
Expert Systems With Applications 249 (2024) 123600

A
0
n

Contents lists available at ScienceDirect

Expert Systems With Applications

journal homepage: www.elsevier.com/locate/eswa

Ticino: A multi-modal remote sensing dataset for semantic segmentation
Mirko Paolo Barbato a,∗, Flavio Piccoli a, Paolo Napoletano a,b

a Department of Informatics, Systems and Communication, University of Milano-Bicocca, Viale Sarca 336, Milano, 20126, Italy
b Istituto Nazionale di Fisica Nucleare (INFN), Milano, 20126, Italy

A R T I C L E I N F O

Keywords:
Multi-modal remote sensing
Image semantic segmentation
Deep learning
Multi-modal dataset
Data fusion
Hyperspectral imaging

A B S T R A C T

Multi-modal remote sensing (RS) involves the fusion of data from multiple sensors, such as RGB, Multispectral,
Hyperspectral, Light Detection and Ranging, Synthetic Aperture Radar, etc., each capturing unique information
across different regions of the electromagnetic spectrum. The fusion of different modalities can provide
complementary information, allowing for a comprehensive understanding of the Earth’s surface.

Multi-modal RS image segmentation leverages various RS modalities to achieve pixel-level semantics
classification. While deep learning has demonstrated promise in this domain, the limited availability of labeled
multi-modal data poses a constraint on leveraging data-intensive techniques like deep learning to their full
potential. To address this gap, we present Ticino, a novel multi-modal remote sensing dataset tailored for
semantic segmentation.

Ticino includes five modalities, including RGB, Digital Terrain Model, Panchromatic, and Hyperspectral
images within the visual-near and short-wave infrared spectrum. Specifically annotated for Land Cover and
Soil Agricultural Use, the dataset serves as a valuable resource for researchers in the field. Additionally, we
conduct a comparative analysis, comparing single-modality with multi-modality deep learning techniques and
evaluating the effectiveness of early fusion versus middle fusion approaches.

This work aims to facilitate future research efforts in the domain by providing a robust benchmark dataset
and insights into the effectiveness of various segmentation approaches.
1. Introduction

Remote Sensing (RS) is one of the most significant sources of infor-
mation for the understanding of the land and its properties. Utilizing
sensors mounted on drones, aircraft, or satellites, RS captures images of
the Earth’s surface from a distance. This process enables the monitoring
and study of our planet’s environment and its changes over time
through advanced computer vision techniques.

The evolution of RS technologies has granted us access to di-
verse types of data, conveying rich and complementary information
such as spectral data (Multispectral - MS and Hyperspectral - HS),
Light Detection And Ranging (LiDAR), and Synthetic Aperture Radar
(SAR). This variety underscores the complexity of Earth’s components,
facilitating improved investigations and resource management. For
instance, spectral information is crucial for identifying specific ma-
terials, while terrain elevation data provides essential morphological
insights. Although these data types individually offer new perspectives
and capabilities, their full potential is realized when combined, thus
optimizing the information obtained from each and compensating for
any single source limitations.
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In computer vision, the development of deep neural networks has
not only demonstrated exceptional performance in tasks like classifica-
tion, segmentation, and parameter regression but has also enabled the
advancement of multi-modal approaches. These techniques optimally
combine information from different modalities to extract the most
valuable features for the task at hand.

In RS, semantic segmentation is a primary and essential analysis
used in a wide array of applications, including autonomous driving,
robot navigation, industrial inspection, saliency object detection, agri-
cultural sciences, medical imaging analysis, and remote sensing itself
(Lateef & Ruichek, 2019). This technique involves classifying each
pixel in an image, resulting in a map that groups pixels into areas
of the same semantic class (Yuan, Shi, & Gu, 2021). In RS, seman-
tic segmentation plays a significant role in fields such as precision
farming, environmental monitoring, spatial planning, and management
of ecosystem-oriented natural resources (Blaschke, 2010; Dechesne,
Mallet, Le Bris, & Gouet-Brunet, 2017; Jadhav & Singh, 2018; Kussul,
Lavreniuk, Skakun, & Shelestov, 2017; Rottensteiner et al., 2012).

Despite the advancements in multi-modal approaches (Palhamkhani
et al., 2023), their application in RS semantic segmentation is not yet
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fully explored. RS semantic segmentation could greatly benefit from
data types like hyperspectral images, which, despite lower spatial reso-
lution, offer superior discrimination power due to their higher spectral
resolution and band count (Barbato, Napoletano, Piccoli, & Schettini,
2022). However, the lack of multi-modal datasets, particularly those
incorporating high spectral resolution data like hyperspectral images,
is a significant challenge. This scarcity, mainly caused by difficulties in
creating comprehensive semantic segmentation labelings and ensuring
compatibility between different modalities, limits the full potential of
multi-modal approaches and the technologies available to us. Nonethe-
less, the literature on RS data fusion has seen a significant increase in
recent years, focusing on both homogeneous and heterogeneous fusion
of complementary information, thus highlighting the importance of
advancing research in this area (Li et al., 2022; Loncan et al., 2015;
Vivone, Garzelli, Xu, Liao, & Chanussot, 2022).

In this research, we present the Ticino dataset, a novel satellite
multi-modal remote sensing dataset specifically tailored for seman-
tic segmentation tasks. This dataset fuses color, spatial, spectral, and
morphological information across five modalities: RGB, Digital Terrain
Model (DTM), Panchromatic, and Hyperspectral (HS) images. It spans
the visual-near infrared and short wavelength infrared portions of the
electromagnetic spectrum. With valuable spatial and color information
from the RGB modality and effective material discrimination from the
hyperspectral components, the dataset enhances our understanding of
soil morphology. Notably, it includes labeled data for Land Cover and
Soil Agricultural Use, covering an area of about 1332 km2. To the best
of our knowledge, it is the largest and most diverse multi-modal dataset
for RS semantic segmentation.

We have conducted a comparative analysis to evaluate single-
modality and multi-modality deep learning techniques, as well as
early and middle fusion methodologies. Our findings demonstrate the
superiority of multi-modal approaches, with middle fusion showing the
most significant improvement in performance.

The main contributions and findings of this research related to
remote sensing and semantic segmentation are:

• a multi-modal Remote Sensing dataset that combines RGB, Hy-
perspectral, and Digital Terrain Model, with both high spatial and
high spectral resolutions;

• a baseline comparison of single- vs. multi-modality deep learning
techniques, as well as early vs. middle data fusion techniques;

• empirical evidence that multi-modality enhances semantic seg-
mentation accuracy compared to single modalities;

• empirical evidence that multi-modality is more effective when
employing a middle fusion strategy;

• empirical evidence of the particular effectiveness of hyperspectral
data in Soil Agricultural Use.

2. State of the art

In this section, we explore two critical aspects: the existing remote
sensing (RS) datasets for semantic segmentation and the advancements
in semantic segmentation methods within computer vision and RS. The
first part highlights the lack of comprehensive RS multi-modal datasets,
especially those incorporating hyperspectral (HS) data. The second part
focuses on showing how even with a scarcity of multi-modal datasets
properly built for segmentation, this field is still one of the most studied
and challenging.

2.1. RS datasets for semantic segmentation

Despite the proliferation of RS data in terms of quantity, modality,
and diversity, there is a notable disparity in dataset quality for semantic
segmentation compared to other tasks, such as classification (Santiago,
Schenkel, Gross, & Middelmann, 2020). The most significant datasets
for RS semantic segmentation are categorized based on the type of data
2

they encompass.
Three bands datasets. Focusing on RGB images, Deepglobe (Demir
et al., 2018) is a notable dataset that covers an area of 1716.9 km2,
including Thailand, Indonesia, and India. This dataset includes labeling
for land cover and land use segmentation. The TorontoCity dataset
(Wang et al., 2016), which combines RGB and LiDAR information, is
geared toward building footprints and road segmentation. It covers an
area of 712.5 km2. Other datasets like the SpaceNet variant (Mohanty
et al., 2020) (only RGB components of the standard SpaceNet dataset
(Van Etten, Lindenbaum, & Bacastow, 2018)) and the INRIA aerial
dataset (Maggiori, Tarabalka, Charpiat, & Alliez, 2017) focus primarily
on binary segmentation of buildings and non-buildings. Another RGB
dataset is the Urban dataset from the Campinas region in Brazil (dos
Santos et al., 2014). This dataset focuses on dividing urban and non-
urban areas. The same article also presents the Coffee dataset (dos
Santos et al., 2014) that considers images of 3 bands using the NIR-R-G
part of the spectrum instead of the classical RGB. The dataset focuses
on the detection of manually segmented coffee crops.

