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Abstract: Orchids are experiencing wide success in ornamental, medicinal, and food fields. The reason
for their success is correlated with both their morphology and metabolomics, the latter linked to their
taste and biological effects. Despite many orchids having already been the subject of chemotaxonomic
works, some of them are still untapped, like the case of Orchis purpurea. O. purpurea is one of the
most common species of the genus Orchis, present in hedgerows, verges, and light woodland, where
it is one of the few herbaceous plants able to be unpleasant to herbivorous animals. Essential oil
from roots, stems, leaves, and flowers were analyzed via GC/MS analyses, revealing the presence
of 70 compounds, with a clear prevalence of coumarin. The high concentration of this metabolite
may explain the resistance of O. purpurea to herbivores, being associated with appetite-suppressing
properties and a bitter taste. Non-volatile fractions were analyzed via UHPLC-MS analysis revealing
the presence of hydroxycinnamic acid derivatives, polyphenols, and glycosidic compounds, probably
responsible for their color and fragrance. Taken together, the herein presented results shed light on
both the defensive strategy and the chemotaxonomy of O. purpurea.

Keywords: Orchis purpurea; secondary metabolites; essential oil; coumarin; UHPLC-MS/MS

1. Introduction

Orchids are well-known ornamental plants, appreciated worldwide, and ranked
among the best sellers in the global potted plant trade. Their beautiful flower is the reason
for their commercial success, even if orchids are also well-known for other applications [1,2].
Particularly, orchids are the ingredient of traditional products such as Chikanda, Faham,
and Salep [1,3]. This latter is a powder obtained from the dried tubers of more than
35 species of terrestrial orchids, including species from the genera Anacamptis, Dactylorhiza,
and Orchis, to cite just a few [4]. Its high consumption in the eastern Mediterranean area is
causing serious risks to both consumers and orchids [5]. Thus, tubers are often illegally
harvested causing conservation concerns [6], while the final product may be adulterated
with potential health risks [7].
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Among orchids, the genus Orchis has a high diversity with about 20 terrestrial species.
They are characterized by two egg-shaped underground tubers and one spike with flowers
of different colors, and most species have several narrow leaves at the base [8].

One of the most common species of the genus Orchis is Orchis purpurea Huds (As-
paragales: Orchidaceae). This species was first described in 1762 and it is widely spread
in Central Asia, Europe, and North Africa. O. purpurea grows on alkaline soils and fa-
vors slightly shaded locations such as hedgerows, verges, and light woodland. Its name
refers to the purple inflorescence, which is also the reason for its common name Lady
Orchid. O. purpurea is one of the tallest and most robust European orchids, being able
to reach almost one meter in height (Figure 1). This plant is present on almost all the
Italian territory, with few exceptions (i.e., Valle d’Aosta and Sicily regions), and it can be
mainly found in mature and luminous forests, and in semi-natural herbaceous vegetation.
Interestingly, in these environments, O. purpurea is one of the few herbaceous plants able to
resist herbivorous animals.
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Despite its long-lasting presence in checklists of different territories and, more gener-
ally, the great interest of the scientific community in its belonging genus, O. purpurea remains
underexplored. Thus, using “Orchis purpurea” as keywords on Scopus, only 51 articles
were retrieved (update January 2024), mainly related to floristic checklists, morpholog-
ical characterization, or behavior vs. climate change. Its first preliminary metabolomic
characterization was published only in 2022, and it referred only to the volatile fraction
obtained by the inflorescences [9]. Despite its preliminary nature, this work allowed us to
highlight an interesting and peculiar trait of O. purpurea: the main compound identified
in the inflorescences’ essential oils was coumarin. Coumarin is a well-known secondary
metabolite that can be found in many different genera and species. Its main physiological
role is the defense of the producing organism against both biotic and abiotic stress [10,11].
This metabolite is generally stored inside the vacuoles in its glycosylated form, while the
aglycone is usually formed after stress.
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To the best of our knowledge, coumarin has never been isolated from the genus Orchis
thus far and it has been recently considered an underexplored metabolite in the Orchidaceae
family [12]. Consistently, in this work, we wanted to deepen its presence in different organs
of O. purpurea and to draw the first complete metabolomic fingerprint of the volatile fraction
of this underestimated plant. Furthermore, a preliminary investigation of the non-volatile
fraction has also been performed.

