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Abstract. Algorithms for computational color constancy are usually
compared in terms of the angular error between ground truth
and estimated illuminant. Despite its wide adoption, there exists
no well-defined consensus on acceptability and/or noticeability
thresholds in angular errors. One of the main reasons for this
lack of consensus is that angular error weighs all hues equally
by performing the comparison in a non-perceptual color space,
whereas the sensitivity of the human visual system is known
to vary depending on the chromaticity. We therefore propose a
visualization strategy that presents simultaneously the angular error
(preserved due to its wide adoption in the field), and a perceptual
error (to convey information about its actual perceived impact).
This is achieved by exploiting the angle-retaining chromaticity
diagram, which shows errors in chromaticities while encoding RGB
angular distances as 2D Euclidean distances, and by embedding
contour lines of perceptual color differences at standard predefined
thresholds. Example applications are shown for different color
constancy methods on two imaging devices. c© 2023 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.5.050404]

1. INTRODUCTION
Human color constancy has been defined as the ability
to recognize the colors of objects independent of the
characteristics of the light source [1]. Computational color
constancy, hereafter referred to as ‘‘color constancy’’ for
brevity, is a technique developed in digital imaging to emulate
the process of human color constancy within the context of
digital sensors. Its implementation in consumer devices is
often referred to as ‘‘Automatic White Balance’’, in contrast
to ‘‘Manual White Balance’’ where the user is in charge of
removing (or changing) the color cast from the acquired
image.

Color constancy is typically addressed as a two-stage
process, with illuminant estimation followed by illumi-
nant correction. The first stage aims at characterizing
the illuminant source, and it is the main focus of most
algorithms for color constancy. The second stage employs a
mechanism for chromatic adaptation to correct the image.
The most common and simple solution for illuminant
correction consists in applying to tristimulus data a diagonal
transformation matrix, referred to as a ‘‘wrong von Kries
transform’’ [2]. Color constancy is commonly evaluated
in terms of angular errors [3–5]. The recovery angular
error [4] treats the ground truth illuminant and the estimated
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illuminant as vectors in RGB space, and measures the
angle between such vectors, thus comparing only the
chromaticities and ignoring their absolute intensities. The
reproduction angular error [5] simulates the effect of a
possibly-wrong estimation on the correction of a neutral
surface; the ground truth illuminant (representing the
appearance of a neutral surface) is normalized by the
estimation, applying a correction through a wrong von Kries
transform. The resulting vector is then compared in terms
of its angular distance with the vector of perfect white,
defined by RGB = [1, 1, 1]. Despite the wide adoption of
angular error metrics for the evaluation and comparison of
color constancy algorithms, there exists no consensus about
angular thresholds for acceptability and noticeability. After
informal experiments first conducted in 2005, Finlayson
et al. [6] considered a 1◦ perturbation of the image illuminant
in any given color direction as not visibly noticeable,
while a 3◦ perturbation was found to be noticeable but
‘‘generally acceptable’’, as later supported by Fredembach
et al. [7] and adopted as a threshold in the comparison
of color constancy methods [8]. A 5◦ perturbation was
defined as ‘‘generally acceptable, but unacceptable for some
images’’, thusmanifesting the impossibility to assign a unique
threshold for acceptability, even within the same experiment.
Similarly, in 2006, Hordley [9] conducted another informal
analysis, suggesting an angular error of 2◦ to be acceptable
for color constancy. Rather than proposing an absolute
threshold, Gijsenij et al. [10, 11] addressed the concept
of noticeability in relative terms, determining that the
difference in terms of angular error between two methods
should be at least 0.06 times the maximum of the two errors,
in order for it to be noticeable. This idea was later adopted
for method comparison to determine the significance of
angular error differences [12]. Gijsenij et al. [10, 11] also
conducted a broader analysis of alternative metrics for
error evaluation of color constancy, proposing a weighted
Euclidean distance, and a corresponding coefficient for
the threshold of relative noticeability. Other authors also
considered alternativemetrics and domains for the definition
of color thresholds. Hordley [9] reported a CIELab error of
1 as a just noticeable threshold for two colors viewed side by
side in isolation, and a CIELab error of 6 as an acceptable
threshold for the assessment of complex scenes.

