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ABSTRACT
We investigate the use of Genetic Programming (GP) as a convolu-
tional predictor for missing pixels in images. The training phase
is performed by sweeping a sliding window over an image, where
the pixels on the border represent the inputs of a GP tree. The
output of the tree is taken as the predicted value for the central
pixel. We consider two topologies for the sliding window, namely
the Moore and the Von Neumann neighborhood. The best GP tree
scoring the lowest prediction error over the training set is then
used to predict the pixels in the test set. We experimentally assess
our approach through two experiments. In the first one, we train
a GP tree over a subset of 1000 complete images from the MNIST
dataset. The results show that GP can learn the distribution of the
pixels with respect to a simple baseline predictor, with no signifi-
cant differences observed between the two neighborhoods. In the
second experiment, we train a GP convolutional predictor on two
degraded images, removing around 20% of their pixels. In this case,
we observe that the Moore neighborhood works better, although
the Von Neumann neighborhood allows for a larger training set.

CCS CONCEPTS
• Computing methodologies → Image processing; Genetic
programming; Bio-inspired approaches.
KEYWORDS
Genetic Programming, Convolution, Supervised learning, Predic-
tion, Images, Inpainting

1 INTRODUCTION
Nowadays, images represent a common testbed to evaluate the
performance of many algorithms, especially those coming from
the deep learning domain [5, 12, 14, 24]. The usability of images in
this context is impaired if they are damaged or incomplete. Indeed,
missing pixels can severely impact the information carried by the
images and hinder the performances of artificial intelligence tech-
niques trained on them. Hence, there is often the need to resort to
image inpainting techniques. Digital inpainting generally denotes
all methods related to the reconstruction of lost or damaged parts
of an image by means of algorithms that replace such parts. We
refer the reader to the recent surveys by Elharrous et al. [9] and
Jam et al. [13] for a more complete overview of image inpainting
techniques, while in the following, we recall only the essential
approaches investigated in this research field.

Traditionally, two techniques have been explored for the image
inpainting procedure. Exemplar-based methods fill a missing region
by exploiting local information in the surrounding area. This can be
done both at the level of single pixels, as in the pioneering work by
Efros and Leung [8], or patch-wise, by searching for replacement
patches in the parts of the image that are not damaged, as proposed
for instance by Criminisi et al. [6]. On the other hand, in diffusion-
based techniques inpainting is performed by spreading the image
information from the boundary of a missing region towards its
center, an approach that was initially investigated by Bertalmio et
al. [2]. A further research thread also focused on combining both
the exemplar-based and diffusion-based approaches by defining
hybrid methods, as done for instance in [3].

More recently, deep learning methods, and in particular convo-
lutional neural networks (CNNs), have shown excellent results on
image inpainting tasks due to their ability to use large training
sets [20]. The part where CNNs truly have an advantage over other
inpainting techniques is the fact that they can better capture the
global structure of an image [28]. Finally, researchers also used
generative adversarial networks (GANs) for many image-to-image
translation tasks, including image inpainting [12].
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When considering evolutionary algorithms, there are not many
works examining the image inpainting task. Li et al. used a com-
bination of a total variation method and a genetic algorithm for
completing an image [18]. Li and Yang proposed a patch-based
method based on evolutionary algorithms that search for the opti-
mal patch in the area around the damaged region [19]. Interestingly,
while convolutional neural networks represent state-of-the-art in
image translation tasks, up to now, there are not many attempts to
employ the convolutional paradigm in other artificial intelligence
techniques. To the best of our knowledge, there is only a single
work that considers how to combine convolutions and genetic pro-
gramming [23]. There, the authors applied their method to develop
image denoising filters with a multi-layer architecture.

This paper proposes a novel technique for the image inpainting
task based on Genetic Programming (GP) [16] and convolutions. We
denote our approach as CoInGP – Convolutional Inpainting with
Genetic Programming. Our technique works locally by considering
the immediate neighbors of a missing pixel, which are used as the
input of a GP tree. The output evaluated at the root of the tree
represents the predicted value for the central missing pixel. The
window is then slid over the image, and the prediction process is
repeated for the remaining missing pixels, thus obtaining a recon-
structed image. We tackle the problem of evolving a suitable GP
tree as a supervised learning task over known pixels. In particular,
the training set is composed of fitness cases where the inputs are
the values of the neighboring pixels for a specific position of the
window, while the label corresponds to the correct value of the
central pixel. The optimization objective consists in minimizing the
RMSE between the predictions made by the GP tree and the correct
labels over all fitness cases.

