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Abstract
A recent mixed formulation of the Virtual Element Method in 2D elastostatics, based on the Hu-Washizu variational principle,
is here extended to 2D elastodynamics. The independent modeling of the strain field, allowed by the mixed formulation, is
exploited to derive first order quadrilateral Virtual Elements (VEs) not requiring a stabilization (namely, self-stabilized VEs),
in contrast to the standard VEs, where an artificial stabilization is always required for first order quads. Lumped mass matrices
are derived using a novel approach, based on an integration scheme that makes use of nodal values only, preserving the
correct mass in the case of rigid-body modes. In the case of implicit time integration, it is shown how the combination of
a self-stabilized stiffness matrix with a self-stabilized lumped mass matrix can produce excellent performances both in the
compressible and quasi-incompressible regimes with almost negligible sensitivity to element distortion. Finally, in the case
of explicit dynamics, the performances of the different types of derived VEs are analyzed in terms of their critical time-step
size.

Keywords Linear elastodynamics · Hu-Washizu formulation · Virtual element method · Hourglass stabilization · Self-
stabilized virtual elements · Self-stabilized mass matrix · Eigenfrequency analysis · Critical time step · Explicit dynamics
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1 Introduction

Modern advanced applications of the Finite ElementMethod
in the fields of fluid and solid mechanics are often jeopar-
dized by mesh related problems, such as mesh generation,
mesh distortion, mesh adaptation and problems due to
incompressibility. The Virtual Element Method (VEM) is a
polygonal/polyhedral Finite Element Method [1, 2] that has
the potential of overcoming most of this type of problems.
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However, its engineering application in fields like non-linear
elasticity, elastoplasticity, viscoplasticity and other strongly
non-linear problems, such as contact and impact problems is
still limited. While the VEM has the advantage to be almost
insensitive to element distortion, allowing for non-convex
polygonal or polyhedral elements with arbitrary number of
edges, inmost cases, it requires a non-consistent stabilization
term to obtain a well-posed discrete problem. The number of
singular modes to be stabilized increases with the number
of edges/faces and the element formulation becomes more
cumbersome as the polynomial order of the solution over the
edges/faces increases. In practical engineering applications,
however, the interest is focusedmainly on loworder elements
of simple shapes, such as triangles/tetrahedra or quadrilater-
als/hexahedra. This is mainly due to the existence of very
effective meshing tools, highly diffused in the engineering
community, that can efficiently mesh highly complicated
geometries with this type of elements. The possibility to
relax some of the mesh regularity constraints in the meshing
process would represent a huge step forward, significantly
reducing the meshing costs. Furthermore, in highly nonlin-
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ear problems, such as those mentioned above, the standard
practice is to use low order elements, especially in dynamic
problems, where it is of outmost importance to limit the spu-
rious highest eigenfrequencies.

In light of the above considerations, in this paper, we
extend to 2D elastodynamics the Hu-Washizu based mixed
VEMformulation for quadrilaterals previously developed for
2D elastostatics [3]. For the case k = 1, k being the dis-
placement polynomial degree over the element edges, in [3],
we proposed a VEM formulation based on the Hu-Washizu
mixed variational principle. Restricting the attention to
quadrilateral and pentagonal elements, we showed how it
is possible to obtain self-stabilized VEs, i.e., not exhibiting
any singularmodes other than rigid bodymodes, by a suitable
choice of the strain model. For the case of 4-node quadrilat-
erals, we were able to provide a rigorous proof of stability in
[4]. The main ingredient of the formulation turned out to be
the discretized compatibility operator and we presented two
different approaches for its computation, one requiring addi-
tional moment Degrees of Freedom (DOFs), and the other,
based on a projection of the displacement field, making use
of nodal DOFs only. In both cases, the resulting VEs were
self-stabilized, while preserving the distortion insensitivity
feature of standard VEs. Furthermore, the self-stabilized ele-
ments with additional moment DOFs also exhibited superior
performances in the incompressible limit, even though a the-
oretical proof of their locking-free property is still missing.
The self-stabilized VEs of the first type, those requiring addi-
tional moment DOFs, are substantially identical to those
proposed in [5] following an approach different from the
one considered here, which is based on a Hu-Washizu varia-
tional statement. The self-stabilized elements of the second
type make use of the technique proposed in [6, 7] for the
computation of the integral over the element domain.

While the number of papers considering VEM formula-
tion has grown considerably in recent times (see [8–17] as
a non-exhaustive sample of papers concerning elastostatic
problems), the application to elastodynamics has received
so far relatively little attention. In [18], Vacca considered the
numerical approximationof thewave equationwith conform-
ing virtual elements, adopting an elliptic projection operator
for the stiffness matrix definition. The performance of high-
order VEM for the numerical modeling of wave propagation
in 2D elastic media has been investigated both theoretically
and numerically in [19], proving stability and convergence
of the semidiscrete approximation in the energy norm and
deriving error estimates. In [20, 21], Park et al. proposed a
VEM for small strains linear elastodynamics problems com-
bined with an explicit time integration scheme. In [21], it has
been shown how a B-bar VEM version can be conveniently
formulated to treat incompressible and nearly incompressible
problems. The low-order VEM has been extended to 2D and
3Dfinite strains elastodynamics byCihan et al. in [22], where

the mass matrix has been obtained as the second derivative of
a potential function with respect to the nodal accelerations.
Using an implicit Newmark time-integration scheme, it has
also been shown that a singular (i.e., not stabilized) mass
matrix can be conveniently used in most structural applica-
tions without appreciable accuracy loss.

To obtain a fully self-stabilized quadrilateralVE to be used
for elastodynamics applications, in this paper we combine
the self-stabilized stiffness matrices proposed in [3] with a
self-stabilized mass matrix, obtained by means of a novel
integration scheme, exact for linear polynomials, that makes
use of nodal values only, and directly produces a lumped
mass matrix. The obtained lumped mass matrix has positive
diagonal entries, preserves the correct mass in the case of
rigid-body modes and, being diagonal, is immediately ready
for use with explicit time-integration schemes. For a recent
discussion on mass-lumping schemes, see, e.g. [23, 24]. In
the case that a consistent mass matrix is preferred, e.g. when
implicit time integration schemes are used, we also show
how this can be obtained following a standard approach [19–
21], consisting of a projection of the unknown acceleration
field onto a first order polynomial space and of a subsequent
stabilization.

Two types of self-stabilized elements were proposed in
[3]: elements with and without internal moment DOFs. In
the first case, the presence of two additional moment DOFs
requires in dynamics the imposition of non-physical initial
conditions associated to theseDOFs and leads to highermax-
imum eigenfrequencies with respect to those of an 8-DOFs
4-node element. Moreover, the physical interpretation of the
lumped masses associated to these DOFs is missing, making
the use of VEs with moment DOFs questionable in explicit
dynamics, where a lumped mass matrix is needed and the
critical time step is inversely proportional to the maximum
eigenfrequency of the mesh. For these reasons, the moment
DOFs are statically condensed in the stiffness matrix at the
element level, allowing for their direct usewith amassmatrix
based on nodal accelerations only.

