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We examine aspects of locality in perturbative quantum gravity and how information can be localized in
subregions. In the framework of AdS=CFT, we consider the algebra of single-trace operators defined in a
short time band. We conjecture that, if the state has large energy variance, then this algebra will have a
commutant in the 1=N expansion. We provide evidence for this by identifying operators that commute with
the conformal field theory Hamiltonian to all orders in 1=N, thus resolving an apparent tension with the
gravitational Gauss law. The bulk interpretation is that these operators are gravitationally dressed with
respect to features of the state rather than the boundary. We comment on observables in certain black hole
microstates and the gravitational dressing in the island proposal.
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I. INTRODUCTION

Locality in nongravitational quantum field theory (QFT)
is well understood. It can be expressed by the axiom of
microcausality [1] or more broadly by the structure of “net
of algebras” [2,3]. While it is not straightforward to
factorize the Hilbert space into subsystems corresponding
to spacelike separated regions, due to UV-divergent entan-
glement and the type III1 nature of local algebras [4], there
is a way of thinking about subsystems in terms of the split
property [5]. In particular, on any given time slice quantum
information can, in principle, be strictly localized in finite
spatial regions.
Classical general relativity also respects the principle of

locality. While the constraints in the Hamiltonian formu-
lation impose nontrivial conditions on the initial value
problem allowing some properties of the state, like the
total mass, to be read off from infinity, it is still possible to
localize information in subregions of space; see, for
example, [6] for a recent discussion.

On the other hand, there are indications that in quantum
gravity locality is an approximate, emergent notion: the
absence of fundamental local degrees of freedom is at the
foundations of holography [7–9] and various proposals for
resolving the black hole information paradox [10–21] rely
on the existence of nonlocal quantum effects.
Understanding the fate of locality in quantum gravity is

thus of primordial importance. More precisely, it remains to
be understood if locality breaks down at the level of
perturbation theory or whether the aforementioned nonlocal
effects are always exponentially suppressed in 1=GN .
It is not straightforward to answer the question since in

order to even define what we mean by locality we first need
to identify candidate local observables. In a theory of
gravity, these must be diffeomorphism invariant. Defining
local, diffeomorphism-invariant observables in quantum
gravity has proven to be challenging. This question has a
rich history, see [22–32] and references therein.
If the spacetime has a well-defined boundary, one

approach is to define diffeomorphism-invariant observables
relationally, by gravitationally dressing them with respect to
the boundary, but then they are not really local. Moreover, in
a closed universe with no boundary, this approach is not
available.
An alternative would be to define observables relationally

with respect to some feature of the geometry without
making use of a boundary. This has been discussed in
various earlier works and related ideas have been useful in
the context of cosmology [22–29,33–35]. However, it is not
clear how to give a precise mathematical definition of such
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observables at the quantum level, ensuring that they are
exactly diffeomorphism invariant.
In this paper, we revisit the question in the framework of

the AdS=CFT correspondence and we attempt to define
observables dressed with respect to features of the state
directly in the dual conformal field theory (CFT). An
advantage of this approach is that on the boundary diffeo-
morphism invariance is automatically built in. A price that
we pay in the construction is that the observables are
defined only for a class of states.

II. ALGEBRAS IN TIME BANDS

In order to investigate locality in AdS=CFT, we need to
know how subregions in the bulk are encoded in the CFT.
For bulk regions corresponding to the entanglement
wedge of boundary subregions, this is generally under-
stood [36–38]. However, for the purposes of this paper we
want to find the CFT dual of a bulk subregion corre-
sponding to a bounded causal diamond containing the
candidate approximately local, diffeomorphism-invariant
observable. Such regions are generally not the entangle-
ment wedge of any boundary subregion so the mapping is
of a different nature. Previous attempts to understand the
CFT mapping of such regions include [39–41]. Here we
will follow a different approach by focusing on the algebra
of single-trace operators.
In a large N holographic CFT, it is natural to define the

algebraA generated by single-trace operators in a time band
Dt1;t2 . This was first discussed explicitly in [42], inspired by
earlier work [14,43,44]. In [42] it was proposed that the
algebra A is dual to the causal wedge of the region Dt1;t2 in
the bulk and the commutant of A dual to the spacelike
separated causal diamond in the interior. Algebras of this
type have received attention recently [45–47].
The discussion of [42] focused on perturbations around

empty anti–de Sitter (AdS) space. In this case, the bulk
geometry is homogeneous and “featureless” which, as we
will see, introduces additional challenges in defining local
diffeomorphism-invariant observables. In this paper, we
revisit the algebra in a time band, in cases where the bulk
state is highly excited and time dependent.
At infinite N, the problem can be understood in terms of

QFT on a time-dependent bulk geometry, where gravita-
tional backreaction of quantum fields can be ignored and
the existence of the commutant is obvious [48]. When
considering 1=N corrections, the existence of the commu-
tant is less obvious due to the gravitational Gauss law.
Usually, in AdS=CFT bulk operators are gravitationally
dressed with respect to the boundary, hence at order 1=N
they do not commute with the Hamiltonian, which is an
element of the algebra A. This raises the question of
whether the algebra A still has a commutant at subleading
orders in 1=N.
In this paper, we provide evidence for the existence of a

commutant by identifying a class of operators that are

gravitationally dressed with respect to “features of the
state.” As they are not dressed with respect to the boundary,
these operators have vanishing commutators with the
Hamiltonian, to all orders in 1=N, thus bypassing the
previous problems with the gravitational Gauss law. Here,
we focus only on ensuring that bulk operators have vanish-
ing commutators with the Hamiltonian, but an extension to
all single-trace operators in Dt1;t2 is necessary. We empha-
size that it is really the asymptotic charges that one should be
concerned with since, in the absence of gravity, bulk QFT in
AdS space is manifestly local. Understanding the algebra A
in the 1=N expansion around empty AdS space and other
static states also requires further attention [49].
The existence of a commutant for A in 1=N perturbation

theory would imply that information can be localized in
regions of the bulk and is not visible from the boundary at
the level of perturbative quantum gravity [50].