As far as we are aware, this is the first paper considering GP for
image inpainting. Hence, more than comparing with state-of-the-
art deep learning methods such as CNNs and GANs (which we leave
for future research), the main motivation of our work is to search
for preliminary evidence that convolutional inpainting can also be
performed with Genetic Programming as an underlying learning
primitive. Incidentally, we adopted a similar approach in [21] for
the domain of automatic text generation. For these reasons, we
frame the investigation presented in this paper around two general
research questions:

(1) Can CoInGP learn the distribution of the pixels’ intensities
in a dataset of complete images?

(2) Can CoInGP obtain a plausible reconstruction of a single
degraded image by training on the available pixels?

For the first research question, we perform the training on a
subset of 1000 images from the MNIST dataset [7] without missing
pixels. The fitness of a GP tree in the population is evaluated by
predicting the value of each pixel in all selected images (excluding
those at borders, which do not have enough neighbors). The best
evolved GP tree is then independently validated on another test
set of 1000 complete images from MNIST. Concerning the second
research question, we conduct an experiment on two different test
images, where we remove around 20% of the pixels. In this case,
the training is done on the available pixels, while the testing phase
consists in predicting the actual missing pixels.

Further, we investigate a third research question that is orthogo-
nal to the previous two: namely, whether the shape of the sliding
window plays a role in the performance of GP when predicting the
central pixel. To this end, we consider two different topologies for
the window: Moore neighborhood and Von Neumann neighborhood.

Since this paper is mostly an empirical investigation of our ap-
proach’s feasibility, in all our experiments, we compare the results
obtained by CoInGP against those achieved by a simple baseline
method, i.e., the predictor that computes the average value of the
pixels in the neighborhood.

Our findings can be summarized as follows: regarding the first
research question, GP is indeed able to learn the distribution of the
pixels in a dataset of complete images to a certain extent, since for
both neighborhood shapes, the evolved trees obtain a significantly
lower RMSE than the respective baseline predictor. Moreover, in
this case, we observe no statistically significant difference between
Moore and Von Neumann neighborhoods. We obtain similar results
for the second research question since CoInGP reaches a lower
RMSE value than the baseline predictor when reconstructing the
missing pixels of the two test images. However, in this case, there
is a further difference between the two topologies considered for
the sliding window, with Moore neighborhood achieving a bet-
ter performance. This finding is especially interesting since, for
geometrical reasons, Moore neighborhood can exploit a smaller
training set than the Von Neumann neighborhood.

The rest of this paper is organized as follows. Section 2 formal-
izes the problem of predicting the central pixel in a sliding window
by exploiting the information in the surrounding ones. Section 3
presents the details of our CoInGP method, showing how a GP tree
can be used to predict an image’s pixels and defining an appropriate
fitness function to evaluate the quality of its predictions. Section 4
describes the experimental settings adopted in our empirical assess-
ment of CoInGP and summarizes the obtained results. Section 5
gives an interpretation of the main experimental findings that can
be drawn from our results and formulates some hypotheses worth
exploring to investigate the observed behavior of CoInGP further.
Finally, Section 6 recaps the main contributions of our paper and
suggests future research directions on the subject.

2 PROBLEM FORMULATION
This section formalizes the problem of predicting pixels in an image,
which will be tackled with genetic programming in the remainder
of the paper. In what follows, we consider an input image as a
matrix 𝐼 of size𝑀 ×𝑁 , where each entry 𝑥 (𝑖, 𝑗) is the intensity value
of the pixel at coordinates (𝑖, 𝑗) for 𝑖 ∈ [𝑀] and 𝑗 ∈ [𝑁 ], where
[𝑀] = {1, · · · , 𝑀} and [𝑁 ] = {1, · · · , 𝑁 }. For illustration purposes,
we deal only with 8-bit greyscale images, so that each entry 𝑥 (𝑖, 𝑗)
in the matrix is an integer number between 0 and 255; nevertheless,
our approach can be generalized to any color depth.

Suppose that the image is damaged, that is, the intensities of a sub-
set of 𝑘 of its pixels 𝑆 = {(𝑖1, 𝑗1), · · · (𝑖𝑘 , 𝑗𝑘 )} ⊆ [𝑀] × [𝑁 ] are miss-
ing. The goal is to recover the original intensities 𝑥 (𝑖1, 𝑗1) , · · · 𝑥 (𝑖𝑘 , 𝑗𝑘 )
starting from those that are still available, i.e., the pixels in the com-
plementary set 𝑃 = [𝑀] × [𝑁 ] \ 𝑆 . This task is also known as
inpainting in the image processing literature [4, 11]. One of the pos-
sible approaches to perform inpainting stands on the fundamental
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observation that the intensities of neighboring pixels are correlated.
In a probabilistic framework, this property can also be restated as
the fact that the probability distribution of a pixel’s intensity given
the intensities of the pixels in its neighborhood is independent of
the rest of the image [8].

