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Abstract: We describe the correct cubic relation between the mass configuration of a

Kater reversible pendulum and its period of oscillation. From an analysis of its solutions

we conclude that there could be as many as three distinct mass configurations for which

the periods of small oscillations about the two pivots of the pendulum have the same

value. We also discuss a real compound Kater pendulum that realizes this property.
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1 Introduction

A well known consequence of the fundamental equation of rotational dynamics is that

the period of small oscillations of a physical pendulum is given by

T =
2π

ω
= 2π

√
I

mgh
, (1)

where m is total mass of the pendulum, I its moment of inertia with respect to the

center of oscillation O and h the distance of the center of mass from O. Then a physical
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pendulum oscillates like a simple pendulum of length

l =
I

mh
=

gT 2

4π2
(2)

which is called the equivalent length of our physical pendulum.

By the Huygens-Steiner theorem (also known as the “parallel axis theorem”) it is possible

to write

I = mh2 + I0

where I0 is the moment of inertia with respect to the center of mass. By squaring equation

(1) we get the following quadratic relation:

h2 − lh +
I0

m
= 0. (3)

When l2 − 4I0/m ≥ 0, that equation admits two real solutions h1, h2 such that

h1 + h2 = l. (4)

In 1817, Captain H. Kater thought to use this last relation to empirically check the

Huygens-Steiner theorem. For this purpose he constructed his reversible pendulum con-

sisting of a plated steel bar equipped with two weights, one of which can be moved along

the bar. This pendulum is reversible because it can oscillate about two different suspen-

sion points realized by two knife edges symmetrically located on the bar. By adjusting

the movable weight, it is possible to obtain a pendulum mass configuration such that the

periods about the two pivots coincide, the equivalent length l is the distance between the

two knife edges and condition (4) is satisfied.

The measurement of such a common period T , of the total mass m and of the distance l

between the two knife edges, gives then an easy way to perform an empirical measurement

of the earth’s (apparent) gravitational acceleration g by applying formula (2). This is

why the Kater reversible pendulum is one of the favourite instruments for measuring g

in student labs.

Anyway, there is a subtle point in this procedure which is the determination of the

right mass configuration of the pendulum. This problem gives rise to the following two

questions:

(1) How many possible positions of the movable weight determine a “good”mass config-

uration for which the periods of small oscillations about the two pivots coincide?

(2) When a good mass configuration is realized, is the equivalent length l necessarily

represented by the distance between the pivots?

If the answer to the second question is assumed to be “yes” then the quadratic equation

(3) gives precisely two possible good mass configurations since h depends linearly on the

position x of the movable weight. These mass configurations can then be empirically

obtained by the following standard procedure [1]:

• By varying the movable mass position x, collect two series of data (x, T ), one for

each pivot.
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• Make a parabolic fitting of the data by means of two parabolas of the following type:

T = ax2 + bx + c. (5)

• These parabolas meet in at most two points (x1, T ), (x2, T ). Positions x1 and x2

determine the two desired good mass configurations.

Such a parabolic fitting is justified by two considerations. The first one is that we are

looking for two good mass configurations, so the fitting curves have to admit at most

two intersection points. The second one is the empirical observation of the data which

apparently seem to be arranged just along two convex parabolas with vertical axis.

This is what is usually done, although the correct answer to the second question should

be “no”, as was firstly pointed out by Shedd and Birchby in 1907 [2-4]. Their remark seems

to have escaped general attention, perhaps due to the fact that, if the pendulum is well

assembled, the previous parabolas meet at points whose abscissas give almost exactly the

good mass configurations having the distance between pivots as equivalent length. The

latter is much more easily determined than any other equivalent length associated with

further good mass configurations of the pendulum [5]! But what does “well assembled”

mean?

To fix ideas, consider an “ideal” Kater pendulum consisting of an idealised massless

rigid rod (x-axis) supporting two identical point masses, mf fixed at −a and mm at a

variable position x. The assembly has two distinct suspension points for the oscillations

positioned at −d/2 and +d/2 ; a sketch of this “ideal” pendulum appears in Figure 1.

Then d is the distance between the pivots, the center of mass is located at

Fig. 1 Front view of idealized pendulum with two point masses and a massless rigid rod.

b =
−amf + xmm

mf + mm

=
x − a

2

and the moment of inertia about the center of mass at b is given by

I0 = (b + a)2 mf + (b − x)2 mm =
m

4
(x + a)2
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where m = 2mf = 2mm is the total mass of the pendulum. The moments of inertia I1

and I2 with respect to the two pivots are

I1 = (
a + x

2
)2m + (

d

2
+ b)2m (6)

and

I2 = (
a + x

2
)2m + (

d

2
− b)2m. (7)

When x determines a good mass configuration, the resulting periods T1 and T2 of small

oscillations about the two pivots, respectively, have equal values. Equation (1) gives

T1 = 2π

√√√√√
m(b + d

2
)2 + m

4
(x + a)2

mg
∣∣∣b + d

2

∣∣∣
= 2π

√√√√(x − a + d)2 + (x + a)2

2g |x − a + d|

T2 = 2π

√√√√√
m(b − d

2
)2 + m

4
(x + a)2

mg
∣∣∣b − d

2

∣∣∣
= 2π

√√√√(x − a − d)2 + (x + a)2

2g |x − a − d|

Then T 2
1 = T 2

2 gives a cubic equation in the variable x. If it is assumed that

(x − a)2 − d2 < 0, (8)

which occurs, for instance, when suspension points are the end points of the pendulum

bar, one finds that

(x − a)
[
2
(
x2 + a2

)
− d2

]
= 0 (9)

Its solutions are then given by

x = a (10)

x = ±
√

d2

2
− a2 (11)

which represent all the possible positions of the movable weight giving a good mass con-

figuration for the ideal Kater pendulum. The first solution, x = a, always exists. Further-

more, if d/
√

2 ≥ a, there are two additional positions which are symmetric with respect

to the origin— i.e., the middle point of the massless bar. Recall formula (2) to obtain

the associated equivalent lengths. For the last two symmetric solutions, it gives

l = d.

