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A SUBEXPONENTIAL BOUND ON THE CARDINALITY OF ABELIAN QUOTIENTS

IN FINITE TRANSITIVE GROUPS

ANDREA LUCCHINI, LUCA SABATINI, AND PABLO SPIGA

Abstract. We show that, for every transitive permutation group G of degree n ≥ 2, the largest abelian quotient of G has

cardinality at most 4n/
√

log2 n. This gives a positive answer to a 1989 outstanding question of László Kovács and Cheryl
Praeger.

1. Introduction

László Kovács and Cheryl Praeger [5] have investigated large abelian quotients in arbitrary permutation groups of finite
degree. Their work was motivated by recent (at that time) investigations on minimal permutation representations of a
finite group [2]. One of the main results in [5] (which is independently proved in [1]) shows that, for every permutation
group of degree n, the largest abelian quotient has order at most 3n/3. Clearly, this bound is attained, whenever n is a
multiple of 3, by an elementary abelian 3-group of order 3n/3 having all of its orbits of cardinality 3. Furthermore, the
authors conjecture that, for transitive groups of degree n, a subexponential bound in n(log2 n)

−1/2 holds. More history
on this conjecture and more details can be found in the survey paper [8].

The first substantial evidence towards the conjecture goes back to the work of Aschbacher and Guralnick [1]; they
proved the striking result that the largest abelian quotient of a primitive group of degree n has order at most n. In the
concluding remarks, the authors also independently ask whether one can obtain a subexponetial bound on the order of
abelian quotients of transitive groups in terms of their degrees. We refer to [1, 8] for an infinite family of transitive groups

G of degree n with |G/G′| asymptotic to exp(bn/
√

log2 n), for some constant b.
The second substantial evidence towards the conjecture is in [4], where many of the results in Section 7 get very close

to the desired upper bound. In particular, Theorem 7.6 in [4] says that if G is a transitive permutation group of degree
n ≥ 2 and N ⊳ G is a still transitive normal subgroup of G, then the product of the orders of the abelian composition

factors of G/N is at most 4n/
√

log
2
n.

In this paper, we settle in the affirmative the conjecture of Kovács and Praeger.

Theorem 1. For every positive integer n ≥ 2 and for every transitive permutation group G of degree n, we have

|G/G′| ≤ 4n/
√

log
2
n.

The constant 4 in Theorem 1 should not be taken too seriously, but it seems remarkably hard to pin down the exact
constant. The choice of the constant 4 in our work is a compromise: it makes the statement of Theorem 1 explicit and
valid for every n ≥ 2.

2. Preliminaries

Unless otherwise explicitly stated, all the logarithms are to base 2. Given a field F, a group G, a subgroup H of G
and an FH-module W (or simply H-module), we denote by W ↑GH the induced G-module of W from H to G, that is,
W ↑GH := W ⊗FH FG. Moreover, given a G-module M , we denote by dG(M) the minimal number of generators of M as a
G-module. We are ready to report a fundamental result from [7].

Lemma 2.1. (See [7, Lemma 4]) There is a universal constant b′ such that whenever H is a subgroup of index n ≥ 2 in

a finite group G, F is a field, V is an H-module of dimension a over F and M is a G-submodule of the induced module

V ↑GH , then

dG(M) ≤ ab′n√
logn

.
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Remark 2.2. Gareth Tracey, in his monumental work [10] on minimal sets of generators of transitive groups, has refined
Lemma 2.1 in various directions. For instance, [10, Section 4.3] gives a more quantitative form of Lemma 2.1. Indeed,
using the notation in Lemma 2.1, from [10, Corollary 4.27 (iii)], we deduce

dG(M) ≤ aE(n, p) ≤
{

an 2
c′ logn when 2 ≤ n ≤ 1260,

an 2√
π logn

when n > 1261,

where c′ := 0.552282, p is the characteristic of M and E(n, p) is explicitly defined in [10, Section 4]. In particular, we
immediately see that in Lemma 2.1 we may take b′ := 2/

√
π whenever n > 1261. With the help of a computer, we have

implemented the function E(n, p) and we have checked that E(n, p) ≤ 2n/
√
π logn also when n ≤ 1260. Therefore in

Lemma 2.1 we may take b′ := 2/
√
π.

Let R be a finite group. For each prime number p, let ap(R) be the number of abelian composition factors of R of order
p, and let

a(R) :=
∑

pprime

ap(R) log p.

We now report a useful result of Pyber.

