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Abstract

Quantum annealers can be used to solve many (possibly NP-hard)
combinatorial optimization problems, by formulating them as quadratic
unconstrained binary optimization (QUBO) problems or, equivalently, us-
ing the Ising formulation. In this paper we analyse the ability of quantum
D-Wave annealers to find the maximum clique on a graph, expressed as
a QUBO problem. Due to the embedding limit of 164 nodes imposed
by the anneler, we conducted a study on graph decomposition to enable
instance embedding. We thus propose a decomposition algorithm for the
complementary maximum independent set problem, and a graph gener-
ation algorithm to control the number of nodes, the number of cliques,
the density, the connectivity indices and the ratio of the solution size to
the number of other nodes. We then statistically analysed how these vari-
ables affect the quality of the solutions found by the quantum annealer.
The results of our investigation include recommendations on ratio and
density limits not to be exceeded, as well as a series of precautions and a
priori analyses to be carried out in order to maximise the probability of
obtaining a solution close to the optimum.

1 Introduction

Since the appearance of the first quantum computers, the world of quantum
computing has already achieved very good results in terms of performance in
approaching certain NP-hard [13, 22] optimization problems. A quantum CPU
(QPU) that can be used to solve this kind of problems is the Advantage QPU [2]
offered by D-Wave. This processor enables solutions to complex combinato-
rial problems to be computed using adiabatic quantum computation [15, 12]
and quantum annealing, which searches for the lowest energy state of a target
function by adiabatically evolving its states. The target function is called the
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Hamiltonian and is defined as [10]:
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where σ̂(i) are the Pauli matrices operating on the qubits qi, while hi and Ji,j
represent the qubit biases and coupling forces. The Hamiltonian of each problem
can be embedded inside the QPU once the target problem has been reduced to
either the Ising spin glass problem or the QUBO problem.

In this paper, we set out to analyse the solving capability of a D-Wave quan-
tum computer on the NP-hard maximum clique problem (MC), which consists
in finding a maximum subset of fully connected nodes in a graph. The QUBO
formulation of this problem, provided by [1], can be written as:

H = −A
N∑
i=1

xi +B
∑

(i,j)∈Ē

xixj (2)

where the penalties A and B are set to 1 and 2 respectively, as explained in [18].
In particular, equation (2) refers to the QUBO function for the maximum inde-
pendent set problem (IS), as it is simpler and more functional to implement.

Our aim is to understand which instances of the problem are harder to solve,
what properties a suitable graph must have, and therefore what transformations
and decompositions can be applied to obtain a suitable instance. We then
conducted a series of experiments to identify correlations between resolution
quality and graph characteristics, with the goal of establishing a foundation
for future research. In what follows we will denote the undirected graphs as
G(V,E), where V = {1, . . . , N} is the set of N vertices and E is the set of
edges.

The rest of the paper is organized as follows. In Section 2 we present some
related works taken from the literature. In Section 3 we describe the mathemati-
cal methods and the software used in our investigation. In particular, we present
our new graph decomposition and graph generation algorithms, and we describe
the statistical tests we performed to analyse the solutions found by the quantum
annealer on our benchmark graphs. In Section 4 we describe the experiments we
performed, and the corresponding results. We also formulate two experimental
laws, relating the clique size and the maximum independent set size with the
quality of the solutions returned by the quantum annealers. Finally, Section 5
draws conclusions and outlines some directions for future work.

2 Related Works

Over time, various researches have been proposed to find the solution to the
maximum clique problem, as well as various decomposition algorithms on graphs
and methods to embed the problem inside a quantum computer. Most of the
researches, like this paper, refer to the D-Wave [10] hardware.

Quantum algorithms have already been benchmarked against classical heuris-
tics, showing a significant improvement. In [13], a speedup of about 108 is
observed in solving complex problems for instances optimised for D-Wave’s
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Chimera architecture. [22] also uses D-wave hardware, but analyses quantum
annealing models mathematically. It also demonstrates a speedup for several
classes of problems by comparing a classical solver with a quantum solver and
a simulated quantum solver. It is interesting to note that this speedup only
applies to a few precise instances, suggesting that the problem may be due to
a lack of the quantum hardware, which needs to be corrected and better cali-
brated. It should be noted that this paper dates back to 2014, and since then
D-Wave has largely solved these problems.

