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nonlocal transformations of the initial density field in the same simulation. Together with
the recent ref. [1], these are the first measurements of halo bias using the four-point function
that have been reported to date. We also obtain constraints on the quadratic bias parameters.
For all individual cubic parameters involving the tidal field Kij , we find broad consistency
with the prediction of the Lagrangian local-in-matter-density ansatz, with some indications of
a positive Lagrangian coefficient bLtd multiplying the time derivative of Kij . For the quadratic
tidal bias (bK2), we obtain a significant detection of a negative Lagrangian tidal bias.

Keywords: cosmological perturbation theory, galaxy clustering, cosmological simulations

ArXiv ePrint: 1712.07531

c© 2018 IOP Publishing Ltd and Sissa Medialab https://doi.org/10.1088/1475-7516/2018/09/008

mailto:titouan@mpa-garching.mpg.de
mailto:fabians@mpa-garching.mpg.de
https://arxiv.org/abs/1712.07531
https://doi.org/10.1088/1475-7516/2018/09/008


J
C
A
P
0
9
(
2
0
1
8
)
0
0
8

Contents

1 Introduction 1

2 Estimating cubic local bias from the trispectrum 3

2.1 Warmup: the squared-field method 3

2.2 Cubed-field method 5

2.3 Bias estimator 7

3 Simulations and halo finding 8

3.1 Measuring the bias parameters 8

4 Previous measurements and predictions 9

4.1 Lagrangian local-in-matter-density (LLIMD) prediction 10

4.2 Previous measurements 11

5 Results and discussion 11

5.1 bK2 11

5.2 btd 12

5.3 bδK2 and bK3 13

6 Conclusions 14

A Bias expansion to 3rd order 16

B Renormalization of operators 18

C Higher-order corrections 19

D Convergence tests 21

E Covariance matrix 23

F Consistency checks: b1, b2 and b3 23

1 Introduction

The large-scale distribution of dark matter halos is one of the key ingredients of the theoretical
description of large-scale structure (LSS). Since it is now well established that most observed
tracers of LSS, such as galaxies, reside in halos (see e.g. [2]), the statistics of halos determine
those of galaxies on large scales. In the context of perturbation theory, the statistics of halos
are written in terms of bias parameters multiplying operators O constructed out of the matter
density field δm and the tidal field Kij (see [3] for a recent review)

δh(x, τ) =
∑
O

bEO(τ)O(x, τ) , (1.1)

– 1 –
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where δh is the fractional number density perturbation of a given halo sample and bEO is the
bias parameter corresponding to the operator O. The superscript E stands for Eulerian,
since we are describing the statistics of the evolved (late-time) halo density field in terms of
the evolved density and tidal fields. Since we will mainly focus on these parameters, we will
drop the superscript E throughout the paper. In contrast, we will explicitly use the notation
bLO to refer to Lagrangian (early time) bias parameters, that is, the parameters appearing in
the expansion relating halos traced back to the initial conditions to the linearly extrapolated
initial density field and tidal field.

The contributions in the general perturbative bias expansion eq. (1.1) can be classified
in terms of the number of spatial derivatives acting on each instance of the gravitational
potential appearing in the operators. The leading terms on large scales are those which involve
exactly two spatial derivatives on each instance of the potential (here, we count ∂i∂j/∇2

as zero net derivatives). These constitute the leading local gravitational observables, and,
following [3], we consequently call this class the local bias expansion. In particular, this class
contains powers of the density field δnm and tidal field (Kij)l, as well as combinations of the two,
and convective time derivatives of the tidal field [4, 5]. Note that, in the previous literature,
terms involving the tidal field have often been referred to as “nonlocal bias.” However, since
the tidal field is clearly a local observable [6, 7], it appears appropriate to include it in the class
of local bias. In contrast, following [3], we will refer to the subclass of terms involving powers
of the density field δnm, often referred to as “local bias”, as local-in-matter-density (LIMD)
bias. One often-adopted ansatz is to assume that the halo bias expansion in Lagrangian
space, i.e. in the initial conditions, only involves powers of the density field. We refer to
this as the Lagrangian LIMD (LLIMD) ansatz (often referred to as “local Lagrangian” or
“coevolution” ansatz in the literature), and will compare our results with this assumption.

The second important class of contributions to eq. (1.1) involves more than two spatial
derivatives on the gravitational potential. One example is a term ∇2δm. The key differences
to the local bias contributions is that, first, the higher-derivative contributions are suppressed
on large scales; for example, ∇2δm(x) becomes −k2δm(k) in Fourier space. Second, their
coefficients are dimensionful; for example, [b∇2δ] = Mpc2. Thus, their amplitude involves an
additional spatial scale R. For dark matter halos, one expects this scale to be of order the
halo Lagrangian radius (e.g., [8]).

Since they are suppressed on large scales, higher-derivative bias contributes to the next-
to-leading order correction to statistics, such as the 1-loop contribution to the halo power
spectrum. Usually, the higher-derivative contributions are degenerate in shape with higher-
order local bias contributions which also enter at next-to-leading order [9, 10]; for example,
second- and third-order local bias terms appear in the 1-loop halo power spectrum. Hence,
the higher-order local bias parameters are constrained most robustly by measuring higher n-
point functions in the large-scale limit, rather than relying on the 1-loop halo power spectrum,
for example.

Currently the LIMD parameters bn ≡ n! bδn (n ≥ 1) are the most studied and have been
measured up to b4 in a variety of manners (see e.g. [11–21] and references therein, as well
as section 4.5 of [3] for a more exhaustive list). These methods include, but are not limited
to, moments and scatter-plot methods [12, 22, 23], the separate-universe technique [17–19]
(see e.g. [24, 25] for details about this technique), fits to the halo power spectrum and
bispectrum [13, 15] or the halo 3-point function [20], and correlators of operators constructed
out of the squared density and tidal fields [26] (the latter essentially measures the bispectrum
as well, as we will see). The parameter bK2 has also been measured from the tree-level
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bispectrum in [10, 16, 27, 28], the Lagrangian bispectrum [29], the 3-point function [30],
and from Lagrangian moments-based measurements [23, 31]. Some disagreement has been
found between [16] and [31] in the results for bK2 . Finally, the parameter b3nl, a certain
combination of quadratic and cubic tidal biases, has also been constrained from the 1-loop
halo-matter power spectrum in [16], but, following our discussion, it is degenerate with the
higher-derivative bias, which was set to zero in that reference.

The goal of the present paper is to measure all the cubic bias terms, which are: b3 = 6bδ3 ,
btd, bK3 , and bδK2 . The leading statistic to which these contribute is the four-point function
(trispectrum). In order to measure them, we generalize a technique proposed by ref. [26]
to measure the relevant trispectrum contributions efficiently. This technique allows us to
measure all the cubic bias parameters at once. Together with the recent ref. [1], these are
the first measurements of halo bias using the four-point function that have been reported
to date. We further use the analogous technique for the bispectrum to measure b1, b2 and
bK2 , to cross-check our results obtained from the trispectrum, and to compare with previous
measurements.

The very similar study of [1] came out shortly after this paper appeared on the arXiv
preprint server. While they use the same technique to obtain cubic order bias parameters
from the trispectrum, some details such as higher-order corrections are treated differently.
Overall, our results are in good agreement with theirs.

This paper is organised as follows: in section 2 we present our estimator for the trispec-
trum and show how to obtain the bias parameters from it. Section 3 describes our set
of simulations, shortly explains the halo finding procedure, and gives details on the actual
procedure to measure the bias parameters. Section 4 reviews previous measurements and the-
oretical predictions for the parameters. Finally, section 5 presents and discusses our results.
We conclude in section 6. The appendices contain details on the calculations (appendix A
and B), higher-order corrections (appendix C), convergence tests and cross-checks of our
results (appendix D and F), and covariance matrix of our results (appendix E). We adopt
the same cosmology as in [17] (hereafter L15), i.e. a flat ΛCDM cosmology with Ωm = 0.27,
h = 0.7, Ωbh

2 = 0.023, ns = 0.95, and As = 2.2 · 10−9.