The convergence properties of the different VEs and
their accuracy is tested on several problems, including a
quasi-incompressible problem, making use of an implicit
time-integration scheme. For possible usage with an explicit
time-integration scheme, the eigenvalue analysis of the dif-
ferent elements is also comparatively discussed.

In the first part of this work, the mixed variational formu-
lation of the 2D linear elastodynamic continuum problem is
presented. Then, the virtual element discretization is intro-
duced and the construction of the VEM mass matrix is
explained in detail, for both the self-stabilized lumped ver-
sion and the stabilized consistent one. Subsequently, the
construction of two 4-node fully self-stabilized (in terms of
both stiffness and mass matrices) VEs are presented. Finally,
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numerical applications are discussed to validate the proposed
elements.

Voigt notation is adopted throughout this work, hence the
stress tensor components are collected in the stress vector σ

and strain components in the strain vector ε. Moreover, the
material elastic tensor is replaced by the matrix of material
elastic moduli D.

2 Hu-Washizu formulation of the virtual
element method for 2D linear
elastodynamics

2.1 Hu-Washizu formulation of the continuum
problem

Let us consider a two-dimensional (2D) solid occupying a
domain � ⊂ R

2, whose boundary ∂� consists of a con-
strained part ∂u� and a free part ∂p�, with ∂u� ∩ ∂p� = ∅
and ∂u� ∪ ∂p� = ∂�. On the former, displacements ū are
imposed; on the latter, surface tractions p are applied. The
solid is also subjected to body forces b and ρ is the mass
density. The two in-plane displacement components are gath-
ered into the vector u and the accelerations into the vector
ü = ∂2u/∂t2. The data and the unknowns of the problem
depend both on the position vector x with respect to a Carte-
sian reference system and on the time t . The solid body is
assumed to move in the time interval [0, t f ], where t = 0 is
the initial time instant and t = t f is the final one.

As starting point, we consider the definition of the three-
field Hu-Washizu functional for plane elastostatics:

�(u, ε, σ ) = 1

2

∫
�

εTDεd� −
∫

�

σ T (ε − Su)d�

−
∫

�

uTbd� −
∫

∂p�

uTpds (1)

with u = ū on ∂u�. In (1),S is the compatibility differential
operator:

S =
⎡
⎣∂x 0
0 ∂y
∂y ∂x

⎤
⎦ (2)

where ∂(·) represents the partial derivative with respect to
(·). Its transpose ST is the equilibrium differential opera-
tor. According to the Hu-Washizu approach, no relation is
assumed a priori between the three fields.

As it is well known, the first variation of the functional in
(1)with respect to the three fieldsu, ε and σ , returns theweak
form of the governing equations, equilibrium, compatibility
and linear elasticity, for the small strains, linear elastostatics
problem. Theweak formof the linear elastodynamic problem

at a given time t ∈ [0, t f ] can be obtained by simply adding
the virtual work done by the inertia forces indicated as δ�in :

δ� + δ�in =
∫

�

δεTDεd� −
∫

�

σ T (δε − Sδu)d�

−
∫

�

δσ T (ε − Su)d� −
∫

�

δuTbd�+

−
∫

∂p�

δuTpds +
∫

�

δuT ρüd�

︸ ︷︷ ︸
δ�in

= 0

∀δu, δε, δσ , with δu = 0 on ∂u�

(3)

Integrating by parts the integral containing Sδu, the weak
form of the governing equations is obtained:

∫
�

δuT (ST σ + b − ρü)d� −
∫

∂p�

δuT (Nσ − p)ds = 0

∀δu dynamic equilibrium (4)

∫
�

δεT (σ − Dε)d� = 0 ∀δε constitutive law (5)

∫
�

δσ T (ε − Su)d� = 0 ∀δσ compatibility (6)

where N is the matrix containing the components nx and ny
of the outward normal n to the boundary:

N =
[
nx 0 ny
0 ny nx

]
(7)

2.2 Virtual elements based on Hu-Washizu principle

The starting point of a Virtual Element scheme is the tes-
sellation of the body � by means of general polygons (the
elements). In this paper we only consider quadrilaterals,
which, however, can be highly distorted or even non-convex.
Let ξ be the vector containing the scaled local coordinates in
2D:

ξ = x − xC
he

, η = y − yC
he

(8)

where xC and yC are the cartesian coordinates of the element
centroid and he is the element diameter (hereafter referred to
as element size).

Following the Hu-Washizu approach, an independent
modeling of the three unknown fields is considered. Further-
more, accelerations are modeled by means of the same shape
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functions Nu used for the displacement field:

u(ξ , t) ≈ uh(ξ , t) = Nu(ξ)û(t),

ε(ξ , t) ≈ εh(ξ , t) = Nε(ξ)ε̂(t) (9)

σ (ξ , t) ≈ σ h(ξ , t) = Nσ (ξ)σ̂ (t),

ü(ξ , t) ≈ üh(ξ , t) = Nu(ξ) ¨̂u(t) (10)

where Nu , Nε, Nσ are the matrices of shape functions, of
dimensions 2 × nu , 3 × nε, 3 × nσ , nu , nε and nσ denoting
the number of parameters used for the modeling of the corre-
sponding discretized fields. It is worth noting that the shape
functions in (9)–(10) depend directly on the intrinsic coordi-
nates defined in (8),without anynonlinear geometrymapping
as in isoparametric elements. The displacement shape func-
tions in Nu are required to be continuous across adjacent
elements, whereas the interpolation functions contained in
Nε and Nσ are continuous inside each element, but may not
be so across element boundaries.

From now onwards, the attention will be focused on a
single quadrilateral VE, denoted by �e. For notation conve-
nience, subscript e will be omitted unless strictly necessary.

As discussed in [3], strain and stress parameters in (9)–
(10) are required to be generalized variables in the sense of
Prager [25], that is to say that their product has to properly
represent the element energy, i.e.:

σ̂
T
ε̂ =
∫

�e

σ T εd� = σ̂
T
(∫

�e

NT
σ Nεd�

)
ε̂,

∫
�e

NT
σ Nεd� = I (11)

where I is the nε ×nε identity matrix. To this end, a possible
choice for the stress interpolation functions Nσ is:

Nσ
3×nε

= Nε

(∫
�e

NT
ε Nεd�

)−1

= Nε
3×nε

G−1
nε× nε

,

G =
∫

�e

NT
ε Nεd� (12)

Replacing the local elementmodels (9) and (10) into theweak
form (4) of equilibrium, one obtains the element contribution
to the discretized system of dynamic equilibrium equations:

M ¨̂u + CT σ̂ = F (13)

where C, M and F are defined as:

• Element compatibility matrix

C
nε×nu

=
∫

�e

NT
σ (SNu)d�

= G−1
∫

�e

NT
ε (SNu)d� = G−1

nε×nε

A
nε×nu

(14)

with

A =
∫

�e

NT
ε (SNu)d� (15)

• Element consistent mass matrix

M
nu×nu

=
∫

�e

ρNT
u Nud� (16)