In terms of problem formulation, the Ising format is provided by [18], which
defines several NP-hard problems in this format and is an essential starting
point for embedding problems on quantum computers. On the other hand,
for the QUBO format there is no collection similar to [18], so the definitions
must be searched for in various articles, such as the one provided by [1] for the
maximum clique problem. After defining the problem, the researchers of this
publication, analyzed the architecture of quantum computers D-Wave, under-
standing the need to decompose large problems. They also analyzed various
algorithms for this purpose, such as k-core, CH-partitioning, vertex splitting,
and a combination of all three. Finally, they study the differences between clas-
sical and quantum solvers, showing no significant differences between methods
for small graphs, while for larger instances optimized for quantum computing
the speedup compared to classical methods is important.

Regarding the specific problem of maximum clique, there is little strictly
related work. This is because the D-Wave technology is relatively new and
constantly expanding, and the first computers allowed the inclusion of small
problems (around 40-60 nodes) that could also be solved with classical algo-
rithms. A more modern example is presented in [21], which manages to process
a graph with 120 nodes with acceptable results. It does so by using the DBK
decomposition algorithm and what researchers call parallel quantum comput-
ing. The latter method, as the name suggests, divides the problem into two
subgraphs that are simultaneously embedded in different physical zones of the
QPU (quantum CPU) and on different qubits, but solved independently. The
advantage of this method lies in the possibility of avoiding the problem of the
maximum size of the embedding.

Another way of looking at the clique problem is to reduce it to the maximum
independent set problem. This problem is solved in [26] using D-Wave technol-
ogy. They also come to the same conclusions as above, showing an improvement
in performance, but pointing out problems with the number of parameters re-
quired for optimisation, with the physical effects that limit the QPU, and the
need to use optimised instances.

Given the problem of maximum embedding size, much research has been
done on decomposing the graphs while keeping the maximum clique intact, in
order to be able to include the problem instance in the D-Wave QPU. Vari-
ous decompositions for many NP problems have already been proposed in [25].
From there, many decomposition algorithms have been studied, leading to [20],
which specifically studies those mentioned by [1]. This research also introduces
some very useful values used as upper and lower bounds to understand the size
of a clique, and analyses how the choice of starting vertex can influence the
decomposition algorithm.

However, much of this work does not consider the characteristics of a graph
and how they may affect the solving process of the QPU, which we decided to
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test without relying on optimised instances or specific methods. In fact, many
studies use ready-made instances for embedding in the Chimera or Pegasus
topology of the QPU. We, on the other hand, want to understand in depth
how the D-Wave solvers are affected by the structure of the base input without
transformations, in order to add another level of detail or another point of view
to the research already presented.

3 Methods and Algorithms

In this section we show how to embed instances of the maximum clique problem
– expressed in the QUBO formulation – into the QPU and how to solve them
using D-Wave solvers. We also present a set of statistical methods for analysing
the solutions, which are very useful for understanding how varying a feature
of the input graph affects the quality of the results. Finally, we present two
algorithms, one for decomposing a graph on the maximum independent set (IS)
problem, and one for generating benchmark graphs.

3.1 D-wave Softwares

D-Wave offers several tools for interfacing and programming on the QPU. First
and foremost is LeapTM [9], D-Wave’s quantum cloud service, which allows users
to interface with the QPU by sending problem instances to quantum computers,
acting as a bridge between the IDE and the hardware.

Another service is the Solver API [11], called SAPI. This provides access to
classical, quantum and hybrid solvers included in LeapTM via access tokens.

D-Wave also offers a Python-based open source SDK named Ocean [6]. This
includes everything needed for programming and a GitHub repository with vari-
ous example user codes [5]. Among the libraries available are those dedicated to
solvers, such as dimod [3], which provides many functions dedicated to embed-
ding problems. Another very useful library in our case is dwave-networkx [4],
an extension of the library networkx [14] which allows problems on graphs to
be handled and solved using quantum methods.