But the equivalent length associated with the first solution is

l′ =
d

2
+ 2

a2

d
, (12)

which in general does not coincide with the distance d between the two pivots.

On the other hand, if (8) is not assumed and we are in the more “pathological” case

of a pendulum such that (x − a)2 − d2 > 0, then T 2
1 = T 2

2 reduces to a linear equation in

the variable x whose solution is

x = −d2

4a
,
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and the associated equivalent length is

l′′ = a +
d2

4a
,

which in general does not coincide with the distance d between the two pivots.

Therefore, for an ideal Kater pendulum the answers to the previous questions are:

(1) There are at most three possible positions of the movable weight which determine a

good mass configuration.

(2) No; there always exists a good mass configuration whose associated equivalent length

does not coincide with the distance between pivots.

An immediate consequence is that a parabolic fitting of the empirical data (x, T ) cannot

be the best fit since two parabolas never meet at three points! Moreover, in particular

cases, a parabolic fitting may cause strong distortions in determining good mass config-

urations. For example:

• If either d/
√

2 < a or (8) is not satisfied, the ideal Kater pendulum admits a unique

good mass configuration; typically a parabolic fitting of data in this situation gives

parabolas meeting only at imaginary points and the procedure stops.

• If a ∼ ±d/2, then the first solution of (9) is quite near to one of the two further

symmetric solutions; a parabolic fitting of data gives only two intersection points but

we do not know if one (and which one?) of them is nearer to the position associated

with l than to the one associated with l′; in this situation also, l ∼ l′ but they are not

equal; then associating l with a so determined good mass configuration may cause a

relevant error in the final value of g.

One may object that we are discussing an empirical procedure by means of an ideal

pendulum. In particular, the position x = a for the movable mass gives the completely

symmetric mass configuration with respect to the middle point of the ideal pendulum

bar. When a physical pendulum with mf 6= mm is considered, what is such a mass

configuration? Does it occur again?

The answer is “yes”. The key observation is that, for both pivots, the variable position

x of the movable mass and the resulting period T of small oscillations are related by a

cubic expressions of the following type (period-distance relations):

ax2 + bx + c = T 2 + dxT 2, (13)

where the coefficients a, b, c, d depend on the pendulum parameters. This is precisely what

Shedd and Birchby pointed out in their papers [2-4] giving theoretical and empirical

evidence: they called the two (one for each pivot) equations (13) the equations of the

reversible pendulum (see Equations (10) and (11) of their first paper). Here we will refer to

(13) as the cubic period-distance relation of the physical Kater pendulum considered. Note

that only coefficients a, b, c, d depend on the pendulum parameters, while the polynomial

type of Equation (13) does not depend on the choice of the pendulum. Thus, we can

reduce the search for good mass configurations to a simple cubic equation similar to

Eq. (9).
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A first point in the present paper is to give a mathematically rigorous proof of

Theorem 1.1. Let p1 (x, y) , p2 (x, y) be the cubic polynomials

pi (x, y) = Aix
2 + Bix + Ci − y2 − Dixy2, i = 1, 2,

where Ai, Bi, Ci, Di are real coefficients and D1 6= D2 . Then they always admit two

real common roots and two pairs of complex conjugate common roots which may be real

under suitable conditions on coefficients Ai, Bi, Ci, Di. Thinking of them as points in

the complex plane (x, y), they are symmetric three by three with respect to the x–axis.

Moreover these are all the common roots they can admit (i.e., all further common roots

are “at infinity”).

This algebraic result leads to the following physical statement:

Corollary 1.2. A physical Kater pendulum with a “sufficiently long” bar, always admits a

“good” mass configuration whose associated equivalent length does not in general coincide

with the distance between the pivots.

Under “suitable conditions” on the pendulum parameters, it may admit two further

good mass configurations. They correspond to symmetric positions of the movable mass,

with respect to the middle point of the bar (if the pivots are also symmetrically located).

They admit a common associated equivalent length which is precisely the distance between

the pivots.

Moreover the pendulum cannot admit any further good mass configuration.

We will specify meanings for the vague expressions “sufficiently long” and “suitable con-

ditions”.

Although Shedd and Birchby knew in practice the content of the previous statement

(they actually wrote down all three good mass configurations in period-distance terms—

see Formulas (27) of their first paper) they could not give a rigorous proof of it. They

studied the geometry of the curves determined by the cubic period-distance relations by

means of an old and non-standard “Newton’s classification”. They then arrived at the

conclusion that (see the bottom lines of p. 281 in their first paper):

“Of the nine possible intersections of two cubic curves, in the present case three are

imaginary or at infinity, three belong to the condition that T is negative, and three

belong to positive values of T , and can hence be experimentally realized.”

This conclusion does not exclude that, under some suitable conditions on the pendulum

parameters, at least two of the three “imaginary or at infinity” intersections may become

real and may be physically realizable giving more than three good mass configurations.

Actually, we will see that these three intersections are not imaginary but definitely “at

infinity”, and that they can never give physical results.

A second aim of the present paper is to observe that the best fitting of empirical data

(x, T ) is then given by two cubic curves of type (13) instead of two parabolas of type

(5). We will support this remark by experimental evidence for a real compound Kater
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pendulum.

