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Abstract We analyse the dynamics of a single disk galaxy
from a general relativistic viewpoint. We investigate dark
matter (DM) effects in terms of a known family of stationary
axially-symmetric solutions of Einstein equations coupled
to a rotating dust. These effects are generated by the non-
Newtonian features of such solutions and are ascribed to the
essential role of frame dragging. Indeed, in such models,
the off-diagonal elements of the metric are, in general, of the
same order of magnitude of the diagonal ones. We generalize
the results of Balasin and Grumiller (BG) to the physical case
of differentially rotating dust. In particular, we find that for
differential rotation the amount of energy density required to
account for the flat rotation curves of disk galaxies is reduced
with respect to the BG rigid rotation case. This stresses the
discrepancy between Newtonian gravity and general relativ-
ity (GR), even at low velocities and low energy densities.

1 Introduction

The description of galactic dynamics using ordinary Newto-
nian theory leads to several disagreements with the observa-
tional data. One of the main problems unexplained by New-
tonian theory resides in the justification of the non-Keplerian
velocity profiles observed in galaxies: e.g., far from their cen-
tre, spiral galaxies display an almost flat rotation curve. In
recent years there have been several attempts to reconcile
these facts with theory. Some approaches attempt to take this
discrepancies into account by modifying gravitational theory
itself. Examples are MOND theory [1] as well as large classes
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of theories complementing the Einstein–Hilbert action with
new invariants [2]. For interesting critiques to the MOND
models see [3,4]. As regards modifications of Einstein equa-
tions by adding suitable higher order scalars to the action
it is worth noting that, were these to be viable, at the very
least they do not appear to play any role in clean astrophys-
ical systems such as e.g. the Double Pulsar [5,6]. Another
approach is that of introducing new hypothetical types of par-
ticles (dark matter) integrating the Newtonian picture, which
interact only gravitationally with the usual baryonic matter;
see [7] for a review. Since the speeds of stars in galaxies are
much smaller than the speed of light and gravity is assumed
to be “weak” far from the central region, the general consen-
sus is that the Newtonian limit of the Einstein equations is
applicable in this setting. Therefore, full GR is not usually
considered to be a viable solution. However, the matter is far
more delicate than what it might seem at first glance.

Indeed, though in the presence of low velocities and weak
gravitational fields the Newtonian approximation is certainly
valid everywhere locally, it turns out not to be valid any-
more globally in spatially extended rotating systems, such as
galaxies. The reason for this lies in the dynamical nature of
the gravitational field, which in such systems manifests itself
primarily through the dragging effect due to the off-diagonal
elements of the metric, which, in general, are of the same
order of magnitude of the diagonal ones. This was first noted
in the pioneering works [8,9] and, subsequently, in [10].
Later on, Balasin and Grumiller introduced a new model [11]
(BG), eliminating the unphysical behaviour affecting some
previous solutions and showing explicitly that for extended
rotating sources the weak-field approximation is indeed not-
Newtonian globally. See also [12]. This model gained rel-
evance recently because of Ref. [13], in which the authors
claimed that BG is a good modelization of the average veloc-
ity profile of the Milky Way stars obtained from the Gaia DR2
catalogue, thus favoring the conclusion that the galaxy’s flat
rotational curves are a purely GR effect, and hence do not
require the existence of dark matter! However, the results

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10506-7&domain=pdf
http://orcid.org/0000-0002-3934-3938
http://orcid.org/0000-0002-4167-9123
http://orcid.org/0000-0002-9528-0855
mailto:dastesiano@uninsubria.it
mailto:sergio.cacciatori@uninsubria.it
mailto:vittorio.gorini@gmail.com
mailto:fre@uninsubria.it


554 Page 2 of 9 Eur. Phys. J. C (2022) 82 :554

in [13] must be taken with a grain of salt, as their use of the
Gaia DR2 data is limited to an 11 kpc range from the galactic
centre and BG themselves claim that theis rigid model might
explain only about 30% of the DM effect.

In this paper we extend the results of BG by relaxing the
condition of rigid rotation (the BG corotation condition, see
Appendix B), thus modeling a disk galaxy by the most gen-
eral stationary axisymmetric solution of Einstein’s equations
with a dust energy-momentum tensor [14]. The dust condi-
tion is equivalent to assuming the approximation that the star
velocities can be described locally by their average veloc-
ity field v(r, z). In other words, we neglect the contribution
of velocity dispersion, which is expected to be a reasonable
approximation outside the central bulge, where the density
of stars is low.