Furthermore, D-Wave offers a variety of problem solving solutions. In addi-
tion to various classical solvers, hybrid and quantum solvers are also available.
The latter differ in the type of problems they can accept: pure quantum solvers
require problems in the form of Binary Quadratic Models (BQM) with binary
variables and structured for the QPU, while hybrid solvers allow arbitrarily
structured Quadratic Models (QM) with non-binary variables. Hybrid solvers
use classical algorithms and hand off to quantum methods only those parts of
the problems that can benefit most from them. Hybrid solvers include hybrid
BQM solvers (accepting decision problems with a yes or no answer), hybrid
CQM solvers (Constrained Quadratic Models, accepting constrained quadratic
models with integer or binary variables, with possible constraints), and hybrid
DQM solvers (Discrete Quadratic Models, accepting unconstrained and arbitrar-
ily structured problems). These solvers are certainly useful and very powerful,
but in our case we decided to focus only on quantum solvers in order to better
understand their structure and solving capabilities.

Speaking of quantum solvers, we tested two for our work: DWaveSampler [8]
and DWaveCliqueSampler [7]. The latter is a specific solver for the maximum
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clique problem that needs nothing else to work, while DWaveSampler is the
basic sampler that needs to be integrated into the QPU before returning the
desired solution. This step is a bit more complex, but allows for different ways
of embedding the problem instance into the QPU, giving more control. In our
case, we tested several embedding functions provided by D-Wave. The best one
was AutoEmbeddingComposite, which sends the problem in its native form, i.e.
as a binary quadratic model, and only applies embedding if necessary. This
embedding involves finding the best qubit configuration on the QPU and the
most efficient link chain to process the instance as efficiently as possible for the
processor.

Finally, an important factor to consider is the fact that solvers are currently
able to incorporate graphs of up to 164 nodes into the QPU, which are larger
than those previously tested. Although a graph of this size can still be processed
by a classical algorithm in a reasonable time, it allows us to analyse the potential
of quantum methods better than in the past, and to estimate how the solving
power might evolve on graphs of larger size.

3.2 Statistical Methods

In order to analyse the results obtained from the experiments, we decided to
use some statistical tests to understand whether by changing a parameter the
groups of results are significantly different. These are introduced and used to
analyse the relationship between the extracted clique size and the original clique
size when varying a chosen parameter. All proposed tests assume that there are
k groups of values, divided into n samples per group.

Cochran’s test: this statistical test, proposed in 1967 in [24], measures
whether the variances of groups are homogeneous.

Shapiro-Wilk’s test: this test, explained in [23], is one of the most use-
ful for measuring the normality of a data set. It is tested by comparing two
alternative variance estimators, one non-parametric and one parametric.

Test ANOVA: Analysis of Variance, also known as ANOVA, is a statistical
technique for analysing multiple data sets by comparing within-group variability
(MQE) with between-group variability (MQF). It should be noted that ANOVA
requires homoscedasticity and a normal trend for each data set. This last point
will be important in our case, as the data sets under consideration will not all
have normal trends. However, it should be noted that in [16] it is shown that
ANOVA analysis is not overly affected by the lack of normality of the data,
in fact it remains a valid tool in most cases. The value F = MQF/MQE
is calculated and compared with a tabulated value; if F is lower, it can be
concluded that there are no significant differences between the groups studied.
Otherwise, the LDS (least significant difference) test should be performed.

Test LDS: The LDS value is calculated and for each pair of groups the
differences between the means in absolute value are calculated. A difference
greater than the LDS value indicates significant differences in the pair examined,
allowing conclusions to be drawn based on the context of the study.

Kruskal-Wallis’s test: This test, explained in [17], is the non-parametric
equivalent of ANOVA. It analyses more than two groups and does not require
normality of the data, only that all sets have a similar distribution, such as the
same asymmetry to the right or left. The sum of the ranks Ri for each group is
calculated; if the initial hypothesis is true, the Ri should have a similar value.
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From here, the H statistic is calculated and compared to a tabulated value,
and if H is smaller, we can conclude that the initial hypothesis is accepted.
Otherwise, as with ANOVA, it is necessary to perform further tests to find out
which groups of data do not belong to the population being studied, and thus
which groups are significantly different from the others.

Mann-Whitney test This method, explained in [19], is another non-parametric
test to analyse whether or not certain data belong to the same population and
is carried out after rejecting the initial Kruskal-Wallis hypothesis. Groups are
paired, and rank sums and then the U statistic are calculated for each. The
value U is compared to a tabulated value and if it is greater, it can be con-
cluded that the two groups belong to the same population and therefore there
are no significant differences.

