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Alberto Leporati1, Lorenzo Rovida1

aUniversity of Milan-Bicocca, Department of Informatics, Systems and
Communication, Viale Sarca 336, 20126, Milan, Italy

Abstract

The Proof-of-Stake (PoS) consensus algorithm has been criticized, in the liter-
ature and in several cryptocurrencies communities, due to the so-called com-
pounding effect : who is richer has more coins to stake, therefore higher prob-
ability of being selected as a block validator and obtaining the corresponding
rewards, thus becoming even richer. In this paper, we present a PoS simulator
written in the Julia language that allows one to test several variants of PoS-
based consensus algorithms, tweaking their parameters, and observe how the
distribution of cryptocurrency coins among the users evolves over time. Such
a tool can be used to investigate which combinations of parameters values al-
low to obtain a “fair” and stable consensus algorithm, in which, over the long
term, no one gets richer or poorer by the mere act of validating blocks. Based
on this investigation, we also introduce a new PoS-based consensus mechanism
that allows the system to keep the wealth distribution stable even after a large
number of epochs.

Keywords: Blockchain, Proof-of-Stake, Compounding effect, Wealth
Distribution, Tokenomics

1. Introduction

The advent of Bitcoin [23] has given rise to an increasing interest in
blockchains and distributed ledger technologies (DLTs), attracting many sci-
entists, programmers, and business investors. Since then, many types of
blockchains and DLTs have been proposed, both permissionless and permis-
sioned, based on several types of consensus algorithms, among which we can find
Proof-of-Work (PoW), Proof-of-Stake (PoS), Delegated Proof-Of-Stake (DPoS),
Practical Byzantine Fault Tolerance (PBFT), Proof-of-Burn (PoB), Proof-of-
Capacity, and Proof of Elapsed Time (PoET). An overview of these mechanisms
is given in [1].
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In the first years of DLTs, questions of technological nature received the
most attention; questions about economics, cryptocurrencies distributions and
tokenomics have been addressed much less thoroughly. Some papers in the
literature address the issue of (lack of) decentralization in blockchain gover-
nance [11; 14; 18; 20], implicitly assuming that who is richer has more power
in taking decisions about which transactions and blocks to validate. Albeit
decentralization and wealth distribution among the users of a blockchain are
somehow related, the two phenomena do not necessarily coincide. In fact, it is
commonly believed that monetary policy concerns cryptocurrency distribution,
whereas decentralization is merely a technical (infrastructural) matter. How-
ever, monetary policy is not the only important factor for wealth distribution:
even technology solutions, like consensus mechanisms, might influence it. Hence,
to understand the implications of wealth distribution each different type of con-
sensus algorithm must be analyzed separately. As an example, a comparison
among Proof-of-Work (PoW) and Proof-of-Stake (PoS) consensus mechanisms
is very informative. In PoW, newly created units of currency are rewarded to
the specialized users, called miners, who have access to efficient and powerful
hardware. PoW miners might hold a large number of cryptocurrency units;
however, a large portion of mined rewards must be sold to cover expenses like
electricity bills, rent, and amortization costs of mining rigs. In PoS systems,
instead, new coins are rewarded to stakers who hold a large number of cryp-
tocurrency units. Unlike PoW miners, PoS stakers do not experience high costs
and are encouraged not to sell their rewards as doing so increases their revenue
in the future. This phenomenon, known as compounding effect [10; 13; 30],
illustrates that even supposedly monetary-agnostic technology solutions might
influence tokenomics.

Wealth distribution, decentralization, and blockchain governance, have be-
come particularly relevant and very much discussed topics when Ethereum [34]
announced their intention to switch from PoW to PoS, which they did on
September 15, 2022, in the event known as “The Merge” [6]. To avoid the
compounding effect of PoS – whereby the richest get even richer – and also to
mitigate the negative externalities posed by Maximal Extractable Value (MEV)
strategies – that include, omit, or reorder transactions when making a new block,
with the aim of producing as much additional profit as possible – the community
has proposed Flashbots [7], a (quite elaborate) infrastructure running on top of
Ethereum’s blockchain. Flashbots, as well as other recent similar projects, pro-
vides an off-chain marketplace to build and propose the most profitable blocks
to the validators; however, this off-chain mechanism introduces some degree
of opacity in the consensus mechanism, which is against the transparency and
fairness principles that drive permissionless blockchains. Further details on how
the Flashbots architecture works, and a preliminary analysis of how the rewards
have been distributed since its birth, can be found in [21].

In this paper we partially address questions about wealth distribution in
blockchains that make use of the Proof-of-Stake family of consensus algorithms.
PoS was initially designed to improve the energy consumption derived from
PoW [29]. Since its first implementation, PoS has evolved and many researchers
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have been discussing different approaches, such as Chain-based PoS, Nominated
PoS (NPoS), BFT-based PoS, Delegated proof of stake (DPoS), and Liquid proof
of stake (LPoS). For a description on how these algorithms work, we refer the
reader to [3; 2; 24; 9]. Even the exact definition of stake varies among different
implementations: for instance, some cryptocurrencies use the concept of coin
age, the product of the number of coins with the amount of time that a single
user has held them, rather than merely the number of coins, to define a valida-
tor’s stake [32]. In order to make our study more general, we will not focus our
attention on a specific variant of PoS consensus algorithm. Instead, we have
developed a PoS simulator whose behavior depends upon several parameters,
and may be adapted to simulate any specific PoS-based algorithm. By tweaking
these parameters, we can observe how the distribution of cryptocurrency coins
evolves over time. This tool can thus be used to investigate which combinations
of parameters values allow us to obtain a “fair”, stable and sustainable distri-
bution of wealth in the long term, in which no one gets richer or poorer by the
mere act of validating blocks. Indeed, we believe that fairness is a necessary
condition for the consensus protocol to be sustainable over time: a protocol
that concentrates wealth in the hands of few makes a permissionless blockchain
a centralized system, controlled by an oligarchy. This entails that users will no
longer trust the system and therefore they will leave it.