• Element equivalent nodal external forces vector

F
nu×1

=
∫

�e

NT
u bd�

︸ ︷︷ ︸
Fb

+
∫

∂p�e

NT
u pds

︸ ︷︷ ︸
Fp

= Fb + Fp (17)

Replacing now (9) and (10) into the local weak forms (5)–
(6) of constitutive law and compatibility, one finally obtains
their corresponding discretized forms:

σ̂ = Eε̂, ε̂ = Cû (18)

where:

E =
∫

�e

NT
ε DNεd� (19)

is the discretized elasticity matrix of element �e. Replac-
ing (18) in (13), one obtains the system of equations of
motion:

M ¨̂u(t) + Kû(t) = F(t) (20)

where:

K
nu×nu

= CT
nu×nε

E
nε×nε

C
nε×nu

(21)

is the local consistent (with the displacement and strain mod-
els) stiffness matrix, symmetric and positive semi-definite.
If nu − nε ≤ 3 and the columns of C are linearly indepen-
dent, K has a degree of singularity equal to the number of
rigid body modes in 2D (equal to three) and no stabiliza-
tion is needed. Otherwise, zero-energy (hourglass) modes
can arise. In this paper, we consider quadrilateral low order
VE schemes for which K does not exhibit unphysical rank
deficiency. We remark that, even though in the VEM the dis-
placement shape functions are not known, the integral in (14)
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can be computed. Indeed, to compute the matrix A in (15),
we integrate by parts:

A =
∫

�e

NT
ε (SNu)d�

=
∫

∂�e

(NNε)
TNuds

︸ ︷︷ ︸
A1

−
∫

�e

(STNε)
TNud�

︸ ︷︷ ︸
A2

(22)

The term A1 is easily computable since the functions in
Nu are explicitly known on the element boundary. The sec-
ond term A2, when different from zero, is usually computed
thanks to the introduction of internal DOFs, additional to
the usual nodal DOFs on the boundary. A technique for its
computation without introducing additional DOFs will be
concisely illustrated in Sect. 3.4.

3 Description of the 4-node self-stabilized
Virtual Elements

We now introduce the low-order quadrilateral VEM schemes
on which we will focus in this paper. In order to obtain
a matrix K, see (21), with the correct rank, we follow the
approach detailed in [3], where two different methods have
been proposed for the elastostatic problem. Both procedures
are based on an enlarged strain field, containing linear terms,
with respect to the standard lowest orderVEM,which is char-
acterized by constant strains inside the element. The main
difference between the two procedures lies in the number of
adopteddisplacement degrees of freedom.Thefirst technique
makes use of two additional internal moment DOFs, whereas
the second one involves only nodal displacement DOFs. For
the first procedure, a local condensation of the two internal
moment DOFs is introduced. Moreover, this condensation,
which does not affect the excellent behavior in the nearly-
incompressible regime, permits to use the mass matrix of the
4-node element without moment DOFs, allowing for a more
physical construction of the lumped version to be used in
explicit dynamics.1

In what follows, we first present the way to form the mass
matrix. For the construction of the self-stabilized stiffness
matrixwith andwithoutmoments and of the equivalent nodal
forces vector for the two procedures, the reader is referred to
[3].

1 Note that no clear strategy is currently available for the lumping of
masses corresponding to moment DOFs.

3.1 Construction of the VEM self-stabilized
consistent mass matrix

We begin by remarking that, when dealing with the VEM,
the element consistent mass matrix M defined in (16) is not
directly computable since the functions contained in Nu are
virtual. However, a lumped mass matrix for a quadrilateral
VE can be directly obtained following the simple procedure
illustrated below, without the need of any stabilization.

To compute the integral in (16), we need to find a
quadrature formula for a generic quadrilateral (convex or
non-convex, see Fig. 15), such that:

• The formulamakes use of nodal values only, i.e. of points
where the integrand function is known

• It is exact for linear polynomials
• Weights are strictly positive.

The first two requirements can be satisfied for any quadri-
lateral (convex or non-convex) in the following way: let
xC = (xC , yC ) be the centroid of our quadrilateral �e and
let T xC

i be the signed area of the triangle


T xC
i having vertices

xC = (xC , yC ), xi = (xi , yi ) and xi+1 = (xi+1, yi+1), i.e.:

T xC
i := 1

2
det

⎡
⎣ 1 1 1
xC xi xi+1

yC yi yi+1

⎤
⎦ (23)

where we agree that x5 = x1 and T xC
0 = T xC

4 . If we define
the weights ωi as:

ωi := T xC
i−1 + T xC

i

2
, (24)

the resulting quadrature formula:

∫
�e

f (x)d� ≈
4∑

i=1

ωi f (xi ) (25)

has degree of precision 1, i.e., it is exact for linear polynomi-
als. A detailed derivation of the formula in (25) is reported
in Appendix 1. Since the integrand function is evaluated at
the vertices xi , the rectangular terms in (16) vanish and the
matrix resulting from the application of (25) to (16) leads to
a diagonal mass matrix.

If the polygon is non-convex, the above construction does
not ensure that all weights are positive. In particular, if the
centroid coincides with a vertex, the corresponding weight
will be zero. To overcome this difficulty we define another
quadrature formula for a quadrilateral in the following way.

Fix a diagonal and split the quadrilateral into two triangles
along the chosen diagonal, and then consider the quadrature
formula given by integrating linear polynomials exactly on

123



Computational Mechanics

each triangle separately. By repeating the procedure with the
other diagonal, we end up with two quadrature formulas; if
the quadrilateral is non-convex, only one of them will have
positive weights. In any case, we select the formula whose
minimum weight is larger.

Finally, we compare the weights so obtained with the ones
given by (24) and we take the formula whose minimum
weight is larger. In this way it is guaranteed that the final
formula will satisfy all requirements above.

Inwhat follows, the lumpedmassmatrix obtainedwith this
procedure will be referred to as self-stabilized mass matrix.

3.2 Construction of the VEM stabilized consistent
mass matrix

3.2.1 Non-diagonal VEM stabilized consistent mass matrix

The technique illustrated in the previous Section provides
a self-stabilized lumped mass matrix. When implicit time-
integration schemes are used, a consistent, non-diagonal
mass matrix is often used. As remarked in the previous Sec-
tion, the consistent mass matrix cannot be directly computed
in the VEM and it has to be evaluated only in an approximate
way: we then split the displacement field in a part projected
onto the space P1 of polynomials of degree up to 1 and in
the remaining one. The former is evaluated exactly, while the
latter is approximated. For the construction of the two parts,
we make use of the definition of deformation, rigid-body and
hourglass modes introduced in [3].

