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1 Introduction

An important feature of string theory is that it makes sense on spaces with singularities. In

particular, D-branes on such spaces can get stuck at the singular loci, giving rise to intricate

algebraic structures that can be described by quiver diagrams. This plays an important

role in holography: placing a stack of D3-branes at a conical singularity and taking a near-

horizon limit, one obtains an AdS5 solution that is dual to a CFT4 described by the quiver.

The cleanest example of this procedure is when the conical space is a Calabi-Yau (CY)

threefold Y . In the singular case, there are several possible definitions of CY; here we just

mean that the space has a Kähler metric with SU(3) holonomy, and in particular Ricci-flat.

The conical requirement means that it can be written as ds2
Y = dr2 + r2ds2

L5
for a certain

choice of coordinate r and a five-manifold L5, which we will call base (or link). L5 is by

definition a Sasaki-Einstein manifold.

By the celebrated Yau’s theorem, a compact Kähler manifold admits a Ricci-flat metric

if and only if it has vanishing first Chern class; this is equivalent to the canonical bundle K,

the bundle of (3, 0) forms, being trivial. In the non-compact case, however, such a simple

criterion has been lacking. A singularity on which K is trivial is called Gorenstein. In

general, it is not true that any conical Kähler Gorenstein space admits a Ricci-flat metric:

several obstructions to this were found in [1]. On the other hand, in the toric case there

are no obstructions and the statement is true [2]. (For a review of Sasaki-Einstein circa

2010, see [3].)

Recently, a criterion was proven [4], called K-stability, that guarantees the existence of

a Calabi-Yau metric on a Gorenstein singularity, or equivalently of a Sasaki-Einstein metric

on a five-manifold with positive curvature. This was inspired by the recent progress in the

existence of Kähler-Einstein metrics [5]. The criterion is roughly speaking a generalization

of volume minimization [6, 7], which identifies a conical Calabi-Yau metric among the set

of conical complex ones and is the holographic dual of a-maximization [8]. While ordinary

volume minimization requires varying among complex metrics on the same manifold, K-

stability requires looking also at degenerations of the manifold. While in general one might

not know how many such degenerations exist, in presence of two U(1) symmetries (rather

than three as in the toric case) techniques exist [9, 10] that insure that only a finite number

of degenerations should be checked; we will review these techniques below.

A tentative field-theoretic interpretation was proposed in [11] as a “generalized a max-

imization” which instructs us to consider possible degenerations of the chiral ring. In fact

the degenerations are associated to U(1) actions that are not symmetries except in certain

limits; in a sense K-stability gives a very concrete realization to the idea of emergent IR

symmetries.

Thus, K-stability provides a way to produce new Sasaki-Einstein metrics. For exam-

ple, [4] were able to find infinitely many new such metrics on S5. It is now natural to

want to develop the AdS5/CFT4 correspondence on these new metrics, and to find the

corresponding quivers.

Finding the quiver corresponding to a singularity is not in general an easy task. In the

toric case, an algorithm to do so was proposed in [12, 13], involving dimer models; recall
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that this was the case where a Calabi-Yau metric was already guaranteed to exist [2]. In

the non-toric case, which is now made accessible by K-stability, the dimer methods are not

applicable.

However, a different technique exists to find the quiver, called non-commutative crepant

resolution (NCCR) [14]; importantly, it can also be applied to the non-toric case. It

is based on algebraic ideas such as the one of matrix factorizations, and is supposed to

formalize the idea of trivial canonical bundle in terms of the path algebra of the quiver.

Good introductions can be found in [15, 16]. For example, for a certain broad class of

singularities, called “compound Am” or cAm for short, it has already been reduced to

an easy algorithm [17], which produces quivers which further generalize the “generalized

conifolds” of [18]. In other cases computations are harder, but in principle still algorithmic.

Roughly speaking, these two separate developments can be viewed as progress on the

complex and Kähler side of non-compact CYs. In this paper we put these two strands to-

gether to produce new AdS5/CFT4 duals. For simplicity we look at hypersurface singulari-

ties, namely singular spaces defined by a single equation p(x, y, z, t) = 0 in C4. We look for

examples where the K-stability test succeeds (and thus a Sasaki-Einstein metric is proven

to exist) and an NCCR can be found. We exhibit a few new examples as a proof of concept.

For instance among the cAm cases we find that the singularity uv+ zp+ tp = 0 is both

K-stable and has an NCCR. Outside the cAm class, where as we mentioned computations

are more difficult, we find two examples of compound D4 type, where the NCCR method

reproduces quivers recently obtained in [19] by abelian moduli space methods, and where

we find that K-stability is also satisfied.

Rather strikingly, the NCCR and K-stability methods rarely agree with each other. If

we start with a class where an NCCR exists, we find that it is rarely K-stable, and vice

versa. It is natural to wonder what to do with the many singularities where only one of

the criteria succeeds; we will come back on this point at the end of our investigation.

This paper is organized as follows. In section 2 we review K-stability and its application

to SCFTs; in particular in subsections 2.3, 2.4 and 2.5 we review respectively its definition,

its physics interpretation and the techniques that make it more manageable in presence of

two U(1) symmetries. In section 3 we review the techniques of matrix factorizations and

non-commutative crepant resolutions (NCCR), and introduce an algorithm due to Iyama

and Wemyss to compute them in a class of singularities which from a physics point of

view are similar to the generalized conifolds of [18]; in section 4 we apply this algorithm

to several types of K-stable singularities. In section 5 we start exploring the wider world

of singularities where the Iyama-Wemyss algorithm does not apply, and reproduce some

simple quivers with two or three nodes which have appeared very recently in [19]. In

section 6 we will draw some conclusions from our investigations.

2 Sasaki-Einstein manifolds and K-stability

In this section, we will review the K-stability criterion for the existence of Sasaki-Einstein

metrics [4]. First in sections 2.1 and 2.2 we give a lightning review of well-known material

about Sasaki-Einstein’s and their dual SCFTs. In section 2.3 we review K-stability, and
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in section 2.4 we talk about its physics interpretation. In section 2.5 we review techniques

(mainly from [9, 10]) to deal with manifolds which are non-toric but have only two U(1)

actions, and which make K-stability more amenable to computations. Finally in section 2.6

we review how K-stability applies to the class of so-called Brieskorn-Pham singularities.

2.1 Sasaki-Einstein threefolds

We start with a lightning review of Sasaki-Einstein geometry for later reference. This

material is well-known; for more details on Sasaki-Einstein geometry see [3].

As we mentioned in the introduction, many AdS5 solutions in IIB can be obtained by

placing a stack of N D3-branes at the tip of a conical CY threefold singularity Y . Recall

that the CY condition can be formulated as the presence of a complex three-form Ω and two-

form J , both non-degenerate and defining the same volume form ( 1
6J

3 = − i
8Ω∧ Ω̄ = vol6)

and both closed (dJ = dΩ = 0). The word “conical” means that the metric is of the

form dr2 + r2ds2
L5

, where L5 is a five-manifold called “link”; one often writes Y = C(L5).

(Not all AdS5 solutions are of this type, but in this paper we will restrict ourselves to this

case.) Their back-reaction modifies the metric, and upon taking the near-horizon limit one

obtains [20, 21] a solution of the type AdS5 ×L5. In this paper we will focus on manifolds

defined by a single polynomial equation

p(x, y, z, t) = 0 (2.1)

in C4. The holomorphic form is then given by the Poincaré residue expression:

Ω =
dx ∧ dy ∧ dz ∧ dt

dp
=
dy ∧ dz ∧ dt
∂p/∂x

. (2.2)

By definition, L5 is called Sasaki-Einstein if and only if Y is Calabi-Yau. The holo-

morphic form Ω on Y is the (3, 0)-form of a complex structure I. The latter can be used

to define a one-form and a vector field via

η ≡ i(∂ − ∂) log r = I

(
dr

r

)
, ξ ≡ J(r∂r) . (2.3)

ξ is called the Reeb vector. One can then reduce the forms on Y to forms on L5 via

Ω = r2(dr+ irη) ∧ ω, J = rdr ∧ η + r2j; the two-forms ω and j on L5 then have to satisfy

j ∧ ω = 0 , 2j2 = ω ∧ ω̄ , η ∧ j2 = vol5 ,

dη = 2j , dω = 3iη ∧ ω .
(2.4)

These relations can be taken as an alternative definition of a Sasaki-Einstein.

The orbits of the Reeb vector field ξ can be compact or non-compact. If they are com-

pact, L5 is called semi-regular and is an S1-fibration over a Kähler-Einstein M4, possibly

with orbifold singularities; if there are no orbifold singularities L5 is called regular. This

case is not very common, since there are very few Kähler-Einstein four-manifolds: CP2, in

which case L5 = S5 or S5/Z3; CP1 × CP1, in which case L5 = T 1,1 ≡ SU(2)/U(1)× U(1)
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and C(L5) is called the conifold; and the del Pezzo surfaces dPk with k ≥ 3. The conifold

can also be described as the locus in C4 cut by the single quadric equation

x2 + y2 + z2 + t2 = 0 , (2.5)

which we will use as a running example. If the orbits are non-compact, L5 is called irregular;

this is by far the most common case, as first demonstrated in [22] with the discovery of

the Y p,q metrics. Many more irregular examples can be produced by considering toric

constructions and using the above-mentioned existence theorem [2]. This case is well-

understood and for this reason we will not consider it much in this paper.

The isometry group of a compact manifold is compact; so when the orbits of ξ are non-

compact, there is in fact more than one Killing vector, of which ξ is a linear combination

with irrational coefficients. Other than in a few special cases, the isometry group is a torus

T ≡ U(1)r . (2.6)

Again using the complex structure it follows that there is a (C∗)r action on the manifold.

One sometimes calls complexity the (complex) dimension of the manifold minus r; in our

case, 3−r. For example, in the toric case r = 3 and the complexity is zero. In what follows

we will mostly deal with cases of r = 2 and complexity one.

The Reeb vector ξ also allows to compute easily the volume of L5 via Duistermaat-

Heckman localization [6, 7, 23]. Another way of computing the volume is via the Hilbert

series (HS) of the threefold, H(u) ≡ dim(Hd)u
d, where dim(Hd) is the dimension of the

space of holomorphic functions of degree d under ξ, namely functions h such that Lξh = dh.

It turns out that

H(e−s) =
2a0

s3
+
a1

s2
+O(s−1) , a1 = 3a0 , (2.7)

in conventions where (2.2) has degree d = 3. The volume is then given by

Vol(L5) = 2a0Vol(S5) = 2a0π
3 . (2.8)

For a hypersurface p = 0 in C4, the Hilbert series can be computed in terms of the degrees

of the coordinates

zi = (x, y, z, t) (2.9)

of C4. If we define wi > 0 the (positive) degrees of zi under ζ and wp the total degree of p

(which is homogeneous under ζ), we have

H(e−s) =
1− e−wps∏
i(1− ewis)

. (2.10)

From this we can expand in s and find

a0 =
wp

2
∏
iwi

. (2.11)

Rather than using the wi directly, it is sometimes simpler to introduce a vector ζ = bξ

proportional to the Reeb vector, and determine b by fixing Ω to have degree 3. Let us call
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αi and αp the degrees of zi and p respectively under ζ; then wi = bαi, wp = bαp. The

condition that Ω should have degree 3 (or that a1 = 3a0 in (2.7)) fixes b = 3
−αp+

∑
i αi

, and

a0 =
αp

2b3
∏
i αi

=
αp

54
∏
i αi

(
−αp +

∑
i

αi

)3

. (2.12)

The advantage of this point of view is that we do not have to worry about normalizing the

αi, αp.

For example, for the conifold (2.5) we have αi = (2, 2, 2, 2) and αp = 4; from (2.12)

and (2.8) we get a0 = 8
27 and Vol(T 1,1) = 16

27π
3.

All this also gives a way to compute the Reeb vector ξ. Considering a general linear

combination
∑

i `iKi of the generators of the isometry torus U(1)r, the volume Vol(L5) will

depend on the coefficients `i; the Reeb vector ξ is then found by minimizing the volume

with respect to the `i [7].

2.2 Superconformal models

Let us also review briefly some aspects of superconformal theories (SCFTs) in four dimen-

sions.

The class of theories we consider in this paper are N = 1 quiver theories: namely, they

have several vector multiplets with gauge groups SU(Ni), and chiral multiplets transforming

in various bifundamental and adjoint representations. (We will not consider matter in the

fundamental representation of a gauge group.) A necessary condition for the theory to be

superconformal is that the beta functions of all the gauge groups vanish:

βi ≡ Ni +
∑
ei

Ni(Rei − 1) +
1

2

∑
a:i→j

Nj(Ra − 1) = 0 (2.13)

where ei are the adjoint chirals, a : i→ j denote the bifundamentals, and Rei , Ra are their

charges under the U(1) R-symmetry. Depending on the model, one can then sometimes

argue that a choice of R-charges exists such that (2.13) can be satisfied. One typically

treats the Rei and Ra as functions of the gauge couplings and superpotential coefficients;

a counting argument then tells us if a solution is expected to exist. A more rigorous and

laborious way of proceeding that is often used in the literature (see e.g. [24]) is to proceed

in steps, starting from a model where there is no superpotential and introducing terms in

the superpotential step by step. At each step one first a-maximizes among the possible

non-anomalous R-charge assignments, and then checks which operators are relevant with

the a-maximized values of the R-charges; switching these operators on makes one flow

to a more complicated model. In a sense the K-stability procedure in this paper is a

formalization of these ideas.