The paper is organised as follows. Section 2 is devoted to prove Theorem 1.1 and

the physical statement of Corollary 1.2. Here we set the main notation and describe the

physics of a real Kater pendulum. The proof of Theorem 1.1 is based on elementary

elements of complex algebraic and projective geometry. An uninterested reader may skip

it without losing any useful elements in understanding what follows. In Sec. 3 we describe

an effective experiment. Section 4 is devoted to the analysis of experimental data by a

linear fit of the period-distance cubics. An estimate of their intersection points gives the

good mass configurations and the associated periods for our real Kater pendulum, and

from there, the value of g. A comparison with a parabolic fitting of data is then given.

Appendix A is devoted to the discussion of the “suitable conditions” on the pendulum

parameters under which the pendulum admits all the possible good mass configurations

(see Corollary 1.2) In Appendix B, we collect further numerical methods to analyse our

empirical data.

2 Physics of the Kater reversible pendulum

Fig. 2 Detailed side view of the Kater pendulum (not to scale).

Notation. Consider a physical Kater pendulum composed of a rigid bar equipped

with two weights (see Fig. 2 and Fig. 3). The pendulum can be suspended by two knife-

edges, c1 and c2, symmetrically located on the bar. The weight mf is placed in a fixed

position which is not between the knives. The other weight, mm, can be moved along

the bar. Small oscillations of the pendulum are parameterised by an angle ϕ such that

ϕ ≈ sin ϕ—i.e., ϕ3 ≈ 0. The equation of motion of the pendulum is then given by

ϕ̈ +
mghi

Ii

ϕ = 0 , (14)
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where g is the earth’s apparent gravitational acceleration, m is the total mass of the

pendulum, hi is the distance of the center of mass from the knife-edge ci, and Ii is the

moment of inertia about ci.

Fig. 3 Front view of the Kater pendulum (not to scale). The pendulum swings in the plane of
the picture; its pivot can be inverted.

Steiner’s theorem [6] asserts that

Ii = I0 + mh2

i , (15)

where I0 is the moment of inertia with respect to the center of mass. The associated

period of small oscillations is

Ti =
2π

ωi

= 2π

√
Ii

mghi

= 2π

√√√√I0 + mh2
i

mghi

. (16)

Equation (16) implies that the Kater pendulum oscillates with the same period as a

simple pendulum whose length is given by

li =
Ii

mhi

=
I0 + mh2

i

mhi

. (17)

Assume now that the movable mass mm is placed at a point x0 on the bar such that

T1 = T2 = T (x0). (18)

Such a point will be called a characteristic position of the pendulum. Equation (18) can be

satisfied if and only if l1 = l2 = l(x0). The length l = l(x0) will be called the characteristic

length of the pendulum associated with the characteristic position x0. Analogously, the

associated periods T (x0j
) will be the characteristic periods of the pendulum. Knowledge

of l(x0j
) and T (x0j

) for each j = 1, 2, 3 yields the value of g from the relation

T = 2π

√
l

g
(19)
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or equivalently,

g =
4π2

T 2
. (20)

The variable position of mm is described by a linear coordinate x having origin at c1.

Then c2 is the point x = d > 0 (see Fig. 2) while the fixed weight is placed at xf such

that (d − L)/2 < xf < 0.

The movable and fixed weights are composed of disks whose radii are given respectively

by rm and rf . L is the length of the pendulum bar.

Therefore, the distance h between the pendulum center of mass and the origin c1

depends on the position x of mm and is given by

h =
d
2
mb + xfmf + xmm

mb + mf + mm

, (21)

where mb is the mass of the bar. Set

m = mb + mf + mm (22)

and

K =
d
2
mb + xfmf

m
. (23)

Then h can be rewritten as

h = K +
mm

m
x. (24)

The moment of inertia I0 is then given by

I0 = (h − xf )
2 mf + (h − x)2 mm +

(
h − d

2

)2

mb + I ′′
0 , (25)

where

I ′′
0 =

r2
f

2
mf +

r2
m

2
mm +

L2

12
mb. (26)

Set

I ′
0 = I ′′

0 + mf (xf − K)2 + mb

(
d

2
− K

)2

+ mmK2, (27)

and I0 can be rewritten as

I0 = mm

m − mm

m
x2 − 2mmKx + I ′

0. (28)

From Eq. (17), condition (18) is satisfied if and only if

I0 + mh2
1

mh1

=
I0 + mh2

2

mh2

, (29)

which is equivalent to requiring that

(h1 − h2) (mh1h2 − I0) = 0. (30)
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From Eq. (24), we have

h1 = h = K +
mm

m
x (31)

h2 = d − h = d − K − mm

m
x, (32)

and we get the first characteristic position by imposing h1 = h2/ That is,

x01
=

d

2
+

mf

2mm

(d − 2xf ) . (33)

Two additional characteristic positions can be obtained from the second factor in Eq. (30).

By letting mh1h2 − I0 = 0 and expressing I0 as in Eq. (28), we have

x2 − dx − mK2 − mdK + I ′
0

mm

= 0 (34)

whose solutions are

x02
=

d

2
+

1

2

√

d2 + 4
mK2 − mdK + I ′

0

mm

(35)

x03
=

d

2
− 1

2

√

d2 + 4
mK2 − mdK + I ′

0

mm

. (36)

To determine the associated characteristic lengths l(x0j
), use Eqs. (17), (29), and (31).