This observation suggests that, to recover the intensity of a miss-
ing pixel in an image, one can use just the values of its neighboring
pixels as an input for the prediction. More formally, the two main
topologies that can be adopted are theMoore neighborhood and the
Von Neumann neighborhood [25]. Considering only neighborhoods
of radius 1 (i.e., only the immediate neighbors of a pixels are taken
into account), for the Moore neighborhood the input to predict a
pixel in position (𝑖, 𝑗) will be a 3 × 3 matrix defined as:

N𝑖, 𝑗 =


𝑥 (𝑖−1, 𝑗−1) 𝑥 (𝑖−1, 𝑗) 𝑥 (𝑖−1, 𝑗+1)
𝑥 (𝑖, 𝑗−1) 𝑥 (𝑖, 𝑗+1)
𝑥 (𝑖+1, 𝑗−1) 𝑥 (𝑖+1, 𝑗) 𝑥 (𝑖+1, 𝑗+1)

 , (1)

where the 8 elements on the border represent the intensities of the
pixels in the neighborhoods, and the goal is to predict the value of
the central pixel. Analogously, for a Von Neumann neighborhood
the input to the prediction will be the following matrix:

N𝑖, 𝑗 =


𝑥 (𝑖−1, 𝑗)

𝑥 (𝑖, 𝑗−1) 𝑥 (𝑖, 𝑗+1)
𝑥 (𝑖+1, 𝑗)

 , (2)

where, in this case, we do not consider the elements in the corners
and the input for predicting the central pixel are only the four
elements which are respectively at its top, bottom, left, and right.

Intuitively, the quality of the prediction will also depend upon
the number of available neighboring pixels: in particular, if also
some of the neighboring pixels of N𝑖, 𝑗 are missing in the degraded
image, then we will have less information at our disposal to predict
the central pixel 𝑥 (𝑖, 𝑗) . In what follows, we adopt the simplifying
assumption that each missing pixel in the degraded image is “suffi-
ciently far” from all other missing pixels, or equivalently that each
missing pixel has a complete neighborhood. Formally, in the case
of Moore neighborhood this means that the Chebyshev distance 𝑑∞
between any pair of missing pixels (𝑖𝑡1 , 𝑗𝑡1 ), (𝑖𝑡2 , 𝑗𝑡2 ) ∈ 𝑆 must be
strictly greater than 1:

𝑑∞ ((𝑖𝑡1 , 𝑗𝑡1 ), (𝑖𝑡2 , 𝑗𝑡2 )) = max{|𝑖𝑡1 − 𝑖𝑡2 |, | 𝑗𝑡1 − 𝑗𝑡2 |} > 1 .

Analogously, for the Von Neumann neighborhood the constraint is
that the Manhattan distance 𝑑1 between (𝑖𝑡1 , 𝑗𝑡1 ) and (𝑖𝑡2 , 𝑗𝑡2 ) has
to be greater than 1:

𝑑1 ((𝑖𝑡1 , 𝑗𝑡1 ), (𝑖𝑡2 , 𝑗𝑡2 )) = |𝑖𝑡1 − 𝑖𝑡2 | + | 𝑗𝑡1 − 𝑗𝑡2 | > 1 .

The consequence of these constraints is that missing pixels can
share the frontier of the neighborhood under consideration, but a
missing pixel cannot be in the frontier of another one. In particular,
the frontier of a neighborhood of radius 𝑟 is defined as the set
of pixels at a distance 𝑟 from the central one. Since we are only
considering the case of radius 𝑟 = 1, the frontier corresponds to
the set of all pixels in the neighborhood except the central one. As
an example, Figure 1 shows the densest packing of missing pixels
one can have for the Moore and Von Neumann neighborhood,
respectively. The Von Neumann topology allows for more missing
pixels under the same image size since it includes fewer neighbors
than theMoore topology. Also, observe that for both neighborhoods

? ??

? ??

? ??

(a) Moore

? ??

??

? ??

??

? ??

(b) Von Neumann

Figure 1: Densest packings of missing pixels allowed respec-
tively under unitary Moore and Von Neumann neighbor-
hoods.

the missing pixels cannot occur on the border of the image, i.e.,
1 < 𝑖 < 𝑀 and 1 < 𝑗 < 𝑁 for every missing pixel (𝑖, 𝑗) ∈ 𝑆 .

