show that this increase in both accuracy and robustness can be achieved with fewer raters than those needed
by state-of-the-art approaches which, since they were conceived for crowdsourcing settings, typically require large num-
bers of raters (usually > 50).

In conclusion, we can assert that the proposed methods represent an advancement over and a cost-effective alternative to
the existing approaches. These insights are not only important in themselves, they also facilitate further research questions
that are beyond the scope of this study. For example:

� As mentioned in Section 4.2.2, the sample complexity bounds obtained for the non-majority reductions were not tight
and were based directly on a generalization of the known results for learning in a noisy sample scenario. It would be inter-
esting to provide bounds (e.g., as a generalization of the results of Liu et al. [33]) taking into account the assumptions and
peculiarities of each learning setting.

� Similarly, it would be interesting to provide rater bounds that are valid for the other reductions – that is, as a parallel to
the results of Heinecke et al. [19] for the majority reduction. This can be done, for example, by determining the number of
raters sufficient to guarantee that the result of the TWD reduction contains the correct label, with probability close to 1.0.

Table 8
Average Ranks of the three non-majority reductions over all datasets.

Reduction over tw fuzzy

Average rank 2.33 1.67 2

Table 9
Krippendorff’s Alpha Values For the Different Datasets and Number of Raters.

Raters CTC BC Diabetes SG 0.1 SG 0.25 SG 0.5

3 0.88 0.77 0.68 0.59 �0.16 �0.24
5 0.91 0.88 0.71 0.70 0.14 �0.21
7 0.94 0.94 0.75 0.76 0.23 �0.07
9 0.96 0.97 0.77 0.84 0.42 �0.05
11 0.96 0.99 0.78 0.86 0.64 0.04
13 – – – 0.86 0.70 0.12
15 – – – 0.86 0.79 �0.02
17 – – – 0.88 0.68 �0.21
19 – – – 0.88 0.62 �0.28
21 – – – 0.88 0.61 �0.35
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� In this article, we focused only on binary classification problems, both for our definition of reduction and for theoretical
analysis of the associated learning paradigms. Our discussion can then be generalized to the context of multi-class and
regression problems.

� While in this article we considered only the traditional case, in which each rater provides a single label, it would be inter-
esting to also consider cases in which the raters are able to express more information – for example, by providing a rank-
ing of the possible labels or expressing their confidence in the label that they propose. Given the similarity of these
settings to the problems typically investigated in the field of computational social choice further research should inves-
tigate the preference aggregation approaches originally proposed in that context, as applied in multi-rater scenarios with
more general, structured labeling representations.
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Abstract

Background: Despite the vagueness and uncertainty that is intrinsic in any medical act, interpretation and decision
(including acts of data reporting and representation of relevant medical conditions), still little research has focused on
how to explicitly take this uncertainty into account. In this paper, we focus on the representation of a general and
wide-spread medical terminology, which is grounded on a traditional and well-established convention, to represent
severity of health conditions (for instance, pain, visible signs), ranging from Absent to Extreme. Specifically, we will
study how both potential patients and doctors perceive the different levels of the terminology in both quantitative
and qualitative terms, and if the embedded user knowledge could improve the representation of ordinal values in the
construction of machine learning models.

Methods: To this aim, we conducted a questionnaire-based research study involving a relatively large sample of 1,152
potential patients and 31 clinicians to represent numerically the perceived meaning of standard and widely-applied
labels to describe health conditions. Using these collected values, we then present and discuss different possible fuzzy-
set based representations that address the vagueness of medical interpretation by taking into account the perceptions
of domain experts. We also apply the findings of this user study to evaluate the impact of different encodings on the
predictive performance of common machine learning models in regard to a real-world medical prognostic task.

Results: We found significant differences in the perception of pain levels between the two user groups. We also
show that the proposed encodings can improve the performances of specific classes of models, and discuss when
this is the case.

Conclusions: In perspective, our hope is that the proposed techniques for ordinal scale representation and ordinal
encoding may be useful to the research community, and also that our methodology will be applied to other widely
used ordinal scales for improving validity of datasets and bettering the results of machine learning tasks.
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Background
The machine learning community seems to put particular
emphasis on performance metrics and skill improvement.
And rightly so, if this general attitude has pushed some
models to perform equally or even better than humans in
many tasks, especially with respect to pattern recognition
[1, 2].

Much smaller attention and reflection has been paid so
far in regard to the validity of data, both input (train-
ing) data and output data, that is, the predictions. With
validity we do not mean just accuracy, as widely intended,
but above all the extent to which a measurement is well-
founded and corresponds to the real world phenomena
that are to be rendered in symbolic terms [3]. In other
terms, we intend the validity of a data set as the degree
to which the data set represents the phenomena it is
intended to.

In order to deal with the intrinsic uncertainty of the
medical domain [4], a natural choice has always been to
make use of fuzzy logic and fuzzy sets. Several surveys on
this connection can be found in literature, for instance [5–
8]. The main use of fuzzy logic in this context is to model
rules in expert systems (for example [9]) or, often in com-
bination with other approaches such as neural networks,
for image processing . On the other hand, only a few
attempts to deal with the vagueness of medical terms have
been made. We recall here the pioneering work to repre-
sent medical terms [10], the fuzzy version of the Arden
markup language [11] and several fuzzy ontology applica-
tions to medicine [12, 13]. More related to our work is the
paper [14], as discussed later in this introduction. Further,
even less efforts are available on how uncertainty influ-
ences the validity of medical datasets. The recent work by
Zywica [15] goes in this direction, by using fuzzy sets for
transforming heterogenous data in homogenous ones and
to deal with the lack of knowledge.

In this light, we set out to investigate how a specific kind
of ordinal features (that is, features whose values come
from a categorical label set on which an order relation is
defined. In what follows, we consider these ordered cate-
gories ordinal data natively.) can be transformed in order
to improve the internal validity of the training set (in the
sense above), as well as the validity of the model output
(that is, accuracy).

In this article we will specifically address the prob-
lem of the representation of ordinal scales in quantitative
terms (and vice-versa), and the usage of these represen-
tations to define user-informed encoding to be employed
in machine learning tasks, by considering the specific
case of a very common terminology to represent severity
of health conditions and symptoms in medical docu-
ments, which has been recently adopted also by the Health
Level 7 (HL7) Fast Healthcare Interoperability Resources
(FHIR) [16] framework, that is, the most widely adopted

standards framework for the representation of health data
on the Internet and in digital health applications [17].

This terminology is used in many questionnaires (for
instance, the EQ-5D-5L [18]) aimed at collecting Patient
Reported Outcome Measures (PROMS), which are recog-
nized [19] as a powerful tool to enable the monitoring of
the actual safety and effectiveness of medical procedures
and treatments, their continuous improvement, and what
is called a value-based health care [20, 21].

According to this terminology, both patients and doc-
tors are called to express the severity of health conditions
and symptoms in medical documents in terms of five ordi-
nal categories, namely: Absent (or No Condition), Mild,
Moderate, Severe and Very Severe (or Extreme) conditions.
Ordinal scales are very common in medicine [22, 23] and
on their basis doctors can understand each other and
make critical decisions despite their seeming arbitrariness
and loosely defined semantics; ordinal values like those
mentioned above are also extensively used to annotate
medical records, and to some extent report a written inter-
pretation of other medical data, like laboratory results and
medical images. For this reason severity labels are increas-
ingly used in ground truthing, that is the preparation of
training and test data sets for the definition and evalu-
ation of predictive models. This justifies our interest in
investigating whether some knowledge on how these lev-
els are interpreted by the actors involved can affect the
performance of predictive models and decision making.
Although these categories are used extensively and on a
daily basis by most medical doctors around the world in
most forms, charts and reports (even paper-based ones),
their meaning has never been established univocally and,
more importantly from the computational point of view,
quantitatively [24]. As a matter of fact, no standardizing
body nor single doctor can establish what, say, Moderate
really means in objective terms [25], nor determine that
the transition from a Mild condition to a Moderate one
is like passing from a Moderate one to a Severe condition:
a standard terminology to describe severity is just a set
of available values, in which only a total order relation is
defined. Of course all these terms are subject to personal
views, contextual situations or interpretation of evidence:
in a word, they are intrinsically fuzzy.

More specifically, the scope of the present work is
twofold:

1 Firstly, to represent severity categories using fuzzy
sets by means of a collective intelligence process: by
collecting the different perceptions provided by
interested users, both domain experts (that is,
medical doctors) and potential patients;

2 Secondly, to assess the potential impact of these
techniques to construct encoding techniques for
ordinal data, based on the collective knowledge, to be
fed to machine learning models.
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As regards the first research question, we will con-
sider these categories as so-called linguistic labels [26] and
assign them different types of fuzzy sets with domain on
numerical scales according to a human-centered study. In
doing so, we can get both a representative, yet approx-
imate, model to map ordinal categories to numerical
values (on a scale [ 0 − 100], where the lower bound
represents absence of perceivable signs of the condition
of medical interest and the upper bound its strongest
expression), and vice versa. Also the work [14] deals
with grades of questionnaire answers, however, in a dif-
ferent way and with a different scope with respect to
us. Indeed, the aim of the authors in [14] is to define
a formal logic that enables to describe the derivation
of a “total” scores (typically, the average) from a set of
degrees (the answers to a questionnaire). Thus, they do
not address the problem of defining the total score, but,
given the definition of a total score, how to describe it in a
formal logic.

The data set we used to define this mapping
is a collection of intervals or numerical values for
each category/label, provided by both domain experts
(that is, medical doctors) and potential patients by
means of an ad-hoc Web-based questionnaire, admin-
istered during an online survey. We present and dis-
cuss several ways to aggregate these values in order
to obtain some kind of fuzzification of the severity
conditions.

This approach is different from existing approaches to
fuzzify ordinal scales such as [27, 28], where the fuzzifi-
cation process is done automatically by assigning a fuzzy
number to each label and then applied to a case study.
Here, our aim is to fuzzify the ordinal scale starting from
the collected data and we will particularly be interested
in ascertaining if the representations provided by the dif-
ferent respondent groups (that is doctors and potential
patients) present significant differences.

As regards the second research question, the traditional
approaches, adopted in the machine learning community,
to deal with ordinal data in a training set [29] regard either
transforming them into categorical, usually binary, values
(such as one-hot encoding or rank-hot encoding), or into
the rank index of the corresponding level, that is a number
usually ranging from 0 to k.

As already introduced, we explore an alternative
approach, that is encoding ordinal values in terms of
scalar values on a continuous 100-point scale, accord-
ing to the fuzzy set representation constructed from the
subjective perceptions of the corresponding level on that
scale. In doing so, we aim to embed some “true” struc-
ture into the dataset, in cases where the assumption that
ordinal values are equally-distributed numbers (as in the
rank index) does not hold, is ill-grounded or excessively
weak.

Methods
Data collection
In order to build the different representations, we col-
lected user data in three different settings, which will be
discussed in this section.

First data collection: quantitative meaning for doctors
To collect data on the subjective perception of the quan-
titative meaning of the categories (each denoted by a
specific label) of the severity Health Level 7 (HL7) ordinal
scale, we first designed a closed-ended two-page question-
naire to be administered online in a Computer-Assisted-
Web-self-Interview (CAWI) configuration. The first page
of this questionnaire (depicted in Fig. 1) asked the respon-
dents to express each level of severity of the original
5-item HL7 scale (that is, Absent, Mild, Moderate, Severe,
and Very Severe) into a Visual Analogue Scale (VAS). A
VAS is a measurement instrument that has been devised
and introduced in health care to try to measure charac-
teristics that appear or are easily perceived as continuous
but that cannot be directly measured easily, like pain, and
by which to overcome the intrinsically discrete nature of
ordinal categorizations [30].

To this aim, we associated each item with a 2-cursor
range slider control. By moving each of the two indepen-
dent cursors the respondents could thus create an inner
interval, comprised within the two cursors, encompassing
all those numerical values that they felt could represent
the ordinal category properly. The interface was designed
so that initially the respondents would want to move the
cursors to set the new intervals and, in doing so, “see” the
overlap that they deem useful to report between the cate-
gories. This overlap was neither promoted nor prevented,
as the cursors could be moved freely along each range
slider with the only constraint that the ‘lower’ extreme
cursor could never be moved to the right of the ‘higher’
extreme cursor, and vice versa. Moreover, the respondents
could get only an approximate idea of the numerical val-
ues that were associated with the position of the cursors
(and in fact this association was not mentioned in the
task description, reported at the top of Fig. 1, but only
in the help section), since the range was intended to be
on a strict analogue scale, with no explicit nor numerical
anchor. That notwithstanding, VASs are common repre-
sentational tools most potential respondents were very
familiar with for its wide adoption in clinical practice, as
said above, and this suggests that respondents performed
the task effortlessly. We also explicitly asked for a single
number that the respondents could perceive as the most
representative for each level: we call this number Repre-
sentative Point (of each level, RP). The second page of the
questionnaire was intended to collect a few data on the
respondent’s professional profile (which was intended to
be anonymous), namely their medical specialty.
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Fig. 1 The first page of the on-line questionnaire that we administered to the sample of clinicians to collect their perception on severity categories
(original text in Italian). The translation of the question asked is as follows: “Think of having to represent the severity of a condition of clinical interest on
an analogue-visual scale. Below, by appropriately moving the two cursors of each scale, we ask you to indicate the range to which each ordinal category of
the following could associate”

At the end of November 2017, we invited 97 clini-
cians by email to fill in the two-page questionnaire. Most
respondents worked as clinicians and surgeons at the Sci-
entific Institute for Research, Hospitalization and Health-
care (IRCCS) Orthopedic Institute Galeazzi (IOG), which
is one of the largest teaching hospitals in Italy specialized
in the study and treatment of musculoskeletal disorders; at
IOG almost 5,000 surgeries are performed yearly, mostly
arthroplasty (hip and knee prosthetic surgery) and spine-
related procedures. After two weeks since this first invi-
tation we sent a gentle reminder and one week later we
definitely closed the survey. Response rate was moderately
high, especially in light of the very busy daily schedule
of the involved prospective respondents, the anonymity
of the survey and the lack of incentives: indeed slightly
less than half of the potential respondents accepted the
invitation and filled in the on-line questionnaire: thus
we collected 42 questionnaires by as many respondents
(Fig. 2). When we analyzed the responses, some question-
naires were found filled in with seemingly random data
and were discarded: then the final dataset contained 298

data points, corresponding to 149 intervals (Fig. 3) by 31
different respondents. Moreover, the questionnaires com-
pleted in each and every item were 27. In doing so, we
obtained an Interval Extreme Distribution (IED) for each
severity item. The original doctor data set contained the
lower and upper extremes of the five ordinal categories
expressing increasing levels of severity for all of the sur-
vey respondents, that is a 31 x 10 matrix of data points
on the severity dimension, ranging from 0 to 100. From
this data set of coordinates of interval extremes we com-
puted a new one, by computing the central points for each
IED. An extract of this dataset is reported in Table 1. Both
from Fig. 2 and Table 1, it can be seen that in the majority
of cases, each level is represented as an interval, not just
a coordinate point, and these intervals can overlap. Also,
significant differences can exist between different doctors.

Second data collection: quantitative meaning for potential
patients
In addition to the doctors of IRCCS Orthopedic Institute
Galeazzi (Ndoctors=31), the doctor sample of our data, we
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Fig. 2 Stacked bar chart representing the composition of the sample of respondents involved in this study. The majority of the sample were trauma
and orthopedic surgeons, the rest of the sample is relatively varied, as also shown by the ‘other’ category, which is the second one for numerosity
and encompasses (among the others) two neurologists, one endocrinologist and one rheumatologist. This suggests that, despite the relatively small
sample, this is sufficiently heterogeneous not to consider the responses limited to a specific medical discipline

also involved the students enrolled in a computer science
bachelor degree class in the 2018/2019 academic year and
asked them to involve other potential respondents among
their contacts (Npatients=1,152); students were given extra
credits for participating in the survey and their responses
provided the laypeople (seen as potential patients) sample
in this study.

Students were asked to complete a questionnaire sim-
ilar to the doctor’s, as in the previous section. We then
computed the Centroids of the IED (CoIED) for each
level (that is, IEDs) in both strata. We also calculated the
median, as the data appeared to be affected by noise and
dirtiness and thus a more robust central tendency indi-
cator would be more useful, RP of each level, for both
doctors and patients.

Third data collection: qualitative meaning
Lastly, in order to collect data on the perception of the
qualitative meaning of each category, we administered a
short questionnaire to the students enrolled in the same
computer science class in the following year and their
acquaintances. For each questionnaire, a random value is
generated a priori in a range from 1 to 99 with equiproba-
bility. The following question is then asked:

“Imagine that you are a patient, and that you are given a
scale from 0 to 100, which is often used to represent your
health level in numerical form. Imagine that you want to
mark on that scale that your health level today is {100 -
random value generated}. If you had to express in words
the same concept, coherently with this numerical value,
what expression would you use between the following?”

The respondent is asked to select which category is the
most appropriate for his value, from the list of severity cat-
egories from HL7. Users are also optionally asked for their
sex and age range. We collected 1,257 responses between
student and acquaintances. 265 (21%) answers had to be
discarded due to an incomplete submission, meaning only
992 (79%) forms were complete and useful for our pur-
poses. For each value in the numerical scale we had an
average of 10 complete answers, with a standard deviation
of 3.2. For visualization purposes and to enhance the clar-
ity, we performed a binning of the value with granularity
of 3, obtaining 33 different bins.

Dataset for regression analysis
In order to perform the regression analysis and test the
effects, if any, of the proposed encodings we employed
a further dataset. This dataset has been collected from

Fig. 3 Diagram showing the data set at a glance. Different questionnaires are represented along the vertical dimension; intervals related to different
severity categories are represented in different hues along the horizontal 0-100 continuum
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Table 1 An extract of the dataset, for each severity level the min
and max values are shown, while the representative point, a
scalar value ∈ [0, 100] for each level, is not shown for brevity

Absent Mild Moderate Severe Extreme

3–20 23–40 39–55 56–76 83–100

0–18 18–36 37–58 61–81 82–100

2–15 17–37 39–61 63–83 84–97

23–58 44–78 55–93 60–91 71–97

0–9 10–30 30–53 54–77 78–100

7–7 30–30 56–56 67–67 95–95

real patients who had undergone joint surgery in IRCCS
Orthopedic Institute Galeazzi (IOG), one of the major
Italian hospitals specialized in musculoskeletal disorders.
Specifically, the dataset contains data about 336 patients,
with particular reference to so-called Patient Recorded
Outcomes (PROMs), that is data reported and collected
by the patients (or the doctors) in the last 3 years. In order
to measure the effect of the proposed encodings, we con-
sidered in particular as a target feature their improvement
(on a physical function score) 6 months after joint surgery.

Representation of ordinal values using fuzzy sets
Starting from the collected data, we will define different
techniques for representing ordinal scale level using fuzzy
sets [31] and to transform the obtained fuzzy set repre-
sentations into scalar (or vector) features, so to implement
encodings of ordinal features.

From ordinal values to fuzzy sets
We will consider a linguistic variable [26] with values in
V = {v1, ..., vk} (in our specific context, the linguistic vari-
able is Severity condition and V = {Absent, Mild, Moder-
ate, Severe, Extreme}). In this section, we give a semantics
to each term in V by means of a fuzzy set in the universe
U =[ 0, 100]. The precise fuzzification technique that one
can adopt, depends on the type of information speci-
fied by the involved respondents; indeed, as described in
the “Data collection” section, we asked the respondents
two different types of information with respect to the
representation of ordinal levels in numeric terms: single
numeric values (that is representative points), or whole
intervals associated to a given level. In the first case, the
fuzzification is straightforward: for each term v in V and
each value x in the range [ 0 − 100] we simply count how
many times x has been associated to term v as a represen-
tative point. In the second case, two approaches can be
adopted:

1 An indicator of central tendency of the single
intervals (such as the centroid of the interval or its
median) can be employed to convert each interval to

a single numeric value. These values can then be
employed straightforwardly to compute the fuzzy
sets for each of the ordinal levels.

2 The whole interval can be used to construct the fuzzy
set representation of the ordinal levels. In this case,
given an interval i = [li, ui] reported by a respondent,
where li (resp. ui) is the lower (resp. upper) limit of
the interval, each point in i is weighted by a factor
wi = 1

ui−li+1 . Then, for each term v and each value x
we count how many times an interval i such that
x ∈ i has been associated to term v, weighed by factor
wi. Compared with the above mentioned technique,
this second approach has the advantage that the
whole interval information is explicitly considered in
building the fuzzy set, however it has been noted in
[31] that simply applying this technique on the raw
data may result in too noisy distributions, hence
binning techniques should be employed to reduce
the granularity.

As a concluding note, we observe that, irrespective of the
fuzzification technique adopted, the resulting fuzzy sets
are not required to be fuzzy numbers [32].

From fuzzy representations to encodings
In order to make the fuzzy representations of the ordinal
values, obtained by means of one of the techniques pre-
viously describer, usable by machine learning algorithms,
we need to perform another transformation in order to
map the informative but unstructured fuzzy set repre-
sentation into standard scalar-valued (or vector-valued)
features, in a manner which is similar to the traditional
defuzzification step [33]. To this end, we will describe
three different approaches, two of which produce sin-
gle scalar-valued encodings and one which results in a
vector-valued encoding. Let v be an ordinal term and
μv :[ 0, 100] �→[ 0, 1] the respective fuzzy set encoding. As
regards the first approach, that we call Centroids of the
Interval Extreme Distribution (CoIED) and is akin to the
standard center of gravity defuzzification method [33], we
simply compute the centroid of the membership function
μv, that is:

CoIED(v) = 1
∑

x∈[0,100] μv(x)

∑

x∈[0,100]
x ∗ μv(x) (1)

Notice that this approach produces the same value for
each instance of the v label and thus, if the centroids are
order-preserving (that is v1 ≤ v2 =⇒ CoIED(v1) ≤
CoIED(v2)) this method always preserves the ordinality of
the labels.

The second approach that we describe, and that we call
Weighted Sampling, is based on a sampling method, sim-
ilar to Monte Carlo approaches [34] and the sampling
defuzzification techniques which can be employed for
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generalized fuzzy sets [35]. Given the membership func-
tion μv of an ordinal term v, a probability distribution is
computed as pv(x) = μv(x)∑

y μv(y) . Then uniformly across the
dataset a value x is sampled randomly according to pv(x)

and each occurrence of v is mapped to x. Notice that,
contrary to the CoIED method, this method can reverse
or otherwise change the ordinality of the labels as it may
happen that even if v1 ≤ v2, for a given row, two values
x1, x2 are sampled (respectively, from pv1 and pv2 ) such
that x2 ≤ x1.

The third approach, which we call Membership, results
in a vector-valued encoding and is based on a two-step
method. Firstly, given a term v, the numeric value xv
which is most representative of it is selected, that is xv =
argmaxx∈[0,100]μv(x). Then xv is mapped to the vector of
its membership values in the different level-specific fuzzy
sets, that is:

Membership(v) = 〈
μv1(xv), ..., μvk (xv)

〉
(2)

where, respectively, μvi is the membership function asso-
ciated to the ordinal term vi ∈ V . It is easy to observe
that this approach consists of a generalization of one-
hot or rank-hot encodings which takes in consideration
the inherent vagueness of the underlying ordinal scale:
indeed, if the fuzzy sets of the different terms are com-
pletely disjoint (that is there does not exists x ∈[ 0, 100]
and v1, v2 ∈ V such that v1, v2 ≥ 0) then the result
of the membership encoding is equivalent to the above
mentioned encodings.

Ordinal data in machine learning
The fuzzy set representations obtained with the quan-
titative data collection allow us to address two research
questions. First: do doctors and potential patients perceive
severity levels differently (on an equivalent 100-scale)? On
the other hand, the resulting representations were used to
address a second research question: does a user-centered
encoding improve the validity of machine learning models
on some regression tasks?

To this latter aim, we have compared the performance
of 4 common machine learning models, namely Random
Forests (RF) [36] and Support Vector Regressor (SVR)
[37], whose performance is generally recognized as the
best one in data-driven predictive tasks [38], and the
k-Nearest Neighbour (k-NN) [39] and Least Absolute
Shrinkage and Selection Operator (LASSO) [40] ones.
These regression models were trained on the same dataset
whereas, in one case, ordinal values had been encoded
traditionally (that is, 0, 1, 2, 3, 4 respectively), and in the
other we had applied the CoIED, Weighted Sampling and
Membership encodings.

The regression predictive modeling was based on a
set of 15 features (namely gender, age, type of interven-
tion, 3 continuous scores and 9 ordinal features, which
were all filled in by patients in pre-operative PROMs
questionnaires) to predict the functional improvement 6
months after joint surgery, the models were compared
with respect to the Mean Absolute Error (MAE) metric
and coefficient of determination (R2). Comparisons among
models were performed on the basis of the confidence
intervals on 5-fold nested cross validation. In order to
account for the randomness in the Weighted Sampling
approach, for that encoding only we repeated the process
10 times and calculated average performances.

Results
In this section we briefly report the results of the statistical
procedures conducted in our studies.

Visualization of quantitative meaning: differences
between doctor and patient’s perception
We performed a Kolmogorov-Smirnov test [41] to com-
pare the shapes of the IEDs of doctors and laypeople
(Fig. 4). We decided to employ the Kolmogorov-Smirnov
test, in place of other goodness of fit such as the Cucconi
test or the Anderson-Darling test, as it provides a con-
servative test for equality of distributions [42] with good
quality implementations in standard statistical packages.
We found a statistically significant difference in regard to
the Absent condition and the two highest severity levels
(Absent, P<0.001, Severe, P=0.038 and Extreme, P=0.021),
while for the other levels the difference was not found
significant, although the p-values are quite low (Mild,
P=0.067 and Moderate, P=0.145).

We performed a Mann-Whitney U test [43] to compare
the mean ranks of the patients IEDs (as a sort of hypothet-
ical testing on the equality of their centroids, Table 2) and
found significant differences in regard to Absent, Severe
and Extreme (P<0.001 in all cases), while differences were
not significant for the Mild and Moderate levels (P=0.425
and 0.105, respectively). We decided to adopt the above
test, instead of the Student’s t-test, because the main
assumptions of this latter did not hold true, and because
the Mann-Whitney test is more efficient than the t-test
for non-normally distributed data, as well is generally less
susceptible to outliers [44].

We also performed a Mann-Whitney U test to com-
pare the mean ranks of the RP distributions and found the
same significant differences, in regard to Absent, Severe
and Extreme (P<0.001 in all cases), while differences were
not significant for Mild and Moderate (P=0.425 and 0.105,
respectively).

Visualization of qualitative meaning
We also investigated the inverse mapping, that is, how
respondents mapped precise numerical values to ordinal
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Fig. 4 Violin plots of the IEDs for each severity level (red for doctors, NdoctorIED=62; blue for patients, NpatientIED=[1970, 2155, 1971, 1944, 1670],
respectively). The CoIED are indicated as a vertical lines in the violin plots. Small circles indicate the median RPs for each level and stratum (doctors
Ndoctors=31, patients Npatients=1,152)

labels from the Health Level 7 (HL7) terminology. A visu-
alization of this mapping in terms of a stacked barchart is
shown in Fig. 5.

Another way of visualizing this mapping is shown in
Fig. 6. The hue represents the most common variable (red
for Absent, blue for Mild, green for Moderate, purple for
Severe, orange for Extreme), while transparency represent
the prevalence: very light for superiority (mode), medium
for majority (prevalence of the most common class >

50%), opaque for statistical majority (p-value < 0.05). Sta-
tistical majority has been calculated by the means of a χ2

test between the most common class and the second most
common.

Table 2 Findings from the user study on the perceptions
(expressed in terms of CoIEDs and RPs) by doctors and laypeople
of illness severity levels. Significance levels are computed
through the Mann-Whitney U test

Level

Doctor Patient Diff

Doctor Patient RP RP Doctor

CoIED CoIED median median vs

95% CI 95% CI 95% CI 95% CI Patient

Absent [4.74, 13.7] [12.9, 14.6] [4.5, 8.0] [0.0, 0.0] ***

Mild [22.2, 29.6] [25.8, 27.3] [20.5, 30.0] [20.0, 20.0] NS

Moderate [42.6, 50.7] [40.4, 42.2] [45.0, 49.5] [50.0, 50.0] NS

Severe [63.5, 71.5] [56.83, 59.15] [67.0, 75.5] [75.0, 75.0] ***

Extreme [83.5, 92.5] [69.12, 72.51] [90.5, 94.5] [99.0, 100.0] ***

Results of proposed ordinal representations in machine
learning
In Fig. 7 and Tables 3 and 4 we show the results of
the comparative regression analysis, after having trained
4 common models on the dataset discussed in the
“Methods” section, in order to predict their improvement
(on a physical function score) 6 months after joint surgery.

Discussion
This paper addresses the fuzzification of a common ter-
minology, which is also adopted by the Health Level
7 (HL7) framework in the digital health domain, that
characterises health conditions, the appearance of med-
ical signs and other expressions of medical relevance.
We show how these are perceived by either the medi-
cal doctors or the patients themselves (for instance, in
the so called Patient Reported Outcome Measures [19])
and the usage of these fuzzy representations to imple-
ment knowledge-based encodings to be used by machine
learning algorithms.

Perception of HL7 terminology
As regards the perception of these terminologies for the
two different respondent groups, as highlighted in the
“Results” section, we found a statistically significant dif-
ference between the distributions obtained for the respon-
dent groups. In particular, we found that patients tend
to overestimate the severity of illness, when this is either
serious or absent. We can conjecture that differences in
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Fig. 5 The stacked bar charts indicate, for each bin, the percentage of respondents for each linguistic label. The original labels were in Italian, as
shown in the legend, but they can be directly translated to the already discussed HL7 labels

Fig. 6 These bar charts indicate, for each bin, the most common variable chosen by respondents and its prevalence
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Fig. 7 Taylor diagram of the models’ skills. Each point on the diagram indicates the mean performance of all model in a specific representation, with
the circle indicating the RMSD 95% confidence interval. RMSD indicates the Root Mean Square Deviation (the lower the better, with 0 denoting a
perfect fit to the data). If models denoted with the same glyphs get closer to the inner circle of RMSD and move downward in the diagram (that
means that their predictions are more correlated with the true value), then their performance improves and gets better. Red glyphs indicate models
with ordinal encodings, while blue glyphs the models with CoIED encodings

the higher part of severity spectrum could be related to
the fact that laypeople experience illness in the first per-
son, and hence see it as under a magnifying glass, while
doctors have had experience of a much wider range of
conditions, relatively few extremely serious and therefore
can often scale the assessment lower than patients. By a
weaker conjecture, we could see differences in the lower
end of the scale as effect of a sort of suppression of the idea
to be ill and fear of disease, that induces underestimating
light symptoms. These findings, which confirm and are
supported by similar findings in the clinical literature [45,
46], have relevant implications, especially as regards their
potential impact on machine learning and Artificial Intel-
ligence systems. Indeed, these observations draw atten-
tion to the importance of carefully considering the source

of data (that is who annotated a specific ordinal value) as
the underlying meaning of the same label, even from a
standardized terminology as in the case that we consid-
ered, could be strongly dependent on who produced the
said label. This means that using labels as univocal tokens
in advanced statistical techniques, like the ones employed
in machine/statistical learning and in the definition of pre-
dictive models, can be harmful. The same patient could be
associated with a Mild label by a doctor, and a Severe label
by another doctor, and this even if either doctors intend
to characterize the very same condition, which could be
represented by the same numerical value on a 0-100 con-
tinuum. This observation regards the phenomenon of
inter-rater reliability that, although widely known in the
medical ambit [47], is still little known and considered

Table 3 The regression performance of the 4 machine learning models considered in the comparative study in terms of Mean
Absolute Error (MAE) and related confidence intervals (CIs, at a 95% Confidence Level): the lower the value, the better the performance.
The first column presents the CIs of the MAE of models with the ordinal encoding; the second column the same accuracy indicators for
the CoIED encoding

Ordinal CoIED Membership Weighted Sampling

RF [1.458, 1.89] [1.459, 1.89] [1.467, 1.861] [1.688, 1.825]

k-NN [2.012, 2.277] [1.503, 1.813] [2.078, 2.321] [1.731, 1.854]

LASSO [1.586, 1.863] [1.474, 1.736] [2.121, 2.367] [1.769, 1.902]

SVR (RBF kernel) [1.985, 2.312] [1.268, 1.736] [2.047, 2.373] [1.654, 1.829]
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Table 4 The regression performance of the 4 machine learning models considered in the comparative study in terms of coefficient of
determination (R2) and related confidence intervals (CIs, at a 95% Confidence Level): the higher the value, the better the performance.
The first column presents the CIs of the R2 of models with the ordinal encoding; the second column the same accuracy indicators for
the CoIED encoding

Ordinal CoIED Membership Weighted Sampling

RF [0.275, 0.581] [0.275, 0.58] [0.291, 0.602] [0.338, 0.435]

k-NN [0.043, 0.275] [0.333, 0.567] [0.006, 0.229] [0.339, 0.426]

LASSO [0.324, 0.545] [0.364, 0.637] [0.0, 0.198] [0.312, 0.416]

SVR (RBF kernel) [0.017, 0.296] [0.265, 0.665] [0.01, 0.26] [0.303, 0.427]

in most of the fields of applied computer science [3, 48].
For these reasons we argue that any method for properly
representing ordinal scales in numerical terms should be
grounded on an empirical and human-centered approach,
that is, on the subjective perceptions of domain experts
for whom the ordinal categories to be fuzzified are mean-
ingful according to the context, right in virtue of their
descriptive power and despite their ambiguity. It is note-
worthy to say the fuzzification methods proposed and
discussed in this paper have been applied to the traditional
5-item severity terminology only as a proof of the con-
cept: we chose this terminology because it is common to
many health conditions, used in most medical specialties,
and it has also been recently adopted by the HL7 stan-
dard developing organization and hence it is nowadays
widespread in most digital health applications. However,
these fuzzification methods can be applied to any ordinal
terminology, and not only to those specific of the medical
domain.

A potential limitation with respect to this first part of
the study, regards the fact that some respondents con-
tacted us after doing the CAWI to warn us that they
had found it difficult to move the cursors of the range
slider controls on mobile and multi-touch devices like
smart phones and tablets. Although we did not col-
lect information on the device used during the CAWI,
we can consider that several people could have tried
to fill in questionnaire from their smart phones: this
could account for some of the “dirtiness” we detected in
the original data set (like improbable interval extremes
and empty cells). In any case, to our knowledge no
study has so far involved more than thirty domain
experts to have them represent the quantitative “mean-
ing” (onto a numerical 0-100 range) for the ordinal
categories they use in their reports and records on a
daily basis.

Machine learning with ordinal encodings
As regards our second research question, that is inves-
tigating the effects of the proposed encodings on the
performance of the machine learning models, we recall

Table 3: as the reader can easily see, the best performing
method (in terms of average MAE) is the SVR algo-
rithm with the CoIED encoding. When considering the
confidence intervals, the SVR with CoIED encoding is not
significantly better than other models on the same rep-
resentation (RF, LASSO with Ordinal encoding, all algo-
rithms with the CoIED encodings, RF with the Weighted
Sampling encoding and SVR with the Membership encod-
ing) however it has both a smaller lower bound and
one of the smallest interval widths. In general, all algo-
rithms except RF obtained a better performance using
the CoIED encoding and in particular they were statis-
tically significant for both k-NN and SVR. This suggest
that, at least for specific model classes, the usage of
user-informed encodings can significantly improve the
predictive performance. Interestingly, the performance of
RF using the Ordinal and CoIED encoding were almost
exactly equivalent, the explanation for such a behavior
resides in the specifics of the RF training algorithm [49].
Indeed, the construction of the Regression Trees embed-
ded in the Random Forests requires the determination
of threshold levels on the features and does not take
in consideration the metric distance between the values
of a feature but only their ordinality: this means that
every feature transformation which is order-preserving,
such as the CoIED encoding, results in the same
exact trees.

As regards the Membership encoding, there were
no statistically significant differences with the Ordinal
encoding except for the LASSO algorithm, for which the
Membership method had worse performance than the
traditional Ordinal encoding.

As regards the LASSO algorithm, a possible explanation
of the observed behavior is not completely straightfor-
ward. A possible explanation may consists in the fact that
the Membership encoding replaces a single feature with
a group of features which are mutually related, while this
relationship is not taken in consideration when train the
LASSO model. In this sense, a group LASSO [50] or sparse
group LASSO [51] could be an appropriate choice to prop-
erly take into consideration the relations and constraints
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between the level features introduced by the Membership
encoding.

Interestingly, the Weighted Sampling encoding was
found to be significantly better than the Ordinal Encod-
ing for k-NN and SVR, although generally the CoIED
encoding resulted in better average performance. This
observation is especially interesting as we did not con-
sider averaging techniques during model training, hav-
ing just performed multiple samplings for performance
evaluation. This suggests that further research should
consider the combination of the Weighted Sampling
encoding with probabilistic ensembling techniques [52]
to assess if these could result in robust and effective
methods.

This second part of our study has some limitations,
mainly due to its exploratory nature. First, we are aware
that performances, as we previously discussed in the case
of Random Forests and the CoIED encoding, can vary
depending on the match between different encodings,
model families, and specific tasks. Even assuming that our
encoding is more valid (that is truthful) than the tradi-
tional one, for many practical tasks the order information
(hence, the Ordinal Encoding) can be as much predic-
tive as the finer-grained one provided by a user-informed
one. Although we adopted an approach similar to that
applied in [53], we recognize that considering only one
task could not be sufficient to draw definitive recom-
mendations. That notwithstanding, we emphasize that we
considered a regression task with actual prognostic value
that is based on real-world PROMS and clinical data, and
that has been integrated in a decision support system cur-
rently experimented in a large Orthopedic hospital with
promising results.

We are also aware that the observed improvements,
while in specific cases statistically significant, are rela-
tively small. That notwithstanding, it is known that sig-
nificant differences could be associated also to confidence
intervals that overlap slightly [54], so our findings must be
considered conservative; and most notably all the MAEs
observed are lower than the minimum clinically impor-
tant difference values found for the prognostic task at hand
[55] (which are at least almost twice as big, if not much
bigger).

Furthermore, we are aware that in the specialist
literature some methods to encode ordinal variables
in numerical terms exist (for instance, rologit [56]).
For this reason, our future work will be devoted
to integrate the knowledge about the user percep-
tions into these methods to achieve a good compro-
mise between validity and generalization. Also a fur-
ther validation of the incremental advantage due to
the user-informed encoding on different predictive tasks
is due.

Conclusion
In this paper we have provided elements to consider fuzzi-
fication as a convenient way to convert single ordinal
labels, which are the representation of choice of many
predictive models, into numbers by the means of a user-
informed approach.

The advantage of this approach lies in the fact just men-
tioned above: the mapping is made on the basis of the per-
ceptions of a heterogeneous sample of domain experts, in
our case, clinicians. If perceptions are collected from the
experts who annotated a ground truth data set, this map-
ping could optimally represent the implicit meaning that
group of people, as a collective, attach to the annotation
labels, and hence to the classes the machine learning have
to work with. Even if the perceptions are not collected
from the same group of people involved in the observa-
tions and the annotations, the opportune selection of the
sample (for instance,through stratified random sampling)
could guarantee a certain degree of representativeness and
bring forth reasonable and meaningful mappings. We also
observed that significant differences may exist in the rep-
resentations provided by different user groups and argued
that these should be taken into proper consideration when
working with this type of information, as otherwise using
naive encodings could be harmful: leading to noisy or
wrong predictions or, perhaps even worse, deceitful or
ill-founded conclusions.

We then showed how these novel user-based encoding
techniques, and more specifically the CoIED encoding,
could profitably be used to enhance the performance of
standard classes of machine learning models. We also
suggested potential areas of improvements and future
research with respect the other two proposed encoding
techniques.

In conclusion, we believe this paper contributes to
the research line that, within the more general field
of machine learning in medicine, aims to embed user-
derived knowledge into feature engineering tasks (for
instance, [31]), especially in regard to the encoding of
ordinal features, which are very common in medical data
sets, to improve the validity of predictions and of the data
considered for medical decision making.

Our future work will be devoted to integrate the knowl-
edge about the user perceptions into other methods to
achieve a good compromise between validity and gen-
eralization. Also a further validation of the incremental
advantage due to the user-informed encoding on different
predictive tasks is due.
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Abstract
In medical settings, Individual Variation (IV) refers to vari-
ation that is due not to population differences or errors, but
rather to within-subject variation, that is the intrinsic and
characteristic patterns of variation pertaining to a given in-
stance or the measurement process. While taking into account
IV has been deemed critical for proper analysis of medical
data, this source of uncertainty and its impact on robustness
have so far been neglected in Machine Learning (ML). To
fill this gap, we look at how IV affects ML performance and
generalization and how its impact can be mitigated. Specifi-
cally, we provide a methodological contribution to formalize
the problem of IV in the statistical learning framework and,
through an experiment based on one of the largest real-world
laboratory medicine datasets for the problem of COVID-
19 diagnosis, we show that: 1) common state-of-the-art ML
models are severely impacted by the presence of IV in data;
and 2) advanced learning strategies, based on data augmenta-
tion and data imprecisiation, and proper study designs can be
effective at improving robustness to IV. Our findings demon-
strate the critical relevance of correctly accounting for IV to
enable safe deployment of ML in clinical settings.

Introduction
In recent years, the interest toward the application of Ma-
chine Learning (ML) methods and systems to the devel-
opment of decision support systems in clinical settings has
been steadily increasing (Benjamens, Dhunnoo, and Meskó
2020). This interest has been mainly driven by the promis-
ing results obtained and reported by these systems in aca-
demic research for different tasks (Aggarwal et al. 2021;
Yin, Ngiam, and Teo 2021)

Despite these promising results, the adoption of ML-
based systems in real-world clinical settings has been lag-
ging behind (Wilkinson et al. 2020), with these systems of-
ten failing to meet the expectations and requirements needed
for safe deployment in clinical settings (Andaur Navarro et
al. 2021; Futoma et al. 2020), a concept that has been termed
the last mile of implementation (Coiera 2019) . While rea-
sons behind the gaps in this “last mile” are numerous, among
them we recall the inability of ML systems to reliably gener-
alize in new contexts and settings (Beam, Manrai, and Ghas-
semi 2020; Christodoulou et al. 2019), as well as their lack

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of robustness and susceptibility to variation in data, leading
to poorer performance in real settings (Li et al. 2019) and,
ultimately, to what has been called the replication crisis of
ML in medicine (Coiera et al. 2018).

In the ML literature, the notion of variation has usually
been associated with variance in the population data dis-
tribution (that is, as it relates to either the larger reference
population, or a sample taken from this latter), due to the
presence of outliers or anomalies (Akoglu 2021), out-of-
distribution instances (Adila and Kang 2022; Morteza and Li
2022) or concept/co-variate shifts and drifts (Liu et al. 2021;
Rabanser, Günnemann, and Lipton 2019). While these forms
of variation are certainly relevant, however they are not the
only ones that can arise in real-world settings: indeed, an-
other source of variation in data is the so-called individual
variation (IV) (Fraser 2001), which is especially common in
laboratory data or other physiological signals and biomark-
ers, and more generally in every phenomenon whose mani-
festations can exhibit time-varying patterns.