Let us start with the virtual work done by the inertia forces
at element level:

δ�in
e =

∫
�e

δuT ρüd� (26)

The approximate displacement field can be decomposed into
the deformation/rigid and hourglass parts as:

u(ξ , t) = uD+R(ξ , t) + uH(ξ , t)

= Nu(ξ)ûD+R(t) + Nu(ξ)ûH(t) (27)

where ûD+R and ûH are combinations of displacement param-
eters producing deformation/rigid bodymodes and hourglass
modes, respectively, such that:

û = ûD+R + ûH (28)

An analogous decomposition holds for the approximate
acceleration field:

ü(ξ , t) = üD+R(ξ , t)+üH(ξ , t) = Nu(ξ) ¨̂uD+R(t)+Nu(ξ) ¨̂uH(t)

(29)

The sets of parameters ûD+R and ûH can be expressed in terms
of the so-called natural parameters [26] through the follow-
ing linear transformation:

ûD+R = TD+R
u p̂D+R

u , ûH = TH
u p̂

H
u (30)

where each column of TD+R
u (TH

u ) defines an independent
deformation/rigid bodymode (hourglassmode) and the terms
in p̂D+R

u (p̂H
u ) define the amplitude of the correspondingmode.

Similar expressions can be assumed also for the accelera-
tions:

¨̂uD+R = TD+R
u

¨̂pD+R
u , ¨̂uH = TH

u
¨̂pH
u (31)

In our low order case, the part of the displacement model
responsible foruD+R(ξ) is the one containing the polynomials
of degree at most 1, i.e. linear displacements. The remain-
ing non-polynomial functions inNu(ξ) are the two hourglass
modes uH(ξ) (one per each component). Since 3 parameters
are required for the definition of a complete linear polyno-
mial, 6 parameters p̂D+R

u are required for uD+R(ξ). In other
words, one can write:

uD+R(ξ) = N1(ξ)p̂D+R
u = Nu(ξ)ûD+R = Nu(ξ)TD+R

u p̂D+R
u

(32)

with N1 defined as:

N1(ξ) =
[
1 0 ξ 0 η 0
0 1 0 ξ 0 η

]
(33)

Replacing (27) and (29) in (26) and noticing that deforma-
tion/rigid body modes and hourglass modes are orthogonal,
one obtains:

∫
�e

δuT ρüd� =
∫

�e

δuTD+RρüD+Rd� +
∫

�e

δuTH ρüHd�

(34)

For the construction of the VEM mass matrix, the two terms
at the r.h.s. of (34) will be analyzed separately.

Let us focus on the first term. Considering (27) and (29),
this term can be written as:

∫
�e

δuTD+R(ξ)ρüD+R(ξ)d�

= δûTD+R

∫
�e

ρNT
u (ξ)Nu(ξ)d� ¨̂uD+R (35)
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Substituiting (30) and (31) in (35), one gets:

∫
�e

δuTD+R(ξ)ρüD+R(ξ)d�

= (δp̂D+R
u )T

∫
�e

ρ
(
Nu(ξ)TD+R

u

)T Nu(ξ)TD+R
u d� ¨̂pD+R

u

(36)

Noticing from (32) that Nu(ξ)TD+R
u = N1(ξ), one can

express the projection term as:

∫
�e

δuTD+RρüD+Rd� = (δp̂D+R
u )T

∫
�e

ρNT
1 N1d� ¨̂pD+R

u (37)

Replacing (30) in (28), pre-multiplying both members by
(TD+R

u )T , exploiting the orthogonality between TD+R
u and TH

u
and solving for p̂D+R

u , one obtains the expressions:

p̂D+R
u = [(TD+R

u )TTD+R
u ]−1(TD+R

u )T︸ ︷︷ ︸
�0

1

û = �0
1û (38)

¨̂pD+R
u = �0

1
¨̂u (39)

where the 6 × nu operator:

�0
1 = [(TD+R

u

)TTD+R
u

]−1(TD+R
u

)T (40)

defines the projection of the approximate displacement field
onto the linear functions. The operator �0

1 is easily com-
putable following the procedure illustrated in [3].

Replacing (38) and (39) in (37), one finally has:

∫
�e

δuTD+RρüD+Rd� = δûT
(
�0

1

)T ∫
�e

ρNT
1 N1d� �0

1

︸ ︷︷ ︸
Mc

¨̂u

= δûTMc ¨̂u (41)

where Mc denotes the part of the consistent mass matrix M
associated with the projection of the displacement field onto
P1, defined as:

Mc =
(
�0

1

)T ∫
�e

ρNT
1 N1d� �0

1 (42)

As it is, this matrix is symmetric and positive semi-definite.2

To obtain a positive definite mass matrix, it is necessary to
add the term associated with the remainder of the projection,
indicated as Ms , as discussed below. It is worth recalling
that zero-mass eigenmodes, as in the case of a singular mass
matrix, are pathological, since they are associated to an infi-
nite eigenfrequency.

2 There is a rank deficiency at least equal to 2.

Following the same path of reasoning as for the projection
term, let us write:

∫
�e

δuTH ρüHd� = δûTH

∫
�e

ρNT
u Nud� ¨̂uH (43)

As detailed in [3], the hourglass parameters can be computed
as ûH = Hû, where

H = I − TD+R
u

[(
TD+R
u

)TTD+R
u

]−1(TD+R
u

)T (44)

Hence, one obtains:

∫
�e

δuTH ρüHd� = δûTHT
∫

�e

ρNT
u Nud� H ¨̂u (45)

Since Nu is unknown, the integral on the r.h.s. is approxi-
mated as ρ|�e|I, where |�e| is the element area and I is the
nu × nu identity matrix. In this way, taking into account that
HTH = H, one eventually has:

∫
�e

δuTH ρüHd� ≈ δûT ρ|�e|H︸ ︷︷ ︸
Ms

¨̂u = δûTMs ¨̂u (46)

thus the nu × nu approximation of the element stabilizing
mass matrix is:

Ms = ρ|�e|H (47)

The consistent mass matrixM is then evaluated as:

M = Mc + Ms (48)

This matrix turns out to be symmetric and positive definite.

Remark 1 Though its presentation is different, the construc-
tion of the mass matrix illustrated above is identical to the
one presented in several other papers (see, e.g., [19–21]). ��
Remark 2 It is worth noting that themassmatrix stabilization
(47) already contains the density multiplied by the element
area that plays the role of a stabilizationparameter.Numerical
tests confirm that this parameter is good enough to stabilize
the mass matrix and that it ensures good accuracy. However,
it should be noted that in a large strain framework, Cihan
et al. in [22] showed that a singular consistent mass matrix,
without stabilization, can be safely used together with an
implicit time-integration scheme, obtaining good accuracy.

3.2.2 Lumping of the stabilized consistent mass matrix

If needed, the non-diagonal stabilized consistent massmatrix
can be lumped by using one of the lumping techniques exist-
ing in the literature. One of the most general and popular

123



Computational Mechanics

mass lumping techniques is the so-called diagonal scaling
lumping or HRZ lumping (from the initials of the authors
Hinton, Rock and Zinckiewicz) [27]. Unlike other methods,
this technique always leads to non-negative diagonal masses.