2. Results and Discussion
2.1. Essential Oil Characterization

After the unambiguous identification of previously collected Orchis purpurea [8], we ex-
tracted its main parts by steam distillation and obtain the volatile fraction via liquid/liquid
extraction. The yields of O. purpurea essential oil from fresh roots, stems, leaves, and flowers
were 0.009%, 0.03%, 0.09%, and 0.02% (weight of essential oils/weight of fresh material
× 100), respectively. As can be noticed, leaves allowed us to obtain higher amounts of
essential oils, followed by stems, flowers, and finally roots. GC/MS analyses revealed the
presence of 70 compounds, listed in their elution order and reported as percentages of the
total EO. The qualitative and quantitative results on the Elite-5MS column are reported in
Table 1.

Table 1. Chemical composition of essential oils from roots, stems, leaves, and flowers of Orchis
purpurea.

Compound CAS Roots Stems Leaves Flowers Identification d

AI a AI b % c % % %
Octane 111-65-9 800 800 0.07 ± 0.44 - - 0.06 ± 0.04 STD, MS, RI
Furfural 98-01-1 836 831 - - 0.09 ± 0.07 0.08 ± 0.05 MS, RI
Diacetone alcohol 123-42-2 841 840 1.11 ± 0.24 0.08 ± 0.07 - - MS, RI
Furfuryl alcohol 98-00-0 855 855 - - - 0.21 ± 0.06 MS, RI
1-Hexanol 111-27-3 871 870 0.08 ± 0.06 - - 0.08 ± 0.06 MS, RI
Heptanal 111-71-7 902 902 - - - 0.05 ± 0.03 MS, RI
Unidentified - - 907 - - 0.07 ± 0.06 0.22 ± 0.06 -
Benzaldehyde 100-52-7 960 958 0.07 ± 0.08 - 0.07 ± 0.06 0.10 ± 0.04 MS, RI
Phenol 108-95-2 985 985 0.07 ± 0.06 - - - MS, RI
1-Decene 872-05-9 990 991 0.11 ± 0.08 - - - MS, RI
Octanal 124-13-0 999 1003 0.08 ± 0.07 - - - MS, RI
2,4-Heptadienal 4313-03-5 1010 1010 - - - 0.07 ± 0.05 MS, RI
2- Ethylhexanol 104-76-7 1031 1031 0.07 ± 0.06 - 0.05 ± 0.04 0.11 ± 0.07 MS, RI
Benzyl alcohol 100-51-6 1032 1034 0.08 ± 0.08 - 0.05 ± 0.04 - MS, RI
Phenylacetaldehyde 122-78-1 1042 1042 0.14 ± 0.11 - - 0.09 ± 0.05 MS, RI
Acetophenone 98-86-2 1065 1065 0.14 ± 0.11 0.13 ± 0.10 0.05 ± 0.03 - MS, RI
p-Cresol 106-44-5 1076 1079 1.00 ± 0.20 11.58 ± 0.32 0.44 ± 0.11 12.68 ± 0.20 MS, RI
2-Phenyl-2-propanol 617-94-7 1089 1086 0.13 ± 0.07 0.11 ± 0.09 - - MS, RI
Nonanal 124-19-6 1100 1105 0.21 ± 0.14 0.13 ± 0.11 0.05 ± 0.04 0.64 ± 0.06 MS, RI
(2E)-2-Nonen-1-al 2463-53-8 1162 1161 - - - 0.09 ± 0.04 MS, RI
1-nonanol 143-08-8 1169 1173 0.13 ± 0.10 0.07 ± 0.06 - - MS, RI
Unidentified - - 1185 - 0.12 ± 0.12 0.07 ± 0.06 0.10 ± 0.06 -
1-Dodecene 112-41-4 1190 1192 0.18 ± 0.12 - - - MS, RI
p-Methylguaiacol 93-51-6 1192 1193 - 0.08 ± 0.07 0.04 ± 0.03 0.37 ± 0.09 MS, RI
Decanal 112-31-2 1200 1206 0.17 ± 0.12 0.11 ± 0.09 0.04 ± 0.04 0.09 ± 0.05 MS, RI
p-vinylphenol 2628-17-3 1221 1220 0.17 ± 0.12 - - 1.20 ± 0.06 MS, RI
2,3-Dihydro-benzofuran 496-16-2 1221 1221 - 0.06 ± 0.06 - - MS, RI
3-(1-Methylethyl)
phenol 618-45-1 1228 1229 0.09 ± 0.09 - - - MS, RI