IV denotes between-subject variation that is not due to
population differences or errors, but rather to the intrinsic
and characteristic (that is, individual) patterns of variation
pertaining to single instances, that is to within-subject vari-
ation (Plebani, Padoan, and Lippi 2015); and more specifi-
cally it relates to two possible sources of variation: either the
feature values for a given subject or patient, what is called bi-
ological variation (BV) (Plebani, Padoan, and Lippi 2015);
or the measurement process and instrument itself, i.e., what
is called analytical variation (AV). The presence of IV en-
tails (Badrick 2021) that for each individual one can iden-
tify a “subject average” or central tendency (homeostatic
point (Fraser 2001)) arising from such factors as personal
characteristic of the individuals themselves (e.g., genetic
characteristics, age, phenotypic elements such as diet and
physical activity) or of the measurement instrument (e.g.,
instrument calibration), as well as a distribution of possible
values, whose uncertainty is represented by the extent of the
IV: crucially, only a snapshot (i.e., a sample) from this dis-
tribution can be accessed at any moment.

While the potential impact of IV on computer-supported
diagnosis has been known for a while (for instance,
in (Spodick and Bishop 1997) authors reported that “com-
puter interpretations of electrocardiograms recorded 1
minute apart were significantly (grossly) different in 4 of 10



cases”), only conjectures have so far been produced to esti-
mate its extent. Nonetheless, IV has two strong implications
for ML applications. First, ML models trained on data af-
fected by IV, even highly accurate ones, can fail to be robust
and properly generalize not only to new patients, but also to
the same patients observed in slightly different conditions:
for example, an healthy patient could indeed be classified
as healthy with respect to the features actually observed for
them, while they could have been classified as non-healthy
for a slightly different set of feature values, which never-
theless would still be totally compatible with the distribu-
tion due to IV1. Second, differently from distribution-related
variation, collecting additional data samples, which has been
considered a primary factor in the continued improvement
of ML systems, can help only marginally in reducing the
impact of IV, unless specific study designs are adopted that
allow to capture multiple observations for each individuals
across time (Aarsand et al. 2018; Bartlett et al. 2015).

Despite these apparently relevant characteristics, the phe-
nomenon of IV has largely been overlooked in the ML liter-
ature: indeed, while recent works have started to apply ML
techniques to analyze IV data, for example to cluster patients
based on their IV profiles (Carobene et al. 2021) or to pro-
vide Bayesian models for IV (Aarsand et al. 2021), to our
knowledge no previous work has investigated the impact of
IV on ML systems, as well as possible techniques to improve
robustness and manage this source of perturbations.

In this article, we attempt to bridge this gap in the special-
ized literature, by addressing two main research problems.
To this aim, this paper will consist of two parts: in the first
part we will address the research question “can individual
variation significantly affect the accuracy, and hence the ro-
bustness, of a machine model on a diagnostic task grounding
on laboratory medicine data” (H1). Due to the pervasive-
ness of individual variation, proving this hypothesis could
suggest that most ML models could be seriously affected
by lack of robustness on real-world and external data. To
this aim, we will apply a biologically-grounded, generative
model to simulate the effects of IV on data, and we will show
how commonly used classes of ML models fail to be ro-
bust to it. On the other hand, the second part of the paper
will aim to build on the rubble left by the first part, and it
will address the hypothesis whether more advanced learn-
ing and regularization methods (grounding on, either, data
augmentation (Van Dyk and Meng 2001) or data imprecisia-
tion (Lienen and Hüllermeier 2021b)) will achieve increased
robustness in face of the same perturbations (H2).

Background and Methods
As discussed in the previous section, the aim of this arti-
cle is to evaluate and address the potential impact of IV
on ML models’ robustness. In this section, we first provide

1As we show in the following, this setting is a generalization
of the usual one adopted in ML theory (Shalev-Shwartz and Ben-
David 2014): not only we assume that the best model could have
less than perfect accuracy, but we also assume that any instance is
represented as a distribution of vectors possibly lying in opposite
sides of the decision boundary.

basic background on IV, its importance in clinical settings,
and methods to compute it. Then, in the next sections, we
will describe two different experiments: in the first exper-
iment, we evaluate how commonly used ML models fare
when dealing with data affected by IV; then, in the second
experiment, we evaluate the application of more advanced
ML approaches to improve robustness to IV.

Individual Variation in Medical Data
IV is considered one of the most important sources of uncer-
tainty in clinical data (Plebani, Padoan, and Lippi 2015) and
recent research has highlighted the need to take IV properly
into account in any use of medical data (Badrick 2021; Fröh-
lich et al. 2018) . IV can be understood as encompassing
three main components: pre-analytical variation, analytical
variation and (within-subject) biological variation (Fraser
2001; Plebani, Padoan, and Lippi 2015).

Pre-analytical variation denotes uncertainty due to pa-
tients’ preparation (e.g., fasting, physical activity, use of
medicaments) or sample management (including, collec-
tion, transport, storage and treatment) (Ellervik and Vaught
2015); it is usually understood that pre-analytic variation can
be controlled by means of careful laboratory practice (Fraser
2001). AV, by contrast, describes the un-eliminable uncer-
tainty which is inherent to every measurement technique,
and is characterized by both a random component (i.e., vari-
ance, that is the agreement between consecutive measure-
ments taken with the same instrument); and a systematic
component (i.e., bias, that is the differences in values re-
ported by two different measurement instruments). Finally,
BV describes the uncertainty arising from the fact that fea-
tures or biomarkers can change through time, contributing
to a variance in outcomes from the same individual that is
independent of other forms of variation.

As already mentioned, IV can influence the interpretation
and analysis of any clinical data: for this reason, quantifying
IV, also in terms of its components, is of critical importance.
However collecting reliable data about IV is not an easy
task (Carobene et al. 2018; Haeckel, Carobene, and Wos-
niok 2021). To this aim, standardized methodologies have
recently been proposed (Aarsand et al. 2018; Bartlett et al.
2015): intuitively, IV can be estimated (Aarsand et al. 2021;
Carobene et al. 2018; Røraas, Petersen, and Sandberg 2012)
by means of controlled experimental studies that monitor
reference individuals2 (Carobene et al. 2016) by collecting
multiple samples over time.

Formally speaking, let us assume that a given feature
of interest x has been monitored in n patients for m time
steps. At each time step, k ≥ 2 repeated measurements
should be performed, so as to determine the AV compo-
nent of IV. Then, the IV of feature x, for patient i, is es-
timated as IVi(x) = V ariance(xi), while the AV com-
ponent is defined as AVi(x) = V ariance(xi

s), where xi

denotes the collection of values of x for patient i, and xi
s

denotes the collection of values of x for patient i at the s-

2The term reference individual denotes an individual that, for
some reasons, can be considered representative of the population
of interest (e.g., healthy patients).



th time step. Then, the BV component of IV is computed
as BVi(x) =

√
IVi(x)2 −AVi(x)2. Usually, IV, AV and

BV are expressed in percent terms, defining the so-called
coefficients of individual (resp., analytical, biological) vari-
ation, that is CV Ti(x) = IVi(x)

x̂i , CV Ai(x) = AVi(x)
x̂i

and CV Ii(x) =
BVi(x)

x̂i . The overall variations, finally, can
be computed as the average of the coefficients of variation
across the population of patients. The value of CVT, for a
given set of features x = (x1, ..., xd), can then be used
to model the uncertainty about the observations obtained
for any given patient i: indeed, any patient i, as a con-
sequence of the uncertainty due to IV, can be represented
by a d-dimensional Gaussian Ni(x

i,Σi), where xi is a d-
dimensional vector characteristic representation of patient i,
called value at the homeostatic point, and Σi is the diagonal
covariance matrix given by Σi

j,j = CV T (xj) ∗ xi
j (Fraser

2001). More generally, having observed a realization x̂i of
Ni(x

i,Σi) for patient i, its distribution can be estimated as
Ni(x̂

i, Σ̂i), where Σ̂i
j,j = CV T (xj) ∗ x̂i

j .
Due to the complexity of design studies to obtain reli-

able IV estimates, a few compiled sources of IV data, for
healthy patients, are available: the largest existing reposi-
tories in this sense, are the data originating from the Eu-
ropean Biological Variation Study (EuBIVAS) and the Bi-
ological Variation Database (BVD) (Aarsand et al. 2020;
Sandberg, Carobene, and Aarsand 2022), both encompass-
ing data about commonly used laboratory biomarkers. In the
following sections, we will rely on data available from these
sources in the definition of our experiments.

Individual Variation and Statistical Learning
One of the most simple yet remarkable results in Statisti-
cal Learning Theory (SLT) is the error decomposition theo-
rem (Shalev-Shwartz and Ben-David 2014) (also called bias-
variance tradeoff, or bias-complexity tradeoff), which states
that the true risk LD(h) of a function h from a family H
w.r.t. to a distribution D on the instance space Z = X × Y
can be decomposed as:

LD(h) = ϵBayes + ϵBias + ϵEst (1)

where ϵBayes = minf∈FLD(f) is the Bayes error, i.e.
the minimum error achievable by any measurable function;
ϵBias = minh′∈HLD(h′)−minf∈FLD(f) is the bias, i.e.
the gap between the Bayes error and the minimum error
achievable in class H; ϵEst = LD(h)−minh′∈HLD(h′) is
the estimation error, i.e. the gap between the error achieved
by h and the minimum error achievable in H .

A striking consequence of IV for ML tasks regards a gen-
eralization of the error decomposition theorem due to the
impossibility of accessing the true distributional-valued rep-
resentation of instances but only a sample drawn from the re-
spective distributions. To formalize this notion, as in the pre-
vious section, denote with fi = N (xi,Σi) the distributional
representation due to IV for instance i. Then, the learn-
ing task can be formalized through the definition of a ran-
dom measure (Herlau, Schmidt, and Mørup 2016) η defined
over the Borel σ-algebra (Z,B) on the instance space Z =

X × Y , which associates to each instance (x, y) a probabil-
ity measureN (x,Σ)× δy , where δy is the Dirac measure at
y ∈ Y . A training set S = {(x1, yi), . . . , (xm, ym)} is then
obtained by first sampling m random measures f1, . . . , fm
from ηm, and then, for each i, by sampling a random ele-
ment (xi, yi) ∼ fi. Then, the IV-induced generalization of
the error decomposition theorem can be formulated as:

Lη(h) = ϵBayes
η + ϵBias

η + ϵEst
η + ϵIVη (2)

Indeed, the true error of h w.r.t. η can be expressed as
Lη(h) = EF∼ηm

[
1
m

∑
fi∈F E(xi,yi)∼fi l(h, (xi, yi))

]
.

Letting D be the probability measure over X × Y ob-
tained as the intensity measure (Kallenberg 2017) of
η, and LD(h) = ES∼DmLS(h) be the expected er-
ror of h w.r.t. to the sampling of a training set S from
the product measure Dm, then the above expression
can be derived by setting ϵBayes

η = minf∈FLη(f),
ϵBias
η = minh′∈HLη(h

′) − minf∈FLη(f),
ϵEst
η = LD(h) − minh′∈HLη(h

′) and ϵIVη =

EF∼ηm,S∼D

[
1
m

∑
i E(xi,yi)∼fi l(h, (xi, yi))− l(h, (x′

i, y
′
i)
]
.

Thus, compared with Eq (1), Eq (2) includes an addi-
tional error term ϵIV which measures the gap in perfor-
mance due to the inability to use the IV-induced distribu-
tional representation of the instances, bur rather only a sin-
gle instantiation of such distributions. This aspect is also re-
flected in the estimation error component in which the ref-
erence minh′∈HLη(h

′) is compared not with the true error
Lη(h) but rather with the expected error over all possible in-
stantiations LD(h). In the following sections, we will show,
through an experimental study, that the impact of IV can be
significant and lead to an overestimation of any ML algo-
rithm’s performance and robustness.

Measuring the Impact of Individual Variation on
Machine Learning Models
In order to study whether and how the performance of a ML
model could be impacted by IV, we designed an experiment
through which we evaluated several commonly adopted ML
models in the task of COVID-19 diagnosis from routine
laboratory blood exams, using a public benchmark dataset.
Aside from its practical relevance (Cabitza et al. 2021), we
selected this task for three additional reasons. First, blood
exams are considered one of the most stable panels of ex-
ams (Coskun et al. 2020): this allows us to evaluate the im-
pact of IV in a conservative scenario where the features of
interest are affected by relatively low levels of variability.
Second, validated data about IV for healthy patients who
underwent blood exams are available in the specialized lit-
erature (Buoro et al. 2017a,b, 2018) and these exams have
high predictive power for the task of COVID-19 diagno-
sis (Chen et al. 2021b). Third, the selected dataset was asso-
ciated with a companion longitudinal study (authors a) that
has been used to estimate IV data for the COVID-19 posi-
tive patients: we believe this to be particularly relevant since,
even though IV data are available for healthy patients, no in-
formation of this kind is usually available for non-healthy
patients, due to the complexity of designing studies for the



collection of IV data, which could exhibit disease-specific
patterns. Although the estimation of IV is of paramount im-
portance, both in medicine and other safety-critical domains,
the striking lack of datasets presenting information to assess
IV makes it a priority to devote further efforts and initiatives
to make such resources available to the ML research com-
munity to make their models more robust and reliable.

To this purpose, we used a dataset of patients who were
admitted at the emergency department of the IRCCS Os-
pedale San Raffaele and underwent a COVID-19 test (au-
thors b). The dataset was collected between February and
May 2020 and encompasses 18 continuous features and 3
binary features (including the target). Since the dataset was
affected by missing data, in order to limit the bias due to
data imputation, we discarded all instances having more than
25% missing values: the resulting dataset encompasses 1422
instances and is described in Table A1 in Appendix A.

To evaluate the impact of IV, we used a biologically-
informed generative model whose aim was to simulate the
effect of biological and analytical variation on the mea-
sured features of the patients in the dataset. More in de-
tail, based on the definition and computation of IV de-
scribed previously, the generative model is defined by
a case-dependent, class-conditional, multi-variate Gaus-
sian distribution N(x,Σx,y), where we recall Σx,y =

diag(⟨x,
√
CV A2 + CV I2y ⟩). We note that, even though

the assumptions of normality and independence of variables
may be considered strong, they are widely adopted in the
specialized IV literature (Fraser 2001) as well as implic-
itly in the release format of the available IV data sources.
Nonetheless, we believe that further work should be devoted
at exploring more general models of IV that may take into
account dependencies among features.

More in particular, for CV A and CV Iy=0 we consid-
ered values previously reported in the literature (Buoro et
al. 2017b,a, 2018), while the values of CV Iy=1 were esti-
mated from the longitudinal observation of the COVID-19
positive patients considered in this study (authors a), using
the same methodology as described in the previous section.

We considered 7 different ML models, commonly used
in medical settings on tabular data, namely: Support Vec-
tor Machine (with RBF kernel) (SVM), Logistic Regression
(LR), k-Nearest Neighbors (KNN), Naive Bayes (NB), Ran-
dom Forest (RF), Gradient Boosting (GB), ExtraTrees (ET).
We evaluated, in particular, the scikit-learn implementations
of the previous models, with default hyper-parameters. Fur-
ther information on implementation details is in Appendix
C. We did not evaluate deep learning models as such models
often require extensive hyper-parameter optimization and
are usually out-performed by other models on tabular data
(Grinsztajn, Oyallon, and Varoquaux 2022). The impact of
IV on the performance of the above mentioned ML mod-
els was evaluated by means of a repeated cross-validation
evaluation procedure: for a total of 100 iterations, a 3-fold
cross-validation procedure was applied. More in detail, in
each 3-fold cross-validation the two training folds were used
to train the ML models, while the test fold Te was used to
obtain a perturbed fold Tep as follows: for each instance

(x, y) ∈ Te, a perturbed instance (xp, y) was obtained to
simulate the effect of individual variation, by sampling xp

from N(x,Σx,y). The trained ML model was then evaluated
on both Te and Tep to measure the impact of individual vari-
ation, if any, by comparing the distribution of average per-
formance on the original test folds with that of the perturbed
test folds. In terms of performance metrics, we considered
the accuracy, the AUC and the F1 score. The robustness of
the ML models to IV was evaluated by comparing the av-
erage performance on the non-perturbed and IV perturbed
data: in particular, we considered a model to be robust to
IV if the 95% confidence intervals for the above mentioned
quantities overlapped (equivalently, the confidence interval
of the difference included the value 0).

Results First of all, we assessed whether the IV per-
turbed data obtained by means of the considered generative
model was statistically significantly different from the orig-
inal data: ideally, to be realistic, IV-based perturbations of
data should not influence too much the overall data distribu-
tion (Fraser 2009). To this purpose, we considered a subset
of 4 predictive features (namely LY, WBC, NE and AST),
which were previously shown to be among the most pre-
dictive features for the considered task (Chen et al. 2021b).
We compared the distributions of the above mentioned fea-
tures before and after the IV perturbations, by means of the
Kolmogorov-Smirnov test with α = 0.01. The obtained
p-values were, respectively, 1 (for LY, WBC and NE) and
0.104 (for AST): thus, for all of the considered features, the
null hypothesis of equal distributions for the IV perturbed
and non-perturbed data could not be rejected.

The impact of IV on the ML models is reported in
Figure 1. The difference in performance (baseline vs per-
turbed) was significant for all algorithms: indeed, for all al-
gorithms, the confidence intervals on the baseline and IV
perturbed data did not overlap. The best algorithms on the
non-perturbed data were RF and ET, w.r.t. all considered
metrics (AUC: 0.87, Accuracy: 0.8, F1: 0.8); while the best
algorithms on the the IV perturbed data were SVM (w.r.t.
AUC: 0.69, and Accuracy: 0.5) and GB (w.r.t. F1: 0.5).

These results highlight how, even though the distributions
of highly predictive feature were not significantly affected
by IV, IV nonetheless had a significant impact on the perfor-
mance of the considered ML algorithms, that were therefore
not robust to IV-related uncertainty. Algorithms, however,
were not equal in their robustness (or lack thereof) w.r.t. IV:
in particular, the more robust models were SVM (w.r.t. Ac-
curacy, with average performance decrease 0.25, and AUC,
with average decrease 0.12) and GB (w.r.t. F1 score, with
average performance decrease 0.28), with all other models
being significantly less robust (that is, having a significantly
larger difference between baseline and IV perturbed perfor-
mances). While this latter observation can be given a learn-
ing theoretical justification based on the notion of margin3,

3Both SVM and GB are margin-based classifiers (Grønlund,
Kamma, and Green Larsen 2020; Hanneke and Kontorovich 2021).
It is not hard to see that the existence of a large margin on the
non-perturbed data is a necessary (but not sufficient) condition for
robustness to IV.



Figure 1: Results of the experiments for measuring the impact of IV on the performance of standard ML models. For each
algorithm and metrics, we report the average and 95% confidence interval for both baseline (that is, non-perturbed) and IV
perturbed data.

we note that even SVM and GB reported a significant de-
crease in performance on the IV-perturbed data: thus, even
models that are usually considered to be robust to noise can
nevertheless be strongly affected by IV.

Data Augmentation and Imprecisiation Methods to
Manage Individual Variation
In light of the results reported in the previous section, which
show the lack of robustness of standard ML models w.r.t.
IV, in this section we investigate the application of more ad-
vanced methods that attempt to directly address the repre-
sentation of IV in data and hence tackle the error decompo-
sition show in Eq (2). In particular, we consider approaches
based either on data augmentation or data imprecisiation.
In both cases, we adopted the same experimental protocol
described in the previous section (see below).

Data augmentation (Chen et al. 2021a; Van Dyk and
Meng 2001) refers to regularization techniques that aim to
increase the stability and robustness of a ML model by en-
riching the training set with new instances. In our setting,
the idea is to inject further information related to the IV dis-
tribution within the model to improve generalization.

Since in the considered setting a generative model of
IV was available, this latter was used to generate synthetic
data points to augment the original training set. Basically,
for each instance (x, y) in the training folds, we generated
n = 100 new samples from the distribution N(x,Σx,y), so
as to simulate the effect of having multiple observations, per-
turbed by IV, for each patient. We considered, in particular,
the application of the above mentioned basic data augmen-
tation strategy to the SVM (denoted as ACS) and Gradient
Boosting (denoted as ACG) ML models, since these latter
two were shown to be more robust to IV (see previous sec-
tion). The pseudo-code for evaluating the data augmentation
models is reported in Algorithm 1.

By contrast, data imprecisiation (Hüllermeier 2014;

Algorithm 1: The procedure to evaluate the impact of IV on
the data augmentation-based ML models.

procedure DATA_AUGMENTATION_EVAL(h: ML model,
S: dataset, M : metric, n : number of augmented in-
stances)

for all iterations i = 1 to 100 do
Split S in 3 class-stratified folds
for all Tr: training fold, Te : test fold do

Tra = ∅
for all (x, y) ∈ Tr do

for all iteration j = 1 to n do
Add to Tra (xp, y), xp ∼ N(x,Σx,y)

end for
end for
Tep = ∅
for all (x, y) ∈ Te do

Add to Tep (xp, y), xp ∼ N(x,Σx,y)
end for
Train h on Tra
Eval h on Te (M(h, Te)), Tep (M(h, Tep))

end for
end for
return The distributions of M(h, Te) and M(h, Tep)

end procedure

Lienen and Hüllermeier 2021b) refers to ML techniques
by which data affected by some form of uncertainty are
transformed into imprecise observations, that is distributions
over possible instances, which are then used to train spe-
cialized ML algorithms. Formally speaking, an imprecisia-
tion scheme is a function i : X × Y 7→ [0, 1]X×Y , where
X is the feature space. In the experiments, we considered
two commonly adopted imprecisiation schemes ground-
ing on, respectively, probability theory and possibility the-



ory (Denœux, Dubois, and Prade 2020), namely:

iprob : (x, y) 7→ (N(x,Σx,y), y) (3)
iposs : (x, y) 7→ (Gauss(x,Σx,y), y) (4)

where Gauss(a, b) denotes the Gaussian fuzzy vector,
whose j-component is defined as Gauss(a, b)j(x) =

e
(x−a)2

b2 . Intuitively, iprob represents each instance affected
by IV as a Gaussian probability distribution over possible in-
stances, while iposs represents each instance affected by IV
as a Gaussian possibility distribution (equivalently, a Gaus-
sian fuzzy set) over possible instances. Thus, the general
idea of applying data imprecisiation (and corresponding ML
algorithms) in our setting is to model the uncertainty due
to IV by representing each instance as a cloud of points in
the feature space whose distribution is determined by the IV
parameters, as a form of regularization.

We considered three ML algorithms proposed in the learn-
ing from imprecise data literature, namely: k-Nearest Dis-
tributions (KND, also called Generalized kNN) (Zheng,
Fung, and Zhou 2010), Support Measure Machine
(SMM) (Muandet et al. 2017), Weighted re-Sampling For-
est (WSF) (Seveso et al. 2020). See also Appendix C for
hyper-parameter settings for the considered models. KND
denotes the generalization of kNN to distribution-valued in-
stances, namely we used the iprob scheme4 and Mahalanobis
distance:

(x1 − x2)
T Σx1,y1−1 +Σx2,y2−1

2
(x1 − x2) (5)

SMM, by contrast, refers to the generalization of SVM
to instances represented as probability distributions (thus,
only the iprob imprecisiation scheme was considered). The
SMM model grounds on the notion of a kernel mean embed-
ding (Muandet et al. 2017), that is a generalization of the
notion of kernel in ML to the the space of probability distri-
butions, which could thus be seen as a measure of similarity
between two imprecise instances. For computational com-
plexity reasons, we considered the RBF kernel, which for
normally distributed imprecise instances can be expressed
in closed form as (Muandet et al. 2017):

RBFγ,iprob =
e−

(x1−x2)T (Σx1,y1+Σx2,y2+ 1
γ

I)−1(x1−x2)

2√
det(γΣx1,y1 + γΣx2,y2 + I)

(6)

Finally, the WSF model is an approximation algorithm
to solve the generalized risk minimization problem (Hüller-
meier 2014), a commonly adopted (Lienen and Hüllermeier
2021a,b) approach to deal with imprecise. WSF is based
on a generalization of bootstrapped tree ensembles to in-
stances represented as possibility distributions (thus, only
the iposs imprecisiation scheme was considered): in addi-
tion to the randomization w.r.t. the split point selection and
the bootstrap re-sampling of the instances, an additional
randomization on the feature values is considered. Specif-
ically, for each tree in the ensemble, each imprecise in-
stance iposs(x, y) in the corresponding bootstrap set is used

4Since Mahalanobis’ distance takes into account only the mean
and scale, using iposs scheme would result in the same algorithm.

to sample an instance (x′, y′), by means of a two-step pro-
cedure (Dubois, Prade, and Sandri 1993): first, a number
α ∈ [0, 1] is selected uniformly at random, then a random
value is drawn from the α-cut iposs(x, y)α = {(x′, y′) ∈
X × Y : iposs(x, y)(x

′, y′) ≥ α}. A pseudo-code descrip-
tion of WSF, along with an analysis of its computational
complexity and generalization error, is in Appendix B.

The KND, SMM and WSF models were implemented in
Python, and evaluated in a setup similar to the one adopted
for the data augmentation-based ML models, as shown in
Algorithm 2. The full code for the algorithms and evaluation
procedures is available on GitHub at anonymizedurl.

Algorithm 2: The procedure to evaluate the impact of IV on
the data imprecisiation-based ML models.

procedure DATA_IMPRECISIATION_EVAL(h: ML
model, S: dataset, M : metric, i: imprecisiation scheme)

for all iterations t = 1 to 100 do
Split S in 3 class-stratified folds
for all Tr: training fold, Te : test fold do

Tra = ∅; Teb = ∅; Tep = ∅
for all (x, y) ∈ Tr do

Tra.append(i((x, y)))
end for
for all (x, y) ∈ Te do

Teb.append(i((x, y)))
Sample (xp, y) ∼ N(x,Σx,y)
Tep.append(i((xp, y)))

end for
Train h on Tra
Eval h on Teb (M(h, Teb)), Tep (M(h, Tep))

end for
end for
return The distributions of M(h, Teb) and

M(h, Tep)
end procedure

Results The results for data augmentation and
imprecisiation-based ML models are reported in Fig-
ure 2. For all models except SMM, the difference in
performance on baseline and IV perturbed data was not
significant. The best models on the non-perturbed data
were SMM, WSF (w.r.t. AUC: 0.87) and WSF, ACG (w.r.t.
Accuracy: 0.8, F1: 0.81), while the best models on the IV
perturbed data were ACG and WSF (AUC: 0.86, Accuracy:
0.79, F1: 0.8). Comparing these results with those shown
in the previous section, it is easy to observe that both
data augmentation and data imprecisiation-based ML
models were much more robust to IV perturbations than the
standard ML models. Indeed, the most robust models (w.r.t.
AUC: WSF and ACS, with average difference 0.003; w.r.t.
Accuracy and F1: WSF and ACG, with average difference
0.006) were hardly impacted by IV. Even the least robust
model (i.e., SMM) was much more robust than the standard
ML models (average differences w.r.t. AUC: 0.08; w.r.t.
Accuracy: 0.09, w.r.t. F1: 0.09).

In light of these results, we claim that data augmentation
and imprecisiation can be helpful to improve robustness un-



Figure 2: Results of the experiments for measuring the impact of IV on the performance of data augmentation-based and data
imprecisiation-based ML models. For each algorithm and metrics, we report the average and 95% confidence interval for both
baseline (that is, non-perturbed) and IV perturbed data.

der IV perturbations. We conjecture this to be due to directly
taking into account information about IV in data represen-
tation and model training, which allows to strike a trade-
off among the various components of the generalized error
decomposition shown in Eq. (2). We note that these two
approaches, while performing similarly in terms of accu-
racy and robustness, have different characteristics that may
influence their suitability in practical scenarios. Data aug-
mentation methods allow to use out-of-the-box ML models,
since IV management is implemented as a pre-processing
step: this is not the case for data imprecisiation-based ap-
proaches, which require specialized ML algorithms. By con-
trast, imprecisiation-based approaches have lower compu-
tational complexity and may thus scale better on larger
datasets: e.g., if m is the training set size, d the number
of features, n the number of ensembled models, and r the
number of augmented instances then, the time complex-
ities of SMM and WSF are, respectively, O(m2d3) and
O(ndm log(m)); by contrast, the complexities of ACS and
ACG are, respectively, O(m2r2) and O(ndmr log(mr)).

Conclusion
In this article we studied the impact of IV, an oft neglected
type of uncertainty affecting data, on the performance and
robustness of ML models. Crucially, through a realistic ex-
periment on COVID-19 diagnosis, we showed that standard
ML algorithms can be strongly impacted by the presence of
IV, failing to generalize properly. Such an issue can severely
limit the applicability and safety of ML methods in tasks
where data are expected to be affected by IV, that is most
applications in clinical settings and more generally in real-
world domains where the manifestations of the phenomena
of interest could exhibit time-varying patterns. Our results
then imply that out-of-the-box methods cannot be naively
applied in such domains. Nonetheless, every cloud has a
silver lining, and we showed that more advanced learning

methods, grounding on data augmentation and data impre-
cisiation, can achieve better robustness w.r.t. IV: this high-
lights the need to employ models that take into account the
generative history underlying the data acquisition process,
including the uncertainty due to IV, in their learning algo-
rithms. Furthermore, we believe that our results highlight the
importance of adopting proper algorithmic and experimental
designs for ML studies in medicine: due to the potential im-
pact of IV on the performance of ML models, data collection
studies should be designed so as to enable the estimation of
IV values which could then be used in the ML development
phase. Thus, increasing emphasis should be placed on longi-
tudinal studies, or otherwise studies in which multiple sam-
ples are collected for each involved patients under controlled
conditions, so as to allow precise and reliable estimation of
IV. We believe that these results could pave the way for the
investigation of IV and its effects on the safety of ML mod-
els deployed in real-world clinical settings. Thus, we think
that the following open problems could be of interest:

• In our experiments we assumed the IV distributions to
be Gaussian with diagonal covariance. While this model
is commonly adopted in the literature, we believe that
further research should explore the relaxation of this as-
sumption, by considering more general models of IV ac-
counting for causal relationships among features;

• While we focused on the impact of IV in ML and briefly
discussed IV in SLT, we believe the theoretical side of
this issue merits further study: even though the prob-
lem of learning from distributional data has recently been
investigated in SLT (Campagner 2021; Ma et al. 2021;
Muandet et al. 2017), this area is still in its infancy;

• In this work we showed the impact of IV in the setting
of COVID-19 diagnosis from blood tests. Future work
should generalize our analysis to a broader spectrum of
applications.
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Appendix A: Data Characteristics

Descriptive statistics for the considered dataset are reported
in Table A1.

Table A1: The list of features, along with the target. Mean
and standard deviation are reported for continuous features,
distribution of values is reported for discrete feature. For the
discrete features we report the distribution of values. For the
laboratory blood data, we also report the analytical (CVA)
and biological (CVI) variation, differentiated by healthy vs
non-healthy patients, and missing rate.

Features Acronym Units Mean Std Missing CVA CVIy=0 CVIy=1

Alanine
Transaminase ALT U/L 39.87 42.26 0.07 0.04 0.093 0.051

Aspartate
Transaminase AST U/L 46.90 51.90 0.14 0.04 0.095 0.52

Alkaline
Phosphatase ALP U/L 88.61 72.09 16.24 0.05 0.054 0.045

Gamma
Glutamyl

Transferase
GGT U/L 67.48 140.52 17.09 0.035 0.089 0.036

Lactate
Dehydrogenase LDH U/L 332.52 218.43 8.02 0.03 0.052 0.024

Creatine
Kinase CK U/L 184.47 382.02 56.19 0.05 0.145 0.062

Calcium CA mg/dL 2.20 0.17 0.84 0.03 0.018 0.018
Glucosium GLU mg/dL 119.12 55.80 0.42 0.028 0.047 0.026

Urea UREA mg/dL 48.64 42.69 31.01 0.03 0.141 0.035
Creatinine CREA mg/dL 1.19 1.01 0.07 0.025 0.044 0.022
Leukocytes WBC 109/L 8.65 4.77 0.00 0.019 0.111 0.033

Erythrocytes RBC 1012/L 4.55 0.72 0.00 0.009 0.018 0.010
Hematocrit HCT % 39.47 5.57 0.00 0.018 0.024 0.019
Neutrophils NE % 72.48 13.35 8.51 0.03 0.146 0.014

Lymphocytes LY % 18.58 11.11 8.51 0.036 0.11 0.043
Monocytes MO % 7.76 3.86 8.51 0.063 0.134 0.033
Eosinophils EO % 0.82 1.59 8.51 0.079 0.156 0.098
Basophils BA % 0.34 0.27 8.51 0.031 0.128 0.056

Sex - Female
Male

42%
58% - - - - -

Age - Years 61.19 18.89 - - - -

Target - Positive
Negative

53%
47% - - - - -

Complete Blood Count data (i.e. features WBC, RBC,
HCT, NE, LY, MO, EO, BA) was obtained by analysis
of whole blood samples by means of a Sysmex XE 2100
haematology automated analyser. Biochemical data (ALT,
AST, ALP, GGT, LDH, CK, CA, GLU, UREA, CREA) was
obtained by analysis of serum samples by means of a Cobas
6000 Roche automated analyser. For each of the considered
patients, COVID-19 positivity was determined based on the
result of the molecular test for SARS-CoV-2 performed by
RT-PCR on nasopharyngeal swabs: on a set of 165 cases for
which the RT-PCR reported uncertain results, chest radiog-
raphy and X-rays were also used to improve over the sensi-
tivity of the RT-PCR test by combination testing.

Appendix B: The WSF Algorithm

Pseudo-code for the WSF algorithm is reported in Algorithm
A1. As described in the main text, the computational com-
plexity of WSF is O(nd |S| log(|S|)) where d is the dimen-
sionality of the input space.

In regard to the generalization error of WSF w.r.t. data

Algorithm A1: The WSF algorithm.
procedure WSF(S: dataset, n: ensemble size, H model
class)

Ensemble← ∅
for all iterations i = 1 to n do

Draw a boostrap sample S′ from S
Tri ← ∅
for all (x, y) ∈ S′ do

Sample α ∼ U [0, 1]
Add (x′, y′) ∼ iposs(x, y)

α to Tri
end for
Add base model hi ∈ H trained on Tri to

Ensemble
end for
return Ensemble

end procedure

generating random measure, for each base model hi, let

LS(hi) =
∑

(x,y)∈S

E(x′,y)∼iposs(x,y)

[
1h(x′) ̸=y

]

and LD(hi) = ES∼DmLS(h), where D is the intensity mea-
sure describe in Section “Individual Variation and Statistical
Learning”. Assume further, that for all h ∈ H, with proba-
bility larger than 1−δ if (x−x′)Σx(x−x′) ≤ T 2

d,|S|−d(1−δ)
it holds that h(x) = h(x′), where T is Hotelling’s T-squared
distribution (Hotelling 1992). Intuitively, this latter condi-
tion can be understood as a strong form of regularity for
models inH: if two instantiations likely come from the same
distribution due to IV, then with high probability they will
be classified in the same way by each h ∈ H. Then, letting
Vi be the out-of-bag sample for model hi, by Hoeffding’s
inequality and above assumptions it follows that, with prob-

ability 1 − δ, LD(hi) ≤ LVi
(hi) +

√
log(2|Vi|/δ)

2|Vi| . Let p =
∑

i LVi
(hi)+

√
log(2|Vi|/δ)

2|Vi| ≤ 1
2 . Then, assuming the hi err

independently of each other, and noting that WSF errs on
an instance x iff at least n/2 base models err, with probability
greater than 1 − δ

n the generalization error of WSF can be
upper bounded through an application of Chernoff’s bound
for binomial distributions (Arratia and Gordon 1989) by
e−n·KL( 1

2 ||p), where KL(a||b) = a log a
b + (1− a) log 1−a

1−b
is the Kullback-Leibler divergence.

Appendix C: Implementation Details and
Hyper-parameter Settings

All code was implemented in Python v. 3.10.4, using numpy
v. 1.23.0, scikit-learn v. 1.1.1 and scikit-weak v. 0.2.0. For
the standard ML models, we considered the default hyper-
parameter values as defined in scikit-learn v. 1.1.1, with the
exception of the random_state seed, which was set to 99
for all evaluated models to ensure reproducibility, and the
max_depth hyperparameters for Random Forest and Gradi-
ent Boosting, which were set to 10 to avoid over-fitting and
reduce the running time. For the data augmentation mod-
els we set the number of augmentation rounds to 100: for



ACS we used as base model a SVC with rbf kernel and
default hyper-parameters, while for ACG we used a Gra-
dientBoostingClassifier with max_depth set to 0 and ran-
dom_state set to 99 for consistency with the classical case.
For SMM we used as kernel the RBF kernel defined in (6)
with γ = 1

num. features , while for WSF we used ExtraTreeClas-
sifier as base classifier, we set the number of ensembled
models to 100 and the random_state seed to 99. Finally, for
KND we set the number of neighbors k to 5.



Part II

Dealing with Imprecision in the

Output: Cautious Inference
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The focus of the second part of this work will be on the handling of imprecision

in the output of a ML model, that is the issue of how to employ imprecise set-valued

predictions as an uncertainty quantification mechanism, to implement cautious in-

ference algorithms that are able to denote and communicate their uncertainty about

the issued classifications. These kinds of approaches have become widely relevant

within the uncertainty quantification literature [133], due to their claimed simplic-

ity of interpretation compared with techniques based on more complex uncertainty

representation formalisms, as well as due to the availability of very effective, com-

putationally efficient, and theoretically robust methods. Among such methods, in

particular, this chapter will focus on three main classes of approaches that have

attracted some attention in the recent years, namely selective prediction, decision-

theoretic methods and conformal prediction. The aim of this part, then, will be to

study two main theoretical questions related to these three families of techniques.

In the first chapter, the main objective will be to investigate the relationships

among the above three mentioned cautious inference approaches, with the aim of

addressing research question P2.1 and thus providing a characterizations of the

conditions under which (specific instantiations of) the corresponding learning algo-

rithm could be thought as equivalent, or providing equivalent results. Focusing on

a specific decision-theoretic family of approaches, namely three-way decision, this is

a general post-hoc cautious inference method that stems from a direct generaliza-

tion to set-valued prediction of the decision-theoretic expected utility principle, its

relationship with selective and conformal prediction will be investigated. In partic-

ular, in the first section the learnability properties of three-way decision learning

algorithms will be investigated within a generalization of the PAC learning frame-

work, by which it will be shown that, under weak assumptions with respect to the

selected learning algorithm, decision-theoretic methods generalize selective predic-

tion ones. The following section, on the other hand, will focus on the relationship

between three-way decision and conformal prediction, with the aim of providing a

finer characterization of the learnability and validity properties for the former class

of methods: to this end, the main theoretical contribution will be the proposal of
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two procedures, to transform a three-way decision-based classifier into a conformal

predictor and vice-versa, which will lead to a characterization of the conditions un-

der which a three-way decision-based classifier can be isomorphically associated with

a corresponding conformal predictor, with their set-valued predictions being gener-

ally equivalent. Complementing the above mentioned theoretical contributions, the

first chapter of this part also explores three empirical contributions. First, show-

ing, on a wide set of benchmark datasets, that the above mentioned constructions

for transforming a three-way decision-based classifier into a conformal predictor and

vice-versa can be applied to improve the accuracy of any given cautious classifiers

with a minimal cost in terms of efficiency. Second, that the same constructions can

be used to provide a generalization of conformal prediction to the setting of learning

from imprecise data. Third, to illustrate a first initial attempt to investigate the

user-oriented perspective on the impact of cautious inference methods on the socio-

technical systems in which they are embedded. To this purpose, the results of a pilot

study concerning the application of cautious inference to a complex real-world med-

ical problem will be discussed, showing that cautious inference methods can provide

an improvement not only terms of accuracy or robustness [12, 32], but also in terms

of user-perceived usefulness.

The second chapter, instead, will focus on research question P2.2 and investigate

the issue of ensemble methods for cautious classifiers, from two different perspectives.

In the first section, the application of cautious classifiers as base models to improve

the generalization of standard ensemble techniques will be investigated by means of

a large-scale comparison of several ensemble methods, encompassing both standard

ensembling techniques, methods based on the combination of cautious predictors as

well as methods based on other uncertainty representation formalisms. The main

empirical contribution will be to show that ensemble methods based on the combi-

nation of cautious predictors, specifically so three-way decision-based models, can

improve the robustness to noise as well as the generalization compared to standard

ensemble techniques. In the second section, on the other hand, the application of

ensemble methods to address the validity-efficiency trade-off in cautious inference
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will be investigated, focusing on the study of different ensembling approaches in

the framework of conformal prediction. The main theoretical contribution will be

the introduction of a general methodology, drawing from the relationships between

conformal prediction and possibility theory, to define and study the properties of

methods to ensemble conformal predictors, as well as a characterization of the con-

ditions for ensuring the validity of the resulting ensemble methods and investigation

of their other properties, including efficiency, based on a general approach, grounding

on copula theory, that relaxes assumptions (e.g. independence) commonly held in

the existing literature. The main empirical contribution, on the other hand, will be

the application of the above mentioned ensembling methods for cautious inference

to the setting of multi-variate time series classification, showing that such techniques

can improve the performance of state-of-the-art precise classification models as well

as of state-of-the-art cautious inference methods.
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Chapter 5

Cautious Inference Methods

As mentioned in the Introduction, cautious inference refers to a generalization of the

standard supervised learning setting in which a ML model is allowed to be imprecise,

in the sense that its output is not necessarily assumed to be a single class label but

rather a set of possible labels, associated with an epistemic semantics: one of the the

labels in the set is likely to be the correct one, according to the cautious predictor,

but no further, more precise, information is provided.

In its most general form, cautious inference can be understood as a generalization

of both standard supervised learning, which allows models of the form h : X → Y ,

and learning with rejection [66], which allows models of the form h : X → Y ∪ {⊥}
where ⊥ denotes an act of rejection from the model. To this purpose, cautious

inference approaches consider models of the form h : X → 2Y . For any given

instance x, the event |h(x)| > 1 denotes the presence of some degree of imprecision

in the output of the model h, as a way to trade-off a reduced precision with an

improvement in terms of accuracy [114, 122], whenever there is some uncertainty as

to which label Y would be the correct one to predict. Indeed, as |h(x)| increases, the

precision of h decreases but, at the same time, the probability that the correct label

y is in h(x) grows, making h itself more robust and less prone to risky classifications

albeit less directly informative.

To make this intuitive formulation of cautious inference more concrete, several

approaches have been proposed in the literature [125, 141], starting from the pio-
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neering work of Chow on optimal rejection rules [66]: such approaches encompass

non-deterministic classifiers [84, 168], thresholding methods [45, 105, 108], decision-

theoretic methods [45, 166, 173, 267], methods based on imprecise probabilities [72,

172, 271], conformal prediction [7, 14, 251] and selective prediction [265, 111, 192].