According to the HRZ scaling, the diagonal entries of the
element lumped mass matrix are given by:

[Ml
e]i i = C [Me]i i (49)

where [Me]i i is the i i-component of the local consistentmass
matrixMe. The scaling coefficient C is determined in such a
way that the total element mass is preserved,3 namely from
the condition:

tr(Ml
e)

2︸ ︷︷ ︸
mass in one direction

= ρ|�e|︸ ︷︷ ︸
total element mass

(50)

where the trace of Ml
e is divided by 2 since 2D problems

are considered. From (50) and (49), the expression of the
coefficient C can be derived:

C = 2ρ|�e|
tr(Me)

(51)

This technique has been applied for the lumping of the sta-
bilized consistent mass matrix of the previous section, both
in the case of the standard VEM and of the VEM with self-
stabilized stiffness, to be used for the element eigenfrequency
analysis that will be carried out in Sect. 5.2. A comparison
between the HRZ and the row-sum lumping techniques for
the VEM can be found in [21].

3.3 Elements with locally condensed internal
degrees of freedom

Let us first focus on the scheme with additional moment
DOFs. The acronymVEM4SS is used to denote 4-node Self-
stabilized virtual elements with linear displacements along
the edges. A necessary condition to have a self-stabilized
element is that nu − nε ≤ 3. As discussed in [3], different
strain fields can be used to construct self-stabilized virtual
elements according to this procedure. A first possibility is to
adopt the following 7 parameters strain model:

Nε =
⎡
⎣1 0 0 η 0 ξ 0
0 1 0 0 ξ 0 η

0 0 1 ξ η 0 0

⎤
⎦ (52)

where the first three columns define a constant strain state (as
for the standard lowest order VEM), the fourth and the fifth

3 This is a necessary condition for correct energy representation in rigid
body motions.

columns correspond to the two hourglass modes and the last
two are necessary to define a complete first order polynomial
for each strain component and tomake the consistent stiffness
matrix K self-stabilized. Therefore, in this case nε = 7.

Alternatively, also the following 9 parameters (i.e., nε =
9) strain model can be used:

Nε =
⎡
⎣1 0 0 ξ 0 0 η 0 0
0 1 0 0 ξ 0 0 η 0
0 0 1 0 0 ξ 0 0 η

⎤
⎦ (53)

Since both strain models contain linear terms, the first
moments of the displacement shape functions are required to
compute the matrix A2 in (22), hence two internal moment
DOFs are introduced. Therefore, the final number of dis-
placementDOFs is nu = 2×4+2 = 10.Hence,Nu is a 2×10
matrix. For both the proposed elements, nu − nε ≤ 3 and, if
the rows of the compatibility matrix C are independent, the
element consistent stiffness matrix K has rank deficiency 3,
i.e., the element is self-stabilized.

The presence of the two additional internal DOFs is how-
ever problematic in dynamics, requiring the imposition of
unphysical initial conditions associated to these DOFs and
leading to higher maximum eigenfrequencies with respect to
those of an 8-DOFs 4-node element. Moreover, the applica-
bility of the usual mass lumping techniques is questionable
in the presence of the two moment DOFs. All these obser-
vations are particularly relevant in explicit dynamics, where
a lumped mass matrix is usually adopted and the critical
time step is inversely proportional to the maximum eigenfre-
quency of the mesh.

To remedy this situation, a Guyan-type static condensa-
tion [28] of the local VEM stiffness matrix is introduced,
considering as master (denoted by subscript m) DOFs the 8
nodal displacement DOFs and as slave (subscript s) DOFs
the 2 moment DOFs at each time instant tn+1 in the time
integration scheme. According to this procedure, the local
static system is partitioned as:

⎡
⎣Kmm

8×8
Kms
8×2

Ksm
2×8

Kss
2×2

⎤
⎦
⎧⎪⎨
⎪⎩
ûn+1
m
8×1
ûn+1
s
2×1

⎫⎪⎬
⎪⎭ =

⎧⎨
⎩
Fn+1
m
8×1
0

2×1

⎫⎬
⎭ (54)

where it is assumed Fn+1
s = 0 and the vector Fn+1

m is com-
puted in the same way as for the standard lowest order VEM
(i.e., without moment DOFs).

The expression of the reduced element stiffness matrix K̃
is then obtained as:

(Kmm − KmsK−1
ss Ksm)︸ ︷︷ ︸

K̃

ûn+1
m = Fn+1

m (55)
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Summarizing, the first approach with self-stabilized 4-node
elements in dynamics is based on the use of an 8 × 8 self-
stabilized element stiffnessmatrix K̃ = Kmm−KmsK−1

ss Ksm

and an 8 × 8 stabilized mass matrix whose construction has
been explained in Sect. 3.2. The local equivalent nodal forces
vector at each time instant tn+1 is given by Fn+1

m .
The approach described above has been implemented for

the 4-node element with both 7 and 9 strain parameters,
according to (52) and (53). These two elements, when used
in conjunctionwith the self-stabilized lumpedmassmatrix of
Sect. 3.1 are indicated by the acronyms VEM4SS7-10DOFs-
LC and VEM4SS9-10DOFs-LC, respectively, where LC
stands for Locally Condensed, i.e., condensed at element
level. The acronymsVEM4SM7-10DOFs-LCandVEM4SM9-
10DOFs-LC will be used instead in conjunction with the
consistent Stabilized Mass matrix of Sect. 3.2. The acronym
SM stands for Stabilized Mass.

3.4 Elements without additional internal degrees of
freedom

The elements described here and those described in Sect. 3.3
differ for the computation of matrix A2 in (22), necessary
to compute the compatibility matrix C and, hence, the VEM
element stiffness matrix. The matrix A2 in (22) contains the
integral of the unknown displacement virtual shape functions
Nu , hence its computation is not immediate. Rather than con-
sidering themoments of the displacement shape functions not
pertinent to boundarynodes as additionalDOFs, as in the case
of the elements introduced in the previous Section, according
to the proposed strategy the integral in A2 is computed by
replacing Nu with its approximation obtained by projecting
the gradient of Nu onto the gradient of known polynomial
functionsN1 of degree 1, following the procedure illustrated
in [3]. In this way, only the 8 nodal DOFs are used and there
is no need for the static condensation of moment DOFs.

Having the same displacement DOFs as the standard low-
est order VEM element, the local equivalent nodal forces
vector at time tn+1, i.e. Fn+1, can be computed as in the
standard VEM. For applications in dynamics, also this ele-
ment is used in conjunction with the 8 × 8 self-stabilized
mass matrix described in Sect. 3.2.

The approach described above for the computation of the
compatibility matrixC has been implemented for the 4-node
element with both 7 and 9 strain parameters, according to
(52) and (53). Consistently with the nomenclature used in
3.3, these two elements are respectively indicated by the
acronyms VEM4SS7-8DOFs and VEM4SS9-8DOFs when
they are used in conjunction with the self-stabilized mass
matrix of Sect. 3.1. The acronyms VEM4SM7-8DOFs and
VEM4SM9-8DOFs will be used instead in conjunction with
the consistent Stabilized Mass (SM) matrix of Sect. 3.2.

4 Implicit time integration: numerical
applications

Thevirtual elementswith self-stabilized stiffness and lumped-
mass matrices described in the previous Sections have been
implemented into aMATLABcode. The consistent stabilized
mass matrix has also been implemented for comparison pur-
poses and for usagewith the standard quadrilateral VE. In the
case of the standard quadrilateral VEM, requiring a stabiliza-
tion, the usual diagonal matrix-based stabilization technique
of the stiffness matrix has been considered, together with the
consistent mass matrix, lumped through the HRZ method.