III. AdS=CFT SETUP

We consider a holographic CFT on Sd−1× time. The
specific details of the theory are not important, but for
concreteness, we can consider N ¼ 4 supersymmetric
Yang-Mills theory (SYM) at large N, large λ.
We consider a pure CFT state jΨ0i, which at large N is

dual to a semiclassical, time-dependent geometry. Various
examples of such states have been discussed in the
literature; see, for example, [51–54] and references therein.
In the bulk, we may think of jΨ0i as a time-dependent
coherent state. The state may eventually collapse into a
black hole, though this is not central to the discussion. We
can also consider black hole microstates with semiclassical
time dependence in the region behind the horizon [55–58].
Any such state can be expanded in the basis of CFT

energy eigenstates as

jΨ0i ¼
X
i

cijEii: ð1Þ

We consider states with hΨ0jHjΨ0i ∼OðN2Þ. Given the
nontrivial time dependence of the bulk geometry, such
states will have energy variance

ðΔHÞ2 ¼ hΨ0jH2jΨ0i − hΨ0jHjΨ0i2; ð2Þ

also of OðN2Þ [59].
We want to construct approximately local diffeomor-

phism-invariant observables on the geometry dual to this
state. A standard approach is based on the Hamilton-Kabat-
Lifschytz-Lowe (HKLL) construction [60–66], which
expresses the desired bulk operator in terms of smeared
CFT local single-trace operators. For example, for a scalar
field and at large N we get an expression of the form
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Φðt; r;ΩÞ ¼
Z
bdry

dt0 dΩ0
d−1Kðt; r;Ω; t0;Ω0ÞOðt0;Ω0Þ; ð3Þ

where K is related to a Green’s function of the Klein-
Gordon operator on the bulk geometry. See [63] for explicit
expressions for the kernel K in the AdS vacuum. Notice that
in order to define the kernel K we have to choose a
coordinate system in the bulk, for example, using a
Fefferman-Graham or harmonic gauge, which is defined
by making use of the asymptotic boundary.
The operator (3) is defined in the CFT, hence obviously

invariant with respect to bulk diffeomorphisms. To leading
order at largeN, (3) behaves like a local operator in the bulk,
i.e., it commutes with other operators at bulk spacelike
separation.
At subleading order in 1=N, such commutators generally

become nonzero. In order to preserve the local behavior of
the reconstructed bulk operator, the expression (3) needs to
be corrected order by order in 1=N by adding to (3) other
single- and multitrace contributions [66–68].
However, there is a universal nonvanishing 1=N com-

mutator that cannot be corrected this way, in particular, the
commutator of (3) with the CFT Hamiltonian. The CFT
Hamiltonian is dual to the Arnowitt-Deser-Misner
Hamiltonian in the bulk, which can be defined in a spacelike
separated region relative to the bulk point where (3) is
localized.
The physical origin of this effect is the gravitational

Gauss law: acting with (3) will generally create or destroy a
particle in the bulk, thus changing the energy of the state,
which can be immediately measured at spacelike infinity by
H. Another way to think about it is that the operator (3) is
defined relationally with respect to the boundary: the
coordinate system used to compute K in (3) is defined
by some gauge fixing condition that makes use of the
asymptotic boundary. Time translations by the CFT
Hamiltonian then also time translate operator (3). We
can also think in terms of (smeared) gravitational Wilson
lines connecting the bulk operator to the boundary, which
make it diffeomorphism invariant at the price of making it
nonlocal [6,69–71]. The commutator with H is nonzero as
H picks up the Wilson line.
Our goal is to improve the locality properties of (3) by

moving the gravitational dressing from the boundary to the
state. From a technical point of view, we will find a CFT
operator Φ̂ that obeys two properties: (i) ½H; Φ̂� ¼ 0 to all
orders in 1=N and (ii) to leading order at largeN, correlators
of Φ̂ agree with those of Φ. The latter condition guarantees
that the operator acts in a desirable way. We will comment
on commutators with other asymptotic charges below.

IV. TIME-SHIFTED STATES AND RETURN
AMPLITUDE

Starting with the state jΨ0iwe consider the one-parameter
family of states

jΨTi ¼ e−iTHjΨ0i T ∈R: ð4Þ

In the bulk, the states jΨTi are related to jΨ0i by a large
diffeomorphism. They are different quantum states, even
though they are related by symmetry. From the point of view
of the phase space of gravity in AdS space, they correspond
to different phase space points.
As discussed earlier, in the bulk we can think of jΨTi as

coherent states. Based on general intuition about the
overlap of coherent states, we expect an overlap of the
form hΨ0jΨTi ¼ e−

1
ℏfðTÞ. In AdS=CFT the effective ℏ is

proportional to 1=N2, hence we expect

hΨ0jΨTi ¼ e−N
2fðTÞ: ð5Þ

It is not straightforward to compute fðTÞ from semi-
classical gravity; see [72] for a discussion on nearby states.
In principle, fðTÞ can be computed by using a Euclidean
preparation of the states [54]. The computation of fðTÞ
directly from Lorentzian bulk data is an interesting chal-
lenge. Microscopically, we have

hΨ0jΨTi ¼
X
i

jcij2e−iTEi ; ð6Þ

and the suppression (5) comes from the summation over a
large number of phases.
If the bulk state has no periodicities, we expect fðTÞ to

increase as we increase T. On the other hand, an estimate
of (6) shows that the decay will saturate at some point.
Indeed, the nontrivial overlaps (6) means that it is not
correct to think that of all states jΨTi simultaneously as
being independent, see also [72–74] for related discus-
sions. One aspect of this can be understood in terms of
Poincaré recurrences that will happen at very large

T ∼OðeeN2 Þ. In this paper, we will be interested in much
earlier timescales, so it will be sufficient to treat the states
as quasiorthogonal since all overlaps will be exponen-
tially small.
Starting with the state jΨ0i, we define the code subspace

H0 ¼ spanfjΨ0i;Oðt;ΩÞjΨ0i;…;O1ðt1;Ω1Þ…
×Onðtn;ΩnÞjΨ0ig; ð7Þ

generated by acting on jΨ0i with a small number (n ≪ N)
of single-trace operators [75]. We also define the projector
P0 on this subspace.
A similar code subspace can be defined for each of the

time-shifted states

HT ¼ spanfjΨ0i;Oðt;ΩÞjΨTi;…;O1ðt1;Ω1Þ…
×Onðtn;ΩnÞjΨTig; ð8Þ

with the corresponding projector PT. We have
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PT ¼ e−iTHP0eiTH ð9Þ

and, in particular, it is important to keep in mind that
PT ≠ P0.