Multispectral datasets. These datasets incorporate multispectral modal-
ity either alone or in combination with other data types. They are
crucial for extracting detailed information from the spectrum. The
Zurich Summer dataset (Volpi & Ferrari, 2015), for example, includes
four bands in the NIR-RGB part of the spectrum and a spatial resolution
of 0.61 m per pixel achieved after the application of a pansharpening
technique. The labeling represents eight urban classes.

Multi-modal datasets with multispectral information. SpaceNet (Van Et-
ten et al., 2018; Yuan et al., 2021), which consists of images from
different sensors including WorldView-1, WorldView-2, WorldView-3,
WorldView-4, and GeoEye-1 (Arora, 2018), represents a key example
of this category. Each sensor presents a variety of data and the most
complementary between them is the WorldView-3 which includes a
panchromatic image and 8 multispectral data, respectively in the VNIR
and SWIR portions of the spectrum. It covers different cities and
presents various kinds of segmentation depending on the type of task
aimed.

Other multi-modal datasets are 2D Semantic Labeling Potsdam and
Vaihingen datasets (Isp, 2023) that present both multispectral/RGB and
DSM information with heights of the surface for each pixel. Potsdam
also involves more versions of the same ground tiles. It includes two
three-band images in the RGB or the IR-RG part of the spectrum and
a third multispectral image of 4 bands with IR-RGB information that
comprehends all the spectral information of the dataset. Vaihingen
instead presents only RGB information when it comes to the spectrum.
The two datasets present a labeling that includes six classes.

Another multi-source dataset that includes multispectral informa-
tion is the DSTL dataset (Dst, 2023). It includes an RGB image from
Deepglobe (Demir et al., 2018), a one-band panchromatic image, an
eight-band multispectral image with NIR and visible information, and
an eight-band multispectral image in the short wavelengths part of the
spectrum. The dataset is built to identify 10 classes.

Hyperspectral datasets. Characterized by their high spectral resolution,
hyperspectral datasets like Indian Pines (Baumgardner, Biehl, & Land-
grebe, 2015), Salinas, SalinasA (M Graña & Veganzons, 2020), Pavia
Center, and Pavia University (M Graña & Veganzons, 2020) are limited
in data quantity and diversity, which affects their applicability for
modern deep learning techniques. These datasets are primarily used for
more specialized studies.

The Indian Pines dataset acquired by the AVIRIS sensor consists
of 145 × 145 pixels and 224 spectral bands in the 400–2500 nm
wavelength range. The final number of bands is reduced to 200 by
removing the region of water absorption bands. The available ground
truth includes sixteen classes, mainly regarding the distribution of
different agricultural crops.

Salinas and SalinasA have been acquired by the AVIRIS sensor

as well, and present 224 bands in the 400–2500 nm portion of the
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Table 1
Comparison between state-of-the-art datasets for RS semantic segmentation and our Ticino dataset. Note that we present two versions of the dataset. One in the original scale and
one at higher resolution obtained through the cleaning procedure and the pansharpening processing described in Section 3.2.

Dataset Sensor Modalities Area [km2] # images Image size Res. [m/pixel] # bands # classes

Deepglobe (Demir et al.,
2018)

Airborne RGB 1716.9 1 156 2448 × 2448 0.50 3 7

TorontoCity (Wang et al.,
2016)

Airborne RGB/LIDAR 712.5 – – 0.10 3/1 3

SpaceNet variant (Mohanty
et al., 2020)

Satellite RGB 3254a 401 755 300 × 300 0.3 3 2

INRIA (Maggiori et al., 2017) Airborne RGB 810 360 1500 × 1550 0.30 3 2

Urban dataset (dos Santos
et al., 2014)

Airborne RGB 3.46a 9 1000 × 1000 0.62 3 2

Coffee dataset (dos Santos
et al., 2014)

Airborne NIR-RG 56.25a 9 1000 × 1000 2.50 3 3

Zurich Summer (Volpi &
Ferrari, 2015)

Satellite MSI NIR-RGB 8.56 20 1000 × 1150 0.61 4 8

Indian Pines (M Graña &
Veganzons, 2020)

Airborne HSI VNIR-SWIR 0.29a 1 145 × 145 3.70 200 16

Salinas (M Graña &
Veganzons, 2020)

Airborne HSI VNIR-SWIR 1.52a 1 512 × 217 3.70 204 16

SalinasA (M Graña &
Veganzons, 2020)

Airborne HSI VNIR-SWIR 0.10a 1 86 × 83 3.70 204 6

Pavia Center (M Graña &
Veganzons, 2020)

Airborne HSI Visible 2.03a 1 1096 × 1096 1.30 102 9

Pavia University (M Graña &
Veganzons, 2020)

Airborne HSI Visible 0.63a 1 610 × 610 1.30 103 9

SpaceNet Satellite PAN 3011 24 586 650 × 650 0.31 1 2
(Van Etten et al., 2018) MSI VNIR 1.24 (orig.) 8
(Arora, 2018; Yuan et al.,
2021)

MSI SWIR 1.24 (orig.) 8

ISPRS Potsdam Airborne MSI IR-RGB 3.42a 38 6000 × 6000 0.05 4 6
(Isp, 2023; Yuan et al., 2021) PAN 0.05 1

DSM 0.05 1

ISPRS Vaihingen Airborne MSI IR-RGB 1.34a 33 2500 × 2000 0.09 4 6
(Isp, 2023; Yuan et al., 2021) PAN 0.09 1

DSM 0.09 1

DSTL (Dst, 2023) Airborne RGB 1 57 – 0.50 3 10
PAN 0.31 1
MSI VNIR 1.24 8
MSI SWIR 7.50 8

Ticino/Our Satellite RGB 1331.721 1 502 256 × 362 1.86-2.64 3 8/10
PAN 96 × 192 5 1
HSI VNIR 16 × 32 (96 × 192) 30 (5) 63 (60)
HSI SWIR 16 × 32 (96 × 192) 30 (5) 171 (122)
DTM 101 × 203 5 1

a Computed using the other information in the table.
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spectrum, like Indian Pines. The final datasets have 204 bands because
the 20 noisy channels in the region of water absorption have been
discarded. The two images have a size, respectively, of 512 × 217 and
6 × 83 pixels. In particular, the SalinasA dataset represents a subset
f the Salinas dataset. Consequently, the labeling is different between
he two datasets. Salinas is annotated with 16 classes representing the
egion of cultures, while SalinasA is annotated with six classes.

Pavia Center and Pavia University datasets have been acquired
hrough the ROSIS sensor and have, respectively, a resolution of
096 × 1096 and 610 × 610. Images present 102 and 103 channels. In
oth cases, a portion of the samples has been discarded because of miss-
ng information, resulting in two images, respectively, of 1096 × 715
nd 610 × 340 pixels. The labeling includes nine classes for both
atasets, representing land cover.

In the context of RS semantic segmentation, leveraging various
odalities can enhance performance significantly (Li et al., 2022).
owever, the prevalent challenge of generating comprehensive seman-

ic labelings (Barbato et al., 2022) often results in existing remote
ensing datasets for semantic segmentation being limited to single
3

c

odalities. Table 1 summarizes the characteristics of each dataset in
ore detail. These factors underscore the necessity for developing a
ataset that fully harnesses the benefits of multi-modal approaches, par-
icularly utilizing more discriminative data sources. The Ticino dataset
ntroduced in this study has been specifically designed to overcome
hese challenges.