It follows that

l(x0j
) =

I0 + m
(
K + mm

m
x0j

)2

mK + mmx0j

. (37)

It is then easy to observe that l(x02
) and l(x03

) are equal and constant because x02
and

x03
are symmetric. To be precise,

l(x02
) = l(x03

) = h1 + h2 = d, (38)

and they do not depend on the other physical parameters of the pendulum. On the

contrary, this is not true for l(x01
) because

l(x01
) =

d

2
+ 2

I ′′
0

md
+

mf (mm + mf ) (d − 2xf )
2

2mmmd
. (39)

The reader may compare the characteristic positions (33), (35) and the associated char-

acteristic lengths (39), (38), now obtained, with those given in Eq. (27) by Shedd and

Birchby[2].

Moreover, the period-distance relations of the pendulum (what Shedd and Birchby

called “the equations of the Kater pendulum” [2]) can be obtained from Eq. (29) when h1

and h2 are expressed as in Eqs. (31). When the pendulum oscillates about the pivot ci,

the period Ti and the distance x turns out to be related by the following cubic relations:

Aix
2 + Bix + Ci = T 2

i + DixT 2

i , i = 1, 2, (40)
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where

A1 =
4π2mm

gmK
(41)

B1 = 0

C1 =
4π2

gmK

(
I ′
0 + mK2

)
(42)

D1 =
mm

mK
(43)

and

A2 =
4π2mm

gm(d − K)
(44)

B2 = − 8π2mmd

gm (d − K)
(45)

C2 =
4π2

gm(d − K)

(
I ′
0 + m (d − K)2

)
(46)

D2 = − mm

m(d − K)
(47)

All the possible characteristic positions are then given by the common roots of Eqs. (40).

Proof of Theorem 1.1. For more details on the mathematics involved here, see, for

instance, Harris [7] or Shafarevich [8], among other introductory textbooks on algebraic

geometry.

Consider (x, y) as coordinates of points in the complex affine plane C2. Then equations

p1 (x, y) = 0 and p2 (x, y) = 0 give two cubic complex algebraic curves, C1 and C2, whose

intersection points are precisely the common roots of p1 and p2. We can compactify C2

by “adding a line at infinity”: this procedure produces the complex projective plane P2
C
.

More precisely, we can consider our complex variables x and y to be a ratio of further

variables. That is,

x =
X

Z
and y =

Y

Z
. (48)

The equations defining C1 and C2 multiplied by Z3 become the following:

A1X
2Z + B1XZ2 + C1Z

3 = Y 2Z + D1XY 2 (49)

A2X
2Z + B2XZ2 + C2Z

3 = Y 2Z + D2XY 2 (50)

which are the defining equations of the projective completions C̃1 and C̃2, respectively.

The main ingredient of the present proof is the following

Theorem 2.1. (Bezout) Given two distinct irreducible complex algebraic plane curves

of degree d1 and d2, their projective completions admit a finite number of intersection

points. Precisely, if every intersection point is counted with its algebraic multiplicity,

then this number is d1d2.
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In particular the projective completions C̃1 and C̃2 meet in 9 points, counted with their

algebraic multiplicities. The Bezout theorem is a consequence of the Fundamental The-

orem of Algebra which asserts that on the field C of complex numbers every polynomial

admits as many roots as its degree.

The first step is to study the intersections “at infinity”—i.e., which belong to the

added “line at infinity”. The equation of this line is Z = 0 and by Eq. (49), it intersects

both our cubics at y∞ (that is, the point X = Z = 0 which is the infinity point of the

affine y-axis x = 0) and x∞ (that is, the point Y = Z = 0 which is the infinity point of

the affine x-axis y = 0). Both of these are inflection points for C1 and C2. At y∞, the

inflection tangent line of C1 is given by

t1 : D1X + Z = 0,

while the inflection tangent line of C2 is

t2 : D2X + Z = 0.

They cannot coincide since D1 6= D2. Therefore y∞ is a simple intersection point of

our cubics—i.e., it admits intersection multiplicity 1. On the other hand, at x∞ both

C1 and C2 have the same inflection tangent line which is the infinity line Z = 0. Then

x∞ has intersection multiplicity 2. Consequently, these infinity points count 3 of the

9 intersection points. The remaining 6 intersections must be affine—i.e., they cannot

belong to the compactifying line at infinity.

To find them, note that for i = 1, 2,

ti ∩ Ci = y∞ , (51)

with intersection multiplicity 3 because it is an inflection point for Ci with tangent line

ti. On the other hand

t1 ∩ C2 = {y∞, P1, P2} (52)

t2 ∩ C1 = {y∞, Q1, Q2} (53)

where Ph 6= y∞, Qk 6= y∞, and Ph 6= =Qk, because t1 and t2 are always distinct.

Therefore, the affine intersection points of C1 and C2 cannot belong to the lines t1 and t2,

and they can be recovered by studying the common solutions to the equations

y2 =
A1x

2 + B1x + C1

1 + D1x
(54)

y2 =
A2x

2 + B2x + C2

1 + D2x
(55)

because those points do not make the denominators vanish. So they are reduced to the

roots of the cubic equation

(A1x
2 + B1x + C1)(1 + D2x) = (A2x

2 + B2x + C2)(1 + D1x). (56)
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mm (g) mf (g) mb (g) xf (cm) l (cm) d (cm) rf (cm) rm (cm)

1399(1) 1006(1) 1249(1) −26.73(1) 167.0(1) 99.3(1) 5.11(1) 5.12(1)

Table 1 The physical parameters characterising the pendulum.

Because it is a cubic with real coefficients, this equation admits 3 complex roots, one of

which must be a real number. The remaining two roots are necessarily complex conju-

gates: their reality depends on the coefficients Ai, Bi, Ci, Di.