A. The return amplitude

We now examine the T dependence of the overlap (6) in
more detail. Consider the quantity

RðTÞ ¼ jhΨ0je−iTHjΨ0ij2; ð10Þ

called the return amplitude. It is closely related to the
spectral form factor [76], which has been extensively
discussed recently in the context of the black hole infor-
mation paradox; see, for example, [77].
In general, it is difficult to compute (10). As discussed

earlier, in principle, we should be able to capture the early
time, large N behavior of (10) in terms of overlaps of time-
shifted coherent states. We present some more detailed
computations in [78]. Here we notice that, for very early
times,

RðTÞ ¼ e−ðΔHÞ2T2

: ð11Þ

For states with an energy variance of OðN2Þ, this is a very
fast decay of the order

RðTÞ ¼ e−αT
2N2

; ð12Þ

where the constant α isOðN0Þ and depends on the specific
state we are considering [79]. The decay (12) of RðTÞ
is parametrically faster than thermalization, whose time-
scale is typically of order OðN0Þ. For a system with no
degeneracies [80],

R̄ ¼ lim
t�→∞

1

2t�

Z
t�

−t�
dT RðTÞ ¼

X
i

jcij4: ð13Þ

For the type of states we are considering, the rhs is
exponentially small, scaling as e−α

0N2

, where α0 is an Oð1Þ
constant which depends on jΨ0i.
Between the initial decay (12) and the long-time plateau

(13), there may be other interesting intermediate regimes,
which have received attention in connection to quantum
chaos [81,82]. What is necessary in the following dis-
cussion is that already from timescales of order t ∼ N0 and,
generally, the return amplitude remains exponentially sup-
pressed in N2 for a long time.
Here we notice that the return amplitude obeys the

obvious property

hΨt0 jΨt0þTi ¼ hΨ0jΨTi: ð14Þ

This means that, even if the bulk geometry appears to be
static at the semiclassical level, the return amplitude can
still decay like (12) if the state had a period of manifest bulk
time dependence in the far past. This observation is
relevant, for example, in the case of a black hole formed
by gravitational collapse.
The exponential decay (12) can be extended to more

general correlators of the form hΨ0jOðt1Þ…OðtnÞjΨTi,
where O are single-trace operators. We expect

jhΨ0jOðt1Þ…OðtnÞjΨTij¼ jhΨ0jOðt1Þ…OðtnÞjΨ0ije−αT2N2

þ½subleading�: ð15Þ
The meaning of “subleading” is as follows: we will need to
insert the expression above inside an integral over T, which
will be computed by a saddle point method as N → ∞. The
claim is that the subleading terms above contribute only at
Oð1=NÞ to that integral. The intuition is that since in the
large N limit jΨ0i and jΨTi are different semiclassical
states, they cannot be connected by the action of a small
number of single-trace operators. Further evidence for the
behavior (15) in various examples will be given in [78].
Another way of looking at this is that any state in the

code subspace (7) has an exponentially small overlap with
any state in the code subspace (8). This can be captured
by [83]

RcodeðTÞ ¼
1

dcode
Tr½PTP0� ¼ Oðe−αT2N2Þ ð16Þ

for the relevant timescales. Here dcode is the dimensionality
of the code subspace. We provide some numerical evidence
for this in the case of the Sachdev-Ye-Kitaev (SYK) model
in Fig. 1.

V. THE OPERATORS

We now introduce [84] operators Φ̂ with the desired
properties [85]
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FIG. 1. A numerical study of the decay of RcodeðtÞ as a function
of t in the SYK model. The state jΨ0i is one of the Kourkoulou-
Maldacena microstates [55]. The code subspace is obtained by
acting on it with a set of fermionic operators. In the plot
dcode ¼ 8. More details will be provided in [78].
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Φ̂ ¼ c
Z

t�

−t�
dT e−iTHP0ΦP0eiTH: ð17Þ

Here Φ is a usual boundary-dressed operator like (3), P0 is
the projector on the code subspace (7), t� is a timescale that
needs to be at leastOðN0Þ, and c is an overall normalization
constant

c−1 ¼
Z

t�

−t�
dThΨ0jPT jΨ0i: ð18Þ

We now prove the two desired properties.

A. Vanishing commutator with H to all orders in 1=N

We start with

½H; Φ̂� ¼ −i
d
ds

ðeisHΦ̂e−isHÞjs¼0:

From (17) and by a change of variables, we obtain

½H; Φ̂� ¼ −i
d
ds

�
c
Z

t�−s

−t�−s
dTe−iTHP0ΦP0eiTH

�����
s¼0

;

which reduces to boundary terms

½H; Φ̂� ¼ icðPt�Φðt�ÞPt� − P−t�Φðt�ÞP−t� Þ:

If we select t� to be large enough, then by using (16) we
find that when inserted in a correlator inside the code
subspace of the state jΨ0i we arrive at

½H; Φ̂� ¼ Oðe−γN2Þ; ð19Þ

where γ is positive and OðN0Þ. This proves the first desired
property.

B. Similar action as HKLL operators

We also want to make sure that Φ̂ has the same
correlators as the HKLL operator (3) to leading order at
large N. For that we consider

hΨ0jO…Φ̂…OjΨ0i

¼ c
Z

t�

−t�
dThΨ0jO…e−iTHP0ΦP0eiTH…OjΨ0i

¼ c
Z

t�

−t�
dThΨ0jO…PTðe−iTHΦeiTHÞPT…OjΨ0i

¼ c
Z

t�

−t�
dThΨ0jO…P0PTðe−iTHΦeiTHÞPTP0…OjΨ0i:

