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Abstract. The regulation of cell metabolism is complex and multifold. Hence the metabolic
alterations that have been reported in many physio-pathological conditions can be fully charac-
terized only by using model-based multi-omics data integration frameworks. We present here
version 2 of the Marea4Galaxy tool, integrated into the Galaxy platform. The previous version
of Marea4Galaxy allowed users to visualize deregulated reactions at the transcriptomic level.
The new version extends these capabilities by enabling the simultaneous visualization of dereg-
ulated reactions at the metabolic level using metabolomics data. Significant improvements have
been made, including a more comprehensive metabolic network model, a module for extract-
ing necessary inputs from any metabolic model in XML or JSON format, better compatibility
with alternative gene nomenclatures, and faster reaction activity scores (RASs) calculation. We
demonstrate the utility of this tool by comparing different groups of cancer cell lines using
paired datasets from the Cancer Cell Line Encyclopedia.

1 Introduction
Metabolism is regulated by the complex interaction between the availability of reaction

substrates and the activity of enzymes. Enzyme activity can be in turn controlled either at
the transcriptional, post-transcriptional, or post-translational level. Enzymatic regulation can
indirectly affect the availability of substrates of neighbor reactions in the metabolic network.
Hence metabolism cannot be fully understood by analyzing -omics data alone, but only by using
innovative multi-omics data integration frameworks rooted in data science and computational
systems biology.

The increasing interest in the characterization of metabolic alterations in physio-pathological
conditions has driven the demand for user-friendly tools that provide life scientists with an
effective overview of the multi-level deregulation of metabolic pathways. Researchers and
clinicians seek an intuitive yet detailed global visualization of metabolic alterations, avoiding
overly complex statistical methods in favor of data-centric and organized insights. Given
the growing trend among research and clinical groups to collect paired transcriptomics and
metabolomics data[1, 2], an integrated view has become increasingly valuable.

Galaxy[3] is a user-friendly, web-based workflow system designed to enable biomedical
researchers to utilize computational biology tools without needing advanced computer science
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skills. It provides an accessible platform for users with varying levels of technical expertise to
create, execute, and share complex bioinformatics analyses through an intuitive interface. Galaxy
integrates a wide range of tools and supports external resources, promoting the reproducibility
and sharing of scientific results.

Current pathway enrichment frameworks leveraging gene expression data, such as GSEA ([4,
5]) exhibit limitations, lacking expressiveness in flux direction and proliferation rate indication.
They might also exhibit biases towards pathways with numerous isoforms or subunits.

The Metabolic Reaction Enrichment and Analysis tool for Galaxy (Marea4Galaxy) [6], which
focuses on transcriptomics data, exploiting the Gene Reaction Protein associations rules to
aggregate genes at the reaction-level has achieved notable success, as evidenced by the number
of users on our server.

To account that the metabolic flux through a reaction is influenced both by the enzyme
(transcript) and the substrate, Marea4Galaxy 2.0 allows the user to compute both transcriptomics-
based Reaction Activity Scores (RASs) and metabolomics-based Reaction Propensity Scores
(RPSs) as proposed in [7, 8].

Given that RPSs are based on substrate abundance, reversible reactions will display a dis-
tinct score for the forward and backward directions. This information well complements the
information provided by RAS that, being based on enzyme expression, are non-directional.

We here define a net RPS score that expresses the favorite direction usage. When comparing
different conditions, a reaction-based statistical test is performed for the net RPS score and the
RAS score. To offer an integrated view, MaREA 2.0 features a visualization module that maps
statistically significant deregulations on an SVG map of the human metabolic network. Each
metabolic reaction is represented as an arrow connecting substrate and products. The color and
thickness of the arrow shaft are set according to the RAS variation, whereas the arrow tip is
colored according to the RPS variation. When a reaction is reversible only the most meaningful
direction is colored.

To capture more metabolic pathways we have created and included a more comprehensive
SVG map based on the ENGRO2 model presented in [8]. To sustain interoperability, we included
a dictionary of the main used synonyms for metabolite and gene names.

2 Release information
This paper marks the latest stable release of the MaREA toolset (version 2.0).

Review source code and documentation in the Galaxy toolshed:
https://bimib@toolshed.g2.bx.psu.edu/repos/bimib/marea 2 0. A “MaREA4Galaxy” demo is
available at http://marea4galaxy.cloud.ba.infn.it/galaxy/.

