

Saturated Water/DMSO hybrid

electrolytes for lithium-ion batteries

of the International Society of Electrochemistry

Electrochemical Energy for a Greener and more Sustainable **Future Society**

*Email: i.pellini1@campus.unimib.it ¹Department of Material Science, University of Milano Bicocca, Via Cozzi 55, 20125 Milano (Italy)

<u>Ivan Claudio Pellini^{1,*}, Elena Polato¹, Shahid Khalid¹, Riccardo Ruffo¹</u>

YES,

Lithium-ion batteries are already among the most widely used devices and are becoming even more so [1].

This hybrid system: Salts: fluorinated salts can F Li⁺ H_3C^2 CH_3 help the formation of the Solid **Co-solvent:** non-flammable, economic, safe Electrolyte Interphase 0 0 0 0 Electrolytes: DMSO:water:LiFSI = 2:2:3 DMSO:water:LiTFSI = 2:2:2 8

Electrochemical Stability Window

Conductivity and viscosity

Electrolytes	D2w2F3	D2w2T2
Conductivity at 25°C	1.2 mS cm ⁻¹	1.8 mS cm ⁻¹
Viscosity at 25°C	381 mPa s	58.8 mPa s
Cathodic limit	1.07 V vs	0.87 V vs
	Li⁺/Li (Al)	Li⁺/Li (Al)
Anodic limit	4.62 V vs	4.07 V vs
	Li ⁺ /Li (CC-Al)	Li ⁺ /Li (CC-Al)
ESW	3.55 V	3.2 V
Mean coulombic efficiency	99.3 %	98.5%

Cell configuration:

Al|LiTi₂(PO₄)₃|electrolyte|LiMnO₂|CC-Al

Electrodes that fit better with the ESW

Current collectors that allow to have the widest ESW

Conductivity and viscosity are inversely proportional

Resistance = opposition to the charge movement

In this case is represented by viscosity

= driving force of Electric potential charge movement

$$J_{ion, migr}(x) = \frac{z_{ion}e}{k_B T} D_{ion} c_{ion} \frac{\partial \varphi(x)}{\partial x}$$

Nernst–Planck equation express the relation between potential and the ion movement

Current = charge movement In this case is the ionic conductivity

References

1. Yang, C.; Chen, J.; Qing, T.; Fan, X.; Sun, W.; von Cresce, A.; Ding, M.S.; Borodin, O.; Vatamanu, J.; Schroeder, M.A.; et al. 4.0 V Aqueous Li-Ion Batteries. Joule 2017, 1, 122–132,

Conclusions

As expected in superconcentrated solutions, the most concentrated electrolyte, that is D2w2F3, show higher viscosity, lower conductivity and wider ESW.

This features allow to have better electrochemical performances.

doi:10.1016/J.JOULE.2017.08.009.

2. D. Doughty and E. P. Roth, "A general discussion of Li Ion battery safety," *Electrochemical Society Interface*,

vol. 21, no. 2, pp. 37–44, Jan. 2012, doi: 10.1149/2.F03122IF/XML.