ð20Þ

In the last line, we insert the projectors P0 as we are free to
do so. Now from (16) we see that the integrand will be

exponentially suppressed as jTj increases. In the large N
limit, we can estimate the integral by a saddle point method,
which is dominated by the T ¼ 0 contribution [86]. Using
(15) and (18), we find that

hΨ0jO…Φ̂…OjΨ0i ¼ hΨ0jO…Φ…OjΨ0i þOð1=NÞ;
ð21Þ

as desired.
Notice that if we apply the operator Φ̂ to one of the time-

shifted states, then as long as jTj < t�, we find

hΨT jO…Φ̂…OjΨTi ¼ hΨT jO…ðe−iTHΦeiTHÞ…
×OjΨTi þOð1=NÞ; ð22Þ

which we will discuss below. To make (22) more manifest,
we can also write Φ̂ as

Φ̂ ¼ c
Z

t�

−t�
dT PTðe−iTHΦeiTHÞPT: ð23Þ

C. Interpretation and comments

To leading order at large N the operator (17) acts like the
HKLL operator (3). However, its commutator with H is
zero to all orders in 1=N. The existence of these operators
provides evidence that the algebra of single-trace operators
in a short time band can have a nontrivial commutant when
acting on heavy, time-dependent states. The vanishing of
the commutator with H happens because (17) is gravita-
tionally dressed, not with respect to the boundary, but
instead with respect to the time dependence of the state.
Suppose, for example, that in the state jΨ0i we have a
supernova explosion taking place at t ¼ 0 and the operator
(3) is selected so that it acts near the explosion. In the state
jΨTi the explosion will take place at t ¼ −T. From Eq. (22)
we see the operator Φ̂ will again act in the bulk near the
new location of the supernova explosion. Hence, one and
the same operator Φ̂ knows how to always act at the
moment of the explosion for the entire family of states
jΨTi, jTj < t�.
It is not possible to apply the same logic in empty AdS

space or other static states, as there are no time-dependent
features in the bulk to be used as a clock to define a moment
in time where the operator acts. Technically, the return
amplitude for such states does not exhibit the rapid
decay (5).
More generally, we need to make (3) commute with all

boundary symmetry generators, besides H. In case there is
only conformal symmetry, we should consider a generali-
zation of the form

Φ̂ ¼ c
Z
B
dμðgÞUðgÞP0ΦP0UðgÞ−1; ð24Þ
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where dμðgÞ is the Haar measure on SOðd; 2Þ and B is a
reasonably sized connected submanifold of Oðd; 2Þ con-
taining the identity. The commutator with conformal gen-
erators will then be given by operators in the code subspace
of states Uðg�ÞjΨ0i, where g� lies on the boundary ∂B. For
the construction to work in this generalization, we must
make sure that the overlaps

RðgÞ ¼ jhΨ0jUðgÞjΨ0ij2 ð25Þ

decay exponentially in the geodesic distance of g from the
identity. We expect this to be true for states that break all
symmetries at the semiclassical level [87]. The expression
given as RðgÞ is an interesting generalization of the return
amplitude (10) that would be interesting to study further.
Suppose that the bulk state can be thought of as being

made out of two distant, weakly interacting subsystems. As
an idealization, we can model it by two noninteracting CFTs
with total HamiltonianH ¼ HL þHR. The full system is in
a pure state jΨ0i which may be entangled, but we assume
the pattern of entanglement is generic. We consider the two-
parameter family of time-shifted states

e−iðTLHLþTRHRÞjΨ0i:

We start with an HKLL operatorΦ on the left system, which
will commute with HR but not HL. Then we can consider
the following generalization of the operators (17):

Φ̂ ¼ c
Z

dTLdTRe−iðTLHLþTRHRÞP0ΦP0eiðTLHLþTRHRÞ;

ð26Þ

using P0 ¼ PL
0 ⊗ PR

0 and ½Φ; PR
0 � ¼ 0, then

Φ̂ ¼ c
Z

dTLe−iTLHLPL
0ΦPL

0 e
iTLHL ⊗

Z
dTRPR

TR
: ð27Þ

The resulting operator commutes with both HL and HR
on the relevant space of states. In this case, instead of saying
that the operator is dressed with respect to the overall time
dependence of the entire system, we can say that it is
actually dressed with respect to the time dependence of the
“left” subsystem [88].

VI. BLACK HOLE MICROSTATES

Suppose jΨ0i is a black hole microstate with energy
variance of OðN2Þ. Such states are microscopically time
dependent. For some of these states, the time dependence
may be visible at the semiclassical level, for example, in
states with end of the world branes behind the horizon
[55–58]. In those cases, we can say that operators (17) are

gravitationally dressed with respect to the end of the world
brane. For more general microstates with energy variance
OðN2Þ it may not be easy to understand the time
dependence semiclassically in the bulk. Notice, however,
that the mathematical properties of (17) only depend on
the rapid decay of the return amplitude, which is expected
to be true even in those states. Hence we can say that even
in those states operators (17) are dressed with respect to
the overall time dependence of the state.
Consider a model of black hole evaporation where a

black hole in a holographic CFT slowly evaporates into
Hawking radiation absorbed by a nongravitational QFT.
After the Page time, it is believed that part of the black hole
interior is encoded in the radiation. Suppose we start with
an operator Φ in the black hole interior. We assume that Φ
is gravitationally dressed with respect to the CFT, hence it
does not commute with HCFT. In this case, the two systems
are weakly interacting but highly entangled. A protocol like
the one described in the previous subsection allows us to
promote Φ into an operator Φ̂ which acts similarly on the
code subspace of the state but has vanishing commutators
with HCFT to all orders in 1=N. The operator Φ̂ is
gravitationally dressed with respect to the radiation [89].
This suggests that there is no inconsistency between the
gravitational Gauss law and the island prescription, and it
may be useful [78] in resolving paradoxes raised in [90].

VII. DISCUSSION

In this paper, we have presented a construction of CFT
operators that act as local bulk operators in a code
subspace, but commute with the Hamiltonian to all orders
in the 1=N expansion. The gravitational interpretation of
such operators is that they are bulk local operators that are
gravitationally dressed to features of the state, in particular,
its time dependence. Because the operators are constructed
directly in the CFT, they are manifestly diffeomorphism
invariant. We conclude with some open questions.
It would be interesting to understand if there is a natural

way to identify operators whose commutators are zero to all
orders in 1=N with both H and other single-trace operators
in the time band, thus proving the conjecture that the time
band algebra has a commutant in the 1=N expansion.
It would also be interesting to understand how to analyze

states with very small energy variance, for instance, typical
black hole microstates in the sharp microcanonical ensem-
ble [91–93], energy eigenstates, or even empty AdS space.
In these cases, the return amplitude does not decay fast
enough and the construction (17) cannot be applied. These
are also the states where there is no semiclassical feature of
the state to dress with respect to or, in other words, there is
no bulk observer. It may be interesting to clarify the role of
the observer, perhaps as in [94], toward identifying a
commutant for the time band algebra in those states.