In Sect. 2 we introduce and discuss the dust model
expressed in standard cylindrical coordinates [15–20]. The
model depends on a largely arbitrary spacetime field η and
on a likewise arbitrary negative function H = H(η). We
derive the expressions for the matter density ρ and for the
angular velocity � = dφ

dt of the dust, as functions of η and
H . It turns out that ρ depends on H through its logarithmic
derivative l(η) := ∂ηH

H . The case of rigid rotation corre-
sponds to a constant � ≡ �0, or equivalently to a constant
H(η) ≡ −1, and l ≡ 0. Interestingly, for a given field η, the
case of rigid rotation corresponds to the highest distribution
of total matter density and hence to the highest concentra-
tion of dark matter. We refer the relevant quantities to the so
called ZAMO frames (Zero Angular Momentum Observers),
namely to the locally non-rotating observers, which have no
angular momentum with respect to flat infinity. These are the
natural frames relative to which to measure the velocity dis-
tribution v(r, z). With respect to the ZAMO, v has a simple
expression in terms of η:

v(r, z) = η(r, z)

r
. (1.1)

Note that even though ZAMO play a privileged role in the
definition of physical quantities, their velocity field v is not
necessarily the empirical velocity that we measure for the
other galaxies. Comparisons with such empirical data will
be shown in a future work. As regards the matter distribution
ρ, note that it depends in an essential way on both η and H ,
which shows that different matter densities may give rise to
the same velocity field.

In Sect. 3 we discuss the functional and differential equa-
tion (VFE) satisfied by the velocity field v(r, z) relative to
ZAMO observers. Like the density ρ, the VFE depends on
H through the function l(η). In the general case of arbitrary
differential rotation, this equation is unduly complicated and
can only be treated numerically. However, it is not difficult
to see that it allows for circular orbits out of the galactic
plane, an interesting result which is a consequence of iner-

tial dragging and which has no counterpart in the Newtonian
case.

In the rigidly rotating case the VFE simplifies consid-
erably, becoming equivalent to the Laplace equation in flat
space. However, by taking a constant l(η) proportional to
a small dimensional parameter vc

RG
(where vc is a typical

orbital velocity of a star element, of the order of tens or hun-
dreds kilometers per second, and RG is the radius of the
galaxy, of the order of 1018 kilometers), equation VFE can
also be handled to first order in vc

RG
. We do this in Sect. 4.

We then show that, with such an approximation and disre-
garding higher order terms in v, for values of r larger than
the galactic radius equation VFE simplifies to one which is
satisfied by v ≡ avc, independently of r . In other words, at
least for galaxies which are liable to be reasonably modeled
by an (η, H) metric with l very small, the model explains
the flat rotation curves without resorting to dark matter. The
result of Ref. [13] based on the Gaia data would indicate that
the Milky Way falls in this category. For a given velocity
field and for small l, we also derive in this section the ratio
between the matter densities of the non-rigid and the rigid
case. It turns out that this ratio goes to zero for values of r
larger than the galactic radius, an expected result since the
dark matter halo is supposed to be distributed mostly in the
exterior regions.

Section 5 is dedicated to the discussion of future perspec-
tives.

2 Stationary axisymmetric rotating dust

We model a disk galaxy by a stationary, axisymmetric metric
expressed in standard cylindrical coordinates and coupled to
an energy-momentum dust tensor

Tμν = ρ(r, z)uμuν . (2.1)

Such a metric can be written as (we take units such that c = 1)

ds2 = gtt (r, z)dt
2 + gtφ(r, z)dtdφ

+gφφ(r, z)dφ2 + eμ(r,z)
(
dr2 + dz2

)
. (2.2)

The coupling condition was solved in [14]. Here,

uμ = (−H)−1/2(∂t + �∂φ), (2.3)⎧⎪⎪⎨
⎪⎪⎩

gtt = (H−η�)2−r2�2

H

gtφ = η2−r2

−H � + η

gφφ = r2−η2

−H

, (2.4)

μr = 1

2r

[
(gtt )r (gφφ)r − (gtt )z(gφφ)z

−((gtφ)r )
2 + ((gtφ)z)

2
]
,
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μz = 1

2r

[
(gtt )z(gφφ)r + (gtt )r (gφφ)z

−2(gtφ)r (gtφ)z

]
, (2.5)