The implicitaverageacceleration time integration scheme
(implicit Newmark’s method with parameters β = 1/4 and
γ = 1/2) has been used for the cases tested in this Sec-
tion, together with the lumped self-stabilized mass matrix of
Sect. 3.1 and with a time step �t = 10−2s.

Note that the results obtained with self-stabilized VEs
together with the lumped version of the consistent stabilized
mass matrix (VEs with the acronym SM) are almost identi-
cal to those obtained with the self-stabilized mass matrix of
Sect. 3.1 (VEs with the acronym SS). For this reason, only
results relative to the lumped self-stabilized mass matrix are
reported hereafter.

Units of measure are not specified, but they have been
chosen to be consistent (e.g. mm for lengths; N/mm2 for
surface tractions, stresses, Young modulus and Lamé con-
stants; Mg/mm3 for mass density).

4.1 Convergence test with known analytical solution

The first application of the VEM is related to a classical 2D
plane strain convergence test with known analytical solution.
Specifically, the problem domain, depicted in Fig. 1, is a unit
square � = [0, 1]2 with constrained displacements all over
its boundary ∂u� ≡ ∂�, i.e., ∂p� = ∅.

The problem data are:

• Lamé constants λ = 1 and μ = 1 (corresponding to
E = 2.5 and ν = 0.25)

• Mass density ρ = 1
• Time interval [0, t f ], with t f = 2 s
• Loading period T = 1 s
• Body forces in � × [0, t f ]
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bx = sin

(
2π t

T

)
{−π2[− (λ + 3μ) sin(πx) sin(π y)

+ (λ + μ) cos(πx) cos(π y)
]+ −4π2ρ sin(πx) sin(π y)}

by = sin

(
2π t

T

)
{−π2[− (λ + 3μ) sin(πx) sin(π y)

+ (λ + μ) cos(πx) cos(π y)
]+ −4π2ρ sin(πx) sin(π y)}

(56)
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Fig. 1 Convergence test with analytical solution: problem domain

• Kinematic boundary conditions on ∂u� × [0, t f ]
{
ūx = 0

ū y = 0
(57)

• Initial conditions in � at t = 0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ux0 = 0

uy0 = 0

u̇x0 = 2π
T sin(πx) sin(π y)

u̇ y0 = 2π
T sin(πx) sin(π y)

(58)

The analytical solution of the problem in terms of displace-
ments in � × [0, t f ] is given by:

{
ux = sin

( 2π t
T

)
sin(πx) sin(π y)

uy = sin
( 2π t

T

)
sin(πx) sin(π y)

(59)

Three different quadrilateral meshes with an increasing num-
ber of elements have been tested for the assessment of the
VEM convergence: a square mesh, a mesh with convex
distorted quadrilateral elements and a mesh with convex
and non-convex quadrilateral elements (Fig. 2). Convergence
uponmesh refinement has been assessed in terms of themean
L2-norm of the strain error in a time period T, defined as:

‖eε‖L2, T = 1

nt

nt∑
i=1

√√√√ ne∑
e=1

∫
�e

‖εti − εhti ‖2d� (60)

where nt is the number of time instants in a discretized time
period T (in this specific example nt = 101 since T = 1 s and
�t = 10−2 s), being t1 the initial time instant of the period
and tnt the end of the period. εti and εhti denote respectively
the exact and the approximate strain field over the generic
element of the virtual element mesh at time instant ti . The
integrals in (60) are computed numerically by means of the
usual subtriangulation technique, evaluating the exact and the
approximate strains at the quadrature points. According to
the subtriangulation integration procedure, a convex quadri-
lateral element is divided into 4 subtriangles connecting its
centroid to the four vertices (2 subtriangles if the element is
non-convex, connecting the vertex in the concave angle to the
other vertices). A standard Gaussian procedure for triangles
is then considered for each subtriangle.

Five types of VEs are considered and their performances
are compared: standard VEs, with stiffness stabilization and
lumped version (with HRZ method) of the stabilized con-
sistent mass matrix, denoted as VEM4; self-stabilized VEs
with 8 nodal DOFs, 2 internal moments and static conden-
sation of the two moments in the element stiffness matrix,
denoted as VEM4SS7-10DOFs-LC (7 strain parameters, 10
DOFs, Local static Condensation); self-stabilized VEs with
8 nodal DOFs, 2 internal moments and static condensation
of the two moments in the element stiffness matrix, denoted
as VEM4SS9-10DOFs-LC (9 strain parameters, 10 DOFs,
Local static Condensation); self-stabilized VEs with 8 nodal
DOFs and nomoments DOFs, denoted as VEM4SS7-8DOFs
(7 strain parameters, 8 DOFs); self-stabilized VEs with 8
nodal DOFs and no moment DOFs, denoted as VEM4SS9-
8DOFs (9 strain parameters, 8 DOFs).

The results of VEM convergence analyses show that in
all cases the slope of the error ‖eε‖L2, T agrees with the first
order convergence behavior of the method as the mean ele-
ment size h decreases, when plotted in a log-log scale as
a function of h. Figure3 shows the convergence curves for
the different considered meshes, obtained using the standard
lowest order quadrilateral VEs, denoted as VEM4, and the
self-stabilized VEs presented in Sect. 3. As can be seen, all
the self-stabilized elements exhibit the right order of conver-
gence of the standard VEM.

The response in the time interval [0, t f ] of the DOF along
x at the point x = y = 0.5 is studied.4 This displace-
ment component will be indicated as reference DOF. Due
to the absence of damping, the response is characterized
by an undamped oscillatory motion. The approximate solu-
tions are compared to the exact one, the latter obtained by
introducing the coordinates x = y = 0.5 in (59), obtaining
ux (0.5, 0.5, t) = sin( 2π tT ).

4 Cosidering the degree of freedom along y would have been the same
by virtue of the symmetry of the considered problem.
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Fig. 2 Convergence test with
analytical solution: quadrilateral
meshes for comparison with the
self-stabilized VEM

The responses in time are reported in Fig. 4 for the dif-
ferent meshes together with the exact analytical solution.
For meshes finer than those used in the plots, the exact and
the approximate solutions are indistinguishable. The plots
in Fig. 4 have been obtained by subdividing the oscilla-
tion period in 100 time steps. The same problem has also
been analyzed with the mesh of convex distorted quadri-
laterals of Fig. 2b, considering VEM4SS7-10DOFs-LC and
VEM4SS7-8DOFs VEs and using 20, 30 and 50 time steps.
The results are shown in Fig. 5. For both VEs types, the exact
and the approximate solutions are almost perfectly super-
posed, for all time-step sizes.