Proof of Corollary 1.2. Recall the cubic period-distance relations (40). Setting

T1 = T2 = y, they are represented by the two cubic curves C1 and C2 whose coefficients

are assigned by formulas (41) and (44), respectively. Note that they are real numbers

and D1 6= D2 since d 6= 0. The hypotheses of Theorem 1.1 are then satisfied and the

characteristic positions of the pendulum must be represented by the real affine intersec-

tion points admitting y ≥ 0. To conclude the proof, observe that Eq. (56) divided by

4π2/gmK (d − K) gives exactly the cubic equation (30). The real root is then given by

(33) and it always occurs when

mf

mm

|d − 2xf | ≤ L.

The remaining two roots are then assigned by (35). A discussion of their reality is given

in Appendix A.

3 The experiment

The physical parameters characterising our pendulum are given in Table 1; the digits in

parentheses indicate the uncertainties in the last digit.

The bar length is measured by means of a ruler whose accuracy is ±1mm. The radii

rm and rf and the position xf are measured by a Vernier caliper accurate to ±0.1mm.

The masses mb, mm and mf are determined by means of a precision balance accurate to

one gram. With reference to the structural conditions in Appendix A, we are in the case

3.b—i.e., all three characteristic positions occur and, in specifically, x02
, x03

are placed

between the knives while x01
is on the opposite side of the bar with respect to mf . By

recalling Eqs. (33) and (35), we expect that

x01
= (104.57 ± 0.11) cm (57)

x02
= (61.74 ± 0.40) cm (58)

x03
= (37.56 ± 0.31) cm (59)

with associated characteristic lengths

l (x01
) = (121.44 ± 0.09) cm (60)

l (x02
) = l (x03

) = d = (99.3 ± 0.1) cm (61)
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x (cm) T1 (s) T2 (s)

10 2.3613 2.0615

20 2.1492 2.0337

30 2.0363 2.0089

35 2.0016 1.9999

40 1.9838 1.9931

45 1.9733 1.9911

50 1.9754 1.9894

55 1.9799 1.9908

58 1.9846 1.9924

65 2.0055 2.0002

68 2.0173 2.0064

75 2.0470 2.0273

85 2.0939 2.0678

90 2.1224 2.0969

92 2.1334 2.1071

106 2.2178 2.2174

110 2.2441 2.2589

120 2.3078 2.3776

Table 2 The experimental data.

Throughout the experiment, the movable mass mm will be placed in successive posi-

tions, generally 10 cm from each other, except near the theoretical characteristic positions

(57) where the distances decrease (see the second column in Table 2).∗ The period of

small oscillation about the two pivots is measured for all those positions of mm. These

periods are measured by recording the time of each of 9 consecutive oscillations when the

pendulum starts from the angle ϕ0 ∼ 6◦ ± 1◦. For this purpose, we used a photogate

timed by an electronic digital counter. † We repeated the procedure for 18 positions of

mm, at first with respect to c1 and then with respect to c2. The average of the 9 values

is taken to be the period at the given position of mm whose error is given by half of its

maximum excursion, that is, ≈ 0.0018 s. The initial angle ϕ0 is sufficiently small that an

equation similar to Eq. (14) is valid. By expanding an elliptic integral in a power series,

it is possible to approximately express the period associated with the exact equation of

pendulum motion

ϕ̈ +
mghi

Ii

sin ϕ = 0 (62)

∗ We did not choose positions too close to the estimated characteristic positions to prevent the casual

occurrence of coincident period measures about the two pivots. In fact our distance measures are affected

by an error of ≈ ±1mm. Such an error would cause a strong distortion in determining the empirical

characteristic positions. One of them would be directly determined by direct measure and its error would

not be lessened by the fitting procedure.
† The resolution of the LEYBOLD-LH model is 0.1ms.
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by adding corrective terms [9, 6] to the period expression given in Eq. (19). In the next

section we will evaluate such a correction. The results are reported in Table 2.

4 The linear fitting procedure

We now describe a linear fitting procedure used to fit the experimental data listed in

Table 2 and empirically determine the characteristic positions. The numerical computa-

tions were obtained using MAPLE§ and some FORTRAN code.¶ From a numerical point

of view we should fit the data by cubic polynomials like those in Eq. (40). Such a fitting

can be treated linearly because the coefficients D1 and D2 may be determined a priori by

Eqs. (41) and (44) which involve only the known physical parameters listed in Table 1.

We obtain

D1 = (3.983 ± 0.01) 10−2 cm−1 (63)

D2 = (−4.2689 ± 0.0047) 10−3 cm−1 (64)

We can obtain the desired fitting of the data obtained in Sec. 3 by applying the least

squares method to the following function:

Ξi (Ai, Bi, Ci) =
18∑

h=1




T 2
h,i −

Aix
2

h
+Bixh+Ci

1+Dixh

2Th,iσT




2

, (65)

where (xh, Th,i) are the data of the ith set in Table 2.‖

Two sources of error with period measurements were considered:

• In any position and for both pivots, we considered the standard deviation of the

9-period electronic measurements, varying from 0.0003 s to 0.0036 s.

• We also considered the systematic error that formula (70) introduces on the data.

For example, when T=2.3 s (the maximum period here analysed) and ϕ0 ∼ 12◦, the

shift introduced on T is 0.006 s.

After this analysis we considered σT = 0.006 s as the estimated error for period measure-

ments.

The obtained results are reported in Table 3 and Table 4, and visualised in Fig.4.

The merit function χ2 and the associated p-values are reported in Table 5 and each

of them has to be understood as the maximum probability to obtain a better fitting.