EYOAB BAHIRU et al. PHYS. REV. D 108, 086035 (2023)

086035-6



ACKNOWLEDGMENTS

We would like to thank S. Banerjee, J. de Boer,
P. Caputa, E. Kiritsis, M. Mirbabayi, A. Parnachev,
S. Raju, E. Verlinde, G. Vos, S. Wadia, and S. Zhiboedov

for useful discussions. The work of A. B. is supported by the
NCCR 51NF40-141869 The Mathematics of Physics
(SwissMAP). E. B. and N. V. would like to thank CERN-
TH for hospitality during the preparation of this work.

[1] R. F. Streater and A. S. Wightman, PCT, Spin and Sta-
tistics, and All That (Princeton University Press, 1989).

[2] R. Haag and D. Kastler, An algebraic approach to quantum
field theory, J. Math. Phys. (N.Y.) 5, 848 (1964).

[3] R. Haag, Local Quantum Physics: Fields, Particles,
Algebras (Springer Berlin, Heidelberg, 1992).

[4] H. Araki, Type of von Neumann algebra associated with
free field, Prog. Theor. Phys. 32, 956 (1964).

[5] D. Buchholz, Product states for local algebras, Commun.
Math. Phys. 36, 287 (1974).

[6] S. B. Giddings, Gravitational dressing, soft charges, and
perturbative gravitational splitting, Phys. Rev. D 100,
126001 (2019).

[7] G. ’t Hooft, Dimensional reduction in quantum gravity,
Conf. Proc. C 930308, 284 (1993).

[8] L. Susskind, The world as a hologram, J. Math. Phys.
(N.Y.) 36, 6377 (1995).

[9] J. M. Maldacena, The Xlarge N limit of superconformal
field theories and supergravity, Adv. Theor. Math. Phys. 2,
231 (1998).

[10] G. ’t Hooft, On the quantum structure of a black hole, Nucl.
Phys. B256, 727 (1985).

[11] L. Susskind, L. Thorlacius, and J. Uglum, The stretched
horizon and black hole complementarity, Phys. Rev. D 48,
3743 (1993).

[12] S. B. Giddings, Nonviolent nonlocality, Phys. Rev. D 88,
064023 (2013).

[13] R. Bousso, Complementarity is not enough, Phys. Rev. D
87, 124023 (2013).

[14] K. Papadodimas and S. Raju, An infalling observer in
AdS=CFT, J. High Energy Phys. 10 (2013) 212.

[15] E. Verlinde and H. Verlinde, Black hole entanglement and
quantum error correction, J. High Energy Phys. 10 (2013)
107.

[16] J. Maldacena and L. Susskind, Cool horizons for entangled
black holes, Fortschr. Phys. 61, 781 (2013).

[17] G. Penington, Entanglement wedge reconstruction and the
information paradox, J. High Energy Phys. 09 (2020) 002.

[18] A. Almheiri, R. Mahajan, J. Maldacena, and Y. Zhao, The
Page curve of Hawking radiation from semiclassical
geometry, J. High Energy Phys. 03 (2020) 149.

[19] A. Almheiri, N. Engelhardt, D. Marolf, and H. Maxfield,
The entropy of bulk quantum fields and the entanglement
wedge of an evaporating black hole, J. High Energy Phys.
12 (2019) 063.

[20] G. Penington, S. H. Shenker, D. Stanford, and Z. Yang,
Replica wormholes and the black hole interior, J. High
Energy Phys. 03 (2022) 205.

[21] A. Laddha, S. G. Prabhu, S. Raju, and P. Shrivastava, The
holographic nature of null infinity, SciPost Phys. 10, 041
(2021).

[22] A. Komar, Construction of a complete set of independent
observables in the general theory of relativity, Phys. Rev.
111, 1182 (1958).

[23] P. G. Bergmann and A. B. Komar, Poisson brackets be-
tween locally defined observables in general relativity,
Phys. Rev. Lett. 4, 432 (1960).

[24] B. DeWitt, Gravitation: An Introduction to Current
Research, edited by L. Witten (Wiley, New York, 1962),
pp. 266–381.

[25] C. G. Torre, Gravitational observables and local sym-
metries, Phys. Rev. D 48, R2373 (1993).

[26] D. Marolf, Quantum observables and recollapsing dynam-
ics, Classical Quantum Gravity 12, 1199 (1995).

[27] I. Khavkine, Local and gauge invariant observables in
gravity, Classical Quantum Gravity 32, 185019 (2015).

[28] S. B. Giddings, D. Marolf, and J. B. Hartle, Observables in
effective gravity, Phys. Rev. D 74, 064018 (2006).

[29] D. Marolf, Comments on microcausality, chaos, and
gravitational observables, Classical Quantum Gravity 32,
245003 (2015).

[30] W. Donnelly and S. B. Giddings, Observables, gravita-
tional dressing, and obstructions to locality and subsys-
tems, Phys. Rev. D 94, 104038 (2016).

[31] S. B. Giddings and A. Kinsella, Gauge-invariant observ-
ables, gravitational dressings, and holography in AdS,
J. High Energy Phys. 11 (2018) 074.

[32] W. Donnelly and S. B. Giddings, Diffeomorphism-invari-
ant observables and their nonlocal algebra, Phys. Rev. D
93, 024030 (2016); 94, 029903(E) (2016).

[33] D. N. Page and W. K. Wootters, Evolution without evolu-
tion: Dynamics described by stationary observables, Phys.
Rev. D 27, 2885 (1983).

[34] K. V. Kuchar, Time and interpretations of quantum gravity,
Int. J. Mod. Phys. D 20, 3 (2011).

[35] C. J. Isham, Canonical quantum gravity and the problem of
time, NATO Sci. Ser. C 409, 157 (1993).

[36] B. Czech, J. L. Karczmarek, F. Nogueira, and M. Van
Raamsdonk, The gravity dual of a density matrix, Classical
Quantum Gravity 29, 155009 (2012).

[37] A. Almheiri, X. Dong, and D. Harlow, Bulk locality and
quantum error correction in AdS=CFT, J. High Energy
Phys. 04 (2015) 163.

[38] D. L. Jafferis, A. Lewkowycz, J. Maldacena, and S. J. Suh,
Relative entropy equals bulk relative entropy, J. High
Energy Phys. 06 (2016) 004.