3,5-Dimethoxy-toluene 4179-19-5 1264 1267 - - - 0.19 ± 0.06 MS, RI
Nonanoic acid 112-05-0 1271 1276 0.08 ± 0.06 - - 0.67 ± 0.05 MS, RI
Unidentified - - 1308 - - - 0.41 ± 0.08 -
2-Methoxy-4-
vinylphenol 7786-61-0 1315 1315 0.16 ± 0.13 0.08 ± 0.06 - 0.08 ± 0.06 MS, RI

(2E,4E)-2,4-Decadienal 25152-84-5 1317 1317 0.21 ± 0.20 - - 0.08 ± 0.07 MS, RI
p-Hydroxybenzyl
alcohol 623-05-2 1357 1356 0.11 ± 0.13 - - 0.11 ± 0.06 MS, RI

Decanoic acid 334-48-5 1372 1372 - - - 0.05 ± 0.04 MS, RI
Unidentified - - 1379 0.17 ± 0.16 - - 0.11 ± 0.06 -
3,4-dihydro-coumarin 119-84-6 1378 1384 - 0.12 ± 0.08 0.07 ± 0.03 0.08 ± 0.07 MS, RI
(E)-damascenone 23726-93-4 1385 1386 - - - 0.12 ± 0.06 MS, RI
2-Tetradecene 26952-13-6 1389 1393 0.22 ± 0.17 - - - MS, RI
Tetradecane 629-59-4 1400 1400 - - - 0.05 ± 0.04 STD, MS, RI
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Table 1. Cont.

Compound CAS Roots Stems Leaves Flowers Identification d

Coumarin 91-64-5 1445 1455 32.30 ± 0.32 85.98 ± 0.27 98.79 ± 0.34 69.64 ± 0.22 MS, RI
2,6-Di-tert-butyl-p-
benzoquinone 719-22-2 1469 1469 - - - 0.11 ± 0.06 MS, RI

Unidentified - - 1560 - - - 0.31 ± 0.12 -
Dodecanoic acid 143-07-7 1565 1566 0.26 ± 0.17 - - 0.23 ± 0.12 MS, RI
1-Hexadecene 629-73-2 1590 1592 0.21 ± 0.15 - - 0.20 ± 0.09 MS, RI
Hexadecane 544-76-3 1600 1600 0.10 ± 0.08 - - - STD, MS, RI
Methyl dihydro
jasmonate 24851-98-7 1656 1657 0.16 ± 0.15 - - - MS, RI

Tetradecanoic acid 544-63-8 1780 1765 0.16 ± 0.14 - - 0.24 ± 0.10 MS, RI
1-Octadecene 112-88-9 1790 1794 0.19 ± 0.20 - - - MS, RI
Octadecane 593-45-3 1800 1800 0.15 ± 0.11 - - - MS, RI
1-Methylethyl
tetradecanoate 110-27-0 1828 1828 0.14 ± 0.10 - - - MS, RI

Cyclohexadecane 295-65-8 1881 1881 - - - 0.46 ± 0.07 MS, RI
1-Hexadecanol 36653-82-4 1876 1887 14.03 ± 0.21 - - - MS, RI
Nonadecane 629-92-5 1900 1900 0.12 ± 0.11 - - 0.10 ± 0.05 STD, MS, RI
7,9-Di-tert-butyl-1-
oxaspiro-(4,5)-deca-6,9-
diene