Precisely, the research question that we want to address in this paper is the
following:

Research question: Is it possible to define a PoS-based consensus
mechanism in which, with a given set of parameters, the distribution
of wealth remains relatively stable across epochs?

We will try to answer this question by presenting a consensus algorithm that
aims to keep the distribution of wealth near a given target value. This mech-
anism will be implemented in the proposed simulator in order to empirically
show its behavior and stability.

The rest of this paper is structured as followed. In Section 2 we recall
some related works from the literature, that investigate on the distribution of
wealth among blockchain validators. In Section 3 we describe the two main
contributions of the paper: the Gini-Stabilized consensus mechanism and the
PoS simulator. In Section 4 we show some examples of simulations that can be
performed with the latter, and we discuss the outputs of such simulations. We
therefore give a qualitative analysis of the proposed Gini-Stabilized consensus
algorithm. Finally, in Section 5 we draw some conclusions and delineate some
directions for future research.

2. Some Related Works

In this section we recall some works taken from the literature, that are
somehow related with the topic under study. However, as will be discussed
shortly, our perspective is a bit different, and we believe that our approach may
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be of some interest to design and/or test the behavior of PoS-based consensus
algorithms.

Some scientific studies about the distribution of wealth among the top rich-
est users of PoW and PoS-based blockchains have been performed [10; 12; 27; 4].
For example, [13; 15; 19] showed that the distributions of the top richest bal-
ances might be modeled with Zipf’s law. Additionally, the Gini coefficients
were computed for each user to measure wealth inequality. Moreover, in [13]
the authors showed that the wealth of top Bitcoin holders grows faster than the
wealth of low balance accounts; this phenomenon is well known as preferential
attachment, and it has an important impact on wealth distribution.

In [14], the authors analyze the distribution of the top richest accounts in
cryptocurrencies like Bitcoin, Ethereum, and selected ERC20 tokens. Their
analysis involves the data sets snapshotted at different dates with a given time
interval. These data sets are used to measure different statistical and concen-
tration metrics – Shannon entropy, Gini coefficient, Nakamoto coefficient and
approximated Zipf coefficient – and to analyze their evolution over time, trying
to answer the following research question: Are there any quantitative differences
between top account balances in cryptocurrency “coins” and “tokens”?. The au-
thors analyzed the time-dependent statistical properties of top cryptocurrency
holders for 14 different distributed ledger projects. Using the above mentioned
metrics, they showed that there are quantitative differences of centralization lev-
els between cryptocurrency coins and tokens. It was thus observed that tokens
are, in general, much more centralized than coins, with higher Gini coefficients
and smaller Nakamoto coefficients.

All these researches focus on the top richest accounts, and hence might be
of particular interest to DLTs where a group of top cryptocurrency holders ful-
fills a special role. Examples include Decentralized Autonomous Organizations
(DAOs) – in which a committee of top token holders is responsible for DAO
governance or treasury management – and Delegated Proof-of-Stake (DPoS)
blockchains – where a relatively small committee of block validators issue ledger
updates or distributes random number generators based on the threshold sig-
nature scheme. Since these kinds of analyses require to download and process
large amounts of data, they necessarily limit their scope to the top richest users.

Other works focused on the (de)centralization of blockchains, intended as
the number of players controlling them. In [20], the authors provided their
analysis using three different metrics (Gini coefficient, Shannon entropy, and
Nakamoto coefficient) and their evolution over time. It was found that the de-
gree of decentralization in Bitcoin is higher and more volatile, while the degree
of decentralization in Ethereum (when still adopting the PoW consensus mech-
anism) is smaller and more stable. Jensen et al. [11] analyzed decentralization
of governance token distribution in four decentralized finance (DeFi) applica-
tions on the Ethereum blockchain using Gini and Nakamoto coefficients. Their
results indicated that the token distributions for all four DeFi applications are
characterized by high Gini coefficients. Similar methods were used in [19], where
PoW and PoS cryptocurrencies were compared, analyzing the decentralization
of Bitcoin and Steem [28] using Shannon entropy.
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Other papers deal with the centralization/decentralization of PoS-based
blockchains. However, it is important to note that (de)centralization and wealth
distribution may be in some cases related, but they are indeed different phe-
nomena. Further, the data about wealth distribution usually presented in the
literature do not represent the wealth of individual cryptocurrency owners but
rather the wealth distribution among the cryptocurrency wallets. Apart from
the difficulty of establishing the owner of a wallet, a user may be in possession
of multiple wallets. Clearly, all these hindrances make it difficult to interpret
the results of the analyses.