STATE-DRESSED LOCAL OPERATORS IN THE ADS/CFT… PHYS. REV. D 108, 086035 (2023)

086035-7

https://doi.org/10.1063/1.1704187
https://doi.org/10.1143/PTP.32.956
https://doi.org/10.1007/BF01646201
https://doi.org/10.1007/BF01646201
https://doi.org/10.1103/PhysRevD.100.126001
https://doi.org/10.1103/PhysRevD.100.126001
https://doi.org/10.1063/1.531249
https://doi.org/10.1063/1.531249
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.4310/ATMP.1998.v2.n2.a1
https://doi.org/10.1016/0550-3213(85)90418-3
https://doi.org/10.1016/0550-3213(85)90418-3
https://doi.org/10.1103/PhysRevD.48.3743
https://doi.org/10.1103/PhysRevD.48.3743
https://doi.org/10.1103/PhysRevD.88.064023
https://doi.org/10.1103/PhysRevD.88.064023
https://doi.org/10.1103/PhysRevD.87.124023
https://doi.org/10.1103/PhysRevD.87.124023
https://doi.org/10.1007/JHEP10(2013)212
https://doi.org/10.1007/JHEP10(2013)107
https://doi.org/10.1007/JHEP10(2013)107
https://doi.org/10.1002/prop.201300020
https://doi.org/10.1007/JHEP09(2020)002
https://doi.org/10.1007/JHEP03(2020)149
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1007/JHEP12(2019)063
https://doi.org/10.1007/JHEP03(2022)205
https://doi.org/10.1007/JHEP03(2022)205
https://doi.org/10.21468/SciPostPhys.10.2.041
https://doi.org/10.21468/SciPostPhys.10.2.041
https://doi.org/10.1103/PhysRev.111.1182
https://doi.org/10.1103/PhysRev.111.1182
https://doi.org/10.1103/PhysRevLett.4.432
https://doi.org/10.1103/PhysRevD.48.R2373
https://doi.org/10.1088/0264-9381/12/5/011
https://doi.org/10.1088/0264-9381/32/18/185019
https://doi.org/10.1103/PhysRevD.74.064018
https://doi.org/10.1088/0264-9381/32/24/245003
https://doi.org/10.1088/0264-9381/32/24/245003
https://doi.org/10.1103/PhysRevD.94.104038
https://doi.org/10.1007/JHEP11(2018)074
https://doi.org/10.1103/PhysRevD.93.024030
https://doi.org/10.1103/PhysRevD.93.024030
https://doi.org/10.1103/PhysRevD.94.029903
https://doi.org/10.1103/PhysRevD.27.2885
https://doi.org/10.1103/PhysRevD.27.2885
https://doi.org/10.1142/S0218271811019347
https://doi.org/10.1088/0264-9381/29/15/155009
https://doi.org/10.1088/0264-9381/29/15/155009
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1007/JHEP04(2015)163
https://doi.org/10.1007/JHEP06(2016)004
https://doi.org/10.1007/JHEP06(2016)004


[39] V. Balasubramanian, B. D. Chowdhury, B. Czech, J. de
Boer, and M. P. Heller, Bulk curves from boundary data in
holography, Phys. Rev. D 89, 086004 (2014).

[40] R. C. Myers, J. Rao, and S. Sugishita, Holographic holes in
higher dimensions, J. High Energy Phys. 06 (2014)
044.

[41] M. Headrick, R. C. Myers, and J. Wien, Holographic holes
and differential entropy, J. High Energy Phys. 10 (2014)
149.

[42] S. Banerjee, J.-W. Bryan, K. Papadodimas, and S. Raju, A
toy model of black hole complementarity, J. High Energy
Phys. 05 (2016) 004.

[43] K. Papadodimas and S. Raju, Black hole interior in the
holographic correspondence and the information paradox,
Phys. Rev. Lett. 112, 051301 (2014).

[44] K. Papadodimas and S. Raju, State-dependent bulk-
boundary maps and black hole complementarity, Phys.
Rev. D 89, 086010 (2014).

[45] S. Leutheusser and H. Liu, Causal connectability between
quantum systems and the black hole interior in holographic
duality, arXiv:2110.05497.

[46] S. Leutheusser and H. Liu, Emergent times in holographic
duality, arXiv:2112.12156.

[47] E. Witten, Gravity and the crossed product, J. High Energy
Phys. 10 (2022) 008.

[48] If the Hamiltonian, which is an element of the time band
algebra, is normalized appropriately, its commutator with
bulk fields is suppressed by 1=N.

[49] We strongly believe that our construction can be suitably
generalized to include vanishing commutation with all
single-trace operators, and we give a prescription to do so
in [78]. Concerning the acceptable class of states, the fact
that the AdS vacuum is not included in this class is a
feature, not a bug. Indeed, even in classical gravity, one
cannot define local and diffeomorphism-invariant observ-
ables around a maximally symmetric state like the AdS
vacuum.

[50] Other discussions of localization of information in pertur-
bative quantum gravity, with varying conclusions, include
[95–103].

[51] K. Skenderis and B. C. van Rees, Real-time gauge/gravity
duality, Phys. Rev. Lett. 101, 081601 (2008).

[52] M. Botta-Cantcheff, P. Martínez, and G. A. Silva, On
excited states in real-time AdS=CFT, J. High Energy
Phys. 02 (2016) 171.

[53] D. Marolf, O. Parrikar, C. Rabideau, A. Izadi Rad, and M.
Van Raamsdonk, From euclidean sources to Lorentzian
spacetimes in holographic conformal field theories, J. High
Energy Phys. 06 (2018) 077.

[54] A. Belin, A. Lewkowycz, and G. Sárosi, The boundary
dual of the bulk symplectic form, Phys. Lett. B 789, 71
(2019).

[55] I. Kourkoulou and J. Maldacena, Pure states in the SYK
model and nearly-AdS2 gravity, arXiv:1707.02325.

[56] A. Almheiri, A. Mousatov, and M. Shyani, Escaping the
interiors of pure boundary-state black holes, J. High
Energy Phys. 02 (2023) 024.

[57] S. Cooper, M. Rozali, B. Swingle, M. Van Raamsdonk,
C. Waddell, and D. Wakeham, Black hole microstate
cosmology, J. High Energy Phys. 07 (2019) 065.

[58] M. Miyaji, T. Takayanagi, and T. Ugajin, Spectrum of end
of the world branes in holographic BCFTs, J. High Energy
Phys. 06 (2021) 023.