The estimated cubic coefficients of Table 3 and Table 4 allow us to evaluate the

characteristic positions and the associated characteristic periods by intersecting their

upper branches.∗∗ We obtain a cubic equation whose numerical solutions are reported in

Table 6.

§ We used Maple V, Release 5.1 by Waterloo Maple Inc.
¶ The FORTRAN codes employed subroutines from Ref. [14] and the numerical package NAG-Mark 14.

The plotting package is PGPLOT 5.2 developed by T. J. Pearson.
‖ We also know that B1 = 0 and the number of coefficients to be estimated by the fitting procedure can

be reduced.
∗∗ These two cubic curves represent the period-distance relations in the plane (x, T ) when oscillations
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A1 (0.001607 ± 0.000003) s2 cm−2

B1 0 s2 cm−1

C1 (7.641 ± 0.011) s2

Table 3 Coefficients of the cubic curve C1 estimated by the linear method.

A2 (0.000172 ± 0.000002) s2 cm−2

B2 (−0.03422 ± 0.00031 ) s2 cm−1

C2 (4.393 ± 0.01) s2

Table 4 Coefficients of the cubic curve C2 estimated by the linear method.

Fig. 4 Theoretical cubics (dotted line), fitted cubics (full line) and experimental data (filled
points). The experimental errors are much smaller than the filled points drawn, so they are not
visible within this plot.

C1, degrees of freedom = 16 C2 degrees of freedom = 15

χ2 2.69 1.57
∫ χ2

0
χ2(x,15)dx 0.00008 0.000005

Table 5 χ2 and critical p-values for linear fitting by cubic curves.

are considered about c1 or c2 respectively. Then their common points coordinates give the characteristic

positions of the pendulum and the associated periods. We have already observed in Sec. 2 that these
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(x01
, T (x01

)) (106.015 cm, 2.2184 s)

(x02
, T (x02

)) (62.541 cm, 1.9973 s)

(x03
, T (x03

)) (35.779 cm, 1.9998 s)

Table 6 Estimated intersection points of fitting cubic curves.

g1 (974.15 ± 2.72) cm s−2

g2 (982.65 ± 3.11) cm s−2

g3 (980.20 ± 3.1) cm s−2

g (979.00 ± 1.72) cm s−2

Table 7 Values of g obtained by formulas (66) and (69).

Refer to Eqs. (20) and (60) to compute the associated values of g. We have

g1 = 4π2
l(x01

)

T (x01
)2

(66)

g2 = 4π2
l(x02

)

T (x02
)2

(67)

g3 = 4π2
l(x03

)

T (x03
)2

, (68)

and their numerical values are listed in Table 7.

Their average gives

g = (979.00 ± 1.72) cm s−2 (69)

where the uncertainty is found by implementing the error propagation equation (often

called law of errors of Gauss) when the covariant terms are neglected (see Equation

(3.14) in [11]). We now consider the correction arising from the approximation of the

exact equation of pendulum motion (62) already mentioned at the end of the previous

section. This correction gives [9, 6]:

T = 2 π

√
l

g

(
1 + 1/16 ϕ0

2
)

(70)

and

g = 4π2
l

T 2

(
1 + 1/16 ϕ0

2
)2

. (71)

A small increase in the value of g is evident from Eq. (71), and we will refer to it as the

finite amplitude correction (f.a.c.).

cubics are symmetrical with respect to the x-axis. More precisely, each of them is composed of two

symmetrical branches. The branches lying under the x-axis are not physically interesting since their

period coordinate T is negative. Therefore the only interesting common points of these two cubic curves

are the intersection points of their upper branches.
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With the data listed in (7) we obtain

g+ = (980.34 ± 1.74) cm s−2 (72)

which is the gravity acceleration increased by the f.a.c.. An accurate measure of the value

of g in Turin[10] gives

gT = 980.534099(4) cm s−2. (73)

This value will be considered as the “true value” of the acceleration due to the earth’s

apparent gravity field in Turin†† . By comparing it with g+, we see that our measurement

is −191 ppm smaller than the ”true value.”

Note that the Kater pendulum under consideration admits characteristic positions

sufficiently distant from each other (see Formulas (57) and data collected in Table 6).

Then it can be considered sufficiently “well-assembled”, which means that a parabolic

fitting (of type (5)), of the empirical data (xh, Th,i) collected in Table 2, should give a

sufficiently precise evaluation of characteristic positions x02
, x03

. As before, we apply the

least square method to the following function, but the sum is now extended to the first

13 entries of Table 2 in order to exclude the first intersection

Θi (Ai, Bi, Ci) =
13∑

h=1

(
Th,i − (Aix

2
h + Bixh + Ci)

σT

)2

. (74)

The coefficients of the fitting parabolas are reported in Tables (8) and (9); χ2 and the

associated p-values are reported in Table 10; in comparison the parabolic fit gives very

bad results.

A1 (0.000180 ± 0.000002) s cm−2

B1 (−0.01959 ± 0.00017) s cm−1

C1 (2.494 ± 0.003) s

Table 8 Coefficients of the first fitted parabola P1.

A2 (0.000054 ± 0.000002) s cm−2

B2 (−0.00517 ± 0.00017) s cm−1

C2 (2.113 ± 0.004) s

Table 9 Coefficients of the second fitted parabola P2.

Their intersection points are given in Table (11).