8πGρ = η2r−2(2 − ηl)2 − r2l2

4grr

η2
r + η2

z

η2 . (2.6)

The parameters η and H are not gauge choices, as shown
in Appendices A and B. η is a function of r and z, H is an
arbitrary negative function of η and

� := 1

2

∫
H ′ dη

η
, (2.7)

l(η) := 1

H

dH

dη
. (2.8)

The arbitrariness of η(r, z) can be expressed by an axially
symmetric function F(r, z) which satisfies the harmonicity-
like condition

Frr − 1

r
Fr + Fzz = 0. (2.9)

The parameter η(r, z) can then be implicitly found using

F = 2η + r2
∫

H ′

H

dη

η
−

∫
H ′

H
ηdη. (2.10)

The �(r, z) parameter describes the angular velocity of the
dust referred to the coordinates φ, t : � = dφ

dt . The particular
case of rigid rotation corresponds to a constant � ≡ �0 or,
equivalently, to a constant H(η) ≡ −1, e.g. to l(η) ≡ 0.
Such a rigidly rotating dust was studied in [11], where the
energy density ρRig is given by Eq. (2.6) with l = 0. From
the expression of (2.6) it is clear that for a generic non-rigid
rotation, i.e. l �= 0, the required density ρ is less than the
ρRig case. One could think of the difference as an “effective

matter” term ρe f f ≈ r2l2
32πG

η2
r +η2

z
η2 subtracted from that of the

rigid model.

2.1 The ZAMO observer

The natural observers employed to measure the velocity in the
galaxy are the Zero Angular Momentum Observers (ZAMO)
[21]. These are defined by the tetrad

e0 = r√
gφφ

dt, e1 = √
gφφ(dφ − χdt),

e2 = eμ/2 dr, e3 = eμ/2 dz, (2.11)

where

χ ≡ − gtφ
gφφ

= Hη

(r2 − η2)
+ �. (2.12)

The function χ gives the angular velocity of such observers
as measured from an inertial observer at infinity. Indeed, the
relevant elements of the dual basis are

e0 → X ∝ (
∂t + χ∂φ

)
,

e1 → Y ∝ ∂φ. (2.13)

Definev(r, z) as the velocity measured by the reference frame
formed by the locally non rotating observers, i.e. the ZAMO,
as

−(e0)μu
μ := 1√

1 − v2
, (2.14)

where u is the four velocity of the dust (2.3). We get

v(r, z) = η(r, z)

r
, (2.15)

where v 	 1. However, recall that the v measured by ZAMO
is not necessarily the velocity one measures for the galaxies
other than the Milky Way. From an observational perspective
it is interesting to note that it is not possible to distinguish
between a rigidly rotating or a differentially rotating galaxy
if we only have information about the velocity profile v with
respect to the ZAMO. Indeed, different choices of H can
yield the same velocity profile.

3 Velocity field equation

We replace η = rv inside all formulas of Sect. 2, making their
dependence on the physical velocity v := vZ AMO explicit.
Then, from (2.9) we get

0 = l ′
(

1

v
− v

)
[r2v2

z + (rvr + v)2]

+ l

[(
1

v
− v

)
(rvzz + rvrr + 3vr )

−
(

1

v
+ v

)
r

v
(v2

z + v2
r ) + 2

r

]

+ 2
(
vzz + vrr + vr

r
− v

r2

)
, (3.1)

See Appendix C for the derivation. Equation (3.1) is the
Velocity Field Equation (VFE). It is an extremely compli-
cated functional equation for l (or for H ) involving the veloc-
ity profile v (and its partial derivatives). Vice versa, for any
given choice of l(η), one could in principle solve it for v(r, z).
We can require v(r, z) = v(r,−z), since disk galaxies are
approximately symmetric w.r.t. the galactic plane. Therefore,
the speed profile v(r, z) is fully determined by the choices of
l(η) and of v(r, 0). These are the two degrees of freedom of
the relativistic model. In the rigid case l ≡ 0, only the third
line of Eq. (3.1) survives, so that the equation boils down to
the Laplace equation; cfr. [11]. In the Newtonian theory, the
VFE would correspond to the constraint vz = 0. Indeed, it is
well known that in Newtonian gravity an axisymmetric and
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non singular distribution of matter with no velocity disper-
sion can only be stationary when full cylindrical symmetry
prevents its collapse onto the galactic plane. This can be seen
as a consequence of the fact that the Newtonian model has
only one degree of freedom v(r, 0) ≡ v(r, z). A Newtonian
galaxy can hence have a finite thickness only in the presence
of velocity dispersion. Such qualitative difference between
the relativistic and the Newtonian model persists even at low
speeds v 	 1 and weak fields gμν ≈ ημν . Within GR, the
matter distribution can be non singular and not cylindrically
symmetric, even without velocity dispersion, thanks to the
more complicated condition (3.1). In particular, this model
allows for circular orbits with radius r and speed v(r, z) �= 0
even at z �= 0, namely out of the galactic plane [22]! This is an
astonishing result for a Newtonian intuition, in which gravity
is simply a force of attraction. On the other hand, in a general
relativistic framework this feature can be understandable e.g.
as the effect of a gravitomagnetic field [23,24].