.2. Deep learning multi-modal approaches for semantic segmentation

Multi-modal approaches are increasingly prevalent across various
ields, including medical analysis, language translation, image annota-
ion, and RS monitoring (Gao, Li, Chen, & Zhang, 2020; Jiang, Ma, Xiao,
hao, & Guo, 2021). These approaches involve combining different data
ources to leverage the unique advantages of each type, enhancing the
verall analysis. In the context of semantic segmentation, the fusion
f modalities depends on the dataset, chosen model, and the fusion
echnique applied. Convolutional Neural Networks (CNNs) and, more
ecently, Transformer architectures are the predominant models in
omputer vision for analyzing images.
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In remote sensing, fusion techniques exploit the benefits of di-
verse and complementary modalities. While deep learning, particularly
Transformer architectures, has emerged as a significant choice (Li et al.,
2022), their application in semantic segmentation of RS images remains
relatively underexplored (Aleissaee et al., 2023). These fusions can
be categorized into heterogeneous and homogeneous types (Li et al.,
2022). Heterogeneous fusions involve combining modalities with differ-
ent meanings, such as hyperspectral, LiDAR, and DTM. Homogeneous
fusions, such as spatio-temporal fusion and pansharpening (Li et al.,
2022; Loncan et al., 2015; Vivone et al., 2022), combine modalities of
the same type. The latter is often used for upscaling multispectral im-
ages and recently for enhancing the spatial resolution of hyperspectral
data to match the higher resolution of the panchromatic component.

Typically, with CNNs, the methods can be divided into 3 groups:
early fusion (or data-level), middle fusion, and late fusion (Li, Zhang,
Cheng, Huang, & Tan, 2017). The main difference lies in the stage of
the CNN model where the modalities are concatenated. Early fusion
combines sources at the beginning, late fusion merges high-level fea-
tures from each modality independently at the end, and middle fusion
represents an intermediary approach.

With the rise of Transformers, new architectures designed for fusion
have been explored, leading to various strategies (Xu, Zhu, & Clifton,
2023). For instance, the fusion of the tokens, performed by summa-
tion or concatenation, can characterize the multi-modal approaches
with Transformers (Gavrilyuk, Sanford, Javan, & Snoek, 2020; Parida,
Srivastava, & Sharma, 2022). Following the concatenation approach,
hierarchical attention represents another example of multi-modal tech-
niques with transformers. It consists of concatenating and splitting the
tokens before or after the attention mechanism.

The hierarchical attention can be categorized into two types based
on the application order of the concatenation and splitting operations
(from multi-stream to one-stream or vice versa) (Lin et al., 2020).
Another strategy modifies the structure of the self-attention mechanism.
One common approach among these strategies is the Cross Attention
(Lu, Batra, Parikh, & Lee, 2019), which exchanges the query of one
modality with another during the computation of the traditional at-
tention mechanism. Finally, combinations of these techniques used
concatenation and Cross Attention together (Hasan et al., 2021; Zhan
et al., 2021).

In the realm of semantic segmentation for land use and agriculture
applications, the incorporation of point cloud analysis methodologies,
as proposed by Xie, Wang, Lu et al. (2023) and Xie, Wang, Wang
et al. (2023), adds a valuable dimension to enhance the precision
and contextual understanding of the spatial features involved in the
segmentation process.

3. Materials and methods

In this section, we describe the data collected and the methods
used to evaluate the advantages of multi-modal approaches in this
context. This section is organized into two subsections. The first one
describes the development and the characteristics of our novel multi-
modal remote sensing dataset. The second one explains the general
methodology used in our experiments to test the usefulness of each
modality.

3.1. Data collection

The Ticino multi-modal satellite dataset comprises data collected
from various sources, specifically:

1. RGB data from Microsoft Bing Maps (mic, 2023) (see Fig. 1(a));
2. panchromatic and hyperspectral data from ASI PRISMA (pri,

2023) (see Fig. 1(b), (c) and (d));
3. digital terrain model (DTM) of the area considered from Geopor-
4

tal of Lombardia Region (geo, 2023) (see Fig. 1(e)).
The dataset also includes two different pixel-level labelings for
semantic segmentation:

1. Land Cover collected from OpenStreetMaps (ope, 2023) and
Italian Agenzie delle Entrate (age, 2023) (see Fig. 1(f));

2. Soil Agricultural Use collected from the Geoportal of Lombardia
Region (geo, 2023) (see Fig. 1(g)).

The proposed dataset considers a territory around the Ticino river
in the south of Milan and has an extension of 1332 km2. This area
has been chosen for its heterogeneity in terms of terrain composition
and geomorphological variety. To support data-driven methods such as
deep learning, we divided the original dataset in 1808 smaller tiles.
Among them, 306 have been discarded as they presented a number of
labeled pixels inferior to 1%. The final dataset is therefore composed of
1502 georeferenced tiles. Each tile consists of five data sources and two
pixel-level labelings. Fig. 1(a–g) show the original images. Fig. 1(h–n)
show two examples of tiles extracted from the dataset. Fig. 1(o–u) show
the same tiles after a post-processing operation known in the state of
the art as pansharpening (Zini, Barbato, Piccoli, & Napoletano, 2023),
that is used for increasing the spatial resolution of the hyperspectral
data with the auxilium of the panchromatic information. The dataset
has been split into training, validation, and test in percentages of
70%, 15%, and 15%, resulting in 1051 images for training, 225 for
validation, and 226 for testing.

RGB data. Fig. 1(a) shows the RGB data included in our dataset. It
has been collected from the Microsoft Bing Map service (mic, 2023)
through an open-source tool.1 These images present a different horizon-
tal and vertical resolution. Specifically, they have a spatial resolution of
1.86 m/px for the vertical dimension and 2.64 m/px for the horizontal
one. The RGB source is the data with the highest spatial resolution in
the dataset. Each RGB image tile has a dimension of about 256 × 362
pixels.

Panchromatic data. Fig. 1(b) shows the panchromatic (PAN) data col-
lected from the ASI PRISMA satellite (pri, 2023). PAN is a grey-level
image in the visible part of the spectrum (400–700 nm). It has the
highest spatial resolution of the dataset, namely 5 m/px. The original
PRISMA and RGB data from Microsoft Bing presented a problem of geo-
reference disalignment that we solved using the approach described in
Appendix A.1. The final PAN tiles have a resolution of about 96 × 192
pixels.

Hyperspectral data. Visual and Near-Infrared (VNIR) and Short-Wave
Infrared (SWIR) cubes (Fig. 1(c) and (d)) present a resolution of 30
m/px (the lowest spatial resolution of the dataset) and a spectral
resolution of less than 12 nm. This data has been collected from ASI
PRISMA satellite (pri, 2023) with the level-2D pre-processing, which is
the highest level distributed and solves most of the acquisition problems
related to the atmosphere, co-registration, etc. The VNIR data includes
the spectral information of the visible and near-infrared parts of the
spectrum, from 400 to 1010 nm. The VNIR cubes present 63 bands out
of the original 66, as three bands did not contain valuable information.
The SWIR component of the dataset represents the information in the
short wavelength infrared part of the spectrum, from 920 to 2500 nm,
with a portion of the spectrum that overlaps the VNIR information. The
SWIR cubes contain 173 bands, but even in this case, the last two have
been discarded due to the absence of valuable information. For each
sample in the dataset, the hyperspectral cubes are image tiles of around
16 × 32 pixels. The same alignment transformation applied on the PAN
image has been applied to align the VNIR and SWIR data. Moreover,
we distribute a second version of the dataset where the hyperspectral
cubes have been enhanced to reach the same spatial resolution of the
PAN image using a pansharpening algorithm detailed in Section 3.1.1.
The resulting hyperspectral images are at a spatial resolution of about
96 × 192 pixels.

1 https://github.com/dakshaau/map_tile_download.

https://github.com/dakshaau/map_tile_download
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Fig. 1. Visual representations of each modality and labeling of the entire Ticino dataset (from (a) to (g)) and two examples of tiles (one tile for each row) with the corresponding
multi-modalities (from (h) to (l)) and labelings ((m) and (n)).
Table 2
Land Cover classes of the presented Ticino dataset and image cardinality per class.