In any case, it is not easy to show that a SCFT exists in a completely rigorous fashion

purely from field theory arguments. So it is helpful when a model has a holographic dual,

for which the existence of a Sasaki-Einstein metric on the dual geometry can be proven.

We will use this perspective in this paper.
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Once a SCFT exists, anomalies give an interesting measure of the number of degrees of

freedom it contains. For four-dimensional conformal theories, there are two possible Weyl

anomalies, called a and c. With N = 1 supersymmetry, they can be expressed in terms of

R-symmetry anomalies [25]:

a =
3

32
(3 TrR3 − TrR) , c = a− 1

16
TrR =

3

32

(
3 TrR3 − 5

3
TrR

)
, (2.14)

where R is the R-symmetry generator. For a quiver theory with SU(Ni) gauge groups (and

no fundamentals), this gives

a =
3

32

2
∑
i

(N2
i − 1) +

∑
a:i→j

NiNj

[
3(Ra − 1)3 − (Ra − 1)

]
+

+
∑
ei

(N2
i − 1)

[
3(Rei − 1)3 − (Rei − 1)

])
, (2.15a)

c =
3

32

4

3

∑
i

(N2
i − 1) +

∑
a:i→j

NiNj

[
3(Ra − 1)3 − 5

3
(Ra − 1)

]
+

+
∑
ei

(N2
i − 1)

[
3(Rei − 1)3 − 5

3
(Rei − 1)

])
. (2.15b)

For SCFTs with a weakly-coupled gravity dual, a and c should be equal at large N ;

interestingly, for a quiver theory (without fundamental matter) this follows from (2.15) [26].

The a anomaly is related to the volume of the gravity dual L5 [27, 28]:

a =
Vol(S5)

Vol(L5)
aN=4 SYM . (2.16)

(Common conventions give aN=4 SYM = N2

4 for N = 4 SYM with SU(N) gauge group.)

The volume minimization of L5 is then dual to the statement that the R-charge assignment

should maximize a [8].

2.3 K-stability and the Futaki invariant

We now describe the K-stability procedure; for a more thorough introduction, see for

example [29].

The idea of stability has a long history. System of PDEs can often be separated

into holomorphic and real equations; in supersymmetric theories these can sometimes be

interpreted as F- and D-term equations respectively. Holomorphic equations can be solved

easily with algebraic-geometrical methods; for the real equations, one can sometimes use

the action of the complexification GC of a symmetry group to try to reach a solution.

Some orbits contain such a solution and are called “stable”, while others do not, the GC
action degenerating to other, simpler orbits. A notable example is the self-duality equation

F = ∗F in four Euclidean dimensions, which can be separated into a holomorphic part

F2,0 = 0 and a real part J · F1,1 = 0; the latter can be proven to be solved when a certain
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stability test succeeds, involving sub-bundles of the bundle of which F is a curvature. The

general story here leads to the Donaldson-Uhlenbeck-Yau equations [30, 31]. A similar story

was later conjectured for the existence of Kähler-Einstein metrics [32] and more recently

proven in the existence direction in [5] (with an earlier necessity result for example in [33]).

The idea is that this time the complexified symmetry action makes the manifold itself

degenerate to another, simpler manifold. Here we will need a variant which applies to

Sasaki-Einstein metrics [4].

The degenerations we will need are called test configurations. As we anticipated, such

a degeneration is usually obtained by an action on the coordinates, which will be a C∗

action. In our cases, where we have a torus T of symmetries (2.6), we only need to take

into account T -equivariant test configurations, namely those that are generated by actions

that commute with T . (From now on we will drop the qualifier “T -equivariant” and simply

call this a “test configuration”.) Such an action Cλ might then have a degeneration in the

limit where the generator λ goes to zero.

For example, for the conifold (2.5), one such action might be

(x, y, z, t)→ λ · (x, y, z, t) ≡ (x, y, z, λt) . (2.17)

For any λ this takes us to a new equation; for λ 6= 0 this is isomorphic to the original

conifold, but for λ = 0 we have the degeneration

x2 + y2 + z2 = 0 . (2.18)

The action (2.17) has now become a symmetry on the degeneration (2.18).

The formal definition is as follows. A T -equivariant test configuration of Y is an embed-

ding Y ↪→ CD on which T acts as a unitary representation, together with a one-parameter

subgroup Cλ : C∗ → U(D)T , namely one which is unitary and commutes with T . This

action takes Y to a Yλ; for λ 6= 0, these are all isomorphic to each other. On the other hand,

Y0 is special: it is left invariant by Cλ, and can be different from Y . This Y0 is called the

“central fiber” of the test configuration. (The name comes from thinking of the Yλ as fibers

of a flat fibration over a copy of C parameterized by λ.) We also require that Y0 be normal:

namely, its ring R0 of functions is an integrally closed domain, or in other words there are

no solutions f to an algebraic equation fn + λn−1f
n−1 + . . . f0 = 0 where λi ∈ R0 and f is

not in R0 but rather a rational function. A classic example of non-normal variety is the cusp

x2 − y3 = 0 . (2.19)

Indeed the rational function f = y2

x satisfies f2 − y = 0:
(
y2/x

)2 − y = y
x2

(y3 − x2). On

the other hand, the conifold x2 + y2 + z2 + t2 = 0 is normal.

Since Y0 is left invariant by λ, on it we have one more U(1) than on the original Y .

It is then natural to wonder whether this extra U(1) changes volume minimization. This

“generalized volume minimization” is then the idea of K-stability. Since the Reeb vector

already minimizes the volume in the space of all the generic U(1) symmetries present

at generic λ, it is enough to minimize with respect to variations that include this new

symmetry λ as well. (We are calling λ both the C∗ action and the generator of the U(1)
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inside it, hoping that this will not generate confusion.) One sees a parallel [11] with the

field theory idea that an emergent symmetry in the IR might invalidate a-maximization

computations; we will expand on this comment in section 2.4.

Concretely, one performs this generalized minimization by computing the Futaki in-

variant

Fut(ξ, λ) ≡
(
∂εa0 + a0∂ε

(
a1

a0

))
ε=0

, (2.20)

where ai = ai(ξ + ελ). If Fut(ξ, λ) ≤ 0, then one says that the test configuration induced

by λ destabilizes Y . This is an obstruction to the existence of a conical Calabi-Yau metric

on it. On the other hand, the converse is also true [4, Thm 1.1]: if Y is not destabilized by

any test configuration, then Y is said to be K-stable and there exists a conical Calabi-Yau

metric on it; in other words, there is a Sasaki-Einstein metric on L5.

To see the connection with generalized volume minimization, notice from (2.7) that

a1 = 3a0; then

Fut

a0
= ∂ε

(
log a0 + 3 log

(
a1

a0

))
ε=0

= ∂ε log

(
a0

(
a1

a0

)3
)
ε=0

. (2.21)

We can view the (a1/a0)3 factor as the effect of renormalizing the degrees so that a1/a0

remains equal to 3 while varying, in a similar logic to the b−3 factor in (2.12) in our

hypersurface case. If we denote by ti the degrees of the action of λ,

λ · zi = ztii (2.22)

(in the ordering (2.9)), in (2.21) we are computing the derivative of the logarithm of

a0

(
a1

a0

)3

=
wp + εtp

2
∏
i(wi + εti)

(∑
i

(wi + εti)− (wp + εtp)

)3

. (2.23)

An equivalent point of view, promoted in [4, 11], is that one varies by rescaling ξ at the

same time as adding the new generator λ:

Fut(ξ, λ) ≡
(
∂

∂ε
a0(ξ + ε(λ− αξ))

)
ε=0

,

(
∂

∂ε

a1

a0

)
ε=0

= 0 , (2.24)

where α is fixed by the second equation.

From any of these points of view, after some manipulations we obtain

Fut

a0
= −tp +

∑
i

ti +
1

3

(∑
i

αi − αp

)(
tp
αp
−
∑
i

ti
αi

)
(2.25)

for the hypersurface case of interest in this paper.

Notice that the degeneration Y0 has a chance of being a Calabi-Yau itself. By con-

struction Y0 has one more C∗ action than the original Y . Given that we need to have at

least one C∗ action, we only have three cases, each of which can degenerate to the next:

one C∗ action

(complexity two)
−→ two C∗ actions

(complexity one)
−→ three C∗ actions

(toric)
. (2.26)
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In particular, if Y is toric, it has no possible degenerations, since it has already the maxi-

mum number of C∗ actions in three dimensions. Indeed in the toric case the existence of a

Sasaki-Einstein metric is guaranteed [2]. On the other hand, if Y has complexity one, the

degeneration Y0 is toric.

Checking positivity of the Futaki invariant for all possible test configurations might

seem like a daunting task. Fortunately, we will see in section 2.5 that for complexity one

only a finite number of configurations has to be checked. This is the case we will restrict

in most of this paper. The complexity-two case is more complicated, although it might be

amenable to similar methods in the future.

2.4 Physical interpretation

While K-stability comes from geometry, it is natural to try and translate the idea into

physics.

We have seen that K-stability requires us to look at C∗ actions which are not symme-

tries of the original Y , to consider the new threefolds Y0 one obtains by letting this action

degenerate, and check that the Futaki invariant is positive. We have also seen that this can

be interpreted as checking volume minimization on Y0, which has more U(1) symmetries

than Y .

The holographic dual of volume minimization is a-maximization [6], which says that

the choice of R-symmetries among the U(1) actions should maximize a [8]. One then wants

to interpret K-stability as a “generalized a-maximization” [11] which requires one to check

that a is maximized even taking into account U(1) actions which are not symmetries. It

is natural to also conjecture [11] that K-stability holds directly for the chiral ring of any

putative SCFT, even without a holographic dual. This would mean that a theory with

chiral ring R is an SCFT if and only if all its degenerations R0 (generated by additional

U(1) actions as in section 2.3) do not have a higher a. (A related conjecture appeared

in [34]. We will come back to it in our conclusions.)

More precisely, when the Futaki invariant is positive, it signals that one can make a0

smaller (and hence the a anomaly larger) by varying with respect to the additional U(1)

associated to the test configuration, by making ε positive. On the other hand, when the

Futaki is negative, one cannot do that and there is no reason to think that a can be made

larger even by including the extra U(1). Notice that we cannot vary in the direction of

negative ε: it would correspond to a choice of R-charges which contradicts the original

assumption, i.e. that the chiral ring degenerates to R0.

The reason one wants to maximize with respect to the additional U(1) present in the

degenerate chiral ring R0 is a manifestation of a well-known caveat about a-maximization:

namely, that one should take into account the possibility of emerging symmetries in the

IR. When generalized a-maximization fails, some terms of the superpotential W have gone

to zero in the IR, and an extra U(1) emerged. The theory with chiral ring R is not itself an

SCFT: it flows in the IR to the theory with simpler W and with chiral ring R0, which has

an additional U(1) symmetry. This second theory might in fact also not be an SCFT, but

degenerate in turn to another SCFT, in a field-theory counterpart of the hierarchy (2.26).
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Our general discussion so far might have given the impression that generalized a-

maximization for Y is just the same as ordinary a-maximization on the central fiber Y0.

However, a crucial difference is that with generalized a-maximization we can only vary R-

charges compatibly with the assumption that the λ action makes the chiral ring degenerate

to that of Y0; this effectively creates a boundary in the allowed minimization space. This

is related to our observation above, that when the Futaki invariant is negative one cannot

go in the direction of negative ε to lower a0 (and raise a). We will see this in more detail

in the examples of section 5.2 and 5.3.

As we mentioned at the end of section 2.3, in our paper we will mostly focus on

theories with two U(1)’s; these are either SCFTs themselves, or flow in the IR to toric

SCFTs. Occasionally we will also speculate on examples with only one U(1), most notably

in section 5.3.

2.5 Torus actions with complexity one

In the toric case (i.e. when there is a T = U(1)3 of isometries) the geometry of a threefold

can be summarized very effectively by the so-called toric diagrams and by toric polytopes.

These are two ways, dual to each other, to represent visually the T action in the various

coordinate patches.

When there are fewer isometries, these methods are still partially available. We will

focus here on the case with complexity one, i.e. when T = U(1)2. (We will focus on the

threefold case, but these techniques can be applied to any dimension.) This topic has a

long history; the reader may for example consult [9].1

Our manifold Y can be realized as a fibration over a Riemann surface B, with the

T = U(1)2 acting on the fiber F , and some special points pi ∈ B where F changes. The

data of the T action are summarized by the pi and some polytopes ∆i, of dimension 2. One

sometimes also introduces the formal sum
∑

i pi∆i, called proper polyhedral (pp) divisor.

The methods in [10] can be used to compute combinatorially all test configurations in

terms of the pi and ∆i. In this paper however we will only use this result to count the

number of test configurations, and then find them explicitly by hand as in [4]. For this,

one has to compute certain linear piecewise functions Ψi, and perform a certain test which

we will introduce.