82304-66-3 1929 1923 0.06 ± 0.06 - - - MS, RI

Hexadecanoic acid 57-10-3 1972 1972 3.51 ± 0.12 - - 2.54 ± 0.12 MS, RI
Ethyl hexadecanoate 628-97-7 1995 1995 0.09 ± 0.09 - - 0.15 ± 0.07 MS, RI
Isopropyl palmitate 142-91-6 2026 2026 0.09 ± 0.06 - - - MS, RI
(E)-15-heptadecenal 700381-35-7 2085 2085 43.39 ± 0.40 0.20 ± 0.11 - 0.86 ± 0.08 MS, RI
Heneicosane 629-94-7 2100 2100 - 0.12 ± 0.06 - 0.88 ± 0.08 STD, MS, RI
Unidentified - - - - - - 0.16 ± 0.04 -
Docosane 629-97-0 2200 2200 - 0.10 ± 0.06 - - STD, MS, RI
Unidentified - - 2271 - 0.12 ± 0.11 - - -
Tricosane 638-67-5 2300 2300 - 0.10 ± 0.07 - 0.73 ± 0.11 STD, MS, RI
Tetracosane 646-31-1 2400 2400 - 0.21 ± 0.11 - - STD, MS, RI
9-pentacosene 51865-00-0 2474 2475 - - - 0.07 ± 0.05 MS, RI
1-Docosanol 661-19-8 2493 2493 - - 0.03 ± 0.02 0.27 ± 0.06 MS, RI
Pentacosane 629-99-2 2500 2500 - 0.18 ± 0.15 0.04 ± 0.03 2.53 ± 0.05 STD, MS, RI
Hexacosane 630-01-3 2600 2600 - 0.19 ± 0.15 - 0.22 ± 0.07 STD, MS, RI
Heptacosane 593-49-7 2700 2700 - 0.14 ± 0.11 0.04 ± 0.03 2.10 ± 0.07 STD, MS, RI

a Kovats RI according to Adams [ibidem], b RI determined on an Elite-5 column using a homologous series of
n-alkanes, c results are the mean of three experiments ± SD. d Method of identification: STD, standard; MS, mass
spectrum in comparison with library [ibidem]; RI, retention indices in agreement with literature values.

Coumarin was confirmed to be the most abundant secondary metabolite present in
all the natural matrices except for roots, where the most abundant metabolite is (E)-15-
heptadecenal (Table 1). Particularly, it represented almost the only metabolite present in
the essential oil from leaves (98.86%), more than a half of the essential oil from stems and
flowers (86.10% and 69.72%, respectively), and finally almost one-third of the essential oil
from roots (32.30%). Simple coumarin (2H-1-benzopyran-2-one) and coumarin-derived
compounds are widespread in the natural kingdom, especially in the Umbelliferae, Ru-
taceae, Oleaceae, Orchidaceae Moraceae, and Compositae families [13]. Still, it has also
been detected in microorganisms, sponges, and animal species [14,15]. Focusing on orchids,
these compounds are present in the essential oil derived from flowers and leaves of both
epiphytic (i.e., Dendrobium moschatum, and D. amabile) and terrestrial orchids (i.e., Anacamp-
tis morio, and Ophrys sphegodes) [9,16,17]. The wide diffusion of these metabolites in the
natural kingdom can be easily explained considering their biological properties. Coumarins
exhibit appetite-suppressing properties and a bitter taste able to protect the producing
organism from herbivores [18]. Moreover, coumarins are also endowed with antimicrobial
agents and can be released in the rhizosphere or accumulated in other organs after stress.
All these activities related to coumarins may explain why O. purpurea is particularly able to
resist herbivorous animals.

The other classes of compounds present in the different parts of O. purpurea are detailed below.
Roots: the essential oil was characterized by a high content of aldehydes (44.28%),

dominated by (E)-15-heptadecenal (43.39%). The second largest class was represented by
alcohols (16.12%), from which 1-hexadecanol (14.03%) and p-cresol (1.0%) were the most
abundant compounds.

Stems: the major constituents of the essential oil were found to be alcohols (11.91%),
from which p-cresol (11.58%) and 2-phenyl-2-propanol (0.11%) were the most representative
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compounds. Saturated hydrocarbons (1.04%) were represented by pentacosane (0.18%) and
heptacosane (0.14%).