3.3 IS-decomposition

In order to address the issue of the maximum embedding size, we have devel-
oped a novel decomposition algorithm that is specifically designed to tackle the
maximum independent set problem. This is because the quantum algorithms
that we have employed are capable of solving this problem.

A very important preliminary factor is the definition of an upper bound on
the size of the clique to be sought. We have chosen to use the chromatic number,
as mentioned in [20]. The difficulty lies in the fact that finding the chromatic
number is an NP-hard problem. However, there are greedy colouring algorithms
that allow us to obtain a good approximation of this value.

For the IS-decomposition algorithm, we started with the idea that if we
choose three vertices, and two of them are connected to the third but not to each
other, then removing the central vertex would result in two unconnected vertices
that could be part of the maximum independent set. Another consideration is
that vertices with a higher degree have a lower probability of being part of the
independent set, so the search for vertices to remove starts from the vertices
with the highest degree.

The algorithm takes as input the complementary graph to the one containing
the maximum clique and removes nodes until it reaches the size specified by the
user, or until the removal does not reduce the value of the colour number on
the original graph below a specified threshold. It should be noted that choosing
too low a value can have destructive effects on the maximum independent set.

Algorithm 1 shows the pseudocode of the method. It is subject to sev-
eral control conditions: the while loop is executed at most 2n times, and the
function get max degree vertex to remove recursively searches for a triple of
vertices satisfying the initial condition at most 5 times. The get random vertex
function also searches for a removable vertex, but with randomly chosen triples,
and stops after a given number of iterations without a result. Furthermore, the
vertices connected to the removed vertex are placed in a list of non-removable
vertices in order to retain the possible candidates for the independent set.

It is very difficult to formally prove that the algorithm works in all cases.
However, our empirical findings indicate that in the majority of cases, the maxi-
mum independent set (or one of the possible ones if there are more) is preserved.
Additionally, the time complexity for the worst case scenario, where a fully con-
nected graph is provided as input, is O(n5). However, it is very unlikely that
the worst case will occur by chance, as the user would not be expected to at-
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Algorithm 1 IS-decomposition

function decompose IS(G, final dim, min cn)
while dim(G) > dim original do

v, v′, v′′ ← get max degree vertex to remove(G, min cn)
if v not found then

v, v′, v′′ ← get random vertex(G, min cn) ▷ If v satisfies
requirements

end if
if v found then ▷ If v found in either case

if check if v can be removed(G, v, min cn) then
G.remove(v)
Add vertices to non removing list(L, v′, v′′)

end if
else

Stop ▷ If v not found, the function stops
end if

end while
end function

tempt to decompose a ready-made clique; hence the algorithm should run in a
significantly shorter time than the worst case.

An illustrative example of the algorithm’s operation is presented in Figure 1.
It can be observed that at the initial iteration, the triple [1,2,3] is selected, re-
sulting in the elimination of vertex 1 (having the highest degree). A comparable
outcome is observed for the valid triples [1,2,5] and [1,3,4]. In the event that
elimination was not possible, a random vertex between 4 and 5 would have been
selected, as it is second in degree. At the second iteration, the algorithm makes
a random decision to eliminate vertex 4 or 5, which are equal in degree and
both have neighbours that satisfy the initial condition. In both cases, one of
the possible independent sets is retained. Upon completion of the second itera-
tion, no vertex satisfies the specified restrictions for removal, and the algorithm
terminates. In fact, no independent set is identified. However, the size of the
initial graph has been reduced in order to facilitate subsequent computations of
the solution.

3.4 Algorithm for Creating Benchmark Graphs

Another challenge we encountered was the difficulty of locating standard graphs,
or at the very least, those whose maximum clique nodes were known. To address
this issue, we developed a highly controllable graph creation algorithm with the
objective of obtaining all the necessary information for subsequent statistical
investigations. The algorithm permits the user to select the number of clique
nodes (n node), the number of cliques (n cli) and the number of nodes not
belonging to cliques (ex node). Furthermore, two Boolean variables may be
set to indicate whether arcs should be added between the cliques (add edges)
and whether the size of the cliques should be randomised (rand cli), keeping
the variable n node as the maximum value. The method returns the created
graph, along with a list of nodes belonging to the created cliques. Algorithm 2
illustrates the key steps of the method.
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Figure 1: Working example of the IS-decomposition algorithm