2 Estimating cubic local bias from the trispectrum

We present here our estimator for the trispectrum and how it is used to measure the bias
parameters. The estimator is based on the same idea as was first introduced in [26], which
we briefly review in the first part of this section. We refer the reader to their paper for more
details. Throughout the entire section we drop time arguments for clarity; the results can be
applied at any redshift.

2.1 Warmup: the squared-field method

Consider the halo density field at second order in perturbation theory:

δ
(2)
h (x) = b1δ

(2)(x) +
1

2
b2
[
δ2(x)−

〈
δ2
〉]

+ bK2

[
K2(x)−

〈
K2
〉]
, (2.1)

where the superscript (n) indicates the order in perturbation theory and we drop the su-
perscript (1) for the linear fields for simplicity. The second-order density field is given by
(see appendix A)

δ(2) =
17

21
δ2 +

2

7
(Kij)

2 − si∂iδ . (2.2)
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The linear tidal field Kij and linear Lagrangian displacement are given respectively by

Kij = Dijδ =

[
∂i∂j
∇2
− 1

3
δKij

]
δ , (2.3)

si = − ∂i
∇2

δ , (2.4)

where δKij denotes the Kronecker symbol. We are interested in measuring the second-order
bias parameters b2 and bK2 . The leading statistic in which the second-order halo field appears
is the bispectrum, the simplest of which is the halo-matter-matter bispectrum,

〈δh(k)δm(p1)δm(p2)〉′ , (2.5)

where δm(p) is the evolved fractional matter density perturbation. Here and throughout, a
prime on a correlator denotes that the momentum-conserving Dirac delta is to be dropped,
(2π)3δD(k+p1 +p2) in the present case. Since we have access to both the linear (initial) and
nonlinear (evolved) density fields in the simulations, we can simply remove all contributions
due to the nonlinearity of matter contained in δm(pi) in eq. (2.5), by instead considering
the correlator

〈δh(k)δ(p1)δ(p2)〉′ . (2.6)

Following [26], we can compress the information in the three-dimensional phase space of the
full bispectrum into a set of two-point correlations:〈

δh(k)O(2)[δR](k′)
〉′
, (2.7)

where δR(k) denotes the linear density field smoothed on a scale R, and the quadratic oper-
ators are given by

O(2)[δR](k) =

∫
d3xO(2)[δR](x)e−ik·x ,

O(2)[δR](x) ∈
{
δ2
R(x)−

〈
δ2
R

〉
, (Kij,R)2(x)−

〈
(Kij,R)2

〉
, siR(x)∂iδR(x)

}
. (2.8)

That is, we cross-correlate the halo density field with the square of the linear density field
and tidal field, and the displacement term appearing in δ(2), where, in all cases, the quadratic
operators are constructed from the smoothed linear density field δR. It is then clear that the
correlators eq. (2.7) correspond to specific integrals of the halo-matter-matter bispectrum
eq. (2.6) over p1,p2. Inserting eqs. (2.1)–(2.2) into eq. (2.7), we see that this cross-correlation
becomes 〈

δh(k)O(2)[δR](k′)
〉′

=
∑

O′=δ2,K2,si∂iδ

c
(2)
O′M

(2)
OO′(k) ,

M
(2)
OO′(k) =

〈
O(2)[δR](k′)O′(2)(k)

〉′
, (2.9)

where the coefficient vector is given by (see appendix A)

c(2) =

 b2/2 + (17/21)b1
bK2 + (2/7)b1

−b1

 , (2.10)

– 4 –
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which contains the desired bias parameters b2, bK2 , as well as b1. In eq. (2.9), O(2) are
constructed in the same way as O(2)[δR] [eq. (2.8)], but from the unsmoothed linear density
field. This result is valid as long as R and 1/k are sufficiently large, so that the correlator

eq. (2.7) is accurately described by second-order perturbation theory. Then, M
(2)
OO′(k) is

given by a convolution integral over two linear power spectra, weighted by the Fourier-space
kernels corresponding to the operators δ2, (Kij)

2, si∂iδ [26]. However, we do not need these

analytical expressions here, as M
(2)
OO′ can be directly evaluated on the simulations.

The procedure to measure second-order halo bias now simply becomes:

• Construct the quadratic fields O(2) and O(2)[δR] using the linearly extrapolated initial
density field used in the given simulation. This can be done efficiently on a grid by
making use of fast Fourier transforms (FFT). Specifically, spatial derivatives and non-
local operators such as 1/∇2 are applied in Fourier space, while products are taken in
real space.

• Measure the cross-power spectra between the halo field δh(k) and the operators
O(2)[δR](k), and the cross-power spectra of O(2)(k) and O(2)[δR](k). The latter yield

M
(2)
OO′(k).

• Estimate the bias parameters by solving eq. (2.9) for c(2).

In the following sections, we will provide more details on how these steps are implemented.
Let us now briefly list the key differences between this work and [26]. First, we construct

our operators O(2)[δR] from the linear, rather than evolved matter density field used in [26].
Second, rather than using the analytical expression for the ensemble average, we estimate

the operator cross-power spectra M
(2)
OO′(k) from the same realization of the initial density

field. This is expected to further suppress cosmic variance in the estimated parameters c
(2)
O .

Finally, while ref. [26] considered quadratic operators as an efficient means to measure
the halo bispectrum, as we have just described, we will go to cubic order in order to measure
the halo trispectrum. This is described next.

2.2 Cubed-field method

Consider the halo-(matter)3 cross-trispectrum,

〈δh(k)δm(p1)δm(p2)δm(p3)〉c , (2.11)

where the subscript c denotes the connected part of the four-point function. All cubic bias
terms contribute to this statistic at tree level, in addition to the quadratic and cubic operators
in the nonlinear matter density. Since we have access to the linear density field in the
simulations, we can remove the second contribution by using, in analogy to eq. (2.6),

〈δh(k)δ(p1)δ(p2)δ(p3)〉c . (2.12)

Since we are interested in cubic bias specifically, we can further simplify the statistic by
subtracting the evolved matter density field, multiplied by the linear bias:

〈[δh(k)− b1δm(k)] δ(p1)δ(p2)δ(p3)〉c . (2.13)

b1 can be measured for example from the large-scale halo-matter cross power spectrum
(e.g., [14]), or using the separate-universe technique [17–19]. Note that, unlike the case

– 5 –
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for the bispectrum, there are disconnected lower-order contributions to the 4-point function,
which we need to remove, as they do not involve cubic bias terms. Some of these are removed
by subtracting the linear bias contribution multiplied by the nonlinear density field. In addi-
tion, this subtraction removes contributions to the 6-point function from δ(3). Note that the
lowest-order quadratic terms in δh, while not of interest here, do not need to be subtracted,
as they lead to 5-point functions which vanish. We include the quadratic bias contributions
evaluated at third order, which contribute at leading order to the trispectrum, in our model.

Now, instead of attempting to measure the trispectrum eq. (2.13) for all possible con-
figurations in its six-dimensional phase space, one can again compress the information into
a set of power spectrum-like quantities, by cross correlating δh with cubic operators O(3)[δR]
constructed out of the smoothed linear density field on a scale R. As mentioned above,
these can be constructed efficiently on a grid by going back and forth between real- and
Fourier-space. We assume throughout that the mean of all operators has been subtracted,
such that

〈
O(3)[δR](x)

〉
= 0 [in analogy to eq. (2.8)]. We will perform a further subtraction

that removes the disconnected contributions below.
Paralleling the quadratic case discussed above, this measurement yields a linear combi-

nation of operator cross-power spectra, multiplied by linear combinations, denoted as c
(3)
O , of

the desired cubic and lower-order bias parameters:〈
[δh(k)− b1δm(k)]O(3)[δR](k′)

〉′
=
∑
O′

c
(3)
O′M

(3)
OO′(k) , (2.14)

where

M
(3)
OO′(k) ≡

〈
O(3)[δR](k′)O′(3)[δ](k)