Leaves: the essential oil from leaves was dominated by coumarin (98.86%), followed
by alcohols (0.61%), from which p-cresol (0.44%) was the most abundant compound.

Flowers: the most abundant class was represented by alcohols (15.13%) from which
p-cresol (12.68%), p-vinylphenol (1.20%), and p-methylguaiacol (0.37%) were the most
abundant compounds. The second largest class was represented by saturated hydrocarbons
(7.13%).

Except for coumarins, flowers resulted in the most diversified oils in terms of chemical
composition (Table 2). On the other hand, roots were particularly rich in long chain acids,
alcohol, and aldehydes, confirming their storage function. Of particular interest, p-cresol
was produced in considerable amounts by both stems (11.94%) and flowers (12.88%). This
secondary metabolite could represent a further defense for the plant, being considered a
toxin with phytotoxic allelopathic activity [19]. Another valuable hypothesis suggest that
p-cresol is produced due to its ability to specifically attract specific pollinators [20,21]. A
Venn diagram (Figure 2) was realized to illustrate qualitative similarities and differences in
volatile profiles among the different parts of O. purpurea [22].

Table 2. Chemical classes and their relative abundance in the essential oils from O. purpurea.

Class Roots Stems Leaves Flowers

Acids 4.00 - - 3.74
Alcohols 16.12 11.91 0.61 15.13
Aldeydes 44.28 0.43 0.25 2.15
Esters (among which coumarin) 32.77 (32.30) 86.10 (86.10) 98.86 (98.86) 69.87 (69.72)
Ketones 1.11 0.08 0.05 0.52
Saturated hydrocarbons 0.44 1.04 0.08 7.13
Unsaturated hydrocarbons 0.90 - - 0.26
Unidentified 0.31 0.37 0.14 0.91
Miscellanea 0.06 - - 0.19
Oxygenated monoterpenes - - - 0.12
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As highlighted in Figure 2, a core of 12 compounds (18.4% of the total number of
compounds detected) was present only in flowers, 3 (4.61%) in stems, and 14 (21.5%) in
roots. In contrast, leaves do not show any specific compounds, but share some with flowers,
roots, and stems.
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2.2. Characterization of the Non-Volatile Constituents

Once we had characterized the volatile portion of O. purpurea, we focused our attention
on the characterization of the non-volatile constituents. Thus, to the best of our knowledge,
only the non-volatile fraction obtained by the hypogeal part of O. purpurea has already been
analyzed in previous work [23]. Consistently, both leaves and flowers were sequentially
extracted by exploiting a Soxhlet apparatus with n-hexane, ethyl acetate, and methanol.
The three obtained fractions were evaporated under vacuum and the resulting yields are
reported in the table hereunder (Table 3).

Table 3. Yields (%) of Soxhlet extraction.

Extractive Solvent

n-Hexane Ethyl Acetate Methanol

Leaves 0.33% 0.16% 3.83%

Flowers 0.95% 2.05% 12.77%

As expected, the three fractions contained completely different metabolites. Particu-
larly, n-hexane fraction obtained from leaves and flowers, contained almost only coumarin,
as demonstrated by GC-MS (Figure 3), while the ethyl acetate fraction allowed us to obtain
a very low yield, and its analytical fingerprint was not significant [24,25].
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positive), compound name, chemical formula, MS error (ppm), characteristic product ions, and 
analyzed extract are reported. 

N° Rt (min) [M − H]− [M + H]+ Compounds Formula 
Mass 

Errorxxxxx(
ppm) 

Product Ions 
Flowers/Le

aves Ref. 

1 2.22 331.1033  Koaburaside C14H20O9 −0.5 123.0445/105.0338 leaves [27] 

2 3.59 205.0855  Unknown C12H13O3 −4.9 129.0554/115.0761 Flowers/lea
ves 

- 

3 4.22 367.1247  Coelovirins E C14H24O11 0.3 
293.1236/143.0710/xx
xxx131.0708/99.0811 Flowers [28,29] 

Figure 3. GC-MS chromatographic profile of n-hexane extract of leaves of O. purpurea and GC-MS EI
spectrum of the main peak.