†† Further references for accurate measurements of g include the following: A world-wide survey of all

the apparent gravity measurements (see <http://bgi.cnes.fr>) gives for Turin g = 980.5495 cms−2;

this value differs from gT by 16 ppm. An analytical formula provided by the U.S. Geological Survey [12]

needs two input parameters, the local height above sea level and latitude, which in our case are 236m and

45.05333◦, respectively, to give the local value of g. For Turin, this formula gives g = 980.5937cm s−2,

which differs from gT by 61 ppm.

http://bgi.cnes.fr
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P1 P2

χ2 893 12.5
∫ χ2

0
χ2(x,15)dx 1 0.74

Table 10 χ2 and critical p-values for linear fitting by parabolas, first 13 data, degrees of free-
dom = 10.

(x02
, T (x02

)) ( 72.296 cm : 2.0207 s )

(x03
, T (x03

)) ( 41.709 cm : 1.9908 s )

Table 11 Estimated intersection points of fitting parabolas.

We get then the following two evaluations of g:

g′ = 4π2
d

T (x02
)2

= (960.08 ± 3.00) cm s−2 (75)

g′′ = 4π2
d

T (x03
)2

= (989.11 ± 3.14) cm s−2 . (76)

Their average gives

gparabolic = (974.60 ± 2.18) cm s−2. (77)

A comparison with g in (69) and gT in (73), gives clear evidence for the better efficiency

of a cubic fit compared to a parabolic one.

5 Conclusions

We summarise the main results of our theoretical and numerical analysis:

(1) The three solutions of the Kater pendulum concerning the distance-period relation-

ship discovered in 1907 by Shedd and Birchby in 1907 [2-4] are classified in a modern

context.

(2) The first solution of the distance-period relationship allows the deduction of a new

formula for g via the second equivalent length both in the idealized pendulum and

in a commercial Kater pendulum— see, respectively, Formula (12) and (39).

(3) One of the main targets of our work, “the evaluation of g”, gives oscillating results.

• our best numerical fit to T 2 (the linear fit + non-linear correction) produces a

value of g that is 191 ppm smaller than the“true value”

• our worst fit to T 2 (the non-linear fit + non-linear correction) gives a value of g

that is 1978 ppm smaller than the “true value”

(4) Concerning the fit to T through a parabola, we obtain high values of χ2 (χ2=893

for C1 and χ2=12.51 for C2) with respect to the linear fit to T 2 (χ2=2.69 for C1 and

χ2=1.57 for C2). These high values of χ2 allow the ruling out of physical significance

for this type of fit.
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A Reality of characteristic positions and structural conditions

The characteristic positions of our pendulum are given by Eqs. (33) and (35). The former,

x01
, is always real. On the other hand, x02

and x03
are real if and only if the square roots

in Eq. (35) are real—i.e., if and only if

mmd2 + 4mdK − 4mK2 − 4I ′
0 ≥ 0 ⇐⇒

x2

f − dxf − (mm + mb)d
2 − 4I ′′

0

4mf

≤ 0. (A.1)

The latter are the “suitable conditions” on the pendulum parameters of Corollary 1.2

To avoid the overlapping of mf with c1, we have to impose xf ≤ −rf . Then Eq. (A.1)

is equivalent to requiring that

md2 − 4I ′′
0 ≥ 0 and

d

2
− 1

2

√√√√md2 − 4I ′′
0

mf

≤ xf ≤ −rf . (A.2)

Note that the condition on the right in Eq. (A.2) is not empty if

d

2
− 1

2

√√√√md2 − 4I ′′
0

mf

≤ −rf ⇐⇒

d ≥ 2




mfrf

mb + mm

+

√√√√
(

mfrf

mb + mm

)2

+
mfr2

f + I ′′
0

mb + mm


 . (A.3)

In particular, the latter ensures that the left condition in Eq. (A.2) is also satisfied because

md2 − 4I ′′
0 ≥ 0 ⇐⇒ d ≥ 2

√
I ′′
0

m
. (A.4)

To avoid the overlapping of mm with the knife-edges, it follows that either rm ≤ x ≤ d−rm

or d + rm ≤ x ≤ L+d
2

. After some algebra, we get the following results.

Assume that mm > mf and set

M1 = 2
mmrm + mfrf

mm − mf

(A.5)

M2 = 2




mfrf

mb + mm

+

√√√√
(

mfrf

mb + mm

)2

+
mfr2

f + I ′′
0

mb + mm


 (A.6)

S1 =
mf − mm

2mf

d +
mm

mf

rm (A.7)
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S2 =
d

2
− 1

2

√√√√md2 − 4I ′′
0

mf

(A.8)

S3 =
d

2
− 1

2

√√√√mfd2 + mbd2 + 4mmrmd − 4mmr2
m − 4I ′′

0

mf

, (A.9)

Then we have the following possibilities:

(1) d < min(M1, M2): in this case the pendulum admits only one characteristic position

given by x01
because by Eqs. (A.2) and (A.3), x02

and x03
are not real; x01

is not between

the knives, but occurs on the opposite side of the bar with respect to mf ; the system is

in an almost symmetrical mass configuration of the pendulum.

(2) For min(M1, M2) ≤ d < max(M1, M2), we have the following possibilities:

(2a) If M1 < M2, we get only the characteristic position x01
which is between the

knives if and only if S1 ≤ xf ≤ −rf ; otherwise, x01
is placed like in (1).

(2b) If M2 < M1, we get all the characteristic positions; x01
is like in (1) and x02

, x03

occur between the knives if and only if S2 ≤ xf ≤ min(S3,−rf).

(3) For max(M1, M2) ≤ d, the pendulum admits all the characteristic positions x01
, x02

, x03

which are placed as follows:

(3a) Only x01
is placed between the knives when either

S1 < S2 and S1 ≤ xf ≤ S2, (A.10)

or

S3 < −rf and max (S1, S3) < xf ≤ −rf . (A.11)

(In particular, if S3 < S1, we can also assume the position xf = S1 for the fixed weight

mf .)