Let us explain these methods concretely using an example: the threefold defined by

the equation

p = x2 + y3 + z2t = 0 . (2.27)

(We will analyze the dual theory in section 5.2.)

First let us try to find some test configurations by hand. One obvious idea is to make

disappear one of the three monomials in (2.27). For example, in the notation of (2.22),

the action (0, 0, 0, 1) leads to x2 + y3 +λ2z2t, whose central fiber x2 + y3 is the cusp (2.19)

and hence not normal, as remarked there. If we try with (0, 1, 0, 0), the central fiber is the

1We would like to thank N. Ilten, G. Székelyhidi and especially H. Süß for illuminating email correspon-

dence about several aspects of this topic.
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“Whitney umbrella”

x2 + z2t = 0 (2.28)

which is not normal because f = x
z satisfies f2 + t = 0. Finally we can try with (1, 0, 0, 0),

which leads to the central fiber y3 + z2t = 0; also this is not normal, since f = y2

z satisfies

f2 − yt = 0. So the naive attempts at getting a valid test configuration fail because of

non-normality of the central fiber. One could imagine more elaborate actions, for example

non-diagonal ones. The point of the methods we will explain now is precisely that it gives

a systematic way of finding all test configurations, without having to guess.

2.5.1 Fibration and special points

The first step is to find the two C∗ symmetries of this equation: they are given by the

charge matrix

F =

(
3 2 3 0

0 0 −1 2

)
. (2.29)

which represents the action respectively on (x, y, z, t). As usual in toric geometry, we need

to compute its kernel, namely a matrix P such that F · P t = 0; additionally, we will need

a matrix s such that F · st = 1:

P =

(
−2 0 2 1

−2 3 0 0

)
, s =

(
1 −1 0 0

1 0 −1 0

)
. (2.30)

To determine the base B, we view P as giving column vectors in C2; the rays traced

by these vectors give the fan of a toric manifold. In this case we see that the generators of

these rays are the vectors v1 =
(−1
−1

)
, v2 =

(
0
1

)
and v3 =

(
1
0

)
(repeated twice). We recognize

the fan of CP2; the equation (2.27) now gives a hypersurface inside it. To read it off, we

map C4 to the affine coordinates in a chart of CP2 by using the rows of P :

(x, y, z, t) 7→
(
X ≡ y3

x2
, Y ≡ z2t

x2

)
. (2.31)

Then (2.27) becomes in this chart the linear equation 1 + X + Y = 0. It can be useful to

projectivize this by introducing further homogeneous coordinates (w0, w1, w2) in CP2 such

that X = w1
w0

, Y = w2
w0

; then the equation becomes w0 +w1 +w2 = 0. Being of degree one,

this cuts a Riemann surface of genus zero, which is the base B we anticipated. By [35,

Cor. 5.8], B will in fact always have genus zero for the cases of interest in this paper, namely

when the threefold Y is a Calabi-Yau; more generally it might have higher genus if we are

interested in Sasaki-Einstein manifolds of non-positive curvature. We show the situation

schematically in figure 1, with the toric polytope of CP2 and B depicted inside it.2

Let us now call pa the intersections of B with the three toric divisors Di of CP2, namely

the loci {wi = 0}, which are associated to the vectors vi above. In our example, since the

2This schematic depiction of B simply tries to convey that it is topologically an S2, and that it intersects

each Di once. One can also think of the gray region as a so-called amœba, namely the image of B under

the toric fibration map over the triangle, whose generic fibers are T 2s.
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p1

p2

p3

�3

�1

�2

� = tail(�i)

Figure 1. The base B and its associated polytopes for our example (2.27).

equation is linear, each intersection consists of a single point; the resulting p1, p2, p3 are

shown in figure 1. More generally, one can have several intersections even when B has

genus zero. This can happen for example if it is inside a weighted projective space; in fact

we will see such a case in section 4.2.

We can now already explain the geometry of the degeneration. Y already has two

abelian isometries; the degeneration of a test configuration should have three, and thus be

toric. In terms of the fibration we just described, F is already toric; so the extra abelian

isometry should somehow arise from a degeneration of the base B. To see how this can

happen, focus on how the test configuration’s C∗ action λ acts on B. In the λ → 0 limit,

somehow B has to acquire an isometry; in other words it has to become toric itself, so

B → CP1. Moreover, the pi will have to be collected at one of the two poles, which are the

fixed points of the new, emerging abelian isometry. The positions of the pi on B rescale

under λ; in the degeneration limit λ→ 0, they will all go to the z = 0 point in CP1, except

if one or more points happened to be at z = ∞. So, from the point of view of B, the

possible degenerations correspond to the possible choices of one of the pi we call z = ∞;3

all the other pi will coincide in the λ→ 0.

In our example, we can let z = ∞ be p1, and then in the λ → 0 limit p2 and p3 will

coincide; this will be a possible degeneration. There are two more possibilities, and we

then see a possible total of three degenerations.

3In principle one could also choose z = ∞ not to coincide with any of the pi, but this never leads to a

destabilizing degeneration; we thank H. Süß for explaining this to us.
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As we mentioned, each degeneration Y0 will be toric. [10] gives a quick combinatorial

way to compute the toric diagram of Y0, and in particular a way to check that it is normal.

In what follows we will only review the latter, which is enough for our purposes.

2.5.2 Polytopes

The combinatorial method of [10] requires the introduction of certain polytopes ∆i, asso-

ciated to the pi. The procedure is as follows:

• each pa is the intersection of B with a toric divisor Di;

• take the counterimage of the corresponding fan vector vi under P , P−1(vi), and

intersect it with the positive quadrant R4
≥0;

• compute the image of s on the resulting R4
≥0 ∩ P−1(vi).

Let us see this in our example. For v1 =
(−1
−1

)
:

P


α

β

γ

δ

 =

(
−2α+ 2γ + γ

−2α+ 3β

)
=

(
−1

−1

)
⇒ P−1(v1) =




(1 + 2γ + δ)/2

(2γ + δ)/3

γ

δ


 ;

R4
≥0 ∩ P−1(v1) =




(1 + 2γ + δ)/2

(2γ + δ)/3

γ

δ

 ,
γ ≥ 0

δ ≥ 0

 ;

∆1 = s
(
R4
≥0 ∩ P−1(v1)

)
=

{(
(3 + 2γ + δ)/6

(1 + δ)/2

)
,
γ ≥ 0

δ ≥ 0

}
=

(
1/2

1/2

)
+ σ .

(2.32a)

In the last step we have written P1 as a “Minkowski sum”4 of the single vector
(1/2

1/2

)
with

the cone

σ ≡
{
γ̃

(
1

0

)
+ δ̃

(
1

3

)
, γ̃ ≥ 0 , δ̃ ≥ 0

}
. (2.32b)

The other two polytopes are computed in the same way, and are

∆2 =

(
−1/3

0

)
+ σ , ∆3 =

{(
γ

0

)
, γ ∈ [−1/2, 0]

}
+ σ . (2.32c)

We show the ∆i and σ in figure 1.

We see that all the ∆i can be written as Minkowski sums with the same cone σ, which

is also called their tailcone tail(∆i). For any polytope ∆, we can also define its tailcone as

the cone of unbounded directions in ∆: formally, tail(∆) = {v|v′+tv ∈ ∆∀v′ ∈ ∆, t ∈ R≥0}.

4The Minkowski sum of two polytopes P1, P2 is defined as the set of vectors that can be written as

v1 + v2 for some vi ∈ ∆i. In this case P1 is a single vector, and P2 = σ; the result is just a translation of σ.
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We can also get σ by intersecting the image of F with the positive quadrant R4
≥0; in our

case

R4
≥0 ∩ F (R2) =




3a

2a

3a− b
2b

 , 3a ≥ b ≥ 0

 , (2.33)

which coincides with σ in (2.32b).

We now introduce some piecewise-linear functions Ψi. These are defined on the dual

σ∨ of σ, namely the set of vectors that have positive inner product with all vectors of σ,

and are given by

Ψi ≡ min
v∈∆i

(u · v) . (2.34)

A Ψi is said to have integer slopes if

∀ v ∈ σ∨ with integer coefficients Ψi(v) ∈ Z . (2.35)

In our running example, σ∨ = {(s, t)|s ≥ 0, s+ 3t ≥ 0}, and

Ψ1 =
1

2
(s+ t) , Ψ2 = −s

3
, Ψ3 =

{
−t/2 t > 0 ,

0 t ≤ 0 .
(2.36)

None of these have integer slopes.

We can now describe the possible test configurations.

• The possible candidates are associated to the subsets of polytopes obtained by for-

getting one of the points pi. In the discussion at the end of section 2.5.1, this is the

point placed at z =∞, while all the other pi coincide in the λ→ 0 limit.

In our example, the candidate subsets would be three: one associated to the set

of polytopes {∆2,∆3} (obtained by forgetting ∆1, which is associated to p1), one

associated to the set of polytopes {∆1,∆3}, and finally one associated to {∆1,∆2}.

• There is now a procedure to read off the toric diagram of the degeneration from each

subset of ∆i. However, not all these candidates will produce valid test configurations:

some will not be normal. For us it is enough to know when this happens. The criterion

is as follows: a set of polytopes is called admissible only if at most one of the Ψi does

not have integer slopes (recalling (2.35)). There is then a test configuration for each

admissible candidate subset of ∆i.

In our example, none of the Ψi has integer slopes. So none of our three candidates

{∆2,∆3}, {∆1,∆3} and {∆1,∆2} is admissible, and we have no test configurations.

This is in agreement with our naive analysis below (2.27).

The test configurations obtained this way are the only ones that need to be checked

for K-stability [10]. So in our example in this section there can be no test configurations,

and we know already that the threefold is K-stable, and hence is a Calabi-Yau.
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In less lucky cases, there can be several test configurations. In principle [10] gives a

way to produce explicitly the test configurations associated to an admissible collection of

polytopes. However, as we mentioned, once one knows the number of test configurations,

it is usually also easy to produce them explicitly by trial and error.

2.6 Examples: Brieskorn-Pham singularities

In [4], the K-stability criterion was applied to three classes of singularity: in the Yau-Yu

classification of all (hypersurface) singularities with at least one C∗ action [36], these are the

first three of nineteen. Here we briefly quote those results for the first class, the so-called

Brieskorn-Pham BP(p, q) singularities:5

uv + zp + tq = 0 . (2.37)

In section 4.1 we will look for quivers in this class, and also in the other two analyzed by [4],

YY-II and YY-III. We will find examples that are basically the “generalized conifolds” of

Am type considered in [18].

For (2.37), the isometry torus is T = U(1)2. The Reeb vector field ξ can be found by

volume minimization. We can then perturb by two test configurations and compute the

Futaki invariant with respect to both, as explained in section 2.3:

ξ =
3

2(p+ q)
(pq, pq, 2q, 2p) , a0(ξ) =

2

27

(p+ q)3

(pq)2
. (2.38)

To find the number of test configurations, one can use the techniques of [10] explained

in section 2.5. This time the base B is described by an equation wm0 + wm1 + w2 = 0

in the weighted projective space WCP1,1,m, where m = gcd(p, q). This is still genus 0,

but it intersects one of the toric divisors m times rather than just one. Thus one of the

three polytopes in the analogue of figure 1 is now repeated m times. Another difference

with our example in that figure is that one of the polytopes Ψ1 has integer slope. Among

the candidate test configurations, {∆1,∆3} and {∆1,∆2} are then admissible, because in

both cases only one of the Ψi have non-integer slopes. This means that there are two test

configurations in this case. Once we know that there are two of them, it is easy to find

them more directly by hand:

λ1 = (0, 0, 1, 0) , λ2 = (0, 0, 0, 1) , (2.39)

Fut(ξ, λ1) =
1

2

(
2q − p

3q

)
a0(ξ, 0) , Fut(ξ, λ2) =

1

2

(
2p− q

3p

)
a0(ξ, 0) .

Imposing the positivity of the Futaki invariants, we see that BP(p, q) is K-stable if and

only if

1/2 < p/q < 2 . (2.40)

For more details, see [4, section 8].

In particular, BP(2, 2) is nothing but the conifold (2.5), which satisfies (2.40). On the

other hand, BP(2, q) is stable for q = 3 but for no other case. This is in agreement with

the obstructions found in [1] for this class of examples.

5As a curiosity, we note that quite a bit is known about homological mirror symmetry for these threefolds.

For instance, the Fukaya category has been calculated in [37].
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3 Quivers from matrix factorizations

We will now explain how to use algebraic methods to extract quiver and superpotential of

the gauge theory associated with the singularity. In section 3.1 we will introduce the notion

of non-commutative crepant resolution (NCCR), which was already suggested in [15, 38]

as a physically relevant way to associate quivers to singularities. In 3.2 we will describe an

algorithm to find NCCRs for a certain class of singularities.

3.1 Non-commutative crepant resolutions

Recall that in this paper we are restricting our attention to hypersurface singularities,

i.e. singularities defined by a single equation p(u, v, z, t) = 0 in C4. We associate to it the

ring

R ≡ C[u, v, z, t]/(p) , (3.1)

namely, the ring of polynomials in C4, modulo an equivalence relation that sets p to zero.

We will require R to be Gorenstein, namely that a holomorphic (3, 0)-form exists (or in

other words that the canonical bundle is trivial.)