The aim of this chapter will be to address research question P2.1 and thus inves-

tigate the theoretical properties of and relationships among three popular cautious

inference frameworks among the above mentioned ones, namely decision-theoretic

methods, conformal prediction and selective prediction, as representative examples

of commonly used cautious inference approaches in practice. The main focus, in par-

ticular, will be on the study of theoretical properties of decision-theoretic methods, a

term which refers to a general family of post-hoc cautious inference approaches that

generalize to the context of set-valued imprecise predictions, the expected utility

criterion. In the standard supervised setting, this latter can be expressed as:

y∗(x) = argmin
y∈Y

∑

y′ ̸=y∈Y
py

′

h (x) · ϵy,y′ (5.1)

= argmax
y∈Y

∑

y′∈Y
py

′

h (x) · uy,y′ (5.2)

where py
′

h (x) is the probability score assigned to class label y′, for instance x, by

the ML model h, ϵy,y′ is the cost of making an error associated with predicting

class label y when the true class label would be y′ and uy,y′ is the utility associated

with predicting class label y when the true class label would be y′. Thus, the first

formulation of the expected utility criterion amounts to selection of the class label

that minimizes the expected mis-classification cost, while the second formulation

amounts to selecting the class label that maximizes the expected utility: the two

formulations are obviously equivalent as long as ϵy,y′ and uy,y′ are negatively, affinely

correlated. The appeal of this decision rule in the ML setting is that, if the probability

estimates ph given by the model h are calibrated, then the above mentioned rule is

equivalent to adopting the optimal Bayes classifier [283]. Thus, the generalization

of this criterion aims to extend this association to the setting of cautious inference:

such a generalization is usually achieved by requiring a generalization of the cost
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function ϵ (equivalently, of the utility function u) to set-valued prediction, i.e. to

functions of the form c : 2Y × Y → R. Several approaches have been proposed to

address this generalization, among them the following sections will focus on a general

formulation based on the theory of three-way decisions [45, 47, 267], an approach to

decision-making with imprecision originally formulated in the context of Rough Set

theory [268]. In its most general formulation [45], three-way decision adopts an error-

based formulation based on the generalization of the error function ϵ as obtained by

a decomposition of the form c(T, y′) = ϵT,y′ + α(|T |), where ϵ : 2Y × Y 7→ R is

a (normalized) error function such that maxT∈2Y ,y′∈Y ϵT,y′ = 1 and α : N → R

is an imprecision penalty function that is monotonically increasing and such that

α(1) = 0. Intuitively, while the ϵ term penalizes incorrect predictions as in the

standard supervised setting, the α term further penalizes imprecise predictions, so as

to allow the modeling in the cost function c of a trade-off principle between validity

and efficiency of the set-valued predictions. The utility maximization principle is

then generalized as:

T ∗(x) = arg min
T∈2Y

∑

y∈Y
ϵT,yp

y
h(x) + α(|T |) (5.3)

The rationale to focus on this specific instantiation of the decision-theoretic ap-

proach stems from the above mentioned relationship with optimal Bayes classifiers,

from its increasingly wide adoption in ML [47], as well as from its simplicity and

flexibility. Indeed, even though three-way decision requires only a generalization of

the cost function, in contrast with other approaches that also require the adoption

of uncertainty representation frameworks which are more general and complex than

probability theory [73, 166, 181, 264, 271], it is flexible enough to encompass also the

previously mentioned methods as well as thresholding ones [45, 173], by appropriate

selection of the cost function c(T, y′).

Despite these intuitively appealing characteristics, however, the theoretical prop-

erties of three-way decision, and decision-theoretic cautious inference methods more

in general, have scarcely been considered in the literature, mostly focusing on their

empirical evaluation or providing theoretical results resting on strong calibration
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guarantees [67, 173] which are in general hard to satisfy based on finite samples. To

address these limitations, then, this chapter will investigate the theoretical properties

of three-way decision-based cautious inference, by relating this approach with two

other cautious inference methods that have been widely studied from the theoretical

perspective, namely selective prediction and conformal prediction.

Section 5.1, in particular, will be devoted to the study of PAC learning-style

robustness guarantees for a specific approach to three-way decision-based cautious

inference, based on the generalization of the empirical risk minimization paradigm

to cautious inference, and its relationship with the selective prediction framework as

generally formulated by El-Yaniv et al. [111, 257, 265]. This latter is a framework

for learning with rejection in which a pair of classifiers f : X → Y, g : X → [0, 1] is

chosen so as to minimize the selective risk:

R(f, g) =

∫
Z
l(y, h(x))g(x)dz∫

Z
g(x)dz

,

which is an efficiency-reweighted version of the true risk in Eq. (1.1). Intuitively, g

represents a rejection function that describes the probability of the selective predictor

h = (f, g) to abstain on any given instance x: in the specific case where ∀x ∈
X, g(x) ∈ {0, 1}, then g(x) = 0 implies that x is an uncertain instance for which the

output prediction should be maximally imprecise. The selective risk, then, represents

a trade-off between accuracy and efficiency, similarly to the cost function formulation

adopted in three-way decision. One of the seminal results in selective prediction

theory, proven in [257], shows that, given a class of classifiers H and a finite sample

S, the above expression can be minimized with high probability guarantees (thus

providing PAC learning-style bounds on both accuracy and efficiency) by a version

space-based [171] algorithm defined as:

f(x) = ERM(H, S) (5.4)

g(x) = 1 ⇐⇒ ∀h ∈ H s.t. LS(h) ≤ LS(f) + ϵ, f(x) = h(x). (5.5)

The main theoretical contribution of Section 5.1 will be to show that the above men-

tioned PAC learning-style guarantees for three-way decision enable to draw a corre-

spondence with the version space-based formulation of selective prediction, showing
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in particular that, under a weak realizability assumption [128], this latter can be

understood as a special case of three-way decision.

Section 5.2, by contrast, will be devoted to a more general theoretical charac-

terization of three-way decision in its post-hoc formulation described previously, by

exploring its connection with conformal prediction [251]. This latter is a post-hoc

cautious inference method inspired by non-parametric statistics [126] and the the-

ory of algorithmic complexity [150], in which imprecise predictions are generated by

means of a non-conformity measure m : Z∗ × Z → R which describes the similar-

ity of a new instance (x, y) to a training set S. In particular, in the classification

setting, where the non-conformity measure often depends on an underlying classifier

h, a cautious inference method is obtained by a non-parametric, confidence set-style

correction procedure that transforms h into a set-valued predictor by associating

p-values px(y) from a non-parametric permutation procedure to the class labels and

then obtain a confidence set over Y :

px(y) =
|{(xi, yi) ∈ S : mh(S, (x, y)) ≤ mh(Si ∪ {(x, y)}, (xi, yi))}|+ 1

|S|+ 1
(5.6)

T ϵ
m(x) = {y ∈ Y : px(y) > ϵ} (5.7)

where Si refers to i-deleted version of the training set S, in which the instance (xi, yi)

has been removed from S. Intuitively, T ϵ select all class label which, according to the

underlying model h, would be not too dissimilar from the observations in the training

set: the values px(y), in particular, represent p-values. In the recent years, conformal

prediction has attracted increasing interest due to its post-hoc nature, which similarly

to three-way decision allows application to any existing ML algorithm [7], as well

as due to its appealing theoretical properties, which are much stronger than typical

PAC learning-style ones and establish that, under very weak conditions on the data

generating distribution D, the following result holds [251]:

Theorem 4. Let m be a non-conformity measure, and assume that the instances

in S has been sampled i.i.d. from D. Let (x, y) be a new instance drawn from D,

ϵ ∈ [0, 1]. Then Pr(x,y)∈D(y /∈ T ϵ
m(x)) ≤ ϵ
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The main contribution of Section 5.2, then, will be the proposal of a novel

procedure to transform any three-way decision cautious classifier into a conformal

predictor, as well as of two reverse algorithms to transform a conformal predictor

into a decision-theoretic classifier. By means of these algorithms, the relationships

among these two cautious inference paradigms are investigated, providing general,

robust learning bounds for three-way decision and general decision-theoretic algo-

rithms based on results analogous to Theorem 4. These theoretical results will also

be complemented with an experimental investigation of the proposed transformation

algorithms showing that their successive application can significantly improve the

accuracy of an underlying three-way decision cautious classifier. Finally, the chapter

will conclude with an application of the above mentioned approaches in a user study

in which a cautious inference algorithm is compared against a standard supervised

learning model in terms of ecological utility and user satisfaction in a medical deci-

sion making problem, showing promising results in terms of improved user-perceived

utility and satisfaction.
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Abstract—In this article we study the theoretical properties
of Three-way Decision (TWD) based Machine Learning, from
the perspective of Computational Learning Theory, as a first
attempt to bridge the gap between Machine Learning theory
and Uncertainty Representation theory. Drawing on the math-
ematical theory of orthopairs, we provide a generalization of
the PAC learning framework to the TWD setting, and we use
this framework to prove a generalization of the Fundamental
Theorem of Statistical Learning. We then show, by means of our
main result, a connection between TWD and selective prediction.

I. INTRODUCTION

IN the recent years, there has been an increasing interest
toward exploring the connections between learning theory

and different uncertainty representation theories: This trend
includes both the generalization of standard learning-theoretic
tools and techniques to settings that involve representation
formalisms that are more general than probability theory [1],
[2], as well as the theoretical study of algorithms inspired by
uncertainty representation [3], [4].

Among other uncertainty representation theories, Three-way
decision (TWD) is an emerging computational paradigm, first
proposed by Yao in Rough Set Theory [5], based on the
simple idea of thinking in three “dimensions” (rather than in
binary terms) when representing and managing computational
objects [6]: in the Machine Learning (ML) [7] setting, this
notion is usually declined in terms of allowing ML models to
abstain. This approach attracted a large interest, also justified
by promising empirical results in different ML tasks such
as active learning [8], [9], cost-sensitive classification [10],
clustering [11], [12], [9]. Despite these promising empirical
results, the theoretical foundations of TWD-based ML re-
ceived so far little attention [13], [14]. Indeed, even though, in
the recent years, there has been an increasing interest toward
generalizing computation learning theory (CLT) to cautious
inference methods such as selective prediction [15] or the
KWIK (Knows what it Knows) framework [16], such results
cannot be easily applied to the TWD setting: While in the
TWD setting abstention is a property of single classifiers; in
the latter two frameworks abstention is usually achieved by
consensus voting.

In this article, we study the generalization of a standard
CLT mathematical framework, the so-called Probably Ap-
proximately Correct (PAC) learning framework, to the TWD
setting: In particular, we will provide a generalization of the
Fundamental Theorem of Learning to the TWD setting, and we

show that our result generalizes previous results in the selective
prediction setting. More in detail, the rest of this article is
structured as follows: In Section II we provide the necessary
mathematical background on TWD (in Section II-A) and CLT
(in Section II-B); in Section III we describe the generalization
of the PAC learning framework to the TWD setting and we
prove our main result; finally, in Section IV, we summarise
our contribution and describe possible research directions.

II. BACKGROUND

A. Three-way Decision and Orthopairs

In this work we will refer to the formalization of TWD-
based ML models (in the following, TW Classifiers) as or-
thopairs:

Definition 1. An orthopair [17] over the universe X (which
represents the instance space) is a pair of sets O = (P, N)
such that P, N ⊆ X and P ∩N = ∅, with P and N standing,
respectively, for positive and negative. The boundary is defined
as Bnd = (P ∪ N)c.

An orthopair represents an uncertain concept: Specifically,
the status of the elements in the boundary is uncertain (i.e.,
it is not known whether they belong to the concept). Thus, a
given orthopair stands as an approximation for a collection of
consistent concepts:

Definition 2. We say that an orthopair O = (P, N) is
consistent with a concept C ⊂ X if x ∈ P =⇒ x ∈ C
and x ∈ N =⇒ x /∈ C.

Finally, we remark that it is possible to define different
orderings between orthopairs: In particular, O2 is less infor-
mative than O1, denoted O2 ≤I O1 if P2 ⊆ P1 and N2 ⊆ N1.

B. Computational Learning Theory

Computational Learning Theory [18] (CLT) refers to the
branch of Machine Learning and Theoretical Computer Sci-
ence focusing on the theoretical study of learning algorithms.
Various mathematical formalisms have been proposed toward
this goal, in this article we will refer to the PAC (probably
approximately correct) learning framework, first proposed
in [19]. Formally, let X be the instance space and Y be
the target space, in this article we will focus on the binary
classification setting, that is Y = {0, 1}. We assume that the
observable data is generated i.i.d. according to an unknown
probability distribution D over X ×Y . Let H be a hypothesis
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class, that is a collection of functions h : X 7→ Y , we define
the true risk of h w.r.t. D as:

LD(h) = ED [l(h(x), y)] =

∫

X×y

l(h(x), y)dD(x, y) (1)

where l : Y 2 7→ R+ is a loss function. Since D is unknown,
the true risk cannot be computed: It is usually approximated
through the so-called empirical risk based on a sample, called
training set, S = (〈x1, y1〉, . . . , 〈xm, ym〉):

LS(h) =
1

m

m∑

i=1

l(h(xi), yi) (2)

Given a training set S, we denote by SX the tuple SX =
(x1, ..., xm), and by SY the tuple SY = (y1, ..., ym). The
Empirical Risk Minimization w.r.t. the hypothesis class H
is the family of algorithms ERMH,m : (X × Y )m 7→
H s.t. ERMH,m(S) ∈ argminh∈HLS(h), where S =
(〈x1, y1〉, . . . , 〈xm, ym〉) is the training set.

The Fundamental Theorem of Learning [20] establishes a
relation between the true risk and empirical risk for the ERM
algorithm w.r.t. a hypothesis class H which depends only on
the so-called VC dimension, a combinatorial dimension of the
complexity of H.

Theorem 1. Let H be a hypothesis class with VC dimension
d. For each ε, δ ∈ (0, 1) and distribution D, then if ERMH
is given a dataset S of size m ≥ n0, with

n0 = O(
d + ln( 1

δ )

ε2
) (3)

with probability greater than 1 − δ, it holds that
|LD(ERMH(S)) − LS(ERMH(S))| ≤ ε. If, further, the
realizability1 assumption holds, then, if S is a dataset of size
m ≥ n1, with

n1 = O(
d + ln( 1

δ )

ε
) (4)

with probability greater than 1 − δ, it holds that
LD(ERMH(S)) ≤ ε.

Few works have studied the generalization of CLT results to
hypothesis that can be described as orthopairs (that is, classi-
fiers that can abstain on selected instances), mainly under the
framework of selective prediction [21]: In this setting, the goal
is to design learning algorithms AH,m : (X × Y )m 7→ OH,
where OH ⊆ TW (H) (see Eq. (15)), s.t. LD(A(S)) = 0
but A(S) is allowed to abstain on certain instances. This
abstention is usually achieved either by the combination of
a standard hypothesis h : X → Y with a rejection function
r : X → {⊥, >}, or, equivalently, by consensus voting
based on a version space V ⊆ H [21]. As we show in
the following sections (specifically, in Section III-A) the
setting we consider is a proper generalization of selective
prediction. More recently, the application of orthopairs in
CLT has been studied in the setting of adversarial machine
learning [22], as well as to characterize the generalization

1Here realizability means that ∃h ∈ H s.t. LD(h) = 0.

capacity of hypothesis classes under generative assumptions
[23]. We note, however, that even though the above mentioned
work and the framework we study in this article rely on the
representation formalism of orthopairs, the aims of these three
frameworks are essentially orthogonal, also in terms of the
mathematical techniques adopted: Indeed, while the three-way
learning framework we study relies on a generalization of the
ERM paradigm, the frameworks studied in [23], [22] rely on
a transductive learning approach.

III. THREE-WAY LEARNING

In this Section, we provide a first study of a generalization
of standard Computational Learning Theory to the setting of
TW Classifiers. As hinted in Section II-A, we will represent
a TW Classifier as an orthopair O; then, a hypothesis space
of TW Classifier will be represented as a collection O of or-
thopairs over X . In the TWD literature, the risk of a TW Clas-
sifier is usually evaluated by means of a cost-sensitive gener-

alization of the 0-1 loss: lTW (O(x), y) =





1 O(x)⊥y

λa x ∈ BndO

0 otherwise

,

where λa ∈ [0, 0.5) is the cost of abstention, and O(x)⊥y is
the error case, that is (x ∈ PO ∧ y = 0) ∨ (x ∈ NO ∧ y = 1).
Compared to the standard definition of risk adopted in the
TWD literature we assume that the cost of error is always 1.
Based on the loss function lTW we can define both the true
risk LTW

D and the empirical risk LTW
S . Evidently, the risk of

O can be decomposed as the sum of two functions:

LTW
D (O) = ED [lTW (O(x), y)]

= ED
[
1O(x)⊥y

]
+ λaED [1x∈BndO

]

= Prx∼D(O(x)⊥y)

+ λa · Prx∼D(x ∈ BndO)

(5)

The same decomposition can be similarly applied for the
empirical risk. Let ED(O) = Prx∼D(O(x)⊥y) and AD(O) =
λa · Prx∼D(x ∈ BndO). We denote with OOPT = {O ∈
O : ED(O) = minO′∈OED(O′)}. We say that D is weakly
realizable w.r.t. O if ∀O∗ ∈ OOPT it holds that ED(O∗) = 0.
If, furthermore, ∃O∗ ∈ OOPT s.t. AD(O∗) = 0, then we
say that D is strongly realizable. Through this article, we
will assume only weak realizability. Compared to the real-
izability assumption, weak realizability assumption is indeed
much weaker. As an example if the vacuous TW classifier
O⊥ = (∅, ∅) ∈ O, then every distribution D is trivially weakly
realizable w.r.t O, while it is clearly not strongly realizable.

Let ε ∈ (0, 1), α ∈ (0, λa), then O ∈ O makes an (ε, α)-
failure if one of the following holds:

ED(O) > ε, AD(O) > minO∈OOP T AD(O) + α (6)

Thus, O (ε, α)-fails if either its error is greater than ε, or if its
abstention rate is greater, by a margin of at least α, than the
lowest abstention rate among those TW Classifiers that make
no error. We thus define the notion of Three-way learnability:

Definition 3. O is Three-way learnable if exists an algorithm
Cm : (X × Y )m 7→ O and mO : (0, 1)2 × (0, λa) 7→ N such
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that, for each distribution D, ε ∈ (0, 1), δ ∈ (0, 1), α ∈ (0, λa)
∀m ≥ mO(ε, δ, α) , and given S ∼ Dm, C returns O ∈ O,
s.t. O (ε, α)-fails with probability lower than δ

We then want to provide a characterization for TW learn-
ability, similar to Theorem 1. For this purpose, we first define
a generalization of the ERM algorithm to the TWD setting,
that we call Three-way Risk Minimization (TW-RM):

Definition 4. Let S ∈ (X × Y )m. Then,

TWRM(S) = argmaxO∈OAX\SX
(O) s.t.

ES(O) = minO′∈OES(O′)

AS(O) = minO′∈OOP T AS(O′)

(7)

Thus, the TWRM algorithm selects, among those TW clas-
sifiers with minimal empirical risk, the TW classifier with
maximal abstention rate on the non-observed instances (that is,
the instances in X\SX ). This has the goal of minimizing errors
on non-observed instances, and is analogous to the maximum
margin principle, and the disagreement coefficient in version
space learning, active learning and selective prediction [15].

In order to characterize TW learnability, given hypothesis
class O (i.e. a collection of orthopairs), we define two derived
hypothesis classes. Given any orthopair O ∈ O we can define

a classifier hO : X 7→ {0, 1}, as: hO(x) =

{
1 x ∈ BndO

0 otherwise
.

We denote the collection of such binary classifiers as HO =
{hO : O ∈ O}. Thus, given O, the derived hypothesis class
HO describes the abstention capacity of O: In the classical
setting HO = {h0}, where ∀x ∈ X , h0(x) = 0, as no
classifier in O is able to abstain: For all O ∈ O, BndO = ∅.

In regard to the second derived hypothesis class, we observe
that the order ≤I defined in Section II-A defines a meet semi-
lattice [17] on O with minimal element O⊥ = (∅, ∅). Then,
we denote with O> = {O ∈ O : @O′ ∈ O s.t O ≤I O′}, i.e.
O> is the anti-chain of maximally informative elements of O.

We now prove a generalization of Theorem 1 to the TWD
setting, through which we show that the TW learnability of
a hypothesis class O, using the TWRM algorithm, can be
characterized in terms of the derived hypothesis classes HO
and O>. In order to do so, we consider the VC dimension of
the two derived hypothesis classes HO and O> as follows:

AV C(O) = V C(HO) (8)
EV C(O) = sup{|S| : S ⊆ X ∧ ∀C ⊆ S.∃O ∈ O (9)
s.t. C = (PO ∩ S) ∧ (BndO ∩ S) = ∅}

Then, the following result holds:

Theorem 2. Let O be s.t. AV C(O) = da and EV C(O) =
de. Then, for any distribution D weakly realizable w.r.t O,
ε, δ ∈ (0, 1), α ∈ (0, λa), if TWRMO is given a dataset of
size m larger than :

O

(
max

{
1

ε

(
de + ln

1

δ

)
,

(
λa

α

)2(
da + ln

1

δ

)})
(10)

then, TWRMO(S) (ε, α)-fails with probability lower than δ.

Proof. We want to guarantee that the following bound holds:

Prfail = P (S : ∃O ∈ O ∧
|ED(O) − ES(O)| > ε ∨
|AD(O) − AS(O)| > α) < δ (11)

Then, the results would follow by uniform convergence. By
the union bound, it holds that:

Prfail ≤ Pr(S : ∃O ∈ O, |ED(O) − ES(O)| > ε)

+ Pr(S : ∃O ∈ O, |AD(O) − AS(O)| > α),
(12)

thus, it is sufficient to jointly upper bound the two summands
by δ

2 . As regards the error rate (i.e E) bound, we note that:

Pr(S : ∃O ∈ O, |ED(O) − ES(O)| > ε)

Pr(S : ∃O ∈ O>, ED(O) > ε)
(13)

Since O> is a binary hypothesis class, then, by Theorem 1, the
above bound holds with probability greater than 1− δ as long
as |S| ≥ 1

ε

(
de + ln 1

δ

)
. Furthermore, by uniform convergence

this holds, in particular, for TWRMO(S).
For the abstention part, the same line of reasoning can be

applied, however, as we only assume weak realizability, only
the result in Theorem 1 that applies to agnostic learning can
be used. Then, as long as |S| ≥

(
λa

α

)2 (
da + ln 1

δ

)
it holds

that |AD(O) − AS(O)| < α with probability greater than
1−δ. This holds, in particular for TWRMO(S), and thus the
theorem follows by uniform convergence and Eq. (12).

As a simple corollary, in the strong realizable setting, it can
be easily verified that:

Corollary 1. Let O be s.t. AV C(O) = da and EV C(O) =
de. Then, for any distribution D strongly realizable w.r.t O,
ε, δ ∈ (0, 1), α ∈ (0, λa), if TWRMO is given a dataset of
size m larger than :

O

(
max

{
1

ε

(
de + ln

1

δ

)
,
λa

α

(
da + ln

1

δ

)})
(14)

then, TWRMO(S) (ε, α)-fails with probability lower than δ.

Note that, if |O| < ∞, then it can be easily shown
that AV C(O) ≤ log2(HO). Furthermore, it also holds that
EV C(O) ≤ log2(O>), as if O satisfies Eq. (8), then it
obviously holds that BndO = ∅ and hence O ∈ O>.

A. Three-way Learning and Selective Prediction

Finally, we show that the proposed mathematical frame-
work and the obtained results can be used to establish a
connection between TWD and selective prediction. This result
relies on the connection between version space theory and
orthopairs [17], and allows us to derive a generalization
bound, originally proven by El-Yaniv et al. [21], for selective
prediction: This shows that the latter setting can be understood
as a special case of TWD. Let H be a hypothesis class of
binary classifiers, we call the Three-way Closure of H, denoted
as TW (H), the hypothesis space obtained as:

TW (H) =
⋃

{OH : H ⊆ H} (15)

ANDREA CAMPAGNER, DAVIDE CIUCCI: THREE-WAY LEARNABILITY: A LEARNING THEORETIC PERSPECTIVE ON THREE-WAY DECISION 245



where, for each H ⊆ H, OH = ({x : ∀h ∈ H.h(x) =
1}, {x : ∀h ∈ H.h(x) = 0}). Basically, we associate with
each possible version space H in H a corresponding orthopair
OH which abstains on every instance for which the hypotheses
in H disagree [17]. Then we can prove the following result:

Corollary 2. Let |H| < ∞, let O = TW (H) the Three-way
Closure of H, and let λa = 1. Then, for any distribution D
strongly realizable w.r.t O, and for any δ ∈ (0, 1), if TWRMO
is given a dataset of size m, then:

1) With probability 1 it holds that ED(TWRMO(S)) = 0;
2) With probability greater than 1 − δ it holds that:

AD(TWRMO(S)) ≤ O

(
1

m
ln

( |HO|
δ

))
(16)

= O

(
1

m

(
|H| + ln

1

δ

))
(17)

Proof. The first equality easily follows from strong realiz-
ability and by noting that, by definition of TW (H), x /∈
BndTWRMO(S) iff (x ∈ SX ∨ ∃v ∈ {0, 1}.∀h ∈ {h′ ∈
H : ES(h) = 0}, h(x) = v). In regard to the second
statement, the first inequality follows by standard algebraic
manipulations. The equality, on the other hand, follows by
noting that |HO| = 2H (as TW (H) contains a TW classifier
for each possible subset of hypotheses in H).

IV. CONCLUSION

In this article, we aimed at providing an initial study on
the generalization of CLT results to the TWD setting. To
this purpose, we first proposed an extension of the standard
PAC learning framework to the TWD setting, that we called
Three-way Learning and showed that our results generalize the
previously known results in the selective prediction literature.
As our results represent only a first direction in the theoretical
study of TWD as applied to Machine Learning, we believe
that the following questions would be of particular interest:

• Our analysis in Theorem 2 relies on a generalization of
the VC dimension to the TWD setting. Tighter bounds
can usually be obtained by relying on concepts such as
Rademacher complexities or covering numbers [18]. How
can these be generalized to TWD?

• In Corollary 2 we proved that, in the realizable case,
selective prediction can be understood as a special case
of TWD learning. Does this analysis also applies to the
agnostic (i.e. non-realizable) setting [15]?

• PAC-Bayes bounds [24] study generalization bounds that
apply when a probability distribution is defined over the
hypothesis space. How can the PAC-Bayes framework
be generalized to TWD? Interestingly, a very similar
open problem has recently been posed also in Belief
Function Theory (BFT) [25]. Due to the connection with
random sets, a belief function can be seen as a probability
distribution over orthopairs [26]: Then, the generalization
of the PAC-Bayes framework to TWD would also enable
studying the relationships between TWD and BFT.
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a b s t r a c t

The aim of this article is to study the relationship between two popular Cautious Learning
approaches, namely: Three-way decision (TWD) and conformal prediction (CP). Based on the
novel proposal of a technique to transform three-way decision classifiers into conformal
predictors, and vice versa, we provide conditions for the equivalence between TWD and
CP. These theoretical results provide error-bound guarantees for TWD, together with a for-
mal construction to define cost-sensitive cautious classifiers based on CP. The proposed
techniques are then applied and evaluated on a collection of benchmark and real-world
datasets. The results of the experiments show that the proposed techniques can be used
to obtain cautious learning classifiers that are competitive with, and often out-perform,
state-of-the-art approaches. Further, through a qualitative medical case study we discuss
the usefulness of cautious learning in the development of robust Machine Learning.

� 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we study the problem of Cautious Learning [7]. This latter is a generalization of supervised learning in which
the Machine Learning (ML) models are allowed to express set-valued predictions. The set-valued predictions allow the ML
models to highlight a possible state of uncertainty, that should require further intervention from a human decisionmaker [5].

Recently, such techniques have been advocated as a promising approach [17] to develop reliable ML-based decision sup-
port in so-called decision-critical domains, e.g. medicine, social policing. Indeed, in all these settings, errors induced by ML
models could have high-impact consequences. Therefore the decision makers could accept less precise, but more reliable
predictions. Set-valued predictions could then be used by the decision-maker either to take a decision, if the risk of doing
so is not assumed to be too high; or to prompt the need to collect more information, so as to foster human-in-the-loop
decision-making [14,23].

Cautious learning methods clearly entail a trade-off between different quality dimensions, that should be properly eval-
uated so as take into account different desirable properties. These may include:

� Cost-sentitiveness [10]: that is, whether the model properly takes into account information about the utilities and costs of
the different alternative decisions;

https://doi.org/10.1016/j.ins.2021.08.009
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� Validity [35]: that is, whether the performance of the model can be reliably bounded, usually through a theoretical
analysis;

� Efficiency [36]: that is, whether the set-valued predictions provided by the model are as informative as possible.

In recent years, many different cautious learning techniques have been proposed to strike a balance among these prop-
erties. These include models based on imprecise probabilities [41], or belief functions [27]; selective classification [12];
three-way decision [43] (TWD); and conformal prediction [35] (CP).

While all the mentioned models have been successfully employed in empirical settings, their theoretical characterization
largely remains an open problem. First, there is a lack of works attempting to characterize the validity of cautious learning
methods (with the exception of CP [35]); second, the relationships and similarities among different approaches have not yet
been investigated.

In this work, we address these gaps by focusing on two popular approaches, namely three-way decision (TWD) and con-
formal prediction (CP):

� TWD, inspired by Rough Set theory and human decision making [43], is a generalization of decision-theory to the setting
of set-valued predictions. Intuitively, given a new instance and a loss function, a TWD-based classifier would assign the
instance to the set-valued prediction associated with minimal loss;

� CP, by contrast, is a technique to obtain calibrated confidence predictors. For each new given instance, a conformal pre-
dictor would return a nested collection of set-valued predictions, each with an associated error probability lower bound
[35]. A cautious learning algorithm can then be defined from a conformal predictor by selecting a specific probability
threshold.

These differences notwithstanding, the two methods also share some similarities [6]. Indeed, both methods can be
applied as a post-processing step to any standard (i.e., non-cautious) learning method [2,5]; both methods are
distribution-free; and both methods make relatively weak assumptions. See Fig. 1 for a graphical representation of TWD-
based classifiers and CP, in comparison with a standard (i.e., single-valued) ML model.

The aim of this paper, then, is to study the relationships among these two models, and to characterize when these two
different approaches can be considered equivalent. To this purpose, we first define techniques to transform a TWD-based
ML model into a CP one, and vice versa. Harnessing this relationship, we investigate two main theoretical questions:

� Under which conditions a TWD-based model is guaranteed to be valid, and with which error bounds? We answer this
question through Theorems 2 and 3, by which it is shown that, under very general assumptions, TWD classifiers are valid;

� Under which conditions TWD and CP methods are equivalent? We answer this question through Theorems 4 and 5, by
which conditions for the equivalence between TWD and CP methods are provided.

Fig. 1. A graphical representation of standard (classification) ML models, TWDmodels and CP models. Given an input instance x, a standard classifier would
provide as output either a single class (in the example, Class 1) together with a confidence score, or a confidence score distribution. By contrast, a TWD
classifier would provide as output the set of labels (in the example, Class 1 or Class 2) which is optimal w.r.t. a specific loss function, possibly together with
an aggregated confidence score. Finally, a conformal predictor provides as output a nested collection of sets of labels, each with an associated (lower)
probability bound.
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Moreover, by means of a set of quantitative experiments, we show that, when the above mentioned assumptions do not hold,
the proposed techniques can be used to improve the validity of TWD classifiers.

The rest of this article is structured as follows. In Section 2, the necessary technical background on Machine Learning,
TWD in the ML domain, and CP is provided. In Section 3, we study the relationship between TWD and CP. Specifically, in
Section 3.1, TWD is used as a basis to define a CP. Through this construction, the validity of TWD-based ML models is for-
mally established. Conversely, in Section 3.2 we discuss how TWD can be used to define cost-sensitive cautious learning
methods based on CP algorithms. Through these constructions conditions for the equivalence between TWD and CP are
established. In Section 4, the empirical performance of the proposed constructions is investigated, through a set of experi-
ments on real-world datasets. The results of these experiments are then discussed in Sections 4.2 and 4.3; while in Section 5
a short medical case study is discussed. Finally, in Section 6, the obtained results are summarized, and possible future lines of
research are outlined.

2. Background

In this section, we recall the necessary background about ML, TWD and CP.

2.1. Supervised machine learning

Let X be the input space, i.e., a set of objects described as vectors of feature values. Let Y be the target space, i.e., the set of
classes. Then, a classification algorithm, w.r.t. a sample space Z and a hypothesis space H, is a function A : 2Z #H. When
Z ¼ X � Y;A is denoted as a supervised classification algorithm; by contrast, when Z ¼ X � 2Y , A is a weakly-supervised
[15] classification algorithm.

Let S# Z be a sample drawn i.i.d. from an unknown distribution D;H be an hypothesis space; and l : H� Z # Rþ be a loss
function. Then, the goal of the machine learning problem is to find a hypothesis h 2 H with minimal (or small) true risk:

RiskDðh; lÞ ¼
Z
z2Z

lðh; zÞdDðzÞ: ð1Þ

Since D is unknown, the true risk cannot be computed. Hence, the aim is to minimize a proxy of the true risk, such as the
empirical risk, based on the finite sample S:

RiskSðh; lÞ ¼ 1
jSj

X
z2S

lðh; zÞ: ð2Þ

Empirical Risk Minimization (ERM) is the algorithm that, given H and a training set S, selects one of the h 2 H s.t.
RiskSðh; lÞ ¼ minh02HRiskðh0

; lÞ. We denote any such h as hS. The ERM learning paradigm has been generalized to the setting
of weakly supervised learning [15,16] by means of generalized loss functions. These latter are usually expressed in the form

lSðh; hx;YxiÞ ¼ Aðflðh; hx; yiÞ : y 2 YxgÞ; where A 2 fmin;max;meang.
In the following, we assume thatH is a class of scoring classifiers. A scoring classifier is a function h : X # Y s.t. h ¼ dec � s,

where s : X # RjY j is a scoring function (mapping an instance x 2 X to a distribution of scores); and dec : RjYj # Y is a decision
function (mapping a distribution sðxÞ to a single label). The decision function dec is usually defined as
decðsðxÞÞ ¼ argmaxy2YsðxÞy, where sðxÞy denotes the score assigned to label y.

A cautious classifier [11] is a function h : X # 2Y . Thus, a cautious classifier maps instances to sets of labels. The semantics
attached to set prediction hðxÞ#Y is that the correct label ŷ is likely to be in hðxÞ.

2.2. Three-way decision

Three-way decision (TWD) [43] is a framework for information and uncertainty management, inspired by human
decision-making and rough set theory [42], that generalizes standard decision theory.

In the binary setting, one considers three regions: a positive, or acceptance, region; a negative, or rejection, region; and a
boundary, or non-commitment, region. This latter region, in particular, represents lack of knowledge, or (temporary) absten-
tion, in regards to the status of the objects it contains.

With respect to the ML setting [42], according to TWD, every instance can be classified as either belonging to a given class
(and thus not belonging to all others); not belonging to a given class; or being in the boundary, that is a region that represents
lack of knowledge with respect to class assignment. This latter property makes TWD useful for the development of cautious
classifiers, by means of a theoretically sound and cost-sensitive approach [6].

Indeed, this approach has been successfully applied in the ML literature for many tasks. Li et al. [22] proposed a cautious
classification model for binary classification based on modeling uncertain boundaries; while Xu et al. [39] proposed a gen-
eralization of TWD-based cautious classification to multi-class problems, using sequential TWD. Liu et al. [24] proposed a
TWD method based on the combination of logistic regression and decision-theoretic rough sets; Zhang et al. [49] proposed
an approach for cost-sensitive cautious classification based on TWD and ensemble learning; similarly, Yue et al. [47] and
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Savchenko [32] proposed computationally efficient techniques for cautious classification based on TWD and deep learning.
Min et al. [29] proposed an approach for cautious classification of weakly-supervised data using TWD and active learning;
Campagner et al. [5] proposed an approach for weakly supervised learning and multi-class cautious classification based on
TWD and statistical learning methods; Gu et al. [13] studied approaches to TWD in group-decision making based on impre-
cise probabilistic linguistic assessments; Zhou et al. [50] studied and compared different approaches for TWD based on
coarse and fuzzy data. More recently, Liu et al. [23] also discussed the interpretability and usefulness of cautious classifica-
tion methods based on TWD. For a more general discussion about TWD in ML, we refer the reader to the recent surveys by
Campagner et al. [6] and Liu et al. [25]. Furthermore, approaches for cautious classification based on TWD have recently been
investigated also from a theoretical and conceptual perspective: Liu et al. [26] studied an alternative model for TWD based
on optimization; Yao [46] studied the connections between TWD and set-based approaches; Yao [45] explored the founda-
tions of TWD based on geometrical and numerical concepts; while Xu [38] studied the connections between TWD-based
classification and the theory of confusion matrices. We refer the reader to the reviews by Yang et al. [40] and Yao [44]
for further details.

In TWD, the loss function is generalized as a set-valued function l : 2Y � Y # R, so as to model the loss w.r.t. a set-valued
prediction. In this article, we consider the multi-class formulation of TWD classification [5]. In this latter approach, the loss
function l can be decomposed in two parts, namely an error cost function and an abstention cost function. Formally, let

� err : 2Y � Y # R be an error cost function. Intuitively, errðS; yÞ represents the cost of predicting S, when y R S is the correct
label;

� a : Nþ # R be an abstention cost function. We assume that

8i > 1;að1Þ ¼ 0 < aðiÞ 6 aðiþ 1Þ 6 min
A22Y ;y2Y

errðA; yÞ: ð3Þ

Inuitively, aðjAjÞ represents the cost of making a set-valued prediction A that contains the correct label y.

Let h be a scoring classifier, its generalized loss is defined as:

LossTWDðAÞ ¼
X
yRA

hðxÞy � errðA; yÞ þ aðjAjÞ
X
y2A

hðxÞy: ð4Þ

Then, the TWD classifier Wh is defined, for each x 2 X, as:

WhðxÞ ¼ argmin
A22Y

fjAj :
A 2 argmin

B22Y
LossTWDðBÞg:

ð5Þ

Hence, for each x, the result of WhðxÞ is (one of) the smallest sets having minimal generalized loss. In Example 1 we briefly
describe the calculations involved in the definition of a simple TWD classifier.

Example 1. Let err be the constant 1 function, and aðjAjÞ ¼ jAj�1
jYj , with Y ¼ 1;2;3;4;5f g.

Let h be a scoring classifier, and x an instance such that

hðxÞ ¼ h0:2;0:3;0:15; 0:1;0:25i:
Since the error cost function err is uniform, the optimization problem in Eq. (5) can be solved using a greedy algorithm [5].
Thus, the following holds:

LossTWDðf2gÞ ¼ 0:7
LossTWDð 2;5f gÞ ¼ 0:56

LossTWDð 1;2;5f gÞ ¼ 0:55
LossTWDð 1;2;3;5f gÞ ¼ 0:64

LossTWDðYÞ ¼ 0:8

Therefore, WhðxÞ ¼ 1;2;5f g.
By definition, the TWD classifier WhðxÞ is the cautious classifier with minimal risk, under the assumption that the proba-

bility scores returned by h approximate the probability of error (i.e. h is calibrated). However, the calibration of h is, in gen-
eral, only a sufficient condition for the correctness of the set-valued predictions issued by the TWD classifier WhðxÞ. In
Section 3, based on the relationship between TWD and CP, we study some conditions under which TWD classifiers are guar-
anteed to be valid.

2.3. Conformal prediction

Conformal Prediction [35] (CP) is a cautious learning approach that allows to define calibrated classifiers. Since its intro-
duction, the CP framework has been adapted to different settings, including clustering [30], anomaly detection [21], active
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learning [28], semi-supervised learning [1]. Furthermore, CP has been successfully applied in many empirical settings,
including cancer detection [48], cybersecurity [37], drug discovery [4]. See [2] for a recent review on CP.

Conventionally, CP is applied in the transductive learning setting [34]. In this latter setting, the instances are assumed to
be sampled sequentially. Nonetheless, conformal predictors can be applied also to the standard inductive learning paradigm,
by using a separate validation (or, calibration) set [35]. For simplicity of presentation, here and in Section 3, we focus on the
transductive setting.

A non-conformity measure is a permutation-invariant functionM : 2X�Y � ðX � YÞ# R, i.e., given S ¼ ðhx1; y1i . . . ; hxn; yniÞ, it
holds that MðS; hx; yiÞ ¼ MðpðSÞ; hx; yiÞ for every permutation p. Intuitively, a non-conformity measure quantifies how much
a new instance hx; yi differs from past examples in S. More formally, the value of a non-conformity measure, for a given
instance hx; yi, represents a statistic for a non-parametric testing procedure [35].

Let Sxi ;x be the result of exchanging hxi; yii with hx; yi in S. Then, the conformal predictor determined by M is a function

CM : 2X�Y � X � ½0;1� # 2Y , defined as:

C�
MðS; xÞ ¼ fyjpx;y > �g; ð6Þ

where � 2 ½0;1� and px;y is defined as:

px;y ¼ jfi ¼ ½1;n� : MðS; hx; yiÞ 6 MðSxi ;x; hxi; yiiÞgj þ 1
nþ 1

: ð7Þ

Intuitively speaking, relying on the above mentioned interpretation of the non-conformity measure as a testing statistic, the
value px;y is the p-value for the null hypothesis that the instance hx; yi comes from the same distribution as S [2]. Therefore,
the labels in C�

MðS; xÞ are those for which the previously mentioned null hypothesis cannot be rejected (at a threshold con-
fidence value of �).

We denote with imðCMÞ the image of CM , that is:

imðCMÞ ¼ fA#Y : 9� 2 ½0;1�s:t: C�
MðxÞ ¼ Ag: ð8Þ

Thus, imðCMÞ is a nested collection of sets A1 ¼ £# . . .Ai #An ¼ Y . Each set Ai 2 imðCMÞ has an associated �i s.t.
�1 ¼ 1; �n ¼ 0. The map pðiÞ ¼ �i represents the p-value function [2] of the statistical procedure defined by CM .

Notably, a cautious classifier C�
M can be constructed from a conformal predictor CM , by selecting an appropriate �.

In Example 2, we illustrate the computations involved in the definition of a conformal predictor, by using an approach
based on 1-nearest neighbor [35].

Example 2. In this example, the non-conformity measure will be defined as:

M1NNðS; hx; yiÞ ¼
min

x02S:yx0 ¼y
dðx; x0Þ

min
x02S:yx0–y

dðx; x0Þ ; ð9Þ

where d is a metric. Thus, the similarity of a new example hx; yi w.r.t. the training set S is high when x is more similar to the
instances in S associated with the same label, than to instances associated with a different label.

Consider the following single-feature training set

S ¼ fi1 ¼ h0:75;0i; i2 ¼ h0:90;0i; i3 ¼ h0:48;1ig;
Let x ¼ 0:615 be a new instance to be classified. Then M1NNðS; hx;0iÞ ¼ M1NNðS; hx;1iÞ ¼ 1 and, similarly:

M1NNðSi1 ;hx;0i; i1Þ ¼ 0:5
M1NNðSi3 ;hx;1i; i3Þ ¼ 0:5
M1NNðSi1 ;hx;1i; i1Þ ¼ 1:15
M1NNðSi2 ;hx;0i; i2Þ ¼ 0:36
M1NNðSi2 ;hx;1i; i3Þ ¼ 0:53:

By contrast, M1NNðSi3 ;hx;0i; i3Þ is undefined, as there is no instance with label 1 in the associated training set. Thus, we set
M1NNðSi3 ;hx;0i; i3Þ ¼ þ1. Therefore, px;0 ¼ px;1 ¼ 1

2 and the corresponding conformal predictor is defined as:

C�
M1NN

¼ £ � > 1
2

f0;1g otherwise

(

As previously mentioned, the main advantage of CP, compared to other cautious classification approaches, is that every
conformal predictor is valid, i.e. the following result holds:

Theorem 1 (Vovk et al. [35]). Let S, x be sampled i.i.d. from the same distribution D; y be the true (but unknown) label associated
with x. Let M be a non-conformity measure and � 2 ½0;1�. Then, taken CM the conformal predictor based on M, it holds that CM is
conservatively valid, that is:
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Pr½y R C�
MðS; xÞ� 6 �: ð10Þ

Thus, the probability of error of C�
MðS; xÞ is no greater than �. Numerous approaches have been proposed in the literature

to define conformal predictors, both based on algorithm-specific approaches [33]; and general-purpose ones [18]. One of the
most popular general-purpose methods [18] is based on a score-based classifier h (see Section 2.1). In this case, a non-
conformity measure based on h can be defined as:

MhðS; hx; yiÞ ¼ max
y02Y

fsðxÞy0 g � sðxÞy: ð11Þ

3. Methods

In this section, we study the relationships between TWD and CP. The main contents of this section, as well as the results of
our study, are summarised in Fig. 2. As previously mentioned, in the following we focus on the transductive setting. As high-
lighted in Section 2.3, note, however, that the properties of conformal predictors we study in this section hold also in the
inductive setting.