Different results were obtained on the methanolic fraction. Thus, the UHPLC-MS/MS
analysis highlighted that both leaves and flowers contain hydroxycinnamic acid derivatives
(i.e., p-coumaroyl derivatives) and polyphenols (i.e., quercetin, luteolin, and kaempferol
derivatives) as reported in Table 4. Furthermore, Dactylorhin A and Militarine, both
glycosidic compounds, are compounds already found in other orchids belonging to the
genus Bletilla, Pleione, and Coeloglossum.
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Some secondary metabolites are characterizing of only the leaves or flowers.
Compound stored only in the flowers are Coelovirin E, a kaempferol glycoside,

saponins, and Cyanidin-3-O-glucoside. Particularly, this last compound belongs to the
class of anthocyanins, which are metabolites that cause a broad spectrum of orchid flower
coloration.

On the other hand, Koaburaside and Coelovirin D are present only in the leaves. In
detail, Coelovirins B, D, and E are tartrate derivatives already identified in another orchid
belonging to genus Coeloglossum, while Koaburaside is a glycosilated phenolic compound
already identified in other organism as Fallopia multiflora [26].

Table 4. Identified compounds by UHPLC-MS/MS. The retention time, precursor ion (negative
or positive), compound name, chemical formula, MS error (ppm), characteristic product ions, and
analyzed extract are reported.

N◦ Rt
(min)

[M −
H]− [M + H]+ Compounds Formula

Mass
Error
(ppm)

Product Ions Flowers/Leaves Ref.

1 2.22 331.1033 Koaburaside C14H20O9 −0.5 123.0445/105.0338 leaves [27]
2 3.59 205.0855 Unknown C12H13O3 −4.9 129.0554/115.0761 Flowers/leaves -
3 4.22 367.1247 Coelovirins E C14H24O11 0.3 293.1236/143.0710/

131.0708/99.0811 Flowers [28,29]

4 5.42 625.1410 627.1832 Quercetin-3-O-
gentiobioside C27H30O17 −0.1

209.0293/191.0190/
463.0866/301.0346/

151.0031
Flowers/leaves [30]

5 5.49 325.0932 p-Coumaroyl-O-
hexoside C15H18O8 1.0 163.0395/119.0498 Flowers/

leaves [31]

6 5.80 449.1083 Cyanidin-3-O-
glucoside C21H20O11 −0.2 287.0549 Flowers [32]

7 5.89 609.1460 Luteolin-
diglucoside C27H30O16 −0.3

447.0923/446.0551/
285.0398/283.0244/

151.0030
Flowers/leaves [30]

8 6.28 695.1471
Kaempferol-

malonylhexose-
hexose

C30H32O19 0.5
651.1576/531.1151/
489.1046/446.0859/

285.0402
Flowers/leaves [33]

9 6.55 651.1578 2-O-Acetylrutin C29H32O17 1.7 489.1041/446.0857/
285.0401

Flowers/
leaves [27]

10 6.56 635.2675 Coelovirins D C21H47O21 −1.5 349.1143/293.1236/
277.1286/143.0707 leaves [28,29]

11 6.72 473.2021 Coelovirin B C21H30O12 −1.5 115.0750 Flowers/
leaves [28,29]

12 6.91 325.0932 p-Coumaroyl-O-
hexoside C15H18O8 1.0 163.0395/119.0498 Flowers/

leaves [31]

13 7.34 787.3220 Unknown - - 473.1696/285.0981 Flowers/
leaves -

14 7.59 593.1507 Luteolin-O-
rutinoside C27H30O19 −0.4 285.0396 Flowers/

leaves [27]

15 7.65 447.0929 Kaempferol-
hexoside C21H20O11 −0.3 284.0323/255.0295/

227.0346 Flowers [34]

16 7.68 457.2059 Unknown C21H30O11 - 153.0550/127.0758/
99.0809

Flowers/
leaves -

17 7.88 887.3233 Dactylorhin A C40H55O22 1.1 619.2239/439.1606/
179.0558/153.0553

Flowers/
leaves [35]

18 8.15 385.1436 Unknown - - 177.0551/145.0289/
117.0332 leaves -

19 8.37 771.2741 Militarine C34H46O17 −1.0 457.1220/285.0979/
153.0555

Flowers/
leaves [35]