A resolution Ỹ is a non-singular space which is isomorphic to Y almost everywhere;

more precisely, there is a “birational” map Ỹ 99K Y , which induces an isomorphism from

a nontrivial open set of Ỹ to one of Y . Ỹ 99K Y is called crepant if it does not change the

canonical bundle; in our CY case, if KỸ is trivial. A familiar example is where Y is the

conifold (2.5), and Ỹ is the so-called resolved conifold, where the singularity is replaced by

a CP1.

Given the SCFT dual of a Y = C(L5), there is a branch of its moduli space corre-

sponding to separating a single D3-brane from the others and moving it away from the

singularity and along Y . This branch is obtained by taking certain small ranks

N single D3
i (3.2)

in the quiver; often, but not always, one has N single D3
i = 1. Since it corresponds to moving

a D3-brane along Y , this branch should be isomorphic to Y itself. If one introduces non-

zero Fayet-Iliopoulos parameters in this small-rank quiver, one often obtains a crepant

resolution Ỹ .

Recall that a module M over R is an abelian group with an action · : R ×M → M

which is associative and distributive; one can think of it as a sort of “representation” of a

ring (and indeed group representations are sometimes also called modules). If a ring is the

algebraic manifestation of a manifold, a module is the algebraic representation of a bundle.

The R-modules we will be interested in are called (maximal) Cohen-Macaulay modules

(CM).6 Every module M has a projective resolution, namely it fits in a sequence

. . . −→ R⊕n2 −→ R⊕n1 −→M −→ 0 , (3.3)

which is exact, i.e. the kernel of every map coincides with the image of the previous one.

The maximal length of such a resolution is called the global dimension of R, and gives

6Much of the background material on CMs can be found in [16, 39].
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an algebraic analog of the geometrical dimension. For a singular manifold, the global

dimension is infinite: there are some M whose projective resolution is infinitely long. But

for such an M , there is a particular, eventually two-periodic, resolution:

. . . R⊕n R⊕n R⊕n R⊕n R⊕n M 0 ;Φ Ψ Φ Ψ m

(3.4)

exactness of the sequence implies

Ψ · Φ = Φ ·Ψ = p 1n×n . (3.5)

Such a pair (Φ,Ψ)n is called a matrix factorization (MF) of the polynomial p. (The

subscript denotes the matrix dimension.) In other words, M is the cokernel of an n × n
matrix Ψ for which a Ψ exists satisfying (3.5).

We will most often present the relevant CM modules without writing down the explicit

matrices Ψ and Φ. However, once one specifies M and its generators, it is always possible

to explicitly write down such matrices. The n = 1 factorizations (1, p)1 and (p, 1)1 always

exist, and are referred to as trivial and non-reduced MF respectively. Any MF containing

(p, 1)1 as a summand in a direct sum (i.e. as a block) is said to be non-reduced. Only affine

singular varieties (defined by p = 0) admit a reduced, nontrivial MFs, which in favorable

situations can often be classified. For example, for the conifold (2.5), a non-trivial MF is

given by

Ψ =

(
v −f1

f2 u

)
, Φ =

(
u f1

−f2 v

)
, (3.6)

where u = x+ iy, v = x− iy, f1 ≡ z+ it, f2 ≡ z− it, so that p = uv+f1f2. The cokernel of

Ψ is then a CM. Explicitly, this cokernel is generated by the vector (u, f1). In other words,

the last map R⊕2 m−→ M in (3.4) is given by multiplication by (v,−z); the composition

m ◦ Ψ = (u, f1)
(
v −f1
f2 u

)
= (p, 0) = (0, 0), as appropriate for an exact sequence. Still

more explicitly, (φ1, φ2)
m−→ uφ1 + f1φ2; the module M consists of all functions that can be

written in this form (see footnote 8).

The general theory behind MFs has first been developed in [40], and they already made

their appearance in physics in various contexts [15, 41–56].

Once one has found a set of CM modules, one can define the non-commutative ring

A ≡ EndR

(
R⊕

⊕
i

Mi

)
. (3.7)

In practice, A can be presented as a quiver with relations, where each CM Mi (we also put

R = M0 by convention) corresponds to a node, and maps between nodes are generated by

arrows satisfying certain relations. We will see several examples below; some more can be

found in e.g. [15] and [55, section 2].

(3.7) is a generalization of R itself, in the sense that for n = 0 we have EndRR ∼= R.

If we include enough CMs in (3.7), then it might happen that the global dimension of A

(the maximal length of projective resolutions (3.3) over it) becomes finite, even though the
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one of R was infinite. If this happens, and if moreover A itself is a CM over R, A is called

a non-commutative crepant resolution (NCCR) of R [14].

For example, for the conifold the CM module M1 defined by the MF in (3.6) is already

enough (together with R = C[x, y, z, t]/(x2 + y2 + z2 + t2) itself) to produce an NCCR

EndR(R⊕M1). The two summands can be represented by two nodes. The endomorphisms

are generated by two maps from R to M1 and two from M1 to R; we will discuss these in

detail in section 3.2.2. The upshot is that one reproduces this way the familiar Klebanov-

Witten quiver [57], as we will see in figure 2a.

As the name implies, an NCCR is an algebraic analogue of a crepant resolution. In-

deed for our case of dimension three, an NCCR guarantees the existence of a crepant

resolution. (The assumptions that A should be CM and have global dimension three are

the non-commutative counterpart of Y 99K P being smooth and crepant.) Moreover, the

NCCR and the crepant resolution have equivalent (bounded) derived categories, which

have been suggested [38, 58] to be the mathematical description of topological B-branes,

the counterpart in the topological string of D-branes.

All this suggests that an NCCR gives a way to find the SCFT dual to a CY singularity,

as suggested in [15, 38]. The ranks of the CM modules should correspond to the ranks

N single D3
i of the single D3-brane moduli space discussed around (3.2). (For a discussion of

this point, see for example [55, section 4.1 & section 6].) A large-N generalization can then

be obtained by taking ranks N ×N single D3
i . Several checks of this conjecture have already

been carried out; we have mentioned that the conifold quiver is correctly reproduced, and

so are for example the quivers for the (infinite class of) Y p,q metrics [59]. In this paper we

will carry out several more such checks.

3.2 An algorithm for compound Am Du Val threefolds

A singularity of the type

0 = p(x, y, z, t) = x2 + y2 + f(z, t) = uv + f(z, t) , (3.8)

where u = x + iy, v = x − iy, is called a lift of the onefold singularity f(z, t) = 0, since

many of the properties of the threefold singularity are simply inherited from those of the

onefolds.7

In this section we will review an algorithm due to Iyama and Wemyss (IW) [17, sec-

tion 5] that produces NCCRs A for a certain class of f . The result will be similar to the

“generalized conifolds” of Am type considered in [18]; we will comment on the relation in

section 3.2.3.

3.2.1 Algorithm for the quiver

A hypersurface is a compound Du Val singularity [61] of type Am, or cAm for short, if

its intersection with a generic hyperplane in C4 is an Am surface (i.e. twofold) singularity.

7For a list of rigorous results on lifts see [60, Chap. 12]. (See also [53, section 2.3] for a physics perspective

in a different context.) E.g. one can prove that simple singularities (i.e. those without complex moduli) are

of finite representation type in any dimension. For us, this means that the set of CMs is finite.
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One can prove [62, Prop. 6.1] that any cAm threefold can be put into the form (3.8),

namely uv + f(z, t) = 0, with f(z, t) containing at most m+ 1 irreducible (prime) factors

fi in a power series expansion (around the singular point), all of them vanishing at order

ordfi = 1. Intuitively, this means uv + f(z, t) ∼ uv + zm+1 + . . ., which determines the

integer m. Then, by [62, Thm. 5.7], containing exactly m + 1 factors is equivalent to the

threefold admitting an NCCR.

Thus, for a cAm singularity, we simply need to check whether the polynomial f(z, t)

in uv + f(z, t) = 0 can be factored into n = m+ 1 prime terms:

Y : p = uv + f = 0 with f = f1 · · · fn=m+1 ,

fi ∈ m ≡ (z, t) , fi 6∈ m2 ∀i .
(3.9)

If this holds, then the singularity R admits an NCCR. If it does not, there exists no NCCR.

Here m is the maximal ideal of the ring S ≡ C[z, t], namely the ideal of linear functions,

and f1 · · · fn is a factorization of f (into prime elements of S). m2 is then the ideal of

quadratic functions; thus (3.9) requires fi not to have a critical point at the origin.

If (3.9) holds, the special set of CMs is constructed in terms of ideals of R as follows:8

T =

m⊕
j=0

Mj , Mj ≡

(
u,

j∏
i=1

fi

)
. (3.10)

The quiver then is as in figure 2 [17, Cor. 5.33]. One may have to add loops at each vertex

according to the following rules:

• at vertex R, if (f1, fn) = (z, t), add no loops. If (f1, fn, e0) = (z, t) for some element

e0 ∈ C[z, t], add a loop at R amounting to multiplication by e0 in the ring. If such

an element cannot be found, add two loops at R amounting to multiplication by z

and t respectively.

• at each vertex Mj , if (fj , fj+1) = (z, t) add no loops. Conversely add the loop ej if

(fj , fj+1, ej) = (z, t) or add two loops z and t if no such ej can be found.

Now the relations among the arrows in the quiver. To find them, we have to keep in mind

that the quiver furnishes a presentation of the endomorphism ring A where each arrow (or

path, that is a logical concatenation of arrows) amounts to multiplication by say fi, or u,

or a polynomial fi · · · fj (and “inc” simply means multiplication by 1). Then z and t must

commute as generators of the (commutative) polynomial ring C[z, t], therefore they must

also commute as paths in the quiver, if two paths α and β amounting to multiplication by

z and t respectively can be found. Therefore zt = tz gives an abstract relation αβ = βα

among arrows (which do not in general commute, being A non-commutative), and e.g.

zt2 = t2z would give another (again, if a path amounting to multiplication by t2 can be

8The ideal (g1, . . . , gn) is defined as being the space of linear combinations
∑
aigi, with ai elements of

the ring. So for example (z, t) is the ideal of all functions vanishing at the origin, also called the “maximal

ideal” of the origin. Notice that every ideal of R is also a module of R: more precisely, ideals are the

submodules of R, seen as a module over itself.
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R M1

f1

u

f2
u

inc

(a) Quiver for m = 1, i.e. n = 2.

R

M1 M2 ... Mm

f2

inc

f3

inc

fm

inc

f1

inc u

fn
u

(b) Quiver for m > 1, i.e. n > 2.

Figure 2. The quivers presenting the NCCR A = EndR T (3.10). One may also have to add loops

at vertices according to the rules in the main text. Since HomR(Mj ,Mj) ∼= R for j = 0, . . . ,m

(with M0 ≡ R), we must see the generators of R at every vertex. Indeed v (u) is the complete

(anti)clockwise loop based at Mj ; z, t can be seen by following the above rules.

found). Notice however that producing relations is far from being algorithmic, and often

other relations can be obtained that greatly simplify those found by the above method.

(This is akin to the problem of finding a superpotential given its F-terms.)

Notice that in this way one can in fact construct n! quivers, depending on the ordering

of the fi.
9

The fact that the quivers in figure 2 are of the affine A type (apart from the possible

presence of adjoints) should not surprise the reader, given our assumption on the cAm
nature of the threefold.

Finally, note that if (3.9) does not hold, even if there is no NCCR, another notion has

been introduced, that of maximal modification algebra (MMA). This can be thought of as

the non-commutative counterpart of a resolution where the space has been resolved as much

as possible: the remaining singularities are Q-factorial terminal, which implies that the

resolving them will change the canonical bundle. In appendix A we consider this concept a

bit further, and show in an example that it does not lead to SCFTs, as one might expect.

3.2.2 Conifold

We will now illustrate the above IW algorithm with the conifold, whose dual SCFT is well-

known [57]. This theory was reproduced with matrix factorizations in [15]; here we will

use it to illustrate the more recent IW algorithm. The relevant quiver has indeed already

appeared in figure 2a.

The polynomial f factors into two prime factors, f(z, t) = f1f2 ≡ (z + it)(z − it), so

n = 2 and m = 1. Therefore the quiver has two nodes, R and M1, and maps:

α1 ≡ f1 , α2 ≡ u : R→M1 ; β1 ≡ inc , β2 ≡ f2/u : M1 → R . (3.11)

By “inc” we mean the inclusion of the ideal (u, f1) into the ring R, i.e. the map ru+sf1 7→
ru+ sf1 ∈ R. At the polynomial level, it is simply given by multiplication by one. There

9There is a further generalization [17, section 5] where one considers a flag F : ∅ ≡ I0 ( I1 ( . . . ( Im (
Im+1 ≡ {1, . . . , n}, namely sets of elements in {1, . . . , n} of increasing sizes, defines functions fIj ≡

∏
i∈Ij fi,

gj ≡
fIj

fIj−1
, and uses these gj to define a smaller set of CMs. These smaller quivers capture the geometry of

partial resolutions (i.e. we only consider maximal flags, for which n = m+1); they will not play a role for us.
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R M1 = (u, f1)

f1

u

f2
u

inc

e1 = te0 = t

Figure 3. Quiver with relations for BP(p, q) = (2, 2k), k > 1 (i.e. Reid’s pagoda [61]). f1 = z+ itk,

f2 = z − itk.

are no loops at the vertices, since the ideal (f1, f2) = (z + it, z − it) equals the maximal

ideal (z, t). As we anticipated, the quiver is the one in figure 2a.