3.1. From three-way decision to conformal prediction

In this section, we address the first of the research questions mentioned in Section 1. Namely, we study whether, and
under which conditions, TWD classifiers are valid. To this purpose, we first show that TWD can be used to design conformal
predictors. Then, we provide sufficient and necessary conditions for the validity of TWD classifiers. The connection between
TWD and CP is then generalized to the setting of weakly supervised learning.

Let us first consider the standard supervised setting (i.e. Z ¼ X � Y). Let S ¼ ðhx1; y1i; . . . ; hxn; yniÞ be the training set. The
three-way non-conformity measure, based on a given TWD classifier W, can be defined as:

MWðS; hx; yiÞ :¼ lðWS; hx; yiÞ ¼
aðjWSðxÞjÞ y 2 WSðxÞ
errðWSðxÞ; yÞ þ aðjWSðxÞjÞ otherwise

�
ð12Þ

where lðWS; hx; yiÞ denotes the loss of the prediction WSðxÞ, given y 2 Y .
Thus, the three-way non-conformity measure assigns, to each instance hx; yi, the loss incurred by using WS to predict the

label of x. It is easy to observe that, for any W;MW is indeed a non-conformity measure:

Proposition 1. Let W be a three-way classifier, then MW , defined as in Eq. (12), is a non-conformity measure.

Proof. Let S be a sample, and WS the three-way classifier defined by S. Then, by definition, for any permutation S1 of S, it
holds that WS ¼ WS1 . Therefore, the training algorithm is permutation-invariant. h

The construction described in Section 2.3, applied to the three-way non-conformity measure MW , allows to define the
three-way conformal predictor (TWCP) as:

C�
WðS; xÞ ¼ fyjpx;y > �g; ð13Þ

px;y ¼ jfi ¼ 1; . . . ;n : Pred is verifiedgj þ 1
nþ 1

; ð14Þ
Pred :¼ lðWS; hx; yiÞ 6 lðWSxi ;x

; hxi; yIiÞ: ð15Þ
The calculations involved in the definition of the TWCP are briefly illustrated in Example 3.

Fig. 2. A graphical illustration of the main results in Section 3.
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Example 3. Let Y ¼ f0;1;2g, and let S be a training set s.t. S ¼ fi1 ¼ hx1;0i; i2 ¼ hx2;1i; i3 ¼ hx3;1i; i4 ¼ hx4;2ig. LetW be a TW
classifier s.t. WSðx1Þ ¼ f0;2g;WSðx2Þ ¼ f0g;WSðx3Þ ¼ f1g and WSðx4Þ ¼ f1;2g.

Let x be a new instance. Assume, for simplicity, that 8ij;WS ¼ WSij ;x
and that WSðxÞ ¼ f0;1g. Let err ¼ 1 and aðjAjÞ ¼ jAj�1

jYj�1.

Then MWðS; hx;1iÞ ¼ 0:5;MWðS; hx;0iÞ ¼ 0:5;MWðS; hx;2iÞ ¼ 1:5, while

MWðSi1 ;x; i1Þ ¼ 0:5
MWðSi4 ;x; i4Þ ¼ 0:5
MWðSi2 ;x; i2Þ ¼ 1
MWðSi3 ;x; i3Þ ¼ 0:

Therefore px;0 ¼ px;1 ¼ 4
5 ; p

x;2 ¼ 1
5 and the TWCP CW is defined as:

C�
W ¼ £ � > 4

5 f0;1g 1
5 < � 6 4

5Y otherwise
�

SinceMW is a non-conformity measure, as a consequence of Theorem 1, it holds that the TWCP CW is conservatively valid:

Corollary 1. Let S; x be sampled i.i.d. from the distribution, and let ŷ be the correct label associated with x. Then, for any
�; Pr½ŷ R C�

WðS; xÞ� 6 �, that is CW is conservatively valid.

Proof. The result follows directly from Theorem 1 and the observation (see Prop. 1) thatMW is a non-conformity measure.
h

The previous result holds for any CP algorithm, thus, in particular, for the TWCP. Nonetheless, the previous result does not
provide any information about the validity of the original TWD classifier. Then, we ask two main questions: can the validity
of a TWCP be used to obtain performance bounds for the corresponding TWD classifier? Under which conditions it holds that
a TWD classifier and the corresponding TWCP are equivalent?.

In regard to the first question, note that the transformation from a TWD classifier W to the corresponding TWCP CW pro-
vides a bound on the probability of error ofW. Indeed, if WSðxÞ 2 imðCWðS; xÞÞ, then, the following bound follows from Corol-
lary 1:

Pr½y R WSðxÞ� 6 arg min
�2½0;1�

fC�
WðS; xÞ ¼ WSðxÞg: ð16Þ

Consequently, a sufficient condition for the validity of the TWD classifier W would be that WSðxÞ 2 imðCWðS; xÞÞ. Then, the
next result provides a characterization of this property:

Theorem 2. The following two conditions are equivalent:

1. WSðxÞ 2 imðCWðS; xÞÞ;
2. 9hxi; yii 2 S such that

lðWSxi ;x
; hxi; yiiÞ < min

yRWS

errðWS; yÞ:

Proof. First, we prove that 1 implies 2. Note that 8y 2 WSðxÞ ¼ A, then either lðA; yÞ ¼ 0 (when A ¼ fyg) or lðA; yÞ ¼ aðjAjÞ.
Furthermore, by definition of a and err, it holds that 8A;aðjAjÞ 6 minB#Y ;yRBerrðB; yÞ. Thus, if 2 does not hold, then it exists
y R WSðxÞ s.t. px;y ¼ 1. Consequently, the smallest Ai in imðCWðS; xÞÞ is s.t. WS [ fyg#Ai. The proof for the converse implica-
tion is analogous. h

Thus, as a consequence of Theorem 2, every non-trivial TWD classifier1 is valid, and can be associated with an error upper
bound. This latter error bound quantifies the probability that the correct label is not contained in the set-valued prediction
issued by the TWD classifier.

Furthermore, this latter error bound is dependent on the predictive performance of the TWD classifier. This dependency is
formalized through the following Theorem, which provides a characterization of the nested set structure for any TWCP:

Theorem 3. Let � 2 ½0;1� and let WSðxÞ ¼ A. Then A ¼ C�
WðS; xÞ iff both:

1. W makes at least b� � ðnþ 1Þc predictions on S with risk greater than aðjAjÞ;
2. W makes at most d� � ðnþ 1Þe predictions on S with risk greater than minyRA errðA; yÞ.

1 Here, non-trivial refers to any TWD classifier that does not err on all of its predictions.
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Proof. First, note that 8y 2 A; lðA; yÞ ¼ aðjAjÞ. Thus, if y 2 A is in C�
WðS; xÞ, then the same holds for all y0 2 A. Thus, a sufficient

(and necessary) condition for y 2 A to be included in C�
WðS; xÞ is the existence of at least b� � ðnþ 1Þc instances x0 2 S s.t.

lðWSx0 ;x ðx0Þ; y0Þ P aðjAjÞ. Otherwise C�
WðS; xÞ ¼ £.

As for the second condition, note that for any y R A

lðWS; hx; yiÞ P min
y0RA

lðWS; hx; y0iÞ > aðjAjÞ:

Thus a sufficient and necessary condition for excluding any y R A from C�
WðS; xÞ is that for at most b� � ðnþ 1Þc instances

hx0; y0i 2 S, it holds that

lðWSx0 ;x ; hx0; y0iÞ P min
yRA

lðWS; hx; yiÞ:

Thus, the theorem follows. h

Finally, with respect to our second question, we note that in the uniform-cost classification setting, a finer version of The-
orem 3 can be derived. This result shows that any TWD classifier and its corresponding TWCP are equivalent (see also Exam-
ple 4 for a brief illustration of the following Theorem):

Corollary 2. Let � 2 ½0;1�, then in the uniform-cost classification setting it holds that:

� If jWSðxÞj ¼ 1, then WSðxÞ ¼ C�
WðS; xÞ iff W makes at most b� � ðnþ 1Þc errors on S (otherwise, C�

WðS; xÞ ¼ Y);
� Otherwise,WSðxÞ ¼ C�

WðS; xÞ iffW makes at most dð1� �Þ � ðnþ 1Þe predictions on S with risk lower than aðjWSðxÞjÞ (otherwise,
C�

WðS; xÞ ¼ £) and at most b� � ðnþ 1Þc errors (otherwise, C�
WðS; xÞ ¼ Y).

Thus, CWðS; xÞ is completely determined by two thresholds 0 6 �1 < �2 6 1 s.t.

C�
WðS; xÞ ¼

£ �2 < �
WSðxÞ �1 < � 6 �2
Y 0 6 � 6 �1

8><
>: ð17Þ

Proof. The result follows directly from Theorem 3, applying the result to the case of uniform-cost classification. h

Example 4. Consider the TWCP introduced in Example 3. Then, jWSðxÞj > 1, and W makes exactly one prediction with risk
lower than aðWSðxÞÞ ¼ 0:5. Hence, by Theorem 2 it holds that �2 ¼ 4

5. Similarly, W makes exactly 1 error, hence by Theorem 2
it holds that �1 ¼ 1

5.

We now focus on the more general weakly supervised learning setting (i.e. Z ¼ X � 2Y ). Let S ¼ ðhx1;Y1i; . . . ; hxn;YniÞ be
the current training set. The three-way nonconformity measure can be generalized as follows:

Mmin
W ðS; hx;YxiÞ ¼ min

y2Yx
lðWS; hx; yiÞ: ð18Þ

where W is a three-way in/three-way out classifier [5]. Thus, the superset TWCP is defined as:

C�
W;minðS; xÞ ¼ fyjpx;y > �g; ð19Þ

px;y ¼ jfi ¼ 1; . . . ;n : Pred is verifiedgj þ 1
nþ 1

; ð20Þ

Pred ¼ lðWS; hx; yiÞ 6 min
y02Yi

lðWSxi ;x
; hxi; y0iÞ: ð21Þ

The nonconformity measure Mmin
W is defined in terms of the minimum operator. Thus, it is similar to the optimistic loss min-

imization [15] approach for weakly supervised learning. Remarkably, however, the role of the minimum operator in the two
formulations is different. In the generalized loss minimization framework, the minimum operator selects the instantiation of
the set labels that minimizes the empirical loss, over all possible instantiations. On the other hand, in Eq. (19), the minimum
operator acts as a conservative bound for the similarity between x and the training set S. Indeed, given hxi;Yii, the corre-
sponding nonconformity score is

min
y2Yi

MWðS; hxi; yiÞ 6 M 6 max
y2Yi

MWðS; hxi; yiÞ:

Thus, the nonconformity score of x is compared against the most conservative threshold, among those that are considered
possible. In this sense, Eq. (19) is more similar to the principle underlying pessimistic loss minimization [16].
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As a second remark, we study the efficiency of the superset TWCP. It is not hard to see that changing min, in Eq. (19), with
max or mean would equally result in a non-conformity measure. However, it is easy to observe that the approach based on
the minimum operator is more efficient than those based on, either, the maximum or mean operators. Indeed, denote these
latter non-conformity measures as, resp., Mmax

W ;Mmean
W . Similarly, denote the corresponding conformal predictors as, resp.,

CW;max;CW;mean. Then, the following result holds:

Proposition 2. Let W be a TWD classifier, S a training set and x a new instance. Then, for any
� 2 ½0;1�;C�

W;minðxÞ#C�
W;meanðxÞ#C�

W;maxðxÞ.

Proof. Note that, for any set of positive numbers fn1; . . . ;nmg, it holds that argminifnig 6 1
m

P
ni 6 argmaxifnig. Then, the

result easily follows. h

3.2. From conformal prediction to three-way decision

In this section we address the second of the research questions mentioned in Section 1. Namely, we study conditions
under which TWD and CP methods are equivalent. To this aim, we first outline two approaches to define a cost-sensitive
cautious classifier from any conformal predictor. These latter approaches can be used to transform any conformal predictor
into a TWD classifier. We then study the equivalence between TWD and CP methods, by applying the above mentioned
approaches to the case in which the conformal predictor is defined as in Section 3.1.

The first approach to obtain a TWD classifier, starting from a CP algorithm CM , relies on the observation that CM is defined
as a collection of nested sets, associated with corresponding (lower) probabilities.

Let M be any non-conformity measure, and let CM be the corresponding conformal predictor. Let A#Y be s.t.
A 2 imðCMðxÞÞ, i.e. 9� 2 ½0;1� s.t. C�

MðxÞ ¼ A. Denote with �A, the (unique) solution of the following equality:

�A :¼ arg min
�2½0;1�

fC�
MðxÞ ¼ Ag: ð22Þ

Eq. (22) implies that, given A 2 imðCMðxÞÞ, it is known that Prhx;yi�D½y R A� 6 �A. Therefore, the loss LossCM ðxÞ w.r.t. A can be
bounded as follows:

Proposition 3. Let A#Y be in the image of CMðxÞ, and let �A be the corresponding solution of Eq. (22). Then:

aðjAjÞ 6 LossCM ðxÞðAÞ 6 aðjAjÞ � ð1� �AÞ þ �AjY n Aj �max
yRA

ferrðA; yÞg: ð23Þ

Proof. Let y 2 Y be the real label attached to x. Then, by Theorem 1, Pr½y R A� 6 �A. Further, by definition of err and a, it holds
that

aðjAjÞ 6 min
yRA

errðA; yÞ 6 max
yRA

ferrðA; yÞg:

Note, also, that the rightmost summand in Eq. (23) is monotonically increasing w.r.t. � 2 ½0; �A�, and the left and right side of
the inequality chain coincide when � ¼ 0. Then, the result easily follows. h

Denote the right-most side of Eq. (23) as Loss	CM ðxÞðAÞ. Then, given a conformal predictor C�
M , the decision-theoretic confor-

mal TWD (DCTWD) classifier WC is defined as follows:

Wdec
C ðxÞ ¼ arg min

A2imðCM ðxÞÞ
Loss	CM ðxÞðAÞ: ð24Þ

On the other hand, the second approach to transform a conformal predictor into a TWD classifier relies on the observation
that a conformal predictor CM defines a possibility distribution over Y. Indeed, given A 2 imðCMÞ, it holds that 1� �A is a lower
bound on the probability that the correct label y is in A.

Denote as £ 
 A1 # . . . #Ak the nested sets in imðCMÞ. Given any y 2 Y , let jðyÞ ¼ maxfi : y R Aig. Then, a possibility dis-
tribution pC can be defined as follows [8]:

pCðyÞ ¼
1 A1 ¼ fyg
�AjðyÞ otherwise

�
ð25Þ

The possibility distribution pC can then be used to define a TWD classifier by transforming pC into a probability distribution,
so that the Loss function in Eq. (5) is well-defined. This transformation is performed by means of the possibility-probability
transformation [9]:

A. Campagner, F. Cabitza, P. Berjano et al. Information Sciences 579 (2021) 347–367

355



PrpC ðyÞ ¼
Xk

i¼1

p̂i � p̂iþ1

jBij 1y2Bi ; ð26Þ

where p̂ is the ordering of pC in terms of decreasing possibility value; Bi is the p̂i a-cut (i.e., Bi ¼ fy 2 Y : pCðyÞ P p̂ig). Then,
the possibilistic conformal three-way(PCTWD) classifier is defined as:

Wposs
C ðxÞ ¼ LosspossCMðxÞðAÞ ¼ argmin

A22Y

X
yRA

PrpC ðyÞ � errðA; yÞ þ aðjAjÞ
X
y2A

PrpC ðyÞ: ð27Þ

Example 5 below provides an illustration of the calculations involved in the construction of a DCTWD and a PCTWD.

Example 5. Consider the TWCP CW and loss function defined in Example 3.
Then, considering the instance x, it holds that Loss	CWðxÞðf0;1gÞ ¼ 4 5	 1

3 þ 1
5 ¼ 0:47; while Loss	CWðxÞðYÞ ¼ 0:67. Hence

Wdec
CW ðxÞ ¼ f0;1g.
By contrast, the corresponding PCTWD can be defined by noting that pCð0Þ ¼ pCð1Þ ¼ 1 and pCð2Þ ¼ 0:25, therefore

PrpC ¼ h0 : 0:46;1 : 0:46;2 : 0:08i.
Hence, LosspossC ð0Þ ¼ 0:54; LosspossC ð1Þ ¼ 0:54, while LosspossC ðf0;1gÞ ¼ 0:39 and LosspossC ðYÞ ¼ 0:67. Therefore

Wposs
CW

ðxÞ ¼ f0;1g.
The two above mentioned constructions allow to transform any conformal predictor into a cost-sensitive TWD classifier.

Furthermore, it is easy to see that these constructions preserve validity. Indeed, for the case of a DCTWD Wdec
C , the following

result holds:

Proposition 4. Pr½yx R Wdec
C ðxÞ� 6 �A, where �A is defined as in Eq. (22).

Proof. By construction, it holds thatWdec
C ðxÞ ¼ A 2 imðCðxÞÞ. Then, the result follows by Theorem 1, and the definition of �A.

h

By contrast, for the case of a PCTWD Wposs
C , there is no guarantee that Wposs

C ðxÞ 2 imðCðxÞÞ. Nonetheless, a weaker bound
can be obtained through the following result:

Proposition 5. Pr½yx R Wposs
C ðxÞ� 6 �B

	
, where

B	 ¼ argmaxB2imðCÞðxÞ:B#Wposs
C ðxÞjBj: ð28Þ

Proof. The result directly follows from the definition of C and Wposs
C ðxÞ. In particular, for all B#B	 it holds that

Pr½yx R Wposs
C ðxÞ� 6 �B. h

We now consider our main research question: namely, we ask under which conditions a given TWD classifier, and the
corresponding DCTWD (resp. PCTWD) classifier, are equivalent. Such conditions would then establish an isomorphism
between the class of TWD classifiers and (three-way) conformal predictors.

To this aim, let W be a TWD classifier, let CW be the TWCP obtained from W and, finally, let Wdec
CW (resp. Wposs

CW ) be the cor-
responding DCTWD (resp. PCTWD). The following result provides sufficient and necessary conditions for the equivalence
between the TWD classifier W and the DCTWD classifier Wdec

CW .

Theorem 4. Let WðxÞ ¼ A, then Wdec
CW ðxÞ ¼ A holds iff the following two conditions are satisfied:

1. 9� 2 ½0;1� s.t. W makes at least b� � ðnþ 1Þc predictions on S with risk greater than aðjAjÞ and makes at most b� � ðnþ 1Þc pre-
dictions on S with risk greater than minyRARðy;AÞ;

2. �A 6 minB2imðCdec
W ðxÞÞ

Loss	CW ðBÞ�aðjAjÞ
maxy:inAerrðA;yÞ�aðjAjÞ.

Proof. The first condition, by Theorem 3, ensures that WðxÞ 2 imðCWðxÞÞ. The second condition, on the other hand, ensures
that the transformation preserves the minimal element w.r.t. the ordering of 2Y in terms of the Loss value. Thus, if both con-
ditions hold, then WðxÞ is the unique solution to Eq. (24), and the result follows. h

The following corollary shows that, in the uniform-cost setting, the conditions required by Theorem 4 can be relaxed:

Corollary 3. Let S be the current training set with jSj ¼ n;WSðxÞ ¼ A, then Wdec
CW ðxÞ ¼ A iff
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m 6 aðjYjÞ � aðjAjÞ
err � aðjAjÞ � n; ð29Þ

where m is the number of errors made by WS.

Proof. The result directly follows from Theorems 2 and 4. h

We now discuss the case of the PCTWD classifier. First of all, irrespective of the non-conformity measure used, 8A 2 imðCÞ,
the following proposition holds:

Proposition 6. PrpC ðAÞ P 1� �A.

Proof. Let j be s.t. Bj ¼ A (i.e. A is the ith a-cut). Then:

PrpC ðAÞ ¼ ð1� �B1 Þ þ ð�B1 � �B2 Þ þ . . .þ ð�Bj�1 � �AÞ þ jAj
Xk

i¼j

p̂i � p̂iþ1

jBij ¼ ð1� �AÞ þ jAj
Xk

i¼j

p̂i � p̂iþ1

jBij

P ð1� �AÞ þ jAj
jY j �

A > 1� �A ð30Þ

h

This result implies, in particular, that LosspossC ðAÞ 6 Loss	CðAÞ.
Furthermore, note that if C ¼ CW (i.e. C is a TWCP) and the cost function is uniform, then the penultimate inequality in Eq.

(30) holds with equality (as a consequence of Theorem 2). Then, the following result provides sufficient and necessary con-
ditions for the equivalence between a TWD classifier and the corresponding PCTWD classifier in the uniform-cost setting:

Theorem 5. Let S be the current training set. Let WSðxÞ ¼ A. Then, Wposs
CW

ðxÞ ¼ A iff all the following conditions hold:

aðjAj þ 1Þ
aðjAjÞ > f ðjAjÞ; ð31Þ

8k < jAj; 1� �A > gðjAj; kÞ; ð32Þ

8k > jAj; �A 6 gðjAj; kÞ; ð33Þ
where

f ðjAjÞ ¼ 1�jAj
jY j

ðjAjþ1Þð 1
jAj� 1

jYjÞ
;

gðjAj; kÞ ¼
k
jAjaðkÞ�aðjAjÞ

DðjAj;kÞ ;

DðjAj; kÞ ¼ k
jAjaðkÞ þ k

jY j þ jAj
jY jaðjAjÞ

�aðjAjÞ � k
jYjaðkÞ � jAj

jY j :

and �A is equal to �1 in Theorem 2.

Proof. The result directly follows from standard algebraic manipulations and the observation that, in the uniform-cost set-
ting, the penultimate inequality in (30) holds with equality. h

The generalization of Theorem 5 to general, non-uniform, loss functions is left as an open problem.
In regard to the significance of Theorems 4 and 5, we discussed in Section 2.2 that, while TWD is optimal w.r.t. cost-

sensitiveness, its results may in general be not valid. In particular, the latter may happen when the underlying classifier
is not calibrated. Therefore, the transformation from a TWD classifier to a CP one (by means of TWCP and then, either, a
DCTWD, or a PCTWD, classifier), can be seen as an approach to correct this lack of validity. In particular, then, Theorems
4 and 5 show that calibration is not a necessary condition for a TWD classifier to be valid, and provide conditions for validity.

Indeed, the two Theorems show that, under the condition that the TWD classifierW is sufficiently accurate, the correction
implemented by means of CP has no effect. In this latter case, the set-valued predictions obtained before and after the valid-
ity correction are identical. Consequently, Theorems 4 and 5 establish an isomorphism between the class of (non-trivial)
TWD classifiers and (three-way) conformal predictor. An illustration of these latter observations is shown in Example 6
and in Fig. 2.

Example 6. Let us refer to the TWCP CW defined in Example 3 and the corresponding DCTWD and PCTWD classifiers defined
in Example 5. In Example 5, it was shown that the predictions provided by the three TWD classifiers were equivalent, hence
Theorems 4 and 5 should hold, as they provide sufficient and necessary conditions for such equivalences.
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Indeed, as regards the DCTWD, we note that W made exactly 1 < 2=3�1=3
1�1=3 � jSj ¼ 2 error and thus the conditions in

Theorem 4 are satisfied.

Similarly, with respect to the PCTWD, we note that Eq. (31) reduces to 2 > 1�2=3
3ð1=2�1=3Þ ¼ 0:67, Eq. (32) reduces to 4

5 > 0:5 and

Eq. (33) reduces to 1
5 <

2
5 which are all obviously satisfied.

4. Results

4.1. Experimental design

The theoretical study of the previous sections shows some important connections between TWD and CP. In particular, it
provides conditions for the equivalence among these two cautious classification methods. Based on these results, in this sec-
tion,wedescribe a set of experiments to investigate the relationship between TWDandCP also froman empirical point of view.

More in detail, we address three research questions:

1. In Sections 3.1 and 3.2, we studied conditions for the equivalence between a TWD classifier W and the corresponding
DCTWD (resp., PCTWD) classifier. In particular, we showed that these latter two classes of classifiers are equivalent, pro-
vided that the original TWD classifier is sufficiently accurate. Do these conditions hold in real-world datasets?

2. In Section 3.2 we proposed the DCTWD and PCTWD classifiers as techniques to obtain cost-sensitive cautious classifiers,
starting from any conformal predictor. Nonetheless, we did not study any difference, in terms of validity or efficiency,
between the DCTWD and PCTWD construction. Are there any empirical differences among these two latter methods,
in terms of either classification accuracy or efficiency?

3. The proposed constructions can be seen as techniques to both improve the predictive performance of a TWD, as well as
objective2 approaches to obtain a cautious classifier from any CP method. Do these constructions result in an increase in
predictive performance compared with other state-of-the-art TWD and CP algorithms?

To this end, we considered a set of experiments, based on 12 datasets from the UCI repository. These datasets are listed in
Table 1.

We considered two different classes of scoring classifiers, namely Random Forest and k-Nearest Neighbors. For each of
these latter two classes, we compared the results of 6 different methods:

� The (standard, single-valued prediction) classifiers hRF ;hKNN;
� The TWD classifiers WRF ;WKNN;
� The TWCP-based DCTWD and PCTWD classifiers Wdec

CWRF
;Wdec

CWKNN
based on WRF ;WKNN;

� The DTCWD and PCTWD classifier Wdec
ChRF

;Wdec
ChKNN

, directly based on hRF ;hKNN (see Section 2.3).

The loss function (used to determine the TWD classifiers and to evaluate the performance of the models) was defined
through the following abstention cost function:

aðnÞ ¼ n� 1
jYj ; ð34Þ

2 Here, by objective it is meant that there is no a priori selection of a probability threshold.

Table 1
List of used datasets.

Dataset Instances Features Classes

Digits 1797 64 10
Breast Cancer 569 30 2
Wine 178 13 3
Covertype 581012 54 7
20Newsgroups 18846 130107 20
Diabetes 786 8 2
Epileptic Seizure 11500 179 2
Diabetic Retinopathy 1151 20 4
Hepatitis C virus 1385 29 4
Chronic Kidney Disease 400 25 2
Abalone 4177 8 27
Arrhythmia 452 279 16
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while the err function was

� Uniform, with all costs equal to 1, for the Abalone, Digits, Wine, Covertype and 20Newsgroups datasets;
� Equal to 1 when the true class label was associated to healthy status, and equal to 2 otherwise, for the medical datasets.

The CP algorithms were implemented using the inductive approach, i.e., by relying on a validation set. The size of the val-
idation set was set to 20% of the training set. We decided to use the inductive approach, rather than the sequential one, in
order to reduce the computational cost of re-training the classification algorithms.

All algorithms were evaluated in terms of the complement of the above mentioned loss function,3 henceforth accuracy, as
well as in terms of coverage, as a measure of efficiency. This latter measure, in particular, was defined, for a set-valued predic-
tion S, as:

coverageðSÞ ¼ 1� jSj � 1
jY j � 1

: ð35Þ

All performances were computed using 5-fold cross-validation. Thus, we report the results in terms of both the average per-
formance and the corresponding 95% confidence interval. In order to assess the presence of statistically significant differ-
ences, if any, we performed the Friedman rank test. Namely, for each cautious learning approach and each model class
(Random Forest, kNN), we computed the ranks with respect to each of the considered datasets; for each cautious learning
approach and each dataset we then averaged the Random Forest and kNN ranks.

4.2. Experimental results

The results of the Experiments, in terms of the average accuracy, are reported in Tables 2, 3 and in Fig. 3. The average
coverage values are reported in Tables 4, 5 and Fig. 4.

As regards the observed accuracies, the average ranks are reported in Table 6: the observed test statistic was Q ¼ 36:11,
which was significant at the 95% confidence level (p-value < 0:00001). Thus, we also performed a post hoc pairwise compar-
ison using the Nemenyi test procedure. The critical value of the test (with 12 datasets and 6 compared methods), at the 95%
confidence level, is 2.176. The pairwise comparisons are reported in Table 7.

As regards the observed coverage values, the average ranks are reported in Table 8. The observed test statistic was
Q ¼ 26:33 which was significant at the 95% confidence level (p-value ¼ 0:00003). Thus, we performed the Nemenyi post
hoc pairwise test. The critical value of the test (with 12 dataset 5 compared methods), at the 95% confidence level, is
1.761. The pairwise comparison are reported in Table 9.

4.3. Discussion

Commenting the results reported in Section 4.2, we can see that the TWD classifiers (i.e., W;Cdec
W and Cposs

W ) outperformed
the corresponding single-valued classifiers in terms of accuracy. This finding should not be surprising. Indeed, the considered
cautious classifiers are, by construction, cost-sensitive. Hence, they always return the set-valued prediction that maximizes
the accuracy. Nonetheless, it shows that both TWD classifiers and the corresponding CP-based corrections can be useful to
obtain significantly improved predictive performance (if set-valued predictions are allowed).

More interestingly, we can observe that the standard CP-based classifiers (i.e., Cdec
h and Cposs

h ) were not significantly dif-
ferent from the single-valued classifiers in terms of accuracy. In particular, the PCTWD classifier was significantly outper-
formed by all TWD-based classifiers. Thus, we can provide a positive answer to our third experimental research question.
Indeed, the proposed methods out-performed the state-of-the-art CP methods, in terms of predictive accuracy, with compa-
rable or even better efficiency.

In regard to our first research question, we can see that there were no significant differences among the three TWD-based

cautious classifiers (i.e., W;Cdec
W and Cposs

W ). This finding lends empirical support to the results proven in Section 3. Indeed, in
Section 3, we proved that a TWD classifier is equivalent to the corresponding CP-based model, provided the original TWD
classifier is sufficiently accurate. The experimental results, then, show that the conditions of Theorems 3, 4, 4 are usually
satisfied in real-world setting. Hence, TWD methods can usually be expected to have the same level of validity as the cor-
responding CP-based correction.

More in detail, in the case of Random Forest, the results for the TWD-based cautious classifiers were almost always iden-
tical. By contrast, in the case of kNN, there were 4 datasets on which the DCTWD and PCTWD classifiers achieved increased
performance. This observation can be explained by noting that kNN classifiers usually have lower accuracy and generaliza-
tion capability than Random Forest ones. As a consequence of the results in Section 3, this observation implies that TWD
classifiers based on kNN are expected to satisfy the conditions of Theorems 3–5 less often than classifiers based on Random
Forest. Therefore, the proposed TWCP, DCTWD and PCTWD constructions would result in less efficient (but more accurate)

3 Note that when the err function was uniform, then the complement of the loss function is equivalent to a penalized accuracy, in which the penalization
depends on the size of the set-valued prediction.
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Table 2
Average loss value and 95% confidence intervals for the Random Forest-based classifiers, on all 12 datasets.

Dataset hRF WRF Wdec
CWRF

Wposs
CWRF

Wdec
ChRF

Wposs
ChRF

Abalone 0:79� 0:02 0:91� 0:01 0:92� 0:01 0:91� 0:01 0:90� 0:01 0:85� 0:03
Arrhythmia 0:80� 0:04 0:81� 0:02 0:81� 0:02 0:84� 0:03 0:80� 0:04 0:81� 0:04
Breast Cancer 0:86� 0:03 0:97� 0:01 0:97� 0:01 0:97� 0:01 0:95� 0:01 0:96� 0:01
Chronic Kidney 0:85� 0:03 0:87� 0:02 0:87� 0:02 0:87� 0:02 0:85� 0:03 0:85� 0:03
Covertype 0:82� 0:02 0:93� 0:02 0:93� 0:02 0:93� 0:01 0:85� 0:01 0:88� 0:03
Diabetes 0:73� 0:05 0:77� 0:02 0:77� 0:02 0:74� 0:02 0:75� 0:01 0:73� 0:05
Diabetic Retinopathy 0:78� 0:04 0:84� 0:02 0:84� 0:02 0:81� 0:02 0:82� 0:02 0:78� 0:04
Digits 0:94� 0:02 0:95� 0:01 0:95� 0:01 0:95� 0:01 0:91� 0:01 0:90� 0:01
Epileptic Seizure 0:73� 0:01 0:88� 0:00 0:88� 0:00 0:77� 0:05 0:86� 0:00 0:70� 0:01
Hepatitis C 0:56� 0:03 0:86� 0:04 0:86� 0:04 0:86� 0:04 0:79� 0:03 0:77� 0:02
Wine 0:81� 0:05 0:96� 0:02 0:96� 0:02 0:96� 0:02 0:92� 0:02 0:91� 0:03
20Newsgroups 0:85� 0:01 0:91� 0:00 0:91� 0:00 0:91� 0:00 0:91� 0:01 0:81� 0:01

Table 3
Average loss value and 95% confidence intervals for the kNN-based classifiers, on all 12 datasets.

Dataset hKNN WKNN Wdec
CWKNN

Wposs
CWKNN

Wdec
ChKNN

Wposs
ChKNN

Abalone 0:67� 0:02 0:74� 0:02 0:91� 0:00 0:81� 0:04 0:88� 0:02 0:73� 0:04
Arrhythmia 0:69� 0:08 0:75� 0:07 0:75� 0:07 0:75� 0:07 0:77� 0:05 0:69� 0:08
Breast Cancer 0:93� 0:02 0:94� 0:02 0:94� 0:02 0:94� 0:02 0:73� 0:06 0:93� 0:01
Chronic Kidney 0:74� 0:04 0:81� 0:04 0:81� 0:04 0:81� 0:04 0:81� 0:04 0:74� 0:04
Covertype 0:71� 0:02 0:87� 0:06 0:87� 0:06 0:78� 0:01 0:50� 0:00 0:71� 0:02
Diabetes 0:68� 0:03 0:72� 0:03 0:72� 0:03 0:70� 0:03 0:70� 0:03 0:68� 0:03
Diabetic Retinopathy 0:63� 0:03 0:79� 0:02 0:79� 0:02 0:78� 0:02 0:71� 0:02 0:73� 0:03
Digits 0:96� 0:01 0:99� 0:01 0:99� 0:01 0:96� 0:01 0:90� 0:00 0:96� 0:01
Epileptic Seizure 0:59� 0:01 0:74� 0:01 0:83� 0:00 0:78� 0:01 0:75� 0:00 0:66� 0:01
Hepatitis C 0:56� 0:03 0:79� 0:01 0:83� 0:01 0:79� 0:04 0:83� 0:01 0:70� 0:02
Wine 0:71� 0:04 0:85� 0:02 0:85� 0:02 0:78� 0:06 0:78� 0:03 0:71� 0:04
20Newsgroups 0:67� 0:01 0:83� 0:01 0:83� 0:01 0:84� 0:01 0:50� 0:00 0:76� 0:01

Fig. 3. Average accuracy and 95% confidence intervals for each of the evaluated classifiers, on the medical (left) and non-medical (right) datasets. Each
marker refers to the average of the corresponding Random Forest-based and kNN-based classifiers. In the legend, h denotes the standard classifiers
(hRF ;hKNNÞ; TWD the three-way decision classifiers (WRF ;WKNN); TWCP-DCTWD (resp., TWCP-PCTWD) the DCTWD (resp., PCTWD) classifier based on the
TWCP (Wdec

CWRF
;Wdec

CWRF
); while h-DCTWD (resp., h-PCTWD) the DCTWD (resp. PCTWD) classifier based on the standard conformal predictors (Wdec

ChRF
;Wdec

ChRF
).
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Table 4
Average coverage value and 95% confidence intervals for the Random Forest-based classifiers, on all 12 datasets.

Dataset WRF Wdec
CWRF

Wposs
CWRF

Wdec
ChRF

Wposs
ChRF

Abalone 0:74� 0:01 0:64� 0:05 0:69� 0:01 0:60� 0:02 0:69� 0:05
Arrhythmia 0:86� 0:02 0:86� 0:02 1:00� 0:00 0:82� 0:09 1:00� 0:00
Breast Cancer 0:97� 0:02 0:97� 0:02 1:00� 0:00 0:54� 0:10 1:00� 0:00
Chronic Kidney 0:83� 0:05 0:83� 0:05 1:00� 0:00 0:75� 0:06 1:00� 0:00
Covertype 0:76� 0:03 0:76� 0:02 0:76� 0:03 0:30� 0:05 0:62� 0:16
Diabetes 0:94� 0:04 0:94� 0:04 1:00� 0:00 0:81� 0:05 1:00� 0:00
Diabetic Retinopathy 0:73� 0:02 0:73� 0:02 1:00� 0:00 0:74� 0:01 1:00� 0:00
Digits 0:93� 0:03 0:93� 0:03 0:93� 0:03 0:60� 0:02 0:65� 0:05
Epileptic Seizure 0:58� 0:01 0:58� 0:00 0:77� 0:09 0:47� 0:01 0:81� 0:01
Hepatitis C 0:44� 0:01 0:44� 0:01 0:44� 0:01 0:25� 0:06 0:64� 0:04
Wine 0:87� 0:05 0:87� 0:05 0:87� 0:05 0:44� 0:16 0:87� 0:05
20Newsgroups 0:64� 0:01 0:64� 0:01 0:64� 0:01 0:57� 0:00 0:59� 0:01

Table 5
Average coverage value and 95% confidence intervals for the kNN-based classifiers, on all 12 datasets.

Dataset WRF Wdec
CWRF

Wposs
CWRF

Wdec
ChRF

Wposs
ChRF

Abalone 0:77� 0:00 0:60� 0:03 0:69� 0:10 0:57� 0:03 0:77� 0:07
Arrhythmia 0:79� 0:04 0:79� 0:04 1:00� 0:00 0:55� 0:17 1:00� 0:00
Breast Cancer 0:96� 0:02 0:96� 0:02 1:00� 0:00 0:50� 0:12 1:00� 0:00
Chronic Kidney 0:79� 0:06 0:79� 0:06 1:00� 0:00 0:62� 0:10 1:00� 0:00
Covertype 0:94� 0:02 0:94� 0:02 1:00� 0:00 0:00� 0:00 1:00� 0:00
Diabetes 0:82� 0:04 0:82� 0:04 1:00� 0:00 0:72� 0:07 1:00� 0:00
Diabetic Retinopathy 0:75� 0:04 0:75� 0:04 1:00� 0:00 0:59� 0:10 1:00� 0:00
Digits 0:98� 0:01 0:98� 0:01 1:00� 0:00 0:55� 0:00 1:00� 0:00
Epileptic Seizure 0:71� 0:00 0:50� 0:00 0:62� 0:01 0:68� 0:01 0:78� 0:01
Hepatitis C 0:32� 0:01 0:23� 0:04 0:39� 0:07 0:37� 0:04 0:79� 0:01
Wine 0:76� 0:04 0:71� 0:09 0:83� 0:11 0:62� 0:09 0:97� 0:01
20Newsgroups 0:83� 0:01 0:83� 0:01 0:87� 0:01 0:00� 0:00 0:82� 0:01

Fig. 4. Average accuracy and 95% confidence intervals for each of the evaluated classifiers, on the medical (left) and non-medical (right) datasets. Each
marker refers to the average of the corresponding Random Forest-based and kNN-based classifiers. In the legend, h denotes the standard classifiers
(hRF ;hKNNÞ; TWD the three-way decision classifiers (WRF ;WKNN); TWCP-DCTWD (resp., TWCP-PCTWD) the DCTWD (resp., PCTWD) classifier based on the
TWCP (Wdec

CWRF
;Wdec

CWRF
); while h-DCTWD (resp., h-PCTWD) the DCTWD (resp. PCTWD) classifier based on the standard conformal predictors (Wdec

ChRF
;Wdec

ChRF
).
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predictions, as observed in Tables 3, 5. More generally, the proposed construction can be applied to improve the predictive
accuracy of any TWD classifier whose underlying single-valued ML models may be prone to either under- or over-fitting, as
in the case of kNN.

In regard to our second research question, we did not find significant differences among the DCTWD classifiers and the
PCTWD classifiers in terms of predictive accuracy, though the PCTWD classifiers were on average less accurate than the
DCTWD ones. On the other hand, in terms of efficiency, the PCTWD classifiers reported a larger coverage than the DCTWD

ones. In particular, the difference between Cdec
h and Cposs

h was statistically significant.
Thus, the DCTWD and PCTWD classifiers offer a trade-off between greater accuracy (for the DCTWD classifier) and greater

efficiency (for the PCTWD classifier). The selection among the two methods should then be made by the decision-maker,
based on the quality dimension which is deemed most important for the specific decision-making task at hand.

As a general final remark, we focus on the TWD-based classifiers, i.e., the TWD classifierW, the DCTWD classifierWdec
CW and

the PCTWD classifier Wposs
CW . Compared with W, the DCTWD classifier reported, on average, improved predictive accuracy but

slightly lower efficiency. By contrast, the PCTWD reported, on average, improved efficiency with comparable but slightly
reduced accuracy. Therefore, the application of the proposed CP-based corrections could be useful not only for classifiers
whose predictions are insufficiently accurate, or for classifiers that are known to be prone to over-fitting, but also for more
general TWD classifiers. Indeed, in the worst case situation, the set-valued predictions provided by TWD and the correspond-
ing DCTWD and PCTWD would be equivalent, as a consequence of the results in Section 3. In all other cases, however, the
proposed constructions would allow to achieve either more accurate (using the DCTWD classifier) or more specific (using the
PCTWD classifier) predictions, compared with a standard TWD classifier.

5. A medical case study

Up to now, we have discussed the relationship between TWD and CP. Through this relationship we studied some formal
property of TWD, by introducing the TWCP, DCTWD and PCTWD classifiers as a means to both study validity bounds for TWD

Table 6
Average ranks of the compared learning algorithms, in terms of observed loss value, according to the Friedman test procedure.

h W Cdec
W Cposs

W Cdec
h Cposs

h

Average rank 5.29 2.23 1.83 2.67 4.01 4.91

Table 7
Pairwise differences in ranks, in terms of observed loss values, among the compared learning algorithms. Statistically significant differences (according to the
Nemenyi test) are denoted in bold and with an asterisk.

W Cdec
W Cposs

W Cdec
h Cposs

h

h 3:06	 3:46	 2:62	 1:28 0:38
W – 0:40 0:44 1:78 2:68	

Cdec
W – – 0:84 2:18	 3:08	

Cposs
W – – – 1:34 2:24	

Cdec
h

– – – – 0:9

Table 8
Average ranks of the compared learning algorithms, in terms of observed coverage, according to the Friedman test procedure.

W Cdec
W Cposs

W Cdec
h Cposs

h

Average rank 3.02 3.46 2 4.75 1.90

Table 9
Pairwise differences in ranks, in terms of observed coverage values, among the compared learning algorithms. Statistically significant differences (according to
the Nemenyi test) are denoted in bold and with an asterisk.

W Cdec
W Cposs

W Cdec
h Cposs

h

W – 0:44 1:02 1:73 1:12

Cdec
W – – 1:46 1:29 1:36

Cposs
W – – – 2:75	 0:10

Cdec
h

– – – – 2:85	
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and to improve the validity of standard TWD classifiers. In this section, we address the potential of the proposed approach for
human decision making in classification tasks and, therefore, for its integration into Decision Support Systems.

As we argued in the Introduction, cautious learning approaches could be useful to develop valid and reliable decision sup-
port in human decision making. Nonetheless, to the knowledge of the authors, no previous study evaluated the usefulness of
such set-valued advice compared to standard support. Indeed, even though the recent study by Liu et al. [23] assessed the
effectiveness of TWD from the perspective of interpretability, the authors did not specifically evaluate the usefulness of set-
valued advice.