〉′
, (2.15)

and the vector of cubic operators is

O(3) =
(
δ3, δK2, K3, Otd, s

i∂i(δ
2), si∂i(K

2)
)>

, (2.16)

as is shown in appendix A. Here,

Otd =
8

21
KijDij

[
δ2 − 3

2
K2

]
, (2.17)

and K2 = KijK
ij , K3 = KijK

j
lK

li. The displacement field is given by eq. (2.4). Each of the
operators in eq. (2.16) is cubic in linear fields. The operators in eq. (2.16), when correlated
with the halo density field, in general lead to lower-order, disconnected contributions to the
4-point function. Further, since we construct the operators as products in real space, there
are zero-lag contributions to the correlators of the operators among themselves that appear
on the right-hand side of eq. (2.14). In the renormalized bias expansion, these contributions
are removed by counter-terms. That is, we should employ the renormalized operators [O[3]]
in eqs. (2.14)–(2.15). Since the cubic operators are constructed from the linear density field,
this renormalization is in fact very simple. As shown in appendix B, both of these sets of
unwanted contributions can be removed simultaneously by including the leading counter-
terms to the bare operators, which are given by:

O(3)(x)→ [O(3)(x)] = O(3)(x)− nO
〈
δ2
〉
δ(x) ,

where nO =
(

3, 1, 0, 0, 2, 0
)
. (2.18)

– 6 –
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Here,
〈
δ2
〉

is the variance of the density field from which the operators are constructed, and
δ(x) is the same density field. These relations are derived in appendix B. This renormalization
is analogous to the orthogonalization procedure described in [1]. However, the procedures
differ in detail. In particular, we subtract a single term as written in eq. (2.18), while ref. [1]
perform subtractions in Fourier space for each k value individually.

Note that the coefficients c
(3)
O contain contributions from b2, bK2 , since the halo density

field at third order also contains the quadratic operators δ2
m,K2 evaluated at that order. In

particular, the displacement terms, the last two operators in eq. (2.16), are multiplied by
−b2/2 and −bK2 , respectively. This allows for important cross-checks. Specifically, as shown
in appendix A, the set of coefficients cO is given by

c := c(3) = {cO}O(3) =



b3/6 + (17/21)b2
bδK2 + (2/7)b2 + (4/3)bK2

bK3 + 2bK2

btd + (5/2)bK2

−b2/2
−bK2

 . (2.19)

Here and in the following, we drop the superscript (3) as well as the brackets, as we
are only dealing with renormalized cubic operators throughout the main text. Again, as
in the quadratic case, MOO′ denotes the cross-correlation of the unsmoothed renormalized
operator O′ with the renormalized operator O constructed from the smoothed linear field
δR. Thus, it is a specific scalar product between the operators O and O′; note that MOO′

is not symmetric. In the following, we will assume that the smoothing scale R as well as
wavenumbers k are on sufficiently large scales so that the tree-level trispectrum is sufficient
to describe the correlators in eq. (2.14).

2.3 Bias estimator

We now turn to the cubic bias estimator. We define the vector H(k) of binned cross-power
spectra of halos with these operators as defined in eq. (2.14):

HO(k) =
∑

k−∆k≤|k|≤k+∆k

〈
[δh(k)− b1δm(k)]O[δR](k′)

〉′
. (2.20)

Using eq. (2.14), this vector becomes

H(k) = M(k) · c , (2.21)

where c contains the combinations of bias parameters given in eq. (2.19), and M = {MOO′}
is the matrix of operator cross spectra defined in eq. (2.15).

We can then immediately construct the estimator for the vector of bias coefficients at
any fixed k,

C(k) = M−1(k) ·H(k) . (2.22)

Assuming that the smoothing scale R is sufficiently large, C(k) asymptotes to the scale-
independent constant vector c at sufficiently low k. The leading correction due to higher-
order contributions can be approximated by a quadratic dependence on k:

C(k) = c + Ak2 , and lim
k→0

C(k) = c . (2.23)

– 7 –
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Thus, in this regime, one can combine the bias parameters from different k bins. Further,
if error estimates are available for C(k) as a function of k, the estimates from different
wavenumber bins can be weighted optimally, leading to an optimal estimator (at leading
order) for the cubic bias parameters, as can be shown in analogy to the results of [26].

3 Simulations and halo finding

In this section, we shortly present the details of our set of simulations, and a quick outline
of the halo finding procedure. We also detail the exact measurement procedure.

We use two sets of gravity-only simulations which were run with the cosmological N-
body code GADGET-2 [32]. The first one has a box length L = 500h−1Mpc with N = 5123

particles yielding a mass resolution mp = 7 · 1010h−1M�. We ran 48 realisations of this set
and refer to it as L500. In addition, we use two realisations of a larger box simulation with
L = 2400h−1Mpc and N = 15363 particles, yielding a mass resolution mp = 3 · 1011h−1M�.
We refer to this set as L2400. All simulations where initialised with 2LPT at an initial
redshift zi = 49.

The halo finding procedure is the same as the one described in L15. Halos are identi-
fied using the spherical overdensity halo finder Amiga Halo Finder (AHF) [33, 34] with an
overdensity threshold 200ρm for the halo definition (ρm is the background matter density).
We bin the mass range of halos in 11 tophat bins of width 0.2 in logarithmic scale centered
from lgM = 12.55 to lgM = 14.55, where lg is the base 10 logarithm. We use the L500 set
for results in the range lgM = 12.55 − lgM = 12.95 and the L2400 set for higher masses.
Hence, the lowest mass bin is centered on halos with around 51 particles for the L500 set
and 47 for the L2400 set. We refer the reader to L15 for more details and justification of
our choices.

3.1 Measuring the bias parameters

In order to estimate the bias parameters from eq. (2.21), we need to measure the linear and
nonlinear matter density fields, as well as the halo density field. For the former, we generate
the density field from the Zel’dovich displacement corresponding to the initial conditions
of the given simulation at z = 99, and linearly scale it with the growth factor D to the
final redshift. The nonlinear density field and halo fields are obtained from the simulation
output and halo catalogs at the final redshift. We compute all of these fields on a grid of size
Ng = 512 for the L500 set and Ng = 764 for the L2400 set. We can then construct all the
relevant operators O by going back and forth from real to Fourier space. Spatial derivatives
and nonlocal operators such as 1/∇2 are applied in Fourier space, while products are taken
in real space. The operators are constructed from the linearly evolved initial density field
smoothed with a Gaussian filter on the scale R = 15h−1Mpc.

We then compute all the needed power spectra of the operators and halo fields, and
evaluate the matrix M and vector H for multiple k bins. Finally C(k) is obtained from
eq. (2.22). Each of the bias combinations entering C(k) is expected to asymptote to a
constant at low k. In order to maximize the signal-to-noise ratio while ensuring robust results,
we perform a quadratic fit of the form CO(k) = cO+AOk

2 up to kmax = 0.18h−1Mpc for each
of the components CO of C. The constant coefficients cO are the desired combinations of bias
parameters given in eq. (2.19), while the coefficients AO are left free to absorb higher-order
corrections to the correlators. We verified the robustness of our results under changes of the
smoothing scale as well as kmax. These consistency tests are presented in appendix D.

– 8 –
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In order to obtain an optimal fit of CO(k), we weight points at each k value by their
inverse variance. For the L500 set, we obtain the latter by a bootstrap procedure using 12′000
random resamples of 48 realisations. In each k bin and for each parameter CO(k) we compute
the mean of each resample. We then compute the mean and standard deviation of the mean
of the means distribution. These are the points and error used for the fit. The mean and
error bars of our measurements are obtained by a second bootstrap, this time over the fit of
each bias parameter, in a similar fashion as outlined in L15. We again create 12′000 random
resamples of 48 realisations each and compute the mean of means and its standard deviation,
which are the final results we present. Notice that this procedure yields the marginalized
error bars (see appendix E). We cannot build robust error bars for the L2400 set in the same
way since it contains only two realisations. Hence we rescale the error bars obtained with
the L500 set at each k, [σ(CO(k))]L500, by the total volume of each set. That is

[σ(CO(k))]L2400 =

√
VL500

VL2400
[σ(CO(k))]L500 , (3.1)

where VL500 = 48 · 5003(h−1Mpc)3 and VL500 = 2 · 24003(h−1Mpc)3. Since the statistical
error bars on the final parameters of interest cO are expected to scale the same way with
volume, we perform the same rescaling for σ(cO). Note that we use the same smoothing
scale and wavenumber bins for both L2400 and L500. Hence this rescaling via the simulation
volume is expected to be accurate.