Now the relations. Given that the logical composition of paths gives an element of

the commutative ring R, these paths must commute if they produce the same element.

This gives a relation in the (abstract) non-commutative path algebra of the two-node

quiver. For example, composing from left to right, or in other words simply multiplying

the polynomials,

(z + it) ◦ inc ◦ u = u ◦ inc ◦ (z + it) ⇔ α1β1α2 = α2β1α1 . (3.12)

In the same way we get β1αiβ2 = β2αiβ1 and α1βiα2 = α2βiα1 for i = 1, 2.

The surmise of [15] is that the quiver with relations obtained in this way is the physics

quiver that one should associate to the singularity. The ranks of the CM modules are

both equal to one; as we stated at the end of section 3.1, this indicates that for the single

D3-brane moduli space one has to take N single D3
i = 1. For more general choices of ranks,

the αi and βi are interpreted as matrices, and the relations can be derived from the famous

Klebanov-Witten superpotential [57]

WBP(2,2) = Tr
(
εijεklαiβkαjβl

)
= Tr (α1β1α2β2 − α1β2α2β1) . (3.13)

Thus the NCCR method indeed reproduces the correct quiver and superpotential in this

case.

In the language of section 2.6, the conifold is BP(2, 2). For illustration purposes, we will

now show briefly what happens for the generalization BP(2, 2k), namely x2+y2+z2+t2k = 0

(which is known as Reid’s pagoda). Unfortunately, this does not give rise to a superconfor-

mal theory, since (2.40) is not satisfied (and as already noticed back in [1, 63]). In section 4.1

we will deal with BP(p, p), where (2.40) is satisfied and the NCCR methods also apply.

In the BP(2, 2k) case, f(z, t) = f1f2 ≡ (z + itk)(z − itk), k > 1, so again n = 2 and

m = 1. Now f1 = z + itk and f2 = z − itk; the ideal (f1, f2) is not equal to (z, t), so we

must add loops at both nodes. Adding the generator t ∈ S does the trick, since clearly

(z+ itk, z− itk, t) = (z, t); therefore on top of αi, βi we have a loop at R, call it e0, and one

at M1 = (u, f1), call it e1, corresponding to multiplication by t in the ring S. The quiver

is depicted in figure 3.
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SU(N)

SU(N) SU(N) ... SU(N)
A1

B1

A2

B2

An−2

Bn−1

An

Bn Bn−1

An−1

Φ1 Φ2 Φn−1

Φn

Figure 4. The generalized conifold quiver in [18].

We have two nontrivial relations

2itk = (z + itk) ◦ inc− uz − it
k

u
⇔ 2iek0 = α1β1 − α2β2 , (3.14)

and similarly 2iek1 = β1α1 − β2α2 coming from paths R → M1 and M1 → R respectively,

and four trivial ones such as t(z + itk) = (z + itk)t, implying e0αi = αie1 and the same

with αi ↔ βi. All of these can easily be integrated to a superpotential, namely [64, 65]:

WBP(2,2k) = Tr

(
2i

k + 1
ek+1

0 − 2i

k + 1
ek+1

1 − e0(α1β1 − α2β2) + e1(β1α1 − β2α2)

)
. (3.15)

Notice that, for k = 1, the superpotential terms e2
0 and e2

1 are masses for the adjoint fields;

therefore we can integrate those out. Doing so lands us back on the conifold superpoten-

tial (3.13). Once again we stress however that BP(2, 2k) is not superconformal.

3.2.3 Relation to generalized conifolds

The quivers in figure 2b might remind the reader of the so-called “generalized conifolds”

discussed in [18]. We will comment here about the relation to that analysis.

The generalized conifolds were obtained in [18] by considering the quiver in figure 2b,

with adjoints Φi at every node. This quiver is originally obtained by the orbifold proce-

dure [66] applied to C2/Zn ×C, but in [18] it is modified by adding a mass term Tr Φ2
i for

each i to the superpotential. Let us generalize their analysis slightly by turning these into

more general functions TrWi(Φi); we will call these “higher-degree generalized conifolds”.

In total the superpotential reads

W =
n∑
i=1

Tr (Φi(AiBi −Bi−1Ai−1) +Wi(Φi)) . (3.16)

The ranks of the SU(Ni) gauge groups are all equal for conformality, while they can of

course be kept different for more general fractional branes.

One of the ways the dual geometry is identified in [18] is by computing the abelian

moduli space; the idea was described around (3.2). This works as follows: we take all

the ranks Ni = 1, and the matrices Ai, Bi and Φi all become complex numbers (which
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we denote by the corresponding lower-case letters ai, bi, φi). Then the F-term equations

obtained from (3.16) read

ai−1bi−1 − aibi = W ′i (φi) , bi(φi − φi+1) = 0 = ai(φi − φi−1) , (3.17)

where a prime denotes differentiation w.r.t. φi. The main branch of these equations is

obtained by taking all φi = t. Summing the first equation over i then gives us the condition∑
iW

′
i (φi) = 0. Now if we define u ≡ a1a2a3, y ≡ b1b2b3, z ≡ a1b1, we get the equation

uv = Πi(aibi), or in other words

uv = z
(
z +W ′2(t)

) (
z +W ′2(t) +W ′3(t)

)
· · ·

(
z +

n∑
i=2

W ′i (t)

)
. (3.18)

This is the equation describing higher-degree generalized conifolds; if Wi(Φi) = 1
2miΦ

2
i ,

then W ′i (t) = mit, which is the case originally considered in [18].

While the abelian moduli space is not a particularly strong check of the proposed

duality between (3.16) and (3.18), we will now see that the NCCR method confirms this

proposal.

We can apply the IW algorithm of section 3.2.1 to (3.18) simply by taking f1 = z,

f2 = z+W ′2(t), . . . , fn = z+
∑n

i=2W
′
i (t). The equation is of compound An−1 type; so the

IW algorithm tells us that indeed an NCCR exists, with the quiver in figure 2b. As the

caption there reminds us, we have to work out the possible existence of adjoints. Now we

have two cases:

• If the polynomial Wi is of degree 2 (the case in [18]), the ideals (W ′i (t),W
′
i+1(t))

are equivalent to the maximal ideal (z, t), as one can see by linear combinations, so

we need not add adjoints. The superpotential turns out to be the one we obtain

from (3.16) after integrating out the Φi.

• If the Wi have higher degree, the ideals (W ′i (t),W
′
i+1(t)) do not include t and thus are

not equivalent to (z, t). So we need to add adjoints at each node. The superpotential

turns out to be (3.16).

To be sure, there are many cases which are covered by the IW algorithm but are not of the

higher-degree generalized conifold form (3.18). The condition (3.9) for an NCCR is met

roughly speaking if the fi are linear in at least one variable, while (3.18) requires all of them

to be linear in the same variable z.10 For example, for p and q even the equation (4.25c)

below is a case where the IW algorithm gives an NCCR (with f1 = z
p−2
2 − t, f2 = z

p−2
2 + t,

f3 = z + t
q−2
2 , f4 = z − t

q−2
2 ), but which cannot be written as (3.18).

To summarize: the original generalized conifolds of [18] can be immediately generalized

to the higher-degree form (3.18). The IW algorithm covers cases which are still a bit more

general, because the factors fi on the right-hand side of (3.9) do not all have to be linear in

the same variable; but it can still be seen as variations on the generalized conifold theme,

so to speak.

10In some cases, a linear change of variables might be needed to put a singularity in the form (3.18); for

example the suspended pinch point uv = z2t can be brought to the form (3.18) by (z, t) 7→ (z, t + z). In

this case actually a slightly different quiver can be used, which only has one adjoint [67]; see also [68].
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4 K-stable cAm singularities

In this section, we will apply the IW algorithm of section 3.2 to SE manifolds. In section 4.1,

as a warm-up we look at the three classes of Sasaki-Einstein examples analyzed in [4], one

of which (the Brieskorn-Pham class) was reviewed in section 2.6. We will find that the

existence of an NCCR on these SE manifolds puts stringent constraints, although it still

leaves infinitely many cases. Given this, in section 4.2 we follow a different approach and

start directly from cases that have an NCCR, imposing K-stability later. This leaves us

with a slightly larger class,

In section 4.3 we change gears and look at “minimally elliptic” singularities, which are

interesting as a generalization of the McKay correspondence.

4.1 Yau-Yu classes I–III

Brieskorn-Pham (YY-I). The first class in [36] comprises the so-called Brieskorn-Pham

manifolds BP(p, q); recall that the equation is uv + zp + tq = 0.

According to the algorithm in section 3.2, we first have to ask whether the singularity

is of compound type. It is easy to see that it is of cAp−1 type (assuming p ≤ q). We

then have to ask if f(z, t) = zp + tq factorizes in p factors. This only happens if q/p ∈ N.

However, (2.40) tells us that q/p should be in the interval (1/2, 2). That leaves us with

q/p = 1 as the only choice. Thus in the following we will consider

BP(p, p) . (4.1)

Assume q = p ≥ 2 (for otherwise there is no singularity): we have to distinguish two

cases according to the parity of p. Call ω ≡ eiπ 2/p a p-th root of unity. Then we have the

following factorization into primes fi ∈ m (with fi 6∈ m2):

f = zp + tp =



p−1∏
i=0

(z + ωi t) , p odd;

p−1∏
i=0

(z + ωi+1/2 t) =

p−1∏
i=0

(z − eiπ/pωit) , p even.

(4.2)

Clearly fi = z+ωit and fi = z+ωi+1/2t respectively. Observe that (f0, fp−1) = (fi, fi+1) =

(z, t) for i = 1, . . . , p − 2. The CM modules are of the form Mi+1 = (u,
∏i
j=0 fj) for

i = 0, . . . , p − 2. (By convention M0 ≡ R, whereas here f0 ≡ z + t is nontrivial.) The

arrows are αi ≡ fi : Mi → Mi+1 and βi ≡ inc : Mi+1 → Mi for i = 0, . . . , p − 2. Finally,

αp−1 ≡ fp−1

u and βp−1 = u, as usual. There are no loops at any node. Given the cyclic

structure of the quiver, the relations satisfied by the arrows can be assumed to come from

a quartic superpotential of the form

WBP(p, p) =

p−1∑
i=0

1

2
Tr
(
Ai(αiβi)

2 + sBiβiβi−1αi−1αi
)
, (4.3)
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M0 := R

M1 M2
. . . Mp−1

f0
inc

f1

inc

f2

inc

fp−2

inc

fp−1

u

u

Figure 5. The NCCR of BP(p, p).

where the indices are mod p. The two constants Ai, Bi depend on i, whereas s = ± is a

sign. The F-terms

∂αjW = Ajβjαjβj + s(Bjβjβj−1αj−1 +Bj+1αj+1βj+1βj) , (4.4)

∂βjW = Ajαjβjαj + s(Bjβj−1αj−1αj +Bj+1αjαj+1βj+1) , (4.5)

are then satisfied e.g. by Aj = (1 + ω)ω−j , Bj = ω−j , and s = +.

Given the quartic interactions, marginality of the superpotential imposes

Rαi +Rβi = 1 , Rαi +Rαi−1 +Rβi +Rβi−1
= 2 . (4.6)

On the other hand, the beta function of each node automatically vanishes

βi ≡ N +
N

2
(Rαi +Rαi−1 +Rβi +Rβi−1

− 1− 1− 1− 1) = 0 . (4.7)

Therefore the model (in the UV) is expected to flow to a fixed point, with the superconfor-

mal R-symmetry determined through a-maximization, which yields Rαi = Rβi = 1
2 . The

central charges then read

a =
27p

128
N2 − 3p

16
, c =

27p

128
N2 − p

8
. (4.8)

As expected, c− a = 0 at large N , and we can extract the following volume from a:

V (ξ) =
N2

4a
=

32

27

1

p
. (4.9)

This of course matches 2a0 in (2.38) with q = p.

These theories are obtained from the generalized conifold of type Ap−1 [18] by inte-

grating out their massive adjoints [67]. Indeed notice that the defining equation of BP

(p, p) can be mapped to [67, eq. (6.10)] (or (3.18)) via linear coordinate redefinitions. For

example when p is odd

zp + tp =

p−1∏
i=0

(z + ωit) −→ z̃t̃(z̃ + t̃)

p−3∏
i=1

(z̃ + λi t̃) , (4.10)

for appropriate λi.
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YY-II. The second class in [36], as reviewed in section 2.6, consists of singularities with

equation uv + f(z, t) = 0, and f(z, t) = zp + ztq.

This is a compound Am with m = min(p− 1, q). According to the criterion (3.9) [17,

section 5], an NCCR exists if f factorizes in m − 1 factors. This is only the case if either
q
p−1 ≡ r is an integer, or if its inverse p−1

q ≡ s is an integer.