Concerning simulators for blockchain consensus protocols, a good overview
is given in [25]. For instance, [5] performs a comparison of rewards distribution
between PoW-based and PoS-based blockchains, showing that PoS has a more
fair reward distribution. However, no one of the proposed simulators allows one
to compare different consensus mechanisms in PoS.

In this paper we take a different approach with respect to the above cited
papers. Instead of analyzing existing data about cryptocurrencies or tokens
distributions in blockchains, we study under which conditions a PoS-based con-
sensus algorithm allows to obtain a fair wealth distribution over time. By fair
we mean that who is richer has more possibilities to be chosen to be a validator,
but in the long run his wealth does not significantly increase (nor decrease) due
to the mere activity of validation. Stated otherwise, the validation activity alone
should not meaningfully increase nor decrease anyone’s amount of cryptocur-
rency. To do so, we do not look only at the top 30-50-100 richest cryptocurrency
holders, but we consider the distribution of wealth among all the users of the
blockchain – to be precise, all users who aspire to be selected as block validators.
While the Gini coefficient can be considered a centralization measure, we will
use it instead as an indicator of wealth distribution among a population (the
blockchain users), as is done in economics studies. Our aim is to help researchers
analyze the behavior of existing implementations of PoS consensus algorithms,
and the designers of PoS-based consensus algorithms in testing variants and
finding the values of parameters that eventually make the protocol fair and
sustainable. We do so by proposing a PoS simulator that allows one to tweak
several aspects and parameters of the consensus algorithm. Starting from an
initial coins supply, the simulator computes the evolution of wealth distribution
over time, measuring its fairness by means of Gini coefficient. As stated above,
we believe that fairness is a necessary condition for the consensus protocol to
be sustainable over time. In fact, a protocol that concentrates wealth in the
hands of few makes a permissionless blockchain a centralized system, controlled
by an oligarchy. This entails that users no longer trust the system, and there-
fore abandon it. So, in our opinion, fairness implies sustainability in the long
run. Let us note that some authors have adopted a more extreme point of view
about PoS: in [30], for example, it is stated that “Proof-of-stake is introducing
a set of significant new flaws in both monetary and governance models. Such
systems are plutocratic, oligopolistic, and permissioned”. Even without being so
extreme, it is true that PoS essentially means proof of wealth, since blockchain
protocol’s rules, upgrades, and changes are directly linked to its participants’
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stake (that is, wealth). Other authors have proposed significant modifications
to the PoS protocol, to make it more democratic and sustainable [26; 18]. For
instance, [18] propose a consensus mechanism that protects the system from
the risk of coin age accumulation attack. Saad et al. [26] propose a consensus
algorithm in which performing a fair mining is promoted by the nature of the
algorithm itself. Both these works, though, lack of a quantitative analysis of
the wealth distribution.

By using our simulator, researchers can explore all known and new propos-
als for PoS-based consensus algorithms, play with their parameters, and gather
quantitative data about the behavior of the algorithms over a substantial num-
ber of epochs.

This paper is an extension of [16], in which an analogous PoS simulator
written in the R language was proposed. While such a previous work was focused
on the proposal of the simulator, we found that the performances obtained were
not enough to allow us to perform qualitative or quantitative analyses on a
substantial number of blockchain users, and a sufficiently high number of epochs.
Hence, to perform the experiments described in this work we completely rewrote
(and extended) the simulator in Julia, so that more extensive experiments can
be executed, in more realistic scenarios. In this paper, to measure fairness we use
the Gini coefficient, whose formal definition is recalled in the next section. As
commonly agreed in the economic literature, a fair economic system is such that
its Gini coefficient is less than 0.3 (while a value greater than 0.5 is considered
dangerous and divisive). Hence, in what follows we also propose a new PoS-
based consensus algorithm that, given a desired target value θ for the Gini
coefficient, adapts its behavior in order to approach it.

3. A Proof-of-Stake Simulator

In order to address the research question posed in the previous section, we
have developed a Proof-of-Stake based simulator using the Julia language. As
stated above, the simulator computes the wealth distribution in terms of Gini
coefficient, which is formally defined as follows:

G =
1

2N

N∑
i=1

N∑
j=1

|xi − xj |

where N is the number of elements in the population (in our case, the number
of blockchain users) and xi, for 1 ≤ i ≤ N , is the monetary value associated
to the i-th element (in our case, the number of cryptocurrency coins or tokens
available to the i-th user). The Gini coefficient is an inequality measure widely
used in economics and social statistics. For example, it is used to measure the
inequality of incomes – or of wealth – among the citizens of a country. More in
general, it is a measure of the inequality of a statistical distribution. It takes
values from 0, which corresponds to a complete decentralization (that is, a fair
distribution) of wealth, to 1, that corresponds to absolute centralization. As
commonly agreed in the literature, a fair economic system is such that its Gini
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coefficient is less than 0.3, while a value greater than 0.4 indicates a risk of
social and political instability. Indeed, 0.4 was indicated in 2013 as a desired
target by United Nations to reduce economic inequalities in the world [8]. Let
us note, however, that these values are not strongly supported by theoretical
analyses; on the contrary, based on some data analysis, [31] indicates 0.5 as a
better threshold value. For this reason, in what follows we will not set a fixed
value for the Gini coefficient; instead, we will propose a variant of PoS that
allows the system to never deviate from a pre-set value θ, whatever it may be.