In order to understand whether set-valued advice could be supportive in naturalistic decision making [19], we tested this
approach in the case of the assessment of sagittal misalignment. This latter is a kind of spine deformity regarding an imbal-
ance along the front-to-back direction of the outward curve of the middle spine called kyphosis.

We chose this case for three main reasons. First, there is a lack of standard criteria to classify imbalance [20], as this is
characterized in terms of a number of angles, among which the main ones are called pelvic tilt (PT), sacral slope (SS) and
pelvic incidence (PI, which can be defined as the sum of PT and SS - see Fig. 5). Second, it fits well a set-valued output. Indeed,
real cases form a continuous range, where specific instances of pathological shape of the spine might be borderline, sharing
characteristics of two ‘‘adjacent” patterns. On the other hand, existing classification schema provide discrete and mutually
exclusive categories by which to characterize spine misalignment. Lastly, and more importantly, the diagnosis of this kind of
spine deformity is strongly related to treatment. That is, recognizing a kyphosis type, and therefore classifying sagittal
misalignments into a specific pattern, provides spine surgeons with a range of treatment guidelines to restore a physiological
profile and reduce the odds of adverse events or of poor outcome [3].

To this aim, we considered a dataset of 120 patients (26 male subjects), whose imaging and sets of 14 spine angles were
analyzed and annotated by two senior expert spine surgeons. The two surgeons annotated each case with one out of 7 mutu-
ally exclusive labels, namely: normal and 6 different types of kyphosis. The normal cases (N) were 14% of the sample; of the
abnormal cases, 36% were affected by lumbar kyphosis (L), 23% suffered from thoracic kyphosis (T), 21% from global kyphosis
(G), 17% from thoracolumbar kyphosis (TL), while the other disorders (Lower Lumbar (LL), Cervical (C)) accounted for the
remaining 9%.

As proof that the classification task was not a trivial one, although the two expert surgeons shared a taxonomic frame-
work that they had jointly published [20], they could only agree on slightly more than two thirds of the cases (68.3%) and
only exhibited a moderated agreement (Cohen’s Kappa and Krippendorff’s Alpha both equal to 0.62). Thus, the considered
dataset was a natural example of the weakly supervised learning setting, discussed in Section 2. So, for model training,
we applied the techniques proposed in Section 3.1, using as base TWD classifier the state-of-the-art TW Random Forest
method [5].

One of the authors, an expert spine surgeon, reviewed 15 predictions provided by a classical (weakly supervised) predic-
tive model h (which also gave the probability score associated with the diagnostic advice), with moderate accuracy (approx-
imately 70%), and compared themwith the set-valued predictions provided by a corresponding DCTWD classifier (defined on
the basis of a TWDWh classifier grounding on h), together with the related probability bound as described in Section 3.2. See
Table 10 for a brief summary of the annotated cases. The spine surgeon evaluated the usefulness of the advice and, then,
discussed about the rationale for the potential adoption of these approaches in clinical decision support.

From the quantitative point of view, the output of the DCTWD classifier was found to be more useful (or informative),
with a mean score of 4.13 (SD = 1.21) (vs 3.80, SD = 0.92), but not significantly so (Mann Whitney test, U ¼ 97:5. p-value
= 0.55).

On a more qualitative level, the traditional approach was deemed preferable whenever the classifier would be able to pro-
vide the decision makers with highly-confident advice. In the case at hand, which we recall was a 7-class diagnostic task, a
probability score for a single class was considered high if it was at least 3 times higher than those from a uniform probability
distribution (i.e., 1=6). Nonetheless, also the conformal approach proposed in this paper was deemed valuable in these cases,
for its capability to point out the most plausible alternatives, that the decision maker could further consider to definitely rule
them out in favor of the diagnostic class singled-out by the traditional approach.

Fig. 5. The main angles considered in the sagittal imbalance classification.
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Conversely, when the traditional approach gives predictions associated with low confidence scores, the set-valued output
(provided by the DCTWD) was found to be more useful. This was mainly the case because the set-valued prediction provides
an enumeration of the main alternatives, and thus indirectly suggests what further evidence or elements should be consid-
ered by the decision maker to rule out some options and keep those that are more compatible with the case at hand.

In the 15 cases considered in this evaluation, the set-valued predictions provided by the DCTWD of alternatives were
deemed to be always close to the set of natural candidates for the correct diagnosis that an expert surgeon would have con-
sidered if unaided (only for case 115 the DCTWD did not include the label TL in the set-valued predictions, although it
included both T and L).

Generalizing, we can assert that whenever the traditional approach provides confidence scores close to the uniform prob-
ability distribution, and the probability bounds of the DCTWD are sufficiently high, then presenting both these pieces of
advice would be the best option.

The medical expert also provided some comments on two noteworthy cases that we report in what follows, to highlight
the kind of reasoning that cautious learning can facilitate in diagnostic tasks:

� Case 1 was described as an odd one (see Fig. 6a). The involved surgeon said that it was probably a normal subject (because
the pelvic tilt and the SVA were normal and the combined normality of both parameters leaves little room for a patho-
logical case to be confirmed), who nevertheless exhibited a value of lumbar lordosis that was too low. He agreed upon the
fact that other, equally expert, colleagues could have defined the unusual shape of the spine exhibited by case 100 (pre-
senting small pelvic incidence, relatively small lumbar lordosis and small thoracic kyphosis) as unharmonious and weird,
irrespective of its occurrence in asymptomatic subjects. Interestingly, the DCTWD was capable to capture this ‘‘oddness”
and it provided a set-valued prediction that encompassed both normality, lumbar lordosis and thoracic kyphosis as plau-
sible labels.

� Case 2 was deemed extremely interesting. In [20], subjects like case 8, who present values of lumbar lordosis lower than
the normative values, and thoracic kyphosis above the normative values, are considered clear instances of global kypho-
sis. Nonetheless, insufficient lumbar lordosis, combined with decreased thoracic kyphosis, indicates cases of manifest
lumbar kyphosis. This puts patients like case 8 in an area of uncertainty, and no current spine deformity classification
can associate these patients with a clear-cut category, without the risk of misdiagnosis. Interestingly, the DCTWDmethod
recognizes and reflects this intrinsic uncertainty, by not imposing any specific diagnosis over the others.

The described qualitative evaluation, and the brief discussion of the two cases mentioned above, are just exemplifications.
Nonetheless, they allow us to hint at how computational tools, like those integrating some form of machine learning, can
support human reasoning, and how decision makers and these tools should interact in naturalistic settings and real-
world scenarios.

This latter aspect also relates to how plausible classes should be presented, that is how many and whether in terms of
confidence or probability. Likewise, the usefulness of set-valued predictions was appreciated in almost all the decision set-
tings, as long as the interval did not encompass more than 3 or 4 alternative candidates, irrespective of the number of poten-
tial disjoint options.

In our short, but indicative, use case, we showed how human decision makers can collect observations in a medical sce-
nario; combine this information with knowledge on spinal bio-mechanics, developed in either direct or indirect clinical
experience (e.g., historical trial and errors, case reports, clinical comparisons); and formulate hypotheses on the basis of what

Table 10
Summary of the information regarding the medical cases reviewed by the domain expert. For each case, we report both the single-valued prediction and the
set-valued prediction provided by the DCTWD (in parentheses, the probability scores of the two methods), the target labels, and the perceived usefulness of the
two types of predictions, measured in an ordinal scale ranging from 1 (very low) to 5 (very high). We also report, for each case, the pelvic tilt (PT) and sacral
slope (SS) angles.

Case ID PT SS Target h (prob.) DCTWD (prob.) Usefulness (h) Usefulness (DCTWD)

83 29 8 L L (0.68) L, LL (0.86) 4 4
8 23 24 G L (0.64) L, G (0.86) 5 5
87 43 24 L L (0.76) L (0.86) 4 5
100 11 22 TL, L L (0.32) N, TL, L (0.71) 3 5
115 21 35 TL, LL T (0.62) T, L, LL (0.86) 5 3
71 27 12 G, L G (0.29) T, L, LL, G (0.94) 5 2
3 39 4 L L (0.33) L, G (0.71) 3 5
24 16 39 LL L (0.71) L, LL (0.94) 3 4
101 13 33 TL T (0.64) T, TL (0.86) 2 4
4 32 26 L T (0.74) T, L (0.94) 2 4
124 57 16 L L (0.75) L, LL (0.94) 5 3
109 16 28 N N (0.67) N, T (0.86) 4 5
104 22 24 N, LL N (0.32) N, L, LL (0.71) 5 4
2 20 19 L N (0.33) N, T, L (0.86) 2 5
61 15 44 N N (0.89) N, L (0.86) 5 4
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a computational decision support gives them. In regard to set-valued output, we saw how this type of support can reflect
compatible patterns of spine deformation and compensation, and hence be a useful aid to choose appropriate treatments
even if a single option is not highlighted. In fact, the predictions provided by the DCTWD classifier were found to be useful
even for the cases for which traditional systems could suggest a single diagnosis with high accuracy, because they acted as
triggers for double check and review of less-than-obvious options.

In light of our study, we then make the point that decision support in real-world settings should always leverage some
form of cautious prediction; either in conjunction with more traditional approaches, or in isolation. Their usefulness espe-
cially emerges in those cases where real life comes in shades of grey, and even well-trained and long-experienced experts
cannot classify specific cases with total certainty. Cautious learning approaches can better reflect this intrinsic uncertainty,
compared with traditional approaches, and thus they could provide more useful and interpretable decision support [14,23]
for decision makers in critical settings, or for under-specified tasks.

6. Conclusion

In this article, we studied the relationship between TWD and CP, two popular cautious learning approaches. To this aim,
we introduced the three-way non-conformity measure, as well as the three-way conformal predictor (TWCP), and discussed two
classes of conformal TWD classifiers (i.e., the DCTWD and PCTWD classifiers) by which a conformal predictor can be trans-
formed into a TWD classifier. Through this relationship, the validity of TWD-based ML models is proven for the first time (to
our knowledge): this allows to establish reliable learning-theoretic guarantees and error bounds for TWD classifiers.

Furthermore, the definition of optimal cost-sensitive cautious classification algorithms is addressed, along with a charac-
terization of the conditions under which CP and TWD would provide identical results.

From an empirical point of view, we illustrated how the proposed constructions can be used to obtain TWD classifiers that
were shown to outperform state-of-the-art TWD, and CP, methods.

Finally, we highlighted the positive potential of the proposed approaches – and cautious learning methods more in gen-
eral – in the development of reliable decision support, through an illustrative use case, involving a subject-matter expert in a
complex medical classification problem.

Fig. 6. (a) A sagittal X-ray for the case No. 100. This depicts a thoracolumbar kyphosis that is so light that the alignment is almost normal. (b) A sagittal X-
ray that depicts a manifest, easy-to-detect thoracolumbar kyphosis.
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In conclusion, we believe that our theoretical analysis and the promising results from the empirical study represent a first
step, as well as a foundation, for further investigations aimed at characterizing the theoretical aspects of TWD-based ML, and
of cautious-learning approaches more in general. For this reason, we believe that the following open problems should be fur-
ther investigated:

� In Section 3.2, a characterization of the conditions for the equivalence between a TWD classifier and the corresponding
PCTWD classifier was proved, under the assumption of a uniform-error loss function. It would be interesting to generalize
this characterization to general-loss functions;

� In this paper, we focused on the most basic notion of validity (i.e. conservative validity). It would thus be interesting to
study also the probabilistic validity of TWD classifiers, or their validity in non-i.i.d. settings [2];

� The three-way non-conformity measure was introduced to define CP algorithms based on TWD classifiers. Though this
approach allowed a natural comparison among the two studied approaches, it is not optimal in terms of efficiency. It
would thus be interesting to study appropriate generalizations of other, efficient [31], CP approaches to the TWD setting;

� The proven validity bounds are instance-wise and can be applied in both online and inductive settings (using a validation
set). Nonetheless, it could be interesting to study validation-independent finite-sample bounds. This would require, in
turn, to generalize the framework of PAC learning theory to TWD-based ML and, more in general, to cautious learning [12];

� Finally, through a simple but indicative case study, in Section 5, we discussed the usefulness of the proposed approaches
to develop more reliable and supportive decision support tools. We deem that further assessing the perceived usefulness
of TWD, CP and other cautious learning approaches as support tools for human decision makers could be of great interest
towards the development of truly reliable Decision Support Systems.
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Chapter 6

Ensembling of Cautious Predictors

As discussed in the previous chapters, one of the most relevant problems in the cau-

tious inference literature regards the so-called validity-efficiency trade-off [174, 251],

that is the trade-off between less precise but more accurate predictions, or vice-versa.

Even though in the recent years several theoretical advancements have been made

in regard to this question, most relevantly through the proposal in [100, 148, 203]

of cautious inference methods based on conformal prediction having optimal asymp-

totic efficiency, the application of such results in practical settings has been limited.

As a possible, conceptually simpler, alternative to such statistical methods, in recent

years the application of ensemble techniques for the combination of cautious predic-

tors has attracted some interest [14, 18, 236], also due to the popularity and efficacy

of ensemble learning in the standard supervised setting [116, 204]. Ensemble learning

refer to techniques that allow to obtain, from a collection of models h1, . . . , hn ∈ H,

a new aggregated model ĥ (not necessarily in H) that improves on each of the hi in

regard to some quality dimension of interest, e.g. by improving the generalization, or

by reducing the variance. Within the setting of standard supervised learning, ensem-

ble methods have been proposed as a flexible approach to control the bias-variance

trade-off [124, 140, 191], and have since become one of the most popular learning

paradigms. In the cautious inference setting, on the other hand, the issue of how

to ensemble cautious predictors, and the properties of such combination techniques,

has been investigated in two different strands of research.

194



On the one hand, as mentioned above, the ensembling of cautious predictors

has been investigated, mainly within the framework of conformal prediction, with

the aims of improving the data efficiency of such methods while at the same time

improving their efficiency and preserve their validity [57, 138, 250] or allowing the

effective application of cautious inference techniques in multiple data-source or infor-

mation fusion settings [14, 223]. On the other hand, ensemble of cautious predictors

have been considered as an alternative to state-of-the-art ensemble methods, to re-

duce base models’ overfitting [48] and improve generalization [55, 167], to improve

interpretability [18] or to improve robustness to noise in the data [29, 71, 143].

Within the first strand of research, several ensemble techniques have been pro-

posed to address the above mentioned aims, starting from seminal work on cross-

conformal, bootstrap-conformal and out-of-bag conformal prediction [154, 250] as

well as aggregated conformal prediction [57, 155, 153]. These latter are techniques

that are directly based on the ensemble learning scenario and have been proposed

as a way to mitigate the need for a separate calibration set in inductive conformal

prediction [183], by training different conformal predictors Γ1, . . . ,Γn on different

datasets S1, . . . , Sn obtained from a single dataset S either by partitioning or resam-

pling. The base conformal predictors are then ensembled by averaging their p-value

functions p̂x(y) =
1
n

∑
i p

i
x(y), thus allowing full utilization of the training set S. At

the same time, while it has been shown that such techniques tend to have a sta-

bilizing effect on the p-value functions, thus improving the efficiency, it has been

shown in practical settings [155, 153] that the resulting ensemble models often fail

to preserve the validity properties of the base cautious predictors that are combined:

indeed, existing results on the validity of the above mentioned methods [57] rely on

strong assumptions on the resampling procedure.

More recently, the above mentioned ensemble learning-based combination tech-

niques have been extended also to ensembles of conformal predictors possibly trained

on different and unrelated datasets, as a way to allow application of such techniques

in information fusion, multi-source or multi-modal data, as mentioned above. Among

such techniques, aside from direct generalizations of the aggregated conformal pre-
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dictor, the two most popular approaches have been inspired either by research in

multiple hypothesis testing [163] and meta-analysis [119], using approaches such as

quantile and order-statistic methods [14, 236, 237], or by voting theory [65]. In the

first case, an approach based on Fisher’s method for combining p-values has gained

popularity due to its good empirical performance [14, 236]. According to this proce-

dure, the p-values given by different conformal predictors Γ1, . . . ,Γn are combined by

applying the rule p̂x(y) = k
∑n−1

i=0
(− log k)i

i!
, where k = Πip

i
x(y): the intuition behind

this approach relies on the observation that, if the p-values are independent, the

values −log2pix are distributed as a χ2 variable, from which the above formula can be

derived. In the second case, on the other hand, combination is performed at the level

of confidence sets, rather than p-values [65]: given confidence sets T ϵ
1(x), . . . , T

ϵ
n(x)

at a specific threshold level ϵ, these are combined either by selecting the set-valued

prediction T̂ (x) containing all classes for which |{i : y ∈ T ϵ
i (x)}| ≥ n

2
. The intu-

ition for this approach stems from voting theory, in which Condorcet jury theorem

[31] provides an asymptotic bound on the probability of correctness for the aggre-

gation of votes according to majority voting, which directly translates into a weak

form of validity for the above mentioned combination rule. Despite the empirical

effectiveness of such combination rules, and similarly to the above mentioned ensem-

ble learning-inspired combination methods, all of the above mentioned approaches

have been shown to lose the validity properties enjoyed by the combined cautious

predictors, and their theoretical properties have not been studied [14].

Within the second strand of research mentioned above, focused on the applica-

tion of cautious predictors as base models for standard ensemble learning techniques,

most existing approaches have been grounded on the application of approval voting

schemes [37], by which multiple set-valued predictions T1, . . . , Tn, no matter by which

cautious predictor have they been obtained, are combined into a single, precise pre-

diction ŷ = argmaxy∈Y |{i : y ∈ Ti(x)}|. Similarly to the first setting mentioned

above, however the theoretical properties of such ensemble techniques have not yet

been clarified in general settings, and research has mostly focused on the empir-

ical evaluation of their effectiveness in comparison with state-of-the-art ensemble
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methods [18, 48]. Also from this latter perspective, however, the assessment of such

approaches has been mostly based on limited benchmarks, with a lack of study focus-

ing on showing whether ensembles of cautious predictors really provide an effective

improvement as compared to state-of-the-art ensemble methods.

The aim of this chapter, then, will be to study the ensembling of cautious predic-

tors so as to address research problem P2.2, within the two setting described above,

both from an empirical as well as a theoretical point of view.

First, in Section 6.1, the main aim will be to study the empirical performance of

ensembles of cautious predictors as a way to improve the generalization and robust-

ness of state-of-the-art ensemble methods. Such an aim will be addressed by means

of an extensive experimental analysis of ensemble techniques based on a large set of

benchmark datasets. The focus will be devoted to ensembles of cautious predictors

obtained by the application of three-way decisions, as described in Section 5, to the

ensemble base classifiers [48] which are then aggregated by means of approval vot-

ing. This class of cautious inference-based ensemble models will be compared against

both state-of-the-art standard ensemble methods, as well as ensemble techniques in-

spired by other uncertainty quantification approaches [133]. The main contribution

of Section 6.1 will then be to show that such ensembles of cautious predictors, and

more generally ensembles of models building on uncertainty quantification schemes

[133], can provide significantly better performance, as well as improved robustness to

uncertainty in the data and the curse of dimensionality, as compared to commonly

adopted state-of-the-art techniques.

On the other hand, in Section 6.2, the main aim will be to study the theoretical

properties, in terms of validity and efficiency, of ensembles of cautious predictors,

focusing on techniques based on conformal prediction. To this aim, the two main

theoretical contributions of this section will be the proposal of a general framework

for the definition and analysis of conformal prediction combination rules, based on

the correspondence between conformal prediction and possibility theory [62] and the

application of copula theory [178], as well as the theoretical study of several such

combination rules in a general, information fusion-inspired setting [14] which relaxes
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the main assumptions introduced in the previous proposals in this sense [57, 65].

These theoretical contributions will be complemented by an empirical contribution

by which the effectiveness of the above mentioned combination rules will be evalu-

ated in the setting of multi-variate time series classification (MTSC). This task was

selected due to its practical relevance as well as due to the certain characteristics that

make MTSC particularly relevant for the evaluation of the above mentioned models

In particular, one of the main characteristics of the MTSC setting relates to the

distinction between bespoke methods, which employ all the multivariate information

at the same time and thus make full use of the available information, and univari-

ate methods, which combine classifiers trained on each univariate slice of the time

series of interest, and hence may be preferable in terms of computational efficiency

or applicability in resource-constrained settings. To this aim, the proposed combina-

tion rules will be evaluated, on a standard benchmark collection of MTSC datasets,

as way to implement robust univariate MTSC methods, in comparison with both

standard state-of-the-art bespoke classifiers proposed in this setting, other cautious

inference ensemble methods proposed in the literature, as well as state-of-the-art

cautious predictors. The main empirical contribution in this sense, then, will be to

show that combination of conformal predictors, each of which based only on a uni-

variate slice of the time series to be classified, can perform as well as, or better than,

state-of-the-art bespoke methods, both based on multi-variate standard classifiers as

well as cautious inference methods.
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A B S T R A C T

In this work we present a large-scale comparison of 21 learning and aggregation methods proposed in
the ensemble learning, social choice theory (SCT), information fusion and uncertainty management (IF-UM)
and collective intelligence (CI) fields, based on a large collection of 40 benchmark datasets. The results of
this comparison show that Bagging-based approaches reported performances comparable with XGBoost, and
significantly outperformed other Boosting methods. In particular, ExtraTree-based approaches were as accurate
as both XGBoost and Decision Tree-based ones while also being more computationally efficient. We also
show how standard Bagging-based and IF-UM-inspired approaches outperformed the approaches based on
CI and SCT. IF-UM-inspired approaches, in particular, reported the best performance (together with standard
ExtraTrees), as well as the strongest resistance to label noise (together with XGBoost). Based on our results, we
provide useful indications on the practical effectiveness of different state-of-the-art ensemble and aggregation
methods in general settings.

1. Introduction

The term ensemble learning [1] (EL) refers to algorithms that rely
on the combination and fusion of multiple base models to obtain a more
accurate averaged model. This learning paradigm is currently one of the
most popular ones thanks to the outstanding empirical performance [2]
of its two main variants, namely bagging [3] and boosting [4], on a
variety of applications including survival analysis [5], rule mining [6],
outlier detection [7].

Interestingly, the main theoretical notion underlying EL, that is
the information fusion procedure by which high-quality information
is extracted from large ensembles of weak classifiers, is not unique
to Machine Learning (ML) and has long been explored also in other
research fields including social choice theory (SCT) [8]; collective intelli-
gence (CI) [9]; as well as information fusion and uncertainty management
(IF-UM) [10–13].

Nonetheless, research in these communities has been devoted to
largely different concerns. Research in EL has largely focused on the
development of more effective learning strategies [14–16] and their
theoretical analysis [17–19]. Conversely, research in SCT, CI and IF-
UM has largely focused on the development and analysis of novel
aggregation rules [8,12,20], focusing in particular on the validity and
efficiency properties of such aggregation rules [13,21]. These latter
approaches have shown promising performances compared with tra-
ditional majority-based aggregation [22], usually employed also in EL.
Moreover, research at the intersection of these fields has been lagging

∗ Corresponding author.
E-mail address: a.campagner@campus.unimib.it (A. Campagner).

behind. Notably, the different aggregation mechanisms developed in
SCT and CI have rarely been evaluated in the EL literature, with few
exceptions [23–25].

This work aims to bridge this gap in the literature, by means of a
large-scale empirical comparison of different aggregation procedures in
EL. The main goal of this paper, then, is to provide useful guidance
about the pros and cons of these different procedures in real-world
applications. To this aim, we evaluated 21 different aggregation meth-
ods on a large collection of 40 benchmark datasets, selected so as to
encompass different application domains, different number of instances
(150−58509), different number of classes (2−20), and different number
of features (4 − 1000).

2. Related work

In the recent years, there has been an increasing interest toward
the relationships among EL and other related research fields, including
SCT, CI and IF-UM. One of the first works in this line of research is [26],
which studied the properties of different EL methods in the framework
of SCT. Since then, most research works have focused on the develop-
ment of EL methods inspired by aggregation methods proposed in SCT,
CI and IF-UM. Ruta et al. [27] evaluated the use of plurality voting for
classifier selection; Gandhi et al. [28] developed an hybrid ensemble
method based on the plurality voting rule; Cornelio et al. [24] described
a general approach for developing EL algorithms based on SCT-inspired

https://doi.org/10.1016/j.inffus.2022.09.015
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voting mechanisms; Luo et al. [29] and Campagner et al. [23] described
an EL approach based on the Surprisingly Popular Algorithm [20];
while Abellan et al. [10], Balasubramanian [21], Campagner et al. [23]
and Toccaceli et al. [13] considered the application of approaches
inspired by IF-UM.

Nonetheless, and despite claims of alternative methods outperform-
ing traditional ensemble-based ones, few evaluation studies have aimed
at comparing different ensemble aggregation methods. Shipp et al. [30]
performed a comparison of 10 different aggregation methods, and
studied the relationship between these latter and ensemble diversity
measures. Narassiguin et al. [31] performed an extensive comparison
of traditional EL methods in the binary classification setting; Leon
et al. [25] compared the Bagging-based EL approach with 3 SCT-
inspired aggregation methods on 3 toy datasets. Bagging-based methods
and SCT methods were also compared in [24,32], through a more
extensive evaluation on more than 20 benchmark datasets. Though no
statistical analysis was performed, these latter research works high-
lighted how SCT-based methods can be competitive with traditional EL
methods. However, these findings were based on relatively small and
low-dimensional datasets. By contrast, Campagner et al. [23] compared
Random Forest and Boosting with methods from CI, SCT and IF-UM on
a collection of 10 small datasets and found SCT-based methods to be
out-performed by all other methods, while CI and IF-UM methods were
found to out-perform traditional EL approaches.

3. Methods

In this section, we recall the basic notions of EL, as well as of the
aggregation rules that we compared in our experiments. Finally, we
describe the adopted experimental setting. In the rest of the article, we
denote by 𝑋 the set of instances and by 𝑌 the set of class labels. As
we focus on classification, we assume that 𝑌 = {0,… , |𝑌 |}. Further, we
focus on scoring classifiers, that is functions ℎ ∶ 𝑋 ↦ [0, 1]|𝑌 |, where
ℎ𝑦(𝑥) denotes the probability score that ℎ assigns label 𝑦 to instance 𝑥,
i.e. the empirical estimate of 𝑃𝑟(𝑦|𝑥) given by the classifier ℎ. Given
a scoring classifier ℎ, we denote with ℎ̂ = [ℎ(1),… , ℎ(|𝑌 |)] the vector
obtained by sorting the probability scores (and corresponding class
labels) in decreasing probability order, i.e. such that ℎ(𝑦) ≥ ℎ(𝑦+1).

3.1. Ensemble learning methods

EL refers to a ML paradigm based on the aggregation of multiple
ML models into a single model (i.e., an ensemble) [33], with the aim
of flexibly controlling the bias–variance trade-off, i.e., the trade-off
between model capacity and generalization. Formally, given a set of
base predictors ℎ1,… , ℎ𝑛, the goal is to obtain a combined predictor ℎ𝑒𝑛𝑠
such that its predictive performance is better than the performance of
each ℎ𝑖. Since its original proposal in the context of statistical learning
theory, many EL approaches have been proposed. The main methods
include boosting [34], bagging [3], stacking [35], Bayesian model
averaging [36] and post-aggregation [37], each of which encompasses
different variations such as AdaBoost [38], Random Forest [39], Ro-
tation Forest [40], Random Patches [41], Gradient Boosting [42], and
others [43]. In this article, we focus on the two most popular strategies,
namely bagging and boosting [1].

Bagging is an EL method used to improve the performance and
generalization of unstable estimators [3,44], such as Decision Trees.
Given a training set 𝑇 , 𝐵 bootstrap samples are generated from 𝑇 ,
each of which is used to train a base classifier. These latter ones
are then aggregated by some form of majority voting, either simple
or weighted. We evaluated two state-of-the-art approaches related to
Bagging, i.e., Random Forest [39],1 and Extra-Trees [45].2

1 Compared to standard Bagging, in Random Forest, also the features used
by the base models are randomly selected.

2 Formally, Extra-Trees is not a Bagging approach, as it is not based on
bootstrapping. Nonetheless, as most implementations of Extra-Trees allow

Boosting was first introduced in [4,46], and denotes a family of
learning algorithms that iteratively train and aggregate models: as new
models are added to the ensemble, increasingly greater relevance is
associated to those instances that were mis-classified by the previous
models. While this relevance assignment procedure depends on the
specific Boosting algorithm [34], most methods are based on the evalu-
ation of a loss function that drives the construction of the ensemble. In
our experiments we considered AdaBoost [38], Gradient Boosting [42],
and XGBoost [47], which are among the most commonly used and
best-performing methods in real-world practice [2].

3.2. Aggregation techniques

The main source of variation among EL approaches introduced
in the previous section lies in the selection of techniques for model
training: by contrast, model combination is usually performed by ma-
jority voting, either simple (i.e., Plurality voting, in SCT) or weighted.
Nonetheless, in SCT, CI and IF-UM many other aggregation algorithms
have been proposed. In what follows, we describe the combination
approaches that we evaluated in this paper.

Plurality Voting is the aggregation rule most frequently considered in
SCT, CI and EL [48]. In this approach the most voted class, among the
base models, becomes the outcome of the EL model. A common varia-
tion is weighted plurality, often employed in the EL setting: for example,
the aggregation method adopted in AdaBoost can be understood as a
variation of weighted plurality in which every base classifier is assigned
a weight based on its accuracy on the training set; similarly, a common
variation on the Bagging approach assigns to each base classifier ℎ𝑖, for
each instance 𝑥, a weight which depends on the probability scores that
the base classifiers assign to the classes.

Borda Count is an aggregation rule, proposed in SCT [8], that
requires the models to rank the classes in a sorted list. This ranking
is obtained based on the ordering of the class labels by the models’
probability scores. Based on the assigned ranks, a numerical score is
assigned to each option [49]. More precisely, let 𝑦 be a class label and
ℎ1,… , ℎ𝑛 be the base models. Then, the score of 𝑦 for base model ℎ𝑖 is
computed as 1

|{𝑗∈𝑌 ∶ℎ𝑗𝑖 (𝑥)≥ℎ𝑦𝑖 (𝑥)}| , i.e., the reciprocal of the number of class
labels whose probability score is greater than or equal to that of the
given label 𝑦. Intuitively, the higher 𝑦’s probability score is, the higher
its rank and the closer to 1 its score. After the scores are computed for
all models and classes, the scores for each class are then summed across
the models, and the class with larger total score is the output of the
ensemble. The full algorithm of the Borda Count aggregation method is
reported in Algorithm 1. We note that the time complexity of Algorithm
1, for each instance 𝑥, is 𝑂(𝑛 ⋅ |𝑌 |𝑙𝑜𝑔|𝑌 |), where 𝑛 is the number of base
models in the ensemble.

Algorithm 1 Borda aggregation method
1: procedure Borda-Predict({ℎ𝑖}𝑛𝑖=1, 𝑥)
2: 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑖𝑛𝑡[|𝑌 |] filled with 0
3: for 𝑖 = 1 to 𝑛 do
4: for 𝑦 = 1 to |𝑌 | do
5: 𝑠𝑐𝑜𝑟𝑒𝑠[𝑦] += 1

|{𝑗∈𝑌 ∶ℎ𝑗𝑖 (𝑥)≥ℎ𝑦𝑖 (𝑥)}|
6: end for
7: end for
8: return 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 𝑠𝑐𝑜𝑟𝑒𝑠[𝑦]
9: end procedure

Copeland Rule is an aggregation method studied in SCT [50] satis-
fying many desirable rationality properties [8]. According to Copeland
rule, for each pair of classes 𝑦1, 𝑦2, a net score is defined as 𝑁𝑒𝑡(𝑦1, 𝑦2) =

bootstrapping as a further way to reduce variance, we include the algorithm
in the Bagging category.
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|{ℎ𝑖 ∶ ℎ𝑦1𝑖 > ℎ𝑦2𝑖 }|− |{ℎ𝑖 ∶ ℎ𝑦2𝑖 > ℎ𝑦1𝑖 }|. The output of the ensemble is the
class with the largest total net score, i.e., 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌

∑
𝑗 𝑁𝑒𝑡(𝑦, 𝑗). The

algorithm for the Copeland Rule aggregation method is reported in
Algorithm 2. The time complexity of Algorithm 2 is 𝑂(𝑛 ⋅ |𝑌 |2), where
𝑛 is the number of base models.

Algorithm 2 Copeland aggregation method
1: procedure Copeland-Predict({ℎ𝑖}𝑛𝑖=1, 𝑥)
2: 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑖𝑛𝑡[|𝑌 |, |𝑌 |] filled with 0
3: for 𝑦𝑟 = 1 to |𝑌 | do
4: for 𝑦𝑐 = 1 to |𝑌 | do
5: 𝑝 ← |{ℎ𝑖 ∶ ℎ𝑦𝑟𝑖 (𝑥) > ℎ𝑦𝑐𝑖 (𝑥)}|
6: 𝑛 ← |{ℎ𝑖 ∶ ℎ𝑦𝑟𝑖 (𝑥) < ℎ𝑦𝑐𝑖 (𝑥)}|
7: 𝑠𝑐𝑜𝑟𝑒𝑠[𝑦𝑟, 𝑦𝑐 ] ← 𝑝 − 𝑛
8: end for
9: end for

10: return argmax𝑦∈|𝑌 |
∑

𝑗 𝑠𝑐𝑜𝑟𝑒𝑠[𝑦, 𝑗]
11: end procedure

Approval Voting refers to an aggregation rule in which each voter
is allowed to report a set of approved alternatives [51]. In terms of
EL, this means that each base classifier is transformed into a cautious
classifier [52] that provides as output a set of classes (rather than
a single-valued prediction). A cautious classifier can then be repre-
sented as a function ℎ ∶ 𝑋 ↦ 2𝑌 . The class which was reported
most frequently is then the output of the ensemble model. This IF-
UM-based technique [23] was proposed as a form of regularization,
inspired by label smoothing [53,54] and cautious inference [55], to
avoid the over-fitting of the base classifiers and mitigate label noise.
It was also considered in the conformal prediction literature [56] as
a method to improve the efficiency of a set of cautious classifiers
to be combined, while preserving their validity. We considered two
different approaches for transforming the base learners into set-valued
classifiers, namely either by selecting all classes associated with a score
larger than a fixed threshold 𝜏 = 1

𝑛𝐶𝑙𝑎𝑠𝑠𝑒𝑠 , or through the three-way
reduction [23,57]. In this latter case, if as said above we denote with
ℎ̂𝑖(𝑥) = [ℎ(1)𝑖 (𝑥),… , ℎ(|𝑌 |)𝑖 (𝑥)] the ranking of the class labels in decreasing
probability order for model ℎ𝑖 on input 𝑥, then 𝑡ℎ𝑟𝑒𝑒 − 𝑤𝑎𝑦(𝑖)(𝑥) =
{𝑦1,… , 𝑦𝑚} ⊆ 𝑌 ; where 𝑚 = min{𝑘 ∈ 𝑌 ∶

∑𝑘
𝑗=1 ℎ

(𝑗)
𝑖 (𝑥) ≥ 𝜏}, with

𝜏 a numeric threshold. Intuitively, the three-way reduction maps a
scoring classifier into a set-valued one that outputs the first 𝑎𝑗 classes,
ranked by their probability scores, s.t. their sum is greater than 𝜏. In
the experiments, we set 𝜏 = 0.75 for both multi-class and binary prob-
lems. The rationale for this threshold is that, due to the equivalence
between three-way decision and conformal prediction [55], under weak
assumptions on the calibration of the base classifiers the correct class
label is guaranteed to be contained in the set-valued prediction with
probability greater than 75%. The pseudocode for the Approval and
Three-way aggregation methods is reported in Algorithms 3 and 4. It
is easy to observe that the computational complexity of Algorithms 3
and 4 is given by, respectively, 𝑂(𝑛 ⋅ |𝑌 |) and 𝑂(𝑛 ⋅ |𝑌 |𝑙𝑜𝑔|𝑌 |).

Algorithm 3 Approval aggregation method
1: procedure Approval-Predict({ℎ𝑖}𝑛𝑖=1, 𝑥, 𝜏)
2: 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑖𝑛𝑡[|𝑌 |] filled with 0
3: for 𝑖 = 1 to 𝑛 do
4: for 𝑦 ∈ 𝑌 do
5: if ℎ𝑦𝑖 ≥ 𝜏 then
6: 𝑠𝑐𝑜𝑟𝑒𝑠[𝑦] += 1
7: end if
8: end for
9: end for

10: return 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈|𝑌 |𝑠𝑐𝑜𝑟𝑒𝑠[𝑦]
11: end procedure

Algorithm 4 Three-way aggregation method
1: procedure Three-way-Predict({ℎ𝑖}𝑛𝑖=1, 𝑥, 𝜏)
2: 𝑠𝑐𝑜𝑟𝑒𝑠 ← 𝑖𝑛𝑡[|𝑌 |] filled with 0
3: for 𝑖 = 1 to 𝑛 do
4: Let ℎ̂𝑖 = [ℎ(1)𝑖 (𝑥),… , ℎ(|𝑌 |)𝑖 (𝑥)] be s.t. ℎ(𝑗)𝑖 (𝑥) ≥ ℎ(𝑗+1)𝑖 (𝑥)
5: 𝑎𝑐𝑐 ← 0
6: 𝑗 = 1
7: 𝑠 = 𝑠𝑒𝑡()
8: while 𝑎𝑐𝑐 < 𝜏 do
9: 𝑣, 𝑦 ← ℎ(𝑗)𝑖 (𝑥) and corresponding label

10: 𝑎𝑐𝑐 += 𝑣
11: 𝑠.𝑎𝑑𝑑(𝑦)
12: 𝑗+ = 1
13: end while
14: for 𝑦 ∈ 𝑠 do
15: 𝑠𝑐𝑜𝑟𝑒𝑠[𝑦] += 1

|𝑠|
16: end for
17: end for
18: return 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈|𝑌 |𝑠𝑐𝑜𝑟𝑒𝑠[𝑦]
19: end procedure

Possibilistic Reduction is an IF-UM-based aggregation method, pro-
posed in [23] and inspired by possibility theory [58] and label smooth-
ing [53,54], as well as by the averaging aggregation in the conformal
prediction literature [21,59]. Thus, the possibilistic reduction is an
approach to regularize base models in EL methods. For each base
classifier ℎ𝑖 in the ensemble model, the probability scores, for a given
instance 𝑥, are transformed to a possibility distribution as 𝑝𝑜𝑠𝑠(𝑖)(𝑥) =[
ℎ(1)𝑖 (𝑥)

ℎ(1)𝑖 (𝑥)
,
ℎ(2)𝑖 (𝑥)

ℎ(1)𝑖 (𝑥)
,… ,

ℎ(|𝑌 |)𝑖 (𝑥)

ℎ(1)𝑖 (𝑥)

]
; where, as before, ℎ(1)𝑖 (𝑥),… , ℎ(|𝑌 |)𝑖 (𝑥) denotes

the ranking of the class labels in decreasing probability order. In the ex-
periments, we considered two aggregation rules: either by summing the
possibility scores, or by multiplying them. Intuitively, the sum-based
aggregation is similar to weighted plurality, in which, however, an even
larger weight is assigned to the top-ranked class [23]. On the other
hand, the product-based aggregation corresponds to (unnormalized)
Dempster’s combination rule on possibility distributions [10,60], and
strongly penalizes the classes that have been assigned low possibility
scores by at least one of the base models.

Surprisingly Popular Algorithm (SPA) is a CI-inspired aggregation
method proposed in [20]. The main intuition for this voting rule is that,
in real-life situations, raters do not just express their own preference,
but also make assumptions on how others could have voted. In EL,
the SPA approach has been applied by [23,29], showing excellent
predictive performance. In SPA, the base models in the ensemble not
only make their prediction 𝑦 = arg max𝑐∈𝑌 ℎ𝑐𝑖 (𝑥), but are also tasked
with predicting the final output of the ensemble (that is, the most
popular class within the ensemble). We denote these latter probability
scores, for model 𝑖 and class label 𝑦 ∈ 𝑌 , as 𝑠𝑦𝑖 (𝑥). The final output
of the ensemble is the class 𝑐 that maximizes the difference 𝑆𝑃 (𝑥) =
|{𝑖 ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑌 ℎ𝑐𝑖 (𝑥) = 𝑦}| − |{𝑖 ∶ 𝑎𝑟𝑔𝑚𝑎𝑥𝑐∈𝑌 𝑠𝑐𝑖 (𝑥) = 𝑦}|. In this article,
we considered the Bagging-based implementation of SPA introduced
in [23,29] and reported in Algorithm 5. If we denote with 𝑇 the time
complexity of training a base model, then it is easy to observe that the
computational complexity of Algorithm 5 is given by 𝑂(2𝑛𝑇 + 2𝑛 ⋅ |𝑌 |).

3.3. Experimental design

In our experiments we considered 21 different aggregation and
ensemble learning methods. First, we considered standard ensemble
learning methods, including three boosting methods, namely AdaBoost,
Gradient Boosting and XGBoost (AB, GB, XGB), as well as two bag-
ging methods, namely Random Forest and ExtraTrees, using both the
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Algorithm 5 Surprisingly Popular Algorithm
procedure Surprisingly Popular Ensembling(𝐷 = [𝑋, 𝑦] ∶ 𝑑𝑎𝑡𝑎𝑠𝑒𝑡, 𝑛 ∶
num of models)

Sample 𝐷1 = ⟨𝑋1, 𝑦1⟩, ..., 𝐷𝑛 = ⟨𝑋𝑛, 𝑦𝑛⟩ with replacement from 𝐷
Train base model ℎ𝑖 on each 𝐷𝑖
E = Bagging-Ensemble(ℎ1, ..., ℎ𝑛)
�̂� = E.predict(𝑋)
for 𝑖 = 1 to 𝑛 do

Train base model 𝑠𝑖 on (𝑋𝑖, �̂�)
end for
return(ℎ1, ..., ℎ𝑛), (𝑠1, ..., 𝑠𝑛)

end procedure
procedure Surprisingly Popular Predict(((ℎ1, ..., ℎ𝑛), (𝑃𝑠, ..., 𝑠𝑛)): ensem-
ble, 𝑥 ∶ instance )

𝑐 = (0, ..., 0) s.t |𝑐| = |𝑌 |
𝑝 = (0, ..., 0) s.t |𝑝| = |𝑌 |
for 𝑖 = 1 to 𝑛 do

for 𝑦 ∈ 𝑌 do
𝑐[𝑦] = 𝑐[𝑦] + ℎ𝑦𝑖 (𝑥)
𝑝[𝑦] = 𝑝[𝑦] + 𝑠𝑦𝑖 (𝑥)

end for
end for
�̂� = argmax𝑦∈𝑌 {𝑐[𝑦] − 𝑝[𝑦]}

return �̂�
end procedure

weighted majority (RandomForest, ExtraTrees) and simple Plurality
(Plurality_DT, Plurality_ET) aggregation rules.