On the other hand their links will admit SE metric provided [4, section 8]

p2 − 1

2p− 1
< q < 2(p− 1) (4.11)

or in other words p+1
2p−1 <

q
p−1 < 2. Since p+1

2p−1 >
1
2 for any p, neither integer r or s defined

above can be larger than one. So putting together the requirements for an NCCR and for

an SE metric on the link we end up requiring

q = p− 1 , (4.12)

corresponding to the singularity

uv + zp + ztp−1 = 0 . (4.13)

Working out the algorithm of section 3.2, we get again the same quiver as in figure 5. The

superpotential is also the same as in (4.3), but with different coefficients.

A notable particular case is

uv + z3 + zt2 = 0 , (4.14)

which is an “ADE threefold”. Such threefolds are close relatives of the perhaps more fa-

miliar ADE Du Val twofolds, surface singularities which can also be obtained as orbifolds

C2/Γ for Γ a subgroup of SU(2); the well-known McKay correspondence states that re-

solving those singularities results in a set of CP1’s intersecting according to the extended

Dynkin diagram of an ADE group. An ADE threefold is obtained from an ADE twofold

by adding a single square, similar to the procedure (3.8) of adding two squares to lift a

onefold. (4.14) can be obtained in this way, and is a “D4 threefold” (of type cA2).

If we modify (4.14) to the very similar-looking uv+ z3 + zt3 = 0, we still have an ADE

threefold, this time for E7. This is still in the YY-II class, and it satisfies (4.11) (so it has

an SE metric), but does not admit an NCCR, since it is a cA2 singularity but z3 + zt3 =

z(z2 + t3) has two factors, not three as the criterion (3.9) would require. As we discuss in

appendix A, in this case one can define a generalization of an NCCR called maximal modifi-

cation algebra (MMA); however, the E7 example does not lead to a superconformal theory,

and thus demonstrates that the concept of MMA does not seem to be physically relevant.11

11The Ak threefolds are BP(2, k + 1); they admit NCCR (trivial MMA) for odd (even) k, and have an

SE metric only for k = 2, 3. The Dk threefolds are YY-II(k − 1, 2); they admit NCCR (MMA) for even

(odd) k, but only k = 4 admits an SE metric. E6, E8 are respectively BP(3, 4), BP(3, 5), they admit trivial

MMA and an SE metric. By trivial MMA we mean that f(z, t) does not factor at all, and the quiver is of

the form presented on the bottom of figure 9.
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YY-III. Finally we look at YY-III singularities; we recall from section 2.6 that the

singularities are defined by uv + f(z, t) = 0, with zpt+ ztq and p > 1, q > 1.

The singularity is a compound Am with m = min(p, q); again an NCCR exists if f

factorizes in m − 1 factors. This is only the case if either q−1
p−1 ≡ r is an integer, or if its

inverse p−1
q−1 ≡ s is an integer.

The link admits an SE metric if and only if

3(p−1)2(q−1) > (p+q−2)(pq−2p+1) , 3(q−1)2(p−1) > (p+q−2)(pq−2q+1) . (4.15)

Let us first analyze the case where q−1
p−1 = r is an integer. The second condition in (4.11)

reads then r+1
3 < r(q−1)

rq−1 . The latter is always ≤ 1 (with equality only if r = 1). This

immediately implies r ≤ 2; in fact for r = 2 the condition becomes 2(q−1)
2q−1 > 1, which is

impossible. So the only possibility is r = 1.

We then look at the case where p−1
q−1 = s is an integer. The first in (4.11) then reads

s+ 1 < 3 q−1
q−2+s . The latter is always ≤ 3 (with equality only if s = 1). So we have s ≤ 2;

but for s = 2 the inequality becomes 3 < 3 q−1
q , which is impossible. So the only possibility

is in fact s = 1.

Thus the NCCR and SE requirements together give

q = p , (4.16)

corresponding to the singularity

uv + zpt+ ztp = 0 . (4.17)

Again the algorithm of section 3.2 gives the quiver in figure 5, with W of the form (4.3)

with some coefficients.

4.2 A simple generalization

In the previous subsection we saw that the existence of an NCCR puts severe constraints

on the parameter space allowed by K-stability. Thus in this subsection we change our

approach and try the opposite. We start from the class of singularities

uv + zatb
k−a−b∏
i=1

(z − λitp) = 0 , (4.18)

where an NCCR is guaranteed to exist by (3.9). The fi are given by a copies of z, b copies

of t, and the factors (z−λitp). As we remarked in section 3.2, there are many quivers that

can be written for this case, depending on the ordering of the fi; they all have k nodes, but

differ by the number and positions of the adjoints. With the ordering we have just given,

the first a− 1 nodes have an adjoint (corresponding to multiplication by t); the a-th node

has no adjoint; the next b−1 nodes again have an adjoint (corresponding to multiplication

by z); the remaining nodes have no adjoints.

To analyze K-stability, we first need to know the number of test configurations. If

we want to apply the methods in [10], the analysis differs from that for the example in
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section 2.5 as follows. (Let us assume for simplicity generic a, b, k, p.) The base B is now

a submanifold

w2 = wa0w
b
1

k−a−b∏
i=1

(w0 − λiw1) = 0 (4.19)

of weighted projective space WCP1,p,N , where N ≡ p(k−b)+b; the vectors vi are v1 =
(−p
−N
)
,

v2 =
(

0
1

)
, v3 =

(
1
0

)
. The function Ψ1 is zero, while Ψ2 and Ψ3 both have integer slope.

In fact in this case it is clearer to use the spirit of the analysis in [10] without using the

combinatorial data of the polytopes. Recall from the end of section 2.5.1 that the possible

degenerations are associated with C∗ actions on B, that make the pi coincide in groups.

In our case the pi are the zeros of the right-hand side of (4.19). There are a of them at

{w0 = w2 = 0}, b of them at {w1 = w2 = 0}, and others at {w2 = 0, w0 = λiw1}, some of

which may be possibly repeated; call mi the number of times a λi appears in the product

in (4.18). Now for example the C∗ action

(u, v, z, t)→ (λa1u, v, λ1z, t) (4.20a)

leads when λ1 → 0 to a degeneration where (4.18) becomes uv = zatN−a. This corresponds

to the pi all coinciding at {w1 = w2 = 0}, except the a that were located at {w0 = w2 = 0},
which remain there. There is a similar action

(u, v, z, t)→ (u, λb2v, z, λ2t) (4.20b)

fixing instead the b pi located at {w1 = w2 = 0}. More generally one can define an action

where one rescales (u, v, z′, t) → (λu, v, λz′, t), where z′ ≡ z + λit
p; this fixes one of the

points at {w2 = 0, w0 = λiw1}.
The Futaki invariants of (4.20) read respectively

Fut(ξ, λ1) =
(p+ 1)3(−p(ap+ a− 2kp+ k)− b(p− 1)(2p− 1))

81p2(−pb+ b+ kp)2
, (4.21a)

Fut(ξ, λ2) =
(p+ 1)3(b(p− 4)p+ b− k(p− 2)p)

81p(−pb+ b+ kp)2
. (4.21b)

The parenthesis in Fut(ξ, λ1) is smaller than (2p − 1)(b(1 − p) + kp); imposing that this

should be positive then gives k
b >

p−1
p , and hence k

p > 1. On the other hand, the parenthesis

in Fut(ξ, λ2) implies k
b <

p2−4p+1
p(p−2) ≡ f(p). For p > 2, f(p) < 1 and we have a contradiction.

For p = 2, we see directly that Fut(ξ, λ2) ∝ −3b < 0. So only

p = 1 (4.22)

remains. (4.21) now imply −2a+ k > 0, −2b+ k > 0 respectively. We still have the other

potential actions mentioned below (4.20), but they are in fact similar to the ones we have

already analyzed: with z → z + λit, equation (4.18) remains of the same form, but with a

replaced by the multiplicity mi of λi. So we conclude that

k < 2 min(a, b,mi) . (4.23)
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4.3 Minimally elliptic threefolds

In this section we will comment on a class of singularities which are part of the discus-

sion in the previous subsection, and have some interesting geometry: they are an elliptic

generalization of the McKay singularities.

In dimension two, elliptic singularities P are those for which the arithmetic genus

pa(P ) = 1, but there is no upper bound on the geometric genus pg(P ) [69].12 For compari-

son, rational singularities (the Du Val ADE twofolds) have pa(P ) = pg(P ) = 0 [74]. (Both

genera are topological invariants of the resolution, i.e. they can be deduced purely from its

resolution graph.) As is well known, the resolution graphs of rational double points (the

tree of intersecting CP1’s) are given by the Dynkin diagrams of type ADE. The intersection

matrix of the exceptional curves coincides with the Cartan matrix, which we can think of

as an effect of the McKay correspondence. The resolution graphs of elliptic singularities

allow for many more possibilities, and were classified by Wagreich [70] and Laufer [73].

Laufer also introduced the notion of minimally elliptic singularities, i.e. those for which

pg(P ) = 1 (which are Gorenstein [71]).13

A particularly interesting example of minimally elliptic singularities are the simply

elliptic ones (El(n) in the language of [73, 75]): the exceptional locus E is a single smooth

elliptic curve (as opposed to a tree of CP1’s for rational singularities) with self-intersection

−n, and the resolution is the total space of the (complex) line bundle OE(−n). Another

such case is provided by the cusp (Cu(n)), the resolution graph being a cycle of rational

curves (CP1’s) which intersect according to a few possible patterns.14

In dimension two the links L3 of these singularities were also studied, see e.g. [78]. For

simply elliptic singularities, L3 is an S1 bundle over T 2 (hence a Seifert manifold), whereas

for cusps it is a T 2 bundle over S1. Also, the CMs of minimally elliptic singularities were

listed by [75, 79], and [62] used this to produce an NCCR of the singularity.15

We will construct threefolds from these twofolds by lifting them, namely by adding a

single square [62]:

PTp,q,2,2 : uv + λz2t2 + zp + tq = 0 ⊂ C4 ; λ ∈ C \ {0, 1} , 1

p
+

1

q
≤ 1

2
. (4.24)

We have to treat separately the case where this inequality is saturated and the case where

it is not.

12They were introduced in [70], and are a classic field of study in singularity theory since then. See

e.g. [71, 72], or [73] and references therein.
13In this case the fundamental cycle of the resolution (topologically and analytically) coincides with the

anti-canonical divisor. The elliptic double and triple points, together with the rational double points, are

the only singularities in dimension two which are Gorenstein isolated hypersurfaces.
14See e.g. [76, section 1 & Prop. 5.3]. The analogs of minimally elliptic singularities for curves are well-

known, and correspond to singularities of modality m = 1 (i.e. those that depend on one modulus). They

can be found in [77, section 15.1].
15It is actually known how to construct CMs for all minimally elliptic singularities [76]. However, besides

the simply elliptic case and the cusp, all other singularities are of so-called wild type. In our language, we

would need to add an infinite set of CMs to produce an NCCR. This allows us to restrict our attention to

the former two cases only.
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If the inequality in (4.24) is saturated, it must be that (p, q) = (3, 6) or (4, 4): the cor-

responding twofolds are simply elliptic, while the threefolds admit the following equivalent

presentations:

PT3,6,2,2(λ) : uv + t(t− z2)(t− λz2) = 0 ⊂ C4 , λ ∈ C , (4.25a)

PT4,4,2,2(λ) : uv + tz(z − t)(z − λt) = 0 ⊂ C4 , λ ∈ C (4.25b)

which can be obtained by factorizing p(z, t) in (4.24) and redefining z, t and λ appropri-

ately. Notice that the hypersurface equations depend on a complex modulus λ, hence the

superpotential of the gauge theory obtained by having D3-branes probe PT will also depend

on it. (Superpotentials with complex moduli have appeared previously, see e.g. [80].)

If the inequality in (4.24) is not saturated, λ is unimportant (i.e. one of the two

coordinates can be shifted to reabsorb it), (p, q) > (2, 2), and the corresponding twofold is

a cusp. The threefold hypersurface is

PTp,q,2,2 : uv + (zp−2 − t2)(z2 − tq−2) = 0 ⊂ C4 ;
1

p
+

1

q
<

1

2
. (4.25c)

All these threefolds are cAm [62]:

• PT3,6,2,2(λ) is cA2. We have m+ 1 = n = 3 prime factors, so an NCCR. As we can see

by specializing the analysis in section 4.2, this singularity is however not K-stable.

• PT4,4,2,2(λ) is cA3. We have m + 1 = n = 4 prime factors, so an NCCR. Specializing

section 4.2 we see that this singularity is K-stable, with volume Vol(L5) = 32
27

1
4π

3.

We show the quiver for this singularity in figure 6. The superpotential reads

WT4,4,2,2 =
λ

2
(α1β1)2 +

1

2
(α2β2)2 − λ

2(1− λ)
(α3β3)2 − 1

1− λ
(α4β4)2 +

− α1α2β2β1 − α2α3β3β2 + α4α1β1β4 +
1

1− λ
α3α4β4β3 . (4.26)

• PTp,q,2,2 for 2(p+q) < pq is cA2 for p = 3 and cA3 for p > 3. We have m+1 = n = 3, 4

prime factors respectively, hence an NCCR, if and only if p = 3 and q > 6 is even, or

both p, q > 4 are even. This case is of complexity two; so the techniques described

in section 2.5 do not apply, and we do not know how many test configurations we

should expect. Even more worryingly, the Reeb vector would seem to be forced to

be along the only U(1) action, which gives charges (1,−1, 0, 0) to (u, v, x, y). In view

of this, we consider it unlikely that it gives rise to a Calabi-Yau threefold.