An intrinsic limitation of defining acceptability and
noticeability in RGB space is that such representation is not
perceptually uniform, whether it is assumed to be sRGB
or a device-specific raw-RGB. A possible solution to the
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Figure 1. Sample corrections from FC4 [14]: recovery angular error is below the 2◦ acceptability threshold, but 1E ∗ ab is above the acceptability
threshold of 6.

problem lies in measuring the error through perceptual
difference metrics, such as the CIE761E ∗ ab [13], based on
the Euclidean distance between two colors in CIELab color
space. One advantage of this solution is the availability of de
facto standard thresholds, such as the JND (Just Noticeable
Difference) set to 2.3, or the acceptability in complex scenes
defined by Hordley to be 6. This approach has, however, two
main drawbacks: first, it ignores the reality that the majority
of methods comparison in the domain of color constancy
is, in fact, performed with angular error metrics, thus
raising a retro-compatibility issue. Secondly, any single-value
metric will, by definition, remove any information about the
chromaticity of the estimation error, thus depriving of an
important clue for the analysis of a method’s faults (this limit
is shared with the traditional angular error). Furthermore,
there exists a disagreement between acceptability thresholds
defined in angular error and 1E ∗ ab, as manifest in
Figure 1: here, three example corrections from the fully
convolutional color constancy with confidence-weighted
pooling (FC4) method [14] are visualized, together with
the corresponding recovery angular error (always under
2◦, considered acceptable), and the corresponding 1E ∗ ab
(always above 6, considered unacceptable).

For these reasons, we propose a solution for the
visualization of errors in the domain of color constancy,
based on embedding contour lines of perceptual color
differences at predefined thresholds into a chromaticity di-
agram that encodes RGB angular distances as 2-dimensional
Euclidean distances, called Angle-Retaining Chromaticity
(ARC) [15, 16]. First, using a chromaticity diagram enables
the visualization of errors’ chromaticities, thus providing an
intrinsically richer representation of the errors. Secondly,
with this configuration, the errors can be visualized both in
terms of the commonly used angular error (represented by
the Euclidean distance in 2D space) and in terms of the more

informative CIE76 1E ∗ ab (with thresholds represented by
contour lines).

2. BACKGROUNDON COLOR ERROR
REPRESENTATION

Let G = {gR, gG, gB} be a ground truth illuminant in
device-specific raw-RGB, and let E = {eR, eG, eB} be an
estimated illuminant in the same color space. The angular
distance between illuminantsG and E is the recovery angular
error [4]. Alternatively, the reproduction angular error [5] is
obtained through the reproduction vector R:

R=
G
E
=

{
gR
eR
,
gG
eG
,
gB
eB

}
. (1)

The angular distance between the reproduction vector R
and a neutral surface W = {1, 1, 1} is, by definition, the
reproduction angular error.

The ARC diagram [15, 16] is a general-purpose 2D
representation of color information, which may be obtained
from any given RGB vector {ρR, ρG, ρB} as follows:

αA = arctan 2
(√

3 (ρG− ρB) , 2ρR− ρG− ρB
)

(2)

αR = arccos

 ρR+ ρG+ ρB
√

3
√
ρ2
R+ ρ

2
G+ ρ

2
B

 (3)

αZ =
√
ρ2
R+ ρ

2
G+ ρ

2
B. (4)

Alternatively, the polar chromaticity coordinates
{αA, αR} may be represented in Cartesian form {αX , αY }
for visualization purposes. When converting a reproduction
vector R into ARC, each pair of ground truth and estimated
illuminants becomes a single two-dimensional point, whose
Euclidean distance from the diagram center corresponds
exactly to the reproduction error.
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3. PROPOSEDMETHODOLOGY FOR
VISUALIZATION

Our goal is to assign a perceptual error to every point in the
ARC diagram and to eventually visualize this information
with contour lines. Such error is always computed between
the reproduction vector R and the white vector W, in line
with the computation of the reproduction angular error.
This strategy entails a reduction of dimensionality that
enables data visualization since displaying perceptual errors
for all possible illuminant pairs would not be possible. As
each illuminant is represented by at least two chromaticity
coordinates, in fact, this would lead to four independent
variables and one dependent variable (the error value). By
contrast, the advantage of always referencing a single point
for comparison (W ) is that the only independent variable
is the two-dimensional ratio vector in chromaticity, thus
allowing for error visualization.

