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Abstract
In this paper, we investigate a model of poro-thermoelasticity with microtemperatures, where the behavior of the body
is influenced by the history of both temperature and microtemperatures. Mathematically, this translates into a system of
partial integro-differential equations. Under suitable condition on the tensors appearing in the model, we prove that the
resulting system is well posed. In the one-dimensional case, the exponential decay of the energy is proved.
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1. Introduction

1.1. Thermoelasticity of porous materials

The classical theory of thermoelasticity is especially well-suited for the description of macroscopic phe-
nomena related to elastic deformations. Notwithstanding, there are many physical situations in which
microscopic phenomena play a big role and, therefore, cannot be ignored. From a modeling perspective,
this requires to take into account the microstructure of the material. Perhaps the first to allow for such
effects were the Cosserat brothers, who proposed micropolar theories at the beginning of the 20th cen-
tury [1]. However, it was not until the sixties that materials with microstructure started to be investigated
in a significant way. For a thorough description of these models, we refer to Eringen [2] and Iesxan [3].

Among the several theories that appeared during this period, we want to focus on the theory of mate-
rials with voids (also known as porous materials), first introduced by Cowin and Nunziato in the previ-
ous studies [4–6]. The fundamental concept underlying this model is the decomposition of the bulk
density as the product of two fields, namely, the density field of the matrix material and the volume
fraction field. The latter expresses the idea that the material point might have some small voids, and
ultimately introduces an additional degree of freedom in the model. Let aside its undisputed mathemati-
cal interest, porous materials have soon found application in many fields of technology, ranging from
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the building industry, where they are used for their appealing properties of lightness and resistance, to
medicine, to repair injuries in bones. For some extensive comments regarding the applicability of this
theory, we suggest to look at [7, pp. 307–308]. Nowadays, porous materials have been considered and
studied in such a large number of situations that it would not be possible to mention all of the contribu-
tions in the field. For an introduction to the subject and its applications, we direct the interested reader
to the previous studies [8–11] and references therein, while for some works concerning the dynamical
aspect of the theory we refer to the previous studies [12–18], but the list is far from being exhaustive.

Between all the aspects which have been considered when studying deformations at the microstruc-
tural level (micropolar, microstretch, etc.), we are mostly interested in the concept of microtemperatures,
which is related to the temperature distribution in porous materials. Materials with a microstructure are
usually thought as composed of microelements. In turn, each of these microelements is modeled itself as
a material with deformations and temperature. If we denote by x the center of mass of a microelement
and denote by ~u the absolute temperature, we can consider the approximation:

~u(x0, t) = ~u(x, t) + Ti(x
0
i � xi) + O(d2),

where O(d2) is a second-order term in the diameter d of the microelement. The terms Ti determine the tem-
perature variation in the microelement and are what we call microtemperatures. Historically, this notion was
proposed for the first time in the works of Grot, Riha and Verma [19–22], even though it did not receive
much attention until the article [23] was published in 2000. The latter represented a turning point in the study
of materials with microtemperatures and sparked a lot of interest in the subject. Today, we can say that there
is an important amount of scientific work related to this phenomenon (see, e.g., [24–29]).

1.2. A causality issue

Most of the studies carried out on the topic of thermoelasticity with microtemperatures over the last
decade assume both the temperature and the microtemperatures to follow the parabolic structure
related to the Fourier law of heat conduction. It has been verified that, similarly to how the usual ther-
mal dissipation acts as a damping mechanism on the deformations, the microthermal dissipation has
the same effect on the microstructure. Although this behavior is certainly significant from a physical
standpoint, from a mathematical perspective this is somewhat expected. Indeed, the regularizing nature
of the Fourier law is well known, and usually endows a physical system of good dissipative properties.
Nevertheless, the Fourier law has a strong disadvantage, since it predicts an instantaneous propagation
of thermal waves. This fact is incompatible with the causality principle, and has prompted physicists
and mathematicians alike to propose alternative laws for the description of heat conduction in the the-
ory of thermoelasticity. For these reasons, the notion of microtemperatures has been recently extended
to the case in which the Fourier law is replaced, first, by the (hyperbolic) Cattaneo law [30], and then by
Tzou’s theory [31]. In both situations, the authors have observed similar behaviors and dissipative prop-
erties to the Fourier case.

1.3. Main results

Another classical way to get rid of the paradox of infinite speed of propagation is to relax the constitu-
tive law for the thermal flux by means of a convolution integral. This makes the dynamics nonlocal in
time, meaning that the evolution of the heat flux at time t depends also on its history up time t. This idea
was originally introduced by Gurtin and Pipkin [32]. An interesting study about materials with memory
(also on the thermal variables) can be found at Amendola et al. [33]. Today, the literature on the subject
is quite rich and active, and we refer the interested reader to the works of the previous studies [34–36],
just to name a few. The present work fits into the above setting. Indeed, our goal is threefold. First and
foremost, we want to define a theory for poro-thermoelasticity with microtemperatures that considers
the history of both the temperature and that of the microtemperatures. To be more specific, we will start
from the model of poro-thermoelasticity with microtemperatures proposed in Bazarra et al. [30], and
show how this can be interpreted (and generalized) by means of the theory of materials with memory.
This extension makes it possible to consider a wider range of problems, depending on the choice of the
different memory kernels. Second, we want to propose some adequate conditions that will allow us to
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say that the problem is well posed in the Hadamard sense (i.e., existence, uniqueness and continuous
dependence of solutions). Finally, we will restrict ourselves to the one-dimensional case and demonstrate
(under suitable conditions) the exponential decay of solutions.