The quivers can again be constructed by using the algorithm reviewed in section 3.2.

5 Additional examples: compound D4 threefolds

So far we have found NCCRs by applying the IW algorithm of section 3.2. While this

made it fast to find them, it has limited us to finding quivers which are morally similar to

the higher-degree generalized quivers, as we commented in section 3.2.3. In this section we
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M1 = (u, f1) M2 = (u, f1f2)

M3 = (u, f1f2f3)R

f2

inc f3

u

inc

f1 inc

f4
u

Figure 6. NCCR for PT4,4,2,2(λ). Here f1 = t, f2 = z, f3 = z − t, f4 = z − λt.

break free of this limitation and explore more general cases. These are again of compound

type, but to our knowledge no algorithm of the type in 3.2 is available. We will reproduce

two examples that were recently identified in [19] by looking at the single-D3 moduli space,

strengthening those dualities.

5.1 A linear three-node quiver

Consider the threefold

p = x2 + ty2 + t2z = x2 + t(y2 + tz) = 0 . (5.1)

This singularity is not isolated: the gradient dp vanishes along the entire z axis. It is a

compound D4 singularity: for example if we intersect it with the non-generic hyperplane

y − z = 0 we get the D4 equation x2 + yt(y + t) = 0.16

It is possible to resolve the singularity crepantly: above the origin (where the singular-

ity is cD4) we get a curve CP1
1∪CP1

2. Here the label on the CP1 indicates its length. (Thus

CP1
1 is an ordinary rational curve of genus zero and self-intersection −2, whereas by CP1

2

we mean a length-two CP1, which is an instance of non-reduced scheme. For more details

see [55, 56].) Above all other points along the z axis (but the origin) the threefold is cA3;

upon resolving, we have three curves CP1
1 ∪ CP1

1 ∪ CP1
1.

There are two C∗ actions, acting on (x, y, z, t) with the charge matrix(
1 0 −2 2

0 1 4 −2

)
. (5.2)

The Reeb vector is given by a linear combination (with positive coefficients) of these two

actions, ξ = κ1ξ1 + κ2ξ2, with ξi generating the rows of (5.2). Volume minimization gives

the Reeb vector

ξ =

(
3

2
(
√

3 + 1),
1

2
(
√

3 + 3), 2
√

3, 3−
√

3

)
(5.3)

16The check with more generic hyperplanes t = f(x, y, z) is more complicated. One way to establish it

is of cD4 type is to compute the Jacobi ring C[x, y, z]/〈∂xp, ∂yp, ∂zp〉, find a minimal set of generators by

Gröbner bases methods, and compare with the generators of the Jacobi ring of the D4 singularity. We did

this by computer algebra.
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and the volume

Vol(L5) = 2a0(ξ)π3 =
π3

3
√

3
. (5.4)

We now look at K-stability. Already at an intuitive level, we see that it is not easy to

find test configurations: we can make (5.1) degenerate in various ways by making one of

its monomials disappear in the central fiber Y0, but this way we either obtain x2 + ty2 = 0

or x2 + t2z = 0, which are copies of Whitney’s umbrella, which is not normal as discussed

around (2.28), or t(y2 + tz) = 0 which is not even irreducible. To make sure there are really

no test configurations, we cause the algorithm in section 2.5, which works similar as to the

example given in that section, and confirm the absence of test configurations.17 Therefore

a SE metric exists on the base of the CY3 given by (5.1).

Since the singularity (5.1) is a cD4 threefold, it is not of the form studied in section 3.2,

which only applies to cAm threefolds, and we cannot use that algorithm. Thus in this case

we simply look for the matrix factorizations (3.5) by hand. We can take

(Φ,Ψ)4 =



x −y −t 0

ty x 0 −t
tz 0 x y

0 tz −ty x

 ,

x y t 0

−ty x 0 t

−tz 0 x −y
0 −tz ty x


 ; (5.5a)

(φ, ψ)2 =

([
x −t

y2 + tz x

]
,

[
x t

−
(
y2 + tz

)
x

])
. (5.5b)

These two MFs define two CMs, respectively N1, M2 of rank two and one, via (3.4); we then

define an algebra A via (3.7). Recall that this A is NCCR if it is Cohen-Macaulay and if

its global dimension is finite. The check of the CM property can be done by computer [81].

Showing finite global dimension is in general difficult. However, following [82], one can

argue that there exists a unique rank-four CM generator Λ such that A = EndR(Λ) is an

NCCR. Since we have found one, namely R⊕N1⊕M2, it must be that EndR(R⊕N1⊕M2)

is the NCCR we are after.18 One can now compute the relations in the quiver and the

superpotential using the prescription explained in [15] (or via the path algebra procedure

explained in [56, 83]). We get the quiver in figure 7, with superpotential

W = Tr
(
e0 α1β1 + e2

1(β1α1 + α2β2) + e2 β2α2

)
. (5.6)

This quiver was already found to correspond to the singularity (5.1) by computing the

single-D3 moduli space (3.2). The ranks N single D3
i are the ranks of the CM modules in fig-

ure 7, namely (1, 2, 1). The gauge invariants are given by [19, eq. (D.53)], and satisfy the hy-

persurface equation (5.1) upon imposing the F-terms coming from the superpotential (5.6).

17Here are some details: the kernel of (5.2) is
(−2 2 0 1

0 −2 1 1

)
; its columns give the fan of a singular toric

space with four toric divisors Di, and B is a genus-zero curve inside it whose equation reads 1+X+XY = 0

in local coordinates X ≡ ty2

x2 , Y ≡ zt
y2 , intersecting the Di in four points. The Ψi are Ψ1 = s/2, Ψ2 = t/2,

Ψ3 = −s− t/2 and Ψ4 = −(s+ t)/2, none of which have integer slope.
18We would like to thank M. Wemyss for discussions on this point.
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R N1 M2

α1 α2

β1 β2

e2e1e0

Figure 7. The proposed NCCR for R = C[x, y, z, t]/(5.1). N1 ≡ coker Ψ is a rank-two CM and

corresponds to a physical SU(2N) group, whereas M2 ≡ cokerψ is rank-one and corresponds to a

physical SU(N) group.

Marginality of the superpotential constrains the R-charges of the various fields, which

we can parameterize via

R(e1) = ∆ , R(e0) = R(e2) = 2∆ , R(αi) = R(βi) = 1−∆ . (5.7)

In terms of ∆ the central charges are given by

a(∆) =
27

8
(∆− 2)(∆− 1)∆N2 − 3

32
∆
(
51∆2 − 81∆ + 40

)
, (5.8a)

c(∆) =
27

8
(∆− 2)(∆− 1)∆N2 +

1

32
∆(9(27− 17∆)∆− 110) . (5.8b)

As expected [26], they are equal at large N . Maximizing a with respect to ∆ we obtain the

fixed-point value ∆∗ = 1
3(3 −

√
3), where a attains the value a = 3

4

√
3N2 + O(N0). This

means the dual L5 has an SE metric with volume

Vol(L5) =
aN=4 SYM

a
Vol(S5) =

N2

4a(∆∗)
π3 =

π3

3
√

3
, (5.9)

matching (5.4).

5.2 Laufer degeneration

We now consider the singularity

x2 + y3 + z2t = 0 . (5.10)

It has featured recently in [19], and is a degeneration of the Laufer singularity (5.18) we

will consider in the next section.

It has two C∗ actions, with a charge matrix we gave back in (2.29), on the coordinates

(x, y, z, t). The Reeb vector that minimizes the volume is given by

ξUV-L =

(
3

10
(
√

19 + 7),
1

5
(
√

19 + 7),
1

2
(
√

19 + 1),
2

5
(8−

√
19)

)
, (5.11)

leading to

Vol(L5) =
1

243

(
19
√

19− 28
)
π3 . (5.12)

The counting of test configurations was performed already in section 2.5 to illustrate

the general procedure; it was concluded there that none are necessary. Thus (5.10) gives

rise to a Calabi-Yau threefold.
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R N
β

α
e1

ε1

e0

Figure 8. The NCCR of R = C[x, y, z, t]/(5.10). N is a rank-two CM (corresponding to an

SU(2N) gauge group), which can be obtained from the matrix factorization in (5.13).

We now look for the quiver by using matrix factorizations. This can be done using

techniques discussed in [55, 56],19 and leads to

(Φ,Ψ)4 =



x −z −y 0

tz x 0 −y
y2 0 x z

0 y2 −tz x

 ,

x z y 0

−tz x 0 y

−y2 0 x −z
0 −y2 tz x


 . (5.13)

As usual this defines a CM module N via (3.4), which has rank two. It turns out that

A = End(R⊕N) is already an NCCR. It leads to the quiver in figure 8, with superpotential

W = Tr
(
βe0α+ αε21β + ε1e

2
1

)
. (5.14)

Again this was already obtained in [19, section 4.2] by different methods.

As a cross-check we can again perform a-maximization. Doing so yields the IR R-

charges [19, eq. (4.14)]

R(α) = R(β) = 1−∆∗ , R(e0) = 2∆∗ , R(ε1) = ∆∗ , R(e1) = 1− ∆∗
2

(5.15)

with ∆∗ = 2
15(8−

√
19). This agrees with the earlier result (5.11), once we take into account

that the coordinates in (5.10) are the gauge invariants

x = αe1ε1β , y = αε1β , z = αe1β , t = −ε21 . (5.16)

The anomalies turn out to be

aUV-L =
1

100

(
19
√

19 + 28
)
N2 +

1064
√

19− 5857

3000
,

cUV-L =
1

100

(
19
√

19 + 28
)
N2 +

2003
√

19− 10714

6000
;

(5.17)

this a is in agreement with (5.12) via (2.16).

19The hypersurface (5.10) can be obtained as a threefold slice of the so-called universal flop of length

two [84], i.e. the sixfold X2 +UY 2 + 2V Y Z +WZ2 + (UW − V 2)T 2 = 0 ⊂ C7, by taking e.g. X = x, Y =

z, Z = y, U = t, V = 0, W = y, T = 0. (See [55, 56] for more details.) Applying the cut to the MF of

the universal flop we obtain (5.13).
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5.3 Laufer’s theory

We now turn to the Laufer singularity

x2 + y3 + z2t+ yt3 = 0 . (5.18)

The quiver was first constructed in [15], and has appeared recently in physics in [19, 55].

It has only one C∗ action, which is given by the charge matrix

(9, 6, 7, 4) . (5.19)

Given that it is complexity two, we cannot apply the method reviewed in section 2.5. It is

easy however to find some test configurations by hand. In the notation (2.22):

λ1 = (1, 0, 0, 0) , λ2 = (0, 6, 1,−2) , λ3 = (0, 0, 1, 0) , λ4 = (0, 0,−1, 2) . (5.20)

These make (5.18) degenerate respectively to y3 + z2t + yt3 = 0, x2 + z2t + yt3 = 0,

x2 + y3 + yt3 = 0, and finally to x2 + y3 + z2t = 0, which is our old friend (5.10). The

Futaki is positive for all four: from (2.25) we obtain that Fut/a0 is respectively 19
27 , 23

7 ,
1
3 , 1

21 . We do not have the general method of section 2.5 to definitely make sure our

test configurations are all that exist,20 but these preliminary checks suggest the Laufer

singularity (5.18) is a Calabi-Yau threefold.21

The matrix factorization and quiver for Laufer, similar to (5.13), is discussed at length

in [15, 55]. The quiver is the one in [19, figure 6]; it is similar to the one in figure 8, but

without the adjoint e0. The gauge invariants are still the ones in (5.16). The superpotential

can be obtained from (5.14) by adding a mass term me2
0 (and integrating out e0), as well

as a quartic deformation for ε1. This suggests the presence of an RG flow going from (5.10)

to (5.18) (similar to the one connecting C2/Z2 × C to the conifold, which served as an

illustration of test configurations back in section 2.3).

Indeed in this case there is no a-maximization to perform, since there is only one C∗

action; the αi are given directly by (5.19), and a0 is given by (2.12). From this (or (2.15a))

we read off the central charge:

aL =
567

512
N2 +O(N0) , (5.21)

whose N2 coefficient is smaller than the one in (5.17).

We remarked that λ4 in (5.20) makes the Laufer singularity degenerate to (2.29). In-

deed λ4 is one of the rows of (2.29). One might then have the impression that the general-

ized a-maximization for (5.18) is in fact the same computation as ordinary a-maximization

20Other test configurations can be obtained by embedding (5.18) in Cd for d > 4; we thank H. Süß for

suggesting some examples.
21A similar analysis can be performed for the generalization x2 + y3 + z2t+ t2n+1y = 0; however, already

for λ4 the Futaki is negative for n > 1. It would be easy to repeat the calculation (also for the NCCR) for

the model in [15, 85]. The latter is a cD4 threefold p(x, y, z, t;λ) = 0 with an isolated singularity at the

origin, and it depends on a complex modulus λ. When λ = 0, it coincides with Laufer with n = 1. However,

for λ 6= 0 it is complexity-three, and we cannot use the method of section 2.5 to check K-stability.
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for (5.10), since in both cases we vary with respect to the two U(1)’s in (2.29). This is how-

ever not the case, because in generalized a-maximization for the Laufer singularity (5.18)

we are only allowed to add λ4 with a positive coefficient ε: since the Futaki invariant is

positive, we do not lower a0 by doing this. With ordinary a-maximization for the Laufer

degeneration (5.10), we do not have this restriction, and we can in fact find a lower value

for a0 by going in the negative ε direction; this is the minimum we gave earlier in (5.11).