Lemma 2.3. (See [9, Theorem 2.10]) Let c0 := log9(48 · 241/3). The product of the orders of the abelian composition

factors of a primitive permutation group of degree r is at most 24−1/3r1+c0 .

From Lemma 2.3, we deduce the following.

Lemma 2.4. Let R be a primitive group of degree r, let c0 be the constant in Lemma 2.3. Then

a(R) ≤ (1 + c0) log r − log(24)/3.

Proof. By definition, the product of the orders of the abelian composition factors of R is
∏

pprime

pap(R) =
∏

p prime

2ap(R) log p = 2a(R).

From Lemma 2.3, this number is at most 24−1/3r1+c0 . The proof follows by taking logarithms. �

Notice that Lemma 2.3 is often used in order to bound the composition length of a primitive permutation groups. A
more precise bound on this composition length has been recently proved by Glasby, Praeger, Rosa and Verret [3, Theorem
1.3]. However this stronger bound is not sufficient for our application, which requires information not only on the number
of the composition factors but also on their order.

Finally, given a finite group G, we denote by Gab the quotient group G/G′.

3. Proof of Theorem 1

Let R be a finite group, let ∆ be a finite set and let W := Rwr∆ Sym(∆) be the wreath product of R via Sym(∆). We
denote by

π : W → Sym(∆)

the projection of W over the top group Sym(∆). Let
∏

δ∈∆ Rδ be the base subgroup of W and, for each δ ∈ ∆, consider
Wδ := NW (Rδ). As

Wδ = Rδ ×RwrSym(∆ \ {δ}),
we may consider the projection ρδ : Wδ → Rδ. Using this notation, we adapt the proof of [6, Lemma 2.5] to prove the
following.

Lemma 3.1. Let R be a finite group, let ∆ be a set of cardinality at least 2 and let G be a subgroup of the wreath product

Rwr∆ Sym(∆) with the properties

(1) π(G) is transitive on ∆,

(2) ρδ(NG(Rδ)) = Rδ, for every δ ∈ ∆.

Then

log |Gab| ≤ a(R)b′|∆|
√

log |∆|
+ log |(π(G))ab|,

where b′ is the absolute constant appearing in Lemma 2.1, and a(R) is defined in Section 2.
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Proof. We argue by induction on the order of R. When |R| = 1, there is nothing to prove because π(G) ∼= G and hence
log |Gab| = log |(π(G))ab|. Suppose then R 6= 1. We write

|Gab| = |G : G′M ||G′M : G′| = |(G/M)ab||M : M ∩G′|.(3.1)

Let L be a minimal normal subgroup of R. Fix δ0 ∈ ∆. We identify L with a normal subgroup Lδ0 of the direct factor
Rδ0 of the base group

∏

δ∈∆ Rδ of W . Let BL be the direct product of the distinct G-conjugates of Lδ0 and consider
M := BL ∩G. We have M EG and

G

M
=

G

BL ∩G
∼= GBL

BL
.

Now, from (1), we deduce that GBL/BL is isomorphic to a subgroup of the wreath product

(R/L)wr∆ Sym(∆).

Therefore, by induction,

log |(G/M)ab| ≤
a(R/L)b′|∆|
√

log |∆|
+ log |(π(G))ab|.(3.2)

We now distinguish two cases.

L is non-abelian:

Since M E Wδ0 ∩ G, we deduce ρδ0(M) E ρδ0(Wδ0 ∩ G). From (2), we have ρδ0(Wδ0 ∩ G) = ρδ0(NG(Rδ0)) = Rδ0 and
hence ρδ0(M) E Rδ0 . Observe that ρδ0(M) is contained in Lδ0 . As Lδ0 is a minimal normal subgroup of Rδ0 , we get
either ρδ0(M) = 1 or ρδ0(M) = Lδ0 . From (1), π(G) is transitive on ∆ and hence either ρδ(M) = 1 for each δ ∈ ∆, or
ρδ(M) = Lδ for each δ ∈ ∆.

Suppose ρδ0(M) = 1. As ρδ(M) = 1 for each δ ∈ ∆, we get M = 1. Now the proof immediately follows from (3.2)
because G/M ∼= G.

Suppose ρδ0(M) = Lδ0 . Then M is a subdirect product of L∆ =
∏

δ∈∆ Lδ. As L is a non-abelian minimal normal
subgroup of R, we deduce that M is a direct product of non-abelian simple groups. Thus M has no abelian composition
factor and hence (3.1) gives |Gab| = |(G/M)ab|. Moreover, a(R/L) = a(R) and hence, once again, the proof immediately
follows from (3.2).