The mathematical tool best suited to treat partial differential equations with memory terms is the
well-known past history framework, first introduced by Dafermos in the seminal work [37]. This setting
will allow us to exploit results from the theory of linear semigroups. More in detail, we will prove the
well-posedness of our system by means of the Lumer–Phillips corollary to the Hille–Yosida theorem,
and use the classical characterization of exponentially stable semigroups due to Gearhart, Greiner,
Huang, and Prüss (see, e.g., [38]) to demonstrate the exponential decay of the solutions in the one-
dimensional case. The main mathematical difficulty of the problem at hand resides in the fact that we
have to handle more than one memory term. As we will see, this requires some form of uniform control
over the memory kernels, along the lines of the work [36].

1.4. Plan of the paper

In the next section, we propose the new model that we are going to work with as well as the general
assumptions on the constitutive fields. In section 3, we propose the abstract setting for our problem,
and in section 4, we rephrase the equations in the past history framework. The existence and uniqueness
theorem is stated and proved in section 5. In the final section, we restrict our attention to the one-
dimensional case and obtain the exponential stability of the solutions.

2. The model system

We consider a nonhomogeneous porous material occupying a smooth, bounded domain O � R
3. First,

let us state the evolution equations for the theory of poro-thermoelasticity with microtemperatures for a
centrosymmetric material. These equations are as follows:

r€ui = tij, j, ð1Þ

J €f = hj, j + g, ð2Þ

r _h = qj, j, ð3Þ

r _ei = qji, j + qi � Qi: ð4Þ

The first two equations represent, respectively, the balances of the linear momentum and of the first
stress moment. Here, r is the mass density, ui is the displacement vector, tij is the stress tensor, J is the
equlibrated inertia, f is the volume fraction, hj is the equilibrated stress, and g is the equilibrated body
force. Next, we have the balances of the energy and of its first moment, where h is the entropy, qi is the
heat flux vector, ei is the first moment of the energy vector, qij is the first heat flux moment tensor, and
Qi is the microheat flux average vector.

In order to obtain the final model, we complement the above relations with the constitutive equations
in the case of the Lord–Shulman theory. These are given by (see [30]):

tij = Aijrsur, s + Dijf� aiju,

hi = Aijf, j � NijTj,

g = � Dijui, j � jf + Fu,

rh = aijui, j + Ff + au,

rei = � Njif, j � BijTj,

t _qi + qi = kiju, j + HijTj,

t _qij + qij = � PijrsTr, s,

t _Qi + Qi = (kij � Kij)u, j + (Hij � Lij)Tj,
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where we recall that u is the temperature and Ti are the microtemperatures. It is understood that all the
tensors appearing in the above equations might depend on the space variable x and on time. However,
to simplify the notation, we will omit this dependence for the forthcoming computations. We can now
formally solve the constitutive equations for qi, qij, and Qi. Multiplying by et=t the constitutive equation
for qi, we get:

d

dt
(qie

t=t) =
1

t
et=t kiju, j + HijTj

� �
:

Integrating and making the reasonable assumption that:

lim
t!�‘

qi(t)e
t=t = 0,

we have:

qi(t) =

ðt

�‘

e�(t�s)=t

t
kiju, j(s) + HijTj(s)
� �

ds

=

ðt

�‘

e�(t�s)=t

t
kij _a, j(s) + Hij

_Rj(s)
� �

ds

=

ð‘

0

e�s=t

t
kij _a, j(t � s) + Hij

_Rj(t � s)
� �

ds,

where we denote by (see [39,40]):

a(t) = a(0) +

ðt

0

u(s)ds, Ri(t) = Ri(0) +

ðt

0

Ti(s)ds,

respectively, the thermal displacement and the microthermal displacement. Assuming now:

lim
t!�‘

a, i(t)e
t=t = lim

t!�‘
Ri(t)e

t=t = 0,

we can integrate by parts to obtain:

qi(t) =
1

t
kija, j(t) + HijRj(t)
� �

� 1

t2

ð‘

0

e�s=t kija, j(t � s) + HijRj(t � s)
� �

ds:

Calling:

k�ij(s) =
e�s=t

t
kij,

H�ij(s) =
e�s=t

t
Hij,

and substituting into the above equation, we finally arrive to:

qi(t) = k�ij(0)a, j(t) + H�ij(0)Rj(t) +

ð‘

0

∂

∂s
k�ij(s)a, j(t � s) +

∂

∂s
H�ij(s)Rj(t � s)

� �
ds:

Now we can follow the same procedure for the constitutive equations of qij and Qi. This yields:

qij(t) = � P�ijrs(0)Rr, s(t)�
ð‘

0

∂

∂s
P�ijrs(s)Rr, s(t � s)ds,
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and

Qi(t) = k�ij(0)� K�ij(0)
� �

a, j(t) + H�ij(0)� L�ij(0)
� �

Rj(t)ð‘

0

∂

∂s
k�ij(s)� K�ij(s)
� �

a, j(t � s) +
∂

∂s
H�ij(s)� L�ij(s)
� �

Rj(t � s)

� �
ds:

We note that qi, qij, and Qi are given in terms of the history of the thermal displacement and the
microthermal displacement. This represents an advantage with respect to consider the history of the
temperature and the microtemperatures since we can define a larger class of materials (see Remark 1).
In fact, we can recover the materials proposed at Conti et al. [34] as a sub-class when the microtempera-
tures are not present.