Although this separation hypothesis does not always hold in
realistic scenarios, we decided to adopt it to initially validate the
suitability of our method, since as we mentioned before, as far as we
are aware, this is the first attempt employing GP to predict missing
pixels in images with a convolutional approach.

3 GP AS A CONVOLUTIONAL PREDICTOR
The main idea that we investigate in this paper is to evolve GP trees
that act as convolutional operators to predict the values of missing
pixels. Similarly to what is done in Convolutional Neural Networks
(CNNs) [10], we assume that the transformation used to predict the
values of the missing pixels is shift-invariant. This means there is
a local function 𝑓 which is applied over a small sliding window of
neighboring pixels and is shifted one place at a time over the whole
image. The output of the function 𝑓 corresponds to the predicted
intensity of the pixel at the center of the window.

In our setting, we consider both the case of a square 3× 3 sliding
window, which corresponds to the Moore neighborhood of radius
1, and a cross-shaped window of width 3, which represents the
Von Neumann neighborhood of radius 1. In the former case, the
local function has the form 𝑓 : [0, 255]8 → [0, 255], while in the
latter it is 𝑓 : [0, 255]4 → [0, 255]; either way, the local function is
expressed with a GP tree. Thus, the 8 (respectively, 4) intensities of
the pixels on the border of the window are taken as terminal nodes
of the GP tree, and the value generated at the root node will be the
prediction for the central pixel. Figure 2 depicts the idea of using a
GP tree as a convolutional predictor by sliding a window over the
image for the case of Moore and Von Neumann neighborhoods.

To construct such a convolutional predictor, we need to define
an appropriate fitness function that measures how good a particular
GP tree is in determining the correct value for the central pixel.
The idea is to frame the problem in terms of supervised learning,
with the training set including fitness cases where the inputs are
the values of the pixels in the neighborhood, and the labels are
the correct values for the corresponding central pixel. Recall from
Section 1 that we are interested in two research questions, which
translates to the following tasks:
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(a) Moore convolution
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(b) Von Neumann convolution

Figure 2: Convolutional prediction based on GP with the
Moore andVonNeumannneighborhood of radius 1. The pix-
els in the frontier of the neighborhood currently looked by
the sliding window are fed as input variables to the GP tree,
and its output is taken as the predicted value for the central
pixel.

(1) Given a set of complete images (i.e., without missing pixels)
drawn from a common dataset, learn the distribution of the
pixels’ intensities in this set.

(2) Given a single degraded image, reconstruct the complete
image by predicting the values of the missing pixels.

For Task (1), let I = {𝐼1, · · · , 𝐼𝑛} be a set of images, each of
size 𝑀 × 𝑁 and without missing pixels. For each image 𝐼𝑘 , with
𝑘 ∈ {1, · · · , 𝑛}, we define the corresponding set of fitness cases (or
training examples) as follows:

𝐹𝑘 = {(N𝑖, 𝑗 , 𝑥 (𝑖, 𝑗) ) : 1 < 𝑖 < 𝑀, 1 < 𝑗 < 𝑀} , (3)

where N𝑖, 𝑗 is the punctured neighborhood matrix defined as in
Eqs. (1) and (2), respectively when the Moore and Von Neumann
neighborhood is used. In other words, for each pixel (𝑖, 𝑗) in image

𝐼𝑘 (except for those on the borders), we construct the corresponding
neighborhood matrix N𝑖, 𝑗 (without the value of the pixel in the
center) which is used as an input to a GP tree 𝜏 . The actual intensity
𝑥𝑖, 𝑗 of the central pixel (𝑖, 𝑗) is retained as the correct label of the
training example. The total number of fitness cases in 𝐹𝑘 is thus
(𝑀 − 2) (𝑁 − 2). Next, the global training set is defined as the union
of the fitness cases sets of all images in I:

𝑇1 =
𝑛⋃

𝑘=1
𝐹𝑘 . (4)

For Task (2), we consider a single degraded image 𝐼 of size𝑀×𝑁 ,
where 𝑆 = {(𝑖1, 𝑗1), · · · (𝑖𝑘 , 𝑗𝑘 )} is the subset of missing pixels that
satisfy respectively the Chebyshev distance 𝑑∞ > 1 constraint (if
the Moore neighborhood is adopted) or the Manhattan distance
𝑑1 > 1 constraint (if the Von Neumann neighborhood is used).
Further, let 𝑃 = [𝑀] × [𝑁 ] \ 𝑆 be the complementary subset of
available pixels. Then, the training set is defined as follows:

𝑇2 = {(N𝑖, 𝑗 , 𝑥 (𝑖, 𝑗) ) : (𝑖, 𝑗) ∈ 𝑃, 1 < 𝑖 < 𝑀, 1 < 𝑗 < 𝑀} . (5)

Hence,𝑇2 is a particular case of Eq. (3), where the training examples
are constrained only to the available pixels of the image having a
complete neighborhood.