It is perhaps clearer to rephrase this in terms of R-charges. For the Laufer model they

read R(α) = R(β) = R(ε1) = 1
2 and R(e1) = 3

4 ; the R-charges of the gauge invariants

(x, y, z, t) then become 2
3b(9, 6, 7, 4), namely the appropriate normalization of the charge

matrix (5.19). Generalized a-maximization requires one to deform these: R(α) = R(β) ∼
1
2 − δ, R(ε1) ∼ 1

2 + δ, and R(e1) ∼ 3
4 −

δ
2 . This is in such a way that the gauge invariants

(x, y, z, t) get R-charges deformed by the test configuration λ4 = (0, 0,−1, 2). This defor-

mation of R-charges makes a smaller for positive δ. One would need to take negative δ to

make a smaller; but this is actually in contradiction with the hypothesis that the term yt3

in the chiral ring equation should go to zero in the IR.

6 Conclusions

In this paper, we have put together the techniques of non-commutative crepant resolutions

(NCCR) and K-stability. The first deals more with the complex-geometry aspect of a

singularity, while the second is a criterion for the existence of a Ricci-flat metric.

While we have found several examples where the two can be put together and hence

produce new holographic pairs, it is perhaps a little surprising that there are many more

cases where only one of the two tests succeeds.

When an NCCR exists but K-stability fails, the canonical bundle is trivial and a

quiver can be found, but there is no Ricci-flat metric. In fact in type IIB the general

analysis of Minkowski flux vacua [86] requires a complex structure (or more generally an

odd generalized complex structure) with trivial canonical bundle, but not necessarily a

compatible Kähler structure or a Ricci-flat metric. It might be that these singularities can

then be used for holographic dualities involving fluxes; it would be rather interesting to

explore this further.

On the other hand, when K-stability succeeds but an NCCR does not exist, the situ-

ation is more puzzling. We have examined a more permissive version of NCCR which has

been proposed in the mathematical literature, called maximal modification algebra (MMA),

and unfortunately we have found that it does not produce SCFTs. So there appears to

be no way to produce a physical quiver. One of the roles of a quiver in string theory is

to describe fractional branes, but in cases without NCCRs there are also no crepant res-

olutions; perhaps fractional branes can only be defined when a crepant resolution exists.

Another role of the quiver, however, is to produce SCFT duals to the Ricci-flat metric.

Either there is a secret obstruction for some Calabi-Yau’s to make sense in string theory,

or for some singularities the SCFT is in fact non-Lagrangian. Clearly this is another point

that requires more investigation in the future.
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It would also be interesting to extend this paper to three-dimensional N = 2 theories.

K-stability techniques work pretty much in the same way. However, some of the results

about NCCRs do change across dimensions; for example, an NCCR implies the existence

of a crepant resolution only in dimension three. So the physical interpretation of an NCCR

for M2-branes probing a fourfold might require further work before proceeding.

As we mentioned in section 2.4, the idea of K-stability seems to have a natural-enough

field theory interpretation [11], in terms of degenerations of the chiral ring, which gives a

concrete way of checking for emergent IR symmetries. A variant of this idea has already

been considered beyond holography in [34], where terms in the superpotentials are dropped

in the IR directly, without a direct reference to a C∗ action. It would be interesting

to compare the two procedures, and more broadly to see how well K-stability does in

supersymmetric theories that do not have a string theory origin. Another way that the

field theory interpretation might have an interesting interplay with geometry is in trying

to restrict the number of test configurations that one has to check; [87] recently tried to

use the field theory interpretation to achieve this, and it might be interesting to see if there

is any contact with the complexity-one procedure reviewed in section 2.5.

Finally there are a few obvious extensions of our methods to more general singularities.

One direction is to consider complete intersection Calabi-Yau’s (CICY), namely n equations

in C3+n, rather than the hypersurface (n = 1) case we have considered here. The extension

of the K-stability techniques is straightforward (indeed some cases already appeared in [87]);

moreover, the theory of matrix factorizations for CICYs exists already [88, 89].
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A Maximal modification algebras

We have seen in section 3.2 that a cAm singularity admits an NCCR if and only if (3.9)

applies with n = m + 1. If n 6= m + 1 the quiver in figure 2 does not provide an NCCR,
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f can be factored

into primes f1 · · · fn
(with n 6= 1)?

n
?
= m+ 1

Ru v

z

t

“trivial”

MMA:

uv + f(z, t) = 0,

uv = vu etc.

yes

no

NCCR; quiver as in figure 2

MMA; quiver as in figure 2

yes

no

Figure 9. The various possibilities given the cAm threefold uv + f(z, t) = 0.

but rather a so-called maximal modification algebra (MMA) [90, 91]. We will not need the

precise definition of this object; suffice it to say that it is the non-commutative counterpart

of a Q-factorial terminalization, i.e. a birational morphism Ỹ 99K Y where Ỹ has at most

Q-factorial terminal singularities, which as we mentioned in the main text do not admit

crepant resolutions.22

MMAs can also be used to construct a quiver in the case where f does not factor at all.

Indeed, for cAm isolated singularities, f being irreducible is equivalent to the absence of a

nontrivial (ordinary) crepant resolution Ỹ 99K Y , to the singular ring R being Q-factorial,

with MMA given by A ≡ EndR(M) (where M is a so-called maximally modifying R-module

— as opposed to CM R-module, as is the case for NCCRs) [91, Prop. 5.1]. The MMA

is trivially obtained by presenting R itself as a quiver with relations (see e.g. the bottom

quiver in the MMA “hierarchy” of [91, section 5.1]). The arrows are the generators of the

polynomial ring C[u, v, z, t], subject to the hypersurface equation and the commutativity

relations (e.g. uv = vu, and so on). However these relations cannot be integrated to a

superpotential (given there are more relations than arrows).23

We summarize the various possibilities for singular threefolds of the form uv+f(z, t) =

0 in the workflow 9. Given a cAm threefold singularity uv + f = 0 with factored f , its

22In dimension three and over C the existence of an NCCR A = EndR(R ⊕
⊕

iMi) is equivalent to

the existence of a crepant resolution Ỹ 99K Y = SpecR [14, Thm. 6.6.3]. The (singular) stable category

CM(A) of CMs over A [60] being zero means geometrical smoothness; the Cohen-Macaulay property, i.e. A ∈
CM(R), is instead the homological counterpart of crepancy. The existence of an MMA A is equivalent to the

existence of a Q-factorial terminalization. This means that there can be points yi on Y which are isolated

hypersurface singularities, namely the localization OY,yi of the structure sheaf of Y at the (Zariski-closed

point) yi is a hypersurface. “Q-factorial” means that if D is a Weil divisor, then nD is Cartier for some

n ∈ N. The singular category CM(A) is now rigid-free (as opposed to zero), which is the homological analog

of smoothness. (An object a in a triangulated category T with shift auto-equivalence [ ] is said to be rigid

if HomT (a, a[1]) = 0; T is said to be rigid-free if every rigid object is isomorphic to the zero object.)
23We would like to thank M. Wemyss for discussions on this point.
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quiver is given by figure 2 with notation as in (3.10). Each vertex corresponds to an SU(N)

gauge group, each arrow between two vertices to a bifundamental chiral multiplet, each

loop at a given vertex to an adjoint chiral multiplet. The F-terms of the superpotential are

given by the abstract relations satisfied by the arrows, which are obtained as prescribed in

section 3.2.

We note in passing that the single-D3 moduli space of the field theory discussed

around (3.2) can also be recovered from the quiver, via a geometric invariant theory pro-

cedure (see e.g. [55, section 4.1 & 4.2]).

As an example, we will now discuss the MMA for YY-II(3, 3),

uv + z3 + zt3 = 0 , (A.1)

which is an E7 threefold (in the terminology introduced below (4.14)). The quiver is again

the one in figure 3. The superpotential reads:

WYY-II(3,3) = Tr

(
1

4
e4

0 +
1

4
e4

1 + e0

[
(α1β1)2 − α2β2

]
− e1

[
(β1α1)2 − β2α2

])
. (A.2)

The superpotential constraint fixes the R-charges to be R(ei) = 1
2 , R(β1) = 3

4 − R(α1),

R(β2) = 3
2 −R(α2). This yields the following gauge coupling beta functions

βR = βM1 = −3

8
N < 0 . (A.3)

Therefore the UV model is expected to flow, but the existence of an IR fixed point cannot

be ascertained with certainty. (Said differently, if one assumes the existence of a fixed

point and runs a-maximization, one finds the R-charges R(α1) = R(β1) = 3
8 , and R(α2) =

R(β2) = 3
4 . However, for these values, the a and c central charges do not agree at large N ,

which is impossible for a superconformal quiver [26].)

This example demonstrates then that the presence of an MMA does not guarantee an

SCFT, as expected. We have examined other MMAs (see footnote 11) with similar results.

B NCCRs for orbifolds

In this appendix we show how NCCRs can be used to obtain quiver gauge theories for

some orbifold theories. While this can be done in principle with the Douglas-Moore pre-

scription [66], the NCCR technique can sometimes make it easier to find the relations, and

hence the superpotential. We warm up with the well-known example C3/Z2×Z2, and then

consider a more complicated C3/Γ, with Γ finite and non-abelian in SL(3,C). (Actually

the quiver and superpotential have already been constructed for all finite Γ < SO(3) [92].)

Notice that, for all finite Γ’s in SL(3,C) (which are classified [93]), a Calabi-Yau metric

is guaranteed to exist on C3/Γ, since the orbifold respects the SU(3) special holonomy.

(Indeed the existence of a SE metric on the link can be confirmed by checking K-stability.)
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M1 M2

M3R

α2

β1 α3

β4

δ2

δ1

β2

α1 β3

α4

γ2

γ1

Figure 10. The NCCR of R = C[x, y, z, t]/(B.1).

B.1 The C3/Z2 × Z2 orbifold

The (orbifold-invariant) hypersurface equation is given in this case by

t2 + xyz = 0 . (B.1)

The threefold is again of cD4 type, and is moreover toric. A K-stability analysis would just

confirm that it is a Calabi-Yau threefold, as expected by the orbifold construction.

The NCCR was constructed in [90, Ex. 6.26], and has made an earlier appearance in

physics in [38, section 5]. It is given by (3.7) with three rank-one CMs:

3⊕
i=1

Mi ≡ (t, x)⊕ (t, y)⊕ (t, z) . (B.2)

These give rise to the familiar quiver in figure 10, with maps reading

α1 = β1 = α3 = β3 = x , α2 = β2 = α4 = β4 = y , γ1 = δ1 = γ2 = δ2 = z . (B.3)

The relations are generated by commutativity of these maps and can be integrated to the

following superpotential:

W = Tr (β2β1γ1 − γ1α3α4 + α3γ2α2 − α2δ1α1 +

+ δ1β4β3 − β3β2δ2 − β1β4γ2 + α1δ2α4) . (B.4)

B.2 A non-abelian SL(3,C) orbifold

We now look at a more challenging example. Consider the orbifold of C3 by

D2·3 =

〈
diag(ε, ε2, 1) ,

0 1 0

1 0 0

0 0 −1

〉 < SL(3,C) ; ε3 = 1 . (B.5)

This is the dihedral group of order six. The (orbifold-invariant) hypersurface equation is

given by

t2 − z(x2 − 4y3) = 0 . (B.6)
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R M1

N2

β3

α1

β2

α3

β1

α2

e2ε2

N1 N2R
σ1

ρ2ρ1

σ2

e0 e2

Seiberg duality:

quiver mutation

Figure 11. The NCCR of R = C[x, y, z, t]/(B.6) before and after Seiberg duality (i.e. categorical

quiver mutation [82]) performed at node M1. The Mi are rank-one CMs (and correspond to physical

SU(N) groups), whereas the Ni are rank-two (and correspond to SU(2N)).

The threefold is again of cD4 type, as can easily be verified. The NCCR [82, Ex. 7.7]

gives rise to the quiver in figure 11, where as a curiosity we have also added a Seiberg-dual

phase. The superpotential W (W ′) in the left (right) frame of figure 11, i.e. before (after)

Seiberg duality, is given by

W = Tr
(
β1β3β2 + α2α3α1 − ε22β1α1 − ε22α2β2 + 2ε2e

2
2

)
, (B.7a)

W ′ = Tr
(
−σ1e0ρ1 − ρ2e

2
2σ2 + ρ2σ2ρ2σ2σ1ρ1

)
. (B.7b)

The maps can be worked out by looking at the ideals defining the CMs (see [92, section

3.3]). For example, the rank-one CM M1 = (t, z) is associated to the MF (φ, ψ)2 with

ψ =
[

t z
x2−4y3 t

]
(i.e. M1 = cokerψ).
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