The role of the simulator is to help studying the existence of a set of rules
and parameters that, with a given consensus mechanism, maintain the Gini
coefficient relative to a set of peers near a desired target value. Before going into
the details of the simulator, we first define two types of consensus mechanisms
that will be useful:

• Weighted PoS: the probability of a participant being chosen to validate
a block, and to earn the associated reward, is proportional to the num-
ber of cryptocurrency coins they are willing to stake. More formally, the
probability Pi for the participant i to be chosen is defined as follows:

Pi = Si/
N∑
j=1

Sj

where Si is the stake held by participant i.
• Opposite-Weighted PoS: the probability of a participant being chosen is

computed as the complement of the previous consensus mechanism:

Pi = 1− Si/
N∑
j=1

Sj

The Weighted PoS mechanism causes for sure the compounding effect, as it is
also shown in Section 4; in fact, it can be observed that the Gini coefficient tends
to grow towards 1. On the other hand, the Opposite-Weighted PoS behaves the
opposite, resulting in a tendency for the Gini coefficient to decrease towards 0.
More in general, it may be desirable to achieve an equilibrium near a given
target value; hence, in the next section we define a new PoS-based consensus
algorithm which achieves this goal.

3.1. Gini-Stabilized PoS
We propose Gini-Stabilized PoS, an adaptive consensus mechanism that reg-

ulates the choice on the validator by interpolating between the previous two
mechanisms according to the current value g of the Gini coefficient. Given a
target value θ, the probability of a participant being chosen to validate a block
in this consensus mechanism could be defined as:

Pi =

{
Si/

∑N
j=1 Sj if g < θ

1− Si/
∑N

j=1 Sj otherwise
(1)
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This mechanism pushes the Gini coefficient towards one when g < θ, and to-
wards zero otherwise. Nevertheless, we must introduce a way to interpolate
between the two distributions to smoothly transition between them, in order to
avoid an alternating back-and-forth motion (i.e., a “zig-zag” effect) around θ.
Given two real values x, y ∈ R, the interpolation function `(x, y, t) is defined as
follows:

`(x, y, t) = x+ t(y − x)

where the parameter t is defined at each epoch j over the current Gini coeffi-
cient g as: {

t0 = d(g, θ)

tj = `(tj−1, d(g, θ), s)
(2)

where the function d(g, θ) controls the “direction” of the transition and is defined
as:

d(g, θ) =
sgn(g − θ) + 1

2

where sgn(x) is the sign function, defined as:

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

and 0 < s ≤ 1 controls the “speed” of the transition. When s = 1, the value of
t will always be equal to d(g, θ), generating the zig-zag effect. Smaller values of
s, on the other hand, will relax the value of g and allow for smoother changes
in the distribution. Ideally, we want to achieve something like it is shown in
Figure 1.

θ

(a) s ≈ 1 (b) s < 1 (c) s � 1

Figure 1: Desired behavior for the Gini-Stabilized PoS : the value of Gini coefficient (g, in red)
is always “pushed” towards the target value θ by the function d(g, θ) like a sinusoidal wave

We are now able to assemble the above components and define the probabil-
ity of a participant i to be chosen by the Gini-Stabilized consensus mechanism:

Pi = `(Pw, 1− Pw, tj) (3)

where Pw is the probability distribution defined in theWeighted PoS and j is the
index of the current epoch, required to compute the value of t with respect to
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the previous one. The difference from Equation (1) is that the interpolation
function, whose speed is defined by the parameter s, relaxes the transition
between the two distributions.

We will explore different approaches (that is, functions) to assigning values
to s. The first, and most straightforward, is to assign a fixed value k:

• Constant smoothing : given a fixed value k, evaluate s = k

However, we also propose computing the value of s proportionally to the differ-
ence |g−θ| between the current Gini coefficient (g) and the target Gini coefficient
(θ), using the following two approaches:

• Linear smoothing : given a fixed value k, evaluate s = |g − θ|/k
• Quadratic smoothing : given a fixed value k, evaluate s = |g − θ|2/k

Each type of smoothing will have a strong impact on the smoothness of the trend
of g. The experiments presented in Section 4 will further clarify this point.

One may observe that, with our Gini-Stabilized PoS, when the current value
g of the Gini coefficient exceeds the threshold value θ, we are increasing the
probability of choosing, as validator, those who have put less money on stake.
This could incentivize malicious behavior on the part of those with little to
lose. On the other hand, the mantra on which PoS is based is that those
who stake a lot of money have every interest in behaving honestly, given that
they are also the ones who would lose the most if the system failed. While
these reasonings are correct, we must note that - although we are increasing
the probability of choosing the poorest participants - the fact remains that the
choice of validator is essentially made proportionally to the amount of money
staked. The probabilities are changed only slightly, so as to bring the value of
the Gini coefficient back towards the threshold as soon as it deviates.

Notwithstanding, we can think of several possibilities to discourage malicious
behavior on the part of those who stake little money. For example, one possibil-
ity is to introduce a minimum threshold of money to stake to become a validator.
While on the one hand this constitutes a disincentive, since the amount of money
lost in case of incorrect behavior is not negligible, on the other hand the thresh-
old value should not be too high, otherwise only a few wealthy individuals can
become validators. Another possibility is to increase the punishment for those
who behave incorrectly, i.e. the amount of money slashed from the stake. This
seems to be a good solution, since it does not change the basic assumption that
those who are richer have no interest in cheating. Yet another possibility is that
whoever has validated a block cannot do so for a certain number of subsequent
time slots. In the simulator, we have called such number of epochs the standby
period. Under the assumption that few people will try to cheat, this mechanism
makes their participation in the block validation activities more difficult.