Given the output 𝑥 (𝑖, 𝑗) = 𝜏 (N(𝑖, 𝑗) ), we can compute the error
that the GP tree 𝜏 made in predicting the correct pixel intensity
𝑥 (𝑖, 𝑗) . Generalizing to all available training examples, we define
the fitness function for the GP tree 𝜏 as the root mean square error
(RMSE) over the training set:

fit(𝜏) =

√∑
(N𝑖,𝑗 ,𝑥 (𝑖,𝑗 ) ) ∈𝑇 (𝜏 (N𝑖, 𝑗 ) − 𝑥 (𝑖, 𝑗) )2

|𝑇 | . (6)

Hence, the optimization objective is to minimize fit, since having a
GP tree that achieves a small RMSE means that its predictions are
close to the actual pixel values. Observe that it is not necessary to
specify the precise form of the training set in Eq. (6) depending on
Task (1) or (2), since 𝑇1 simply concatenates the training examples
of all images in the dataset I.

Once the GP evolution process has terminated, the best indi-
vidual undergoes a testing phase. In Task (1), the best GP tree is
used to predict the value of each pixel in all images of a test set T
different from I, although always drawn at random from the same
dataset. Conversely, for Task (2), the best tree is used to predict the
values of the pixels in the missing set 𝑆 of the target image 𝐼 . In
both cases, the performance of the best tree is evaluated again with
the RMSE measure. Clearly, in Task (2), this approach assumes that
the missing set 𝑆 can be artificially created to retain the original
values of the pixels in it for computing the RMSE.

4 EXPERIMENTAL PHASE
This section describes the experimental evaluation that we con-
ducted to investigate the two research questions outlined in Sec-
tion 1 through our CoInGPmethod. In what follows, we first discuss
the common experimental settings and parameters adopted in our
study. Then, we describe the setup and the results obtained for our
two experiments, namely, learning the distribution of the pixels’
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intensities for a set of complete images from the MNIST dataset
and predicting the missing pixels in two degraded test images1.

4.1 Common Parameters
To experimentally assess our method, we loosely followed the GP
parameter settings that we adopted in [21] for another supervised
learning task, namely next word prediction, and checked with pre-
liminary experiments that they were suitable for the image in-
painting task as well. In particular, in each GP run, we evolved a
population of 500 individuals for 500 generations, which amounts
to 250 000 evaluations. The selection phase was performed us-
ing tournament selection with a tournament size of 3, where the
worst individual is replaced by the offspring generated by apply-
ing crossover on the best two individuals. For the crossover, we
adopted simple subtree, uniform, size fair, one-point, and context
preserving crossover, randomly selected at each crossover opera-
tion. The newly generated individual undergoes a mutation subject
to individual mutation probability of 0.3; we used a simple subtree
mutation [22]. To avoid bloat, we set the maximum tree depth to
8, which corresponds to the number of input variables available in
the Moore neighborhood. The terminal symbols for the GP trees
included random constant values in the range [−1, 1] and either the
8 (for Moore neighborhood) or 4 (for Von Neumann neighborhood)
input variables corresponding to the intensities of the available
pixels in the respective neighborhood. The functional symbols for
the internal nodes are taken from the following set: sin, cos, +, −, /
(protected), ∗, min, max, avg, √· and pos. The square root operator
returns zero if the argument is negative, while the unary operator
pos is defined as pos(𝑥) = 𝑥 if 𝑥 ≥ 0 and 0 otherwise.

Since we require the predicted pixel intensity to be an integer
number between 0 and 255, we constrained the output of a GP tree
by first clipping it in the interval [0, 255] (i.e., if |𝜏 (N𝑖, 𝑗 ) | > 255 we
set |𝜏 (N𝑖, 𝑗 ) | = 255), and then by applying a linear scaling operator
to obtain the closest integer value, using the method proposed by
Keijzer [15]. An alternative solution would be to directly use byte-
oriented operators in the functional set, such as bitwise logical
operations, modular additions, and rotations. However, we deemed
that this approach would have constrained too much the search
space explored by GP, hindering its ability to generate good tree
predictors with low RMSE fitness values.