The procedure to obtain the bias parameters from the squared-field method is exactly
analogous, except that we do not subtract b1δm from the halo density field. This allows us
to obtain a measurement for b1 [eq. (2.10)] and hence the complete set of bias parameters up
to third order.

Finally, we are interested in individual bias parameters entering eq. (1.1) at third order
rather than the combinations in eq. (2.19) (and eq. (2.10) for squared-field). For this we use
the precise measurements of the LIMD bias parameters bSU

1 , bSU
2 presented in L15 (obtained

using separate universe (SU) simulations [25]), which were computed for the same cosmology
and halo finder parameters as the present work. These measurements have comparable or
smaller statistical errors than those obtained on the same parameters from the cubed- and
squared-field methods used here, and are expected to be more robust to systematic errors as
well. Specifically, in the squared-field case, b2 and bK2 are obtained by subtracting bSU

1 from
cδ2 and cK2 respectively. For the cubed-field case, b3 is obtained by subtracting bSU

2 from cδ3
whilst bδK2 , bK3 , and btd are obtained by subtracting bK2 obtained from squared fields from
cδK2 , cK3 , and cOtd

respectively (as well as bSU
2 from L15 in the case of bδK2). The error on

the individual parameters bO is obtained by Gaussian error propagation from the error on
cO and on bSU

n .

4 Previous measurements and predictions

In this section we review previous measurements as well as model predictions for some of the
bias parameters which we measure. We will not focus on results for the LIMD bias parameters
b1, b2, and b3 in the main text (since these have already been extensively studied in the past,
e.g [11–21]), and hence we do not present previous measurements or model predictions for
these here. We present our results for these parameters in the form of consistency checks
in appendix F by comparing them with the results of L15 which were obtained for the
same cosmology.
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4.1 Lagrangian local-in-matter-density (LLIMD) prediction

The so-called Lagrangian local-in-matter-density (Lagrangian LIMD or simply LLIMD here-
after) model provides predictions for all bias parameters given a set of Lagrangian LIMD
parameters bLn ≡ n!bLδn . We briefly recap this ansatz here but refer the reader to sections
2.2-2.4 of [3] for more details. This model assumes that halos formed instantaneously at some
high redshift, and that their formation is exclusively governed by the matter density field in
their neighborhood, i.e

δLh (q) = bL1 δ(q) +
1

2
bL2 δ

2(q) +
1

6
bL3 δ

3(q) + . . . , (4.1)

where q is the Lagrangian position. That is, any influence of the tidal field on the proto-halo
locations in Lagrangian space is assumed to be negligible. Using the fact that halos and
matter comove on large scales (as required by the equivalence principle), we can then solve
the continuity equation for both halos and matter with the same peculiar velocity divergence
θ = ∂iv

i, yielding
1

1 + δh
Dτδh =

1

1 + δ
Dτδ , (4.2)

with Dτ = ∂τ + vi∂i denoting the convective derivative. We can write the solution of this
equation in terms of the matter density field at the initial and final times and the halo density
field at initial time, where final and initial positions are related through the trajectory of
the matter fluid. By then inserting our prescription for the initial halo field eq. (4.1) in
this solution, we obtain an expression for the Eulerian halo field as a function of Eulerian
operators multiplied by Eulerian bias parameters expressed in terms of the Lagrangian ones.
Interestingly, gravitational evolution sources terms that involve the tidal field Kij , showing
that the Lagrangian LIMD ansatz is inconsistent with the Eulerian LIMD picture [35, 36].
The solution at second order reads [29]

δ
(1+2)
h = (1 + bL1 )δ(1+2) +

(
4

21
bL1 +

1

2
bL2

)
δ2 − 2

7
bL1K

2. (4.3)

We identify the term multiplying δ(1+2) as b1, the one multiplying δ2/2 as b2, and the one
multiplying K2 as bK2 . The same solution at third order gives a prediction for bδK2 , bK3 , btd.
The final results for the Lagrangian LIMD prediction are [3, 5]

bLLIMD
K2 = −2

7
(b1 − 1) , (4.4)

bLLIMD
td +

5

2
bLLIMD
K2 = −1

6
(b1 − 1) , (4.5)

bLLIMD
td =

23

42
(b1 − 1) , (4.6)

bLLIMD
K3 =

22

63
(b1 − 1) , (4.7)

bLLIMD
δK2 =

11

49
(b1 − 1)− 2

7

[
b2 −

8

21
(b1 − 1)

]
. (4.8)

For the numerical evaluation shown later, we use the best fit of L15 (their eq. (5.2)) for the
relation b2(b1) in the last equation.
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4.2 Previous measurements

As explained in section 1, there are numerous previous measurements for bK2 from diverse
techniques such as fit to the halo bispectrum or Lagrangian moments-based measurements [10,
16, 23, 27–31]. We will compare our results for bK2 with the best fit of [31]. They used various
Fourier space as well as real space methods to estimate the linear and quadratic Lagrangian
bias parameters from numerical simulations. By then evolving these in time in the same
fashion as what we presented for the LLIMD model in the previous section, they were able to
give prediction for relations between the Eulerian biases. The one of interest for us is their
eq. (22) relating bK2 to b1. Since they found a nonzero Lagrangian bLK2 their results trivially
disagree with the Lagrangian LIMD prediction.

Finally, ref. [16] used a joint fit to the tree-level halo-matter-matter bispectrum and the
1-loop halo-matter power spectrum to measure both bK2 and the combination

b3nl ≡ −
64

105

(
btd +

5

2
bK2

)
, (4.9)

and provided tabulated values for these (see their table 1). Expressions for the tree-level
bispectrum and 1-loop halo-matter power spectrum can be found in section 4.1.1 and sec-
tion 4.1.4 of [3], respectively.

The tree-level halo-matter-matter bispectrum depends on the parameters b1, b2 and
bK2 , while the 1-loop power spectrum further depends on btd (more precisely the combination
bK2+2/5btd) as well as the higher-derivative bias b∇2δ, as explained in section 1. In particular,
the contributions involving the latter two bias parameters are highly degenerate in shape. To
break this degeneracy, ref. [16] used a joint fit of the power spectrum and bispectrum, and,
crucially, set b∇2δ = 0. This last assumption is not expected to be correct and hence might
bias their measurements of b3nl. Further, they show clearly that adding the dependence of the
1-loop power spectrum on bK2 does not change the best-fit value for this quantity significantly.
This means that, although they perform a joint fit, bK2 is effectively determined by the
tree-level bispectrum while the combination bK2 + 2/5btd is obtained from the 1-loop power
spectrum. Since b∇2δ only enters the latter, we expect that their assumption of b∇2δ = 0
mainly affects their results for b3nl.

5 Results and discussion

In this section, we present our results for the four tidal bias parameters that our method allows
us to measure. We show measurements at redshifts 0, 0.5 and 1. We present results for b1, b2
and b3 at z = 0.0 and compare them to the ones of L15 in appendix F as checks of our method.

5.1 bK2

We start with bK2 , for which previous measurements exist. Figure 1 presents the results for
bK2 obtained from the squared-field correlators as a function of b1. We show the comparison
with the results from cubed-field correlators as well as convergence tests in appendix D.
This parameter is negative for all masses probed by our simulations, which reflects the anti-
correlation between the tidal field and halo field. Comparing our results to the LLIMD
prediction, we observe a slight systematic shift of bK2 towards more negative values. This
indicates a roughly mass-independent negative value of the Lagrangian tidal bias bLK2 . This
result thus shows that the tidal field already has to be taken into account in Lagrangian space,
in contradiction with the LLIMD assumption. Nevertheless, this is expected physically, at
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1 2 3 4 5

b1

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

b K
2

LLIMD
Modi et al. 16
Saito et al. 14, z= 1.0
Saito et al. 14, z= 0.5
Saito et al. 14, z= 0.0
Squared fields, z=0.0
Squared fields, z=0.5
Squared fields, z=1.0

Figure 1. bK2 as a function of b1. The blue symbols present our results for this bias parameter
at different redshifts while the red ones are the measurements from [16]. The dashed and solid
red lines present the best fit from [31], and the LLIMD prediction respectively. Our results are in
excellent agreement with the ones from [16] and show that the relation between these two parameters
is approximately linear, as predicted by the LLIMD ansatz, with a slight systematic shift towards
more negative values. The fitting relation based on the measurements from [31] is however in strong
disagreement. See text for more details.

least for halos with bL1 > 0, since the tidal field elongates proto-halos in a given direction
making the collapse to a halo more difficult.