We have performed several experiments, using each of these three disincen-
tives. In the long run, each of them does not influence significantly the wealth
distribution. Among all, the most effective mechanism seems to be the Gini-
Stabilized PoS. Indeed, the probability of being selected as a validator remains
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basically proportional to the amount of money put in stake; thus, if a cheater
puts a small amount of money, they will be selected very rarely. And this is
what seems to count in the long run.

3.2. The parameters of the simulator
The proposed simulator implements various types of consensus mechanisms,

including the just introduced Gini-Stabilized PoS, along with many parameters
that let the user control the simulation; a complete list is presented in Table 1.

Table 1: Parameters of the simulator

Parameter Description

n_epochs Number of epochs to be simulated,
corresponding to the number of blocks validated

proof_of_stake Type of PoS consensus mechanism:
{Weighted, OppositeWeighted, GiniStabilized}

initial_stake_volume Initial number of coins distributed among peers,
based on initial_distribution

initial_distribution Initial distribution of coins among validators:
{Uniform, Gini, Random}

n_peers Number of participants (same as N) aiming to
be validators

n_corrupted Number of validators that could exhibit
corrupted behavior

p_fail Probability that a corrupted peer, if selected as
validator, fails to validate correctly

penalty_percentage Percentage of coins slashed from the stake of
corrupted validators

p_join Probability of a new user joining validators, at
each epoch

p_leave Probability of any validator quitting the pool,
at each epoch

join_amount Amount of coins owned by a newly joined peer:
{Average, Random, Max, Min}

reward_type
Type of reward: Constant or Dynamic. If
the latter is chosen, the reward is a percentage of
the current stake volume

minimum_stake Minimum amount of coins required to join the pool

standby_period
Number of epochs that a previously chosen
validator must wait before being considered to
validate the next block
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The tool requires additional parameters, in case some options have been
selected. These parameters are reported in Table 2.

Table 2: Optional parameters of the simulator

Parameter Description

initial_gini
In case Gini has been selected as initial
distribution, this indicates the value of the Gini
coefficient at the beginning of the simulation

gini_threshold The value of θ, to be defined in case of
GiniStabilized consensus mechanism

initial_stake_volume Initial number of coins distributed among peers,
based on initial_distribution

s_funct
The smooting function applied to s (refer to
Equation (2)). It takes a value among Constant,
Linear and Quadratic

k The value of k, given as input to the smoothing
function used to compute s

The simulator, whose source code is available at [17], allows one to track
the distribution of cryptocurrency coins over time, for a given PoS consensus
algorithm, under a specified choice of parameters. It is not intended as a com-
plete solution, but rather as a generic skeleton to be customized according to
the precise implementation of the consensus algorithm to be analyzed. Notice
that modifications to the simulator are simple to make, as it is designed in a
modular manner. In the next section we provide some examples of analyses
performed on some hypothetical implementations of PoS.

3.3. Simulator workings
In this section, we provide an overview of how the proposed simulator op-

erates. We will offer some insights from a high-level perspective by annotating
the pseudocode that summarizes its functionality in Algorithm 1.

In the following, we comment each line of the algorithm; each item refers to
the corresponding line number:

1. Generate a set of peers with specified parameters such as n_peers,
initial_stake_volume and initial_distribution.

2. Select a random subset of peers to be corrupted, with the size specified as
n_corrupted. Usually this value should be much less than the number of
peers; for example, a reasonable assumption seems to be that the number of
corrupted peers is < 5%.

3. Initialize an empty list history which will store the values for variable g over
time.
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Algorithm 1 Pseudo-code of the PoS simulator

1: peers ← generatePeers(n_peers, initial_distribution)
2: corruptedPeers ← random subset of peers of size n_corrupted
3: history ← {} . This will contain all the values for g
4: g ← Gini(peers)
5: t← d(g, θ)
6: append g to history
7: for i← 1 to n_epochs do
8: peers ← quit(p_quit) . A random set of peers might leave the pool
9: peers ← join(p_join) . A new set of peers might join the pool

10: g ← Gini(peers)
11: s← funct(s_funct, k)
12: t← `(t, d(g, θ), s) . See Equation (2)
13: append g to history
14: v ← consensus(proof_of_stake, peers, t) . Computes the index

of the chosen validator
15: . The selected validator must not be in its standby period
16: while v is in standby do
17: v ← consensus(proof_of_stake, peers, t)
18: end while
19: if v ∈ corruptedPeers ∧ r < p_fail then
20: peersv ← peersv · penalty_percentage
21: else
22: peersv ← peersv + reward

23: end if
24: reduce all standby periods by 1
25: end for
26: plot(history) . Plots g over the different epochs

4. Calculate the Gini coefficient g for the current set of peers.

5. Calculate the interpolation factor t based on the initial value t0. Refer to
Equation (2) for a detailed explanation.

6. Append the current value of g to the history list.

7. Begin a loop iterating over a specified number of epochs. Within each epoch
run the following:

8. Attempt to remove a set of random peers. In particular, each peer may
be removed with probability p_leave.

9. Attempt to add a new set of peers. In particular, a new peer is added
with probability p_join; if it is added, a new peer can join the pool with
the same probability. Otherwise, the procedure stops. The stake of the
new peers is defined according to the join_amount parameter. Lastly,
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the new added peer might be a corrupted one with a probability equal
to the initial ratio of corrupted peers over the total number of peers.