4.2 Experiments on the MNIST Dataset
For the first research question, we considered the well-known
MNIST dataset [7], which contains images of handwritten digits.
In particular, each image has a fixed size of 28 × 28 pixels, with
the digit placed at the center. For each experimental run, we ran-
domly sampled from this dataset 1000 images for the training set,
with the same number of images for each digit, and we constructed
the corresponding training set 𝑇1 according to Eq. (4), and mini-
mized the RMSE as defined in Eq. (6). In total, we performed 30
independent runs. At the end of each run, we validated the best
GP tree with another random sample of 1000 images. The test set
is still constructed using Eq. (4) and the performance criterion is
the minimization of the fitness function. Thus, the idea is to verify

1The source code of our implementation of CoInGP is publicly available at https:
//github.com/rymoah/CoInGP

Figure 3: Histograms representing the distribution of the fit-
ness values for the best individuals achieved in the same 30
independent runs, for both neighborhoods.

whether the GP tree resulting from the training phase can score a
small RMSE on a set of unseen images.

The obtained results suggest that GP is indeed learning the distri-
bution of the pixels in the training set. Indeed, the convergence of
the best fitness during the training phase for the Moore and the Von
Neumann neighborhoods showed that the RMSE decreased over all
30 experimental runs, thus indicating that the predicted pixels are
closer and closer to their target values. The plot in Figure 3 shows
the distribution of the fitness values, on the test set, for both Moore
and Von Neumann neighborhood, over the 30 independent runs. To
compare the results obtained on the test phase, we also computed
the RMSE for the baseline predictors that replace the central pixel
with the average value of the neighboring ones for the images. This
resulted in an RMSE of 33.488 and 27.191 for the baseline predic-
tors based on the Moore and the Von Neumann neighborhoods,
respectively. Based on these results, one can observe that CoInGP
is obtaining significantly better results than the baseline method
in predicting the pixels over the test set since the RMSE values of
the former are in the range 17.25 − 19.5 for both neighborhoods.
Moreover, the overlapping of the two distributions indicates that
the performance of CoInGP is not dependent on the neighborhood’s
choice. We further validated this qualitative observation through a
statistical test. In particular, the Mann-Whitney test was executed
(with a significance level of 𝛼 = 0.05) under the null hypothesis
that the median fitness of the two series of data (i.e., the one using
Moore neighborhood and the one using Von Neumann neighbor-
hood) were equal. The obtained 𝑝-value (0.6228) led us to not reject
the null hypothesis, thus confirming that there is no difference
between the two neighborhoods used by CoInGP.

The obtained results suggest the suitability of the proposed ap-
proach for the reconstruction of the damaged pixels of an image.
The same results do not highlight a difference between the two
neighborhood structures.

4.3 Experiments on Single Images
To validate the previous findings in a more realistic scenario, the
second part of the experimental phase applies the proposed ap-
proach to images that present a more complex pattern than the

https://github.com/rymoah/CoInGP
https://github.com/rymoah/CoInGP
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Figure 4: The damaged test images: Boat and Goldhill.

MNIST images. We employ two 256 × 256 grayscale images on
which approximately 20% of the pixels were removed. The two
images (with the removed pixels) are presented in Figure 4.

We adopted the following procedure to generate the damaged
images: every two columns of the image, the first one was kept
unchanged while 100 non-adjacent pixels were randomly removed
from the second. Overall, this procedure resulted in removing 12 700
pixels out of 65 536, corresponding to a percentage of removed pix-
els equal to 19.38% for each image. As detailed in Section 3, the
training set 𝑇2 used in this learning task is composed of all re-
maining pixels in the degraded image, along with their complete
neighborhoods. Due to the different neighborhood shapes consid-
ered, the number of fitness cases for the Moore neighborhood was
4, 950, and for the Von Neumann neighborhood was 21, 036. That
is, since the Von Neumann neighborhood contains fewer pixels, it
also allows to employ a larger number of fitness cases. In this case,
the training phase was performed for 100 independent runs. The
testing is then performed by predicting the values of the removed
pixels with the best GP individual at the end of each run, i.e., the
one achieving the smaller RMSE over the training set.

The results of the reconstruction process are presented in Fig-
ure 5 for the Moore neighborhood, and in Figure 6 for the Von
Neumann neighborhood. A closeup is presented in Figure 7.

The reconstructed images are both taken from a random GP
run. For each image, we also present the pixel-by-pixel difference
between the reconstructed image and the original one, where each
difference is increased ten times to make it visible. As it is possible
to observe, the errors in both cases are limited (i.e., there are no
extremely different pixels) and distributed mainly across the edges
of the objects in the image. This is particularly visible in the Boat
image, where the distribution of the errormostly follows the profiles
of the hull and the masts.