4 Behaviour far from the centre

We now analyze the expression for the energy density (2.6),
with η = vr and setting κ = 8πG. We study a model of
galaxy far from the bulge, in the external part, where the
observed velocities are almost constant and the dark mat-
ter effects would seem more conspicuous. The full solu-
tion of Eq. (3.1) is extremely hard to achieve and should
be approached numerically. Nevertheless, we can gain some
important insights from the following general considerations.
As already stressed, the third line in the right-hand side of
Eq. (3.1) describes the galaxy in the rigidly rotating approx-
imation. Thus, to relax this condition, we consider as a first
step an approximately constant l, which we take to be of the
order of a characteristic ratio velocity/length of the system.
In other words, compatibly with ρ > 0, we choose

l = avc

RG
, (4.1)

where vc is of order 10−4 and RG is comparable to the radius
of the galaxy, or even larger if we wish to describe farther
regions. As to the choice of reasonable value of the num-
ber a, see Eq. (4.5) and the discussion thereafter. In such
approximation one has

4grrκρ ≈ 1

v2r2

[
v2

(
4 − a2

(
r

RG

)2

×
(vc

v

)2
)

((ηr )
2 + (ηz)

2)

]
, (4.2)

where we have neglected higher order terms in v2. Note that
a = 0 corresponds to the rigid case. With constant l, the first
non-zero order term in v in (3.1) is

(
2 + a

r

RG

vc

v

)
(vzz + vrr ) +

(
3a

RG

vc

v
+ 2

r

)
vr

− a
vc

v2

r

RG
((vz)

2 + (vr )
2) + 2a

RGr
vc − 2

r2 v = 0. (4.3)

In the limit r 	 RG , namely in the inner part of the galaxy,
we get

vzz + vrr + vr

r
− v

r2 ≈ 0, (4.4)

as in the BG case. Therefore, the discrepancy with the rigid
case arises as we approach the “edges” of the galaxy. Indeed,
for r ≈ RG , we get

(
2 + a

vc

v

)
(vzz + vrr ) +

(
3a

vc

v
+ 2

) vr

r

−a
vc

v2 ((vz)
2 + (vr )

2) + 2
(
a

vc

v
− 1

) v

r2 ≈ 0. (4.5)

Among its solutions this equation allows the constant case
v = avc, which indeed corresponds to the observed flat rota-
tion curves. However, recall that here v is the one measured
by ZAMO. On the basis of the observed velocity of the halo
stars, we see that a is the order of magnitude of 10. Then, with
our assumptions of slight deviation from rigidity and with the
choice of v constant, we find the approximate expression of
the metric. Explicitly

H = − elvr ≈ −(1 + lvr),

H ′ =dH

dη
= −lelvr ≈ −l, H ′′ = 0. (4.6)

From (2.7) we get

� = − l

2

∫
evlr

r
≈ − l

2
log

(
r

r0

)
, (4.7)

where we are neglecting squared velocities, and r0 is an inte-
gration constant. The, from Eqs. (2.4), we find the compo-
nents of the metric to order v:

gtt ≈ −1,

gtφ ≈ l

2
log(r/r0)r

2 + vr,

gφφ ≈ r2. (4.8)

As regards μ, we have

μr ≈ − 1

2r

[
a

2
vc

r

RG

(
1 + 2 log

(
r

r0

))
+ v

]2

= O(v2),

(4.9)
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which gives an approximately constant μ. Therefore, up to
order v, the metric and the four-velocity of the dust read

ds2 = − (dt − χdφ)2 + r2dφ2 + eμ
(
dr2 + dz2

)
, (4.10)