Then, we considered Bagging-based implementations of all the
above mentioned aggregation rules: in all cases, the ensemble learning
algorithm was implemented by training the base models and then using
each of the aggregation rules to combine the predictions of the base
models. In detail, we considered two Bagging-based implementations
of SPA: these two implementations were realized by the pseudo-code
reported in Algorithm 5 with two different base classifiers, either
Decision Tree (SPA_DT) or ExtraTree (SPA_ET). Similarly, we also con-
sidered two Bagging-based implementations for each of Borda Count
and Copeland Rule (Borda_DT and Copeland_DT using Decision Tree
as base classifier, Borda_ET and Copeland_ET using ExtraTree as base
classifier) based respectively on Algorithms 1 and 2; four Bagging-
based implementations of Approval voting, two of which using the
threshold-based method described in Algorithm 3 and two of which
using the three-way method described in Algorithm 4 (Approval_DT
and Threeway_DT using Decision Tree as base classifier, Approval_ET
and Threeway_ET using ExtraTree as base classifier); four Bagging-
based implementations of the Possibilistic reduction, two of which
using the sum-based aggregation and two of which using the product-
based aggregation (PossSum_DT and PossProd_DT using Decision Tree
as base classifier, PossSum_ET and PossProd_ET using ExtraTree as
base classifier). In particular, the selected ensemble learning algorithms
(AB, GB, XGB, RF, ET) are the most commonly adopted ensembling
approaches, both in the literature and in practice, while the selected
aggregation rules (weighted majority, plurality, Borda count, Copeland
rule, Approval voting, Three-way reduction, Possibilistic reduction,
SPA) can be considered a representative selection of some commonly
adopted combination methods in SCT, CI and IF-UM. We decided to
consider two alternative implementations of each ensemble learning
method, i.e., using either Decision Tree or ExtraTree as base classifiers,
to evaluate the interplay between aggregation methods and base clas-
sifiers. Nonetheless, we also performed a non-differentiated analysis by
which we did not distinguish methods by base classifier but only by
aggregation method employed. A summary of all considered ensemble
and aggregation methods, along with the corresponding source of
inspiration, is reported in Table 1.

Table 1
Summary of the considered ensemble and aggregation methods along
with their respective sources of inspiration.

Method Inspiration

AdaBoost EL (Boosting)
Gradient Boosting EL (Boosting)
XGBoost EL (Boosting)
Random Forest EL (Bagging)
ExtraTrees EL (Bagging)
Plurality Voting SCT, CI
Borda Count SCT
Copeland Rule SCT
Approval Voting (threshold-based) SCT, IF-UM
Approval Voting (Three-way reduction) SCT, IF-UM
Possibilistic reduction (sum-based) IF-UM
Possibilistic reduction (product-based) IF-UM
Surprisingly Popular Algorithm CI

All algorithms were evaluated on 40 benchmark datasets, of which
35 obtained from the UCI repository [61], and 5 synthetic datasets
(data0 to data50). The UCI datasets were selected to provide as much
variation as possible in terms of number of features, number of in-
stances, number of classes, and application field. The aim was to ensure
that our results were generalizable across different domains and tasks.
On the other hand, the synthetic datasets were randomly generated,
to evaluate the susceptibility of the models to label noise (i.e. errors
in the target variable). We set the number of instances to 10 000, the
number of features to 1000, the number of classes to 10, and varied
the amount of label noise (i.e. the probability of observing an incorrect
label) in [0%, 5%, 10%, 25%, 50%]. The full list of datasets is reported in
Appendix A, in Table A.2.

In the experiments, for all ensemble models, we set the number of
base classifiers to 100 and all other hyper-parameters (i.e., for all algo-
rithms: maximum tree depth, maximum number of evaluated features,
split criterion; additionally for boosting methods: learning rate, under-
sampling rate) were optimized through a grid-search procedure. The
full range of hyper-parameters, for all evaluated models, is reported in
Appendix A, in Table A.1: DecisionTree (resp. ExtraTree) was used as
a base estimator for all algorithms whose name ended with _DT (resp.
_ET). For all algorithms involving randomization the value of the seed
was set to 0, so as to ensure reproducibility.

Training, hyper-parameter selection and testing were performed by
means of 5–3 nested cross-validation (CV), that is 5 folds for the outer
CV and 3 folds for the inner CV. Each dataset was first split in five
equal-sized folds. For each iteration of the outer CV, 4 folds of the
dataset (80% of the data) were used for training and hyper-parameter
selection (train/valid data) and the remaining fold (20% of the data) for
testing. For each iteration of the outer CV, a 3-fold CV was applied on
train/valid data: at each iteration of the inner CV, 2 folds (66.67% of
train/valid data) were used for training and the remaining fold (33.33%
of train/valid data) for hyper-parameter selection.

To measure the performance of the models, we considered the aver-
age test performance across the 5 iterations of the outer CV. In regard
to evaluation metrics, in order to account for label imbalance, we
considered the balanced accuracy. We also measured the running time
(in ms), so as to identify potential differences in terms of computational
efficiency among the different aggregation methods. For both balanced
accuracy and running time, comparison among the models was per-
formed by considering the average ranks obtained on the collections of
40 datasets. Namely, for each dataset we ranked the ensemble methods
from best to worst. For each ensemble method we then considered
its average rank across the 40 datasets. The average value of the
performance metrics on the 40 datasets is also reported. Statistically
significant differences were assessed by means of the Friedman omnibus
test [62] and Nemenyi post-hoc test [63], both with 𝛼 = 0.05. We
decided to use the Friedman test since it is a non-parametric, rank-
based alternative to the repeated measures ANOVA, which is thus more
robust to violations of the assumptions of this latter test.
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Fig. 1. Results of the experiments. Left: mean balanced accuracy scores of the models under study (higher is better), Error bars denote 95% C.I. Mean running times (ms) of the
models under study (lower is better). Error bars denote 95% C.I. Legend, okra: Boosting-based, green: ExtraTree-based, orange: Decision Tree-based, blue: SPA-based.

In order to provide further information on the behavior of the
ensemble models on different types of datasets we also considered three
additional comparisons, by which we evaluated the ensemble models’
behavior w.r.t. increasing number of classes, increasing number of
features and increasing levels of label noise. All code was implemented
in Python (ver. 3.9.5), using pandas (ver. 1.2.4), scikit-learn (ver.
0.24.2), xgboost (ver. 1.4.2), numpy (ver. 1.19.5), scipy (ver. 1.6.3) and
scikit-posthocs (ver. 0.6.7), and is publicly available online (together
with all results and employed datasets) on GitHub at https://github.
com/AndreaCampagner/Aggregation-Models-in-Ensemble-Learning.

4. Results

The results of the experimental comparison, in terms of average
balanced accuracy and average running time (with respective 95%
confidence intervals), are reported in Figs. 1(a) and 1(b). The average
ranks of the algorithms, across all datasets, are reported in Figs. 2(a)
and 3(a) . The 𝑝-value for the omnibus Friedman test w.r.t. balanced
accuracy and running time were both < 0.0001. Thus, since the result
of the omnibus comparison was statistically significant, we performed
a post-hoc comparison using the Friedman–Nemenyi procedure. The
p-values for the post-hoc analysis are reported in Figs. 2(b) and 3(b).
The performance of the models, differentiated by the number of classes,
number of features, and level of label noise, are reported, respectively,
in Figs. 4, 5 and 6. The results of the aggregation methods, measured
without distinction by base classifier, are reported in Appendix B in
Figs. B.1(a) and B.1(b), in terms of balanced accuracy and running
time, while their rank comparison and statistical analysis is reported in
Appendix B in Figs. B.2(a) and B.2(b), in terms of balanced accuracy,
and Figs. B.3(a) and B.3(b), in terms of running time.

5. Discussion

We observed significant differences among the evaluated algorith-
mic families. More in detail, the Boosting algorithms, except for XGB,
were out-performed by almost all other aggregation approaches. In-
deed, in terms of the mean ranks (w.r.t. balanced accuracy) both
AB and GB reported the worst classification performance, while in
terms of the mean balanced accuracy only PossProd_DT obtained a
performance comparable to that of AB and GB. Also, most of these
observed differences were statistically significant. Indeed, as seen in
Fig. 2(b) the p-values for almost all comparisons involving either
AB and GB were lower than the adopted significance threshold. GB,

in particular, was also the worst performing algorithm in terms of
average running time and among the 5 worst algorithms in terms of
mean ranks (w.r.t. running time), comparable only with XGB, SPA_DT,
SPA_ET and Threeway_DT. A possible explanation for the observed
poor performance of AB and GB can be observed in Figs. 4, 5 and 6.
Indeed, both algorithms were the most impacted by both increasing
data dimensionality and number of classes. In particular, while AB was
the best performing algorithm (along with XGB) in binary classifica-
tion tasks, its performance sharply decreased with more classes. This
finding can be explained by the fact that boosting models [64] are
known to be more affected by overfitting in the case of overlapping
classes, whose occurrence is obviously more likely when the number of
classes increases. AB and GB were also strongly impacted by increasing
label noise, a well known and widely reported fact in the previous
literature [65]. Our findings suggest that while AB and GB can be
very effective in low-dimensional or binary classifications settings, they
should not be used in problems that are either high-dimensional or
likely to be affected by label noise. In particular, our findings suggest
that AB is preferable to GB, since even though the two algorithms have
similar performance, AB is significantly more computationally efficient
(see Fig. 3(a)).

In contrast with the poor performance reported by AB and GB, XGB
was among the best performing algorithms, both in terms of mean
balanced accuracy (4th best) and mean ranks (6th best). Moreover,
in terms of the comparison obtained by unifying the base classifiers
(see Figs. B.1(a), B.2(a) and B.2(b) in Appendix B), XGB was similarly
among the best models (3rd best in terms of mean balanced accuracy,
4th best in terms of mean ranks). In particular, XGB was significantly
more accurate than the other boosting methods, of SPA algorithms,
of the SCT-based Borda and Copeland aggregation algorithms, as well
as of PossProd. This finding is in agreement with the widely reported
effectiveness of XGB [2,66,67]. In particular, Figs. 4, 5 and 6 show that
XGB was among the most robust methods in regard to both increasing
data dimensionality and label noise. In regard to data dimensionality,
even if the performance of XGB decreased with increasing number of
features, the reported drops were not statistically significant except
for the case of more than 100 features. In regard to label noise,
even if the performance of XGB significantly dropped with increasing
levels of label noise, the reported decrease was among the lowest
ones among the considered models. This latter finding confirms the
previous results reported in [68], which showed that XGB was the most
noise-resistant algorithm among boosting methods. An explanation for
these findings could be found in the use of curvature information
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Fig. 2. Comparison of the models under study in terms of balanced accuracy. Left: pointplot of the mean ranks (lower is better), error bars denote 95% C.I. Right: heatmap of
p-values obtained with the post-hoc Friedman–Nemenyi test, significance at different thresholds is denoted with shades of red. For each significant comparison in the right side,
the best method in the corresponding pair of models can be assessed from the left side, by looking at which of the two models had a lower mean rank . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Comparison of the models under study in terms of running time. Left: pointplot of the mean ranks (lower is better), error bars denote 95% C.I. Right: heatmap of p-values
obtained with the post-hoc Friedman–Nemenyi test, significance at different thresholds is denoted with shades of red. For each significant comparison in the right side, the best
method in the corresponding pair of models can be assessed from the left side, by looking at which of the two models had a lower mean rank. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

(i.e., Newton boosting) and extensive regularization [69] in the XGB
implementation: indeed, regularization could be helpful for reducing
the effective data-dimensionality (by reducing the weight assigned to
redundant or useless features) as well as for reducing overfitting and
improving generalization. Nonetheless, despite its outstanding classifi-
cation performance, XGB was among the worst algorithms in terms of
running time, scoring 2nd worst both in terms of mean running time
and in terms of mean ranks (w.r.t. running time). In particular, the
difference in running time w.r.t. XGB was significant for all algorithms
except SPA and GB. In this sense, it is easy to observe that the same
characteristics that allow XGB to obtain better classification perfor-
mance can have a large impact on its computational efficiency: indeed,

the use of boosting makes XGB harder to parallelize than Bagging-based
methods while the high number of hyper-parameters makes finding an
optimal configuration in limited running-time harder than for simpler
models.

In contrast with the previous results reported in the literature [23,
29], where SPA was reported as the best-performing ensemble ap-
proach, the SPA algorithm was among the worst performing models,
both in terms of balanced accuracy and in terms of running time, and
independently of the used base classifier. In particular, in terms of
balanced accuracy, even though SPA was not significantly different
from AB and GB, the differences w.r.t. all Bagging-based approaches,
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Fig. 4. Balanced accuracy scores of the tested aggregation methods using multiple subsets of possible datasets aggregated by number of classes. Error bars denote 95% C.I.

Fig. 5. Balanced accuracy scores of the tested aggregation methods using multiple subsets of possible datasets aggregated by number of features. Error bars denote 95% C.I.

Fig. 6. Balanced accuracy scores of the tested aggregation methods at different levels of label noise, based on the synthetic datasets.

with the exception of the SCT-based ones and PossProd, were statis-
tically significant (see Fig. 2(b)). The poor performance of the SPA
algorithm, which in human ensembles often performs better than plu-
rality voting [20], can be related to the overfitting of the models
whose target is the ensemble’s prediction: indeed, the base models
whose target was the ensemble’s prediction (i.e., the 𝑠𝑖 models in
Algorithm 5) did not generalize to the test set, thus failing to improve
the overall performance of the algorithm. Moreover, while in human
collectives SPA aims at identifying real experts by assuming that they
can better conjecture the performance of the others, this association
is much weaker in the case of ML models: the ability of a model to
predict correctly the output of other classifiers in the ensemble does not
necessarily entail a lower generalization error and may instead denote
a similar overfitting pattern for the majority of the base classifiers
in the ensemble. Similarly, also in terms of running time, SPA was
significantly worse than all other algorithms excluded GB and XGB (see

Fig. 3(b)). The increased time required by the SPA algorithms is due to
the need to train twice the number of base models [23,29].

Similarly, also the SCT-based Borda and Coperland aggregation
algorithms reported lower performance than other Bagging-based ap-
proaches, as highlighted in the rank comparison, see Figs. 2(a) and
B.2(a) in Appendix B. In particular, the Copeland rule was significantly
out-performed by all other Bagging-based approaches, except PossProd
and SPA. Similarly, also the Borda_DT algorithm was significantly out-
performed by most other Bagging-based approaches, with the exception
of PossProd_DT and PossProd_ET. On the other hand, while also the
Borda_ET reported worse performance than other Bagging approaches,
most of these differences were not statistically significant: only the
differences w.r.t. ExtraTrees, Plurality_ET, Poss_ET, Threeway_ET were
significant. The poorer performance of the Borda Count and Copeland
Rule approaches cannot be solely explained as being derived by the
insufficient informativeness of the ranking information as conjectured
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in [23]. Indeed, we note that the SCT-based Plurality (and, particularly
so, the ExtraTree-based implementation Plurality_ET) was among the
best models, despite being similarly based solely on ranking informa-
tion. A possible explanation for this behavior is reported in Figs. 4, 5
and 6. Indeed, we easily note that the Borda Count and Copeland Rule
approaches were the less stable among the Bagging-based approaches
w.r.t. increasing number of features, classes or label noise. This ob-
servation also provides an indication about the observed discrepancy
w.r.t. the previous results in [24,25,32], which were mostly focused
on datasets with relatively low dimensionality and small number of
classes. Then, the observed good performance of Plurality in com-
parison with Borda and Copeland could be explained by considering
the different scoring functions adopted by the three methods. Indeed,
while Plurality only scores the top-ranked class label, both Borda
and Copeland use all ranking information. As shown in Fig. 4, the
difference between the three methods becomes particularly significant
in multi-class settings. As can be easily derived from basic results in
probability and voting theory (see e.g. Condorcet jury theorem [70]),
since Plurality only assigns a score to the top-ranked alternative, when
multiple classifiers report the same top-ranked alternative, this is likely
to be the correct class label. By contrast, Borda and Copeland use the
full ranking information and the scoring functions they employ may
tend to smooth-out [71] the score of the correct class when there
are many classes. Furthermore, we also note that the Copeland Rule
was among the worst-performing algorithms in terms of running time.
This increased running time can be easily explained by observing that
computing the Copeland score has time complexity 𝑂(𝑛⋅|𝑌 |2) [8], where
𝑛 is the number of base models.

All other approaches, which were all Bagging-based, reported sim-
ilar performance. While in terms of average balanced accuracy the
Decision Tree-based approaches reported higher performance than the
ExtraTree-based ones (see Fig. 1(a)), this difference was not statis-
tically significant and was not observed in the rank-based analysis
(see Fig. 2(a)). Indeed, in terms of the rank-based analysis the five
best performing algorithms were all ExtraTree-based. The improved
performance of ExtraTree-based methods can be understood as stem-
ming from the regularization effect due to the random selection of
split thresholds in the training of the base classifiers, which may
help in reducing overfitting as compared to the use of CART-based
Decision Trees. This finding confirms and generalizes the previous
results in [31], obtained in the setting of binary classification, by which
ExtraTree base classifiers were found to be preferable to CART trees as
base classifiers in EL, due to the similar classification performance for
the two methods, with ExtraTree-based methods having however lower
computational costs. Our results confirm and extend this analysis also
to the multi-class setting: for all aggregation methods, the ExtraTree-
based variant reported a performance similar to (or better than) the
corresponding Decision Tree-based one, while being also more com-
putationally efficient. Furthermore, the default ExtraTrees ensemble
method was among the 5 best performing algorithms (2nd best when
unifying the base classifiers, see Fig. B.2(a) in Appendix B) and the best
in terms of running time.

Interestingly, both in terms of balanced accuracy and ranks, the best
performing approaches were IF-UM-based: Threeway_DT and Poss_ET,
respectively, with the Threeway aggregation method being the general
best aggregation algorithm in the comparison obtained by unifying
the base classifiers (see Figs. B.1(a) and B.2(a) in Appendix B). More
in general, the IF-UM-based approaches ranked consistently among
the models with the best performance: indeed, both in terms of bal-
anced accuracy (Threeway_DT, Threeway_ET, Poss_ET) as well as ranks
(Poss_ET, Threeway_ET, Approval_ET), 3 of the 5 best performing meth-
ods were IF-UM-based. This observation confirms the previous results
in [23] and shows that label smoothing regularization [53] and cau-
tious inference mechanisms could be useful in the development of
effective EL methods. The effectiveness of label smoothing regular-
ization can be observed more clearly in the additional analyses, as

Table A.1
Range of hyper-parameters for the evaluated models.

Algorithm Param. Values

Adaboost algorithm SAMME, SAMME.R
learning_rate 1.0, 0.5, 0.2, 0.1, 0.05, 0.01, 0.001
base_estimator DecisionTreeClassifier
max_deptha 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒

GradientBoosting learning_rate 1.0, 0.5, 0.2, 0.1, 0.05, 0.01, 0.001
subsample 1.0, 0.9, 0.75, 0.5
max_depth 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒

XGBoost learning_rate 1.0, 0.5, 0.2, 0.1, 0.05, 0.01, 0.001
subsample 1.0, 0.9, 0.75, 0.5
max_depth 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒

ExtraTrees max_depth 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒
max_features sqrt, log2
criterion gini,entropy
bootstrap True, False
class_weight balanced

RandomForest max_depth 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒
max_features sqrt, log2
criterion gini,entropy
class_weight balanced

DecisionTree max_depth 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒
max_features sqrt, log2
criterion gini,entropy
class_weight balanced

ExtraTree max_depth 1, 2, 3, 5, 10, 20, 50, 100, 𝑁𝑜𝑛𝑒
max_features sqrt, log2
criterion gini,entropy
class_weight balanced

aThis hyper-parameter is related to the DecisionTreeClassifier used as base_estimator.

reported in Figs. 4, 5, and 6. Indeed, the IF-UM-based methods were
among the most robust to both increasing dimensionality, number of
classes and, most interestingly, label noise. This is particularly evi-
dent for PossProd, which while being among the worst methods in
the general analysis, was surprisingly resistant to label noise, show-
ing (in the worst case of 50% label noise) performance on par with
three of the best performing methods (namely, XGB, Threeway_ET and
Threeway_DT). Nonetheless, despite these strongly positive results in
terms of classification performance, all IF-UM-based approaches but
Approval_ET were significantly less computationally efficient than the
most efficient algorithm (i.e., ExtraTrees).

Finally, as reported in Figs. 4 and 5, we can observe that the
previous observations still hold also for the differentiated analysis.
Moreover, as mentioned previously, this latter analysis sheds light
on the poor performance of some of the ensemble models (i.e., the
Boosting-based methods, SPA, Borda Count and Copeland Rule): If
we observe Fig. 4, we note that on the binary datasets all classifiers
(except Threeway_AB) reported very similar performances; by contrast,
when we increase the number of classes, the ensemble methods which
reported poorer performances in the aggregated analysis were affected
by a much larger reduction in performance. In particular, the AB and
GB Boosting-based approaches reported a decrease in balanced accu-
racy as large as 30%. By contrast, the Bagging-based approaches (and,
particularly, so the IF-UM-based approaches) were significantly more
stable w.r.t. increasing the number of classes. Similar observations also
hold when we consider the reduction in performance with respect to
increasing data dimensionality (see Fig. 5).

6. Conclusion

In this article, we have compared different EL aggregation methods,
inspired by SCT, CI and IF-UM, by means of a large-scale experimental
evaluation based on a highly heterogeneous set of datasets and tasks.
We believe that our results can provide useful indications for the
application of EL in practical contexts. Thus, in conclusion, we provide
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Fig. B.1. Results of the experiments. Left: mean balanced accuracy scores of the models under study (higher is better), Error bars denote 95% C.I. Mean running times (ms) of
the models under study (lower is better). Error bars denote 95% C.I.

Fig. B.2. Comparison of the models under study in terms of balanced accuracy. Left: pointplot of the mean ranks (lower is better), error bars denote 95% C.I. Right: heatmap of
p-values obtained with the post-hoc Friedman–Nemenyi test, significance at different thresholds is denoted with shades of red. For each significant comparison in the right side,
the best method in the corresponding pair of models can be assessed from the left side, by looking at which of the two models had a lower mean rank.

Table A.2
List of used datasets. For each dataset, we report the number of classes, features and instances.

Dataset Classes/Feats./Insts. Dataset Classes/Feats./Insts. Dataset Classes/Feats./Insts. Dataset Classes/Feats./Insts.

20newsgroups 20/1000/11313 data25 10/100/10000 ionosphere 2/33/351 qualitywine 7/11/4898
avila 10/10/20768 data5 10/100/10000 iranian 2/45/7032 robot 4/24/5456
banknote 2/4/1372 data50 10/100/10000 iris 3/4/150 sensorless 11/48/20000
cancer 2/9/683 diabetes 2/8/76 mice 8/78/972 shill 2/9/6321
car 4/16/64 digits 10/62/5620 micromass 20/1300/571 sonar 2/60/208
cargo 3/11/3942 frog-family 4/22/7195 mushroom 6/99/5644 taiwan 2/94/6819
credit 2/61/1000 frog-genus 8/22/7195 myocardial 2/111/1700 thyroid 3/21/7200
crowd 6/28/10845 frog-species 10/22/7195 obesity 7/31/2111 vowel 11/9/990
data0 10/100/10000 hcv 4/12/582 occupancy 2/5/20560 wifi 4/7/2000
data10 10/100/10000 htru 2/8/17898 pen 10/16/10992 wine 3/13/178
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Fig. B.3. Comparison of the models under study in terms of running time. Left: pointplot of the mean ranks (lower is better), error bars denote 95% C.I. Right: heatmap of
p-values obtained with the post-hoc Friedman–Nemenyi test, significance at different thresholds is denoted with shades of red. For each significant comparison in the right side,
the best method in the corresponding pair of models can be assessed from the left side, by looking at which of the two models had a lower mean rank.

Table B.1
Numerical results of the experiments in terms of both average values and average ranks. Numbers in bold
denote the best aggregation or ensemble method for each metric.

Algorithm Balanced accuracy
(rank)

Running time
(rank)

Balanced
accuracy

Running
time

AB 15.04 9.95 0.71 9.21
GB 15.00 18.25 0.75 725.85
XGB 8.75 19.50 0.79 476.97
ExtraTrees 7.83 2.05 0.79 3.66
Approval_ET 8.11 3.38 0.79 4.43
Plurality_ET 7.55 2.75 0.79 4.00
Borda_ET 11.36 6.70 0.77 6.35
Copeland_ET 13.25 12.66 0.76 34.85
Poss_ET 7.55 10.30 0.79 8.52
PossProd_ET 12.29 10.40 0.76 8.87
Threeway_ET 7.83 15.60 0.79 28.25
RandomForest 9.84 4.47 0.79 4.06
Approval_DT 9.41 6.46 0.79 6.31
Plurality_DT 9.06 5.55 0.79 6.04
Borda_DT 13.22 8.97 0.77 7.45
Copeland_DT 14.28 13.88 0.76 36.02
Poss_DT 9.53 12.47 0.79 10.32
PossProd_DT 13.85 12.68 0.71 10.36
Threeway_DT 8.75 16.07 0.80 29.54
SPA_DT 13.96 19.35 0.77 280.96
SPA_ET 14.24 19.55 0.77 296.20

some guidelines for the selection of ensemble methods, based on the
reported results:

• Boosting-based approaches (except XGBoost) were significantly
outperformed by all other methods, and were also more sensitive
to data dimensionality, number of classes and label noise. Thus,
use of these algorithms should be limited to binary settings, in
which case they are among the most effective methods;

• While XGBoost was as accurate and as resistant to label noise as
the best Bagging-based methods, it was significantly less com-
putationally efficient. Therefore, in general, Bagging-based ap-
proaches should be preferred, unless the learning problem is
affected by label noise, or computation time is not a limiting fac-
tor. Even in these latter cases, however, standard Bagging-based,
as well as IF-UM-based, approaches could be preferable;

• ExtraTree-based methods were found to be as accurate as XGBoost
and Decision Tree-based ones. Since the former models are more
computationally efficient and massively parallelizable, they could
be preferable in general settings. In particular, standard Extra-
Trees was among the most accurate models as well as the most
efficient one, thus we suggest it could be used as an effective
baseline ML model;

• IF-UM-inspired approaches reported the best performance among
the evaluated models, and were the most resistant to label noise.
While less computationally efficient than standard ExtraTrees, we
believe that the label smoothing and cautious inference-inspired
regularization of ensemble models should be further investigated
as an effective way to improve the performance, especially in
settings affected by uncertainty [72].

We believe that future works should evaluate the effectiveness of
EL aggregation methods on different data types (e.g., images, text),
in different learning tasks (e.g., regression, multi-label classification),
and using different base classifiers (e.g. Deep Learning models [73]),
as well as their resistance to dataset shifts [74,75] or adversarial
perturbations [76].
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Abstract
In this article we propose a conceptual framework to study
ensembles of conformal predictors, inspired by the application
of imprecise probabilities in information fusion, that we call
Evidential Predictors. We study their theoretical properties,
focusing on four combination rules, namely: the minimum,
maximum, weighted mean and Dempster’s rules of combi-
nation. We also illustrate the applicability of the proposed
methods in the setting of multivariate time-series classifica-
tion, showing that these methods provide better performance
(in terms of both accuracy and efficiency) than both standard
classification algorithms and other combination rules proposed
in the literature, on a large set of benchmarks from the UCR
time series archive.

Introduction
Multivariate time series classification (MTSC) refers to the
task in which the instances to be classified are represented as
multi-dimensional vectors of time series. This type of task has
become increasingly more relevant in practical contexts, due
to the widespread use of data sources and sensors in various
applications ranging from physical rehabilitation (Pereira
et al. 2019) to activity recognition (Barandas et al. 2022),
from clinical data monitoring (Song et al. 2018) to control
systems (Susto, Cenedese, and Terzi 2018).

While bespoke methods, i.e. approaches that directly oper-
ate on the multivariate data representation, have been consid-
ered in the literature with promising results (Ruiz et al. 2021),
their applicability may be limited due to their inherent com-
plexity and limited evaluation as compared to state-of-the-art
univariate algorithms, as well as due to their inappropriate-
ness in settings like multi-source or edge computing-based
learning (Pantiskas et al. 2022).

A simple, but remarkably effective, approach to address
these limitations is to train univariate models on the one-
dimensional time series. The predictions provided by these
classifiers, which are equated to information hints about the
same object provided by different and potentially unreliable
sources, are then combined into a single one by applying in-
formation fusion (IF) methods (Ruiz et al. 2021). To this aim,
several methods have been considered, including approaches
based on Dempster-Shafer (DS) theory (Jin et al. 2021) and

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

possibility theory (Le Carrer and Ferson 2021) as well as
more traditional ensemble learning techniques (Dhariyal et al.
2020). Such combinations methods have shown performance
comparable with state-of-the-art bespoke models (Ruiz et al.
2021) together with increased interpretability (Ismail et al.
2020).

While the aforementioned methods have been extensively
used over the last several years, their properties are not well
understood and, in general, they do not satisfy desirable va-
lidity or calibration guarantees. This issue is particularly rele-
vant in critical domains, where reliability guarantees that go
beyond empirical validity can be desirable (Kompa, Snoek,
and Beam 2021).

For this reason, in the recent years several studies have
investigated the application of the Conformal Prediction (CP)
framework (Vovk, Gammerman, and Shafer 2005) to the anal-
ysis of time series (Xu and Xie 2021; Zaffran et al. 2022). CP
provides a set of techniques that can be applied to improve
the accuracy and calibration of any underlying model with
provable guarantees on the aforementioned properties that
hold under weak assumptions on the data-generating distri-
bution. Existing approaches, however, focus mainly on the
forecasting setting and cannot thus be directly applied to the
problem of MTSC.

In analogy with our previous discussion concerning the
application of univariate methods to MTSC, methods for ag-
gregating base CPs (Linusson, Johansson, and Boström 2020)
have recently been studied, so as to broaden the applicability
of CP methods to scenarios where constructing global CP
may be unfeasible. In this sense, two main settings have been
considered: the ensemble learning (or, resampling-based) set-
ting (Linusson et al. 2017) and the more general information
fusion (IF)1 one (Balasubramanian, Chakraborty, and Pan-
chanathan 2015). In this latter setting, in particular, the data
used to generate the base CPs to be aggregated are not as-
sumed to be related and may come from different sources
whose dependency structure is not known a priori. It is then

1More specifically, the IF setting focuses on the late fusion prob-
lem, i.e. the problem of combining the predictions of several models
that are separately trained on each of the different sources: in the CP
setting, this corresponds to the case of combining the p-value func-
tions for the single CPs. This is different and of independent interest
to the early fusion problem, where the combination is performed
before the application of CP.



clear that the IF setting could be particularly interesting for
two main reasons: 1) as a generalization of the resampling-
based setting whose theoretical study could help clarifying
the properties of ensembles of CP 2) more relevantly, in re-
gard to its application to MTSC tasks. Nonetheless, compared
to the ensemble learning setting, the IF setting (including its
application to MTSC) has received much less attention.

Drawing from MTSC as source of inspiration, and ground-
ing on recent works relating CP and DS theory (Cella and
Martin 2021), in this work we propose and study Evidential
Predictors (EP), a conceptual framework to study methods
for aggregating CPs inspired by IF rules proposed in DS and
related theories, and we illustrate their application to MTSC
tasks. Thus, our main contributions to the study of CP and
their applications are as follows: 1) Compared to previous
works studying aggregation of CPs in the IF setting, we do not
assume the independence of the CPs to be combined, which
is unrealistic for the MTSC setting (Dubois et al. 2020); in-
stead, we adopt a flexible approach based on copulas (Nelsen
2007) to model their dependence structure; 2) To the best
of our knowledge, we provide the first theoretical analysis
of combination methods for CP in the IF setting, studying
conditions for validity of a wide selection of aggregation
methods as well as providing analytical formula to compute
their theoretical error rate; 3) Focusing on the MTSC task as
a practically relevant and paradigmatic example of IF tasks,
we provide a a comprehensive empirical validation of the
proposed approach, based on a large set of standard bench-
marks from the UEA/UCR archive (Dau et al. 2018; Bagnall
et al. 2018), showing that EPs significantly out-perform other
CP combination methods as well as state-of-the-art MTSC
algorithms.

Background and Related Work
Let X and Y be two sets, and let Pr be an exchangeable
distribution defined on Z∗2, where Z = X × Y . Let f :
Z∗ × Z 7→ [0, 1] be a permutation invariant function, that
is a function satisfying f(z) = f(π(z)) for every z ∈ Z∗

and permutation π3. In the literature, f is usually called a
non-conformity measure. A (smoothed) conformal predictor
(CP) (Vovk, Gammerman, and Shafer 2005) is a function
Γf : Z∗×X × [0, 1] 7→ 2Y satisfying Γϵ

f (B, x) = {y ∈ Y :

py > ϵ}, where B ∈ Z∗ is a bag of examples and:

py =
|{i : f(Bi, zi) > f(B, (x, y)}|

n+ 1

+ θ
|{i : f(Bi, zi) = f(B, (x, y)}|

n+ 1
(1)

with Bi = B \ {zi} ∪ {(x, y)} and θ is a random variable. If
θ is constant, then any CP is conservatively valid, i.e. Pr(y /∈
Γϵ
f (B, x)) ≤ ϵ. Furthermore, if θ ∼ U [0, 1], then any CP

is strongly valid, in the sense that Pr(y /∈ Γϵ
f (B, x)) = ϵ.

Intuitively, (strong) validity means that the confidence level

2Given a set A, A∗ is the collection of all finite sequences in A,
that is A∗ = A ∪ (A×A) ∪ . . . .

3Given a tuple t = (z1, ..., zn), is a function π : Zn 7→ Zn that
permutes the elements in t.

1 − ϵ associated with Γϵ
f (B, x) can be interpreted as the

probability that the true label y lies in the set.
The function p : Z∗×Z 7→ [0, 1] is called p-value function.

In the article, we will only consider (base) CPs whose p-value
function is normalized, i.e. satisfies ∀B ∈ Z∗, x ∈ X,∃y ∈
Y s.t. py = 14. Furthermore, since our results can be easily
shown to hold both in the online and inductive split CP set-
tings without distinction, we will adopt an abstract definition
that encompasses both the above mentioned settings.

As a recent topic attracting considerable theoretical inter-
est, increasing attention has been devoted to the question of
how to combine multiple CPs (Toccaceli and Gammerman
2017, 2019), and in particular their p-value functions, as well
as the validity of such combination methods (Linusson 2021).
We note that while the interest in this topic within the setting
of CP is recent, the question of how to aggregate p-value
functions is not, and in fact has been studied extensively in
the fields of multiple hypothesis testing (Loughin 2004) and
statistical meta-analysis (Guerra et al. 1999), where several
combination methods have been studied (Loughin 2004). In
the CP setting, the combination issue amounts to, given n
CPs Γ1, ...,Γn, asking two questions: 1) How to combine
Γ1, ...,Γn so as to obtain a new CP Γ̂?; 2) What are the prop-
erties (w.r.t. validity and efficiency) of the combined CP?

Drawing from the above mentioned statistical literature,
these questions have mainly focused on the late-fusion sce-
nario, where combination is performed at the p-value func-
tions level, and have been investigated in two main set-
tings. In the ensemble learning setting, the bags B1, ..., Bn

are obtained from a single bag B via re-sampling: exam-
ples of this setting include cross-conformal prediction (Vovk
2015) and aggregated conformal prediction (Carlsson, Ek-
lund, and Norinder 2014). By contrast, in the information
fusion (IF) setting, formally introduced in (Balasubramanian,
Chakraborty, and Panchanathan 2015), the bags B1, ..., Bn

are not assumed to be related in any way and may be obtained
from differently distributed data or different sources. Thus,
the IF setting can be considered both a generalization of, and
more complex than, the ensemble learning one.

In the former setting, (Carlsson, Eklund, and Norinder
2014) studied aggregated CPs, which are defined by the av-
eraged p-value function p̂y = 1

n

∑
i p

y
i , showing that the

resulting predictors are valid as long as B1, ..., Bn are ob-
tained by means of a resampling procedure that is consistent
w.r.t. f . However, it is not clear whether (and how) consistent
resampling procedures can be obtained in practice, and in-
deed aggregated CPs generally fail to be valid (Linusson et al.
2017). Similar results hold also for other resampling-based
aggregation schemes, such as out-of-bag CP (Linusson, Jo-
hansson, and Boström 2020). Different combination methods
were also proposed in (Cherubin 2019), based on majority
voting, and (Toccaceli and Gammerman 2017, 2019), based
on either learning methods or approaches inspired by meth-

4This assumption is not too restrictive: let h : X×Y 7→ [0, 1] be
a scoring classifier. Then the non-conformity score f(B, (x, y)) =
maxy′∈Y h(x, y′)−h(x, y) satisfies the above mentioned property.
In any case, as will be clarified later, this assumption is required to
hold only for the base CPs and not necessarily for their combination.



ods for combination of p-values.
In the IF setting, by contrast, (Balasubramanian,

Chakraborty, and Panchanathan 2015) and (Spjuth et al. 2019)
evaluated the application of different aggregation rules, in-
spired by either IF or techniques inspired by multiple hypoth-
esis testing. In particular, studied techniques were mostly
based on order statistics (Davidov 2011), and in particular
the minimum and the maximum, or quantile combination
methods (Zaykin et al. 2007). While in preliminary evalua-
tions the latter approaches reported promising results, how-
ever, in further studies (Linusson 2021) the same methods
were shown to violate validity in more comprehensive bench-
marks. As an additional limitation, we note that previous
work in the IF setting assumed the CPs to be combined (and
the corresponding p-value functions) to be independent, an
assumption which is not realistic in IF tasks (Dubois et al.
2016, 2020). Furthermore, the theoretical properties of these
techniques have not been studied.

In the rest of this article, we will focus on the IF setting
since, as described in the Introduction, it is more relevant
to the study of MTSC tasks. We will study, in particular,
approaches for combining CPs that are inspired by the ap-
plication of DS and possibility theory to IF (Dubois et al.
2020): for this reason, here we recall the basic notions of
these theories. Let (X,Ω) be a pair where X is a set and Ω
is a σ-algebra over X . A mass function (Dempster 1967) is
a function m : Ω 7→ [0, 1] s.t.

∑
A∈Ω m(A) = 1. Given a

mass function m, we can define two set function, namely the
belief and plausibility measures (Shafer 1976):

Bel(A) =
∑

B⊆A

m(B), P l(A) =
∑

B∩A̸=∅
m(B). (2)

The focal sets of m are defined as F(m) = {A ∈ Ω :
m(A) > 0}. A mass function is consonant if ∀A,B ∈ F(m)
either A ⊆ B or B ⊆ A: in this case, the plausibility Pl
is a possibility measure (Dubois and Prade 1988). More in
general, given any mass function, its contour function, which
is defined as plm(x) = Pl({x}) for every x ∈ X , is always
guaranteed to be a possibility measure and can be used as a
consonant approximation of m, usually called the consonant
projection (Dubois and Prade 1990). A consonant mass func-
tion m is normalized iff ∃x ∈ S s.t. plm(x) = 1. DS theory
(and imprecise probabilities more in general) has been widely
applied in the field of IF, and several combination rules have
been proposed (Dubois et al. 2020). Let m1,m2 be two mass
functions, Dempster’s combination rule is defined as:

m1 ⊕m2(C) =
1

1− k

∑

A∩B=C

m1(A)m2(B), (3)

where k =
∑

A∩B=∅ m1(A)m2(B) is the degree of conflict.
We note that the Dempster’s combination of two mass func-
tion m1,m2 is not necessarily consonant (Dubois and Prade
1988), not even if m1,m2 themselves are consonant or if ⊕
is applied to their consonant projections. The following rules,
which are defined to operate on the consonant projections of
m1,m2 by contrast, are guaranteed to give a consonant mass

function as a result:

max{pl1(x), pl2(x)}, (4)
min{pl1(x), pl2(x)}, (5)

w ∗ pl1(x) + (1− w) ∗ pl2(x), (6)

for every w ∈ [0, 1]. Indeed, the result of any such operation,
when applied point-wise to possibility measures, is a possi-
bility measure and hence the contour function of a consonant
mass function5.

The following result, due to (Cella and Martin 2021),
shows that CP p-value functions can be understood as a
special instance of consonant plausibility measures:
Theorem 1 ((Cella and Martin 2021)). Let Γf be a CP s.t.
the associated p-value function p is normalized. Then, p is
the contour function of a consonant plausibility measure.

Finally, we recall the basic notions on copula theory. A n-
dimensional copula (Nelsen 2007) is a function C : [0, 1]n 7→
[0, 1] satisfying: 1) ∀i ∈ [n], C(u1, ..., ui−1, 0, ui+1, un) =
0; 2) ∀i ∈ [n],∀ui ∈ [0, 1], C(1, ..., 1, ui, 1, 1) = ui; 3) C is
d-non-decreasing.

Copulas are useful as they can represent a joint cumulative
distribution function (CDF) F given only its marginals Fi:
Theorem 2 ((Sklar 1959)). Let F : Xn 7→ [0, 1] be a joint
CDF whose marginals Fi : X 7→ [0, 1] are continuous. Then,
it exists a (unique) copula CF , s.t.

F (X1 ≤ x1, ..., Xn ≤ xn) = CF (F1(x1), ...Fn(xn)).

Notably, copulas have recently been applied in the con-
text of CP, see e.g. (Messoudi, Destercke, and Rousseau
2021, 2022) to study multivariate aspects in regression prob-
lems, focusing in particular on the problem of multi-target
regression (Johnstone and Cox 2021) and multi-label clas-
sification (Cauchois, Gupta, and Duchi 2021). Differently
from our work, we note that these approaches used copulas
to study the joint dependency structure of the nonconformity
scores and obtain a corresponding, single confidence level
ϵ: thus, this setting is more akin to the early fusion problem
mentioned above. By contrast, in the following, copulas will
be used to study the joint dependency structure of the p-value
functions for different CPs to be combined, in the late fusion
setting typically considered in the application of CP to IF.

We also recall the Fréchet–Hoeffding copula bounds:
Proposition 1 ((Genest et al. 1999)). For any given copula C,
W ≤ C ≤M , where W (u1, ..., un) = max{1−d

∑
ui, 0}

and M(u1, ..., un) = min{u1, ..., un}.
Finally, the independence copula is defined as

I(u1, ..., un) = Πiui, i.e. F1, ..., Fn are independent.

Methods
In light of the correspondence between p-value function and
consonant plausibility measures established by means of The-
orem 1, a remarkable consequence is that IF methods pro-
posed in DS and related theories can be applied to the aim of

5For the min and weighted average operators the combined mass
function is generally not normalized. As mentioned previously, we
require that normalization applies to the base CPs to be ensembled,
and not necessarily so to the result of their combination.



combining CPs. In this section we introduce Evidential Pre-
dictors, that is a class of combination rule for CPs inspired by
the application of DS theory and possibility theory to IF tasks.
More in detail, we will consider EPs based on the min, max,
weighted mean and Dempster’s combination rules. While
some of these rules have already been proposed in the CP
setting (Balasubramanian, Chakraborty, and Panchanathan
2015), such as the min and max rules, as we mentioned pre-
viously, their theoretical properties have not been studied.

Let Γ1, ...,Γn be n CPs6,7. Given a collection of bags
Bi, for each CP Γi, and an instance x, let pi be the p-value
function associated with Γi(Bi, x)

8. In the following, we will
study the properties of four different EPs:

Γmin(x, ϵ) = {y ∈ Y : min{pyi } ≥ ϵ}, (7)

Γmax(x, ϵ) = {y ∈ Y : max{pyi } ≥ ϵ}, (8)

Γw(x, ϵ) = {y ∈ Y :
∑

wi ∗ pyi ≥ ϵ}, (9)

ΓD(x, ϵ) = {y ∈ Y : pym1⊕...⊕mn
≥ ϵ}, (10)

where pm1⊕...⊕mn
is the contour function of the consonant

approximation (Dubois and Prade 1990) of m1 ⊕ ...⊕mn,
and w ∈ [0, 1]n s.t.

∑
wi = 1.

In contrast to the previous literature, the approach we adopt
in our analysis does not assume independence, but rather
grounds on copula theory. This allows to model in a compact
way the dependency structure of of the problem, and further
provides two additional advantages. First, it allows to clearly
characterize the assumptions needed to ensure validity in
terms of properties of the defining copula. Second, assuming
a specific family of copulas, the dependence structure can
be inferred from the observed error rates (e.g., by maximum
likelihood estimation or generative learning methods (Ling,
Fang, and Kolter 2020; Ng et al. 2021)), allowing to check for
inconsistencies between theoretical and empirical validity.