We further compare our results to the best fit of [31] as well as with the measurements
obtained from the tree-level bispectrum in [16]. Our results are in excellent agreement with
the ones from [16], especially given that their results were obtained for a different simulation
cosmology and a Friends-of-Friends halo finder. Comparing the error bars between the two
sets of simulations shows that our method is competitive with theirs. Notice however that
we use a total simulation volume which is roughly 2/3 of theirs and a maximum k for the
fit of 0.18 Mpc/h compared to their 0.125 Mpc/h for the power spectrum, and 0.065 Mpc/h
for the bispectrum; on the other hand, we use the cross-correlation of the halo field with the
linearly evolved matter density field. The best fit from [31] is however in strong disagreement
with our results. Note that their measurement is based on measuring moments of halo counts
and the density and tidal field in subvolumes of the simulation box. This method is fairly
different from the squared-field and bispectrum methods, which are both based on the large-
scale halo-matter-matter three-point function. This disagreement clearly warrants further
investigation. Finally, we find good agreement for this parameter with the results of [1].

5.2 btd

We next present results for the combination btd + 5
2bK2 as a function of b1 in figure 2.

These are obtained from correlators of cubed fields as outlined in section 2.3 and section 3.1.
Ref. [16] also presented measurements for this combination, via their b3nl defined in eq. (4.9).
As figure 2 shows, we find this combination of bias parameters to be consistent with zero.
The agreement between our measurements and both the results of [16] and the LLIMD
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b1

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

5 2
b K

2
+
b t

d

LLIMD
Saito et al. 14, z= 1.0
Saito et al. 14, z= 0.5
Saito et al. 14, z= 0.0
Cubed fields, z=0.0
Cubed fields, z=0.5
Cubed fields, z=1.0

Figure 2. btd + 5
2bK2 as a function of b1. The blue symbols show results obtained from cubed-field

correlators at various redshifts, while the red ones show results from [16], and the line indicates the
LLIMD prediction. The agreement between the two sets of measurements is much worse than for bK2 ,
for reasons that we explain in the text.

prediction is less good than in the case of bK2 . Notice however that the disagreement with [16]
could be explained by the fact that their results on this combination of bias parameters
comes from the 1-loop power spectrum under the assumption that the higher-derivative bias
vanishes, b∇2δ = 0. Hence, the disagreement between our measurements and the results
of [16] could indicate that b∇2δ is in fact nonzero. Nevertheless, it would be interesting to
investigate possible explanations for the fact that the result of [16] is close to Lagrangian
LIMD. Moreover, given the substantial evidence for a departure of bK2 from LLIMD, one
might expect a similar departure for btd as well. Clearly, however, our results indicate a
stronger deviation from LLIMD in this linear combination of bias parameters than that seen in
bK2 . Finally, our results for this combination of parameter is consistent with those of [1] who
found it to be consistent both with zero and with the LLIMD prediction (see their figure 12).

We can further obtain results for btd alone by subtracting the results for bK2 from the
ones presented in figure 2. This is presented in figure 3 as a function of b1. Notice that this
is the first time that results for this bias only have been obtained. We again have a clear
detection of this parameter which is consistent with being positive at all halo masses, and is
slightly larger than the Lagrangian LIMD prediction.

5.3 bδK2 and bK3

We now turn to the two remaining bias parameters, namely bK3 and bδK2 for which we
present the first measurements to date. These were obtained from the cubed-field method,
and are shown in figures 4–5 as a function of b1. Again, we see a clear detection of both
of these bias parameters, especially for bδK2 . While these bias parameters do not enter the
1-loop halo power spectrum and are thus less relevant for the large-scale statistics of halos
than bK2 and btd, these results can inform physical models of halo formation. We find good
agreement within errors with the LLIMD prediction for both bias parameters, which is also
in agreement with the results of [1] for two related bias parameters (bG3 and bδG2).
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Figure 3. btd as a function of b1. The color coding is the same as in figure 2.

1 2 3 4 5

b1

−10

−8
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−2

0

2

b δ
K

2

LLIMD
Cubed fields, z=0.0
Cubed fields, z=0.5
Cubed fields, z=1.0

Figure 4. bδK2 as a function of b1. The color coding is the same as in figure 2.

6 Conclusions

Using 2-point correlators of quadratic and cubic operators constructed out of the linear
density and tidal fields, we have presented new measurements of the complete set of local
bias parameters entering the bias expansion up to third order. Our method not only allows
one to measure a number of bias parameters efficiently, but it is also competitive with other
methods in terms of constraining power (as can be seen by comparing the size of the error
bars in figure 1). We present the first measurements to date for btd, bK3 and bδK2 . These
results are very encouraging and will hopefully be compared with independent measurements
in the near future.
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Figure 5. bK3 as a function of b1. The color coding is the same as in figure 2.

We have compared our measurements for the LIMD bias parameters bn with those of
L15 in appendix F and found good agreement, validating our method. Furthermore, the
convergence tests presented in appendix D confirm the stability of our results under the
change of the parameters entering our analysis. Regarding the bias parameters involving the
tidal field, our main findings are:

• We find excellent agreement between our results and those of [16] for bK2 . These
results confirm a linear relation between this parameter and the linear LIMD bias b1,
as predicted by Lagrangian LIMD. We however find a small negative constant offset
between our measurements and the LLIMD prediction, implying an approximately
mass-independent Lagrangian tidal bias bLK2 < 0, consistent with the findings of [16].

• The moments-based results for bK2 presented in [31] do not agree with our results, nor
with [16]. The source of disagreement is unclear at this point and clearly warrants
further investigation.

• We find the combination btd + 5/2bK2 to be consistent with zero. The agreement
between our results and those of [16] is much worse than for bK2 . However, as explained
in section 4.2, this could come from the fact that they set b∇2δ = 0. Our results would
then indicate a nonzero b∇2δ (see also [1, 10, 37]).

• We also obtain a clear detection for btd being nonzero. Given the degeneracy with b∇2δ

in the halo power spectrum, the result presented here is the first direct measurement
of this bias parameter in the literature. As in the case of bK2 we find good agreement
between our results and the LLIMD prediction with a small systematic shift indicating
a nonzero Lagrangian bias bLtd > 0.

• Finally, we also obtain the first measurements of bδK2 and bK3 . The agreement between
our results and the LLIMD prediction is quite good for both parameters.
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Our efficient trispectrum estimator has thus opened substantial new territory in the
field of halo bias. For example, our results will finally allow for a robust determination
of the higher-derivative bias parameter b∇2δ. This parameter is of great interest since it
involves a new scale, the scale on which halo formation occurs. With these results in hand,
it will also become possible to independently determine the reach of perturbation theory
predictions for the halo power spectrum, since all free parameters have been fixed through the
bispectrum and trispectrum. Further, more detailed studies of the stochasticity inherent to
the halo formation process will become possible. Finally, our results on the bias parameters
can inform analytical models of halo formation, such as excursion-set, peaks, and peak-
patch approaches. These are only a few examples of the future implications of the robust
measurements of higher-order bias presented here.
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A Bias expansion to 3rd order

In this appendix we present a short derivation of the complete bias expansion up to third
order. This will show which particular combinations of bias parameters are returned by our
bias estimators, as presented in the main text. For sake of clarity we drop the time and

position arguments of the fields and we denote the linear fields δ(1) and K
(1)
ij simply by δ and

Kij , respectively.

We start from eq. (1.1). The complete set of operators up to third order is

O ∈
{
δm,∇2δm, δ

2
m,K2, δ3

m, δmK2,K3, Otd

}
, (A.1)

where δm denotes the nonlinear (evolved) matter density field, while Kij = Dijδm [cf. eq. (2.3)]
denotes the nonlinear tidal field, to be distinguished from the corresponding linearly evolved
quantities δ and Kij , respectively. The definition of Otd is given in eq. (2.17). Note that Otd

is a cubic-order operator, and hence the leading-order result eq. (2.17) is sufficient for our
purposes. In eq. (A.1), we have included the leading higher-derivative contribution ∇2δm,
which leads to contributions to halo statistics that are of similar order as those from the cubic
bias parameters. However, as we show in appendix C, these contributions are suppressed by
k2 compared to the other correlators, and are thus absorbed by our scale-dependent correction
AOk

2. We have formally checked this by repeating our analysis including ∇2δ in the set of
operators eq. (A.1) and found the results to be completely consistent with the ones presented
in section 5, albeit with lower signal to noise. Furthermore, we did not find a significant
detection of a nonzero b∇2δ. We thus drop ∇2δm from the list in the following.