Classes Id # images

Background 0 1497
Building 1 1242
Road 2 1326
Residential 3 555
Industrial 4 216
Forest 5 675
Farmland 6 443
Water 7 169

Digital terrain model data. The last source included in our dataset is the
Digital Terrain Model (DTM). As visible in Fig. 1(e), the DTM represents
a topographic model of the bare Earth. It contains the elevation data
of the terrain in a rectangular grid. It has been collected from the
geoportal of the Lombardia region (geo, 2023). The DTM includes the
urban and extra-urban areas. The model has been obtained from the
geoportal by combining and harmonizing different sources of the data,
removing possible anomalies, and finally extracting a Triangular Irreg-
ular Network model, achieving the final DTM model of the Lombardia
region with a resolution of 5 m/px (geo, 2023). The DTM used in this
dataset presents image tiles of about 101 × 203 pixels and an elevation
that ranges from 51.86 to 124.75 m.

Land cover labeling. Fig. 1(f) shows the Land Cover segmentation. As
with the RGB data, segmentation has different vertical and horizontal
spatial resolutions of 0.68 and 0.96 m/px, respectively. The final label-
ing, which emerged from the refinement and merging process detailed
in Appendix A.3, is a composite of data from several sources. These
include Open Street Map (OSM) (ope, 2023), information from the Ital-
ian Agenzia delle Entrate (age, 2023), and additional labels that were
manually annotated. At the end of the process, the dataset categorizes
eight distinct classes: Background, Building, Road, Residential, Industrial,
Forest, Farmland, and Water. The Background class represents unlabeled
pixels. Table 2 shows the per-class cardinality in terms of number of
images, along with the class name and identification number. The class
distribution is slightly unbalanced, ranging from 169 images for the
class Water to 1242 for the class Building.

Soil Agricultural Use labeling (SAU). Fig. 1(g) shows the SAU label-
ing. This segmentation has a resolution of 20 m/px (SIA, 2023) and
it has been collected from the Geoportal of Lombardia region (geo,
2023). The labeling, after the refinements described in Appendix A.3,
5

Table 3
Soil Agricultural Use classes of the presented Ticino dataset and image cardinality per
class.

Classes Id # images

Background 0 1475
Other agricultural crops 1 380
Forage crops 2 918
Corn 3 1029
Industrial plants 4 669
Rice 5 1323
Seeds 6 177
Man-made areas 7 1175
Water bodies 8 337
Natural vegetation 9 1315

includes 10 classes: Background, Other agricultural crops, Forage crops,
Corn, Industrial plants, Rice, Seeds, Man-made areas, Water bodies, and
Natural vegetation. Other agricultural crops class indicates the not labeled
farmlands and provides discrimination from the natural vegetation that
instead describes forest, trees, and vegetation areas. Table 3 shows the
image per-class cardinality of the Soil Agricultural Use, even in this
case, along with the class name and identification number. As for Land
Cover, the class distribution is slightly unbalanced ranging from 177
for the class Seed to 1323 for the class Rice.

3.1.1. Data pre-processing
As outlined in Section 3.1, we applied a pre-processing aimed at

enhancing the quality of the hyperspectral (HS) component of our
dataset. This process involved two key steps: the removal of corrupted
bands and the enhancement of the spatial resolution of the HS data
from 30 m/px to 5 m/px. Initially, we identified and discarded HS
bands that contained no informative data. This preliminary screening
resulted in a refined dataset comprising 63 bands for the Visible and
Near-Infrared (VNIR) range and 171 bands for the Short-Wave Infrared
(SWIR) range.

In line with the methodology proposed by Zini et al. (2023), the
initial phase of the cleaning procedure targeted the corrupted bands of
VNIR and SWIR within the HS component. This process used the infor-
mation about invalid pixels described in the PRISMA documentation
(He et al., 2023; pri, 2023). Each PRISMA image, in fact, comes with
correspondent information regarding the validity of each pixel in each
band. A pixel is not valid if a problem occurs during the acquisition
phase or the PRISMA pre-processing. For each band, we compute the
number of invalid pixels. Then, bands presenting a number of invalid
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Fig. 2. Visual representation of the cleaning of the corrupted bands (first step of the pre-processing). The mean signature on each band with the removed bands from VNIR
(left) and SWIR (right) pointed out in red. The figures show that the removed bands correspond to the overlapping band between the two modalities and the water absorption
wavelengths (where the signal is almost zeroed out).
Fig. 3. Visual representation of the Panshaperning results (second step of the pre-processing). Comparison between the original hyperspectral image (band 50) on the left, and
the hyperspectral pansharpened image (band 50) on the right after GSA algorithm.
pixels above a threshold, empirically fixed to 0.001%, are removed.
The final part of VNIR is discarded, resulting in a new cube of 60
channels. The removed bands from SWIR mainly correspond to the
water absorption part of the spectrum where the information is almost
zeroed out.

In the second step, we conducted a visual inspection of each band.
This inspection resulted in the removal of the 39th band of the SWIR
component, due to the presence of visual artifacts. Consequently, the re-
fined SWIR cube comprises 122 channels. To better visualize the effect
of the cleaning procedure, Fig. 2 highlights in red the corrupted bands
that were removed from the VNIR (Fig. 2(a)) and SWIR (Fig. 2(b))
signals.

To take advantage of PRISMA data, a pansharpening operation has
been used to improve the spatial resolution of VNIR and SWIR. PRISMA
satellite provides a panchromatic image (PAN) and two hyperspectral
cubes for VNIR and SWIR information captured at the same time.
Following the results of Loncan et al. (2015) and Vivone et al. (2022)
on hyperspectral and PRISMA data pansharpening, the Gram–Schmidt
Adaptive (GSA) (Aiazzi, Baronti, & Selva, 2007) algorithm has been
selected. The pansharpening has been applied on VNIR and SWIR
concatenated in a single hyperspectral data.
6

The final result (HS↑) is a hyperspectral cube corresponding to the
fusion of the spectral information (VNIR and SWIR) and the spatial
information from the PAN data. Fig. 3 shows the 50th band of the
hyperspectral signal in its original form (Fig. 3(a)) and the same
band after the pansharpening operation through the GSA algorithm
(Fig. 3(b)). The output has a spatial resolution of 5 m/px (same as
PAN) and a total of 182 bands that correspond to the VNIR and SWIR
channels concatenated after the cleaning phase.

The final version of the dataset used in our experiments consisted
of these modalities obtained by fusing PAN with VNIR and SWIR:

• RGB with 3 bands and a resolution of 1.86/2.64 m per pixel;
• Hyperspectral with 182 bands and a resolution of 5 m per pixel

(HS↑);
• Digital Terrain Model (DTM) with 1 band and a resolution of 5 m

per pixel.

3.2. Methods

In our experiments, we have considered different combinations and
techniques of fusion for our modalities.
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For each configuration, we have tested the same neural network
model, consisting of a U-shaped architecture using the Segmenta-
tion Models PyTorch framework.2 Our approach involves an encoder–
decoder network with skip connections (the U-shaped architecture),
where the ResNet18 serves as the encoder (detailly described in Ap-
pendix B). This choice was made intentionally, as ResNet18 remains
a state-of-the-art architecture in visual recognition. By integrating
ResNet18 into our network, we leverage its proven ability to capture
complex hierarchical features, facilitating effective information extrac-
tion. Moreover, we have extended and customized the architecture
with additional components, moving beyond a simple implementation.
Specifically, the use of early fusion and middle fusion techniques is
a deliberate design choice aimed at enhancing semantic segmentation
performance.

The decision to use early or middle fusion in specific scenarios,
in fact, is rooted in a careful consideration of the trade-offs between
feature abstraction and spatial information preservation. Early fusion
involves combining multi-scale features at the earliest layers of the
network, allowing for a comprehensive integration of both low-level
and high-level information. This is particularly beneficial when spatial
details are critical for accurate segmentation. On the other hand, mid-
dle fusion occurs at intermediate layers, facilitating a balance between
abstraction and detailed spatial information. This is advantageous in
scenarios where capturing context and global information is essential
for accurate segmentation tasks.