χ = a

2
vc log(r/r0)

r2

RG
+ vr, (4.11)

uμ =
(

∂t − a

2

vc

RG
log

(
r

r0

)
∂φ

)
. (4.12)

Then, the mass density expression reduces to

κρ ≈ e−μ 4 − a2(r/RG)2(vc/v)2

4

(ηr )
2 + (ηz)

2

r2 . (4.13)

Comparing the densities in the rigid (l = 0) and the non rigid
cases, and assuming the same velocity profiles, we have

κρRig ≈ e−μ (ηr )
2 + (ηz)

2

r2 ⇒
ρnRig

ρRig
≈ 4 − a2(r/RG)2(vc/v)2

4
= 1 − a2

4

(
r

RG

)2 (vc

v

)2
.

(4.14)

This last formula makes the reduction effect on the required
matter even more evident. For comparison, we also recall the
Newtonian density on the galactic plane [11]

ρRig < ρN (r, 0) ∝ v2 + 2rvvr

r2 .

Note that the ratio (4.14) is inhomogeneously distributed,
becoming relevant for r bigger than the radius of the visible
galaxy – namely, in those regions where the dark matter halo
is usually supposed to be located. For more distant regions,
this relativistic effect would become even more relevant, as
v is expected to tend to zero. ρ would eventually reach zero
for some finite value RM , which could be considered as a
“scale radius” of the galaxy. In [13] it was shown how the
rigid model of the Milky Way already fits the Gaia’s data
without any need for dark matter (at the present precision
level). Wheras for our galaxy the approximation of small
constant l appears to be viable, for other galaxies the differ-
ential rotation might be more important though, leading to a
further reduction of the needed mass density, thus exhibiting
an apparently greater amount of dark matter.

5 The relativistic paradigm and future perspectives

When, in the XIX century, the anomalous precession of the
perihelion of the planet Mercury, amounting to 43′′ per cen-
tury, was accurately measured, Urbain Le Verrier, the dis-
coverer of Neptune, believed that the discrepancy could be
solved by attributing the anomaly to the gravitational influ-
ence on Mercury of an additional hypothetical planet, dubbed

Vulcan, orbiting the Sun somewhere in between Mercury and
the Sun itself. Or, alternatively, to an unknown asteroid belt
near the Sun. Careful search failed to discover these objects.
Another suggestion was that the anomaly might be attributed
to the dust particles present in the orbital planes of the solar
system and responsible for the faint zodiacal light. How-
ever, it was soon realized that this zodiacal dust did not have
enough mass to explain the anomaly. The problem was not
solved until 1915, when the anomalous precession was neatly
explained by Einstein’s general relativity theory. Hence, no
need of extra matter to explain the phenomenon; it was sim-
ply Newton’s theory which had failed. Instead, it was general
relativity which fixed things, by means of its post-Newtonian
corrections.

It was a breakthrough then, hence why shouldn’t it be a
breakthrough again now, with the problem of dark matter?
Compare [13] about this analogy. The general-relativistic
models of disk galaxies put forth in the present work lead
to a significant reduction in the mass required to generate
their rotation curves compared to the requirements of the
Newtonian approximation, and to those of other simpler GR
models. This suggests a new interpretation of astrophysical
observations which reweight the dark matter amount required
in galaxies. Indeed, it was shown in [11] how the rigid model
already reduces the required DM by 30%. We expect an even
bigger reduction by the non rigid model. For example, if the
total reweight provided by the latter would lead to a DM
reduction of about 90%, the remaining amount of DM would
be explainable by isolated non luminous objects in the galac-
tic halo (MaCHOs): rogue planets, brown dwarfs, neutron
stars, isolated black holes... See [25,26] for the evaluation of
the contribution of these objects.