10. Calculate the Gini coefficient g for the current set of peers.

11. Compute the value of s according to the selected function s_funct.

12. Update the value of ti according to the previously defined Equation (2).

13. Append the current value of g to the history list.

14. Determine the consensus among peers using the chosen Proof-of-Stake
mechanism with the current set of peers. The value of t is only used
when the proof_of_stake parameter is set to GiniStabilized.

16-18. If the selected validator is in standby (i.e., he was selected less than
standby_period epochs before as a validator), re-do the selection.

19-20. If the chosen validator is in the corruptedPeers list, and a random value
r ∈ [0, 1) is less than p_fail, then the validator is slashed and their
stake is reduced by a factor penalty_percentage.

21-23. Otherwise, reward the validator and set their standby period to
standby_period

24. All greater than zero standby periods are reduced by one.

4. Some Experiments

In this section we illustrate some experiments performed using our simula-
tor. As stated in previous sections, we have not focused on a particular real
implementation of PoS. The simulator generates a list of peers, users of the
blockchain that aim to be selected as validators, which are numbered from 1
to n_peers. This list is not static: at each epoch new peers can join the set
of prospective validators according to a probability p_join; in this case, the
number of coins owned by the new peer depends on the value of join_amount.
Moreover, some peers might leave the blockchain with a probability p_leave.
Among the possible validators there is a subset of corrupted peers, meaning
that for some reason, if selected as validators, these peers will fail to correctly
validate the current block. In such a case a penalty is applied, and the stake
of the corrupted validator gets slashed by a factor penalty_percentage. Each
peer receives an initial supply of cryptocurrency coins from the total volume
initial_stake_volume, distributed among the peers according to the selected
initial_distribution.

For each experiment, we briefly introduce the most important parameters;
refer to Table 3 for a complete presentation of all the values of the parameters
used in all the experiments. Notice that the value of minimum_stake is always
equal to reward. We remark that all the experiments are available as Jupyter
notebooks, based on Julia, in our open-source repository [17].

In what follows we will analyze the results obtained in each experiment from
two perspectives: the trend of the Gini coefficient to analyze the compounding

13



Table 3: Set of parameters used in the experiments. Multiple denotes that multiple values of
that parameter have been used

Experiments
Parameters 1 2 3 4 5
n_epochs 20.000 400.000 300.000 300.000 4.000.000
proof_of_stake Weighted Opposite GiniSt. GiniSt. GiniSt.

initial_stake_volume 5.000 5.000 5.000 5.000 50000
initial_distribution Gini Gini Gini Gini Gini
n_peers 10.000 10.000 10.000 10.000 10.000
n_corrupted - - - - 50
p_fail - - - - 0.7
penalty_percentage - - - - 0.5
p_join - - - - 0.01
p_leave - - - - 0.01
join_amount - - - - Random
initial_gini Multiple Multiple Multiple 0.5 0.5
reward 20 20 5 10 10
theta (θ) - - 0.3 0.3 0.3
s_funct - - Constant Linear Multiple
k - - 1/100 10 Multiple
minimum_stake 20 20 5 10 10
standby_period 2 2 2 2 2

effect, and the percentage of stake held among peers to analyze the preferential
attachment effect.

4.1. Experiment 1: Weighted PoS
As a first experiment, we simply want to assess the tendency ofWeighted con-

sensus to push the Gini coefficient towards 1, thus generating the compounding
effect. We define the number of peers to be equal to 10.000 and we run the simu-
lator for 20.000 epochs. We performed five different runs, each of them starting
from a different initial distribution, defined by different values of initial_gini.
As shown in Figure 2, the Gini coefficient g tends to grow towards 1, indepen-
dently from the choice of the initial distribution of coins.
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Figure 2: Trend of the Gini coefficient g using the Weighted consensus algorithm, on five
different starting distributions

Additionally, we want to study the effect that this consensus mechanism has
over the difference between the distribution of stake held among the peers at
the beginning and at the end of the simulation. We thus generate a set of peers,
each having a random amount of coins (initial distribution set to Random),
and we present the percentage of stake held by each peer across iterations in
Figure 3.
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Figure 3: Percentage of stake held across iterations using the Weighted PoS, with a random
starting distribution. The red line indicates the value of 1/n_peers

It is clear from the figure that the Weighted PoS tends to create a strong
division between peers that are above and below the mean percentage of pos-
sessed stake. Notice the red horizontal line; if a peer’s position on the plot is
above the red line, it means that the percentage of stake it possesses is greater
than what at least half of the peers possess. Conversely, if a peer’s position is
below the red line, it means that the percentage of stake it possesses is smaller
than what at least half of the peers possess.

In the considered case, at the first epoch 50.4% of the peers was below
the average, and the other 49.6% was above. After the simulation, this ratio
changed to 76.7% over 23.3%. This implies that rewards for validating blocks
are collected by an increasingly smaller amount of peers, making the blockchain
monopolized by them. This experiment indeed showed two simple but effective
facts: the compounding effect, and the preferential attachment caused by using
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the Weighted consensus mechanism.