4.2 Cook’s beam problem

The geometry of the problem is shown in Fig. 6. A linear elas-
tic, tapered cantilever beam, with the left end restrained in
both directions, is loaded at the right edge by a uniform shear
force acting along the y direction, defined as: px (t) = 0,
py(t) = p̄ sin( 2π tT ) with p̄ = 6.25 × 10−3 and T = 1 s.
Plane strain conditions and small displacements are assumed.
The results are expressed in terms of the time history of the
vertical displacement uA

y of point A in Fig. 6. Both the com-

pressible and the nearly incompressible cases are considered
with the following properties: Young’s modulus E = 70,
Poisson’s ratio ν = 0.33 (compressible case), ν = 0.49995
(nearly incompressible case) and mass density ρ = 0.1.
Since an analytical solution is not available, a reference solu-
tion for both the compressible and almost incompressible
cases has been generated using the finite element software
Abaqus with a mesh of 9545 4-node quadrilateral CPE4IH
(hybrid, linear pressure, incompatible modes) bilinear plane
strain elements.

The analyses, conducted with the five different VE types
used in the previous section, are carried out using the two
meshes, a structured and an unstructured quad mesh, shown
in Fig. 7, with increasing number of elements: 200, 400, 1600
and 6400 elements for the structured mesh; 210, 498, 1917,
5435 elements for the unstructured mesh. The time histo-
ries for the compressible case are shown in Figs. 8 and 9, for
the structured and unstructured mesh, respectively, together
with the reference solution. Good convergence upon mesh
refinement is achieved in all cases. An accuracy compara-
ble to the one of the reference solution is already recovered
when meshes of 1600 (structured) and 1917 (unstructured)
elements are used.
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Fig. 3 Convergence test with analytical solution: comparison of standard VEM and self-stabilized VEM for different quadrilateral meshes

The results for the nearly incompressible case are shown
in Figs. 10 and 11, for the structured and unstructured mesh,
respectively. For the structured mesh, the standard VEM and
the 7 and 9 strain parameters, self-stabilized elements with-
out internal moments, VEM4SS7-8DOFs and VEM4SS9-
8DOFs, exhibit a severe locking for all mesh densities, with
oscillation amplitudes significantly smaller than expected.
In contrast, the VEM4SS7-10DOFs andVEM4SS9-10DOFs
with internal moment DOFs and element static condensa-
tion, provide locking-free responses for all mesh densities,
with increasing accuracy upon mesh refinement. A rather
poor result in terms of accuracy is obtained only with the
VEM4SS7-10DOFselement in the coarsestmesh case.These
results confirm what had already been observed in [3] for the
static case, where the VEM4SS7-10DOFs and VEM4SS9-
10DOFs elements have shown to provide almost completely
locking-free results in a number of applications.

Remark 3 Thedynamic analysis of the incompressibleCook’s
membrane with stabilized B-Bar VEM has been considered
also in [21]. However, note that in the present case, accurate
results for the same problem have been obtained with self-

stabilized VEs, without any special provision to mitigate a
possible locking response.

5 Explicit time integration: critical time step
size

The explicit central difference time integration scheme is
usually employed in the case of highly non-linear, high strain
rate dynamics simulations,with relatively short duration. The
central difference scheme is only conditionally stable and the
used time step size has to be smaller than a critical value. Fur-
thermore, in explicit dynamics, the use of a lumped diagonal
matrix is necessary for the explicit inversion of the mass
matrix. The proposed new node-based integration scheme
for VEs has the advantage that it directly produces a lumped
mass matrix. These two aspects, time step size and lumped
massmatrix are fundamental for the computational efficiency
of explicit dynamics simulations and are discussed below in
connection with the proposed self-stabilized VEs.
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Fig. 4 Convergence test with analytical solution: response in time in terms of reference DOF, comparison with standard VEM and analytical
solution for different meshes

Fig. 5 Convergence test with analytical solution: response in time in terms of reference DOF for different number of time increments per period,
convex distorted quad mesh with 384 elements
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Fig. 6 Cook’s beam: problem domain

5.1 Critical time step size

In the undamped case, the central difference scheme is stable
for:

�t ≤ �tcr = 2

ωmax
(61)

where�t is the adopted time step and�tcr is the critical time
step, strictly related to the maximum eigenfrequency ωmax

of the mesh.
The estimation of the critical time step is basically reduced

to the computation of ωmax by solving the global eigenvalue
problem:

det(K − ω2M) = 0 (62)

where K andM are the assembled stiffness and mass matri-
ces, while ω2 denotes the generic eigenvalue (square of the
eigenfrequency) of the system.

For a mesh with a large number of elements, the compu-
tation of ωmax can be very expensive. An effective iterative
algorithm for the global estimation of ωmax can be found in
[29]. A less expensive, though less accurate but conservative,
estimate of �tcr can be alternatively obtained making use of
the element upper bound theorem, see [30], for themaximum
global eigenfrequency, stating that:

ωmax ≤ max
e

{ωe
max } (63)

where ωe
max denotes the maximum eigenfrequency of the

generic element composing the mesh. ωe
max is computed for

each element solving the local eigenvalue problem:

det(Ke − ω2
eMe) = 0 (64)

and the maximum ωe
max among all the elements is used to

evaluate a lower bound for the critical time step size:

�t̄cr = 2

max
e

{ωe
max }

≤ �tcr = 2

ωmax
(65)

Another, alternative element-based estimate of the critical
time step size can be achieved by imposing that a dilatational
stress wave cannot traverse an entire virtual element in a
single time step. This leads to the following estimate:

�t̄cr = le
cd

≤ �tcr (66)

Fig. 7 Cook’s beam:
quadrilateral meshes for
comparison with self-stabilized
VEM
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Fig. 8 Cook’s beam: time history of vertical displacement at point A under mesh refinement, structured quad mesh, compressible case (ν = 0.33)
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Fig. 9 Cook’s beam: time history of vertical displacement at point A under mesh refinement, unstructured quad mesh, compressible case (ν = 0.33)
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Fig. 10 Cook’s beam: time history of the vertical displacement of point A under mesh refinement, structured quad mesh, nearly incompressible
case (ν = 0.49995)
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Fig. 11 Cook’s beam: time history of vertical displacement at point A under mesh refinement, unstructured quad mesh, nearly incompressible case
(ν = 0.49995)
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where cd is the speed of a dilatational stress wave in the con-
sideredmediumand le is a characteristic element size, usually
taken as the maximum between the minimum element edge
and the minimum distance between the element centroid and
its nodes. A discussion on the selection of the characteristic
length for VEs can be found in [21]. In the analysis of the
following Section, the maximum element eigenvalue will be
used for the critical time step estimate.

5.2 Eigenfrequency analysis of single 4-node
elements

As discussed in the previous Section, the maximum stable
time step size strongly depends on the element size and
shape. Since VEs can take almost any shape, without any
restriction on convexity, it is expected that the element shape
could greatly affect the critical time step size. The maxi-
mum eigenfrequencies of the three element shapes shown in
Fig. 12, with comparable edge lengths, but of extremely dif-
ferent shapes, have been computed to assess the influence of
shape on the critical time step size. The following material
properties have been considered: Lamé constantsλ = μ = 1,
(equivalent to E = 2.5 and ν = 0.25) and mass density
ρ = 0.1. Plane strain conditions have been assumed. Since
the lumped version of the stabilized consistent mass matrix
and the lumped self-stabilized one lead to the samemaximum
eigenfrequency, only the latter element will be considered in
the study.