Plugging the newly derived constitutive equations for qi, qij, and Qi into those of poro-thermoelasti-
city, we have the system of field equations:

r€ui = (Aijrsur, s + Dijf� aiju), j, ð5Þ

J €f = (Aijf, j � NijTj), i � Dijui, j � jf + Fu, ð6Þ

a€a = � aij _ui, j � F _f + kij(0)a, j + Hij(0)Rj

� �
, i

+

ð‘

0

k0ij(s)a, j(t � s) + H 0ij(s)Rj(t � s)
� �

, i
ds,

ð7Þ

Bij
€Rj = � Nji

_f, j + (Pijrs(0)Rr, s), j +

ð‘

0

P0ijrs(s)Rr, s(t � s)
� �

, j
ds

� Kij(0)a, j(t)� Lij(0)Rj(t)�
ð‘

0

K 0ij(s)a, j(t � s) + L0ij(s)Rj(s)
� �

ds,

ð8Þ

where we have omitted the star to simplify the notation and used the standard writing f 0(s) to indicate
the derivative ∂f

∂s
. Our goal is to study the well-posedness and asymptotic dynamics of systems (5)–(8),

supplemented with the Dirichlet boundary conditions:

ui(x, t)jx2∂O = f(x, t)jx2∂O = a(x, t)jx2∂O = Ri(x, t)jx2∂O = 0:

2.1. General assumptions

In greater generality, we will consider the system of equations (5)–(8) with general memory kernels:

kij = kij(s), Kij = Kij(s), Hij = Hij(s), Lij = Lij(s), Pijrs = Pijrs(s),

which we will assume independent of x 2 O. This assumption, albeit non-necessary, greatly simplifies
the exposition. Furthermore, we require that:

i. There exist positive constants r0, J0,a0,B0 such that:

r(x) ø r0, J (x) ø J0, a(x) ø a0, Bij(x)TiTj ø B0TiTi:

ii. There exists a positive constant A0 such that:

Aijrshijhrs + 2Dijhijf + jf2 ø A0(hijhij + f2):
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for every h = (hij), and f 2 R.

iii. The functions kij,Lij,Pijrs are symmetric in the sense that:

kij = kji, Lij = Lji, Pijrs = Prsij:

Furthermore, we assume that:

Kij = Hji: ð9Þ

iv. There exists a positive constant g0 such that for every j = (ji), z = (zi) and h = (hij),

kij(‘)jijj + Kij(‘) + Hji(‘)
� �

zijj + Lij(‘)zizj + Pijrs(‘)hijhrs

ø g0(jiji + zizi + hijhij),

where:

kij(‘) = lim
s!‘

kij(s),

and similarly for the other kernels.

v. There exists a positive decreasing continuous and integrable scalar function ‘(s) and a constant
k ø 1 such that:

‘(s)(jiji + zizi + hijhij)

ł � k0ij(s)jijj � K 0ij(s) + H 0ji(s)
� �

zijj � L0ij(s)zizj � P0ijrs(s)hijhrs

ł k‘(s)(jiji + zizi + hijhij),

ð10Þ

for every j = (ji), z = (zi), and h = (hij). We denote by:

ß =

ð‘

0

‘(s)ds,

the resultant of ‘.

vi. It holds:

k00ij(s)jijj + K 00ij (s) + H 00ji (s)
� �

zijj + L00ij(s)zizj + P00ijrs(s)hijhrs ø 0,

for every j = (ji), z = (zi), and h = (hij).
Assumptions (i)–(iii) are natural in the context of thermoelasticity. Indeed, the meaning of (i) is clear,

while (ii) is saying that the mechanical energy of the system is positive definite. This hypothesis plays a
critical role in the context of elastic stability. However, Assumptions (iv)–(vi) arise naturally in the study
of equations with memory terms (see, e.g., [41]).

Remark 1. The observant reader will have noticed that Assumption (iv) is in contrast with the exponen-
tial memory kernels that we have found integrating the constitutive equations, where, for instance,
k�ij(‘) = 0. However, in order to consider the general problem, we must allow for the case kij(‘) 6¼ 0
(and the same for the other kernels). In this way, e.g., we recover the model analyzed in Conti et al.
[34]. The case of kernels vanishing at infinity will be the object of future works.

1260 Mathematics and Mechanics of Solids 28(5)



Assumption (9) is related with Onsager’s postulate in the case of the classical theory. From now on,
we will always write Kij instead of Hji. We note that Kij + Hji = 2Kij. We conclude this section with a tech-
nical lemma, which will be useful in the sequel.