20 8.57 533.1344 Unknown C21H29O17 2.2 390.0738/333.0760 Flowers/
leaves -

21 8.78 1033.3541 Unknown saponin - - 765.2605/436.1606/
619.2237/325.0923 Flowers -

22 9.21 753.2615 Unknown - - 439.1609/153.0554 leaves -
23 9.49 1063.3664 Unknown saponin - - 749.2662/569.2034/

439.1611/153.0554 Flowers -

3. Materials and Methods
3.1. Chemicals

Octyl octanoate (98%), alkane mix (C6–C35), formic acid, and anhydrous sodium
sulfate were obtained by Sigma-Aldrich, Inc. (Milan, Italy). Diethyl ether, n-hexane, ethyl
acetate, acetonitrile, and methanol were purchased from Merck (Darmstadt, Germany)
and used without further purification. For UPLC/MS analyses, acetonitrile and formic
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acid LC-MS grade were provided by Romil (Cambridge, UK), and ultrapure water was
produced using the Milli Q-Milli RO system, Millipore (Burlington, MA, USA).

3.2. Plant Material

Roots, leaves, stems, and inflorescences of O. purpurea were collected in April 2021 in
Pianlago Ponzone (Alessandria, Italy, 44◦35′21′′ N 8◦27′37′′ E) according to the regional law
and with the legal permission of the regional authorities. Plants were identified according
to Chase et al. [8]. A voucher specimen of the species is deposited in the living collection of
the Department of Drug Sciences (Pavia, Italy) with the accession number Op02. The plant
materials were collected and immediately placed in a PVC bag and stored at +4 ◦C, and
subsequently stored in dark conditions at −20 ◦C until extraction procedures.

3.3. Extraction of O. purpurea
3.3.1. Steam Distillation

Samples of roots, stems, leaves, and flowers of O. purpurea (10.69 g, 58.21 g, 60.96 g,
and 60.92, respectively) were spiked with octyl octanoate (35 mg) as an internal standard,
and next steam distilled for 3 h. Steam distillation was performed according to De Agostini
et al., 2022 [36]. Briefly, the natural matrix was placed over a stainless steel plate inside
the body made of heat-resistant glass. The steam passing through the natural matrix was
next cooled through a water condenser, thereby producing the essential oil and aqueous
plant extract (hydrosol) simultaneously. The hydrosol was extracted with diethyl ether
(3 × 100 mL), dried over anhydrous Na2SO4, concentrated under reduced pressure, and
finally the solvent was completely evaporated using a gentle N2 stream. The obtained
extract was stored at −20 ◦C until GC/FID and GC/MS analyses.

3.3.2. Soxhlet Extraction

Samples of leaves and flowers of O. purpurea (26.17 g and 5.95 g, respectively) were
placed in the Soxhlet apparatus and extracted sequentially with n-hexane, ethyl acetate, and
methanol (3 × 500 mL each). The mixture was refluxed for 60 min, filtered, resuspended in
fresh solvent, and refluxed for further 60 min. The fractions were collected, and the solvent
removed under vacuum. The samples were successively extracted, following the procedure
described above, with ethyl acetate and methanol. All dried extracts were stored at −20 ◦C
until UHPLC-MS/MS analysis.

3.4. Gas Chromatographic Analysis

GC-FID analyses were carried out using an Agilent model 5980 GC (Agilent Tech-
nologies, Lexington, CA, USA), equipped with Elite-5MS (5% phenyl methyl polysiloxane)
capillary column (30 m × 0.32 mm i.d.) and film 0.32 µm thick (Agilent Technologies,
Lexington, CA, USA). The carrier gas was He at a flow of 1 mL/min. Aliquots of 1 µL of
each essential oil after dilution (1 mg/mL) with dichloromethane were manually injected in
“split” mode (30:1) with a column temperature program of 40 ◦C for 5 min, then increased
to 260 ◦C at 4◦C/min, and finally held at this last temperature for 10 min. The injector
and detector were set at 250 and 280 ◦C, respectively. The flow conditions for the FID
detector were 40 mL/min for hydrogen and 400 mL/min for air. The relative amount
of each component was calculated based on the corresponding FID peak area without
response factor correction.