4.2. Experiment 2: Opposite-Weighted PoS
The second experiment aims to assess the tendency of OppositeWeighted.

As stated at the beginning of Section 3, the implementation of this consensus
mechanism causes the Gini coefficient to tend toward zero. Apart from the
mechanism and the number of epochs, the set of parameters is the same as
the previous experiment. As presented in Figure 4, the experiment shows that
the value of g tends to zero, regardless of the initial distribution of coins. The
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Figure 4: Trend of the Gini coefficient g using the Opposite-Weighted consensus algorithm,
on five different starting distributions

number of epochs has been increased because we empirically noticed that this
consensus mechanism converges more slowly with respect to the previous exper-
iment. In order to complete the analysis with respect to the percentage of stake
held by each peer, in Figure 5 we present its trend across iterations.
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Figure 5: Percentage of stake held across iterations using the OppositeWeighted PoS, with
uniform starting distribution

Notice that, as opposed to the previous experiment, the stake becomes well
distributed among all the peers. The problem with this approach is that, of
course, peers are not encouraged to put coins in stake, since the possessed
percentage will become, eventually, the same for everyone.
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These two experiments aimed to empirically prove the behavior of two basic
consensus algorithms. Additionally, we pointed out a problem related to the
percentages of stake held among peers. Ideally, we would like to have a consen-
sus mechanism that preserves such percentages over iterations, because such a
consensus mechanism would better distribute the rewards among all peers.

The following experiments will explore the behavior of a more complex con-
sensus algorithm, the Gini-Stabilized PoS, under different possible ways of as-
signing values to parameter s.

4.3. Experiment 3: Gini-Stabilized with Constant update
We start by showing the occurrence of the “zig-zag” effect centered in a fixed

value θ = 0.3. This is done by setting a constant value for s equal to 1. As a
consequence, the PoS behavior will switch from Weighted to OppositeWeighted
as soon as g crosses the θ threshold, without any smooth interpolation. The
result is shown in Figure 6.
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Figure 6: Trend of the Gini coefficient g using the Gini-Stabilized consensus algorithm with
θ = 0.3, on five different starting distributions

It is interesting to notice that, in the very first epochs, before starting to
descend towards 0, the value of g has an initial growth. The interval of epochs
in which this phenomenon happens depends on the volume of the initial stake,
with respect to the quantity of coins given as a reward. The first rewards will
have a bigger impact on g, with respect to the subsequent ones, since the reward
is constant and does not change over time. The system, therefore, requires some
epochs to “stabilize” its trend. Notice that, as g, for any starting configuration,
approaches θ = 0.3, its value starts to rigidly follow the target value. This
point has been informally highlighted in Figure 6 with a vertical green line. It
is possible to visually recognize the zig-zag phenomenon by observing the trend
of g in small intervals of epochs, after it has stabilized near θ (see Figure 7).
In particular, we observed that the region in which g lies, after a number of
epochs, is small.

Now we wonder if it is possible to obtain a more “relaxed” trend of g by using
a smaller value for s, for instance s = 1/100. As before, we are interested to
plot the trend of g after it has stabilized near θ. We show the results in Figure 8
on a larger number of epochs, to highlight the differences with s = 1. As it can
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Figure 7: A zoom-in of the previous figure, in 80 epochs, that highlights the zig-zag effect
caused by s = 1. The y-axis represents the value of g
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Figure 8: A comparison between s = 1 and s = 1/100, analyzed in 2000 epochs, after a
stabilization near θ = 0.3. The y-axis represents the value of g

be seen, when using a smaller value of s, the amplitude of the trend is larger,
and the frequency is smaller, although we are still lacking a smoother transition.
We conclude the experiment by showing the behavior of the proposed consensus
mechanism, with s = 1/100 and a random initial distribution of stake volume,
on the percentage of stake possession in Figure 9.
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Figure 9: Percentage of possessed stake across iterations using the GiniStabilized PoS, with
a random starting distribution. The black dashed line indicates the point in which the Gini
target value θ = 0.3 has been reached
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Notice an unpredictable behavior in the initial phase, before the Gini coeffi-
cient reaches the target value θ. Nevertheless, this behavior could be avoided by
fixing a custom initial distribution of coins. After that, the percentage of stake
held among peers slightly fluctuates, but there are no significant drops or losses.
As a consequence, there is no significant change in the percentage of possessed
stake from the peers. This distribution is fairer, compared to the one shown
by the Weighted consensus. For instance, now the ratio between the amount of
people above and below the average goes from 50%/50% in the first iteration,
to 46.4%/53.6%, which is fairer with respect to Experiment 1, and consistent
with the choice of the target value θ = 0.3 of the Gini coefficient.

4.4. Experiment 4: Gini-Stabilized with Linear update
To achieve a smoother trend, we require an additional ingredient. Specifi-

cally, the value of s will be dynamically adjusted based on the current difference
|g − θ|. As this difference grows larger, s should increase proportionally; con-
versely, as the difference decreases, s should decrease accordingly. We therefore
set s_funct to Linear. The function used to control s will be s = |g − θ|/k,
with k = 10. We plot the results following a stabilization near θ in Figure 10.
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Figure 10: A comparison between Constant and Linear update strategies for s, analyzed
following a stabilization near the target value θ

Here a comparison is made between the trends of the Gini coefficient for three
update strategies, corresponding to the constant values s = 1 and s = 1/100,
and to s = |g − θ|/10. It is now clear that, by changing s according to the
current value of |g− θ|, we obtain a smoother trend, with a larger amplitude. It
is possible to apply different functions to this difference in order to “relax” the
trend as preferred.