Let the coordinate system of the reproduction vector R
be called ‘‘reproduction-RGB’’, which differs from raw-RGB
as explained in the following. The procedure used to compute
the perceptual error for R is delineated here, which starts by
bringing the reproduction vector back into raw-RGB color
space.

3.1 Color Space Conversion: Reproduction-RGB to
raw-RGB
When the reproduction vector R is computed according
to (Eq. (1)), it is brought outside of the original raw-RGB
space. This can be shown by observing that, for example,
the white point W = {1, 1, 1} in this RGB space will not be
rendered as white using the camera-specific raw-to-CIELab
transformation. The necessary conversion is therefore one
that first transforms, in our example, the reproduction-RGB
W into a raw-RGB that would, in turn, render as a white
CIELab. Adhering to the von-Kries-likemodel that underlies
the reproduction error metric, we achieve this goal by
multiplying R by a vectorD, which simulates the application
of an illuminant to a surface. VectorD is computed as:

D= xyz2raw(lab2xyz([100, 0, 0])), (5)

where lab2xyz(·) is a standard transformation, and
xyz2raw(·) is a device-specific transformation matrix.

3.2 Color Space Conversion: Raw-RGB to XYZ
The conversion from raw to XYZ is obtained with a
transformation matrix that is specific for the individual
camera. This implies that every device will produce its own
device-specific set of contour lines.

3.3 Y Normalization
The XYZ-encoded reproduction vector is normalized (i.e.
divided) by its Y component, to discard the intensity
information. Color constancy is, in fact, traditionally eval-
uated by ignoring intensity, to the extent that some
algorithm implementations directly produce normalized
RGB estimations.

3.4 Color Space Conversion: Normalized XYZ to CIELab
The final transformation uses a standard conversion from
XYZ to CIELab, assuming D65 as the reference white. The
rationale is that we are observing a picture in which the
illuminant has been corrected using a given estimation, and
our observation of the corrected picture takes place under
D65.

Once the reproduction vector R is converted into
CIELab, the same procedure is applied to the white RGB
vector W = {1, 1, 1}, and the 1E ∗ ab distance is computed
between the two. This operation is repeated for all points
in the chromaticity diagram, thus producing a dense map
of perceptual distances, which can be visualized as overlaid
contour lines.

4. RESULTING VISUALIZATIONS
In this section, we apply the proposed visualization
to images from the ColorChecker dataset [17]. This
dataset is composed of 86 images acquired with a
Canon EOS-1DS camera, and 482 images acquired
with a Canon EOS 5D camera. Every image includes a
Macbeth ColorChecker target within the scene. From
this, the brightest of the six achromatic patches with no
oversaturated channels is used to determine the ground
truth illuminant for the color constancy task, following
Hemrit et al. [18]. For both devices in the dataset, we
reference the corresponding model-specific raw-to-XYZ
transformation matrices from the DCRAW software
(https://www.dechifro.org/dcraw/.), since no calibration
data is available and all images include a color target for
device-specific illuminant annotation, no absolute reference
is provided, thus preventing the definition of a proper color
profile.

We compare estimations from three methods for
computational color constancy, selected as representatives
of different categories; the second-order Grey Edge (GE2)
in its implementation by van de Weijer et al. [19] as an
instance of a statistics-based algorithm, Quasi-Unsupervised
color constancy (QU) by Bianco et al. [20] as an instance of
semi-supervised machine learning, and FC4 by Hu et al. [14]
as an instance of fully-supervised machine learning. The
learning-based methods QU and FC4 are designed for full
white balancing, i.e. they are trained to identify neutral
regions in the scene, and to consequently correct the image
so that these regions are rendered as gray. GE, on the
other hand, is purely an illuminant estimation method, with
no assumptions on how to perform the final correction.
Additionally, we note that this selection of methods is
to be intended as a use case for the general application
of our visualization methodology to any single-illuminant
algorithm for the color constancy of white. The relationship
between angular errors and 1E ∗ ab, visually presented in
Fig. 1, is synthesized in Table I. For all combinations of
cameras and methods, we report aggregate error statistics as
well as the correlation between angular error (recovery or
reproduction) and 1E ∗ ab. This incomplete correlation is
later explored thanks to our visualization.
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Figure 2. Visualization of color constancy errors for three methods (GE2, QU, FC4) on two cameras of the ColorChecker dataset. Crosses represent
reproduction errors based on single-patch ground truth data. Contour lines represent 1E ∗ ab thresholds at steps indicated in the color bars. The
dimensionless axes of the ARC diagram represent RGB angular distances as two-dimensional Euclidean distances.