Given Γ1, ...,Γn, let Q be the joint CDF given by
Q(ϵ1, ..., ϵn) = Pr(∀i, pyi ≤ ϵi) = Pr(∀i, y /∈ Γϵi

i ),
with continuous uniform marginals Qi(ϵi) = Pr(pyi ≤
ϵi) = Pr(y /∈ Γϵ

i) = ϵ, where y denotes the true (un-
known) label. By Theorem 2, then, it exists a copula CQ

s.t. Q(ϵ1, ..., ϵn) = C(Q1(ϵ1), ..., Qn(ϵ)) = CQ(ϵ1, ..., ϵn),
by definition of smoothed CP.

As a first remark, we note that for any of Γmin,Γmax,Γw

it is easy to observe that if CQ = M then the corresponding
EP can be guaranteed to be conservatively valid. Indeed,
in this case, the marginals Qi of the combined CPs are co-
monotone, hence, assuming y is the true label, it holds that
∃i ∈ {1, . . . , n} s.t. pyi ≥ ϵ implies ∀i ∈ {1, . . . , n}pyi ≥ ϵ,
and hence Pr(y /∈ Γk) ≤ ϵ, for k ∈ {min,max, w}. We

6In the following, we will omit reference to the non-conformity
measure f , as the results we prove do not directly depend on f .

7As we mentioned in Section , our results hold equivalently in
the online CP and in the inductive split-CP settings. For this reason,
we will adopt an abstract formulation of CP that encompasses both
the above mentioned settings.

8We note that pi is a |Y |-dimensional random vector, whose re-
alization depends on both the bag Bi ∈ Z∗ and the newly observed
example (x, y) ∈ Z. For ease of notation, in the rest of the paper,
we will hold constant, and thus omit, Bi and x.

note, in particular, that this property holds irrespective of
whether the combined p-value functions corresponding to the
three different combination rules coincide or not, and only
derives from the comonotonicity of the marginals.

Based on the previous observations, we then study the
properties of the above mentioned EPs, starting from Γmin.
Theorem 3. Γmin is strongly valid iff CQ = M
(i.e., the p-value functions pi are co-monotone). Fur-
thermore, if CQ is order-independent, then Pr(y /∈
Γϵ
min) =

∑n
k=1(−1)k−1

(
n
k

)
C(ϵ, ..., ϵ︸ ︷︷ ︸

k

, 1, ..., 1︸ ︷︷ ︸
n−k

). In particu-

lar, if CQ(ϵ1, ..., ϵn) ≤ I (i.e., the Qi are independent or
have negative dependence), then Pr(y /∈ Γϵ

min) increases
exponentially with n, for all ϵ ∈ (0, 1).

Proof. See Appendix.

The previous result provides a formula for computing
the error rate of the min-based EP for a large collection
of copulas: in particular, all associative copulas (including
Archimedean copulas (Ling, Fang, and Kolter 2020)) are
order-independent. Furthermore, the result also shows that
the min-based EP is strongly valid iff the marginal error rates
are co-monotone, while the error rate generally increases
with the number of CPs to be combined (i.e., n). By contrast,
the following result shows that the min-based EP improves
the efficiency w.r.t. the combined CPs.
Proposition 2. Γmin is more efficient than Γi, for all i. Fur-
thermore, E[|Γϵ

min|] is non-increasing with n, for all ϵ.

Proof. The result follows by noting that ∀i,∀y,minj{pyj} ≤
pyi implies Γϵ

min ⊆
⋂

i Γ
ϵ
i .

Corollary 1. ∀i, ϵ, Pr(Γϵ
min = ∅) ≥ Pr(Γϵ

i = ∅) and
Pr(Γϵ

min = ∅)) is non-decreasing with n.
As a consequence of the two previous results, while min-

based EP’s efficiency improves with n, this comes at the
price of a corresponding reduction in validity. Nonetheless,
if we interpret the event Γmin = ∅ as a rejection event, rather
than an error, then Corollary 1 ensures that the probability
of genuine errors (i.e., predicting a set larger than ∅ that
does not contain the true label y) is decreasing with n. This
interpretation is coherent with the common understanding
of the p-value function (Campagner et al. 2021; Hüllermeier
and Waegeman 2021): if Γϵ

min(x) = ∅, then x was an outlier
for at least one of the combined CPs, thus, since all combined
CPs are assumed to be equally reliable, then x could be
conservatively deemed to be an outlier also for the EP Γmin.

Next, we study the properties of the max-based EP.
Theorem 4. Γmax is conservatively valid. It is strongly valid
iff CQ = M . Furthermore, Pr(y /∈ Γϵ

max) = CQ(ϵ, ..., ϵ).
Thus, as n grows, Pr(y /∈ Γϵ

max) is non-increasing.

Proof. See Appendix.

Proposition 3. Γmax is less efficient than Γi, for all i. Fur-
thermore, E[|Γϵ

max|] is non-decreasing with n, for all ϵ.

Proof. The result follows by noting that ∀i,∀y,maxj{pyj} ≥
pyi implies

⋃
i Γ

ϵ
i ⊆ Γϵ

max.



The previous result shows that the min-based and max-
based EPs are opposite in regard to their validity/efficiency
behavior: while Γmax is (conservatively) valid (irrespective
of the joint CDF Q), its efficiency decreases with the the
number n of combined CPs. Remarkably, Γmax satisfies also
a stronger definition of validity, what in (Cella and Martin
2021) is called type-2 validity. Furthermore, in general, it is
the only combination rule satisfying this notion of validity.
We state this result in the Appendix, for brevity’s sake.

Next, we study the weighted mean EP9. First, we quantify
the error rate of Γw:

Theorem 5. Let w ∈ [0, 1]n, s.t.
∑

i wi = 1. Further,
assume that CQ admits a density.Then Pr(y /∈ Γϵ

w) =∫
[0,1]n−1

∂C
∂u1...∂un−1

(u1, ..., un−1, Qn(
ϵ−∑n

i=1 wiui

wn
)) dλ.

Proof. See Appendix.

Similarly to Theorems 3 and 4, also Theorem 5 provides
a formula to compute the error rate of the weighted mean
EP as a function of ϵ (and, implicitly, of n). However, while
the formula in Theorem 5 can be evaluated numerically (e.g.
by Monte Carlo methods (Scherer and Mai 2017)), it does
not provide a closed-form characterization of the copulas for
which the weighted mean EP is valid. In the Appendix we
provide such a characterization, showing that, similarly to
the min and max EPs, comonotonocity of the marginals is a
necessary condition for Γw to be strongly valid.

Finally, we consider the EP based on Dempster’s combi-
nation. We note that the analysis of this latter EP is more
complex, due to the presence of 1− k as a normalization fac-
tor, which implicitly influences both its validity and efficiency.
To simplify the treatment, we note that if no pair of p-value
functions pyi , p

y
j is totally in conflict (i.e., k ̸= 1), the fol-

lowing relation holds (Denœux 2019) pym1⊕...⊕mn
=

Πipl
y
i

K ,
where K = Πn

i=2(1 − k{1,...,i−1},i) is the total degree of
agreement10. Thus, we prove the following result:

Theorem 6. Let K ̸= 0 be the total degree
of agreement between the pyi . Further, assume that
CQ admits a density. Then Pr(y /∈ Γϵ

D) =∫
[0,1]n−1

∂C
∂u1...∂un−1

(u1, ..., un−1, Qn(
Kϵ

Πn−1
i=1 ui

)) dλ.

Proof. See Appendix.

Remarkably, when n = 2, for no copula CQ the EP ΓD is
unconditionally valid. We prove this result in the Appendix.

Finally, we conclude with a remark on the significance
of our results in MTSC. As we previously noted, MTSC
methods based on the combination of multiple univariate

9We note that when ∀i, wi =
1
n

, Γw generalizes the aggregated
CP (Carlsson, Eklund, and Norinder 2014). In particular, the aggre-
gated CP coincides with Γw when the bags Bi are re-sampled from
a given bag B. In the Appendix, specifically in Theorems 11 and 4,
we show that this connection and our theoretical analysis enables us
to clarify and generalize the theoretical results in (Carlsson, Eklund,
and Norinder 2014).

10In the definition of K, the order in which the p-value functions
are combined is irrelevant, since Dempster’s rule of combination is
both associative and commutative under the stated assumptions.

models can be interpreted as IF methods, as they combine
multi-source, potentially conflicting, information hints (i.e.
the confidence scores predicted by the univariate models)
about the assignment of instances to classes: thus, our results
apply to MTSC as a special case. The connection, however,
goes deeper. In MTSC, and in time series classification more
in general, feature engineering represents one of the most
critical steps in model development (Baydogan and Runger
2015). Methods based on the combination of univariate mod-
els can then be understood also as feature extraction methods:
indeed, the confidence scores to combined are high-level fea-
tures, and the aim is then to define a simple classification
rule based on the above mentioned features. However, in
general, such features do not provide any type of guarantee
w.r.t. their representativeness: for example, the underlying
classifiers could be poorly accurate, or mis-calibrated. EPs,
then, can be seen as a way to avoid this limitation: instead
of using generic classifiers’ confidence scores as predictive
features, we employ the p-value functions obtained by the
CPs to be aggregated. In this sense, the results we proved
in this section characterize the relations which should hold
among these high-level predictive features (the output of the
CPs) to guarantee that their combination preserves validity.

Experiments
In this section, we describe the results of experiments we per-
formed to assess the empirical performance of the studied EPs
against both standard state-of-the-art ensemble algorithms
for the MTSC task (Ruiz et al. 2021), as well as other combi-
nation techniques for CP proposed in the literature. The aim
of these experiments is threefold: first, to compare the effec-
tiveness of EPs against alternative CP aggregation methods;
second, to evaluate whether univariate-based combination of
CPs can be as effective as bespoke and state-of-the-art MTSC
methods; third, to analyze the translation of our theoretical
results concerning the validity of EPs in practical and empiri-
cal settings. For this purpose, we considered the collection
of 24 MTSC benchmark datasets from the public UEA/UCR
archive (Dau et al. 2018; Bagnall et al. 2018), the largest and
most popular benchmark repository for MTSC tasks.

In terms of algorithms, we considered as baseline compar-
ison the following MTSC classifiers: ROCKET (Dempster,
Petitjean, and Webb 2020), HIVECOTE (Bagnall et al. 2020),
Canonical Interval Forest (CIF) (Middlehurst, Large, and
Bagnall 2020). ROCKET and CIF are bespoke algorithms, as
they are based on the extraction of features from the multi-
variate time signals. Specifically, ROCKET employs a large
number of convolutional kernels as random features that are
subsequently used to train a linear classifier ; by compari-
son, CIF employs the catch22 features (Lubba et al. 2019),
as well as summary statistics, to build a forest of decision
trees. By contrast, HIVECOTE is not a bespoke algorithm,
but rather is obtained as the ensemble of several state-of-
the-art univariate methods, each of which is trained on each
dimension of the time series under analysis. In this sense,
HIVECOTE is more similar to the approach also adopted in
the proposed EP method. These algorithms were selected as
they were shown to be the best 3 MTSC algorithms by (Ruiz
et al. 2021), in what is the most extensive benchmark study



of MTSC classification methods.
In terms of combination rules for CP, we considered

the EPs studied in this work (that is: min, max, two dif-
ferent settings of w, and Dempster’s rule, denoted respec-
tively as IEP(min), IEP(max), IEP(mean), IEP(weighted),
IEP(dempster)) as well as two methods previously discussed
in the CP literature, namely the majority vote rule (Cherubin
2019) (ICP(count)) and Fisher’s Extended Chi-Square Func-
tion (ICP(fisher)) method (Balasubramanian, Chakraborty,
and Panchanathan 2015). We selected these latter two ap-
proaches, in particular, as they were shown in previous stud-
ies to be state-of-the-art CP combination methods in the
resampling-based and IF settings, respectively. Furthermore,
we also considered a non-ensemble-based bespoke CP model
as a baseline comparison (denoted as CP(base)), to evaluate
the effectiveness of the above mentioned ensemble techniques
as compared with a bespoke implementation of CP.

For each of the dataset, we set the number of CPs to be
combined to n = d, where d is the number of dimensions for
the dataset. In regard to the weighted mean EP, we considered
two different settings: uniformly weighted (IEP(mean)), i.e.
∀i, wi =

1
n ; and confidence weighted (IEP(weighted)), i.e.

wi =
p
y1
i −p

y2
i∑

i wi
, where p

yj

i is the j-highest p-value for CP i.
The rationale for this latter weighting scheme is to weigh
more the CPs with higher confidence (Gammerman and Vovk
2002; Hüllermeier and Waegeman 2021).

All CP methods were implemented by means of induc-
tive split-CP (Papadopoulos, Vovk, and Gammerman 2002),
using ROCKET as the baseline classifier. In particular,
the ensemble-based methods used a uni-variate version of
ROCKET for each of the dimensions in the datasets at hand,
while CP(base) used a bespoke, hence directly multi-variate,
version of ROCKET. In regard to the standard MTSC classi-
fiers, we consider as reference the results reported in (Ruiz et
al. 2021), while for the CP combinations methods we used a
custom implementation in Python. All code was implemented
using Python v. 3.10.3, numpy v. 1.22.4, scikit-learn v. and
sktime v. 0.13.1. For CP methods we used RockerClassifier as
base classifier, as implemented in the sktime library (Löning
et al. 2019), with default hyper-parameters. All code, includ-
ing experiments and setup, is available at anonymized-github,
and was executed on a PC equipped with a i7 11700k, RTX
3060 and 16 GB of RAM.

For each dataset, we considered the default train-test split
defined in the UEA/UCR archive, to ensure reproducibility
and comparability of results. In particular, for CP methods,
since we adopted a split CP design, for each dataset 75%
of the training set was used as training set proper, while
the remaining 25% as calibration set. All random seeds
were set to 0 to ensure reproducibility. Algorithms were
evaluated in terms of Rejection-Discounted Accuracy (RA)
|{(x,y)∈S:y∈h(x)}|

|S| and Efficiency 1− 1
|S|
∑

(x,y)∈S
|h(x)|−1
|Y |−1 .

Intuitively, RA measures the ability of a model to predict
the correct class and coincides with the standard notion of
accuracy employed in CP literature11; Efficiency is instead

11We use the term rejection-discounted to make it explicit that
we consider rejection events, i.e. cases in which Γϵ = ∅, as errors.

defined as the complement of the average size of the predicted
sets of labels. Results in the main paper are reported relative
to the threshold value ϵ = .25 (which corresponds to a confi-
dence level of .75), to avoid overly large prediction sets. The
overall results, as well as their statistical analysis (in terms
of Critical Distance diagrams, based on Friedman omnibus
test and Wilcoxon post-hoc procedure (Benavoli, Corani, and
Mangili 2016)), are reported in Figures 1-4, while additional
results are available in the Appendix. In particular, the valid-
ity and efficiency of the considered CP combination methods
were considered, based on validity and efficiency curves and
deviation from nominal strong validity: these are reported in
the Appendices, in Figures A11-A22.

Figure 1: Notched boxplots for the performance of the con-
sidered classifiers, in terms of rejection-discounted accuracy.

Figure 2: Critical difference plots of the average ranks of
the considered classifiers, in terms of rejection-discounted
accuracy.

Figure 3: Notched boxplots for the performance of the con-
sidered classifiers, in terms of efficiency.

As shown in the Figures (see also the Appendix), in terms
of RA, IEP(max) significantly out-performed all other algo-
rithms: this results is not unexpected, since following our
theoretical development it is known that IEP(max) is the only



Figure 4: Critical difference plots of the average ranks of the
considered classifiers, in terms of efficiency.

EP which is guaranteed to be conservatively valid. The high
accuracy of IEP(max), however, comes at the price of its
efficiency: indeed, IEP(max) was the worst method in terms
of efficiency, even though its efficiency was not significantly
worse than that of IEP(dempster) and ICP(fisher). Compared
to IEP(max), also IEP(weighted) reported good results in
terms of RA, being the second best algorithm w.r.t. to this
metric. However, even if IEP(weighted) was better than the
remaining algorithms, the difference was not statistically sig-
nificant w.r.t. neither the baseline classifiers, CP(base) or
the ICP(fisher) methods. By contrast, both IEP(min) and
IEP(dempter) were the worst-performing methods in terms
of RA: this is not surprising, as the high accuracy of the
first EP largely stems from their high rejection rates (see
Corollary 1), while in regard to IEP(dempster) the observed
high error rate stems from the approximation approach we
adopted to recover consonance (i.e. approximating a general
mass function by the corresponding consonant projection).

In regard to efficiency, CP(base), IEP(min), IEP(mean),
IEP(weighted) and ICP(count) reported the best efficiency.
By contrast, IEP(max) and IEP(dempster) reported the worst
performance in terms of efficiency. Thus, in particular, we
claim that IEP(weighted) offers the best trade-off between
accuracy and efficiency and could thus be considered as the
best out-of-the-box combination method for CPs. Also in
comparison with the standard classifiers and CP(base) (see
also the Appendix, in Figures A1-A6), IEP(weighted) was,
along with IEP(max), the best performing algorithm in terms
of accuracy, while having much better efficiency than the lat-
ter. Even though IEP(weighted) was not significantly better
than the best baseline classifier (i.e. ROCKET) or the corre-
sponding CP-based correction (i.e. CP(base)), we remark that
EPs only rely on univariate information: this is in contrast
with CP(base), ROCKET and CIF (the third, fourth and fifth
best performing algorithms), which are bespoke algorithms.
Thus, this result highlights how EP methods in general, and
IEP(weighted) in particular, can reach performances compa-
rable with, or even better than, state-of-the-art multivariate
models, while only relying on univariate information. Fur-
thermore, more in general, it can be easily seen from Figure
1, that EPs exhibited a significantly lower variance in perfor-
mance than all other methods, and in particular than CP(base):
in particular, IEP(dempster), IEP(max) and IEP(weighted)
had the smallest variance among the considered methods.
This result highlights how the use of EPs could lead to an
improvement in stability as compared with the application of
CP methods based on bespoke models.

Focusing on the comparison between CP combination
methods (see Figures A11-A15 and Table A2), it can be eas-
ily seen that none of the considered methods were strongly
valid. This result is not surprising, since in our theoretical

analysis we showed that co-monotonicity is a necessary con-
dition for achieving strong validity. This property, however,
is a rather strong constraint which could not be expected
to hold in general settings. Nonetheless, we note that all
the considered CP combination methods, with the excep-
tion of IEP(min), were empirically conservatively valid on
most datasets at the selected threshold ϵ = .25. In particular,
IEP(max) and IEP(weighted) (as well as CP(base)) were con-
servatively valid at all confidence levels in Figures A11-A15.
While the other combination methods were not in general
conservatively valid at all thresholds levels, IEP(mean) and
ICP(fisher) were nonetheless approximately conservatively
valid on most of the considered datasets. At the same time,
IEP(weighted) was the method, after CP(base), which had the
smallest deviation from strong validity, as shown in Figures
A21 and A22. These results, also in combination with the ef-
ficiency analysis reported in Figures A16-A20, confirms the
practical efficacy of IEP(weighted) and, although to a lower
degree due to its reduced efficiency and larger deviation from
validity, IEP(max). As we stated previously, we believe that
due to their superior performance, which we remark grounds
only on univariate feature information in contrast with state-
of-the-art MTSC methods, these two EPs can be effectively
applied in general MTSC tasks. Then, selection among these
two methods depends on the constraints of the specific appli-
cation considered. In general settings, where high accuracy is
desirable but nominal validity and efficiency are of greatest
importance, IEP(weighted) should be preferred. However,
if the considered application demands accuracy at all costs
(including sacrificing efficiency and nominal coverage), as it
would happen in any critical domain such as medicine, then
IEP(max) should be preferred.

Conclusion
In this article, we introduced a class of combination methods
in the Conformal Prediction framework, that we called Ev-
idential Predictors. In particular, we studied the theoretical
properties of several EPs providing formulas for their theoret-
ical error rate as well as conditions for their validity. To our
knowledge, this marks a first in the specialized literature. We
also assessed the effectiveness of EPs in MTSC, by means of
an extensive set of experiments through which we compared
the proposed EPs against both state-of-the-art classifiers and
other CP combination methods, reporting promising results:
in particular, we showed that the weighted-average and maxi-
mum EPs can obtain performance comparable and on average
better than other state-of-the-art algorithms, while relying
only on univariate information.

In light of these results, we believe that the following open
problems could be of interest: 1) Many other IF methods have
been proposed in the specialized literature (e.g., generalized
integrals), whose properties could thus be studied in the EP
setting; 2) In this article we have shown that co-monotonicity
is a sufficient and necessary condition for validity. Therefore,
further research should study non-conformity measures or
design mechanisms that can ensure that this property holds;
3) Finally, we believe that the application of EPs in more
general, multi-modal tasks should be pursued and evaluated.
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Supplementary Materials
Proofs and Additional Theorems
Proof of Theorem 3. We consider the case n = 2, the gen-
eral result follows by induction. First, we show that, when
CQ(x, y) = M(x, y), Γmin is strongly valid. By definition of
Γmin and standard probability calculus, Pr(y /∈ Γϵ

min(x)) =
Pr(min{px1(y), px2(y)} < ϵ) = CQ(ϵ, 1) + CQ(1, ϵ) −
CQ(ϵ, ϵ) = 2ϵ−M(ϵ, ϵ) = ϵ.

For the other part, note that in the previous proof we used
CQ = M only in the last equivalence. Therefore, the EP
Γmin is conservatively valid iff ∀ϵ, CQ(ϵ, ϵ) ≥ ϵ. By the
Frechet-Hoeffding bounds, this happens iff CQ = M .

Finally, note that if CQ(ϵ1, ..., ϵn) ≤ I then ∀y, Pr(y /∈
Γϵ
min(x)) ≥ nϵ−∑n

k=2(−1)k
(
n
k

)
ϵk.

Proof of Theorem 4. Γmax is conservatively valid iff ∀ϵ it
holds that Pr(y /∈ Γϵ

max(x)) = Pr(maxi{pyi } < ϵ) =
Pr(∀i, pyi < ϵ) = CQ(ϵ, ..., ϵ). For CQ = M it holds that
the latter quantity is equal to ϵ. Furthermore, by Frechet-
Hoeffding bounds, for every other copula CQ it holds that
CQ < M . Finally, for CQ < M , CQ(ϵ, ..., ϵ︸ ︷︷ ︸

n

) is a decreasing

function of n (since ϵ ∈ [0, 1], and CQ(ϵ, ..., ϵ) < ϵ).

Theorem 7. The EP Γmax is type-2 valid, that is
Pr(maxy′∈A maxi{py

′

i } ≤ ϵ, y ∈ A) ≤ ϵ. Furthermore,
without any assumption on the joint CDF Q, it is the only EP
satisfying the previous property.

Proof. By (Cella and Martin 2021), Theorem 1, a CP is
type-2 valid iff the corresponding p-value function is nor-
malized. Since, by assumption, this holds for every Γi, it
follows that the same holds also for Γmax. For the second
statement, note that, for every other combination rule r,
maxy r(p

y
1, ..., p

y
n) ≤ maxy maxi{pyi }.

Proof of Theorem 5. The result follows (Gijbels and Her-
rmann 2014), Proposition 2.1 and Theorem 2.2. Indeed,
let Z =

∑
i wip

y
i be the weighted mean random variable,

with CDF FZ . Let Aϵ = {x ∈ [0, 1]n :
∑

i wixi ≤ ϵ}.
Then, Pr(y /∈ Γϵ

w) = FZ(ϵ) =
∫
ϕ(Aϵ)

c dλ, where c is
the density of CQ (which exists by assumption), ϕ(x) =
(Q1(x1), ..., Qn(xn)) and λ is Lebesgue measure. By the
definition of Qi, it holds that

ϕ(x)i =





1 xi ≥ 1

0 xi ≤ 0

xi otherwise

.

Then, Pr(y /∈ Γϵ
w) =

∫
Aϵ

cdλ and the result follows.

Theorem 8. Let w ∈ [0, 1]n, s.t.
∑

i wi = 1. Then the
EP Γw is strongly valid iff CQ = M , it is conservatively
valid iff 1Z≤ϵ is convex for every ϵ ∈ [0, 1], where Z =
w1Q1 + ...+ wnQn.

Proof. First, we show that CQ = M implies Γw is
strongly valid. By (Kaas et al. 2002), Theorem 7, F−1

Z (ϵ) =

w1Q
−1
1 (ϵ)+ ...+wnQ

−1
n (ϵ) = ϵ. For the converse, by (Kaas

et al. 2002), Lemma 1, for every CQ it holds that P (y /∈
Γϵ
w) = ϵ iff 1Z≤ϵ is both convex and concave, which,

by (Kaas et al. 2002) Theorem 6, holds only if CQ = M .
In regard to conservative validity, note that, if for a cer-
tain copula CQ 1Z≤ϵ is convex for every ϵ, it holds that
P (y /∈ Γϵ

w) ≤ ϵ by (Kaas et al. 2002), Theorem 7 and
Lemma 1.

Proof of Theorem 6. The result follows from (Ly et al.
2019), Theorem 2. Indeed, let Z = Πip

y
i be the

product random variabile, with CDF FZ . Let Aϵ =
{x ∈ [0, 1]n : Πi ≤ Kϵ}. Then, Pr(y /∈ Γϵ

D) =
FZ(ϵ) =

∫
ϕ(Aϵ)

c dλ, where c and ϕ(x) are as in The-
orem 5. By (Ly et al. 2019) Theorem 2,

∫
ϕ(Aϵ)

c dλ =

V − +
∫
[0,1]n−1 sign

(
Πn−1

i=1 Q
−1
i (ui)

)
τ(Qn(

Kϵ
Πn−1

i=1 ui
)) dλ,

where V =
∫
{u1,...,un∈[0,1]n−1;Πn−1

i=1 Q−1
i (ui)<0} τ(1)dλ and

τ(z) = ∂C
∂u1...∂un−1

(u1, ..., un−1, z). Since V = 0 and

sign
(
Πn−1

i=1 Q
−1
i (ui)

)
= 1, the result follows.

Theorem 9. For every copula CQ, n and ϵ, ΓD is not
(strongly, conservatively) valid. Furthermore, if n = 2, there
is a value KQ(ϵ, n) s.t. if K ≤ KQ(ϵ, ) then Pr(y /∈ Γϵ

D) ≤
ϵ, and if K > KQ(ϵ, n) then Pr(y /∈ Γϵ

D) > ϵ.

Proof. The first statement follows directly by noting that, for
every copula CQ, Pr(y /∈ Γϵ

D) ≥ Kϵ: thus, in particular, if
K = 1 (i.e. there is no conflict among the CPs), ΓD cannot
be unconditionally valid. For the second statement, by The-
orem 6, for the copula W it holds that Pr(y /∈ Γϵ

D) ≤ ϵ iff
K ≤ 2−ϵ

4 ; furthermore, if Kϵ > 1
4 , then Pr(y /∈ Γϵ

D) = 1.
Similarly, for copula M , it holds that Pr(y /∈ Γϵ

D) =
√
Kϵ,

which is smaller than ϵ iff K ≤ √ϵ. Finally, for copula I , it
holds that Pr(y /∈ Γϵ

D) = Kϵ−Kϵ ln(Kϵ). Since, depend-
ing on the value of K and ϵ, one of the three above mentioned
copulas upper bounds all the other copulas (Ly et al. 2019),
the result follows.

Theorem 10. Assume for simplicity that |B1| = ... =
|Bn| = r. Further, let tf the cost of evaluating the non-
conformity measure f . Then, in the inductive split-conformal
setting, the complexity of the Γmin, Γmax and Γw is O(n ·
|Y | · tf · log(tc)). In the same setting, the complexity of ΓD

is in o(n · 2|Y | · tf · log(tc)).

Proof. For the EPs Γmin, Γmax and Γw, the results simply
follows by noting that the corresponding combination rules
have complexity linear in the number of CPs to be aggregated.
For the EP ΓD, on the other hand, the result follows from
the characterization of the complexity of Dempster’s rule of
combination due to (Orponen 1990).

While the previous results focused on the study of the
properties of EPs in the general, IF setting, the following
result, instead, will connect the properties of EPs with EL
setting. To this aim, we recall the notion of a consistent
sampling process (CSP) (Carlsson, Eklund, and Norinder
2014):



Definition 1. Let M : Z∗ → R be a function, S be a set and
R : S → [0, 1] a probability measure on S, called resampling
procedure, s.t. given z1, . . . , zn ∈ S and any permutation
π : [n] → [n], R({z1, . . . , zn}) = R({zπ(1), . . . , zπ(n)}).
Then, R is a CSP w.r.t. M if:

lim
n→∞,|S|→∞

sup
m
|G(m)−G∗(m)| = 0, (11)

where G is the distribution of M under the empirical distri-
bution over S, and G∗ is the distribution of M under R.

Theorem 11. Let R be a CSP, B be a bag, B1, . . . , Bn be
sampled from S according to R, with ∀i, |Bi| = |S|. Let m
be a non-conformity measure, and Γ1, . . . ,Γn be the CPs
obtained by the non-conformity measure m on, respectively
B1, . . . , Bn. Then, asymptotically, CQ = M .

Proof. Following (Carlsson, Eklund, and Norinder 2014),
when R is a CSP, each of the marginals Qi is valid iff all
the others are. From this follows their co-monotonicity and
hence CQ = M .

Thus, the previous result, together with the results in Sec-
tion Methods, allow to generalize the result from (Carls-
son, Eklund, and Norinder 2014), in which it is shown
that, under the conditions of Theorem 11, the EP Γw with
w = ⟨ 1n , . . . , 1

n ⟩. Indeed, the following corollary directly
follows from Theorem 11:

Corollary 2. Under the conditions of Theorem 11,
Γmin,Γmax,Γw, for any w, are strongly valid.

One of the main limitations of the above results concerns
the observation, originally made in (Linusson et al. 2017),
that defining CSPs in practical settings may be difficult, as
the properties of such a resampling procedure depend both on
the resampling procedure itself as well as on the selected non-
conformity measure. To conclude this section, we provide a
more practical instantiation of the above results, focusing on
the case where R is the empirical distribution on the given
bag B. To start, we define a notion of stability (asymptotic
bootstrap scoring stability (ABSS)) for a given class of scor-
ing classifiers:

Definition 2. Let H be a class of scoring classifiers, and
A : Z∗ 7→ H be a learning algorithm. Then, A is ABSS iff
for each y ∈ Y :

lim
n→∞

sup
S⊂Z:|S|=n

Pr
(
|A(S)(y)−A(SB)(y)| > ϵ

)
= 0,

where the probability is w.r.t. to the uniform resampling of a
set SB from S.

Intuitively, the output of an ABSS algorithm does not
change much when its training set is sufficiently large. We
remark that, even though the notion of an ABSS seems rel-
atively strong, any asymptotically consistent learning algo-
rithm (and, in particular, any asymptotically Bayes learning
algorithm) can be easily shown to be ABSS. The following re-
sult, combined with Theorem 11, then shows that if one uses
a non-conformity measure derived from an ABSS, the empir-
ical distribution over the given bag B is a CSP, providing a
simpler setting in which Theorem 11 holds (asymptotically):

Proposition 4. Let A be ABSS, S be a training set,
R the empirical distribution on S. Let mS′(x, y) =
maxy′∈Y A(S′)(x, y′)−A(S′)(x, y). Then, asymptotically,
R is CSP w.r.t. mS .

Proof. The result directly follows from the definitions of an
ABSS and a CSP.

List of Benchmark Datasets
The complete list of considered datasets, described in terms of
train and test size, number of dimensions, time-series length
and number of classes, is reported in Table A1. 5 different
dataset categories can be distinguished (Ruiz et al. 2021),
based on the source of the data. The considered datasets
can be considered sufficiently representative of MTSC tasks,
as they encompass different application domains, different
number of instances (15−7494), different number of classes
(2 − 26), different series lengths (8 − 3000) and different
numbers of dimensions (2− 963).

Additional Results
Complete Tables of Results The numerical results, in
terms of the different considered metrics, are reported in
Tables A2, A3, A4. Interestingly, we note that on 4 datasets
(AtrialFibrillation, Handwriting, MotorImagery and Stand-
WalkJump), all the evaluated EPs and CPs reported nil ef-
ficiency (that is, they always predicted the full set of class
labels), see Table A3. This result, however, is not surprising,
as the baseline classifiers reported low accuracy on these
datasets (e.g., the accuracies reported by ROCKET were,
respectively, 25%, 57%, 53% and 46%): indeed, since the
EP and CP algorithms grounded on a univariate version of
ROCKET as a baseline classifier, poor accuracy of the latter
corresponds to poor representativeness of the corresponding
non-conformity measure.

Pairwise Diagrams and Comparison with Standard Clas-
sifiers In order to compare the considered CP combination
methods and EPs with standard MTSC classifiers, we con-
sidered an evaluation based on a novel metric, that we call
Discounted Accuracy (DA), defined as:

F2(RA,E) = 5
RA ∗ E
4E +RA

(12)

DA measures the trade-off between accuracy and efficiency,
by using the F2 score (i.e., RA is weighed twice as much as
efficiency). This latter metrics is used solely to compare the
results of CP methods with those of traditional baseline classi-
fiers: indeed, a comparison based solely on accuracy could be
misleading. Thus, in the definition of DA we adopted the F2

as a trade-off criterion between accuracy and efficiency since
in the CP literature validity (hence, accuracy) is considered
to be more important than efficiency.

Pairwise comparisons of IEP(max) and IEP(weighted)
against the best standard classifier (i.e., ROCKET), in terms
of RA and DA, are reported in Figures A3, A4, A5 and A6. It
can be easily observed that both IEP(max) and IEP(weighted)
out-performed ROCKET on all datasets from the Elec-
tricBiosignals category (the most represented one), the Audio



Table A1: List of Benchmark Datasets from the UEA/UCR MTSC archive.

Dataset TrainSize TestSize NumDimensions SeriesLength NumClasses Type

ArticularyWordRecognition 275 300 9 144 25 Coordinates
AtrialFibrillation 15 15 2 640 3 ElectricBiosignals
BasicMotions 40 40 6 100 4 AccelerometerGyroscope
Cricket 108 72 6 1197 12 AccelerometerGyroscope
EigenWorms 128 131 6 17984 5 Other
Epilepsy 137 138 3 206 4 AccelerometerGyroscope
EthanolConcentration 261 263 3 1751 4 Other
ERing 30 270 4 65 6 Other
FaceDetection 5890 3524 144 62 2 ElectricBiosignals
FingerMovements 316 100 28 50 2 ElectricBiosignals
HandMovementDirection 160 74 10 400 4 ElectricBiosignals
Handwriting 150 850 3 152 26 AccelerometerGyroscope
Heartbeat 204 205 61 405 2 Audio
Libras 180 180 2 45 15 Coordinates
LSST 2459 2466 6 36 14 Other
MotorImagery 278 100 64 3000 2 ElectricBiosignals
NATOPS 180 180 24 51 6 AccelerometerGyroscope
PenDigits 7494 3498 2 8 10 Coordinates
PEMS-SF 267 173 963 144 7 Other
RacketSports 151 152 6 30 4 AccelerometerGyroscope
SelfRegulationSCP1 268 293 6 896 2 ElectricBiosignals
SelfRegulationSCP2 200 180 7 1152 2 ElectricBiosignals
StandWalkJump 12 15 4 2500 3 ElectricBiosignals
UWaveGestureLibrary 120 320 3 315 8 AccelerometerGyroscope

Figure A1: Notched boxplots for the performance of the
considered classifiers, in terms of discounted accuracy.

Figure A2: Critical difference plots of the average ranks of
the considered classifiers, in terms of discounted accuracy.

category and on most datasets from the Other category. By
contrast, ROCKET was better than IEP(weighted) on the
Accelerometer/Gyroscope category, as well as on the Coordi-
nates category. This shows that the improvement reported by
EP methods over ROCKET was relatively consistent across

different types of time series.

Figure A3: Comparison between IEP(max) and ROCKET, in
terms of rejection-discounted accuracy.

Pairwise comparisons of IEP(max) and IEP(weighted)
against the third-best CP combination method (i.e.,
ICP(fisher), in terms of RA and efficiency, are reported in
Figures A7, A8, A9, A10. IEP(max) was consistently better
than ICP(fisher), on all datasets, in respect to RA but con-
sistently worse in terms of efficiency. By contrast, the com-
parison between IEP(weighted) and ICP(fisher) was more
balanced: while IEP(weighted) reported better efficiency on



Table A2: The results of the experimental analysis, in terms of rejection-discounted accuracy.

CIF CP(base) HIVECOTE IEP(count) IEP(dempster) IEP(fisher) IEP(max) IEP(mean) IEP(min) IEP(weighted) ROCKET

ArticularyWordRecognition 0.98 0.99 0.98 0.73 0.90 0.98 0.99 0.87 0.43 0.92 0.99
AtrialFibrillation 0.25 1.00 0.29 1.00 0.89 1.00 1.00 1.00 1.00 1.00 0.25
BasicMotions 1.00 1.00 1.00 0.98 0.91 0.99 1.00 0.97 0.93 0.98 0.99
Cricket 0.98 1.00 0.99 0.95 0.90 0.98 1.00 0.95 0.78 0.95 1.00
EigenWorms 0.90 0.87 0.78 0.71 0.89 0.70 0.81 0.85 0.76 0.85 0.86
Epilepsy 0.98 0.99 1.00 0.94 0.92 0.93 1.00 0.95 0.93 0.93 0.99
EthanolConcentration 0.73 0.44 0.81 0.44 0.90 0.86 0.95 0.88 0.55 0.88 0.45
ERing 0.96 0.90 0.94 0.98 0.87 0.91 1.00 0.98 0.90 0.99 0.98
FaceDetection 0.69 0.69 0.69 0.60 0.90 0.73 0.95 0.64 0.49 0.71 0.69
FingerMovements 0.54 0.54 0.54 0.42 0.89 0.91 0.99 0.62 0.28 0.61 0.55
HandMovementDirection 0.52 0.46 0.38 0.29 0.92 0.96 0.98 0.52 0.24 0.76 0.45
Handwriting 0.35 1.00 0.50 1.00 0.91 1.00 1.00 1.00 1.00 1.00 0.57
Heartbeat 0.77 0.76 0.72 0.41 0.86 0.49 0.95 0.75 0.39 0.77 0.72
Libras 0.92 0.84 0.90 0.67 0.83 0.86 0.93 0.65 0.63 0.93 0.91
LSST 0.56 0.62 0.54 0.55 0.86 0.63 0.75 0.65 0.41 0.65 0.63
MotorImagery 0.52 0.51 0.52 1.00 0.90 1.00 1.00 1.00 1.00 1.00 0.53
NATOPS 0.84 0.89 0.83 0.60 0.92 0.83 1.00 0.73 0.34 0.73 0.89
PenDigits 0.99 0.98 0.98 0.95 0.90 0.96 0.96 0.96 0.96 0.95 1.00
PEMS-SF 1.00 0.88 0.98 0.96 0.90 0.88 0.95 0.91 0.96 0.91 0.86
RacketSports 0.89 0.93 0.91 0.74 0.89 0.88 0.99 0.75 0.52 0.85 0.93
SelfRegulationSCP1 0.86 0.87 0.86 0.82 0.77 0.82 0.88 0.87 0.86 0.87 0.87
SelfRegulationSCP2 0.49 0.76 0.52 0.76 0.85 0.82 0.93 0.84 0.77 0.86 0.51
StandWalkJump 0.45 1.00 0.41 1.00 0.89 1.00 1.00 1.00 1.00 1.00 0.46
UWaveGestureLibrary 0.92 0.96 0.91 0.64 0.91 0.83 0.96 0.77 0.65 0.90 0.94

Figure A4: Comparison between IEP(max) and ROCKET, in
terms of discounted accuracy.

most datasets, no specific trend could be found with re-
spect to RA, while IEP(weighted) was on average better
than ICP(fisher).

Validity and Efficiency Analysis In Fig-
ures A11, A12, A13, A14 and A15 and in Fig-
ures A16, A17, A18, A19 and A20 we report, respectively,
on the validity and efficienct diagrams for the considered
EP and CP combination models, for the 5 datasets (one
for each dataset category) having higher variance in terms
of discounted accuracy (that is, the datasets with more
variability in models’ performance). In Figures A21 and A22,
by contrast, we show the deviation from strong validity for
all the considered EP and CP methods, both in terms of
boxplots, as well as ranks.

Remarkably, none of the considered EPs and CP combina-

Figure A5: Comparison between IEP(weighted) and
ROCKET, in terms of rejection-discounted accuracy.

tion methods were strongly valid: in light of the theoretical
results in Section , the observed lack of validity could be
explained as arising from the p-value functions of the aggre-
gated CPs not being co-monotone. Nonetheless, all EPs ex-
cept IEP(min) and IEP(dempster) were conservatively valid,
as their accuracy was always higher than 1 − ϵ, for every
threshold value ϵ. In particular, IEP(max) reported the high-
est accuracy values across all considered values of ϵ: this
result is not surprising in light of Theorem 4, which shows
that the max-based EP is always conservatively valid.

By contrast, in regard to efficiency, IEP(min) reported the
best performance across all considered datasets, having the
highest level of efficiency among the considered CP com-
bination methods at all values of the threshold ϵ. While in
general less efficient than IEP(min), also IEP(mean) and



Table A3: The results of the experimental analysis, in terms of efficiency.

IEP(min) IEP(max) IEP(mean) IEP(weighted) IEP(dempster) IEP(count) IEP(fisher) CP(base)

ArticularyWordRecognition 0.96 0.87 0.96 0.96 0.95 0.96 0.96 1.00
AtrialFibrillation 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
BasicMotions 0.75 0.67 0.75 0.75 0.72 0.75 0.75 0.69
Cricket 0.92 0.86 0.92 0.92 0.94 0.92 0.92 1.00
EigenWorms 0.80 0.66 0.85 0.87 0.79 0.80 0.66 0.89
Epilepsy 0.75 0.69 0.75 0.75 0.74 0.75 0.75 NaN
EthanolConcentration 0.75 0.53 0.75 0.73 0.73 0.75 0.69 0.75
ERing 0.92 0.86 0.92 0.92 0.90 0.92 0.92 1.00
FaceDetection 0.75 0.70 0.75 0.75 0.72 0.75 0.75 0.75
FingerMovements 0.50 0.01 0.50 0.50 0.50 0.50 0.09 0.50
HandMovementDirection 0.00 0.11 0.75 0.75 0.04 0.75 0.12 1.00
Handwriting 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00
Heartbeat 0.50 0.11 0.50 0.55 0.50 0.50 0.11 0.25
Libras 0.93 0.90 0.93 0.90 0.91 0.93 0.93 0.93
LSST 0.93 0.83 0.93 0.93 0.93 0.93 0.91 1.00
MotorImagery 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00
NATOPS 0.83 0.38 0.83 0.83 0.82 0.83 0.80 0.82
PenDigits 0.90 0.88 0.90 0.90 0.90 0.90 0.90 0.88
PEMS-SF 0.90 0.88 0.90 0.90 0.88 0.90 0.00 0.75
RacketSports 0.75 0.49 0.75 0.75 0.75 0.75 0.75 0.75
SelfRegulationSCP1 0.50 0.43 0.50 0.50 0.48 0.50 0.50 0.43
SelfRegulationSCP2 0.50 0.31 0.49 0.47 0.48 0.50 0.23 0.50
StandWalkJump 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00
UWaveGestureLibrary 0.88 0.78 0.88 0.88 0.85 0.88 0.88 0.88

Figure A6: Comparison between IEP(weighted) and
ROCKET, in terms of discounted accuracy.