Algorithm 2 Graph-creation

function graph creation(n node, ex node, n cli, add edges, rand cli)
final dim ← n node·n cli+ex node
g, cli list, ex node list ← graph with cliques(final dim, n node, n cli,

rand cli)
for each v ∈ ex nodes list do

g ← add edges from node(v, num of random links)
end for
if add edges then

g ← add edges between cliques(g, num of random links)
end if
return g, cli list

end function

The algorithm exhibits a high degree of randomness. The nodes of the
cliques and the number of arcs created are selected at random. In particular,
for the arcs, each addition is applied only if it does not increase the value of the
chromatic number calculated on the initial graph with only the cliques. This
ensures that the original size of the maximum clique inserted remains intact.
Finally, the percentage determining the number of arcs in the two functions can
be set, thus enabling the creation of graphs with varying densities, which can
then be analysed in order to ascertain the impact of this factor.

The algorithm was thus created with the objective of achieving a high degree
of variability between the graphs generated, thereby enabling the creation of
instances that accurately reflect the search space and from which to extract
results that are as descriptive as possible of the resolving capacity of the QPU.
In addition, the aim was to minimise the possibility of having chosen graphs
that could have introduced a bias into the analysis of the results.
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4 Experimental Analysis

This section presents the results of the various tests conducted. The objective
is to idenitfy relationships between the structure of a graph and the ability of
quantum methods to find the max clique. All experiments are structured in
four steps: creation of n graphs with different characteristics, calculation of the
maximum clique, elimination of null results with the addition of new instances
to compensate (if necessary) and, finally, statistical investigation of the results.

Once the four steps have been completed, if the statistical information is
not deemed relevant, new instances are added to those already generated, and
this process is repeated until a statistical trend emerges. Furthermore, this step
elucidates the rationale behind the differing number of graphs analysed for each
experiment.

Furthermore, it should be noted that all the tests conducted were indepen-
dent of one another. This was achieved by creating new instances for each
experiment, thereby allowing for a comprehensive analysis of the problem.

4.1 Initial Exploratory Analysis

A preliminary analysis was conducted to identify the most pertinent variables
for achieving optimal results with quantum solvers and, thus, understand how
to structure subsequent experiments.

Approximately 100 graphs were created, divided into five groups of varying
sizes. The graphs were not generated simultaneously; instead, the results of
each group influenced the creation of subsequent ones.

The final size of the graphs exhibited considerable variability, with a majority
falling within the range of 90 to 100 nodes. This observation was made due to
the tendency of the solvers to consistently report optimal solutions for smaller
values, and conversely, suboptimal solutions for larger values. The identified
range, however, encompasses heterogeneous results that are more useful for
analysis. With regard to the size of the cliques, the values observed in the
range 5-80 were found to be quite disparate. This is because the various results
reported heterogeneity in the size returned. Furthermore, the number of cliques
does not appear to be a determining factor in influencing the resolving quality
of the method.

These initial experiments demonstrated the necessity of generating graphs
of a total size close to 100 nodes in order to understand the behaviour of the
quantum solver in a situation appropriate to the current capacity of the method.
Furthermore, we observed a correlation between clique size and the quality of
the results, necessitating further investigation. Based on these two conclusions,
we structured the subsequent tests.

4.2 Ratio Between Clique Size and External Nodes

We begin our analysis with this experiment, as it yields the most relevant out-
come for our research and for the other experiments. Our objective is to as-
certain the degree to which the size of the clique is a significant factor for the
quantum method.

A total of 42 graphs have been generated, with a final size of 100 nodes and
the number of cliques at 1. These have been divided into seven different groups
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by the ratio of the number of clique nodes to the number of external nodes. The
maximum cliques have been calculated by the D-Wave solver, with instances
that produce a null output being replaced in order to avoid the introduction of
staggered data.

Firstly, we calculated the ratio between the clique size returned by the D-
Wave solver and the original clique size for each graph. On this data, coupled
with the clique/outer node ratio, we performed some statistical tests. Initially,
we performed the Cochran test [24] with a positive result, and then proceeded
to perform the Shapiro-Wilk test [23]. Normality is only followed for groups
with lower ratios, but thanks to [16] we nevertheless felt entitled to perform
an ANOVA test, in conjunction with the Kruskal-Wallis test [17] for additional
security (all data have left skewness). Both tests rejected the initial hypothesis
that there were no differences between the groups. Further tests were required to
ascertain which groups differed from the others. These included the LDS post-
ANOVA and the Mann-Whitney test post-Kruskal-Wallis. In particular, various
levels of significance α were used for the latter test to identify which groups were
truly different from the others. The results are presented in Table 1. It can be
observed that the comparisons between the pairs of groups demonstrate how
group 7 (ratio = 0.42) differs from the majority of the others, in particular from
group 1, which could be considered as a reference.