[59] This can be seen from the inequality 1
2
jh½H;A�ij ≤ Δ

H · ΔA, since large N factorization implies ΔA
hAi∼

OðN−1Þ. Notice that if the variance is parametrically larger
than OðN2Þ, the state may not have a good semiclassical
interpretation.

[60] T. Banks, M. R. Douglas, G. T. Horowitz, and E. J.
Martinec, AdS dynamics from conformal field theory,
arXiv:hep-th/9808016.

[61] I. Bena, On the construction of local fields in the bulk of
AdS(5) and other spaces, Phys. Rev. D 62, 066007 (2000).

[62] A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe,
Local bulk operators in AdS=CFT correspondence: A
boundary view of horizons and locality, Phys. Rev. D
73, 086003 (2006).

[63] A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe,
Holographic representation of local bulk operators, Phys.
Rev. D 74, 066009 (2006).

[64] A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe,
Local bulk operators in AdS=CFT correspondence: A
holographic description of the black hole interior, Phys.
Rev. D 75, 106001 (2007).

[65] A. Hamilton, D. Kabat, G. Lifschytz, and D. A. Lowe,
Local bulk operators in AdS=CFT and the fate of the BTZ
singularity, AMS/IP Stud. Adv. Math 44, 85 (2008).

[66] I. Heemskerk, D. Marolf, J. Polchinski, and J. Sully, Bulk
and transhorizon measurements in AdS=CFT, J. High
Energy Phys. 10 (2012) 165.

[67] D. Kabat, G. Lifschytz, and D. A. Lowe, Constructing
local bulk observables in interacting AdS=CFT, Phys. Rev.
D 83, 106009 (2011).

[68] D. Kabat and G. Lifschytz, CFT representation of inter-
acting bulk gauge fields in AdS, Phys. Rev. D 87, 086004
(2013).

[69] N. Anand, H. Chen, A. L. Fitzpatrick, J. Kaplan, and D. Li,
An exact operator that knows its location, J. High Energy
Phys. 02 (2018) 012.

[70] A. Castro, N. Iqbal, and E. Llabrés, Wilson lines and
Ishibashi states in AdS3=CFT2, J. High Energy Phys. 09
(2018) 066.

[71] H. Chen, J. Kaplan, and U. Sharma, AdS3 reconstruction
with general gravitational dressings, J. High Energy Phys.
07 (2019) 141.

[72] K. Papadodimas and S. Raju, Remarks on the necessity
and implications of state-dependence in the black hole
interior, Phys. Rev. D 93, 084049 (2016).

[73] K. Papadodimas and S. Raju, Local operators in the eternal
black hole, Phys. Rev. Lett. 115, 211601 (2015).

[74] J. Chakravarty, Overcounting of interior excitations: A
resolution to the bags of gold paradox in AdS, J. High
Energy Phys. 02 (2021) 027.

[75] More precisely, we would have to give a small smearing to
the single-trace operators in order to avoid UV divergences.

[76] The spectral form factor coincides with the return ampli-
tude for the thermofield double (TFD) state jTFDi with
H ¼ HL þHR.

[77] J. S. Cotler, G. Gur-Ari, M. Hanada, J. Polchinski, P. Saad,
S. H. Shenker, D. Stanford, A. Streicher, and M. Tezuka,

EYOAB BAHIRU et al. PHYS. REV. D 108, 086035 (2023)

086035-8

https://doi.org/10.1103/PhysRevD.89.086004
https://doi.org/10.1007/JHEP06(2014)044
https://doi.org/10.1007/JHEP06(2014)044
https://doi.org/10.1007/JHEP10(2014)149
https://doi.org/10.1007/JHEP10(2014)149
https://doi.org/10.1007/JHEP05(2016)004
https://doi.org/10.1007/JHEP05(2016)004
https://doi.org/10.1103/PhysRevLett.112.051301
https://doi.org/10.1103/PhysRevD.89.086010
https://doi.org/10.1103/PhysRevD.89.086010
https://arXiv.org/abs/2110.05497
https://arXiv.org/abs/2112.12156
https://doi.org/10.1007/JHEP10(2022)008
https://doi.org/10.1007/JHEP10(2022)008
https://doi.org/10.1103/PhysRevLett.101.081601
https://doi.org/10.1007/JHEP02(2016)171
https://doi.org/10.1007/JHEP02(2016)171
https://doi.org/10.1007/JHEP06(2018)077
https://doi.org/10.1007/JHEP06(2018)077
https://doi.org/10.1016/j.physletb.2018.10.071
https://doi.org/10.1016/j.physletb.2018.10.071
https://arXiv.org/abs/1707.02325
https://doi.org/10.1007/JHEP02(2023)024
https://doi.org/10.1007/JHEP02(2023)024
https://doi.org/10.1007/JHEP07(2019)065
https://doi.org/10.1007/JHEP06(2021)023
https://doi.org/10.1007/JHEP06(2021)023
https://arXiv.org/abs/hep-th/9808016
https://doi.org/10.1103/PhysRevD.62.066007
https://doi.org/10.1103/PhysRevD.73.086003
https://doi.org/10.1103/PhysRevD.73.086003
https://doi.org/10.1103/PhysRevD.74.066009
https://doi.org/10.1103/PhysRevD.74.066009
https://doi.org/10.1103/PhysRevD.75.106001
https://doi.org/10.1103/PhysRevD.75.106001
https://doi.org/10.1007/JHEP10(2012)165
https://doi.org/10.1007/JHEP10(2012)165
https://doi.org/10.1103/PhysRevD.83.106009
https://doi.org/10.1103/PhysRevD.83.106009
https://doi.org/10.1103/PhysRevD.87.086004
https://doi.org/10.1103/PhysRevD.87.086004
https://doi.org/10.1007/JHEP02(2018)012
https://doi.org/10.1007/JHEP02(2018)012
https://doi.org/10.1007/JHEP09(2018)066
https://doi.org/10.1007/JHEP09(2018)066
https://doi.org/10.1007/JHEP07(2019)141
https://doi.org/10.1007/JHEP07(2019)141
https://doi.org/10.1103/PhysRevD.93.084049
https://doi.org/10.1103/PhysRevLett.115.211601
https://doi.org/10.1007/JHEP02(2021)027
https://doi.org/10.1007/JHEP02(2021)027


Black holes and random matrices, J. High Energy Phys. 05
(2017) 118; 09 (2018) 2.