L is abelian:

As L is a minimal normal subgroup of R, it is an elementary abelian p0-group, for some prime number p0. Let ap0
be the

composition length of L. In particular,
a(R) = a(R/L) + ap0

log p0.

The group BL is abelian and the action of G by conjugation on BL endows BL with a natural structure of G-module.
From its definition, as G-module, BL is isomorphic to the induced module

Lδ0 ↑GK ,

where K := NG(Lδ0). From (1), G acts transitively on ∆ and hence |∆| = |G : NG(Lδ0)| = |G : K|. From Lemma 2.1,
we deduce

dG(M/(M ∩G′)) ≤ dG(M) ≤ ap0
b′|∆|

√

log |∆|
.

However, as G acts trivially by conjugation on M/(M ∩ G′), we get that dG(M/(M ∩ G′)) is just the dimension of
M/(M ∩G′) as a vector space over the prime field Z/p0Z. Therefore

|M : M ∩G′| ≤ p
(ap0

b′|∆|/
√

log |∆|)
0 .(3.3)

From (3.1), (3.2), and (3.3), we get

log |Gab| ≤ log |(G/M)ab|+ log |M : M ∩G′|

≤a(R/L)b′|∆|
√

log |∆|
+ log |(π(G))ab|+ log(p0)

ap0
b′|∆|

√

log |∆|

=(a(R/L) + ap0
log p0)

b′|∆|
√

log |∆|
+ log |(π(G))ab|

=a(R)
b′|∆|

√

log |∆|
+ log |(π(G))ab|. �

With Lemma 3.1 in hand, we prove Theorem 1 by induction on n.
Let G be a transitive permutation group of degree n ≥ 2. From the main result of [5], we have |Gab| ≤ 3n/3. Now the

inequality 3n/3 ≤ 4n/
√
logn is satisfied for each n ≤ 20 603. In particular, for the rest of the proof, we may suppose that

n ≥ 20 604.
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Suppose first that G is primitive. In this case, from [1], we have |Gab| ≤ n and the inequality n ≤ 4n/
√
logn follows

with an easy computation.
Suppose now that G is imprimitive and let Ω be the domain of G. Among all non-trivial blocks of imprimitivity of G,

choose one (say Λ) minimal with respect to the inclusion. Let G{Λ} := {g ∈ G | Λg = Λ} be the setwise stabilizer of Λ in
G and let R ≤ Sym(Λ) be the permutation group induced by G{Λ} in its action on Λ. The minimality of Λ yields that R
acts primitively on Λ.

Let ∆ := {Λg | g ∈ G} be the system of imprimitivity determined by the block Λ. Then G is a subgroup of the wreath
product

Rwr∆ Sym(∆).

We now use the notation of Lemma 3.1 for wreath products. In particular, let π : Rwr∆ Sym(∆) → Sym(∆) be the
projection onto the top group Sym(∆) and, for each δ ∈ ∆, let Rδ be the direct factor of the base group

∏

δ∈∆Rδ

corresponding to δ. From the fact that G acts transitively on Ω and from the definition of R, we get that the two
hypotheses (1) and (2) are satisfied. Therefore, from Lemma 3.1 itself, we deduce

log |Gab| ≤
a(R)b′|∆|
√

log |∆|
+ log |(π(G))ab|.

Set r := |Λ|. Thus |∆| = n/r. From Lemma 2.4 and from induction (as n/r < n), we get

(3.4) log |Gab| ≤
b′(n/r)

√

log(n/r)

(

(1 + c0) log r −
log(24)

3

)

+ 2
(n/r)

√

log(n/r)
.

From Remark 2.2, we see that we may take b′ = 2/
√
π. Now, for n ≥ 20 604, a careful calculation shows that the right

hand side of (3.4) is at most 2n/
√
logn for every divisor r of n with 4 < r < n.

We now discuss the cases r ∈ {2, 3, 4} separately. When r = 2, we have a(R) = 1 and hence

(3.5) log |Gab| ≤
b′(n/2)

√

log(n/2)
+ 2

(n/2)
√

log(n/2)
.

Now, the right hand side of (3.5) is less than 2n/
√
logn for each n ≥ 20 604. The computation when r ∈ {3, 4} is analogous

using a(R) ≤ 1 + log(3) when r = 3, and a(R) ≤ 3 + log(3) when r = 4.
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