For every test, the same settings of the learning rate, data augmenta-
tion, and normalization have been considered using the Albumentations
library (Buslaev et al., 2020). To train the models we have used 400
epochs, Adam optimizer with a learning rate of 0.0001, and a learning
rate scheduler with 𝑠𝑡𝑒𝑝 𝑠𝑖𝑧𝑒 of 30 and a decay gamma of 0.85, which

eans that the learning rate is updated and reduced every 30 epochs
ith a value equal the current learning multiplied by 0.85. The use
f data augmentation, dropout, and early stopping have been used to
educe the problem of overfitting. In particular, the data augmentation
or the training consisted of RGB normalization, HS↑ normalization,

DTM normalization, a resize of each input to 256 × 352, a random
crop of 256 × 256, random rotation applied between −180◦ and 180◦, a
andom horizontal and vertical flip of the image, and finally a transpose
ransformation. The validation and test data augmentation consider
nly RGB normalization, HS↑ normalization, DTM normalization, and
mage resize to 256 × 352.

Every modality has been normalized using the z-score, that is re-
oving the average and dividing by the standard deviation (Buslaev

t al., 2020).
Fig. 4 shows the complete procedures for both early and middle

usion. Both start with the pre-process to clean hyperspectral data from
orrupted bands and improve their spatial resolution using the Gram–
chmidt Adaptive (GSA) pansharpening technique described in 3.1.1.

arly fusion. As shown in Fig. 4(a), the pipeline for data-level fusion ex-
eriments consists of naively concatenating all the modalities together
efore using them as input of the U-shaped model.

The different combinations of modalities described above have 3
ands for RGB, 182 for HS↑, 185 for (RGB + HS↑), and 186 for (RGB +
S↑ + DTM). The definition of the U-shaped architecture and the layers
f ResNet18 remained the same for all the experiments apart from the
nput layer which is changed according to the dimension of the input.

iddle fusion. In the middle fusion approach, as shown in Fig. 4(b), the
ifferent modalities are firstly processed independently to extract high-
evel features from each of them and later concatenated the features in
rder to create the input for the U-shaped architecture.

For each modality, the feature extraction module consists of convo-
utional and ReLU layers that use padding to maintain the same width

2 https://github.com/qubvel/segmentation_models.pytorch.
7
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Table 4
Middle fusion module for the extraction of features from each modality.

Modality Layer Description Padding

RGB Conv2d 3 × 3 × 16 2 × 2
ReLU
Conv2d 3 × 3 × 32 2 × 2
ReLU
Conv2d 3 × 3 × 64 2 × 2
ReLU

Hyperspectral (HS↑) Conv2d 3 × 3 × 128 2 × 2
ReLU
Conv2d 3 × 3 × 64 2 × 2
ReLU

DTM Conv2d 3 × 3 × 16 2 × 2
ReLU
Conv2d 3 × 3 × 32 2 × 2
ReLU
Conv2d 3 × 3 × 64 2 × 2
ReLU

and height of the U-shaped architecture. In the RGB and DTM cases,
3 convolutional layers increase the number of channels and extract
the features. In the hyperspectral case, 2 convolutional layers are not
only used to extract features but also to optimally reduce the number
of channels of the starting hyperspectral inputs, thus overcoming the
problem of the curse of dimensionality (Barbato et al., 2022). Table 4
summarizes the middle fusion module used for the extraction of the
features in all modalities. After the application of the convolutional
layers, all of the modalities share the same amount of feature maps
to balance their importance during the training and are concatenated
to become the input for the U-shaped architecture.

4. Experiments and results

The configurations we have compared are:

• single-modality: RGB, HS↑ or DTM;
• multi-modalities: (RGB + HS↑), (RGB + DTM) or (RGB + HS↑ +

DTM).

The two fusion techniques we have tested for each of the possible
ombinations are:

• early fusion;
• middle fusion.

The evaluation and comparison of the experiments are based on Ac-
uracy (Acc), mean Intersection over Union (mIoU), and Precision. All
f them have been computed by considering the average performance
f single classes. A comprehensive evaluation of single classes is also
eported, always based on the same metrics.

We have evaluated all modalities and fusion strategies on the two
roposed labelings:

• Land Cover;
• Soil Agricultural Use.

In the following, we present the results obtained in all the exper-
ments as well as a discussion highlighting key findings that can be
onsidered insights for future research in this area.

.1. Land cover evaluation

Table 5 shows overall and class-specific results for Land Cover
stimation achieved using different configurations.

Regarding single-mode experiments, RGB is the modality with the
est overall performance in terms of accuracy, IoU and Precision. On

he one hand, this is because the HS cube has a lower resolution than

https://github.com/qubvel/segmentation_models.pytorch
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Fig. 4. Experiments pipelines that represent the pre-processing, the fusion, and the segmentation. The two images show (a) the early and (b) the middle fusion techniques. In the
early fusion technique, the data are concatenated immediately after the pre-processing and before the U-shaped network. In the middle fusion technique, the data are concatenated
only after extracting high-level features using three ad-hoc CNNs, one for each modality independently. The concatenated features are then fed into the U-shaped network.
Table 5
Land Cover overall and single classes results of every experiment configuration divided by modalities combination and fusion techniques. Bold
values represent the best performance obtained on the rows.
Land Cover

Class Metric No fusion Early fusion Middle fusion

RGB HS↑ DTM RGB RGB RGB RGB RGB RGB
HS↑ DTM HS↑ HS↑ DTM HS↑

DTM DTM

Acc 0.62 0.39 0.00 0.64 0.62 0.63 0.75 0.74 0.69
Building IoU 0.50 0.31 0.00 0.49 0.49 0.48 0.54 0.54 0.53

Prec. 0.71 0.60 0.36 0.68 0.70 0.67 0.66 0.68 0.69

Acc 0.52 0.29 0.03 0.45 0.45 0.41 0.57 0.61 0.55
Road IoU 0.42 0.23 0.03 0.34 0.38 0.33 0.41 0.45 0.41

Prec. 0.69 0.52 0.23 0.58 0.69 0.62 0.59 0.64 0.61

Acc 0.85 0.87 0.50 0.82 0.85 0.85 0.75 0.76 0.80
Residential IoU 0.64 0.57 0.22 0.62 0.60 0.58 0.63 0.63 0.64

Prec. 0.72 0.62 0.28 0.72 0.67 0.64 0.79 0.80 0.76

Acc 0.64 0.52 0.50 0.62 0.64 0.47 0.72 0.69 0.67
Industrial IoU 0.50 0.40 0.00 0.47 0.51 0.41 0.55 0.54 0.54

Prec. 0.70 0.64 0.00 0.65 0.71 0.75 0.70 0.71 0.74

Acc 0.92 0.90 0.66 0.92 0.88 0.89 0.95 0.95 0.96
Forest IoU 0.87 0.85 0.51 0.88 0.83 0.86 0.90 0.90 0.92

Prec. 0.94 0.93 0.69 0.95 0.94 0.96 0.95 0.95 0.96

Acc 0.93 0.91 0.63 0.93 0.94 0.95 0.93 0.95 0.95
Farmland IoU 0.85 0.82 0.39 0.86 0.83 0.88 0.87 0.89 0.90

Prec. 0.91 0.89 0.51 0.91 0.87 0.92 0.94 0.93 0.95

Acc 0.79 0.86 0.02 0.87 0.75 0.85 0.89 0.76 0.88
Water IoU 0.65 0.72 0.02 0.74 0.66 0.73 0.74 0.65 0.73

Prec. 0.79 0.82 0.06 0.83 0.83 0.85 0.81 0.82 0.81

Acc 0.75 0.68 0.26 0.75 0.73 0.72 0.79 0.78 0.78
Overall IoU 0.63 0.56 0.17 0.63 0.61 0.61 0.66 0.66 0.67

Prec. 0.78 0.72 0.30 0.76 0.78 0.77 0.78 0.79 0.79
8
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Fig. 5. Visual prediction of Land Cover segmentation for all the approaches. EF and MF are respectively for Early and Middle Fusion, while RH, RD and RHD are respectively for
the combinations (RGB + HS↑), (RGB + DTM) and (RGB + HS↑ + DTM).
the RGB images, thus causing a loss of finer details in the segmentation
process. On the other hand, the DTM does not carry enough information
to allow a reliable estimation.