This result represents the most significant outcome of our investigation. The
limiting ratio of 0.42, or equivalently a clique of 30 nodes on a graph of 100
total, marks the point at which the quantum solver begins to exhibit a decline
in resolution quality.

From this result, we formulated the following two laws, that is, mathematical
relations extrapolated from empirical data and capable of explaining an experi-
mental observation with a sufficient degree of precision. It should be noted that
these laws are by no way formally proven theorems.

Law 1. For the maximum clique problem, for the same final dimension of the
graph, as the clique size increases, and thus the size of the maximum independent
set on the complementary graph, the solution returned by the quantum solver
approaches the optimum.

The same concept applies to the minimum-coverage problem, which is com-
plementary to IS on the same graph:

Law 2. For the minimum vertex cover problem, for the same final graph size,
as the cover size increases, and thus as the size of the maximum independent
set on the same graph decreases, the solution returned by the quantum solver
deviates from the optimum solution.

The reason for this phenomenon can be attributed to the number of nodes
that are not part of the solution sought, which we could compare to what we
consider as noise. Indeed, as the number of external nodes, and thus the noise,
increases, the solver is unable to discern what is part of the independent set
from what is not. The most probable explanation is that as the noise in the
data increases, the minimum energy gap decreases, leading the Hamiltonian to
transition to more excited states, thus preventing the solver from identifying a
solution to the problem.

This result introduces a new level of analysis to quantum computing. The
power of these methods lies in the fact that, irrespective of the size or quality of
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MDS G2 G3 G4 G5 G6 G7 MW α=0,05 G2 G3 G4 G5 G6 G7
G1 ✓ ✓ ✓ ✓ X X G1 ✓ ✓ X X X X
G2 ✓ ✓ ✓ ✓ X G2 ✓ ✓ ✓ ✓ ✓
G3 ✓ ✓ ✓ X G3 ✓ ✓ ✓ X
G4 ✓ ✓ X G4 ✓ ✓ X
G5 ✓ ✓ G5 ✓ ✓
G6 ✓ G6 ✓

MW α=0,1 G2 G3 G4 G5 G6 G7 MW α=0,2 G2 G3 G4 G5 G6 G7
G1 ✓ ✓ X X X X G1 ✓ ✓ X X X X
G2 ✓ ✓ ✓ ✓ X G2 ✓ ✓ ✓ ✓ X
G3 ✓ ✓ ✓ X G3 ✓ ✓ ✓ X
G4 ✓ ✓ X G4 ✓ ✓ X
G5 ✓ X G5 ✓ X
G6 ✓ G6 ✓

Table 1: Groups divided by the different tests, ✓ if the two groups show no
significant differences, X otherwise

the input, the solving time remains constant. However, we have demonstrated,
at least for the maximum clique problem and its annexes, that this is not true
for the quality of the solution, which is an equally important factor. Further-
more, we have demonstrated that the transition to excited states is not solely
influenced by thermal or magnetic fluctuations that may affect the hardware.
Rather, it is also influenced by the structure of the input itself, which may be
noisy.

4.3 Density

The preceding experiment yielded a number of different tests, including the
graph density test. As previously stated, the creation function enables the user
to alter the density of the arcs, thus allowing the generation of a variety of
graphs with differing densities.

A preliminary experiment was conducted by generating 36 graphs, each with
a final dimension of 100 nodes, divided into three groups. Each group exhibited
varying ratio level and was divided into four subgroups based on the density
level. For the 40/60 and 50/50 ratio groups, there were no significant differences
between the various density values. However, the 30/70 group demonstrated
a decreasing trend in the average results as the density decreased, although
ANOVA did not show any significant differences between subgroups.