Our proposed visualization is presented in the chro-
maticity diagrams of Figure 2. Here, Euclidean distances
from the center correspond to the reproduction angular error
expressed in degrees and can be visually judged from the
diagram’s own frame of reference. The rendered 1E ∗ ab
contour lines visually highlight how the sensitivity of the
human visual system is not fully correlated to the absolute
angular error, depending instead on the hue of the error

itself. Specifically, errors distributed on the correlated color
temperatures of a black body radiator, moving from blue
to yellow/red, are less perceivable than errors distributed
on the orthogonal axis, moving from green to magenta.
Both cameras from the ColorChecker dataset lead to similar
conclusions, although a difference in sensitivity on the
green-magenta axis can be clearly observed. Every cross
(×) in the diagram is a reproduction vector computed
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Table I. Summary statistics (mean and 99th percentile) of analyzed color constancy methods on the two carmeras of the ColorChecker dataset [17, 18]. Pearson correlation between
angular errors and1E ∗ ab is also reported.

Camera Method Rec. Err. (◦) Rep. Err (◦) 1E ∗ ab Pearson corr.
Mean 99th p. Mean 99th p. Mean 99th p. Rec./1E Rep./1E

Canon EOS-1Ds
GE2 [19] 3.754 14.668 4.464 16.729 11.280 40.103 0.9743 0.9533
QU [20] 3.644 13.517 4.496 18.078 10.439 39.852 0.9858 0.9796
FC4 [14] 2.332 8.356 2.901 9.871 7.136 23.567 0.9763 0.9580

Canon EOS-5D
GE2 [19] 4.127 14.310 5.242 18.227 11.934 41.426 0.9788 0.9623
QU [20] 2.853 13.915 3.678 18.324 8.257 38.007 0.9816 0.9570
FC4 [14] 1.849 8.773 2.396 12.241 5.543 23.679 0.9864 0.9620

according to Eq. (1) using the single gray-patch-based
ground truth for a given image, and the corresponding
illuminant estimation obtained from a given method. The
three analyzed methods produce errors distributed in
different regions of the chromaticity diagram, with GE2 and
QU exhibiting a stronger bias towards blue overcorrections,
and FC4 towards yellow overcorrections. In general, they
all display an error distribution that roughly follows the
blue to yellow/red axis of a black body radiator. While this
may be expected of data-driven methods such as QU and
FC4, which tend to inherit the bias of their corresponding
training datasets, it is a surprising result for the data-free
GE2 method. A possible explanation lies in the inherent
limitation of annotating a single illuminant inwhat is actually
a multiple-illuminant scenario [21] due, for example, to
mutual surface inter-reflections or the coexistence of sun and
shadow areas. In this case, the chromaticity of the error is
potentially revealing non-annotated illuminant information.
This interpretation could be further tested by extending
the evaluation to images acquired under non-blackbody
illuminants, a feature that is known to be lacking frommany
of the existing datasets for color constancy [3].

5. CONCLUSIONS AND FUTUREWORKS
We have presented a visualization technique for color
constancy errors that visualizes, at the same time, the
traditionally-used angular error, its chromaticity, and its
perceivability. Our visualization has been applied to three
color constancy methods with different levels of complexity
and accuracy, on two cameras of the popular ColorChecker
dataset, providing a broad overview of its applicability. For
future development, we consider expanding this analysis to a
wider range ofmethods, datasets, and perceptualmetrics. An
inherent difficulty in assigning a perceivability score to color
constancy errors derives from the necessity to evaluate the
whole image in context, as opposed to only comparing colors
‘‘in a void’’, which poses an additional challenge in terms of
data visualization.
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