[78] E. Bahiru, A. Belin, K. Papadodimas, G. Sarosi, and N.
Vardian, Holography and localization of information in
quantum gravity, arXiv:2301.08753.

[79] This decay prevails up to timescales of order T ∼ α̃N0, but
may only be valid for for α̃ ≪ 1. At timescales T ∼Oð1Þ,
the return amplitude will behave similarly to (5) with a
function fðTÞ > 0.

[80] Systems like N ¼ 4 SYM will have degeneracies due to
symmetries, however, the number of degenerate states is
exponentially smaller than the number of all states in the
high-energy sector of the theory.

[81] S. H. Shenker and D. Stanford, Black holes and the
butterfly effect, J. High Energy Phys. 03 (2014) 067.

[82] P. Saad, S. H. Shenker, and D. Stanford, A semiclassical
ramp in SYK and in gravity, arXiv:1806.06840.

[83] Various useful inequalities can be derived: for a Hermitian
operatorO with eigenvalues λi, and if ½P0;O� ¼ 0, we have
jhΨ0jOjΨTij2≤

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½O4�

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tr½PTP0�

p
and jhΨ0jOjΨTij2 ≤

maxðλ2i ÞTr½PTP0�.
[84] Operators of this type were discussed in a related context

and applied to the eternal black hole in [73].
[85] Since ½Φ; P0� ¼ 0 in the code subspace, we could have

defined operators with the same action on the code
subspace as (17), using a single projector on the left of
Φ. However, in that case, the operators would have
extraneous matrix elements associated with orthogonal
subspaces to H0.

[86] Note that the correlator appearing in (20) can be written as
a product of a correlator (15) and a conjugated correlator,
such that the phase factor cancels and gives a time
dependence following (16).

[87] For compact symmetries, such as rotations, RðgÞ will have
recurrences every 2π. Hence, along the compact directions
we take g� ∼Oð1Þ < 2π.

[88] In states with special entanglement, the generalized return
amplitude jhΨ0je−iðTLHLþTRHRÞjΨ0ij2 may not decay in
both TL and TR. For example, in the TFD state it is
constant along the line TL ¼ −TR. In those cases, we
cannot set both commutators with HL, HR to zero.

[89] For the exact operator in the island the commutator with
HCFT may be exactly zero; here we simply point out that

there is no contradiction with perturbative diffeomorphism
invariance.

[90] H. Geng, A. Karch, C. Perez-Pardavila, S. Raju, L.
Randall, M. Riojas, and S. Shashi, Inconsistency of islands
in theories with long-range gravity, J. High Energy Phys.
01 (2022) 182.

[91] K. Papadodimas, A class of non-equilibrium states and the
black hole interior, arXiv:1708.06328.

[92] J. de Boer, R. Van Breukelen, S. F. Lokhande, K.
Papadodimas, and E. Verlinde, On the interior geometry
of a typical black hole microstate, J. High Energy Phys. 05
(2019) 010.

[93] J. De Boer, R. Van Breukelen, S. F. Lokhande, K.
Papadodimas, and E. Verlinde, Probing typical black hole
microstates, J. High Energy Phys. 01 (2020) 062.

[94] V. Chandrasekaran, R. Longo, G. Penington, and
E. Witten, An algebra of observables for de sitter space,
J. High Energy Phys. 02 (2023) 082.

[95] D. Marolf, Unitarity and holography in gravitational
physics, Phys. Rev. D 79, 044010 (2009).

[96] W. Donnelly and S. B. Giddings, How is quantum in-
formation localized in gravity?, Phys. Rev. D 96, 086013
(2017).

[97] R. Bousso, V. Chandrasekaran, I. F. Halpern, and A. Wall,
Asymptotic charges cannot be measured in finite time,
Phys. Rev. D 97, 046014 (2018).

[98] W. Donnelly and S. B. Giddings, Gravitational splitting at
first order: Quantum information localization in gravity,
Phys. Rev. D 98, 086006 (2018).

[99] T. Jacobson and P. Nguyen, Diffeomorphism invariance
and the black hole information paradox, Phys. Rev. D 100,
046002 (2019).

[100] S. B. Giddings, Holography and unitarity, J. High Energy
Phys. 11 (2020) 056.

[101] C. Chowdhury, O. Papadoulaki, and S. Raju, A physical
protocol for observers near the boundary to obtain bulk
information in quantum gravity, SciPost Phys. 10, 106
(2021).

[102] C. Chowdhury, V. Godet, O. Papadoulaki, and S. Raju,
Holography from the Wheeler-DeWitt equation, J. High
Energy Phys. 03 (2022) 019.

[103] S. B. Giddings, On the questions of asymptotic recover-
ability of information and subsystems in quantum gravity,
J. High Energy Phys. 08 (2022) 227.

STATE-DRESSED LOCAL OPERATORS IN THE ADS/CFT… PHYS. REV. D 108, 086035 (2023)

086035-9

https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP05(2017)118
https://doi.org/10.1007/JHEP09(2018)002
https://arXiv.org/abs/2301.08753
https://doi.org/10.1007/JHEP03(2014)067
https://arXiv.org/abs/1806.06840
https://doi.org/10.1007/JHEP01(2022)182
https://doi.org/10.1007/JHEP01(2022)182
https://arXiv.org/abs/1708.06328
https://doi.org/10.1007/JHEP05(2019)010
https://doi.org/10.1007/JHEP05(2019)010
https://doi.org/10.1007/JHEP01(2020)062
https://doi.org/10.1007/JHEP02(2023)082
https://doi.org/10.1103/PhysRevD.79.044010
https://doi.org/10.1103/PhysRevD.96.086013
https://doi.org/10.1103/PhysRevD.96.086013
https://doi.org/10.1103/PhysRevD.97.046014
https://doi.org/10.1103/PhysRevD.98.086006
https://doi.org/10.1103/PhysRevD.100.046002
https://doi.org/10.1103/PhysRevD.100.046002
https://doi.org/10.1007/JHEP11(2020)056
https://doi.org/10.1007/JHEP11(2020)056
https://doi.org/10.21468/SciPostPhys.10.5.106
https://doi.org/10.21468/SciPostPhys.10.5.106
https://doi.org/10.1007/JHEP03(2022)019
https://doi.org/10.1007/JHEP03(2022)019
https://doi.org/10.1007/JHEP08(2022)227