Subsequently, another 150 graphs comprising 100 nodes each were generated,
with a ratio of 0.42, divided into groups of 30 graphs based on density levels.
Having extracted the solutions, a comparison was made between the various
means of result, which did not show statistical trends, contradicting previous
results. However, the analysis did reveal an intriguing phenomenon: for graphs
with a density value below 15%, the solver encounters significant difficulties in
returning a solution, even a partial one. In fact, the number of null solutions
for the various density levels is typically below 30%, while at 15% density it
rises to 50%, a value that is clearly unacceptable as it increases the risk of
obtaining a solution equal to zero and consequently necessitates the repetition
of the experiment.

This conclusion is also interesting, although less relevant than the ratio, as
it allows a second value on which to make a preliminary analysis on the graphs.
However, it is necessary to specify that the aforementioned conclusion, namely
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that it is desirable not to go below 15% density, only covers graphs with a ratio
of 0.42. It would be beneficial to generalise this theory by carrying out more
in-depth experiments on other ratio classes.

4.4 Connectivity Indices

Another analysis was conducted using graph indices. The 30/70 ratio was em-
ployed to generate graphs with a solution and others with a null result. Several
connectivity indices were calculated for these graphs, including mean and vari-
ance of vertex degrees, minimum and maximum eccentricity, centre and periph-
ery size, centralisation, mean and variance of closeness, and mean and variance
of betweenness. Finally, the differences between the indices of the graphs with
a solution and those of the graphs without a solution were calculated.

The observed differences are relatively minor and do not justify further sta-
tistical investigation. It is important to note that the number of generated
graphs is limited, which may not fully capture the underlying phenomenon. To
address this, we conducted a second experiment, generating 100 graphs, with
the aim of predicting the size of the result extracted by the quantum solver using
classical learning models (SVM and KNN). This decision is based on the obser-
vation that learning models are occasionally capable of extrapolating patterns
from data that appear to lack any discernible structure. The average accuracy
of the two models is approximately 65%. However, it should be noted that this
result is likely influenced by a bias introduced by the asymmetry of the classes.
This factor is due to the capability of the D-Wave solver. In fact, the majority
of instances belong to the best result classes because in calculating the solu-
tion, the solver seeks the optimum. In order to balance the classes, it would be
necessary to create specific instances, perhaps with a low ratio and/or density
value. However, this would introduce an additional bias due to the difference be-
tween the graphs in the various classes. Indeed, the creation of specific instances
would result in the model considering only the ratio and density variables as
discriminants for the classes, thereby ignoring the index variables.

From this analysis, it can be preliminarily concluded that there is no appar-
ent correlation between the indices describing a graph and the result extracted
by the D-Wave solver. However, it was observed that training predictive mod-
els using connectivity indices is challenging, as it necessitates the generation of
specific instances for training, which may introduce bias into the results. Nev-
ertheless, further in-depth investigations could potentially identify subtle but
significant differences for the solver.

4.5 Number of Cliques

Another factor that was subjected to testing was the influence of the number
of cliques. A total of 33 graphs were generated, with a ratio of 0.42. These
were divided into three categories: 11 graphs with one clique, 11 graphs with
two cliques and 11 graphs with three cliques. It should be noted that the ratio
value was calculated as follows:

R =
Cm

Dg − Cm
(3)
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with Cm maximum clique size and Dg graph size. This is because we assume
that the solver, by minimising the Hamiltonian, only searches for one clique
and consequently that the other nodes act as noise, regardless of whether or not
they belong to another clique.

Upon analysis of the solver results, an intriguing phenomenon was observed.
The average of the solutions according to the number of cliques exhibited a
relatively consistent trend across the three groups, whereas the sample variance
exhibited a notable decline as the number of cliques increased. Between the
variance of the results of the group with one clique and that with two, there
was a 15% decrease, while between two and three, there was a 50% decrease.
This result is noteworthy because it indicates that as the number of cliques
increases, and thus density, the solver returns more homogeneous results.

To verify this hypothesis, we proceeded to calculate the variance values of
the results of the density experiment for the 30/70 graphs, in which the lower
limit of density was extrapolated to 0.15. Our findings indicate that as the
density increases, the solver tends to return results with less variance, thereby
producing solutions within a narrower range.