Of course, dark matter effects do not manifest themselves
in galaxies alone; they appear everywhere in the universe: in
the relative motions of galaxies in galaxy clusters [27,28],
in the motion of clusters in superclusters, in Bullet clusters
[29–31], in gravitational lensing effects [32], in the tem-
perature of hot gases in galaxies [28], in the peaks of the
CMB [33,34], in the evaluation of cosmological parameters
according to SNIa redshift [35,36], and so on. However, the
results obtained so far encourage us to believe that it should
be possible to reweight these effects with analogous general-
relativistic non negligible, and maybe dominant, corrections.
It is usually assumed that the low energy limit of GR would
always reduce to the Newtonian theory, but this is true only
under suitable hypotheses (compare the hypotheses required
in [37]). There exist many examples of this: the gravitational
field shielding, proven by Carlotto and Shoen [38,39]; the sta-
tionary vacuum solutions, called geons, which are localized
gravitational waves held together by their own field energy
[40]; and even the propagating gravitational waves, whose
existence has been confirmed in recent years [41]. All these
are all non-Newtonian phenomena allowed by GR, in spite
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of low energy density and low particle speeds. The studies
of stationary, axisymmetric metrics such as (2.2) are another
example of these phenomena, since the off-diagonal compo-
nent plays the role of an additional degree of freedom, which
is in general not negligible at the first order. This term has no
Newtonian interpretation, and it gives rise to the well known
gravitomagnetic field [23,24]. Gravitomagnetism covers a
large class of phenomena for which the discrepancy between
GR and Newtonian theory can be clearly appreciated.

All these non-Newtonian phenomena can be theoretically
understood as the relativistic gravitational field has more
degrees of freedom than the Newtonian one, being a dynami-
cal field, which carries its own energy and momentum. These
additional dynamical degrees of freedom are not necessarily
frozen in the low energy limit. Therefore, we propose the fol-
lowing “relativistic paradigm”, to the purpose of studying all
kinds of DM effects: for any such effect, develop an appro-
priate general GR model, then perform the low energy limit
and compare its matter content with the usual models found
in the literature. Whenever the additional dynamical degrees
of freedom of GR are involved, we can expect non negligible
differences. To our knowledge, most attempts made so far
in order to explain “dark matter” related phenomena require
that some extra variables be added to the Newtonian model.
The simplest addition is that of an unknown kind of matter.
MOND theories add parameters to the very laws of gravity.
Here we stress the fact that suitable additional degrees of
freedom can be found within general relativity itself, which
is arguably a more natural and conservative choice. The exis-
tence of some kind of particle or interaction beyond our
present knowledge is plausible, but even then a fully general-
relativistic model would be necessary as a serious theoretical
framework for the interpretation of the observational data.

For example, it should be possible to apply such an
approach to the motion of galaxies in galaxy clusters. In
other words, it may be that the dark matter effects which
keep clusters together, in spite of the rapid orbital motions
of their individual galaxy components, could once more be
reweighted by the combined effect of the gravitational drag-
ging originating from the angular momenta of the individual
galaxies and the angular momentum of the whole cluster
itself. This could be expressed using a relativistic general-
ization of Virial’s Theorem, taking the energy-momentum
of the gravitational field into account. These relativistic cor-
rections to the Virial of a system of bodies could also be
applied to the dynamics of the Bullet clusters, to the tem-
perature of hot gases, and to other DM effects of the same
kind. Several examples are known of background galaxies
which are lensed by massive elliptical and lenticular-shaped
foreground galaxies. The light from the background galaxy
is distorted and warped by the lenses. Even some examples of
perfect alignments are known, which give rise to Einstein’s
rings, complete circular images of the lensed galaxies. The

nature, structure and shape of the lensed images are normally
employed as probes of the dark matter distribution around the
galactic lenses. Our program is to tackle the problem of show-
ing that these images can be explained, at least to some extent,
by the general relativistic dynamics of the gravitational field
of the lenses. We suggest to compare the observed lensing
with the geodesic deformation in a dragging metric, instead
of a Schwartzshild one, as it is usually done. We expect that
the relevant off-diagonal components produce some correc-
tions to the apparent mass of the galaxy. Similar reweighting
should could done for any other DM effect which involves
the spacetime metric curvature, as the CMB’s peaks and the
SNIa redshifts.

We conclude by mentioning some future perspectives
about the studies on disk galaxies. There exists a rich variety
of phenomenology of disk galaxies, about their dark mat-
ter content, speed of rotation, and total mass amount. The
arbitrariness of the parameter l should make our model suffi-
ciently flexible to justify such differences. For example, what
about the recent discovery of so-called ultra-diffuse galaxies,
namely of fluffy galaxies whose star density is very low and
which are spread over vast distances [42,43]? These galaxies
seem to have very little dark matter, or no dark matter at all.
We would like to justify theoretically this characteristic as
following from (η, H)-metrics for which the dust density is
very low. If we look at the phenomenology of disk galaxies
other than our own, we have no possibility to reconstruct for
them their respective fields η with any accuracy, as we are
able to do with the Milky Way using the Gaia data. Instead,
we have to rely on the observational data that we are able to
gather about their luminosities, densities, spectra, gas con-
tent, structure of the central bulge, etc. We expect these data
to give some reasonable indications about the values of theirs
model parameters η and H (and, consequently, l). In partic-
ular, what are the dark matter effects that we can expect from
galaxies, if any, for which the parameter l is large? At any
rate, the dark matter effects expected for large values of l
could be achieved by tackling Eqs. (2.10) and (3.1) numeri-
cally.