Besides qualitative considerations on the reconstructed images,
we also assessed whether CoInGP could predict missing pixels in
these images from a quantitative point of view, performing again a
comparison with the baseline predictors that compute the average
intensities of the neighboring pixels. Figure 8 depicts the plots of
the distributions of the best fitness over 100 experimental runs
achieved by GP over each test image.

As a general remark, in most cases, all fitness values obtained
are below both baselines, independently of the underlying neigh-
borhood. The only exceptions which occur, however, are limited
to a few outliers. In particular, some runs in the distribution of

Figure 5: At the top, the images corrected using the Moore
neighborhood. At the bottom, the difference, increased ten
times, between the reconstructed and the original image.

Figure 6: At the top, the images corrected using the Von
Neumann neighborhood. At the bottom, the difference, in-
creased ten times, between the reconstructed and the origi-
nal image.

the Moore neighborhood scored an RMSE value between the two
baselines, while a small part of the right tail of the Von Neumann
distribution overlaps the corresponding baseline in the Goldhill
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Figure 7: A closeup of the correction performed by GP on
one of the images. Clockwise from the top left: original im-
age, damaged image, corrected images with the Von Neu-
mann and Moore neighbourhoods, respectively.

image. In any case, we noticed that the peaks of all GP distributions
are significantly distant from the respective baseline fitness values.
Further, in all the test images, the use of the Moore neighborhood
produces lower fitness values than the VonNeumann neighborhood,
even if it allows fewer training samples to be generated.

5 DISCUSSION
We now interpret the experimental results reported in the previous
section in the light of the two research questions stated in Section 1.
Regarding the first question, we can empirically conclude that our
CoInGP method can successfully learn the distribution of the pixels’
intensities in a dataset of complete images, i.e., without missing
pixels. Indeed, the convergence plots for the best fitness during the
training phase on the MNIST dataset show that the evolutionary
process implemented by GP is learning how to minimize the error
between the correct label for the central pixel in the window and
the predicted one. The distributions of the best fitness on the test
set confirm that GP can generalize to unseen images to a certain
extent, and a comparison with the baseline predictors shows that it
achieves a significantly lower RMSE.

Concerning the second research question, in our experimental
setting, the missing pixels accounted for roughly 20% of the pix-
els of each test image. Our approach’s main limitation is that the
training process requires a complete neighborhood, i.e., no missing
pixels must occur in the frontier of the central pixel whose value
has to be predicted. This limits both the number of missing pixels
that one can have in the degraded image and their relative posi-
tions. However, the preliminary results that we obtained on the test

Figure 8: Distribution of best fitness over 100 runs with both
Moore andVonNeumannneighborhoods for the Boat image
(top plot) and the Goldhill image (bottom plot).

images are promising enough to encourage further improvements
in this direction by extending our method to consider the case of
adjacent missing pixels in the degraded image. An interesting idea
to accomplish this task could be to employ a diffusion-based in-
painting approach [17]. In this case, the GP predictor would be first
convolved on the border of a missing region and then gradually
shifted towards its interior.

An interesting difference that can be remarked between the two
experiments regards the influence of the sliding window’s topology
on the performance of CoInGP. In fact, for the MNIST experiment,
we detected no significant difference between the Moore and Von
Neumann neighborhoods, suggesting that this parameter is not
a key factor when learning the distribution of pixels of complete
images. Conversely, when going into the details of the second ex-
periment with a single test image, the GP predictors based on the
Moore neighborhood achieved a better performance (i.e., a lower
RMSE value) than those using the Von Neumann neighborhood.
This happens even though the Von Neumann neighborhood re-
quires fewer input variables to compute the predicted missing pixel
and can be optimized on a larger training set. Consequently, this
result indicates that GP can learn more efficiently by using a larger
number of input variables and a smaller training set. It would be
interesting to investigate if this difference in terms of performance
also holds for larger neighborhoods. Still, for radius 2, this would
already yield GP trees with 24 and 12 input variables, respectively,
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for the Moore and Von Neumann neighborhood, thereby increasing
both the training time and the GP predictors size.

Recall that the baseline predictors simply computed the average
of the pixels in the neighborhood to predict the value of the central
one. An interesting fact that can be observed from our experiments
is that the RMSE achieved by the Von Neumann baseline predic-
tor is lower than that scored by the Moore baseline, both in the
MNIST dataset and the single test images. Hence, this suggests that
the information for predicting the central pixel is not uniformly
distributed across the neighboring ones: it seems that the 4 “diag-
onal” pixels in the Moore neighborhood contain less information
to predict the central one. Nonetheless, this observation is in stark
contrast with the fact that GP scored a lower RMSE value with the
Moore neighborhood than with the Von Neumann neighborhood.
This indicates that CoInGP can learn how to correctly "weigh" the
value of the pixels depending on their position. It would be inter-
esting to further investigate this issue by analyzing the structure
of the trees evolved by GP with the Moore neighborhood.