Concerning multi-modal experiments, the utilization of early fusion
yields comparable results with the RGB modality. However, the middle
fusion strategy is able to outperform it, suggesting that multi-modality
in RS semantic segmentation is crucial. In particular, all middle fusion
setups (RGB + HS↑), (RGB + DTM) and (RGB + HS↑ + DTM), which
are very similar in terms of performance, outperform RGB by about 4%,
4%, 1% in terms of Accuracy, mIoU, and Precision respectively. Middle
fusion configurations also outperform HS by about 11%, 11%, and 5%
in terms of Accuracy, mIoU, and Precision, respectively.

The prevalence of middle fusion over early fusion can be attributed
to the shallow nature of the latter, which hinders the optimal utilization
of the distinctive attributes of each source.

As expected, the results in terms of mIoU on the single classes
exhibit the same behavior of the overall performance. The classes which
scored the lowest and the highest performance are respectively Road,
with an IoU of 0.45 and Forest, with an IoU of 0.92.

It is worth noting that the best result of each class is obtained by
combining different sources. While, for example, the Road class has
a higher score when using (RGB + DTM), the Industrial class stands
out more when using (RGB + HS↑). This behavior indicates that each
semantic class benefits more from one source than another.

With the exception of the Road, Farmland and Water classes, where
the modalities used by both fusion strategies agree, in all other classes
the selected modalities are not concordant.

Fig. 5 shows visual results for all the considered approaches. Fo-
cusing on the best overall model (middle fusion with all modalities), it
accurately classifies all labels, from fine-grained Road and Building to
coarse-grained Residential, Farmland, and Industrial classes. Notably, the
model recognizes a forest area located in the second RGB image but not
in the correspondent labeling, demonstrating good performance even
with noisy labels.

4.2. Soil agricultural use evaluation

Table 6 presents the overall results for Soil Agricultural Use, high-
lighting the poor performance of the single-modality RGB with respect
to multi-modal approaches and the beneficial impact of HS modality in
class discrimination. Due to the lower resolution of SAU labeling, we
focus on evaluating the Accuracy rather than the mIoU. The early fusion
approach already demonstrated the advantages of using multi-modality
w.r.t. RGB (with an increment of 10%) and to HS (3%) modalities. DTM
also contributes to segmentation, yielding improvements in accuracy
9

and mIoU. As observed for Land Cover, the choice of fusion methodol-
ogy is crucial. Middle fusion approaches showcase the true advantages
of a multi-modal approach, outperforming single-modality experiments
with the best results obtained by combining all modalities.

The difference in performance between middle fusion (RGB +
HS↑ + DTM) and RGB is significant, with an increment of about
13%, 10%, and 13% for Accuracy, mIoU, and Precision, respectively.
Similarly, the same middle fusion strategy scored a positive difference
in performance with HS of about 6%, 4%, and 5% for Accuracy, mIoU,
and Precision, respectively.

The improvement gained by using middle fusion with HS and DTM
w.r.t. HS-only modality is about 6%, 4%, and 5% for Accuracy, mIoU,
and Precision, respectively.

Table 6 also reports the segmentation results for each class. All
multi-modal methods outperform RGB in class discrimination, once
again confirming the importance of multi-modal approaches in RS
semantic segmentation.

The Seeds class, in particular, demonstrates significant improve-
ments when other modalities are utilized, going from 1% accuracy with
RGB-only to 25% accuracy with all modalities and the middle fusion
approach. Fusion methodology also plays a crucial role, with middle
fusion generally yielding better improvements over early fusion.

Visual results for each combination and fusion technique are re-
ported in Fig. 6. The segmentations achieved by the best approach, with
middle fusion and all the modalities involved, accurately identify all
classes despite the low resolution of SAU labeling.

This investigation demonstrates the usefulness of a multi-modal
approach, especially for Soil Agricultural Use segmentation. Hyper-
spectral data and the Digital Terrain Model prove to be even more
beneficial in this context than in Land Cover labeling, where RGB alone
fails in achieving satisfactory results. Consequently, the availability of
comprehensive multi-modal datasets is crucial for future research.

4.3. Discussion

Overall, experiments demonstrate the usefulness of multi-modality
in semantic segmentation only when modalities are suitably combined
with middle fusion strategies. Moreover, multi-modality is much more
effective in the Soil Agriculture Use labeling rather than Land Cover,
thus suggesting that hyperspectral and DTM modalities are much more
effective on non-man-made classes. To visualize these findings, in Fig. 7
we show the percentage of increment/decrement in terms of the aver-
age of accuracy, IoU and precision when: (1) Multi vs Single - where
we assess multi-modal approaches (regardless of the modalities used)
against single-modality setups (irrespective of the chosen modality and
fusion strategy); (2) Middle vs Early - where we compare the efficacy
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Table 6
Soil Agricultural Use overall and single classes results of every experiment configuration divided by modalities combination and fusion techniques.
Bold values represent the best performance obtained on the rows.
Soil Agricultural Use

Class Metric No fusion Early fusion Middle fusion

RGB HS↑ DTM RGB RGB RGB RGB RGB RGB
HS↑ DTM HS↑ HS↑ DTM HS↑

DTM DTM

Acc 0.26 0.31 0.00 0.34 0.31 0.36 0.42 0.45 0.46
Other agricultural crops IoU 0.17 0.26 0.00 0.27 0.23 0.26 0.29 0.29 0.32

Precision 0.34 0.63 0.00 0.55 0.49 0.48 0.50 0.46 0.52

Acc 0.14 0.32 0.00 0.32 0.21 0.40 0.35 0.22 0.37
Forage crops IoU 0.11 0.24 0.00 0.23 0.14 0.26 0.24 0.15 0.27

Precision 0.34 0.52 0.00 0.45 0.33 0.42 0.44 0.32 0.48

Acc 0.51 0.45 0.01 0.48 0.36 0.47 0.49 0.48 0.51
Corn IoU 0.31 0.31 0.00 0.32 0.24 0.33 0.34 0.29 0.36

Precision 0.45 0.50 0.11 0.49 0.43 0.54 0.52 0.42 0.54

Acc 0.17 0.31 0.00 0.34 0.23 0.31 0.46 0.19 0.38
Industrial plants IoU 0.09 0.18 0.00 0.19 0.13 0.19 0.27 0.12 0.21

Precision 0.16 0.29 0.00 0.30 0.22 0.33 0.39 0.56 0.33

Acc 0.74 0.81 0.76 0.78 0.77 0.80 0.81 0.73 0.80
Rice IoU 0.57 0.64 0.42 0.63 0.58 0.65 0.68 0.57 0.68

Precision 0.72 0.75 0.49 0.77 0.70 0.77 0.81 0.72 0.81

Acc 0.01 0.06 0.00 0.12 0.08 0.17 0.21 0.23 0.25
Seeds IoU 0.00 0.04 0.00 0.07 0.05 0.10 0.16 0.11 0.20

Precision 0.02 0.14 0.00 0.12 0.12 0.20 0.39 0.17 0.53

Acc 0.89 0.89 0.49 0.89 0.88 0.89 0.90 0.89 0.90
Man-made areas IoU 0.77 0.76 0.28 0.78 0.76 0.76 0.77 0.76 0.77

Precision 0.85 0.83 0.40 0.86 0.85 0.83 0.84 0.85 0.84

Acc 0.56 0.72 0.01 0.70 0.65 0.75 0.66 0.63 0.69
Water bodies IoU 0.46 0.55 0.00 0.56 0.52 0.57 0.55 0.51 0.56

Precision 0.72 0.69 0.06 0.74 0.72 0.70 0.77 0.74 0.75

Acc 0.82 0.83 0.61 0.83 0.82 0.80 0.84 0.78 0.85
Natural vegetation IoU 0.64 0.67 0.36 0.67 0.65 0.65 0.67 0.65 0.67

Precision 0.75 0.78 0.47 0.77 0.76 0.78 0.77 0.79 0.76

Acc 0.47 0.54 0.22 0.55 0.49 0.57 0.59 0.53 0.60
Overall IoU 0.35 0.41 0.12 0.41 0.37 0.42 0.44 0.38 0.45

Precision 0.50 0.59 0.17 0.58 0.53 0.58 0.62 0.54 0.63
Fig. 6. Visual prediction of Soil Agricultural Use segmentation for all the approaches. EF and MF are respectively for Early and Middle Fusion, while RH, RD and RHD are
respectively for the combinations (RGB + HS↑), (RGB + DTM) and (RGB + HS↑ + DTM).
of middle fusion (using any combination of modalities) against early
fusion (with any modality combination).