The bias expansion is then

δh = b1δm +
1

2
b2δ

2
m + bK2K2 +

1

6
b3δ

3
m + bδK2δmK2 + bK3K3 + btdOtd . (A.2)
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We are only interested in going to cubic order in linear fields. Hence we expand δm as

δm = δ + δ(2) + δ(3) + . . . (and hence also Kij = Kij + K
(2)
ij + K

(3)
ij ). Inserting this into

eq. (A.2) yields

δh = b1

(
δ + δ(2) + δ(3)

)
+

1

2
b2

(
δ2 + 2δδ(2)

)
+ bK2

(
K2 + 2K

(2)
ij K

ij
)

+
1

6
b3δ

3

+ bδK2δK2 + bK3K3 + btdOtd , (A.3)

where δ(2) and K
(2)
ij are given by (see appendices B–C in [3])

δ(2) =
17

21
δ2 +

2

7
(Kij)

2 − si∂iδ , (A.4)

K
(2)
ij =

10

21
Dij

[
δ2 − 3

2
K2

]
+KikK

k
j −

1

3
δijK

2 +
2

3
δKij − sk∂kKij , (A.5)

⇒ KijK
(2)
ij =

5

4
Otd +K3 +

2

3
δK2 − 1

2
sk∂kK

2, (A.6)

where si = −(∂i/∇2)δ is the displacement field. Note that the third-order matter density
field involves several additional displacement operators. However, since we only consider the
combination δh− b1δm for the cubic correlators, these terms are consistently subtracted out,
and we in fact do not need the expression for δ(3) here. We now insert these expressions into

eq. (A.3), and reorganise the terms by operators to obtain the quantities of interest, δ
(2)
h and

(δh − b1δm)(3):

δ
(2)
h =

(
17

21
b1 +

1

2
b2

)
δ2 +

(
2

7
b1 + bK2

)
K2 − b1si∂iδ, (A.7)

(δh − b1δm)(3) =

(
17

21
b2 +

1

6
b3

)
δ3 +

(
5

2
bK2 + btd

)
O

(3)
td + (bK3 + 2bK2)K3

+

(
bδK2 +

4

3
bK2 +

2

7
b2

)
δK2 − bK2si∂iK

2 − 1

2
b2s

i∂iδ
2. (A.8)

Hence the set of bias combinations one obtains from quadratic fields (without subtraction of
b1δm) is given by

c(2) =

 b2/2 + (17/21)b1
bK2 + (2/7)b1

−b1

 , (A.9)

whilst the cubic ones (with subtraction of b1δm) yield

c(3) =



b3/6 + (17/21)b2
bδK2 + (2/7)b2 + (4/3)bK2

bK3 + 2bK2

btd + (5/2)bK2

−b2/2
−bK2

 . (A.10)
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B Renormalization of operators

The cubic bias parameters appear in the tree-level trispectrum, which is the connected part
of the 4-point function. When measuring the trispectrum through the cubed-field method,
we need to ensure that the disconnected part of the 4-point function does not contribute.
This can be ensured by including the leading counter-terms to the operators constructed
from cubic combinations of the density field. The leading counter-terms are sufficient, since
the cubic operators are constructed from the linear density field δ(x).

Consider one of the cubic operators O used in the cubed-field estimator, for a smoothing
scale R, which we will not write explicitly for clarity, and assume that we can construct this
operator such that 〈

[O](k)δR′(k′)
〉

= 0 , (B.1)

where R′ can be different from R, and the brackets around O indicate that this is the
renormalized operator. Note that this corresponds to one of the renormalization conditions
derived in [9], since the leading-order cross-correlation of a cubic operator with the density
field is zero. It is then clear that the correlator 〈[O](k)δh(k′)〉′, appearing on the left-hand
side of eq. (2.14), only contains connected trispectrum contributions. In particular, no linear-
order higher-derivative bias terms contribute, which we have not removed by subtracting b1δm
from δh in eq. (2.14), since they simply correspond to powers of k2 multiplying eq. (B.1).

Next, consider the cross-correlation of [O](k) with one of the other cubic operators, [O′],
as on the right-hand side of eq. (2.14) [eq. (2.15)]. We can write the operators in Fourier
space as

[O](k) =

∫
p1,p2,p3

(2π)3δD(k − p123)S[O](p1,p2,p3)δR(p1)δR(p2)δR(p3) , (B.2)

where S[O] is a kernel which includes the counter-terms. We then obtain

〈
[O](k)[O′](k′)

〉′
=

∫
p1,p2,p3

(2π)3δD(k − p123)S[O](p1,p2,p3)

×
∫
p′1,p

′
2,p

′
3

(2π)3δD(k − p′123)S[O′](p
′
1,p
′
2,p
′
3)

×
〈
δR(p1)δR(p2)δR(p3)δR′(p′1)δR′(p′2)δR′(p′3)

〉′
. (B.3)

Now, any of the contractions of the pi or p′j among themselves lead, in general, to factors of
the form ∫

p
〈δR(p)δR(−p)〉′ =

〈
δ2
R(x)

〉
. (B.4)

These are zero-lag contributions, which should always be absorbed by counter-terms in the
renormalized bias expansion (see, e.g. [9, 38, 39]). For any such contraction of the 6-point
correlator in eq. (B.3) however, the resulting correlator is proportional to∫

p1,p2,p3

(2π)3δD(k − p123)S[O](p1,p2,p3) 〈δR(p1)δR(p2)δR(p3)δR′(k)〉′ ×
〈
δ2
R′
〉

= 〈O(k)δR′(k)〉′ ×
〈
δ2
R′
〉
, (B.5)

where we have assumed (without loss of generality) that two of the p′i are contracted. The
integral over the kernel S[O′] in eq. (B.3) simply yields a proportionality constant for these
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types of contractions. We see that the renormalization condition eq. (B.1) ensures that all
of the contractions involving zero-lag correlators

〈
δ2
R

〉
,
〈
δ2
R′
〉

vanish.
Let us now consider how eq. (B.1) can be satisfied. For this, it is simpler to use the

real-space correlators. First, for O = δ3
R, we have〈

δ3
R(x)δR′(y)

〉
= 3

〈
δ2
R

〉
〈δR(x)δR′(y)〉 . (B.6)

It is clear that we can remove this unwanted contribution by replacing

δ3
R → [δ3

R] = δ3
R − 3

〈
δ2
R

〉
δR . (B.7)

Similarly, one easily finds

[δR(KR)2] = δR(KR)2 −
〈
(KR)2

〉
δR[

(KR)3
]

= (KR)3 , (B.8)

i.e., (Kij)
3 does not lead to disconnected contributions (recall that we are always constructing

operators from the linear density field). Next, we have〈
(skR∂k δ

2
R)(x)δR′(y)

〉
= 2

〈
(skR∂kδR)(x)

〉
〈δR(x)δR′(y)〉 , (B.9)

leading to [
skR∂k δ

2
R

]
= skR∂k δ

2
R − 2

〈
δ2
R

〉
δR , (B.10)

since
〈
skR∂kδR

〉
=
〈
δ2
R

〉
. Further,[

skR∂k (KR)2
]

= skR∂k(KR)2 . (B.11)

Finally, we turn to Otd. The cross-correlation with δR′ is given, in the notation of [3], by〈
Otd(k)δR′(k′)

〉
=

2

5
fNLO,R(k)WR(k)WR′(k)PL(k)

fNLO,R(k) = 4

∫
p

[
[p · (k − p)]2

p2|k − p|2
− 1

]
F2(k,−p)|WR(p)|2PL(p) . (B.12)

This is not zero, but since fNLO(k) ∝ k2 on large scales, it is suppressed relative to the
other zero-lag contributions. It is not simply removed by a subtraction of δR in real space.
However, it is not necessary to remove the contribution in eq. (B.12). First, for the cross-
correlation of Otd with the halo field, the only contribution relevant at this order comes
from the linear-order δh, which we subtract in eq. (2.14). Second, for the operator cross-
correlations, no zero-lag contribution remains, since we subtract the corresponding terms
from all other cubic operators.