The same conditions were also used for GC-MS analyses using a GC Model 6890 N,
coupled to a benchtop MS Agilent 5973 Network (Agilent Technologies, Lexington, CA,
USA). The ion source temperature was set at 200 ◦C, while the transfer line was at 300 ◦C.
The acquisition range was 40–500 amu in positive electron-impact ionization (EI) mode
using an ionization voltage of 70 eV.

The identification of the volatile metabolites was performed by their retention indices
(RI), their mass spectra, and by comparison with a NIST database mass spectral library, as
well as with literature data [37–39]. Retention indices were calculated columns using n--C6–
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C35 alkanes. The quantitative data were obtained from GC/FID analyses by an internal
standard method and assuming an equal response factor for all detected compounds.

3.5. UPLC-MS Analysis

Qualitative analyses of flower and leave methanol extracts were performed using
a Water ACQUITY UPLC system coupled with the high-resolution mass spectrometer
(HRMS/MS) Waters Xevo G2-XS QTof (Waters Corp., Milford, MA, USA). The chromato-
graphic separation was performed using a Biphenyl column (100 × 2.1 mm, 2.6 µm;
Phenomenex, Torrance, CA, USA). The mobile phase consisted of water (A) and acetonitrile
(B) both acidified to 0.1% (v/v) formic acid. The linear gradient was set at 0.0–10.0 min,
5–95% B, after each run of 5.0 min of column washing (95% B), and 5.0 min of column equi-
libration (5% B) before the next injection was used, and the flow rate used was 0.4 mL/min.
The injected volume was set at 5.0 µL of each sample at a concentration of 0.5 mg/mL.
The Xevo GS-XS QTof mass spectrometer was used in both ionization modes (positive and
negative) to acquire full-scan MS and HRMS/MS analysis. The calibration of the mass
spectrometer used 0.5 M sodium formate and leucine-enkephalin (200 pg/mL) as LockMass
(m/z 556.2771 in positive and 554.2615 in negative ionization), infused simultaneously with
the flow of column at 2 µL/min and acquired for 0.5 s every 15 s. The following experimen-
tal conditions were adopted for the electrospray (ESI) source: capillary voltage of 2.0 kV,
source temperature of 150 ◦C, and desolvation temperature of 500 ◦C. High-purity nitrogen
gas was used as a desolvation gas at a flow rate of 1000 L/h. MS spectra were acquired
by full-range acquisition covering a mass range from 50 to 1200 m/z. The HRMS/MS ac-
quisition was performed by data-dependent scan (DDA) experiments where the two most
intense ions from the HRMS scan event were selected and subjected to collision-induced
dissociation (CID) by applying a minimum signal threshold of 250, an isolation width at
2.0, and collision energy normalized to 30%. A resolving power of 30,000 both in full and
in MS/MS scan modes was used. Compounds’ deconvolution was attributed using UNIFI
Portal software v1.9 SR4 (Waters Corp., Milford, MA, USA) comparing MS/MS spectra
with a proprietary scientific library (Traditional Medicine Library) or ChemSpider, and
confirmation with the scientific literature. The MassLynx software (version 4.2, Waters
Corp., Milford, MA, USA) was used for instrument control and data acquisition.

4. Conclusions

To conclude, the present work fills the gap related to the characterization of the
phytochemical profile of Orchis purpurea, a herbaceous plant characterizing the Italian flora
but still underexplored. The high amount of coumarin in all the organs of O. purpurea is of
particular interest, this metabolite mainly being present in genera belonging to the Araliales,
Rutales, and Asterales orders [40]. In the Orchideaceae family, simple coumarin has already
been identified in a few species, mainly belonging to the genus Dendrobium, even if in
percentages much lower with respect to the ones reported in the present work [12,16].
Taken together, the herein presented results shed a light on both the defensive strategy and
the chemotaxonomy of O. purpurea. However, our results are only descriptive and should
not push the reader to consider this organism as a possible source of coumarin, it being a
plant protected by many national laws and whose harvesting is strictly regulated.
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