In particular, figure (a) depicts the percentage of increment/
decrement in the case of Land Cover (LC), while figure (b) in the case of
Soil Agriculture Use (SAU). In the case of LC, the average increment of
using multi-modalities instead of single modalities is about 6%, and the
average increment of using middle fusion instead of early modalities is
about 6%. In the case of SAU, the average increment of using multi-
modalities instead of single modalities is about 19%, and the average
10
increment of using middle fusion instead of early modalities is about
10%.

To further highlight the advantages of multi-modality, it is also
necessary to underline, as reported in Table 7, that the architectures
used in the single-modality and multi-modality experiments share a
similar number of parameters (around 15 Million parameters), thus
the complexity required by these models does not suffer from the
multi-modal approaches. Considering the GFLOPs, we can observe a
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Fig. 7. Percentage of increment/decrement in terms of the average of accuracy, IoU and precision when: (1) we use multi-modal (whatever is the modalities adopted) with respect
to single-modality (whatever is the single-modality combined and whatever is the fusion strategy); (2) we use middle fusion (whatever are the modalities combined) with respect
to early fusion (whatever are the modalities combined). Figure (a) depicts the percentage of increment/decrement in the case of Land Cover, while Figure (b) in the case of Soil
Agriculture Use.
Fig. 8. The first and second rows depict the TSNE representation of the features related respectively to Land Cover and Soil Agricultural Use. The first column contains features
that are relevant to the RGB-only, while the second column represents the multi-modal features. It is evident that in both tasks, the utilization of multi-modality produces more
representative features.
substantial increment in the number of operations required when the
HS modality is employed, disregarding the fusion technique adopted.

The examination of the feature space further validates these con-
clusions. The analysis is visually represented in Fig. 8. The first and
second rows illustrate the t-distributed stochastic neighbor embed-
ding (t-SNE) representation of the features associated with Land Cover
and Soil Agricultural Use, respectively. Both challenges demonstrate
that the RGB-only features (first column) are less distinct compared
to the multi-modal features (second column). This result reaffirms
that employing multi-modality enhances the discerning capabilities of
deep-learning-based systems in segmentation tasks.
11
5. Conclusions

In this paper, we have presented the Ticino dataset, a novel multi-
modal dataset for RS semantic segmentation, that is crucial in var-
ious applications, including environment management and precision
farming. The use of multi-modal sources of information enhances the
segmentation performance and class discrimination, thus the scarcity of
existing multi-modal datasets poses challenges in RS semantic segmen-
tation. Existing datasets have low cardinality or lack spectral informa-
tion, limiting the effectiveness of data-hungry deep-learning techniques
that require diverse samples for training.
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Table 7
The complexity of the architecture used in every experiment is expressed in terms of
the number of parameters (in Million) and GFlops. EF and MF stand for early fusion
and middle fusion respectively. In the fusion techniques, R, H, and D stand for RGB,
HS↑, and DTM respectively, representing the combination of modalities adopted in the
corresponding experiment.

Experiments Parameters (Million) GFLOPs

RGB 14.3 76.43
HS↑ 14.9 202.89
DTM 14.3 75.02

EF RH 14.9 205.01
EF RD 14.3 77.14
EF RHD 14.9 205.71

MF RH 15.0 164.74
MF RD 14.8 164.74
MF RHD 15.3 209.95

The proposed dataset presents five modalities: RGB, panchromatic,
NIR, SWIR, and DTM and two labelings: the Land Cover with eight
lasses and the Soil Agricultural Use with 10 classes. To the best of
ur knowledge, this dataset is the biggest and most diverse dataset for
S semantic segmentation as it includes a high cardinality of images

or all the modalities. Specifically, our dataset provides 1502 tiles and
n extension of around 1332 km2. The characteristics of this dataset,

both in terms of spatial resolution and number of spectral bands,
allow an important step for future studies, thus enabling the scientific
community to explore the use of multi-modality in remote sensing.

Furthermore, we have investigated the advantages of these modali-
ties. On the first hand, the scope of this analysis was to understand if the
combination of complementary modalities can outperform the use of a
single RGB modality, and, on the second hand, to provide a baseline
for multi-modal RS semantic segmentation on the proposed dataset.

Summarizing, the main findings of the experimental investigation
are:

• the empirical proof that the fusion of multiple modalities im-
proves semantic segmentation accuracy compared to using a
single-modality in both Land Cover and Soil Agriculture Use;

• the demonstration through empirical evidence that employing
a middle fusion strategy enhances the effectiveness of multi-
modality;

• the empirical evidence of the effectiveness of hyperspectral data
in Soil Agricultural Use;

• the evaluated multi-modal deep networks require a number of
parameters that is almost the same as single-modality deep net-
works.

Plenty of challenges connected to semantic segmentation are still
open, and we think this dataset can become the first step in the right di-
rection. This dataset can also help investigate open issues such as hyper-
spectral pansharpening, dimensionality reduction of high cardinality
data, and spatio-temporal fusion of modalities.

One of the challenges refers to the refinement of the semantic
labeling. The effect of noisy labels on model performance is partially
mitigated by the intrinsic generalization capabilities of deep neural
networks that are able to learn anomalous patterns and discard them.
However, in future work, we plan to further refine the labeling, reduc-
ing the noisy labels and balancing the low-represented classes by using
the dataset itself for a semi-supervised labelization of the background.
This can be obtained by initially train a model with a small set of
labeled data and then using such a model to predict labels for unlabeled
areas, creating pseudo-labels. Combining these pseudo-labels with the
original labeled dataset and retraining the model in an iterative manner
allows the accuracy of the model to be improved over time.

Another challenge regards the generalization of the deep neural
models. Our dataset, as for other remote sensing datasets, lacks of
12
generalization ability, since it has been collected in a specific region
and it has been acquired in almost clear sky condition. Thus, a deep
network model that is trained on the proposed dataset may work
properly in geographical areas only if those are very similar, in terms of
geomorphology and sky conditions, to the one under study. To demon-
strate the generalization of the proposed models on other geographic
locations we should collect more data. However, the collection of a new
set of data like the one we proposed is a very time-demanding activity,
because it requires also time for pre-processing and labeling. In our
future work, we intend to increase the extension of the dataset and its
variability with the depth and attention it deserves.

In addition, another relevant conclusion from the evaluations, that
points to one of the future directions in which research should move,
is the need to study and develop new strategies for merging different
information. The results show that using diverse strategies leads to
a significant discrepancy in how the sources are treated and what
both overall and class-focus performance is achieved. As a direct con-
sequence, investigating more sophisticated fusion strategies and their
repercussion on the segmentation is of fundamental relevance. In par-
ticular, we think that a good starting point for further experimentation
would be to focus on the specific sources and classes. In our view,
emphasis should be placed on designing fusion models that integrate
each modality, while also considering the distinctive characteristics of
each semantic class. We plan to use this data to continue investigating
the field of RS semantic segmentation and to further exploit the useful-
ness of the HS and the DTM. This can be achieved only by studying
and understanding more in-depth how to handle each modality to
extract the best possible and appropriate information. This remains
a future challenge that reflects the complexity of combining different
sources that present different proprieties (e.g. time stamp, resolution,
etc.), remarking once again the existence of multi-modal dataset as a
desideratum.
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The code for the dataset pre-processing and for running the exper-
iments, for both training and testing of the model, can be found at
https://github.com/mpBarbato/Ticino-RS-Dataset.