(3b) Only x02
, x03

are placed between the knives when S2 < S1 and S2 ≤ xf < S1.

(3c) We obtain all the possible characteristic positions x01
, x02

, x03
between the knives

when

max(S1, S2) ≤ xf ≤ min(S3,−rf). (A.12)

In the concrete case considered in Section 3, we have

M1 = (62.61 ± 0.25) cm (A.13)

M2 = (70.87 ± 0.05) cm (A.14)

S1 = (−12.28 ± 0.08) cm (A.15)

S2 = (−28.049 ± 0.075) cm (A.16)

S3 = (−7.62 ± 0.06) cm (A.17)

where the uncertainty is found by applying the law of errors of Gauss with the uncertain-

ties listed in Table 1. Therefore we are in the case 3.b.

B Further numerical methods

We outline three additional numerical methods that may be applied to analyse experimen-

tal data. The final results obtained by means of each method are reported in Table B.1.
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algorithm g g+

linear fitting by parabolas (974.6 ± 2.17) cm s−2 (975.93 ± 2.20) cm s−2

linear fitting by cubics (979.00 ± 1.72) cm s−2 (980.34 ± 1.74) cm s−2

non-linear fit (977.25 ± 1.71) cm s−2 (978.25 ± 1.74) cm s−2

Cramer interpolation (980.06 ± 4.88) cm s−2 (981.40 ± 4.89) cm s−2

Spline interpolation (979.52 ± 1.73) cm s−2 (980.86 ± 1.74) cm s−2

Table B.1 Average values g and corrected values g+ (by f.a.c.).

B.1 The non-linear method

In the fitting procedure of data reported in Table 2, all the coefficients Ai, Bi, Ci and Di

are considered as unknown parameters to be estimated. Therefore a fitting procedure

performed by means of cubic polynomials like those in Eq. (40) is necessarily a non-linear

one. We want to apply the least square method to minimise the functions

Xi (Ai, Bi, Ci, Di) =
18∑

h=1

(
T 2

h,i −
Aix

2
h + Bixh + Ci

1 + Dixh

)
, (B.1)

which are non-linear in the unknown coefficients. The procedure is to apply the NAG-

Mark14 subroutine E04FDF to find an unconstrained minimum of a sum of 18 nonlinear

functions in 4 variables (see Ref. [13]).

The final value of g is reported in Table B.1.

B.2 The Cramer interpolation method

We present here a method that reduces our analysis in a local neighbourhood of the

estimated characteristic positions where a cubic behaviour of the fitting curves is imposed.

From Eqs. (41), (44), and (63) we know that D1 and D2 are completely determined

by the pendulum parameters. Moreover, from Eqs. (41) we know that B1 = 0. So to

recover the remaining coefficients of C1 and C2, we need to interpolate two points of the

first set of data in Table 2 and three points of the second one, respectively. We have to

solve a 2 × 2 and a 3 × 3 linear system by applying the Cramer theorem (which is the

most practical method for solving a linear system of equations). If we choose data points

that are close to a characteristic position, then the nearest point in C1 ∩ C2 to the chosen

data will give an empirical estimation of such a characteristic position and its associated

period. An iterated application of this procedure will produce a distribution of periods

and we may obtain g from the mean value and its statistical error from the standard

deviation (see the last line of Table B.2).

The results obtained for every interpolation are reported in Table B.2; the chosen

data points in the second and third columns are enumerated as they appear in Table 2.
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Cramer Method
Char. Chosen data Intersection Char. g
position Series 1 Series 2 Position Period length

x01
15;18 15;17;18 105.773 cm t1,1= 2.217 s 121.44 cm 975.73 cm s−2

x01
15;17 15;16;17 106.360 cm t1,2= 2.221 s 121.44 cm 971.92 cm s−2

x01
16;18 16;17;18 106.108 cm t1,3= 2.218 s 121.44 cm 974.08 cm s−2

x01
15;18 15;16;18 106.189 cm t1,4= 2.219 s 121.44 cm 973.44 cm s−2

x02
7; 9 7; 8; 9 62.789 cm t2,1= 1.996 s 99.30 cm 983.77 cm s−2

x02
8;10 8; 9;10 62.056 cm t2,2= 1.996 s 99.30 cm 983.79 cm s−2

x02
9;11 9;10;11 61.962 cm t2,3= 1.996 s 99.30 cm 984.28 cm s−2

x02
10;12 10;11;12 61.990 cm t2,4= 1.996 s 99.30 cm 984.44 cm s−2

x03
2; 4 2; 3; 4 35.477 cm t3,1= 1.999 s 99.30 cm 980.87 cm s−2

x03
3; 5 3; 4; 5 36.207 cm t3,2= 1.998 s 99.30 cm 981.97 cm s−2

x03
4; 6 4; 5; 6 35.557 cm t3,3= 1.999 s 99.30 cm 981.11 cm s−2

x03
5; 7 5; 6; 7 36.668 cm t3,4= 1.995 s 99.30 cm 985.38 cm s−2

g=( 980.06 ± 4.89) cm s−2

Table B.2 The Cramer interpolation method.

B.3 Cubic Spline Interpolation

The last data analysis method to be proposed is the cubic spline interpolation (subrou-

tine SPLINE and SPLINT from Numerical Recipes II). Once the three intersections are

obtained, the procedure is similar to the linear/non-linear case and the final value of g is

reported in Table B.1.
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