3 New tools & functionalities
3.1 Reaction Propensity Scores generator
A Reaction Propensity Scores (RPS) consists in a reaction score computed as the product of

the concentrations of the reacting substances, with each concentration raised to a power equal
to its stoichiometric coefficient. According to the mass action law, the rate of any chemical
reaction is indeed proportional to this product. This assumption holds as long as the substrate is
in significant excess over the enzyme constant KM. If the reaction is reversible, we defined the
net RPS as difference between the forward and the backward reaction.

The tool loads the intracellular metabolomics provided by the user, and data information
about reactions in the selected model. Then it computes one RPS for each of them.

Each reaction is identified by a name, unique in the selected model, and contains data about

https://bimib@toolshed.g2.bx.psu.edu/repos/bimib/marea_2_0 
http://marea4galaxy.cloud.ba.infn.it/galaxy/
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all the metabolites acting as substrates in the reaction. It is worth mentioning that reversible
reactions are split into two distinct irreversible reactions, corresponding to backward and forward,
and treated as different reactions.

The metabolomics dataset input by the user is split by cell-line (or sample) and queried
by each reaction in order to retrieve the abundance measured for each metabolite. In order to
maximize the tool’s ability to recognize metabolite names the dataset undergoes a number of
pre-processing steps, most notably information about common synonyms for each metabolite
in the selected model is loaded from a local dictionary created using the “Human Metabolome
DataBase” [9].

Some common metabolites that tend to appear in a large number of reactions have been
manually blacklisted, that is they won’t be considered in the RPS computation of a reaction that
contains them. We believe this helps making the computed scores statistically more significant,
as a high concentration of a metabolite as pervasive as ATP would otherwise increase the scores
of most reactions without being informative.

3.2 Custom data generator
This tool allows users to quickly obtain all the auxiliary input files needed by the RAS and

RPS tools to work with custom models. Starting from the model itself (any .xml or .json that
can be interpreted as a metabolic model by the cobrapy (https://opencobra.github.io/cobrapy/
package) this tool will extract custom gene reaction rules and reaction formulas from it, with the
option of getting them in a ready-to-go pre-parsed and optimized form.

4 Updates to existing tools
A considerable amount of time and effort was put into refactoring, documenting and organizing

the project as a whole, with the addition of internal testing and utility packages. The process
also brought about changes in the “RAS generator” tool, which can now work faster due to a
new, more robust and versatile rule parser. Details about the parser implementation and the new
rules themselves can be provided as supplementary material. The parser is located in a shared
utility package, which means that the same rules will be processed in the exact same way by the
Custom Data Generator tool: consistency is guaranteed independently from the user’s preferred
workflow.

The MaREA enrichment and visualization tool now supports both RAS and RPS datasets,
allowing for a more nuanced multi-omics comparison between samples or conditions. While
the baseline enrichment algorithm remains the same for RAS datasets, the interaction between
the two scores necessarily introduced some changes that apply when RPS datasets are involved.
Moreover, a new enrichment algorithm was implemented specifically for RPS datasets and works
alongside the first one. The specifics of how exactly a metabolic map is enriched by the MaREA
tool with different types of datasets are described in section 5.1.

We also updated the default metabolic model to the recently published metabolic network
model “ENGRO2” [8] and provided a graphical map of it. “ENGRO2” is a constraint-based
generic core model of human central carbon and essential amino acids metabolism. It contains
484 reactions, 403 metabolites, and 494 genes and represents a follow-up of the HMRcore model.
337 model reactions are associated with a gene-protein-reaction (GPR) rule. More in detail, there
are 202 single-gene GPRs, 122 OR-expression, 36 AND-expression, and 23 complex rules (i.e.,
logical expression with both AND or OR operator). The new map highlights broad pathways
and reaction groups to improve readability.

https://opencobra.github.io/cobrapy/
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5 Technical implementation
5.1 Net RPS-based enrichment
The Metabolic Reaction Enrichment Analysis (MaREA) tool can edit various visual properties

of the arrows representing reactions in the selected/provided metabolic map which means that
a customized map can be created rather freely, as long as the arrows can be recognized by the
program. Notably, the “body” or “shaft” of each arrow must be distinct from its “head”(s) or
“tip”(s) and possess an “id” parameter equal to the reaction’s name in the provided datasets but
prefixed with “R ” (as in “reaction”). The same applies for the arrow’s heads, which need to
share the “F ” prefix (as in “forward”) if they point towards the products or the “B ” prefix (as in
“backward”) if they point towards the substrates.
While the arrow heads did not matter in the previous enrichment implementation they now offer
an interesting opportunity to showcase both RAS and RPS data in the same map: this is because
RAS data is not directional and thus only affects arrow bodies, instead the propensity scores treat
reversible reactions as distinct halves and encode the direction of each half in the reaction ID. As
such, whenever the user decides to also provide RPS datasets these scores will be compared on a
per-dataset and per-reaction basis across all samples in the usual way and will affect arrow tips
of the corresponding direction.
If the user decides to only provide RPS datasets as input the arrow bodies of reversible reactions
will be styled based on a ”net” RPS comparison, as shown in Figure 1:

• Each dataset maps reaction IDs to their corresponding list of scores, ordered by sample/cell-
line. Since the RPS module treats the two sides of a reversible reaction as distinct reactions,
we first need to aggregate the two separate RPSs into a net score. The list of net scores for
each dataset is obtained from element-wise subtraction between the two separate lists;

• Datasets are always compared in pairs on a per-reaction basis. Therefore, for each pairwise
comparison, we will have two net lists, one for each of the two datasets. From these,
we obtain the P-value for that pair and an average value for each of the datasets under
comparison, respectively named avg1 and avg2;

• Lastly, the following equation computes the final comparison score from the two averages
avg1 and avg2, as follows:

avg1 − avg2
|avg2|
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Figure 1: An example of the net enrichment algorithm.

This same algorithm can also be employed for arrow tips if the user wishes it so. In both
cases the averages that created each final comparison score are also saved and contribute to
appropriately styling the metabolic map based on the relationship between their signs: if the
signs of the two averages are opposite the applied color will be a different shade of red/blue as a
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note to this sign disparity. When the net comparison is applied to the arrow tips as well only the
“forward” tips will usually be styled, notably however if both averages are negative the sign of
the final comparison score is inverted and said score applied to the “backward” tips only.

5.2 Integration with the Galaxy framework
It is customary for Galaxy tools to receive their input arguments from the UI as command-line

arguments under specific names. In an attempt to enforce stricter type-checking and improve
python’s ability to statically analyze the code various custom types and enumerators have been
implemented, and they work to keep the code cleaner and more maintainable.

6 Intended workflow
6.1 Marea in action
To demonstrate the intended workflow of the MaREA4Galaxy toolset, we computed a RAS

(with the updated RAS generator tool) and a RPS (with the new RPS generator module) for each
cell line within the Cancer Cell Line Encyclopedia[10] for which gene expression and metabolite
abundance data were available. To identify groups of cells with distinct metabolic profiles, we
first used the Cluster Analysis tool, using the RPS as features. We then used the MaREA tool to
perform a differential RPS and RAS analysis and to visualize results on the integrated map. The
galaxy workflow and a portion of the generated map are illustrated in Figure 2.

a)
b)

Figure 2: a) example of Galaxy workflow using MaRea4Galaxy b) a snippet of the ENGRO2 map
visualizing RPS and/or RAS enriched reactions for two clusters of cancer cell lines. Upregulated
reactions are red-colored, downregulated blue-colored. Orange and purple are used to highlight
up and downregulated reactions, respectively, that display a net RPS with opposite sign in the
two groups. Arrow thickness is proportional to fold change.

7 Advantages and limitations
The introduction of a set of standards to abide to, pushing for extensive documentation and

type safety and the creation of testing and utility modules has greatly improved the readability,
maintainability and robustness of the code, including everything we will write in the future,
which will be able to ship much faster and more reliably. This release already includes two new
tools and many new features for the old ones, allowing the user to expand the scope of their
analysis to include other omics, potentially also obtaining faster results. That being said, some
of these features are sadly left underused or unutilized due to the many integration difficulties
with the old code, which could lead to many small bugs. Most of these issues don’t concern the
users given that every tool is working as intended, but work will be done in future releases of the
toolset to ensure best practices moving forward.
Directional enrichment with RPS data opens the door for an even more comprehensive approach
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including flux balance analysis and gene sets enrichment that could be performed by additional
tools: this is where the project is headed next.

8 Conclusion
The metabolic flux through a reaction is influenced both by the enzyme and the substrate.

Therefore, instead of a general enrichment analysis Marea4Galaxy 2.0 characterizes metabolic
pathways on a reaction-by-reaction basis, generating both a metabolic score and a transcriptomics
score. This dual-level analysis provides a more comprehensive understanding of metabolic
pathway deregulation, enhancing the utility of the Galaxy platform for multi-omics data analysis.
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