Appendix A. Additional information on Ticino dataset

In this appendix, we will describe additional information about the
Ticino dataset.

A.1. RGB and PRISMA disalignment

The alignment of the RGB and PRISMA sources has been done
with an interactive approach that involved the selection of more than
700 correspondent pairs of Ground Control Points between the RGB
and PAN images, and the following estimation of a Thin Plate Spline
Transformation for the geometric correction. The selection and the
transformation were applied using QGIS Desktop software (qgi, 2023).
Fig. A.9(a) and (b) show the result of the alignment procedure. In the
figures, two crops, considering RGB and panchromatic modalities, are
overlapped to show the difference between before (A.9(a)) and after
(A.9(b)) the alignment.

A.2. Training, validation and test splits

In this subsection, we discuss the class statistics for each labeling
by including the division into training, validation and test. Fig. A.10
offers a deeper analysis of the Land Cover labeling. The first column
shows the number of pixels belonging to each class, while the second
column the number of pixels per label for all the three sets in which the
dataset has been divided dataset, namely the training (a), the validation
(b), and the test (c) set.

Finally, as before, a deeper analysis of the SAU distribution is
proposed in Fig. A.11. The first column represents the number of pixels
belonging to each class, while the second column the number of pixels
per label for all three sets: training (a), the validation (b), and the test
(c) set.

A.3. Refinement of the original labeling

In this subsection, we will describe the refinement process of the
original labelings to achieve the two final ground truths for semantic
segmentation.

The final dataset has been collected by merging information from
Open Street Map (ope, 2023) and the Italian Agenzie delle Entrate (age,
2023), augmenting them with the creation of the Water labeling. As
13
described in Section 3.1, the dataset consists of 8 classes: Background,
Building, Road, Residential, Industrial, Forest, Farmland, and Water.

Background, Residential, Park, Industrial, and Forest originally de-
rived from the OSM labeling (ope, 2023). The original OSM segmen-
tation includes 22 classes: Background, Buildings, Forest, Residential,
Farmland, Parking, Industrial, Stadium, Meadow, Pond, Park, Square,
Harbour, Airport, Bridge, Beach, Industrial harbour, Baseball, Desert, Rock,
Glacier, and River. After having divided the area under investigation
into 1808 tiles, we have decided to discard the classes with low
representations in terms of the number of image samples: Harbour,
Airport, Bridge, Beach, Industrial harbour, Baseball, Desert, Rock, Glacier,
and River. As a consequence, 306 samples have been discarded because
they mainly included the Background class.

Building and Road labelings have been collected by the Italian
Agenzie delle Entrate (age, 2023). The former has been inserted in the
dataset as a substitute for the Building labeling of OSM because it is
more accurate and complete in the area considered, while the latter
was not present in the original OSM labeling.

Finally, Water is a combination of the Pond segmentation provided
by OSM and a manual labeling provided by the authors of the Ticino
River.

The original Soil Agricultural Use labeling has been acquired from
the Geoportal of Lombardia region (geo, 2023) and consisted of the
following 22 classes: Background, Other agricultural crops, Other ce-
reals, Beet, Forests and tree crops, Nursery crops, Horticultural crops,
Forage crops, Fruit crops, Corn, Olive tree, Industrial plants, Rice, Seeds,
Tainted and uncultivated, Fallow land, Vine, Man-made areas, Natural
barren areas, Water bodies, Unclassifiable agricultural land, and Natural
vegetation.

Other cereals, Floriculture crops, Horticultural crops, Fruit crops, Vine,
Beet, and Olive-tree labels have been removed due to the low represen-
tation in the area considered. While Forest and tree crops and Natural
barren areas have been respectively joined with the Natural vegetation
and Water bodies as they have a similar semantic meaning. Finally,
Unclassifiable agricultural land, Tares and uncultivated, and Fallow land
were merged with the Background class because the semantic meaning
was not clearly defined. The final labeling resulting from the cleaning
process includes 10 classes as follows: Background, Other agricultural
crops, Forage crops, Corn, Industrial plants, Rice, Seeds, Man-made areas,
Water bodies, and Natural vegetation.

Appendix B. U-shaped network with ResNet18 backbone

In this section, we report a summary of the U-shaped neural network
(with ResNet18 as the backbone) and its main components when an
RGB image is considered as input. In Table B.8 is reported the general
architecture, in Table B.9 the general structure of a BasicBlock and in
Table B.10 the general structure of a DecoderBlock.
Fig. A.9. Disalignment of RGB, Panchromatic, and hyperspectral data. The figure shows two RGB and panchromatic crops overlapped before (left) and after (right) the alignment
operations.

https://github.com/mpBarbato/Ticino-RS-Dataset
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Fig. A.10. Distribution of the Land Cover split of the dataset in training (first row), validation (second row), and test (third row) sets. The first column represents the number of
images per class (without Background). The second column represents the number of pixels per class (without Background).
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Fig. A.11. Distribution of the Soil Agricultural Use split of the dataset in training (first row), validation (second row), and test (third row) sets. The first column represents the
number of images per class (without Background). The second column represents the number of pixels per class (without Background).
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Table B.8
U-shaped architecture with ResNet18 backbone.

Layer (depth-idx) Output shape

ResNetEncoder: 1–1 [−1, 3, 256, 256]
Conv2d: 2–1 [−1, 64, 128, 128]
BatchNorm2d: 2–2 [−1, 64, 128, 128]
ReLU: 2–3 [−1, 64, 128, 128]
MaxPool2d: 2–4 [−1, 64, 64, 64]
Sequential: 2–5 [−1, 64, 64, 64]

BasicBlock: 3–1 [−1, 64, 64, 64]
BasicBlock: 3–2 [−1, 64, 64, 64]

Sequential: 2–6 [−1, 128, 32, 32]
BasicBlock: 3–3 [−1, 128, 32, 32]
BasicBlock: 3–4 [−1, 128, 32, 32]

Sequential: 2–7 [−1, 256, 16, 16]
BasicBlock: 3–5 [−1, 256, 16, 16]
BasicBlock: 3–6 [−1, 256, 16, 16]

Sequential: 2–8 [−1, 512, 8, 8]
BasicBlock: 3–7 [−1, 512, 8, 8]
BasicBlock: 3–8 [−1, 512, 8, 8]

UnetDecoder: 1–2 [−1, 16, 256, 256]
Identity: 2–9 [−1, 512, 8, 8]
ModuleList: 2 []

DecoderBlock: 3–9 [−1, 256, 16, 16]
DecoderBlock: 3–10 [−1, 128, 32, 32]
DecoderBlock: 3–11 [−1, 64, 64, 64]
DecoderBlock: 3–12 [−1, 32, 128, 128]
DecoderBlock: 3–13 [−1, 16, 256, 256]

SegmentationHead: 1–3 [−1, 18, 256, 256]
Conv2d: 2–10 [−1, 18, 256, 256]
Identity: 2–11 [−1, 18, 256, 256]
Activation: 2–12 [−1, 18, 256, 256]

Identity: 3–14 [−1, 18, 256, 256]

Table B.9
BasicBlock general structure. N represents the number of channels, the height, and the
width of the input.

Layer Output shape

BasicBlock [−1, N, N, N]
Conv2d [−1, N, N, N]
BatchNorm2d [−1, N, N, N]
ReLU [−1, N, N, N]
Conv2d [−1, N, N, N]
BatchNorm2d [−1, N, N, N]
ReLU [−1, N, N, N]

Table B.10
DecoderBlock general structure. C represents the number of channels of the input, while
N represents the height and the width of the input.

Layer Output shape

DecoderBlock [−1, C, N, N]
Conv2d [−1, C, N, N]
BatchNorm2d [−1, C, N, N]
ReLU [−1, C, N, N]
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