Since the Milky Way appears to be very old [44–46] and
well described by an (η, H)-metric with l very small, it may
be interesting to investigate whether the value of the parame-
ter l may somehow be linked to the age of the galaxy. In other
words, if it may perhaps turn out that l decreases as the age of
the galaxy increases. This seems reasonable, given the fact
that the Milky Way is an old and big galaxy, hence its mat-
ter and gravitational field have had enough time to exchange
angular momentum. A detailed description of such mech-
anism would include a breaking of stationarity and would
deserve further study, a problem we intend to tackle in a fol-
lowing work. If true, this would also suggest a higher chance
to find more dark matter in younger galaxies. Therefore, we
plan to apply GR to the time dependent problem of the forma-
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tion of a galaxy, in particular of a disk galaxy. Most models
of galaxy formation envisage smaller or larger clouds of gas,
dust, stars and dark matter swirling through space, careening
by gravity into other analogous clouds and aggregating into
denser spinning material. What we believe is that the role of
spinning dark matter in this process is actually ascribable,
at least for some fraction, to the frame dragging effect of
the dynamical angular momentum of the gravitational field,
therefore reweighting the extra matter for its explanation. In
particular, we expect the incoming data from JWST on the
dynamical formation of early galaxies to be very useful in this
respect. From this point of view, great expectations rely on
the COSMOS (Cosmic Evolution Survey)-Webb program,
the large General Observer program selected for JWST’s first
year.
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Appendix A: The precession of gyroscopes

The study of the effects of GR on the global behavior of
disk galaxies has so far only been limited to the rigid rota-
tion case (� constant), see e.g. [11,13]. Since in the present
paper we have generalized the treatment of these effects to
the differentially rotating case (� = �(r, z)), it may be inter-
esting to investigate, at least in principle, what distinguishes
physically the two situations. Therefore, we propose a hypo-
thetical observation capable to distinguish between the two
cases. Let the ZAMO observers carry gyroscopes along with
them. Then we could compare the gyroscope precessions in
the rigid and non-rigid case. To this end, consider the con-
nection 1-forms

ω0
1 = 1

2

1√
grr r

(
∂rχ e2 + ∂zχ e3

)
,

ω0
j = −

(
∂ j log

r√
gφφ

)
e0

√
grr

+ 1

2

∂ jχ√
grr r

e1,

ω
j
1 =

(
∂ j log

1√
gφφ

)
e1

√
grr

− 1

2

∂ jχ√
grr r

e0,

ω2
3 =

(
− (

∂z log
√
grr

)
e2 + (

∂r log
√
grr

)
e3

)
, (A1)

where j = (2, 3). We see from (A1) that the ZAMO frame
is non inertial, since the three-acceleration a j which an
observer with four-velocity e0 experiences is

a j ∝ ∂ j log

(
r√
gφφ

)
, j = r, z, (A2)

this being the force required by its thrusters to keep the
observer in its orbit. The corresponding gyroscopes precess
relatively to the orthonormal frame with angular velocities

ω j ∝ ∂ jχ, j = r, z. (A3)

The difference in the velocities measured by the ZAMO in
the non rigid ωnRig and the rigid ωRig cases is measured by
the difference

�ω j = ωnRig j − ωRig j ∝ η

r2 − η2 ∂aH

+∂ j� + �H ∂ j

(
η

r2 − η2

)
, (A4)

where �H := HnRig − HRig = HnRig + 1. The precession
observation can thus distinguish between the two situations.