This conclusion is of interest with regard to the objective of obtaining more
precise solutions. In the event that we have a loosely connected graph, it is
possible to increase the number of arcs without increasing the value of the
chromatic number in order to increase the probability of obtaining a result
closer to the optimum, or, in general, with fewer outliers than the expected
average. It is evident that the introduction of random arcs may also result in
the modification of the maximum cliques. However, it is possible to conduct
a series of experiments by increasing the density in different ways in order to
either confirm or enhance the result already calculated on the original graph,
provided that it does not exceed the value of the chromatic number.

In conclusion, the number of cliques is an impossible factor to calculate if
one does not know the structure of the graph. However, it does influence the
density value, which does not directly affect the quality of the solution. Instead,
it affects the dispersion of the results with respect to an expected value.

4.6 Size of the Graph

As a final experiment, we sought to ascertain the solver’s behaviour in approach-
ing the maximum embeddable dimension. To this end, we generated 24 graphs
comprising one clique, six graphs with final size 121 and ratio 0.42, six graphs
with size 143 and ratio 0.42, six graphs with maximum size (164) and ratio 0.42,
and six graphs with maximum size and ratio 1.

The results indicated that the majority of the solutions were null, resulting
from the solver’s inability to extract solutions as the dimension increased, ap-
proaching the maximum embeddable dimension. The only noteworthy results
were observed for graphs having dimension 164. For the ratio of 0.42, the solver
extracts a clique of size 7, which represents approximately 14% of the maximum
solution. In contrast, for the ratio of 1, the solution size is 33, which equates to
40% of the maximum clique. Consequently, the theory of solving improvement
as the ratio of clique size to external node size increases is once again confirmed
to be true.

In conclusion, the experiment demonstrated that in order to obtain reason-
able solutions that are close to the optimum, it is optimal to query D-Wave with
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graphs of a maximum size of 100, although the number of maximum embed-
dable nodes are 164, otherwise there is a high risk of obtaining null or partial
solutions that represent less than 40 per cent of the optimum solution.

5 Conclusions and Directions for Future Work

In this paper, we analyses the solving ability of a quantum D-Wave solver for
maximum cliques, an important NP-hard class problem. The objective is to
understand how the graph structure can influence the solving capability of the
quantum method.

Firstly, we have devised two algorithms. The first, for reducing the input
size, decomposes the complementary graph in order to keep the maximum in-
dependent set unchanged, with a worst-case computation time of O(n5). The
second algorithm generates benchmark graphs with controllable inputs in order
to perform statistical analysis on the results.

In terms of the experiments conducted, we proceeded to test the significance
of the ratio between clique size and nodes outside the clique for both the max-
imum clique problem and the minimum vertex coverage. We also tested the
significance of various indices for describing a graph, including average degree,
closeness, and so forth. Additionally, we tested the impact of density and the
number of cliques on the solution. Finally, we tested the effect of an extreme
input size (within the limits of embedding on the QPU) on the solution.

Subsequently, the majority of the results were subjected to statistical analy-
sis, employing several techniques. The findings yielded the following conclusions:

• The ratio of clique size to the number of external nodes of 0.42 repre-
sents a threshold beyond which the solver’s quality of solution begins to
deteriorate.

• The density of the graphs does not appear to exert a significant influence
on the size of the final solution, with the exception of graphs exhibiting
a ratio of 0.42. In this instance, a density value below 15% increases the
probability of obtaining null solutions.

• Graph indices are not a reliable means of distinguishing different classes of
results with the same ratio and/or size. Furthermore, training a predictive
model with connectivity indices is challenging.

• The number of cliques is not a significant factor for the solver, as search-
ing for a single clique considers all nodes not belonging to the solution,
including those in other cliques, as external nodes.

• For the time being, the number of nodes that can be incorporated is limited
to 164. As the quantum method approaches this limit, the probability of
it returning null values increases.

In general, it can be concluded that there are various factors that influence the
size of the solution returned by the quantum method and this analysis provides
a valid starting point for sensible decomposition or restructuring of the problem,
given the objective to be achieved.

Building on this, the work could be extended by a more detailed analysis of
the importance of density and graph indices. In addition, it would be interesting
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to investigate whether a similar conclusion can be drawn for problems other than
maximum cliques, and to determine what can be considered noise for other types
of NP-hard problems. This would help to determine whether the theory of the
solution-noise ratio can be generalised or if it should only apply to problems on
graphs. Finally, it would be highly beneficial to continue this type of analysis
in the future, when hardware may allow the incorporation of larger instances,
in order to confirm or deny the conclusions here presented.
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