IEP(weighted) reported good efficiency, comparable with that
of ICP(count) and greater than ICP(fisher) and IEP(max).

Figure A7: Comparison between IEP(max) and ICP(fisher),
in terms of rejection-discounted accuracy.



Table A4: The results of the experimental analysis, in terms of discounted accuracy.

CIF CP(base) HIVECOTE IEP(count) IEP(dempster) IEP(fisher) IEP(max) IEP(mean) IEP(min) IEP(weighted) ROCKET

ArticularyWordRecognition 0.98 0.99 0.98 0.77 0.91 0.98 0.98 0.89 0.48 0.93 0.99
AtrialFibrillation 0.30 0.71 0.34 0.71 0.70 0.71 0.71 0.71 0.71 0.71 0.29
BasicMotions 1.00 0.99 1.00 0.98 0.92 0.99 0.98 0.98 0.94 0.98 0.99
Cricket 0.99 1.00 0.99 0.96 0.92 0.98 0.99 0.96 0.82 0.96 1.00
EigenWorms 0.92 0.89 0.82 0.76 0.91 0.72 0.82 0.88 0.80 0.88 0.89
Epilepsy 0.99 NaN 1.00 0.95 0.93 0.95 0.99 0.96 0.95 0.95 0.99
EthanolConcentration 0.77 0.50 0.84 0.50 0.92 0.87 0.91 0.90 0.61 0.90 0.50
ERing 0.96 0.92 0.95 0.98 0.89 0.93 1.00 0.99 0.92 0.99 0.98
FaceDetection 0.73 0.74 0.74 0.65 0.92 0.77 0.96 0.69 0.55 0.75 0.74
FingerMovements 0.59 0.59 0.59 0.47 0.91 0.82 0.83 0.67 0.33 0.67 0.61
HandMovementDirection 0.58 0.51 0.43 0.34 0.64 0.73 0.73 0.58 0.24 0.80 0.50
Handwriting 0.40 0.17 0.56 0.17 0.32 0.17 0.17 0.17 0.17 0.17 0.62
Heartbeat 0.80 0.76 0.76 0.46 0.89 0.51 0.86 0.79 0.45 0.81 0.76
Libras 0.93 0.87 0.92 0.71 0.86 0.89 0.94 0.70 0.68 0.94 0.92
LSST 0.62 0.67 0.59 0.61 0.88 0.68 0.77 0.70 0.47 0.70 0.68
MotorImagery 0.57 0.51 0.58 0.83 0.80 0.83 0.83 0.83 0.83 0.83 0.59
NATOPS 0.87 0.91 0.86 0.66 0.93 0.85 0.86 0.77 0.39 0.77 0.91
PenDigits 0.99 0.98 0.98 0.96 0.92 0.96 0.97 0.97 0.97 0.96 1.00
PEMS-SF 1.00 0.88 0.98 0.97 0.92 0.43 0.96 0.93 0.97 0.93 0.88
RacketSports 0.91 0.94 0.92 0.78 0.91 0.90 0.93 0.79 0.57 0.88 0.94
SelfRegulationSCP1 0.88 0.88 0.88 0.85 0.80 0.85 0.89 0.89 0.88 0.89 0.89
SelfRegulationSCP2 0.54 0.80 0.57 0.80 0.87 0.80 0.91 0.87 0.81 0.88 0.57
StandWalkJump 0.51 0.71 0.46 0.71 0.72 0.71 0.71 0.71 0.71 0.71 0.51
UWaveGestureLibrary 0.94 0.96 0.93 0.69 0.92 0.86 0.95 0.81 0.70 0.92 0.95

Figure A8: Comparison between IEP(max) and ICP(fisher),
in terms of efficiency.

Figure A9: Comparison between IEP(weighted) and
ICP(fisher), in terms of rejection-discounted accuracy.



Figure A10: Comparison between IEP(weighted) and
ICP(fisher), in terms of efficiency.

Figure A11: Validity diagram for the ArticularyWordRecog-
nition dataset: for each EP and CP combination method, we
report the accuracy as a function of ϵ, the complement of the
confidence level. The dash-dotted line represents the baseline
CP(base).

Figure A12: Validity diagram for the HandMovementDirec-
tion dataset: for each EP and CP combination method, we
report the accuracy as a function of ϵ, the complement of the
confidence level. The dash-dotted line represents the baseline
CP(base).

Figure A13: Validity diagram for the Heartbeat dataset: for
each EP and CP combination method, we report the accuracy
as a function of ϵ, the complement of the confidence level.
The dash-dotted line represents the baseline CP(base).



Figure A14: Validity diagram for the LSST dataset: for each
EP and CP combination method, we report the accuracy as a
function of ϵ, the complement of the confidence level. The
dash-dotted line represents the baseline CP(base).

Figure A15: Validity diagram for the NATOPS dataset: for
each EP and CP combination method, we report the accuracy
as a function of ϵ, the complement of the confidence level.
The dash-dotted line represents the baseline CP(base).

Figure A16: Efficiency diagram for the ArticularyWor-
dRecognition dataset: for each EP and CP combination
method, we report the efficiency as a function of ϵ, the com-
plement of the confidence level. The dash-dotted line repre-
sents the baseline CP(base).

Figure A17: Efficiency diagram for the HandMovementDi-
rection dataset: for each EP and CP combination method, we
report the efficiency as a function of ϵ, the complement of the
confidence level. The dash-dotted line represents the baseline
CP(base).



Figure A18: Efficiency diagram for the Heartbeat dataset: for
each EP and CP combination method, we report the efficiency
as a function of ϵ, the complement of the confidence level.
The dash-dotted line represents the baseline CP(base).

Figure A19: Efficiency diagram for the LSST dataset: for
each EP and CP combination method, we report the efficiency
as a function of ϵ, the complement of the confidence level.
The dash-dotted line represents the baseline CP(base).

Figure A20: Efficiency diagram for the NATOPS dataset: for
each EP and CP combination method, we report the efficiency
as a function of ϵ, the complement of the confidence level.
The dash-dotted line represents the baseline CP(base).

Figure A21: Notched boxplots for the performance of the
con- sidered classifiers, in terms of deviation from strong
validity.

Figure A22: Critical difference plots of the average ranks of
the considered classifiers in terms of deviation from strong
validity.



Chapter 7

Conclusions

In this thesis, the main aim has been to study methods and techniques to handle

imprecision in ML, focusing both on setting where imprecision affects the input data

of a ML pipeline (what has been denoted with the term learning from imprecise

data) as well as on settings where imprecision is adopted as a form of uncertainty

quantification (what has been denoted with the term cautious inference).

In the first setting, first a theoretical characterization of a relevant instance of

the problem of learning from imprecise data, namely learning from fuzzy labels,

has been proposed. In this setting, the obtained results have provided a character-

ization of the learning properties of three algorithms belonging to widely adopted

ML paradigms, namely generalized risk minimization, instance-based learning, and

pseudo-label learning. In particular, it has been shown that learnability in this set-

ting, compared with the standard supervised one, is only possible conditional on

some properties of the data generating distribution, which characterize the hardness

of learning problem instance. Furthermore, a novel pseudo-label learning algorithm,

called RRL, has been proposed and has been shown to improve the classification

performance as compared with other state-of-the-art ML methods for learning from

fuzzy labels. Then, the problem of feature selection and dimensionality reduction

with imprecise data has been studied, with the aim of overcoming the curse of dimen-

sionality and improve the generalization of ML methods in this setting. To this aim, a

novel feature selection approach, based on Rough Set theory, has been proposed and
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it has been shown that such an approach allows to improve the accuracy of ML algo-

rithms trained on the reduced datasets, compared with the state-of-the-art. Finally,

to provide a better context for the novelty and usefulness of the developed techniques

and approaches, the application of the proposed techniques in three paradigmatic

real-world settings, arising within the medical domain, has been illustrated.

In the second setting, on the other hand, the first aim has been to study the

theoretical properties of a cautious inference method, three-way decision, as well as

its relationship with two other such paradigms, namely selective prediction and con-

formal prediction. Secondly, the ensembling of cautious inference models has been

studied. In particular, contributions in this setting encompass theoretical results on

the validity and efficiency properties of ensemble methods for cautious inference, in

a general setting that extends previous results in the existing literature, as well as an

extensive experimental analysis which showed the effectiveness of such techniques in

comparison with state-of-the-art ensemble models in general benchmarks as well as

in relevant application tasks, focusing on the task of multi-variate time series classifi-

cation. Furthermore, some initial, proof-of-concept results devoted to the evaluation

of cautious inference methods from the point of view of human-AI interaction has

been presented, providing promising indications in this sense.

As a further remark and contribution, in order to support further research in

the above mentioned areas, as well as to motivate the development of tools and

frameworks oriented to the real use in applications, all code developed and employed

within this thesis has been made publicly available, under open source licenses,

mainly through two libraries:

• scikit-weak, available at the URL https://github.com/AndreaCampagner/s

cikit-weak, and devoted to applications of ML in the setting of learning from

imprecise data;

• scikit-cautious, available at the URL https://github.com/AndreaCampagn

er/scikit-cautious, and devoted to uncertainty quantification methods and

cautious inference in ML.
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Similarly, all datasets that have been collected and used for the articles appearing

this thesis, have been publicly released on the open access archive Zenodo https:

//zenodo.org/. Aside from a personal belief in the principles of open science,

the hope is that the availability of these tools and datasets will stimulate further

research related to the representation and management of imprecision, and more

generally uncertainty, in ML, as well as relevant applications thereof.

Future Research Directions

This thesis opens up to different research directions and possible future work:

• As already mentioned, Chapter 2 focused on the problem of learning from

fuzzy labels, a practically relevant but specific instance of the more general

problem of learning from imprecise data. The extension of the theoretical

results proven in this work to more general forms of imprecise data would be of

interest for further understanding the limits and characteristics of learnability

in these settings. To this aim, two particularly promising research directions

would be to investigate the problem of learning from fuzzy data, which has

been discussed in Sections 4.2 and 4.3, as well as the problem of learning from

comparative probabilities [54]. On the one hand, the study of the problem

of learning from fuzzy data would extend the applicability of the proposed

RRL algorithm, as well as other state-of-the-art methods for learning from

fuzzy labels, to more general settings in which imprecision affects not only the

target supervision but also the feature values. On the other hand, the problem

of learning from comparative probabilities represents a particularly interesting

generalization from a complexity-theoretic perspective, due to the relationships

between comparative probabilities and the theory of credal sets [170], which

would enable the analysis of learning from imprecise labels problems within the

framework of convex optimization [35], one of the most effective computational

paradigms in modern ML theory [219];

• Chapter 5 studied the relationships between three-way decision, selective pre-
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diction and conformal prediction: further work should be devoted at exploring

the connections between cautious inference techniques as well as neighboring

methods for uncertainty quantification and management. On the one hand,

selective prediction has a rich theory, with deep connections with the fields of

active learning and machine teaching [111], as well as with the problem of learn-

ing over-parameterized models [5] and adversarial learning [113]. Such relation-

ships could be further investigated in light of the correspondence between selec-

tive prediction and three-way decision (or, more in general, decision-theoretic

cautious inference methods). Similarly, the correspondence between conformal

prediction and uncertainty quantification frameworks such as game-theoretic

probability [218] and imprecise probabilities [61, 62] could motivate the study

of relationships between cautious inference methods based on decision-theoretic

methods and those based on other uncertainty representation theories, as well

as the investigation of the theoretical properties of hybrid approaches that em-

ploy the extension of decision-theoretic principles to settings more general than

probability theory [166, 263];

• Finally, in Chapter 5, a proof-of-concept, small-sample study to assess the

practical utility of cautious inference from a user-oriented perspective has been

presented. A particularly interesting research direction would be to further

investigate these issues and, more in general, the impact of the introduction

of uncertainty quantification methods in socio-technical systems, not only in

terms of improved accuracy [12, 32], but also as it relates to more psychometric

dimensions, such as user acceptance and appropriation, or pragmatic utility.
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Appendix A

Appendix: Code and Data

Repositories

In this Appendix, the code and data repositories created and used within this thesis

are listed. In regard to the data repositories, all the data collected and used within

this thesis is available on the Zenodo archive and GitHub at the following URLs:

• https://zenodo.org/record/5336525#.YzHB27RBy3A

• https://zenodo.org/record/4958146#.YzHB67RBy3A

• https://zenodo.org/record/4562597#.YzHCAbRBy3A

• https://zenodo.org/record/4081318#.YzHCdLRBy3A

• https://github.com/AndreaCampagner/InvasivenessAssessment

In regard to the code repositories, all used code is available in the following GitHub

repositories:

• https://github.com/AndreaCampagner/scikit-cautious

• https://github.com/AndreaCampagner/scikit-weak

• https://github.com/AndreaCampagner/Aggregation-Models-in-Ensembl

e-Learning
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• https://github.com/AndreaCampagner/qualiMLpy

• https://github.com/AndreaCampagner/Development--evaluation--and-

validation-of-machine-learning-models-for-COVID-19

The following paper, in particular, provides an extended discussion, as well as doc-

umentation, of the scikit-weak library, which encompasses the methods discussed in

this thesis for learning from imprecise data.

263

https://github.com/AndreaCampagner/qualiMLpy
https://github.com/AndreaCampagner/Development--evaluation--and-validation-of-machine-learning-models-for-COVID-19
https://github.com/AndreaCampagner/Development--evaluation--and-validation-of-machine-learning-models-for-COVID-19


scikit-weak: A Python Library for Weakly
Supervised Machine Learning

Andrea Campagner1, Julian Lienen2, Eyke Hüllermeier3, and Davide Ciucci1
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Abstract. In this article we introduce and describe scikit-weak, a
Python library inspired by scikit-learn and developed to provide an
easy-to-use framework for dealing with weakly supervised and imprecise
data learning problems, which, despite their importance in real-world
settings, cannot be easily managed by existing libraries. We provide a
rationale for the development of such a library, then we discuss its design
and the currently implemented methods and classes, which encompass
several state-of-the-art algorithms.

Keywords: Weakly supervised learning, Imprecise data, Rough sets, General-
ized risk minimization, Imprecisiation

1 Introduction

In the recent years, applications of machine learning (ML) have spread into both
research and industry. Arguably, one of the major driving forces behind this
growth has been the wide availability of a multitude of publicly available ML
libraries, chiefly among them the Python ML eco-system [1, 9, 21, 22], centred
around the scikit-learn library4 [23]. While such libraries offer a wide array
of methods that can be applied to various ML tasks, including supervised, semi-
supervised and fully unsupervised learning. By providing high-level APIs not
requiring deeper knowledge, they drastically improved the accessibility.

However, not all ML tasks fit neatly into the above mentioned categories.
In particular, weakly supervised learning [29] refers to machine learning tasks
situated in the spectrum between supervised and unsupervised learning [24],
encompassing various tasks such as multiple-instance learning [30], learning from
aggregate data [8] and learning from imprecise data [15]. In this latter case, in
particular, the data and annotations can be imprecise or partial: Some examples
include semi-supervised learning as mentioned above, but also more general tasks

4 https://scikit-learn.org
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such as soft labels learning [10, 11, 25], in which partial labels are represented
through belief functions; learning from fuzzy labels [12, 15], in which partial
labels are represented through possibility distributions, and superset learning [4,
16, 20], in which partial labels are represented by exclusive sets of alternatives.

Despite the importance and practical relevance of weakly supervised learning
in a variety of settings, including learning from anonymized data [26], learning
from multi-rater data [8] and self-regularized learning [19], out-of-the-box li-
braries and frameworks to deal with such tasks are still missing and no libraries
currently exist to easily manage this type of data in Python. In this article we
introduce scikit-weak, the first, to the authors’ knowledge, Python library,
inspired by and compatible with scikit-learn, that provides easy-to-use meth-
ods and classes for dealing with weakly supervised learning problems. More in
particular, the current version of the library focuses on the implementation of
algorithms to deal with imprecise data learning problems. We provide a rationale
for the development of such a library, followed by a discussion of its design and
the currently implemented methods and classes, which encompass several state-
of-the-art algorithms. Furthermore we briefly show the use of scikit-weak,
highlighting its interoperability with scikit-learn, through a purposely simple
but illustrative code example.

2 Background and Design Philosophy

In this section, we provide a basic background on weakly supervised learning,
and specifically so to learning from imprecise data, describe the general design
philosophy of scikit-weak and illustrate an exemplary application of the library
through a simple code example.

2.1 Background

In the supervised learning setting, a problem instance is defined by an instance
space X and a target space Y , along with a probability distribution D over
X × Y . A finite sample of data S = {(x1, y1), . . . , (xn, yn)}, called training set,
is assumed to be sampled from D and to be available for learning. In rough set
terminology we can describe S by means of a decision table5, that is a triple
(U,Att, Y ), where U ⊆ X is a finite set of instances in the instance space X,
Att is a set of features with each feature f : X → Vf , and t is a target feature
with t : X → Y , where Y denotes the target space. We note that while the
definition of t may suggest that the association between instances and target
labels is deterministic (hence, a mapping), this is not necessarily the case as the
dependency between X and Y is probabilistic and described by the unknown
data generating distribution D.
5 Compared to the usual definition of a training set considered in the ML literature
the definition of a decision table in rough set theory distinguishes instances in U
from their representation in terms of features.
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By contrast, in weakly supervised learning, and more specifically in learning
from imprecise labels, the target feature is not assumed to be precisely known,
but is instead only given in an imprecise form. In general, instead of the true
target t, one can only observe the values of d, that is, a function d : X →
D(Y ), where D(Y ) is a set of structures over Y . As before, more in general,
we may assume that instances are sampled from a distribution D̃ defined over
X × D(Y ). As described in the introduction, weakly supervised learning aims
at modeling learning problems in which knowledge about the supervision in a
learning problem is not precisely or completely specified, but is only given in
terms of imprecise beliefs or knowledge. Then, different tasks are defined based
on the considered type of structures, for example:

– When D(Y ) = Y ∪ {⊥}, that is, each instance x is associated with either a
label y ∈ Y or no label at all (⊥), then the corresponding learning problem
is called semi-supervised learning ;

– When D(Y ) = 2Y , that is, each instance x is associated with a set of possible
labels ỹ ⊂ Y , then the corresponding learning problem is called superset
learning or partial-label learning ;

– When D(Y ) = [0, 1]Y , that is, each instance x is associated with a possibility
distribution πx : Y → [0, 1] over Y , then the corresponding learning problem
is called learning from fuzzy labels;

– When D(Y ) = 2P(Y ), that is, each instance x is associated with a set of
probability distributions Qx ⊆ P(Y ) over Y (that is, a credal set), then the
corresponding leaning problem is called credal learning.

Thus, a weakly supervised problem instance is defined by a weakly supervised
training set W = {(x1, d1), . . . , (xn, dn)} and the corresponding weakly super-
vised decision table W = (U,Att, d), where, as above, d : X → D(Y ). Given a
weakly supervised decision table W , an instantiation of W is a standard decision
table I = (U,Att, t̃), that is compatible with W (denoted I ∼W ). For example:

– If D(Y ) = Y ∪ {⊥}, then I ∼W iff ∀x ∈ U, d(x) ̸= ⊥ =⇒ t̃(x) = d(x) and
d(x) ̸= ⊥ =⇒ t̃(x) ∈ Y ;

– If D(Y ) = 2Y , then I ∼W iff ∀x ∈ U, t̃(x) ∈ d(x);

– If D(Y ) = [0, 1]Y , then I ∼W iff ∀x ∈ U, πx(t̃(x)) > 0.;

– If D(Y ) = 2P(Y ), then I ∼W iff ∀x ∈ U, ∃p ∈ Qx s.t. p(t̃) > 0.

Notably, while we gave a binary definition of compatibility, a graded notion of
compatibility can be defined for the learning from fuzzy labels and credal learn-
ing settings. Focusing on the first case for simplicity, for example, given two
instantiations I1, I2 compatible with W , one could say that I1 has stronger com-
patibility than I2 when ∀x ∈ U, πx(t̃1(x)) ≥ πx(t̃2(x)). See also [6] for possible
alternative definitions of graded compatibility.
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2.2 Design Philosophy

scikit-weak is an open-source library, freely available via GitHub6 and PyPi7,
that has been designed with two main aims:

– To provide a variety of easy-to-use tools and functionalities to enable data
analysis grounding on weakly supervised data;

– To be inter-operable with scikit-learn main functionalities and API.

To address the first aim, scikit-weak is implemented through a module hierar-
chy that offers a variety of classes and functions to meet the main needs of a ma-
chine learning pipeline: data representation (through the data representation

module); pre-processing (through the utilities and feature selection mod-
ules) and learning (through the classification module). Section 3 gives a
comprehensive overview over each module.

To address the second aim, scikit-weak conforms to the API of scikit-
learn. For example, classes in scikit-weak’s feature selection module in-
herit from sklearn.base.TransformerMixin and thus exhibit the usual fit,
transform, fit transform interface. Thus, scikit-weak classes can be used
anywhere, and in the same way, a corresponding scikit-learn class would be
used, e.g., inside a Pipeline, enabling greater modularity and inter-operability.

Aside from scikit-learn compatibility, to further facilitate use, scikit-
weak documentation, generated using sphinx8, is freely available online9 and
the library ships with an integrated suite of unit tests to ensure its correct
functionality.

2.3 Code Example

To demonstrate the ease-of-use and the interoperability of scikit-weak with
scikit-learn, consider the following example. First, starting from a standard
supervised learning problem, weak supervision is generated (lines 11 – 18) by
applying DiscreteEstimatorSmoother: this employs an underlying base classi-
fier (in the example, a KNeighborsClassifier) to generate fuzzy labels. Then,
a weakly supervised kNN model is instantiated (line 21; cf. Section 3.4) and a 5-
fold cross validation is computed using the scikit-learn implementation (lines
24 – 30), in order to fit and evaluate the weakly supervised model: this step, in
particular, shows the interoperability between scikit-weak and scikit-learn
base functionalities.

1 from scikit_weak.data_representation import

DiscreteFuzzyLabel

2 from scikit_weak.classification import

WeaklySupervisedKNeighborsClassifier

6 https://github.com/AndreaCampagner/scikit-weak
7 https://pypi.org/project/scikit-weak/
8 https://sphinx-doc.org/
9 https://scikit-weak.readthedocs.io
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3

4 from sklearn.datasets import load_iris

5 from sklearn.neighbors import KNeighborsClassifier

6 from sklearn.model_selection import cross_val_score

7

8 import numpy as np

9

10 # Construct exemplary weak supervision

11 X, y = load_iris(return_X_y=True)

12 smooth = DiscreteEstimatorSmoother(KNeighborsClassifier(

n_neighbors =10), type="fuzzy")

13 y_fuzzy = smooth.fit_transform(X, y)

14

15 # Instantiate weakly -supervised KNN classifier

16 clf = WeaklySupervisedKNeighborsClassifier(k=5)

17

18 # Accuracy metric

19 def accuracy(estimator , X, y_soft):

20 y_pred = estimator.predict(X)

21 y_true = np.array ([np.argmax(y.to_probs ()) for y in

y_soft ])

22 return np.mean(y_true == y_pred)

23

24 # Perform 5-fold cross -validation

25 cv_scores = cross_val_score(clf , X, y_soft , cv=5, scoring=

accuracy)

3 Contents and Documentation

In this section, we describe the main sub-modules and classes implemented in
the scikit-weak library.

3.1 Data Representation

scikit-weak offers a flexible set of object classes representing weak target infor-
mation [13, 15], which can be found in the corresponding data representation

module and is depicted in Figure 1.
The basic representation is given by the abstract class GenericWeakLabel

that defines a standard interface that should be implemented by every concrete
class of weak targets, such as the ability to randomly sample an element through
the sample value method. scikit-weak primarily distinguishes between con-
tinuous and discrete weak labels, which are described in the following.

Continuous Weak Labels Continuous weak labels are represented as instances
of the abstract class ContinuousWeakLabel, whose main concrete sub-class is
IntervalLabel. An object of this kind represents an interval-valued target spec-
ified by its lower and upper bounds l and u, e.g., as often observed in weakly
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Fig. 1. The class hierarchy of data representation formats included in the module
data representation.

supervised regression problems. Without any further specification, each element
within [l, u] is considered to be equally plausible. Moreover, this class features
to sample an element uniformly within this interval.

Discrete Weak Labels Discrete weak labels can be represented as instances
of the abstract class DiscreteWeakLabel, whose main concrete sub-classes are
DiscreteFuzzyLabel and DiscreteSetLabel. As discrete target representation,
objects of the former class maintain possibilities πx(y) ∈ [0, 1] over elements Y ,
e.g., classes as typically considered in classification problems. These possibilities
represent upper probabilities of the true underlying probability distribution over
Y . DiscreteFuzzyLabel supports a sampling mechanism to draw labels accord-
ing to the possibilities. Moreover, discrete fuzzy labels can represent agnostic
label information, i.e., assigning full possibility πx = (1, . . . , 1) to any value in Y
without further distinction. Semi-supervised learning is a typical setting where
such data occurs, as parts of the data are completely unlabeled and target in-
formation is agnostic. To simplify the management of the type of data that
occur frequently in superset and partial-label learning, namely, that a set of ele-
ments in Y have full plausibility, while all other elements are totally implausible,
scikit-weak also implements the DiscreteSetLabel class.
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3.2 Utilities

The utilities module collects general utility functions that can be used for
pre-processing, optimization or data checking and analysis. In particular, the
module contains the smoothers sub-module, that encompasses several methods
to transform supervised datasets into weakly supervised datasets; as well as the
losses sub-module, that contains some commonly used loss functions for model
evaluation and optimization-based learning.

DiscreteEstimatorSmoother DiscreteEstimatorSmoother is a class to trans-
form a supervised learning problem into a weakly supervised one, which uses an
underlying classifier for imprecisiation. The need for this class stems from the fact
that most existing benchmark datasets are precise, and hence cannot be used to
test weakly supervised learning algorithms. Thus, DiscreteEstimatorSmoother
allows to convert a standard supervised benchmark into a weakly supervised
one. It supports transformation of standard labels to either DiscreteSetLabel
or DiscreteFuzzyLabel. In the case of transformation to DiscreteFuzzyLabel

objects, the underlying classifier given as input is trained on the supervised data
given as input, and the output confidence scores are then normalized and used
as values for the corresponding DiscreteFuzzyLabel. In the case of transforma-
tion to DiscreteSetLabel instances, only labels whose normalized confidence
scores are greater than a parameterized threshold ϵ are considered as output.

DiscreteRandomSmoother Related to the previous method, instances of the
class DiscreteRandomSmoother realize the transformation from supervised to
weakly supervised problems based on random sampling. Therefore, the class sup-
ports transformation of standard labels to either DiscreteSetLabel or Discrete-
FuzzyLabel. To this end, discrete random smoother offers two sampling strate-
gies: either according to the random set model, or according to the random mem-
bership model. In the random set model, labels in the corresponding Discrete-

SetLabel are sampled at random, according either to probability p incl (for
the correct label) or p err (for the incorrect labels). Formally, given instance
(x, y) and the corresponding set-valued label S, it holds that P (y ∈ S) = p incl

and ∀y′ ̸= y, P (y′ ∈ S) = p err. In the random membership model, possibility
degrees for the labels are sampled uniformly from the set of possible possibility
degrees given as input in parameter prob ranges.

3.3 Feature Selection

scikit-weak offers a selection of methods to control model complexity and data
dimensionality through the feature selection module, which comprises dif-
ferent classes to perform weakly supervised feature selection and dimensionality
reduction. In particular, the current version of the library implements two rough
set-based feature selection algorithms (namely, classes RoughSetSelector and
GeneticRoughSetSelector) and a dimensionality reduction algorithm (DELIN).
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RoughSetSelector RoughSetSelector performs weakly supervised feature se-
lection using rough set-based reduct search [5, 7]. The class supports datasets
whose weakly supervised labels are either instances of the class DiscreteSetLabel
or DiscreteFuzzyLabel, and offers several choices in regard to the search strat-
egy (brute-force or greedy search), the class of reducts to search for (super-
set reducts, C-reducts, λ-reducts), and the rough set model to be used (k-
neighborhood or radius neighborhood rough sets). When the weakly supervised
labels are instances of DiscreteSetLabel, both brute-force and greedy search
aim to find minimal superset reducts. A superset reduct is a reduct for an in-
stantiation of the weakly supervised dataset given as input. The brute-force
search strategy examines all subsets of features R ⊆ Att exhaustively to check
whether they are superset reducts. The algorithm is guaranteed to return all the
minimal-size superset reducts, but, however, the computational complexity is
exponential (O(|X| · 2|Att|)). By contrast, the greedy search strategy starts with
the full set of features Att and iteratively removes one feature as long as the
remaining set of feature is a superset reduct. The algorithm is not guaranteed to
return a minimal-size superset reduct, but global search is supported via random
restarts. The complexity of greedy search is O(|X| · |Att|2). When the weakly
supervised labels are instances of DiscreteFuzzyLabel, brute-force and greedy
search aim to find either C- or λ-reducts. A C-reduct R ⊆ Att is a superset reduct
for an instantiation IR for which ∄R′ ⊆ Att superset reduct for an instantiation
IR′ such that both |R′| ≤ |R| and minx∈S πx(t̃IR(x)) ≤ minx∈S πx(t̃IR′ (x)). A
λ-reduct R ⊆ Att is a superset reduct for an instantiation IR that minimizes

(1−λ)(minx∈S πx(t̃IR(x)))−λ |R|
|Att| among all superset reducts. Both brute-force

and greedy search perform feature selection by searching for superset reducts on
the α-cuts of the fuzzy-labeled dataset given as input, and then selecting among
the retrieved reducts those that satisfy the constraints of being either a C-reduct
or a λ-reduct. Thus, the complexity of brute-force search is O(|X|2 ·2|Att|) while
the complexity of greedy search is O(|X|2 · |Att|2).

GeneticRoughSetSelector The class GeneticRoughSetSelector offers func-
tionality to perform weakly supervised selection by reduct search using genetic
algorithms [6]. The class supports datasets whose weakly supervised labels are
instances of DiscreteFuzzyLabel. GeneticRoughSetSelector aims to find ei-
ther C-reducts, D-reducts or λ-reducts for the weakly supervised dataset given as
input, supporting every type of weakly supervised label. A D-reduct R ⊆ Att is
a superset reduct for an instantiation IR for which ∄R′ ⊆ Att superset reduct for
an instantiation IR′ s.t. both |R′| ≤ |R| and ∃x ∈ S, πx(t̃IR(x)) < πx(t̃IR′ (x)).
The genetic algorithm-based search is guided by one of three possible fitness
functions, corresponding to the above mentioned reduct classes:

FitnessC = ⟨r, p⟩, (1)

Fitnessλ = (1− λ)p− λ
r

|Att| , (2)

FitnessD = ⟨r, s⟩, (3)
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where p = minx∈S πx(t̃I(x)), r =

{
|A| F is a super-reduct

∞ otherwise
, and s ∈ [0, 1]|U | is

a vector s.t. sx = πx(t̃I(x)). Note, in particular, that only Fitnessλ is single-
valued, while the other two fitness functions are multi-valued. Consequently, for
these latter two fitness functions, the implementation employs a multi-objective
optimization algorithm. Irrespective of the fitness function adopted, the compu-
tational complexity of GeneticRoughSetSelector is O(|X| · |Att|). With regard
to selection and cross-over, GeneticRoughSetSelector employs non-dominated
tournament selection and single-point cross-over, respectively. For mutation, can-
didate reducts are mutated by random addition or deletion of features according
to a Bernoulli distribution. By contrast, instantiations are mutated according
to a two-step procedure. First, for each instance x, a binary value is randomly
sampled from a Bernoulli distribution, then, if the above mentioned value was
equal to 1, a new target label is sampled using the method sample value of the
corresponding GenericWeakLabel instance.

DELIN DELIN is a weakly supervised dimensionality reduction algorithm, based
on the combination of linear discriminant analysis and weakly supervised k-NN
[2, 27, 28]. The class supports datasets whose weakly supervised labels are in-
stances either of the class DiscreteSetLabel or DiscreteFuzzyLabel. DELIN
requires one to determine a-priori the number of dimensions to be selected via
the parameter n. Intuitively, the algorithm works in iterations, each of which con-
sists of two steps: first, WeaklySupervisedKNeighborsClassifier is applied to
the data, then linear discriminant analysis is applied to the original data w.r.t.
the confidence scores given as output of the first step. Compared to the algo-
rithm originally proposed in [27, 28], the DELIN class has two main modifications:
first, it supports not only DiscreteSetLabel but also DiscreteFuzzyLabel in-
stances; second, singular value decomposition is used in the computation of linear
discriminant analysis to avoid stability issues. The computational complexity of
DELIN is O(|X| · |Att|2).

3.4 Classification

Aside from the pre-processing and dimensionality reduction methods described
in the previous sections, scikit-weak also offers a wide selection of weakly
supervised classification algorithms contained in the classification module.

WeaklySupervisedKNeighborsClassifier As one of two neighborhood-based
methods, WeaklySupervisedKNeighborsClassifier is a simple generalization
of k-nearest neighbors classification to the setting of weakly supervised data [3,
17], and is compatible with every instance of DiscreteWeakLabel. The number
of neighbors can be controlled through parameter k, while the class supports any
metric callable (through the metric parameter, default is the Euclidean metric).
For efficiency reasons, scikit-learn’s NearestNeighbors is used to speed-up
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neighbors search: the computational complexity is Ω(|X| · log|X|), with an ad-
ditional complexity of Ω(log|X|), O(|X|) at inference time.

WeaklySupervisedRadiusClassifier WeaklySupervisedRadiusClassifier

is yet another simple generalization of radius-based neighbors classification to
weakly supervised data [17], and is compatible with every instance of Discrete-
WeakLabel. The radius within which to search for neighbor instances can be
controlled through the radius parameter, while the class supports any metric
callable (through the metric parameter, default is the Euclidean metric). Simi-
larly as for class WeaklySupervisedKNeighborsClassifier, NearestNeighbors
is used to speed-up neighbors search: the computational complexity is Ω(|X| ·
log|X|), with an additional complexity of Ω(log|X|), O(|X|) at inference time.

GRMLinearClassifier GRMLinearClassifier is an optimization-based clas-
sification method that attempts to directly minimize the generalized risk for a
linear model [15]. Currently, it supports instances of DiscreteFuzzyLabel and
implements two different linear classification algorithms, namely, logistic regres-
sion (by setting loss parameter to ”logistic”) or linear SVM (by setting loss pa-
rameter to ”hinge”). More in detail, given loss function l, GRMLinearClassifier
attempts to solve the following optimization problem:

argmin
W

1

|X|
∑

(x,π)∈S

lF (π,W · x)

where lF : [0, 1]Y × RY → R is the generalized risk [15], defined as

lF (π,W · x) =
∫ 1

0

min
y∈πα

l(y,W · x)dα . (4)

Optimization is implemented by means of gradient descent, relying on Tensor-
Flow10 for efficient computation. In particular, the class supports every Ten-
sorFlow optimizer (through the optimizer parameter, default is stochastic
gradient descent ”sgd”). In general, the optimization problem described above
is non-convex, thus convergence to a global optimum is not guaranteed and no
convergence checking is implemented. Training is performed for a fixed number
of iterations (set through parameter max epochs), therefore complexity is on
the order of O(|X| · |Att|). To avoid overfitting, GRMLinearClassifier supports
weight regularization, set through the regularizer parameter.

RRLClassifier RRLClassifier is an efficient ensemble-based method for weakly
supervised classification based on a generalization of tree ensemble-based learn-
ing [8]. RRLClassifier trains an ensemble of standard supervised classifiers (by
default, scikit-learn’s ExtraTreeClassifier [14], but the type of classifier

10 https://tensorflow.org
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can be set through parameter estimator) by drawing random samples from
the weakly supervised data given as input. For each instance label Y in the
training set, and each classifier hi to be ensembled, a sample label is obtained
by calling y.sample value(). Thus, RRLClassifier supports every instance of
GenericWeakLabel. Optionally, bootstrapping (as in random forests) can be ap-
plied (through parameter resample, by default set to False) to ensure increased
diversity among the classifiers in the ensemble. The computational complexity
of RRLClassifier is O(k · |Att||X| · log|X|), where k is the number of classifiers
to be ensembled (set through parameter n estimators).

LabelRelaxationNNClassifier As one example of a credal learning classifier,
LabelRelaxationNNClassifier provides an implementation of the label relax-
ation loss [19] to train probabilistic neural network classifiers H : X → P(Y )
with P(Y ) denoting the space of probability distributions over Y . Commonly,
training of such models H involves a gradient-descent based optimization of a
probabilistic loss l : P(Y ) × P(Y ) → R+, where degenerate probability distri-
butions py with py(y) = 1 and py(·) = 0 otherwise are considered as surrogate
targets for an observed class labels y ∈ Y , typically resulting into overconfident
models. To achieve better calibrated models by a more faithful target modeling,
label relaxation replaces the degenerate distribution py assigned to an instance x
by a credal set Qπx

in accordance with a possibility distribution πx that assigns a
fixed possibility πx(y

′) = α ∈ [0, 1] to the labels y′ ̸= y and πx(y) = 1. This credal
set Qπx

is then used as target within a generalized loss formulation adopting Eq.
(4) to train models, which is implemented in the class LabelRelaxationLoss.
LabelRelaxationNNClassifier allows one to specify the imprecisiation param-
eter α (parameter lr alpha), as well as hyperparameters related to stochastic
gradient descent (SGD) optimization. Moreover, the base network to be trained
can be specified by its hidden layer depth and widths. The computational com-
plexity depends on the parameterization of the SGD procedure, resulting in a
complexity similar to GRMLinearClassifier. As before, we use TensorFlow
as optimization framework.

CSSLClassifier Another credal learning method is provided in the class CSSL-
Classifier, which implements so-called credal self-supervised learning (CSSL)
[18] to induce probabilistic classifiers in a semi-supervised learning scenario. To
this end, CSSL maintains credal sets Qπx as used in LabelRelaxationLoss

expressing the model’s belief about the true target for previously unlabeled in-
stances, proceeding from agnostic credal sets of the form Qπx

= P(Y ) with
πx(y

′) = 1∀y′ ∈ Y . These credal sets successively shrink with increased training
progress and thus higher model confidence by reducing the degree of imprecisi-
ation in πx. CSSLClassifier allows one to specify a base model (parameter
estimator, e.g., an instance of LabelRelaxationNNClassifier), the number
of iterations (n iterations), a class prior distribution used within the credal
set construction (p data) and the buffer size of the model prediction history also
employed in the credal set construction (p hist buffer size). In each iteration,
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the base model is retrained on the complete data and the credal sets are adjusted
according to the updated model.

4 Conclusion

In this article, we introduced scikit-weak, a Python library for weakly super-
vised learning and data analysis, currently focusing on the handling of learning
from imprecise data problems. To the authors knowledge, scikit-weak is the
first library providing such functionality in Python, and thus we believe it could
advance the applicability of the Python data science ecosystem to non-standard
and weakly supervised learning problems. We described the fundamental design
concepts underlying the library and documented the main implemented func-
tionalities and classes. We also illustrated the use of the library by means of a
simple example. The scikit-weak is an open source project and we hope that
additional contributors can help maintain the library as well as implement new
functionalities: indeed, being freely and openly available on GitHub, and being
implemented completely in Python, we believe developers could easily extend
and add new functionalities to the existing library. In particular, we envision the
following next steps for the development of the library:

– To extend the suite of implemented weakly supervised data representation,
so as to encompass additional and more general learning settings such as
those mentioned in the introduction;

– To provide more efficient and robust implementations of the currently im-
plemented classes, e.g., by off-loading time-sensitive routines to low-level or
device code, or by implementing more extensive type checking and tests;

– To enrich the library with sample weakly supervised datasets that can be
used for prototyping, testing as well as benchmarking purposes.
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time: A unified interface for machine learning with time series. arXiv preprint
arXiv:1909.07872 (2019)

22. McKinney, W., et al.: pandas: a foundational python library for data analysis and
statistics. Python for high performance and scientific computing 14(9), 1–9 (2011)

23. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al.: Scikit-learn: Machine
learning in python. the Journal of machine Learning research 12, 2825–2830 (2011)



14 Andrea Campagner1, Julian Lienen2, Eyke Hüllermeier3, and Davide Ciucci1

24. Poyiadzi, R., Bacaicoa-Barber, D., Cid-Sueiro, J., Perello-Nieto, M., Flach, P.,
Santos-Rodriguez, R.: The weak supervision landscape. In: 2022 IEEE Interna-
tional Conference on Pervasive Computing and Communications Workshops and
other Affiliated Events (PerCom Workshops). pp. 218–223. IEEE (2022)

25. Quost, B., Denoeux, T., Li, S.: Parametric classification with soft labels using
the evidential em algorithm: linear discriminant analysis versus logistic regression.
Advances in Data Analysis and Classification 11(4), 659–690 (2017)

26. Sakai, H., Liu, C., Nakata, M., Tsumoto, S.: A proposal of a privacy-preserving
questionnaire by non-deterministic information and its analysis. In: 2016 IEEE
International Conference on Big Data (Big Data). pp. 1956–1965. IEEE (2016)

27. Wu, J.H., Zhang, M.L.: Disambiguation enabled linear discriminant analysis for
partial label dimensionality reduction. In: Proceedings of the 25th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. pp. 416–424
(2019)

28. Zhang, M.L., Wu, J.H., Bao, W.X.: Disambiguation enabled linear discriminant
analysis for partial label dimensionality reduction. ACM Transactions on Knowl-
edge Discovery from Data (TKDD) 16(4), 1–18 (2022)

29. Zhou, Z.H.: A brief introduction to weakly supervised learning. National Science
Review 5(1), 44–53 (2018)

30. Zhou, Z.H., Sun, Y.Y., Li, Y.F.: Multi-instance learning by treating instances as
non-iid samples. In: Proceedings of the 26th annual international conference on
machine learning. pp. 1249–1256 (2009)


	Introduction
	Supervised Machine Learning
	Learning from Imprecise Data
	Cautious Inference
	Outline and Main Contributions
	List of Included Articles

	I Dealing with Imprecision in the Input: Learning from Imprecise Data
	Learning from Fuzzy Label
	Article 1: Learnability in Learning from Fuzzy Labels
	Pseudo-label Learning
	Experimental Analysis
	Conclusion

	Feature Selection in Learning from Imprecise Data
	Article 2: Rough set-based feature selection for weakly labeled data
	Article 3: Feature Selection and Disambiguation in learning from fuzzy label Using Rough Sets
	Article 4: Rough-set Based Genetic Algorithms for Weakly Supervised Feature Selection

	Applications of Learning from Imprecise Data
	Article 5: Ground truthing from multi-rater labeling with three-way decision and possibility theory
	Article 6: Ordinal labels in machine learning: a user-centered approach to improve data validity in medical settings
	Article 7: Everything is Varied: The Surprising Impact of Individual Variation on ML Robustness in Medicine


	II Dealing with Imprecision in the Output: Cautious Inference
	Cautious Inference Methods
	Article 8: Three-way Learnability: A Learning Theoretic Perspective on Three-way Decision
	Article 9: Three-way decision and conformal prediction: Isomorphisms, differences and theoretical properties of cautious learning approaches

	Ensembling of Cautious Predictors
	Article 10: Aggregation Models in Ensemble Learning: a Large-Scale Comparison
	Article 11: Evidential Predictors: Evidential Combination of Conformal Predictors for Multivariate Time Series Classification

	Conclusions
	Appendix: Code and Data Repositories
	Article 12: scikit-weak, A Python Library for Weakly Supervised Machine Learning