4.5. Experiment 5: Comparison between Constant, Linear and Quadratic update
strategies

As a last experiment, we execute the simulator using all the functions defined
in s_funct: a constant, a linear, and a quadratic function. Plus, we set the
probabilities for new peers to join and to quit the pool at each epoch equal
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to 0.1%, thus simulating a more realistic scenario. The number of epochs will
be equal to 4.000.000 and, initially, the pool will consist of 10.000 potential
validators. Newly added validators will stake a number of coins equal to the
number of coins staked by another randomly chosen validator. As before, we
set θ = 0.3. The results are presented in Figure 11.
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Figure 11: A comparison between Constant, Linear and Quadratic update strategies

Looking at the obtained results, we can make the following considerations.
First of all, the Gini-Stabilized consensus seems to confirm robustness with
respect to penalties applied to corrupted peers and to external events, such as
peers leaving the blockchain and new peers joining. These events may cause
unexpected changes in g, such as sudden peaks, but the trend is eventually
brought back near θ. The choice of the function s_funct depends on many
factors, and making good choices is important for determining the final behavior
of the system. Indeed, the latter experiment shows that it is possible to “control”
the trend of g with the desired level of flexibility, by choosing appropriately the
function applied to s and the value of k.

5. Conclusions and Directions for Future Work

In this paper we have described a simulator of PoS-based consensus algo-
rithms, and we have performed some experiments to investigate the behavior of
some PoS-based consensus algorithms in terms of wealth distribution, measured
using the Gini coefficient. Furthermore, we have introduced a new PoS-based
consensus algorithm that makes the value of the Gini coefficient converge to a
desired target value θ.

The simulator is not intended to be a complete solution but rather as a
generic skeleton to be customized according to the precise implementation of

20



the consensus algorithm to be analyzed. Adopting this point of view, we have
provided some examples of analyses performed on some hypothetical imple-
mentations of PoS. The simulator allows to tweak several parameters of the
consensus algorithm and observe how the distribution of cryptocurrency coins
among the users evolves over time. The final aim is to help researchers analyze
the behavior of existing implementations of PoS consensus algorithms, and the
designers of such algorithms to find the values of parameters that make the
protocol fair and sustainable in the long term. With respect to this latter goal,
we proposed an adaptive mechanism that makes the value g of the Gini coeffi-
cient converge to (and then smoothly oscillate around) a desired value θ. Fixing
θ = 0.3, which is the value indicated by many economists for a fair wealth
distribution, we obtain a behavior which seems to be sustainable in the long
run.

The presented work has several limitations, and can be extended in several
ways. First of all, our simulator assumes that the peers of the blockchain put all
their cryptocurrency coins in the stake at each epoch. An enhanced simulator
could handle peers that put a certain amount of coins in the stake according to a
certain distribution, depending on the epoch. A possible extension concerns the
possibility to make the peers join and leave the system according to user-defined
probability distributions. The same applies to the amount of coins given to the
new peers. Another possible extension concerns the indices and coefficients used
to analyze wealth distributions: as we have seen, many papers in the literature
use also Shannon entropy and Nakamoto coefficient to perform their analyses;
at the moment our simulator only uses the Gini coefficient – we have started
from this one because it is widely adopted in economics studies about wealth
distributions. Adding the computation of further coefficients is not difficult, and
will certainly be done in a future version of the simulator. Similarly, it would be
possible to determine, by linear regression, the Zipf’s law coefficients that best
approximate the wealth distribution under study.

When designing a cryptocurrency, initial supply and subsequent distribution
of coins are fundamental problems to tackle and consider. Due to Proof-of-
Stake’s intrinsic initial supply requirements, blockchain networks implementing
PoS as a distributed consensus mechanism present an important pre-mined ini-
tial distribution, in terms of coin percentage of the entire network. In this paper
we have ignored this aspect, and we have simply assumed that each user initially
obtains a number of coins according to some predefined fixed distribution, which
may be uniform, random, or with a fixed Gini coefficient. While this means that
our simulator is only able to analyze situations where the blockchain has already
been running for some time, it is not clear to the authors whether the simula-
tor should really consider also the start-up period in which the creators of the
blockchain distribute cryptocurrency coins to the prospective users, according
to some political, monetary, and marketing strategy.

Finally, a clear direction for future research is to use more elaborated versions
of the proposed simulator for investigating which combinations of parameters,
and which policies – implementing forces that increase or decrease the number
of coins in the system, and their assignment to the peers – make it possible to
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obtain a variant of PoS that is fair and hence sustainable in the long run. A
comparison with other approaches taken in the literature could also be helpful [?
? ? ].

Further, we would like to simulate more realistic scenarios. For example,
in the real world, external events can determine sudden drops or surges in the
value of a cryptocurrency, resulting in a large number of users leaving or joining
in a short period of time. The blockchain should resist even these “catastrophic
events”, converging towards a new point of equilibrium. It is well known that
markets are complex and chaotic systems [33]; some studies even show fractal
properties [22]. Therefore, such a study will probably involve mathematical
tools commonly used in the theory of complex systems, and will require the
implementation of much more sophisticated simulators than the one presented
in this paper.
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