Lemma 1. Let Assumptions (iii) and (v) hold. Then, for every i, j = 1, 2, 3, we have:

� k0ij(s) ł k‘(s) 8s 2 R
+,

and the same holds for � L0ij, �K 0ij, and �P0ijrs:

Proof. Setting in equation (10):

j1 = 1 and j2 = j3 = zi = hij = 0 for i, j = 1, 2, 3,

we see at once that:

� k011(s) ł k‘(s):

In a similar fashion, we can show that the same holds for � k022, � k033 and �L0ii, � P0ijij for every i, j.
Now consider the matrix:

�k011(s) �k012(s)
�k021(s) �k022(s)

� �
:

By Assumption (iii), we have � k012(s) = � k021(s):Moreover, it is easy to see that, by Assumption (v),
this matrix is actually positive definite. Therefore:

k012(s)k021(s) = k012(s))2 = (k021(s)
� �2

ł k011(s)k022(s),

from which we infer:

� k012(s) ł k‘(s):

By the same token, one can show that all the off-diagonal entries of � k0ij, �L0ij, and �P0ijrs are also
bounded by k‘(s). Finally, let us turn to �K 0ij. Observe first that it is not difficult to prove that �k0ii,
�L0ii, and �P0ijij are the positive functions, by choosing j, z, and h in a suitable way in equation (10).
Now let us take:

j1 = z1 = 1 and j2 = j3 = z2 = z3 = hij = 0 for i, j = 1, 2, 3:

Then, in view of equation (9), we have:

� k011(s)� 2K 011(s)� L011(s) ł 2k‘(s):

By the positivity of � k011 and �L011, we finally get:

� K 011(s) ł k‘(s):

With the same reasoning, we can show that the same holds for � K 0ij for every i, j, and this concludes
the proof. �

3. Functional setting and notation

We indicate by (H , h�, �i, k�k ) the usual Hilbert space L2(O) and by (V , h�, �i1, k�k1) the standard Sobolev
space H1

0 (O) of functions in H1 vanishing on ∂O. We denote by:

H= ½L2(O)�3, V= ½H1
0 (O)�3,
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the corresponding vectorial versions, keeping the same scalar notation for their norms. We would like to
rephrase equations (5)–(8) in the so-called past history framework. To this end, let us preliminarily intro-
duce the Hilbert spaces:

M= L2
‘ (R

+,V ), M = L2
‘ (R

+,V),

of square summable functions with respect to the measure ‘(s)ds, endowed with the scalar products:

hv,v�iM=

ð‘

0

ð
O
‘(s)v, i(x, s)v�, i(x, s)dxds,

hhi,h
�
i iM=

ð‘

0

ð
O
‘(s)(hi(x, s)h�i (x, s) + hi, j(x, s)h�i, j(x, s))dxds,

and norms:

kvk2
M =

ð‘

0

ð
O
‘(s)jv, i(x, s)j2xds,

khi k2
M =

ð‘

0

ð
O
‘(s)(jhi(x, s)j2 + jhi, j(x, s)j2) dxds:

Next, we define the Hilbert space:

N =M× M :

endowed with the standard product norm. Observe that, omitting for simplicity the explicit dependence
of the involved functions on s and x, in view of Assumption (v),

k(v,hi)k2
N = �

ð‘

0

ð
O

k0ijv, iv, j + 2K 0ijhiv, j + L0ijhihj + P0ijrshi, jhr, sdxds,

is an equivalent norm on N , with corresponding scalar product:

h(v,hi), (v�,h�i )iN = �
ð‘

0

ð
O

k0ijv, iv
�
, j + K 0ij(hiv

�
, j + h�i v, j) + L0ijhih

�
j + P0ijrshi, jh

�
r, sdxds:

Finally, we introduce the phase space associated with our problem,

H=V×H×V ×H ×V ×H ×V×H×N ,

endowed with the norm:

kuk2
H =

ð
O

Aijrsui, jur, s + 2Dijui, jf + jjfj2 + Aijf, if, j + rjyij2 + J jcj2 + ajuj2 + BijTiTj

� �
dx

+

ð
O

kij(‘)a, ia, j + 2Kij(‘)Ria, j + Lij(‘)RiRj + Pijrs(‘)Ri, jRr, s

� �
dx

�
ð‘

0

ð
O

k0ijv, iv, j + 2K 0ijhiv, j + L0ijhihj + P0ijrshi, jhr, s

� �
dxds,

where:

u= (ui, yi,f,c,a, u,Ri,Ti,v,hi):
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Thanks to Assumptions (i), (ii), (iv), and (v), this is equivalent to the standard product norm defined
on H. We will also consider the infinitesimal generator of the right-translation semigroup on N , i.e., the
linear operator T given by:

T (v,hi) = � (v0,hi0),

with domain,

D(T ) = (v,hi) 2 N : (v0,hi0) 2 N , (v,hi)(0) = 0f g:

In light of Assumption (vi), a straightforward integration by parts yields the dissipative estimate:

hT (v,hi), (v,hi)iN = � 1

2

ð‘

0

ð
O

k00ijv, iv, j + 2K 00ijhiv, j + L00ijhihj + P00ijrshi, jhr, sdxds

ł 0,

ð11Þ

for every (v,hi) 2 D(T ). We refer the interested reader to Pata [41] for a thorough discussion on the
mathematical properties of T and of the semigroup of right translation on memory spaces.