Appendix B: Deformation tensor

Rigid bodies do not exists in GR, as a consequence of the
Locality Principle. However, one can still give a definition of
“rigidity” in a relativistic framework through the deformation
tensor P

P(u) := Lu(g) = (uμ;ν + uν;μ)dxμ ⊗ dxν, (B1)

where L is the Lie derivative. Then, the system is defined to
be “rigid”when P(u) vanishes. Here we show that this hap-
pens for our metric when H ≡ −1, which justifies our use of
the term “rigid” in this case. In order to see this, we proceed
with the construction of a scalar that characterizes the phys-
ical non-rigidity of the system. Its explicit dependence on
H shows again (compare Appendix A) that the differential
rotation is a physically relevant parameter and not a gauge
freedom.
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To simplify the calculations, we use the approximation of
small differential rotation

H(η) = −
(

1 + p2η2
)

+ o(p2), (B2)

were p is a small parameter. In this case this, from (2.10) one
finds

η(r, z) = 1

p
tan

(
pF(r, z)

2(1 + p2r2)

)
(B3)

and

u =
(

1 − p2

2
F2

)(
∂t − p2F∂φ

)
+ o(p2). (B4)

Then, up to order p2, the deformation tensor is

P(u) = − p2r2 (Fr dr � dφ + Fz dz � dφ) =
= − p2r2dF � dφ. (B5)

This formula proves our statement. Note that the deformation
is only “spatial” in the proper reference frame of the dust.
Hence, there exists no gauge transformation that maps a non
constant H(η) into H ≡ −1.

Appendix C: Deriving the velocity field equation

In this section we deduce the VFE. In [14] it is shown that the
equations of motion of the co-moving element, of axisym-
metric stationary dust solution, can be rewritten in the form

1/r
[
(r2β)a + 2ηa − η

H
Ha

]
= εabγb, (C 1)

γrr + γzz + γr

r
= 0, (C 2)

where we have employed the notations fa ≡ f,a for the
derivative of f with respect to xa , for f = H, η, γ, β, a =
1, 2, x1 = r , x2 = z and β is defined by

βa = Ha

ηH
. (C 3)

In terms of the function F of (2.10), Eq. (C 1) takes the form

F,a = rεabγb. (C 4)

Then we can write

∑
a

∂a

[
1/r

[
(r2β)a + 2ηa − η

H
Ha

]]

= ∂a(ε
abγb) = γr z − γzr = 0, (C 5)

which is equivalent to Eq. (2.9). Written explicitly it gives

0 = ∂z

[
1

r

[
(r2β)z + 2ηz − η

H
Hz

]]

+ ∂r

[
1

r

[
(r2β)r + 2ηr − η

H
Hr

]] 1

r
∂z

[
r2βz + 2ηz − η

H
Hz

]

+ 1

r
∂r

[
2rβ + r2βr + 2ηr − η

H
Hr

]

− 1

r2

[
2rβ + r2βr + 2ηr − η

H
Hr

]

= 1

H

(
η

r
− r

η

) [
H2
z + H2

r

H
− (Hzz + Hrr )

]

−
(

η

r
+ r

η

)
Hzηz + Hrηr

Hη
+

+
(

η

r
+ 3

r

η

)
Hr

r H
+ 2

r2

[
r(ηzz + ηrr ) − ηr

]
.

Recalling that H(r, z) = H(η(r, z)), we get

0 = 1

H

(
η

r
− r

η

)

×
[
(H ′ηz)2 + (H ′ηr )2

H
− (H ′′η2

z + H ′ηzz)

(H ′′η2
r + H ′ηrr )

]

−
(

η

r
+ r

η

)
H ′ηzηz + H ′ηrηr

Hη

+
(

η

r
+ 3

r

η

)
H ′ηr
r H

+ 2

r2

[
r(ηzz + ηrr ) − ηr

]

= (ln |H |)′′
(
r

η
− η

r

)
(η2

z + η2
r )

+ (ln |H |)′
[(

r

η
− η

r

)
(ηzz + ηrr )

−
(
r

η
+ η

r

)
η2
z + η2

r

η
+

(
3
r

η
+ η

r

)
ηr

r

]

+ 2

r2

[
r(ηzz + ηrr ) − ηr

]
.

Finally, relative to the ZAMO, for which η(r, z) = rv(r, z),
we get

0 = (ln |H |)′′(1

v
− v)[(v + rvr )

2 + r2v2
z ]

+ (ln |H |)′
[
r

v

(
vrr + vzz − v2

r + v2
z

v

)
− rv(vzz + vrr )

−r(v2
z + v2

r ) + 3
vr

v
− 3vrv + 2

r

]

+ 2

r
[2vr + r(vzz + vrr )] − 2

r2 (v + rvr ),

which by (2.8) becomes (3.1).
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