These considerations finally lead to eq. (2.18).

C Higher-order corrections

In this appendix, we investigate higher-order contributions neglected in our analysis which
could potentially bias the measurements of bias parameters. Since the cubic operators are
constructed from the linearly evolved density field, there are no higher-order corrections
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to the operator cross-correlations. Thus, we only need to consider possible higher-order
contributions to 〈δh(k)[O](k′)〉′.

First, let us consider higher-derivative operators that appear in the higher-order bias
expansion of δh(k). At linear order in perturbations, these have the form

δh(k) ⊃

[ ∞∑
n=1

(−1)nb∇2nδk
2n

]
δ(k) . (C.1)

As explained in the text, we expect b∇2nδ to be of order R2n
L , where RL is the Lagrangian

radius of halos. We see that eq. (B.1) is sufficient to ensure that none of these contribute
to our bias estimation at any order. We have formally checked this for the case of b∇2δ∇2δ
by repeating our analysis including ∇2δ in the set of operators eq. (A.1) and found the
results to be completely consistent with the ones presented in section 5. At cubic order in
perturbations, we further have higher-derivative contributions such as ∇2[O(3)](x). These
clearly correct eq. (2.14) by contributions that scale as k2 times the operator correlators
〈[O](k)[O′](k′)〉, and are thus absorbed by the marginalization over the coefficient AO of the
k2 term in the bias estimate as a function of k (section 2.3). There are other cubic higher-
derivative contributions, which are not given by total derivatives on the cubic operators.
However, they will still be suppressed by R2

Lk
2 compared to the leading correlators.

We now turn to higher-order perturbative corrections. Since the cubic operators O are
constructed from the linear density field, the leading higher-order term involves the cross-

correlation of δ
(5)
h with [O(3)], which can be written as

〈
δ

(5)
h (k)[O](k′)

〉′
NLO

=

(
3∏
i=1

∫
pi

)
(2π)3δD(k′−p123)

 5∏
j=1

∫
p′j

(2π)3δD(k−p′12345)

×S[O](p1,p2,p3)S
δ
(5)
h

(p′1, · · · ,p′5)
〈
δR(p1)δR(p2)δR(p3)δ(p′1) · · ·δ(p′5)

〉′
.

The condition eq. (B.1) on [O](k) ensures that each of p1,p2,p3 must be contracted with one
of the p′j . Assuming that the kernel S

δ
(5)
h

describing the fifth-order halo density field (which of

course also contains many bias parameters) is fully symmetrized, this loop integral becomes〈
δ

(5)
h (k)[O](k′)

〉′
NLO

= 10

(
3∏
i=1

∫
pi

)
(2π)3δD(k′ − p123)S[O](p1,p2,p3)

×
[∫
p
S
δ
(5)
h

(p,−p,−p1,−p2,−p3)PL(p)

] 3∏
i=1

WR(pi)PL(pi) .

We see that this is of similar form as the leading-order operator correlators, with the difference
of an additional integral, or loop, in brackets in the second line (the integrals over pi are
really just weighted combinations of different modes of the trispectrum, rather than loops).
If this loop integral asymptotes to a constant in the limit of pi → 0, then it is a term that is
absorbed by counter-terms to one of the cubic-order operators which are necessary to include
at fifth order. Such loop contributions are thus irrelevant in the renormalized bias expansion.

The remaining, non-trivial loop contributions approximately scale as (pi/kNL)2 in the
large-scale limit. This is analogous to the “1–3”-contribution to the 1-loop halo power spec-
trum which involves the correlator in eq. (B.12). We thus expect that these higher-order
contributions are also effectively absorbed by our marginalization of a correction AOk

2 in
our bias fit.
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Cubed fields, kmax = 0.13h/Mpc

Figure 6. b2 (left) and bK2 (right) as a function of b1 for two different maximum k values for the fit.
The triangles present results from the squared-field estimator while the crosses present those from the
cubed-field estimator (slightly displaced horizontally for clarity), and the color coding indicates the
kmax used. Results for the two different kmax within each method, as well between the two methods
are largely self-consistent. The small discrepancy between the two methods for the three lowest values
of b1 comes from a lack of signal for the quadratic biases from the L500 set for cubed-fields, as can
be seen in figure 8.

D Convergence tests

In this appendix we present three convergence tests to verify the robustness of our results
under the change of the parameters in our algorithm, i.e the smoothing scale R and the
maximum k value used for the fit of C(k). We also check the consistency of the results
between the L500 and L2400 sets of simulations. We use the results for b2 and bK2 at z = 0
here, since we have results for both squared-field and cubed-field methods for these. This
will allow us to also check the consistency between the two methods and explore possible
systematic errors. The LIMD bias parameters bn will be considered in appendix F.

We start by comparing results when fitting up to kmax = 0.13 and 0.18 h/Mpc in
figure 6. The results from squared and cubed fields are self-consistent for both bias param-
eters and prove the robustness of our measurements under a change in the fit range. As is
expected, decreasing the maximum k increases the error bars, but only mildly affects the
mean. Furthermore, results between the two methods are largely self-consistent. The small
discrepancy between the two methods at low mass (for the three lowest values of b1) comes
from a lack of signal for the quadratic parameters from the L500 set for cubed-fields, as can
be seen in figure 8. As can be seen in figure 9, b2 correlates strongly with b3 and bK2 . We
obtain somewhat high values of b3 at low b1 (see figure 12) which could explain why we find
high values for b2 as well.

Figure 7 presents a similar comparison, but now for two different smoothing scales
R, namely R = 10 and 15h−1Mpc. The conclusions are the same as for figure 6, i.e. good
agreement between results within each method, but we observe the same lack of signal at both
smoothing scales for the cubed-field results from the L500 set. As we expected, the results do
not depend strongly on the choice of R, but the constraining power increases for smaller R.
We chose to use R = 15h−1Mpc for the final results, since we expect nonlinearities to begin
to have a significant impact for R = 10h−1Mpc, while the constraining power dramatically
weakens for larger values of R.
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Figure 7. b2 (left) and bK2 (right) as a function of b1 for two different smoothing scales R. The color
coding is the same as in figure 6 as well as the horizontal shift for the cubed-fields results. Again the re-
sults within each method are self-consistent, proving the robustness of the results under a change in R.
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Squared fields, L2400
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Figure 8. b2 (left) and bK2 (right) as a function of b1 for the two different simulations sets, with
the color coding again following that of figure 6 and the cubed-fields points being slightly displaced
horizontally for clarity. The findings are the same as for the previous checks: the results do not
depend significantly on the simulation set used for each method, but a lack of signal is observed for
results from cubed-fields using the L500 set.

Finally, figure 8 presents the comparison of the results obtained with each simulation set
for R = 15h−1Mpc and k = 0.18 Mpc/h. We again see a very good agreement between the
two sets of simulations for each method, and a low signal-to-noise ratio for the cubed-fields re-
sults using the L500 set. We insist that this lack of signal is only observed in the results for the
quadratic parameters. This justifies our use of the L2400 set for bins at sufficiently high mass
(in order to maximize the constraining power) and the L500 set to push down to lower mass.

Finally, we briefly address the large fluctuations of the errorbars across b1 that can be
seen in our results. We have derived the covariance of our results between mass bins and
found it to be rather small overall, which explains why these fluctuations are possible. One
possible reason for their origin is the fact that we invert the matrix MOO′ to obtain results
for c which leads to a nontrivial propagation of errors. However, these fluctuations do not
affect our overall results and conclusions.

The results of this appendix show the robustness of our results under the change of
various parameters and motivate our choices for the final measurements.
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Figure 9. The correlation coefficient corresponding to eq. (E.1) of the parameters combinations
entering eq. (2.19) for the two mass bins lgM = 12.55 (left) and 13.95 M�/h (right). We use the
notation cO for the elements of c where O is the subscript of the first parameter entering each combi-
nation in eq. (2.19). A white cell indicate zero correlation, whilst blue and red cells indicate negative
and positive correlations respectively. We discuss these correlations in more details in the text.