4. Basic equations in linear heat conduction with memory

In the same spirit of Dafermos [37], we introduce the variables (omitting the dependence on x):

vt(s) = a(t)� a(t � s),

ht
i(s) = Ri(t)� Ri(t � s),

modeling the histories of the thermal and microthermal displacements. Then, we can rewrite equations
(5)–(8) as:

r€ui = (Aijrsur, s + Dijf� aiju), j, ð12Þ

J €f = (Aijf, j � NijTj), i � Dijui, j � jf + Fu, ð13Þ

a€a = � aij _ui, j � F _f + kij(‘)a, j + Kji(‘)Rj

� �
, i

�
ð‘

0

k0ij(s)v, j(s) + K 0ji(s)hj(s)
� �

, i
ds,

ð14Þ

Bij
€Rj = � Nji

_f, j + (Pijrs(‘)Rr, s), j �
ð‘

0

P0ijrs(s)hr, s(s)
� �

, j
ds

� Kij(‘)a, j � Lij(‘)Rj +

ð‘

0

K 0ij(s)v, j(s) + L0ij(s)hj(s)
� �

ds,

ð15Þ

( _v, _hi) = T (v,hi) + (u,Ti): ð16Þ

Introducing the state vector:

u(t) = (ui(t), _ui(t),f(t), _f(t),a(t), _a(t),Ri(t), _Ri(t),v,hi),

we view systems (12)–(15) as the ordinary differential equation (ODE) on H:

d

dt
u(t) =Au(t):

Liverani and Quintanilla 1263



here, A is the linear operator defined as:

A

ui

yi

f

c

a

u

Ri

Ti

v

hi

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

=

yi
1
r

Aijrsur, s + Dijf� aiju
� �

, j
c

1
J

(Aijf, j � NijTj), i � Dijui, j � jf + Fu
h i

u

a�1M
Ti

CijNj

T v + u

T hi + Ti

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

, ð17Þ

where Cij is the inverse matrix of Bij (which certainly exists in view of Assumption (i)) and:

M= � aijyi, j � Fc + kij(‘)a, j + Kji(‘)Rj

� �
, i

�
ð‘

0

k0ij(s)v, j(s) + K 0ji(s)hj(s)
� �

, i
ds,

ð18Þ

while,

Ni = � Njic, j + (Pijrs(‘)Rr, s), j � Kij(‘)a, j � Lij(‘)Rj

�
ð‘

0

P0ijrs(s)hr, s(s)
� �

, j
ds +

ð‘

0

K 0ij(s)v, j(s) + L0ij(s)hj(s)
� �

ds:
ð19Þ

The operator A has dense domain D(A) defined by:

D(A) = u 2 H

yi,c, u, Ti 2 V

(Aijrsur, s + Dijf� aiju), j 2 H

(Aijf, j � NijTj), i 2 H

M,Ni 2 H

(v,h) 2 D(T )

����������

8>>>><
>>>>:

9>>>>=
>>>>;
:

5. Existence and uniqueness

This section is devoted to the proof of the generation of a solution semigroup for systems (12)–(16). Let
us state the main result.

Theorem 1. The operator A is the infinitesimal generator of a strongly continuous linear semigroup S(t)
on the phase space H. Besides, S(t) is contractive with respect to the norm of H.

The proof of Theorem 1 is obtained exploiting the well-known Lumer–Phillips theorem. In turn, this
amounts in proving the following two lemmas. Before delving into details, we remark that since we are
dealing with real Banach spaces, in what follows A will actually denote the complexification of the infi-
nitesimal generator A, i.e., the operator acting on the complex Hilbert space H+ iH by the rule:

u+ iy 7!Au+ iAy:

Lemma 2. The operator A is dissipative, i.e.,

<ehAu, uiHł 0, 8u 2 D(A):
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Proof. By means of the divergence theorem and exploiting the boundary conditions, a direct computa-
tion reveals that:

hAU,UiH= �
ð‘

0

ð
B

k0ijT v, iv, j + K 0ij(T hiv, j + T v, jhi) + L0ijT hihj + P0ijrs(T hi, jhr, s)
h i

dsdy

= hT (v,hi), (v,hi)iN
ł 0,

where the inequality follows from equation (11). Therefore, the operator A is dissipative. �

Lemma 3. The operator I� A is onto from D(A) into H.

Proof. For every vector,

f= f (0)
i , f (1)

i , f (2), f (3), f (4), f (5), f (6)
i , f (7)

i , f (8), f (9)
i

� �
2 H,

we look for a unique solution u 2 D(A) to the resolvent equation:

(I� A)u= f:

Equivalently, we try to solve in D(A) the following system:

ui � yi = f (0)
i , ð20Þ

ryi � (Aijrsur, s + Dijf� aiju), j = rf (1)
i , ð21Þ

f� c = f (2), ð22Þ

Jc� (Aijf, j � NijTi), j + Dijui, j + jf� Fu = Jf (3), ð23Þ

a� u = f (4), ð24Þ

au�M= af (5), ð25Þ

Ri � Ti = f (6)
i , ð26Þ

BijTj �Ni = Bijf
(7)

i , ð27Þ

v� T v� u = f (8), ð28Þ

hi � T hi � Ti = f (9)
i : ð29Þ

where M and Ni were defined at equations (18) and (19). Integrating equations (28) and (29), we obtain:

v(s) =

ðs

0

e�(s�y)f (8)(y)dy + (1� e�s)u = (E � f (8))(s) + (1� e�s)u,

hi(s) =

ðs

0

e�(s�y)f (9)
i (y)dy + (1� e�s)Ti = (E � f (9)

i )(s) + (1� e�s)Ti,

where E(s) = e�s and � denotes the convolution product on (0, s). Making use of the standard properties
of the convolution, we have:

kvk2
M ł 2 kE � f (8)k2

M + 2k kuk2
1 ł 2 kf (8)k2

M + 2ß kuk2
1 ,
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so that v 2 M. In a similar way, one is able to show that h = (hi) 2M. Substituting equations (20),
(22), (24), and (26) into the main system, we arrive at:

rui � (Aijrsur, s + Dijf� aija), j = C(1)
i ,

Jf� (Aijf, j � NijRi), j + Dijuij + jf� Fa = C(2),

aa + aijui, j + Ff� kij(‘)a, i + Kji(‘)Ri

� �
, j

+ bk0ija, ij +cK 0jiRi, j = C(3),

BijRj + Nijf, j� Pijrs(‘)Rr, s

� �
, j

+ Kij(‘)a, j + Lij(‘)Rj, + dP0ijrsRr, sj � cK 0ija, j � cL0ijRj = C(4)
i ,

ð30Þ

here:

bk0ij =
ð‘

0

k0ij(s)(1� e�s)ds,

and in the same way, we define cK 0ij ,dP0ijrs and
cL0ij . Moreover,

C(1)
i = rf (0)

i + rf (1)
i + aijf

(5)
, j ,

C(2) = J f (2) + J f (3) + Nijf
(6)

i, j � F f (4),

C(3) = a f (4) + a f (5) + aijf
(0)

i, j + F f (2) + bk0ij f (4)
, ij

�
ð‘

0

k0ij(s)(E � f (8)), ij(s)ds�
ð‘

0

K 0ji(s)(E � f (9)
i ), j(s)ds,

C(4)
i = Bij(f

(6)
j + f (7)

j ) + Nijf
(3)
, j +cK 0ij f (4)

, j

�
ð‘

0

K 0ij(s)(E � f (8)), j(s)ds�
ð‘

0

P0ijrs(s)(E � f (9)
r ), sj(s)ds�

ð‘

0

L0ij(s)(E � f (9)
j )(s)ds:

In order to prove the existence of u 2 D(A) satisfying the resolvent equation, we make use of the Lax–
Milgram theorem. To this end, we define the following bilinear form:

a (ui,f,a,Ri), (~ui, ~f, ~a, ~Ri)
� �

= rui~ui + (Aijrsur, s + Dijf� aija)~ui, j + Jf~f + (Aijf, j � NijRi)~f, j

+ Dijuij
~f + jf~f� Fa~f + aa~a� aijui~a, j + Ff~a + kij(‘)a, i~a + Kji(‘)Ri

� �
~a, j � bk0ija, i~a, j

� cK 0jiRi~a, j + BijRj
~Ri + Nijf, j

~Ri + Pijrs(‘)Rr, s

� �
~Ri, j + Kij(‘)a, j

~Ri + Lij(‘)Rj
~Ri

�dP0ijrsRr, s
~Ri, j � cK 0ija, j

~Ri � cL0ijRj
~Ri:

In particular, a : V 8 ×V 8 ! R. We need to show that a is continuous and coercive. Moreover, we
need to prove that Ci 2 V�1 for every i = 1, :::, 4, where V�1 is the dual space of V . Continuity is a
straightforward consequence of the Cauchy–Schwarz and Young inequalities. For what concerns coer-
civity, by direct computations and making use of Assumption (v), we have:

a (ui,f,a,Ri), (ui,f,a,Ri)ð Þø r k (ui,f,a,Ri) k2
V 4 :

Finally, with the help of Lemma 1, we have:

k �
ð‘

0

k0ij(s)(E � f (8))(s)dsk1 ł

ð‘

0

�k0ij(s)(E� k f (8)k1)(s)ds

ł k

ð‘

0

‘(s)(E� k f (8)k1)(s)ds

ł k

ð‘

0

ffiffiffiffiffiffiffiffi
‘(s)

p
(E �

ffiffi
‘
p
k f (8)k1)(s)ds

ł k
ffiffiffi
ß
p
k E �

ffiffi
‘
p
k f (8)k1kL2(R+)

ł k
ffiffiffi
ß
p
k

ffiffi
‘
p
k f (8)k1kL2(R+)
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Similarly, we can show that:

�
ð‘

0

K 0ji(s)Fi(s)ds 2 H1:

Therefore, C3 2 V�1. By the same token, we have C4 2 V�1. An application of the Lax–Milgram
theorem yields ui,f,a,Ri 2 V satisfying equation (30). Thanks to equations (20), (22), (24), and (26), we
immediately find also yi,c, u, and Ti. The final step to conclude the proof consists in showing that the
solution we have found belongs to D(A). The only thing we need to check is that (v,hi) 2 D(T ).
However, using the fact that v 2M and h 2 M , we see at once that:

(T v, T hi) = (v,hi)� (u,Ti)� ( f (8), f (9)
i ) 2 N :

Besides, it is straightforward to check that v(s),hi(s)! 0 in V as s! 0. Hence, (v,hi) 2 D(T ) and
the proof is finished. �

6. Exponential stability: the one-dimensional system

In this section, we focus on the exponential stability of equations (12)–(16) in one space dimension. In
particular, the system becomes:

rutt = Auxx + Dfx � a�atx, ð31Þ

Jftt = A�fxx � NRtx � Dux � jf + Fat, ð32Þ

aatt = k‘axx � a�utx � Fft + K‘Rx �
Ð ‘

0
k0(s)vxx(s) + K 0(s)hx(s)ð Þds , ð33Þ

BRtt = P‘Rxx � Nftx � K‘ax � L‘R

+

ð‘

0

K 0(s)vx(s) + L0(s)h(s)� P0(s)hxx(s)
� �

ds,
ð34Þ

(vt,ht) = T (v,h) + (at,Rt): ð35Þ

To obtain the exponential stability, we need an additional hypothesis. Namely, we assume there exists
d . 0, such that:

k00(s) + dk0(s)ð Þj2 + 2 K 00(s) + dK 0(s)ð Þzj

+ L00(s) + dL0(s)
� �

z2 + P00(s) + dP0(s)ð Þh2 ø 0,
ð36Þ

for every s ø 0 and j, z,h 2 R.

Remark 2. Assumption (36) plays the same role of the well-known Dafermos inequality, which is
usually stated for a generic memory kernel m(s) as:

m0(s) + dm(s) ł 0, 8s ø 0: ð37Þ

For many equations with memory, equation (37) is sufficient to obtain the exponential stability. In
our case, upon choosing j, z, and h in a suitable way, it is not difficult to show that the kernels �k0(s),
�L0(s), and �P0(s) satisfy equation (37).

The following theorem holds.

Theorem 2. Under Assumption (36), the semigroup S(t) is exponentially stable.

The proof of Theorem 2 relies on the following abstract result, which is a simplified version of the
famous characterization of Gearhart, Greiner, Huang, and Prüss. We refer the interested reader to
Giorgi et al. [35] for the proof.
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Proposition 1. Let A be the infinitesimal generator of a linear contraction semigroup S(t) = eAt on a
Banach space X . Then, S(t) is exponentially stable if and only if there exists s . 0 such that:

inf
l2R
k (il� A)xkX ø s k xkX , 8x 2 D(A):

We are now in position to prove the main result of this section. We proceed by contradiction and
assume that S(t) does not decay exponentially. On account of Proposition 1, this means that there exist
sequences ln 2 R and,

un = un, yn,fn,cn,an, un,Rn,Tn,vn,hnð Þ 2 D(A),

such that:

k un k2
H = 1, ð38Þ

and

k ilnun � AunkH ! 0: ð39Þ

Without loss of generality, we set all coefficients to be equal to 1. In components, equation (39) reads:

ilnun � yn ! 0 in V , ð40Þ

ilnyn � ∂xxun � ∂xfn + ∂xun ! 0 in H , ð41Þ

ilnfn � cn ! 0 in V , ð42Þ

ilncn � ∂xxfn + ∂xTn + ∂xun + fn � un ! 0 in H , ð43Þ

ilnan � un ! 0 in V , ð44Þ

ilnun �Mn ! 0 in H , ð45Þ

ilnRn � Tn ! 0 in V , ð46Þ

ilnTn �Nn ! 0 in H , ð47Þ

ilnvn � T vn � un ! 0 inM, ð48Þ

ilnhn � T hn � Tn ! 0 inM, ð49Þ

where we recall that:

Mn = � ∂xyn � cn + ∂xxan + ∂xRn �
ð‘

0

k0(s)∂xxvn(s) + H 0(s)∂xhn(s)ð Þds,

and

Nn = � ∂xcn + ∂xxRn � ∂xan � Rn �
ð‘

0

P0(s)∂xxhn(s)� H 0(s)∂xvn(s)� L0(s)hn(s)
� �

ds:

The contradiction will be obtained by showing that kunk2 ! 0. First, we observe that, by the dissipa-
tivity of A:

hAun, uniH= hT (vn,hn), (vn,hn)iN ł � d k(vn,hn)k2
N ,

where the inequality follows from assumption (36). Then, since,

<ehilnun � Aun, uniH= � <ehAun, uniH ! 0,
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we have:

d k (vn,hn) k2
N ł � <ehAun, uniH ! 0:

In the same spirit as Pata [42], we now distinguish two cases.

Case 1: ln90. Up to a subsequence, we can assume that:

inf
n
jlnj. 0: ð50Þ

The proof will be carried out with the help of some technical lemmas.