Finally, from the qualitative point of view, we observed that the
prediction errors made by GP individuals mostly focused around
the edges in the test images. This is an expected side effect: if
one considers images as two-dimensional spatial signals, edges
correspond to high-frequency regions, where abrupt changes of the
intensity value occur among neighboring pixels. Consequently, the
pixels’ intensities in a neighborhood where an edge occurs have a
lower correlation. Additionally, the independence hypothesis that
the probability distribution of a pixel given the surrounding ones
is independent of the rest of the image does not hold. This explains
why our GP convolutional predictor obtains a higher error on edges’
proximity, but it is not necessarily a negative effect: one could use
CoInGP to perform edge detection as a by-product. Furthermore,
an interesting idea to decrease the prediction error on the edges
would be to develop a 2-layer architecture: the first layer would be
used to detect the edges, while the second one would perform the
inpainting task by discriminating between pixels’ types. For the
latter case, one could evolve GP trees over a larger neighborhood
so that more information can be used to predict the central pixel.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we proposed a method for performing convolutional
inpainting with GP – CoInGP. The main idea is to sweep a small
sliding window over a degraded image with missing pixels, where
the neighborhood pixels captured by the window are fed as input to
a GP tree. The GP’s output is then taken as the predicted value for
the central pixel. The RMSE between the original pixel intensities
and those predicted by the GP tree is used to define a fitness func-
tion, which has to be minimized. We investigated this approach
through two research questions, namely whether GP can learn the
distribution of the pixels’ intensities from a dataset of complete im-
ages and whether GP can restore a plausible reconstructed version
of a single degraded image with missing pixels. To this end, we
carried out two supervised learning experiments.

In the first experiment, the training set is composed of a random
sample of 1000 images from the MNIST dataset, with the objective
of minimizing the RMSE over all pixels of each image. The best
GP tree evolved during this phase is then validated by applying it

over a distinct test set. The results showed that our CoInGP method
was able to generalize to a certain extent on unseen images since it
performed better than the respective baseline predictors. Moreover,
no difference was observed between using a sliding window with
the Moore neighborhood and the Von Neumann neighborhood.

In the second experiment, given a degraded image with missing
pixels, an optimal GP tree predictor is evolved by using all available
pixels as a training set. For each position of the sliding window, the
central pixel is removed and replaced with the value predicted by a
GP tree. The test phase consists in applying the best tree evolved
by GP on the actual missing pixels. We experimented with two
test images. The results showed that GP could evolve trees with
better prediction accuracy than the respective baseline predictor.
Furthermore, in this case, we observed a clear difference in terms
of performance between the Moore and the Von Neumann neigh-
borhood, with the former achieving lower RMSE scores than the
latter on the test sets. Considering that the Von Neumann baseline
predictor has a lower RMSE than the Moore one, this seems to sug-
gest that GP can learn how to appropriately assess the information
contained in the pixels at the corners of the Moore neighborhood.

We conclude by pointing out directions for future research be-
sides those already discussed in the previous section. The exper-
iments presented in this paper suggest that using GP as a convo-
lutional predictor represents an interesting building block to be
plugged inmore complex architectures for supervised learning tasks
in the image domain. We sketched the first idea of this approach
in Section 5, where we proposed to use a first GP convolutional
layer for detecting the edges in an image and then use the second
layer to perform inpainting. Thus, it would be interesting to gener-
alize this concept to multiple GP-based convolutional layers and
see how the performance of the overall system compares to other
analogous and more established methods (i.e., like CNNs). Besides
the inpainting technique, one could also consider the application
of GP to other image processing tasks that can be formulated as
supervised learning problems. This includes not only tasks where
the training has to be performed on a single target image, as in
the inpainting case, but also on multiple images, such as image
classification. In particular, this would likely benefit from the use
of a multi-layered architecture where each GP-based convolutional
layer would be used to extract a particular feature of an image.

Finally, the convolution strategy is general enough to be applied
to any kind of learning task in the signal processing domain. In this
paper, we addressed the use case of images, which can be considered
as two-dimensional spatial signals, but it could be interesting to
explore how convolutional GP behaves on one-dimensional signals
such as time series. In particular, the problem of predicting missing
data in general signals is also known as imputation, which is useful
for symbolic regression over incomplete datasets. As far as we know,
there are a few works in the literature addressing the imputation
problem using GP [1, 26, 27], but none of them uses a convolutional
approach like the one proposed in this paper.
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