For each shape, the five different types of VEs have
been considered: VEM4 (i.e. standard VEM), VEM4SS7-
10DOFs-LC, VEM4SS9-10DOFs-LC, VEM4SS7-8DOFs,
VEM4SS9-8DOFs. In addition, for the convex elements, also
a standard 4-node FEMwith full integration has been consid-
ered. The results are shown in Figs. 13 and 14. In all cases, the
first three zero eigenfrequencies are associated to rigid-body
modes.

From Fig. 13a, b, one can see that the same maximum
eigenfrequency, and hence the same critical time step size,
is obtained by all element types for all convex shapes. When
the element is non-convex (see Fig. 13c), the self-stabilized
elements without moment DOFs (VEM4SS7-8DOFs and
VEM4SS9-8DOFs) exhibit instead a maximum eigenfre-
quency that is about 20% larger than the other elements. For
all element types, distortion leads to an increase of the max-
imum eigenfrequency, achieving a peak in the non-convex
case. As far as the elements VEM4SS7-10DOFs-LC and
VEM4SS9-10DOFs-LC are concerned, i.e. the VEswith two
moment DOFs that are statically condensed in the stiffness
matrix, one can conclude that the static condensation does
not affect the critical time step size.

Figure14 shows the effect of the element shape on the
eigenfrequencies for the different element types. As already
noted, in all cases a distortion leads to a progressive increase

Fig. 12 Eigenfrequency analysis: tested 4-node elements

of the maximum eigenfrequency, which is particularly evi-
dent in Figs. 14e and f, i.e., for elements VEM4SS7-8DOFs
and VEM4SS9-8DOFs.

From these analyses, one can conclude that the self-
stabilized elements VEM4SS7-10DOFs-LC, VEM4SS9-
10DOFs-LC, with static condensation in the stiffness matrix
of the moments DOFs, exhibit the correct convergence rate,
optimal accuracy for distortedmeshes, the best performances
in the quasi-incompressible limit, without compromising the
critical time step size for explicit dynamic analyses.

6 Conclusions

A recent mixed formulation of the Virtual Element Method
(VEM) in 2D elastostatics [3], based on theHu-Washizu vari-
ational principle, has been extended to 2D elastodynamics.
The main feature of the mixed VEM formulation is that self-
stabilized VEs can be obtained, avoiding the complication
and, to a certain extent, arbitrariness of a stabilization. For
first order quadrilateral elements in elastodynamics, we have
shown how a fully self-stabilized VEM formulation, where
by fully self-stabilized wemean that both the stiffness and the
mass matrix do not require a stabilization, can be obtained
using theHu-Washizumixed approach proposed in [3] for the
stiffness matrix and a new, node-based integration scheme
for the mass matrix. The new method provides directly a
stabilized lumped mass matrix, which is ideally suited for
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Fig. 13 Eigenfrequency analysis: comparison of the eigenfrequencies resulting from different approaches, lumped mass matrix

applications with explicit time-integration schemes. In the
case that a consistent mass matrix is needed, it has been
shown how the stabilized mass matrix of the standard VEM
for first order quads can be conveniently combined with the
stiffnessmatrix of the self-stabilized first order quads derived
in [3]. It has also been observed that the lumped version
obtained by using the HRZ [27] diagonal scaling method is
identical to the one directly obtainedwith the new integration
rule.

As for the stiffness matrix, we have considered the two
types of self-stabilized elements proposed in [3]: elements
with andwithoutmomentDOFs. In the first case, themoment
DOFs have been statically condensed at the element level,
allowing for their direct use with a mass matrix based on
nodal accelerations only.

By means of numerical tests, we have shown that the
combination of a self-stabilized stiffness matrix with a self-
stabilized lumped mass matrix can produce excellent results
both in the compressible and quasi-incompressible regimes
in the case of implicit time integration. In particular, the self-
stabilized elementswith statically condensedmomentDOFs,

VEM4SS7-10DOFs-LC and VEM4SS9-10DOFs-LC, have
exhibited the best accuracy in both the compressible and
quasi-incompressible case, also with respect to the standard
VEM.

In the case of explicit dynamics, the different types of
derivedVEs have been analyzed in terms of their critical time
step size. It has been observed that in the case of non-convex
shapes, the maximum eigenfrequency of the self-stabilized
elements without moment DOFs is significantly higher than
for the other element types, making their usage in explicit
dynamics problematic. In contrast, the maximum eigenfre-
quency of the self-stabilized elements with moment DOFs
has resulted to be no more sensitive to element distortion
than the standard FEs (for convex elements) and VEs, mak-
ing these elements very promising for application in explicit
dynamics problems.
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Appendix A Quadrature formula for generic
quadrilaterals

In order to deal with general quadrilaterals (convex and non-
convex), we derive a quadrature formula which integrates
exactly first-degree polynomials having the vertices as inte-
gration points. We will actually construct the quadrature
formula for a general polygon; hence, in this subsection only,
�e will denote a general polygon (convex or non-convex)
with NV vertices whose coordinates are xi = (xi , yi ),
i = 1, . . . , NV .

Let x be a generic point (inside or outside the polygon)
and T x

i the signed area of the triangle


T x
i having vertices

x = (x, y), xi = (xi , yi ) and xi+1 = (xi+1, yi+1), i.e.:

T x
i := 1

2
det

⎡
⎣1 1 1
x xi xi+1

y yi yi+1

⎤
⎦ (67)

where we agree that xNV +1 = x1 (see Fig. 15, left). The
centroid xC of the polygon can be computed by taking the
weighted sum of the centroids of the triangles



T x
i :

xC =
NV∑
i=1

T x
i

|�e|
(xi + xi+1 + x)

3

= 1

|�e|
NV∑
i=1

T x
i

(xi + xi+1)

3
+ x

3

= 1

|�e|
NV∑
i=1

xi
3

(
T x
i−1 + T x

i

)+ x
3

(68)

where we define again for simplicity T x
0 := T x

NV
. If we take

as x the centroid itself xC , we obtain the identity:

xC = 1

|�e|
NV∑
i=1

xi
3

(
T xC
i−1 + T xC

i

)+ xC
3

(69)

i.e.:

xC = 1

|�e|
NV∑
i=1

(
T xC
i−1 + T xC

i

)
2

xi . (70)

Hence, if we define the weights ωi as (see Fig. 15, right):

ωi := T xC
i−1 + T xC

i

2
, (71)

we have the following representation of the centroid as linear
combination of the vertices:

xC = 1

|�e|
NV∑
i=1

ωi xi . (72)

Note that some of the weights ωi might be negative if the
centroid lies outside the polygon. Finally, observing that if
p1 is a polynomial of degree one we have:

∫
�e

p1(x)d� = |�e| p1(xC ), (73)

we can easily deduce by (72) the equality:

∫
�e

p1(x)d� =
NV∑
i=1

ωi p1(xi ). (74)

The corresponding quadrature formula with nodes xi and
weights ωi is exact for linears and it works for general poly-
gons (convex or non-convex). If the polygon is non-convex,
the weights ωi might be negative.

Fig. 15 The polygon �e
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