E Covariance matrix

This section presents the covariance matrix of the parameter combinations entering eq. (2.19).
We present here the correlation coefficient corresponding to the inverse of the sample covari-
ance obtained from the 48 realisations of the L500 set. The correlation coefficient is defined as

ρOO′ =
COO′

√
COOCO′O′

, (E.1)

where
COO′ = 〈cOcO′〉 − 〈cO〉 〈cO′〉 (E.2)

is the covariance matrix of the parameters {cO}, and the expectation value is over simula-
tion realizations. Note that both COO′ and ρOO′ refer to the parameters cO, rather than
operators O. Notice also that our bootstrap technique yields the error bars on the cO after
marginalization over all other cO′ , i.e.

σmarg(cO) = (COO)1/2 . (E.3)

Since the covariance is stable through all mass bins, we only show results for a couple of
representative mass bins lgM = 12.55 and 13.95 M�/h in figure 9. We use the notation cO
for the elements of c where O is the subscript of the first parameter entering each combination
in eq. (2.19). The correlation coefficient is under 0.2 between most combinations, indicating
only low covariance. It can however be important (of the order of 0.5) between c2 or cK2

and other cO. It is maximal between c2 and c3, and between cK2 and cδK2 , and can also be
important between c2 and cK2 as well as between cK2 and cK3 .

F Consistency checks: b1, b2 and b3

In this appendix we present our results for the LIMD bias parameters up to cubic order at
redshift 0. These parameters have already been studied quite extensively in the literature
(especially b1 and b2). Here, we compare our results to those of L15 as a check of our method.
We use the separate-universe measurements of L15, as they have been obtained for the exact
same cosmology and for a similar set of simulations. We refer the reader to L15 for a detailed
comparison of these parameters with previous results and various analytical predictions.
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Figure 10. b1 as a function of lgM . The green dots are the results of L15 while the blue triangles
are the results obtained from squared-field correlators. Although there seems to be a small systematic
shift for lower masses the overall agreement is very satisfying.
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Figure 11. b2 as a function of b1. The color coding is the same as in figure 10, but we now also
show measurements from correlators of cubed fields, denoted by blue crosses. The overall agreement
of both sets with the L15 results is good, although the low signal-to-noise ratio for cubed-fields results
discussed in appendix D is evident.

We start by comparing the results for b1. As can be seen in figure 10, although there
seems to be a small systematic shift between our results from squared-field correlators and
those of L15 for lower masses, the overall agreement is very satisfying and provides a good
first validation of our method. It is also worth noticing that the error bars are of roughly the
same size for both measurement sets.

Figure 11 presents the results for b2, for which we have measurements both from squared
and cubed-field correlators. The overall agreement of both sets with the L15 results is good,
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Figure 12. b3 as a function of b1. The color coding is the same as in figure 11. The agreement
between the two measurement methods for this bias parameter is excellent.

although the cubed-field result shows a low signal-to-noise ratio for the three lowest mass
bins as discussed in appendix D. Nevertheless, for b1 & 1.25, the cubed-field result for b2 is
consistent within errors with the separate-universe measurements from L15.

Finally, figure 12 presents the comparison between our measurements from cubed-field
correlators and the L15 results. The overall agreement between the two sets is excellent, with
only a few mass bins showing some mildly discrepant values.
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[30] J. Bel, K. Hoffmann and E. Gaztañaga, Non-local bias contribution to third-order galaxy
correlations, Mon. Not. Roy. Astron. Soc. 453 (2015) 259 [arXiv:1504.02074] [INSPIRE].

[31] C. Modi, E. Castorina and U. Seljak, Halo bias in Lagrangian Space: Estimators and theoretical
predictions, Mon. Not. Roy. Astron. Soc. 472 (2017) 3959 [arXiv:1612.01621] [INSPIRE].

[32] V. Springel, The Cosmological simulation code GADGET-2, Mon. Not. Roy. Astron. Soc. 364
(2005) 1105 [astro-ph/0505010] [INSPIRE].

[33] S.P.D. Gill, A. Knebe and B.K. Gibson, The Evolution substructure 1: A New identification
method, Mon. Not. Roy. Astron. Soc. 351 (2004) 399 [astro-ph/0404258] [INSPIRE].

[34] S.R. Knollmann and A. Knebe, Ahf: Amiga’s Halo Finder, Astrophys. J. Suppl. 182 (2009) 608
[arXiv:0904.3662] [INSPIRE].

[35] P. Catelan, F. Lucchin, S. Matarrese and C. Porciani, The bias field of dark matter halos, Mon.
Not. Roy. Astron. Soc. 297 (1998) 692 [astro-ph/9708067] [INSPIRE].

[36] P. Catelan, C. Porciani and M. Kamionkowski, Two ways of biasing galaxy formation, Mon.
Not. Roy. Astron. Soc. 318 (2000) L39 [astro-ph/0005544] [INSPIRE].

[37] T. Fujita, V. Mauerhofer, L. Senatore, Z. Vlah and R. Angulo, Very Massive Tracers and
Higher Derivative Biases, arXiv:1609.00717 [INSPIRE].

[38] P. McDonald, Clustering of dark matter tracers: Renormalizing the bias parameters, Phys. Rev.
D 74 (2006) 103512 [Erratum ibid. D 74 (2006) 129901] [astro-ph/0609413] [INSPIRE].

[39] F. Schmidt, D. Jeong and V. Desjacques, Peak-Background Split, Renormalization and Galaxy
Clustering, Phys. Rev. D 88 (2013) 023515 [arXiv:1212.0868] [INSPIRE].

– 27 –

https://doi.org/10.1093/mnras/stv1600
https://arxiv.org/abs/1504.02074
https://inspirehep.net/search?p=find+EPRINT+arXiv:1504.02074
https://doi.org/10.1093/mnras/stx2148
https://arxiv.org/abs/1612.01621
https://inspirehep.net/search?p=find+EPRINT+arXiv:1612.01621
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://doi.org/10.1111/j.1365-2966.2005.09655.x
https://arxiv.org/abs/astro-ph/0505010
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0505010
https://doi.org/10.1111/j.1365-2966.2004.07786.x
https://arxiv.org/abs/astro-ph/0404258
https://inspirehep.net/search?p=find+EPRINT+astro-ph/0404258
https://doi.org/10.1088/0067-0049/182/2/608
https://arxiv.org/abs/0904.3662
https://inspirehep.net/search?p=find+EPRINT+arXiv:0904.3662
https://doi.org/10.1046/j.1365-8711.1998.01455.x
https://doi.org/10.1046/j.1365-8711.1998.01455.x
https://arxiv.org/abs/astro-ph/9708067
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,297,692%22
https://doi.org/10.1046/j.1365-8711.2000.04023.x
https://doi.org/10.1046/j.1365-8711.2000.04023.x
https://arxiv.org/abs/astro-ph/0005544
https://inspirehep.net/search?p=find+J+%22Mon.Not.Roy.Astron.Soc.,318,39%22
https://arxiv.org/abs/1609.00717
https://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00717
https://doi.org/10.1103/PhysRevD.74.103512
https://doi.org/10.1103/PhysRevD.74.103512
https://arxiv.org/abs/astro-ph/0609413
https://inspirehep.net/search?p=find+J+%22Phys.Rev.,D74,103512%22
https://doi.org/10.1103/PhysRevD.88.023515
https://arxiv.org/abs/1212.0868
https://inspirehep.net/search?p=find+EPRINT+arXiv:1212.0868

	Introduction
	Estimating cubic local bias from the trispectrum
	Warmup: the squared-field method
	Cubed-field method
	Bias estimator

	Simulations and halo finding
	Measuring the bias parameters

	Previous measurements and predictions
	Lagrangian local-in-matter-density (LLIMD) prediction
	Previous measurements

	Results and discussion
	b(K**(2))
	b(td)
	b(delta K**(2)) and b(K**(3))

	Conclusions
	Bias expansion to 3rd order
	Renormalization of operators
	Higher-order corrections
	Convergence tests
	Covariance matrix
	Consistency checks: b(1), b(2) and b(3)