Lemma 4. Up to a subsequence, we have that:

lim
n!‘
k unkH = 0,

and

lim
n!‘
k TnkH = 0:

Proof. We will prove the lemma only for un. The proof for Tn is identical and therefore omitted. We
preliminary show that:

sup
n2N
jlnj k unkV�1\‘,

where V�1 is the dual space of V . Henceforth, we will denote by k�k�1 the norm in V�1, coherently with
the notation used for V . We can write:

ilnun = ilnun +Mn �Mn:

Hence,

k ilnunk�1 ł k ilnun +Mnk�1 + kMnk�1:

The first term of the sum is clearly bounded, being infinitesimal. However,

kMnk�1 ł k yn k + k cnk�1 + k ank1 + k Rn k +

ð‘

0

�k0(s)∂xxvn(s)ds











�1

+

ð‘

0

�H 0(s)∂xhn(s)ds











�1

:

We can bound the final two terms on the right-hand side in the following way:ð‘

0

�k0(s)∂xxvn(s)ds











�1

ł

ð‘

0

k0(s) k vn(s)k1ds

ł k

ð‘

0

‘(s) k vn(s)k1ds

= k

ð‘

0

ffiffiffiffiffiffiffiffi
‘(s)

p ffiffiffiffiffiffiffiffi
‘(s)

p
k vn(s)k1ds

ł k
ffiffiffi
ß
p
k vnkM:

By the same token, one can show that the other integral term is also bounded. We rephrase equation
(48) as:

ilnvn � T vn � un = en,
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with en ! 0 in M. Since vn 2 D(T ), we can solve the above equation to obtain the explicit
representation:

vn(s) =
1

iln

(1� e�ilns)un +

ðs

0

e�iln(s�y)en(y)dy: ð51Þ

Now observe that:

jilnhvn,A�1uniMjł jlnj k unk�1

ð‘

0

‘(s) k vnk1ds! 0,

since vn ! 0 inM and k unk�1 was bounded. Hence, we have:

jilnhvn,A�1uniMj= an k unk2 + bn ! 0, ð52Þ

having set,

an =

ð‘

0

‘(s)(1� e�ilns)ds,

bn = iln

ð‘

0

‘(s)

ðs

0

e�iln(s�y)hen(y),A�1uniV dy

� �
ds:

Following exactly the same reasoning of Pata [42, Lemma 5.5], we see that bn ! 0. For what concerns
an, we consider two separate cases. Let lH be a limit point of the sequence ln. From equation (50), we
have:

lH 2 ½�‘,‘�nf0g:

If lH 2 f�‘,‘g, then by the Riemann–Lebesgue lemma, we have the convergence (up to a
subsequence):

an !
ð‘

0

‘(s)ds . 0:

However, if lH 2 Rnf0g,

an !
ð‘

0

‘(s)(1� e�ilHs)ds,

and

<e
ð‘

0

‘(s)(1� e�ilHs)ds =

ð‘

0

‘(s)(1� cos lHs)ds . 0:

In both cases, in order for equation (52) to hold, it must be k un k! 0. �

Lemma 5. Up to a subsequence,

lim
n!‘
k Rnk1 = lim

n!‘
k ank1 ! 0:

Proof. Define,

rn(s) =
1

iln

(1� e�ilns)(un � ilnan):
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In view of equation (44), it is clear that rn ! 0 inM. We can then rewrite equation (51) as:

vn(s) = (1� e�ilns)an +

ðs

0

e�iln(s�y)en(y)dy + rn(s),

which, on account of Step 1, entails:

hvn,aniM= an k an k2
1 + cn + hrn,aniM ! 0,

with an as above and:

cn =

ð‘

0

‘(s)

ðs

0

eiln(s�y)hen(y),ani1dy

� �
ds:

Clearly,

hrn,aniM ! 0:

Besides, with the same reasoning of Lemma 4, cn ! 0. Hence, we obtain that k ank1 ! 0. This proof
can then be repeated to show that k Rnk1 ! 0. �

Conclusion of the proof. At this point, we proceed as in Bazarra et al. [30]. We multiply equation (47) by
l�1

n ∂xfn. In view of equation (42), and exploiting the convergences obtained above, we get:

i k fn k2
1 + h∂xRn,

∂xxfn

ln

i ! 0:

Thanks to equation (43), we see that ∂xxfn=ln is bounded. In turn, this yields that:

k fn k2
1! 0:

In a similar fashion, using equations (45) and (41), it is possible to show that k unk1 ! 0 too, as
n! ‘. Finally, a straightforward application of equations (40) and (42) yields the convergence of
yn,cn ! 0 in H .

Case 2: ln ! 0. In this case, in light of equations (38), (40), (44), and (46), we have:

yn ! 0 in V ,

un ! 0 in V ,

Tn ! 0 in V :

In turn, due to equations (41) and (43), this entails:

� ∂xxun � ∂xfn ! 0 in H , ð53Þ

� ∂xxfn + ∂xun + fn ! 0 in H : ð54Þ

Multiplying equation (53) by un, equation (54) by fn, and summing up the two, we get:

k ∂xunk2 + hfn, ∂xuni+ h∂xun,fni+ k fnk2 + k ∂xfnk2 ! 0: ð55Þ

Since,

k ∂xunk2 + hfn, ∂xuni+ h∂xun,fni+ k fnk2 = k ∂xun + fnk2 ø 0,

by equation (55), we have k fn k! 0 in V . In turn, this gives us the convergence of un ! 0 in V . An
almost identical reasoning yields the convergence of Rn and an to 0 in the space V .
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Remark 3. If we do not assume all the constants to be equal to 1, we do not obtain a perfect square in
equation (55). However, the thesis follows in the same way thanks to Assumption (ii).
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